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ABSTRACT
Full correlation matrix analysis (FCMA) is an unbiased ap-
proach for exhaustively studying interactions among brain
regions in functional magnetic resonance imaging (fMRI)
data from human participants. In order to answer neuro-
scientific questions efficiently, we are developing a closed-
loop analysis system with FCMA on a cluster of nodes with

IntelR© Xeon Phi
TM

coprocessors. We have proposed several
ideas to modify the algorithm to improve the performance on
the coprocessor. Our experiments with real datasets show
that the optimized single-node code runs 5x-16x faster than
the baseline implementation using the well-known IntelR©

MKL and LibSVM libraries, and that the cluster implemen-
tation achieves near linear speedup on 5760 cores.

General Terms
Algorithms, Performance optimization

1. INTRODUCTION
Neuroscientists use functional magnetic resonance imag-

ing (fMRI) technology to acquire volumes of activity from
human brains. Most previous studies focus on offline data
analysis to discover neural activity patterns and interactions
in different brain regions. Recently two new approaches have
shown promise as a means to accelerate discoveries in neu-
roscience: real-time fMRI with closed-loop feedback[6] and
exhaustive study of neural interactions via imaging data[26].

Real-time fMRI (rtfMRI) refers to any process that uses
functional information from the scanner in a manner that
keeps pace with data acquisition. rtfMRI has been applied
to interoperative surgical guidance, brain-computer inter-
faces, and neurofeedback[24]. A recent study shows that
closed-loop neurofeedback can be used to train participants
to improve their ability to attend selectively to a stimu-
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lus[6]. A system that permits real-time analysis of neural
interactions for the entire brain will allow neuroscientists to
conduct new scientific and clinical studies at a time when
interest in rtfMRI neurofeedback is rising rapidly[24].

Full correlation matrix analysis (FCMA)[28] was a novel
attempt to exhaustively study the neural interactions in a
brain by applying multivariate pattern analysis (MVPA)
methods[20], to the whole-brain correlation matrix, rather
than focusing on the instantaneous amplitude of blood-oxygen-
level dependent (BOLD) activity, or on correlations in this
signal over limited subregions of the brain. However, FCMA
is computationally intensive, and has not yet been carried
our in real-time. Doing so on cost-effective computational
platforms presents a challenge, however it also holds the
promise of substantially boosting progress in neuroscience.

To address this challenge, we are developing a closed-loop
neuroscience research system with an fMRI scanner and a

cluster using Intel R© Xeon Phi
TM

coprocessors (henceforth
referred to as coprocessor), as shown in Fig. 1. The fMRI
system produces an entire brain’s worth of data every 1.5
seconds as a human subject is exposed to stimuli and/or
asked to perform tasks. The stream of brain data is sent to
a compute cluster with coprocessors that runs the FCMA
system. The FCMA software analyzes the brain data in
two ways: performing offline brain interaction analysis af-
ter collecting multiple subjects’ data; or selecting voxels to
train a classifier using one subject’s data online to provide
real-time feedback as described in the following experiments.
And the software must achieve satisfactory wall-clock time
in both scenarios.

The challenge is to achieve satisfactory performance for
both offline analysis and online real-time analysis without
substantial computational hardware costs. There are two
main design goals for FCMA closed-loop system. The first
is a scalable implementation that can achieves linear or near-
linear speedup on a large cluster. The second is to ensure
that the code running on each individual node fully exploits
the hardware capability of the coprocessor.

The input data for FCMA is a stream of 3D human brain
data (volumes of voxels) over time. Including the time di-
mension, the input is a 4D dataset. A separated full correla-
tion matrix (i.e. the temporal correlation in BOLD activity
of every voxel in the brain with every other voxel) is com-
puted for each time epoch of interest during the fMRI scan.
Each matrix may then be categorically labeled based on the



Figure 1: A closed-loop neuroscience research sys-
tem with an fMRI scanner and a cluster using Intel R©

Xeon Phi
TM

coprocessors.

experimental conditions experienced by the subject during
each epoch (e.g., the stimulus or task condition). The goal
of FCMA is to make an unbiased determination of which
correlations distinguish between conditions, thereby identi-
fying regions of interests (ROIs) that have different patterns
of interactions as a function of condition.

Although it is fairly straightforward to parallelize FCMA
using cluster-level data partitioning, it is challenging fully
utilize the hardware capabilities of modern architectures,
specifically the increasing amounts of thread and data level
parallelism, and smaller amounts of cache per core. Many-
core architectures are leading these trends and hence benefit
more from optimizations such as vectorization and block-
ing. Our baseline implementation using MKL and LibSVM
libraries achieved respectable performance, but was found
to significantly underutilize the hardware. These libraries,
and others like them, use cache conscious algorithms to im-
plement their functions, but they do not co-optimize func-
tions or handle special cases such as tall-skinny matrices
well, things that we believe would help in our case.

This paper describes several optimizations for FCMA on
manycore architectures, including blocking tall-skinny ma-
trices for multiplication, retaining L2 cache contents across
computation stages, and designing data layout and workflow
to be vectorization friendly. We have implemented an op-
timized version of FCMA that incorporates these ideas, as
well as optimized support vector machine (SVM) algorithm.

Our evaluation shows that the optimized implementation
on a single coprocessor runs 5x-16x faster than the baseline
with MKL and LibSVM libraries. Our optimized SVM runs
10x faster than the popular LibSVM package[5] on a single
coprocessor. Our parallel FCMA implementation on a clus-

ter of IntelR© Xeon Phi
TM

coprocessors achieves near linear
speedup on up to 96 coprocessors or 5760 cores.

We also show that our optimizations for the coprocessor
yield a faster implementation on IntelR© XeonR© processors.
The optimized implementation on an E5-2670 processor runs
1.4x-2.5x faster than the baseline with MKL and LibSVM
libraries.

2. INTEL R© XEON PHITM ARCHITECTURE
The IntelR© Xeon Phi

TM

is a coprocessor based on the Intel
Many Integrated Core (MIC) architecture1. The coproces-
sor provides a general-purpose programming environment

1
Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.

and/or other countries.

similar to that of an IntelR© XeonR© processor.
Fig. 2 illustrates the high-level architecture of the 5110P

coprocessor. This model has 60 CPU cores, each of which
runs at a fixed clock rate of 1053MHz and supports up to 4
hardware threads compensating for its in-order instruction
execution. Each core has a 32KB L1 data cache, a 32KB
L1 instruction cache, and a 512KB unified L2 cache shared
by up to four threads. The L2 caches belonging to different
cores are interconnected via a bidirectional ring. Cache co-
herence is maintained by a global-distributed tag directory.

An L2 cache miss triggered by a core can be satisfied by
either a remote cache or the memory with slightly differ-
ent latencies. A previous empirical study showed that the
latency of an L2 cache miss on Xeon Phi takes 250 CPU
cycles from a remote L2 cache location and 302 CPU cycles
from the main memory[10]. Both L1 and L2 caches use a
cache line size of 64B, therefore, a cache miss will bring 16
single precision or 8 double precision floating point numbers
into the cache.

Figure 2: Architecture of the Intel R© Xeon Phi
TM

5110P coprocessor.

Each core also has a 512-bit wide vector processing unit
(VPU), which allows 16 single precision or 8 double preci-
sion floating point numbers to be processed in a single CPU
cycle. The wide VPU size makes vectorization challenging.
If the vectorization intensity, defined as the number of vec-
torized elements divided by the number of executed VPU
instructions, is low, the VPU is not fully utilized.

By using all available threads and VPU in the most effi-
cient way, the peak floating point performance of the copro-
cessor can reach 2.02 TFLOPS for single precision and 1.01
TFLOPS for double precision.

Each 5110P coprocessor board has 8GB DRAM, out of
which ∼2GB are dedicated to the operating system, leaving
∼6GB memory available for applications.

3. FCMA ALGORITHM

3.1 Overview
FCMA works on fMRI datasets. An fMRI dataset con-

tains the fMRI data from a neuroscientific experiment, often
conducted over multiple human subjects. A brain volume is



comprised of a number of voxels, depending on the resolu-
tion of the fMRI scanner and its scanning speed. An epoch
of interest consists of a series of continuous time points dur-
ing which the subject was doing some specific task. The
time epoch can be labeled based on the types of task.

The fMRI scanner used in this research (Siemens Skyra)
can be configured in various ways, but a relatively standard
set of image parameters might be 35,000 voxels every 1.5
seconds. The neuroscience datasets we consider contain tens
fMRI data of subjects, each of whom has tens of time epochs
of interest labeled in two conditions, meaning that hundreds
of full correlation matrices must be computed. Although
the size of such a dataset is approximately a gigabyte, the
size of the corresponding full correlation matrices will be in
terabytes.

FCMA involves a three-stage pipeline, as shown in Fig.
3. Before computation, FCMA reads in the preprocessed
fMRI data (e.g., corrected for head motion and other noise
sources) and the text files specifying the labeled time epochs
over which the correlation is to be computed.

The first stage of FCMA is correlation computation. We
reduce the computation of the Pearson correlation between
voxel pairs to a multiplication of a voxel-by-epoch matrix
times its transpose by normalizing the data within each time
epoch[31]. Such reduction simplifies the computation.

The second stage is within-subject normalization. The full
correlation matrices with various labels from the first stage
are the input of this stage. We use Fisher transformation to
transform correlation coefficients to an approximately nor-
mal distribution and perform z-score transformation within
each subject for normalization. The output of the second
stage is then grouped by voxels so that the correlation vec-
tors of the same voxel with different labels (depicted as dark
red and light pink in the figure) are stored together.

The third stage is SVM cross validation. This stage per-
forms voxel-wise cross validation via linear SVM to deter-
mine each voxel’s ability to distinguish between two condi-
tions.

Figure 3: The three-stage pipeline of FCMA.

3.1.1 Cluster parallelization framework
We use a task-based parallel framework on a compute clus-

ter, in which a master assigns tasks to workers. The master
node first distributes brain data to the worker nodes and
then sends tasks to the workers to process in parallel. A
worker works on one task at a time. When a worker finishes
a task, it will receive a new task from the master.

The tasks are defined by partitioning the correlation ma-
trices along their rows. Each task is one run of the three-
stage FCMA algorithm for the assigned number of voxels.

3.1.2 Three-stage algorithm on a single node
We then describe the three-stage algorithm on a single

worker node after being assigned a task. In stage one, a
worker node computes correlation vectors for all epochs of
its given voxels as shown in Fig. 4. The number of given
voxels is typically a few hundred or less to permit all corre-
lation data to fit into memory. Since in most cases one time
epoch consists of less than 20 time points, the matrix multi-
plications used to compute correlation have one very small
dimension (the k dimension) which limits performance. In
order to facilitate the subsequent steps, we arrange the data
in memory such that all correlation vectors corresponding to
a single voxel are contiguous, which means the result of the
correlation matrix multiplications must be interleaved row
by row. Fig. 4 illustrates the data layout in different colors,
where the activity values of the first and second epochs are
colored in dark red and light pink, respectively. The first
voxel out of the V voxels computes its correlation vector
of the first epoch and places as the first row of the corre-
lation data of the first voxel depicted in dark red; the last
voxel computes its correlation vector of the second epoch
and places as the second row of the correlation data of the
last voxel depicted in light pink.

Figure 4: Computing the correlations for V voxels
in M epochs.

A Fisher transformation

z =
1

2
ln(

1 + r

1− r ) (1)

is applied to each correlation coefficient to make the data
to be approximately normally distributed, where r is the
correlation coefficient. Then the correlation vectors of each
voxel are normalized across epochs within each subject. As
depicted in the bottom half of Fig. 4, a voxel’s correlation
vectors are partitioned into E epochs per subject by dashed
lines. For normalization, a sub-column of E values (indi-
cated in Fig. 4 by a vertical black line in the second subject
of the first voxel) is treated as a population P and z-scored
as

∀z ∈ P, z′ =
z − µ
σ

(2)

where µ and σ are the mean and standard deviation of the



population, respectively. This normalization brings correla-
tion coefficients in different subjects to the same scale for
the subsequent cross-subject classification.

The normalized correlation vectors for each voxel with two
different labels can then be sent to a classifier to determine
how well the correlation vectors for each particular voxel dif-
ferentiate the labeled categories via cross validation. Note
that for each voxel there are only a few hundred samples
(one epoch per correlation vector) while each sample has
∼35,000 dimensions (corresponding to the number of voxels
in the brain), we use linear SVM to avoid overfitting. Fi-
nally, voxels are ordered by their resulting accuracy of cross
validation so that the brain regions constituted by top voxels
are identified as ROIs in terms of correlation for following
studies.

3.2 Baseline Implementation
Our baseline implementation can be viewed as a typical

implementation using sound programming discipline and the
state-of-the-art libraries.

We implemented the three-stage algorithm described above
in C++. All floating point values are represented in single
precision.

For correlation computation in the first stage, we allocate
continuous aligned space in the memory to store the correla-
tion vectors of all voxels so that the cblas sgemm routine of
MKL can be called to compute the correlation vectors epoch
by epoch and place the results in an alternate way group-
ing by voxels via specifying the parameter ldc appropriately.
The normalization of the second stage is parallelized along
all voxels while applying vectorization within z-scoring. The
SVM training that takes place in the third stage is essentially
an algorithm that repeatedly calculates the matrix-vector
product of the correlation matrix with different rows of the
matrix itself. Since there are many more voxels than there
are training examples (one time epoch corresponds to one
sample), we precomputed all such matrix-vector products
(also called the kernel matrix) before beginning SVM cross
validation. Given that it is a linear SVM and the kernel
function is a dot product, this kernel matrix can be cast
as a symmetric matrix multiplication and solved with the
cblas ssyrk routine of MKL over one voxel’s corresponding
data matrix and its transpose. The SVM cross validation
works based on the precomputed kernel matrix by applying
the sequential minimal optimization (SMO) algorithm[23]
implemented in the LibSVM[5] package for training. In this
way, one thread takes care of one voxel’s kernel matrix com-
putation and cross validation at a time so that different vox-
els can progress simultaneously.

We have tuned this implementation by carefully designing
the data structures to utilize the high performance MKL
routines. We have also deliberately precomputed the kernel
matrices to avoid duplicate pairwise kernel computing and
to keep more frequently used data in the cache. In practice,
this results in good performance on a cluster consisting of
nodes with IntelR© XeonR© processors, where FCMA runs in
the master-worker mode communicating via MPI calls, and
the master node allocates different sets of voxels to different
workers for processing.

3.3 Performance Analysis
This subsection reports our analysis of the baseline im-

plementation on the IntelR© Xeon Phi
TM

coprocessors. All

of our measurements were collected by running the baseline
implementation on the face-scene dataset (more details in
Section 5), which contains brain data with 34,470 voxels,
in 216 12-time-point epochs with two different labels. The
master node assigns 120 voxels to a worker node as a single
task for processing. We analyzed the performance of a single
worker task.

3.3.1 Low efficiency of matrix multiplication
The first finding is that the matrix multiplications of MKL

does not perform efficiently for our tall-skinny matrices on
the coprocessor.

At the correlation computation stage, a worker is respon-
sible for 120 voxels. It calls cblas sgemm to perform 216
matrix multiplications between 120*12 and 12*34,470 ma-
trix pairs to obtain correlation coefficients between the as-
signed 120 voxels and the entire brain over 216 epochs. At
the SVM cross validation stage, it computes 120 symmetric
kernel matrices between 216*34470 matrices and the corre-
sponding transposes for 120 voxels using cblas ssyrk.

Table 1 summarizes the performance of the matrix mul-

tiplication routines using IntelR© vTune
TM

Amplifier. There
are three performance issues. The first issue is that the num-
ber of memory references is too high. Our instrumentation
shows that there are 34.9 billion memory references, whereas
the matrix multiplications for the correlation computation
and for SVM cross validation stages should have fewer than
10 billion.

time #mem refs L2 miss
Vector
intensity

Matrix mul-
tiplication

1830 ms 34.9 billion 709 million 3.6

Normalization 766 ms 6.2 billion 179 million 8.5
LibSVM 3600 ms 23.0 billion 7 million 1.9

Table 1: The instrumentation results of the baseline.

The second issue is that the cache miss overhead is high.
Since empirically the latency of a L2 cache miss on the copro-
cessor is ∼250 CPU cycles from remote L2 cache and ∼302
CPU cycles from memory[10], and the clock rate of the co-
processor (5110P) is 1053MHz, we can estimate the latency
of an L2 cache miss to be ∼300 ns so the total latency of L2
cache misses could be as high as ∼880 ms if not well hidden
by other operations, which is significant compared to the
total elapsed time (1830 ms).

The third issue is that the vectorization intensity value is
only 3.6 while the ideal vectorization intensity is 16. Only
23% of the VPU capability is used during computation.

These three observations show that MKL doesn’t compute
our skinny matrices well for the L2 cache and does poorly
to take advantage of the VPUs of the coprocessor.

3.3.2 Lack of cached data reuse between stages
We found that the second stage of FCMA which performs

caused ∼112 million compulsory L2 cache misses. The first
stage (correlation computation) generated correlations and
wrote them into their data structures. The second stage
(within-subject normalization) read the data back to per-
form Fisher transformation and z-score.

Optimization within a function cannot avoid such compul-
sory L2 cache misses between function calls. When such situ-



ations happen between two stages of the processing pipeline,
retaining cache contents becomes difficult. To avoid such
cache misses, we need to have higher-level optimizations.

In addition, Table 1 shows that the vectorization intensity
of within-subject normalization is 8.5, indicating that there
are rooms to improve the utilization of the vector unit.

3.3.3 Poor VPU utilization in SVM cross validation
We noticed that the SVM cross validation stage takes a lot

of time and most of the time spent in the LibSVM library.
The first reason is that the vectorization intensity of Lib-

SVM is only 1.9 (Table 1), indicating it does not take advan-
tage of the vector unit of the coprocessor well. As we started
looking at the code of LibSVM, we found that it stores data
in sparse index set instead of dense matrix.

The second reason is LibSVM does unnecessary data type
conversions during computing and uses double precision val-
ues in the computationally intensive loops.

The third reason is that the implementation uses one
thread to run cross validation for each voxel. The mas-
ter node needs to assign at least 240 voxels at a time to
the coprocessor for fully utilizing its available 240 threads.
However, each 5110P coprocessor has only about 6GB mem-
ory available to applications. 240 voxels’ correlation vectors
will consume 8.3GB memory. This forces the master node
to only assign a small number of voxels to the coprocessor
once, consequently the computing resource is under utilized
during the linear SVM cross validation stage.

The poor performance of LibSVM motivated us to op-
timize the LibSVM. In addition, we implemented PhiSVM
based on a GPU SVM implementation[4]. We will report
the performance of these implementations in Section 5.

4. OPTIMIZATIONS
Based on the optimization opportunities identified above,

we came up with three optimization ideas. This section first
describes our ideas and then presents how we optimized our
implementation.

4.1 Optimization Ideas
We employed three optimization ideas to optimize the

FCMA algorithm for a single worker node task:
1) Partition tall-skinny matrices for blocking to fit small

amount of L2 cache for each thread. The traditional way
of blocking is to change the looping structure of the code
to process a square block of data in inner loops. However,
this approach would exceed the relatively small L2 cache per
thread on the coprocessor.

2) Retaining cache contents across stages of the procedure
pipeline. Our approach is to look at the contents of L2
cache in the current stage. If the contents will be resused
frequently in the next stage, we will consider merging the
two stages to avoid cache misses at the next stage. Typically,
a cache conscious algorithm of the current stage uses blocked
data structure to reduce cache misses. When finishing the
computation with the blocks, it will proceed with the next
stage computation without waiting for other blocks of the
current stage to complete their computations. Obviously,
merging stages will reduce modularity of the program. So,
one needs to be careful when applying this idea.

3) Designing data structures and workflow for vectoriza-
tion. A vector unit typically requires its data to be layout
in memory in consecutive fashion so that they can be moved

into and out of its large register file quickly. This optimiza-
tion ensures that the data structures fit the required layout
to maximize the utilization of the vector unit.

4.2 Correlation Computation
As mentioned before, computing correlations are reduced

to matrix multiplications. At this stage, a single worker node
needs to correlate its assigned V voxels with all brain voxels
over all epochs of interest, so the job is essentially doing
matrix multiplications between relatively small matrices and
tall-skinny matrices as illustrated in the top half of Fig. 5.
Our optimization idea #1 to block voxel data as depicted in
dark red in Fig. 5. Performing computation within blocks
won’t trigger unnecessary L2 cache misses. In order to fully
utilize the VPUs, we defined the size of blocks to be integral
multiples of the vector unit width. Also, we consciously
transpose the block of tall-skinny matrix to better utilize
the VPUs (idea #3).

Figure 5: Retain correlations (red blocks) in L2
cache for the normalization stage.

4.3 Within-Subject Normalization
The within-subject normalization stage of FCMA is the

second pipeline stage in Fig. 3. It uses the data computed
in the correlation computation stage. Applying idea #2 will
allow us to avoid many cache misses at this stage.

After computing the correlation coefficients in local blocks,
the normalization can be applied to the data before they are
written back. What we need to take into consideration, be-
sides the blocking, is that the data necessary for a complete
normalization should reside in the same block. It is a cache
locality driven job scheduling approach.

Fig. 5 indicates the merging process. Out of V assigned
voxels, each thread only takes B voxels to compute their cor-
relations with some other B′ voxels for E epochs belonged to
one subject, yielding B portion of within-subject correlation
coefficients that can be normalized. Note that all blocks in
red can be fit into L2 cache, we won’t spend additional time
to fetch the data between stages. Using different threads to
handle different blocks in this way, all correlation data would
be computed and immediately normalized then written to
the memory. The idea of merging adjacent stages in the
procedure pipeline can be generalized to all memory-bound



processes where the memory latency cannot be hidden com-
pletely by the computation.
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Figure 6: The z-score computation begins with cor-
relation vectors in L2 cache and processes 16 voxels
at a time using SIMD instructions.

In addition to merging stages, we also apply our opti-
mization idea #3 to this stage. Our approach to vectorizing
the normalization procedure is shown in Fig. 6, which de-
tails the processing that takes place for each dark red block
shown on the bottom half of Fig. 5. The correlation vectors
are placed contiguously into a temporary block of memory.
We process the data in chunks of 16 voxels using SIMD in-
structions and registers (enabled with the #pragma SIMD
directive). To compute the Fisher transformation, we must
perform a logf operation on each data element. On the
coprocessor, the logf computation benefits from hardware
support for single precision transcendental functions in the
extended math unit (EMU). During the first pass through
the data, we also compute the mean and standard deviation
across correlation vectors. We use the E[X2] − E[X]2 for-
mulation for variance in order to compute both the mean
and standard deviation in one pass. As one block of 16 vox-
els are processed, we prefetch the next set of voxels into the
L1 cache using mm prefetch( MM HINT T0) We do not
do L2 software prefetching because the data are presumed
to be L2 resident by our blocking design. After the mean
and standard deviation are computed, a second pass through
the data subtracts the mean and scales by the inverse of the
standard deviation.

4.4 SVM Cross Validation
This stage consists of two parts, a linear kernel matrix

precomputation followed by linear SVM cross validation over
the precomputed kernel matrices.

SVM kernel matrix precomputation in FCMA is essen-
tially a matrix multiplication between a voxel’s M ∗N data
matrix and its transpose, where M is the number of epochs
over which the correlation is computed, and N is the number
of voxels in the brain, normally M << N . We implemented
a custom symmetric matrix multiplication function for the
coprocessor which attempts to optimize for our particular
setting by applying our optimization ideas #1 and #3 sim-
ilar to the first stage.

Fig. 7 shows the workflow of our optimized implemen-
tation. Since one worker node deals with certain number
of voxels simultaneously, a number of independent matrix
multiplications are running in parallel, one per voxel, as
shown in the depth dimension. The size of a data matrix
is typically ∼60 MB (400 epochs times 35,000 voxels matrix
stored in single precision values), making it possible to con-
sume the ∼6GB of on-board memory of the coprocessor by

processing only a 100 voxels’ worth of matrices. Therefore
the number of independent, concurrently executed matrix
multiplications is limited. They cannot saturate the proces-
sor, which compels us to split the problems across multiple
threads and use OpenMP locks to control access to the C
matrices.

Thread 0
Thread 1

Thread 2
Thread 3

Thread 4
Thread 5

C1=A1
TA1

Copy

C local

A local

AT local

Transpose

add
when 
complete

A1

A2

A3

C2

C3

L1

Figure 7: Multiple tall-skinny matrix multiplica-
tions (sryk) are performed to precompute the SVM
kernel matrices.

Each thread proceeds down the long dimension of the
matrix in blocks of 96 rows (an integral multiple of VPU
length). These blocks are copied into a local buffer (A local).
Smaller blocks of A local are then transposed and copied into
a smaller buffer (AT local). Once the data is ready, we call
an auto-generated 16x9x96 assembly-level matrix multiply
routine in the inner loop to generate each block of C local.
We pad A local with zeros for the last block if A’s height is
not a perfect multiple of 96, and use vectorized loops for the
other dimensions. After the thread completes its portion of
the matrix multiply, it takes a lock corresponding to the C
matrix and adds its contribution to C [21].

Regarding the SVM cross validation algorithm over the
precomputed kernel matrix, in order to circumvent the draw-
backs of LibSVM mentioned above, we adopted a fast SVM
algorithm[4] implemented for GPUs and rewrote the CUDA
code into C++ to run on the coprocessor. Like LibSVM,
this fast SVM applies SMO algorithm to solve a SVM train-
ing problem. Typically, a single iteration of SMO algorithm
involves choosing two rows from the kernel matrix and using
them to update information for all other rows. The choice
of the two rows is done heuristically. But instead of only
using the LibSVM heuristic in the working set selection, our
fast SVM adaptively chooses the faster heuristic (either first
order[16] or second order[9]) based on the convergence rate
on the specific training data. The original CUDA implemen-
tation aims at solving huge SVM problems involving tens of
thousands of samples by coordinating all GPU cores to work
together. In our problem setting, we face a large number of
smaller scale SVM problems, one per voxel, each of which
only contains a few hundred of samples and has the kernel
matrix (linear kernel) precomputed. Therefore, we make it
so that a thread takes full responsibility for the cross vali-
dation of one voxel. Moreover, using our optimization idea



#3, we vectorize the most computationally intensive part of
the code for better usage of VPUs. We call the adopted fast
SVM algorithm implemented on the coprocessor PhiSVM.

Another challenge is finding enough parallelism (i.e. in-
dependent SVM problems) to fully utilize the coprocessor
during the cross validation stage without exceeding the lim-
its of the on-board memory. This can be solved by redesign-
ing the computing procedure, in which we accumulate a least
240 voxels’ kernel matrices before conducting the SVM cross
validation. Since a kernel matrix is significantly smaller than
a data matrix, reducing to kernel matrices can save a lot of
space so that doing SVM cross validation for at least 240
voxels becomes possible, therefore no available computing
power will be wasted during the SVM cross validation.

5. EVALUATIONS
To evaluate the proposed optimization ideas, we pursued

answers to following questions:

1. What is the system performance for the offline and
online data analysis cases?

2. Is the system scalable as we add more coprocessor
nodes to the cluster?

3. For a typical dataset, what are the performance con-
tributions of the proposed optimization ideas?

4. How does the resulting system work on general-purpose
processors?

To answer these questions, we will first describe our experi-
mental setup and then present our results and analysis.

5.1 Experimental Setup
We ran our experiments on a 48-node cluster, intercon-

nected by an Arista 10GE switch. Each node of the cluster
has a motherboard with: 2 IntelR© XeonR© E5-2670 proces-
sors, both running at a 2.6GHz clock rate, 2 IntelR© Xeon

Phi
TM

5110P coprocessors running at 1053MHz, connected
via PCI-e slots, 256GB memory, 8 x 3TB SATA disks, and
1.65TB FusionIO ScaleIO Flash memory card.

The host node runs CentOS 6.3 and each coprocessor runs
its on-board Linux (version 2.6.38.8). The software pack-
ages used in our experiments include MPSS (version 3.3),
Intel MPI (version 5.0.2.044), and Intel compiler (version
15.0.2) 2. IntelR© MKL (version 11.2) and LibSVM (version
3.20) libraries were applied to the baseline implementation

for comparison. We used IntelR© vTune
TM

Amplifier (version
2015.2.0.39344) to collect the performance data.

Our experiments used two fMRI datasets. The first one
is a face-scene dataset consisting of fMRI data from 18 sub-
jects who passively viewed either face or scene images as
described in [28]. The second one is an attention dataset
used in [15] consisting of fMRI data from 30 subjects who
were asked to look at either left or right images on a screen
while being scanned. Detailed information on the datasets
is listed in Table 2.

2
Intel’s compilers may or may not optimize to the same degree for non-Intel

microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or ef-
fectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel micro-
architecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804

Dataset Voxels Subjects Epochs Epoch length

Face-scene 34,470 18 216 12
Attention 25,260 30 540 12

Table 2: Datasets used in the experiments.

5.2 System Performance
In this section, we present the results for both offline and

emulated online data analysis. The offline case is time con-
suming because it involved leave-one-subject-out nested n-
fold cross validation, which we elaborate on below, on all
n subjects in the dataset. The emulated online data anal-
ysis involved selecting voxels to train a classifier using one
subject’s data online to provide real-time neurofeedback in
subsequent experiments.

5.2.1 Offline analysis performance
We ran the nested leave-one-subject-out n-fold cross val-

idation on both face-scene and attention datasets, where n
is the total number of subjects in a dataset. In each fold of
the outer loop cross validation, a training set consisting of
n−1 subjects was used for voxel selection by conducting an-
other level of leave-one-subject-out cross validation. Voxels
were selected based on their classification accuracies of their
correlation vectors, determined by the procedure illustrated
in Fig. 3. After voxel selection in each fold, a final classifier
can be trained using the correlation patterns of the selected
voxels to test on the left out subject of the outer loop to
verify the selection. In addition, the selected voxels across
different folds can be statistically compared to identify the
reliable voxels whose correlation patterns with the rest of
the brain are informative[28].

Table 3 shows the elapsed time in seconds as a function of
the number of coprocessor nodes. For the face-scene dataset,
the experiment ran 18 folds of leave-one-subject-out valida-
tion. The whole process took 85 seconds using 96 coproces-
sors. On average, each fold took 4.7 seconds.

For the attention dataset, the experiment ran 30 folds of
leave-one-subject-out validation. The whole process took
741 seconds using 96 coprocessors. On average, each fold
took 24.7 seconds. The attention experiment took longer be-
cause it involved more subjects and each subject performed
more epochs.

#nodes 1 8 16 32 64 96

Face-scene 5101 694 385 242 124 85
Attention 54506 6813 3620 2172 1099 741

Table 3: The elapsed times (seconds) of offline data
analysis.

We reproduced the results used in [28] and [15].

5.2.2 Emulated online analysis performance
In closed-loop rtfMRI study of brain interactions, a clas-

sifier needs to be trained online using the voxels selected by
FCMA based on the whole-brain correlation. This classi-
fier will be used for sending feedback to the subject while
being scanned. The voxel selection procedure is similar to
the offline analysis, except that instead of taking data from
multiple subjects to process in batch, we only use the data



received from the subject being scanned, and no nested cross
validation is applied.

We performed the emulated online analysis on one sub-
ject’s data from each of the face-scene and attention datasets.
The voxels for building the classifier were selected using the
subject’s data. Table 4 shows the elapsed time in seconds
as a function of the number of coprocessors. Using 96 co-
processors, voxels were selected within 3 seconds which is
fast enough to build an online classifier to provide real-time
feedback to the subject in the subsequent experiments.

#nodes 1 8 16 32 64 96

Face-scene 12.00 3.18 2.51 2.26 2.24 2.21
Attention 16.50 3.96 2.97 2.59 2.52 2.51

Table 4: The elapsed time(in seconds)as a function
of the number of coprocessors used select voxels for
building the online classifier.

5.3 Speedup
We studied the scalability of our optimized implementa-

tion of FCMA by varying the number of coprocessors used
in the offline analysis.

Fig. 8 shows the speedup of both datasets as a function
of the number of coprocessors. With 96 coprocessors, we
achieved a 59.8x on the face-scene dataset and a 73.5x on the
attention dataset. The speedup is greater for the attention
dataset due to its larger size.

Figure 8: Speedups of the optimized implementation
with face-scene and attention datasets.

5.4 Performance Implications of Optimizations
In this subsection, we focus on the performance of a sin-

gle coprocessor to demonstrate the contributions of our pro-
posed optimization ideas.

5.4.1 Performance of a three-Stage task
We first compare the overall performance of a single co-

processor for our optimized implementation and the base-
line implementation with MKL and LibSVM libraries. Both
face-scene and attention datasets were used.

As we described in Section 3.1.1, in the parallel FCMA
framework, the master node distributes tasks to worker nodes
by partitioning all voxels into pieces. In the baseline imple-
mentation, due to the memory limitation of the coprocessor,
the master only can allocate 120 voxels of the face-scene
dataset or 60 voxels of the attention dataset to a copro-
cessor for processing, respectively. As a result, the third

stage of the baseline implementation of the FCMA pipeline
cannot fully exploit the available hardware capability of the
coprocessor, since one thread takes care of only one voxel’s
cross validation. This constraint is largely relaxed in the
optimized implementation in which a coprocessor can take
more voxels (e.g. 240) by reducing the large correlation data
into much smaller precomputed kernel matrices portion by
portion to guarantee the consumed memory size doesn’t go
beyond the available on-board memory of the coprocessor.

Figure 9: Improvement of the optimized implemen-
tation over the baseline for a single worker task.

Since the number of voxels one coprocessor can take dif-
fers between the baseline and optimized implementations,
we normalized the performance to processing time per voxel.
Fig. 9 shows the speedup of the optimized implementation
over the baseline. The performance of the baseline was set
to 1 for both datasets. Our optimized implementation runs
5.24x and 16.39x faster than the baseline, respectively. For
attention dataset, the fraction of time spent in SVM compu-
tation is significantly larger, and hence benefits much more
from our optimizations.

Next, we break down the contributions based on the pro-
posed optimizations. We compared the performance of pro-
cessing a task of 120 voxels from the face-scene dataset in a
single coprocessor.

5.4.2 Blocking skinny matrices (vs. MKL)
There are two matrix multiplications in two stages of the

FCMA processing pipeline: in correlation computation and
in SVM cross validation. For offline analysis on face-scene
dataset, at the correlation computation stage, FCMA per-
forms 216 (epochs) multiplications of matrix of A[120,12]
with B[12,34,470] and writes results to matrix C[120,34,470]
(illustrated in Fig. 4). 21.443 billion floating-point opera-
tions and 4.136 million memory writes are performed.

In the SVM cross validation stage, FCMA performs a mul-
tiplication of matrix A[204, 34,470] with its transpose AT

and writes results to matrix C[204,204] (illustrated in Fig.
7). Since A is multiplied with its transpose, only upper or
lower triangle of the resulting matrix needs to be computed.
This matrix multiplication performs 172.14 billion floating
point operations but only 20,088 memory writes.

Table 5 reports the elapsed times and Giga FLoating Op-
erations/Seconds (GFLOPS) for both cases. Our optimized
matrix multiplication achieved 126 GFLOPS in the correla-
tion computation stage and 430 GFLOPS in the SVM cross
validation stage. The matrix multiplication using MKL achieved
93 GFLOPS for the correlation computation stage, and 108
GFLOPS for the SVM cross validation stage.

The matrix multiplication in the correlation computation
stage produced many more writes than the SVM cross val-
idation stage did, explaining why the latter reached 3.4x



higher GFLOPS.

Function Time GFLOPS

Our blocking
correlation com-
putation

170 ms 126

SVM kernel ma-
trix computing

400 ms 430

MKL
correlation com-
putation

230 ms 93

SVM kernel ma-
trix computing

1600 ms 108

Table 5: The performance results of matrix multipli-
cation routines used in both correlation computation
and SVM cross validation stages.

Table 6 shows the total number of memory references, the
number of L2 cache misses, and the vectorization intensi-
ties of the matrix multiplication routines in our optimized
implementation and in MKL. These are the combined re-
sults of both stages. The vectorization intensity measured
from vTune for optimized implementation was close to 16,
whereas that for MKL was 3.6. The results showed that
our implementation took full advantage of the vector unit,
whereas MKL only utilized 23% of the hardware capability.
Our implementation had 5.82x fewer L2 cache misses than
MKL (121.8 vs. 708.9 millions). These results show that
MKL performs relatively poorly because of its large number
of L2 cache misses and low vectorization intensity.

Our measurements also indicate that MKL made 3.49x
more memory references than our implementation (34,858.37
vs. 9,974.87 millions).

#memory refs L2 miss
Vector
intensity

Our blocking 9,974,870,500 121,800,000 16
MKL 34,858,368,500 708,900,000 3.6

Table 6: Memory references, L2 misses and vector
intensity of the matrix multiplication routines.

5.4.3 Retaining cache contents
To understand the performance impact of modifying the

FCMA algorithm to retain cache contents across the correla-
tion computation and normalization stages, we implemented
two cases: separated and merged.

As we discussed in Section 4, the merged implementa-
tion performed normalization on correlations as soon as they
were computed, without waiting for the entire correlation
computation stage to finish. The data in the L2 cache was
retained for within-subject normalization without writing
out to memory and reading back in again.

Table 7 shows the results of elapsed times, number of
memory references, and number of L2 cache misses for both
implementations. The merged implementation had a fewer
number of memory references and a fewer number of L2
cache misses (67.5 vs. 188.1 million), resulting in a 24%
reduction in elapsed time.

5.4.4 Vectorization for SVM

Method Time #memory refs L2 miss

merged 320 ms 1,925,806,500 67,500,000
separated 420 ms 4,347,490,500 188,100,000

Table 7: Performance comparisons of retaining L2
cache contents (merged stage vs separated stages).

To determine the performance impact of vectorization in
the coprocessor, we compared LibSVM, our optimized Lib-
SVM, and our optimized PhiSVM.

In both optimized implementations, we reorganized the
data layout and workflow for the computationally intensive
loops in order to better utilize the VPUs of the coprocessor.
Since single precision floating point numbers are accurate
enough for our application, we used float type in PhiSVM.
For fair comparison, we also converted all double type values
in LibSVM to float type so that the VPU can process an
equal number of values in a single SIMD instruction.

Table 8 shows the elapsed times and vectorization intensi-
ties for all three implementations. Optimized PhiSVM took
390 ms whereas our optimized LibSVM and the single pre-
cision LibSVM took 1,150 ms and 3,600 ms, respectively.
PhiSVM outperformed LibSVM even after its careful vec-
torization because of the advances in algorithm and data
structure as described in section 3.3.3.

Time Vector intensity

LibSVM 3600 ms 1.9
Optimized LibSVM 1150 ms 8.9
PhiSVM 390 ms 9.8

Table 8: The performance of SVM cross validation.

5.5 Performance on IntelR© XeonR© processors

Figure 10: The performance improvement of our op-
timized version over the baseline implementation on
Intel R© Xeon R© E5-2670 processor. The performance
of the baseline is normalized to 1.

To determine how well our optimizations for the coproces-
sor would work on a general-purpose processor, we compared
our optimized implementation with the baseline implemen-
tation on a single E5-2670 processor in one node of our clus-
ter, described in Section 5.1. This experiment was identical
to what is described in Section 5.4.1.

Figure 10 shows that our optimizations for the coprocessor
worked quite well for the processor. Our optimized imple-
mentation ran 1.4x and 2.5x faster than the baseline for the
face-scene and attention datasets, respectively.



The performance improvements on the processor were sig-
nificant but less dramatic than on the coprocessor for sev-
eral reasons. First, the processor has a relatively large Last
Level Cache (LLC) per CPU core or per thread. It has 8
CPU cores and 16 hyperthreads and 20MB LLC. On av-
erage, each thread has 1.28MB LLC per thread, which is
an order of magnitude larger than that for the coprocessor.
The large cache allows fewer LLC cache misses, making the
performance tuning for L2 cache misses less important.

Second, the width of vector registers on the processor is
256-bit, only half of that on the coprocessor. The narrower
vector unit makes the effect of vectorization less significant.

Third, the processor supports 2 hyperthreading threads,
whereas the coprocessor supports 4 per core. The total num-
ber of concurrent threads on the processor is 16 versus 240
on the coprocessor. Therefore, the thread starvation issue
present during SVM cross validation of the baseline imple-
mentation on the coprocessor doesn’t exist on the processor.

Figure 11: The performance comparisons between

Xeon R© E5-2670 processor and Xeon Phi
TM

5110P
coprocessor (a) face-scene dataset; (b) attention
dataset.

We also compared the baseline and the optimized imple-
mentation on the processor and coprocessor. Fig. 11 shows
that the optimized implementation on the coprocessor out-
performed on the same on the processor for both face-scene
and attention datasets.

6. RELATED WORK
Many scientific computing applications in multiple disci-

plines such as physics and chemistry have taken advantage

of manycore architectures such as the IntelR© Xeon Phi
TM

coprocessors[2, 14]. To the best of our knowledge, this paper
presents the first neuroscience application that adopts the
coprocessor for achieving our performance goals (for both
offline and online analysis). We have improved upon previ-
ously published FCMA runtime results [29]. Even our base-
line implementation is 9.7X faster than [29]. Overall, using
the coprocessor we achieve a 50.8X speedup. While some
of the performance difference can be attributed to the dif-
ferent processor generations used, much of it is due to the
algorithm and performance optimization.

Data locality optimizing algorithms for improving the effi-
ciency of accessing data residing in memory hierarchies have
been well studied for a long time[17, 30]. Several optimiza-
tions have been performed to fully exploit the processor ar-
chitecture in order to achieve high performance[12], based
on which different versions of BLAS routines such as MKL
and GotoBlas were implemented. There are studies about
optimizing matrix multiplication on manycore architectures

such as GPUs[18, 25, 27] and some recent work on IntelR©

Xeon Phi
TM

coprocessors[13, 11]. Most of the optimizations
for GEMM focus on coordinating multiple threads to con-
quer huge, nearly-square matrices. Our application, on the
other hand, requires a single thread to work on one matrix
multiplication between matrices with one small dimension.
Dense matrix multiplication involving tall-skinny matrices
is known to be difficult to optimize[7]. Tall-skinny matrix
operations appear in other contexts as well, such as QR
decomposition or eigen value problems [3, 1, 19]. Cache
locality optimizations are among the most important opti-
mizations required for tall skinny problems. Cache locality
driven thread scheduling (e.g. [22]) is a general way to block
data efficiently. We have implemented similar ideas (Section
4.2.1 and 4.2.2) in our pipeline for better L2 cache reuse.

While other techniques for solving linear support vector
machines exist (such as [8]), we use PhiSVM (which is de-
rived from SMO-based techniques such as [9] and [4]) as it
is fast and efficient for small SVM problems that we solve
for FCMA. PhiSVM is also usable in other applications that
require an efficient coprocessor-based SVM library.

The optimization ideas presented in this paper (such as
tall-skinny matrix multiplication) are relevant and general-
izable to a lot of other applications as well e.g. [19].

7. CONCLUSIONS
This paper describes an emerging neuroscience application

FCMA and its optimization on IntelR© Xeon Phi
TM

copro-
cessors. Our optimized implementation for a single node
task on the coprocessor runs 5-16x faster than an optimized
baseline version with MKL and LibSVM libraries for two
different datasets. Our optimization also improves the per-
formance on the E5-2670 processor by a factor 2. In ad-
dition, we show that our parallel code achieves near linear
speedup on 5760 coprocessor cores. This work reduces the
previously intractable timescale of computing and analyz-
ing the full correlation matrix in an fMRI dataset of the
human brain in minutes for offline analysis, and seconds for
online analysis. This latter finding makes plugging FCMA
into established closed-loop rtfMRI studies possible.

Due to increasing amounts of parallelism as we move from
multicore to manycore architectures, optimizations to ex-
ploit these hardware features become increasingly impor-
tant. This paper optimized FCMA code by redesigning ma-
trix multiplication for tall-skinny matrices, merging adjacent
memory-bound stages in the procedure pipeline, and rewrit-
ing more vectorization-friendly SVM algorithms, in the con-
sideration of making efficient use of the available hardware
(cache and VPUs). The optimizations described in this pa-
per can be generalized as independent components that have
many other applications. We also showed that most of the
optimization done on the coprocessor works as well on the
processor, although to a lesser degree, due to similar mem-
ory hierarchical structure and vectorization techniques.

Our future work will pursue two directions, computational
and neuroscientific. Computationally, we plan to develop a
more general framework for efficiently running a variety of

applications on the IntelR© Xeon Phi
TM

coprocessor. Neuro-
scientifically, we are using these new tools to explore other
applications of the FCMA approach that will benefit from
advanced high performance computing devices such as the

IntelR© Xeon Phi
TM

coprocessor.



8. REFERENCES
[1] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer.

Communication-avoiding qr decomposition for gpus. In
Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 48–58, May 2011.

[2] E. Apra, M. Klemm, and K. Kowalski. Efficient
implementation of many-body quantum chemical
methods on the intel R© xeon phi coprocessor. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 674–684. IEEE Press, 2014.

[3] T. Auckenthaler, T. Huckle, and R. Wittmann. A
blocked qr-decomposition for the parallel symmetric
eigenvalue problem. Parallel Comput., 40(7):186–194,
July 2014.

[4] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast
support vector machine training and classification on
graphics processors. In Proceedings of the 25th
international conference on Machine learning, pages
104–111. ACM, 2008.

[5] C.-C. Chang and C.-J. Lin. Libsvm: A library for
support vector machines. ACM Trans. Intell. Syst.
Technol., 2(3):27:1–27:27, May 2011.

[6] M. T. deBettencourt, J. D. Cohen, R. F. Lee, K. A.
Norman, and N. B. Turk-Browne. Closed-loop training
of attention with real-time brain imaging. Nature
neuroscience, 18(3):470–475, 2015.

[7] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz,
O. Schwartz, and O. Spillinger. Poster: Beating mkl
and scalapack at rectangular matrix multiplication
using the bfs/dfs approach. In High Performance
Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pages 1370–1370, Nov 2012.

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. J. Mach. Learn. Res., 9:1871–1874, June
2008.

[9] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set
selection using second order information for training
support vector machines. The Journal of Machine
Learning Research, 6:1889–1918, 2005.

[10] J. Fang, A. L. Varbanescu, H. J. Sips, L. Zhang,
Y. Che, and C. Xu. An empirical study of intel xeon
phi. CoRR, abs/1310.5842, 2013.

[11] P. Gepner, V. Gamayunov, D. L. Fraser, E. Houdard,
L. Sauge, D. Declat, and M. Dubois. Evaluation of
dgemm implementation on intel xeon phi coprocessor.
Journal of Computers, 9(7):1566–1571, 2014.

[12] K. Goto and R. A. Geijn. Anatomy of
high-performance matrix multiplication. ACM
Transactions on Mathematical Software (TOMS),
34(3):12, 2008.

[13] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy,
A. Kobotov, R. Dubtsov, G. Henry, A. G. Shet,
G. Chrysos, and P. Dubey. Design and implementation
of the linpack benchmark for single and multi-node
systems based on intel R© xeon phi coprocessor. In 27th
IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2013, Cambridge, MA,
USA, May 20-24, 2013, pages 126–137, 2013.

[14] S. Heybrock, B. Joó, D. D. Kalamkar,
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