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Abstract

The microprocessor industry has embraced multicore architectures as the new

dominant design paradigm. Harnessing the full power of such computers requires

writing multithreaded programs, but regardless of whether one is writing a program

from scratch or porting an existing single-threaded program, concurrency is hard to

implement correctly and often reduces the legibility and maintainability of the source

code. Single-threaded programs are easier to write, understand, and verify.

Parallelizing compilers offer one solution by automatically transforming sequential

programs into parallel programs. Assisting the programmer with challenging tasks

like this (or other optimizations), however, causes compilers to be highly complex.

This leads to bugs that add unexpected behaviors to compiled programs in ways that

are very difficult to test. Formal compiler verification adds a rigorous mathematical

proof of correctness to a compiler, which provides high assurance that successfully

compiled programs preserve the behaviors of the source program such that bugs are

not introduced. However, no parallelizing compiler has been formally verified.

We lay the groundwork for verified parallelizing compilers by developing a general

theory to prove the soundness of parallelizing transformations. Using this theory, we

prove the soundness of a framework of small, generic transformations that compose

together to build optimizations that are correct by construction. We demonstrate

it by implementing several classic and cutting-edge loop-parallelizing optimizations:

DOALL, DOACROSS, and Decoupled Software Pipelining. Two of our main contri-

butions are the development and proof of a general parallelizing transformation and a

transformation that coinductively folds a transformation over a potentially nontermi-

nating loop, which we compose together to parallelize loops. Our third contribution

is an exploration of the theory behind the correctness of parallelization, where we

consider the preservation of nondeterminism and develop bisimulation-based proof

techniques. Our proofs have been mechanically checked by the Coq Proof Assistant.

iii



Acknowledgements

I thank my advisor, David Walker, for his receptiveness and patience with my

ideas, for providing guidance and excellent feedback on my writing and presentation

skills, and for suggesting that I verify a parallelizing optimization (and allowing me

to follow the rabbit down the hole). I also thank Andrew Appel, who inspired me

to mechanize my proofs, was always able and willing to engage me in deep technical

conversations, and for inviting me to join him in jazz improvisational lessons. As

well, my thanks go to David August and his Liberators (a.k.a. graduate students) for

answering all my questions about their parallelizing compiler and various optimiza-

tions. I am also grateful to our graduate student coordinator, Melissa Lawson, who

put in an exceptional effort toward making our department run smoothly and was

always there to guide me through each stage of my degree.

I thank my siblings, Nelson and Jordan, for instilling in me the belief that I always

needed to catch up with them – a masterful feat (among many, more humorous, tricks

they pulled on me), considering that this even extended into areas in which they held

no interest. Some of my earliest memories are of my sister teaching me long division

with bright, plastic, magnetic numbers. I owe more than can be expressed to my

parents, Karen and David, for indulging in my various curiosities, from padlocks to

building robots (i.e. stringing tin cans together with wire and connecting a battery –

I was only five...) to computers; especially for putting up with me disassembling their

electronics and for the hamburger I put in the VCR (again, only five...). I thank Uncle

Gary for feeding my interest in electronics by giving me his old electronics books and

tools. To Herb and Ernie: thanks for trusting Ana and me with your home.

I would also like to recognize those who contributed to a healthy, fun, and mostly

productive research/office environment: Rob Dockins, Lennart Beringer, Aquinas

Hobor, Matthew Meola, Cole Schlesinger, and Gordon Stewart. In addition to random

lunch discussions about politics, whiskey, and beer, they patiently listened as my ideas

iv



progressed from incoherent ramblings to articulated (and publishable!) ideas about

parallelization. I am especially grateful to Rob for our discussions on bisimulations.

I must thank my Princeton University friends – Justin Brown, Sam Taylor, Jeff

Dwoskin, Matthew Meola, Jebro Lit, June Young, Rodolfo Rios-Zertuche Rios-

Zertuche, Noah Jafferis, Seth Dorfman, Jess Hawthorne, David Liao, Divjot Sethi –

who made Princeton a wonderful place to live, and for their dedicated efforts to go

behind my back to ensure marital bliss. They found me a wife (“Hey! You shared

an office with CJ; you two seem to get along really well...”), celebrated my (fake)

bachelor party at Hooters, and conspired to marry us by the Powers vested in the

Chair of the Princeton University Graduate College House Committee (managing

to convince the residents and staff of said college that it was legitimate); only

upon affixing a top hat to my head, playing “Maneater,” and forming the aisle to

commence the ceremony did they bother to tell me. Only to later kidnap my bride,

shred, dissolve, and explode our Graduate College House Certificate of Marriage

– just so we could have a legally-recognized marriage in the State of Washington

several months later. It happened so fast that I am unable to assign proper blame

where deserved. But I distinctly recall that all of the suspects wore tuxedos. With

friends like these, it’s always Thursday somewhere.

And finally, I am eternally grateful for the emotional and logistical support of my

wife, Ana; my best friend and love. Ever since we met on our first day of graduate

school, she was always willing to go on an adventure, share a story, or watch a movie,

and continued to stand by me throughout the happy and difficult times that followed.

This research is funded in part by NSF grants OCI-1047879 and 1016937. Any

opinions, findings, and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the NSF

v



In memory of my mother.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 Related work: parallelizing optimizations . . . . . . . . . . . . . . . . . 3

1.2 Related work: formal verification of compilers . . . . . . . . . . . . . . 5

1.3 Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Mechanized proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 A Transformation Framework for Loop Parallelization 14

2.1 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Example: DOALL parallelization . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Parallelize the loop body . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Folding parallelism into the whole loop . . . . . . . . . . . . . . 22

2.2.3 Loop schema & folding . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Bounded loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 Combining parallelism . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Loop parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Example: Decoupled software pipelining . . . . . . . . . . . . . . . . . . 30

2.3.1 The DSWP transformation . . . . . . . . . . . . . . . . . . . . . 32

vii



2.3.2 Phase 1: Decoupling dependencies . . . . . . . . . . . . . . . . . 33

2.3.3 Phase 2: Parallelizing the loop body . . . . . . . . . . . . . . . . 37

2.3.4 Phase 3: Loop folding . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Example: DOACROSS parallelization . . . . . . . . . . . . . . . . . . . 42

2.4.1 Phase 1: Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 Phase 2: Parallelizing the loop body . . . . . . . . . . . . . . . . 48

2.4.3 Phase 3: Loop folding . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.4 Phase 4: Maximize concurrency . . . . . . . . . . . . . . . . . . . 52

2.5 Conclusion & related work . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Remarks on loop folding . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.2 Remarks on parallelization . . . . . . . . . . . . . . . . . . . . . . 56

2.5.3 Strengthening the assertion logic . . . . . . . . . . . . . . . . . . 57

2.5.4 Finite communication channels . . . . . . . . . . . . . . . . . . . 57

2.5.5 Existing proof of DSWP . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.6 Existing verified parallelizing optimizations . . . . . . . . . . . . 60

2.5.7 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Summary of framework rewrite rules . . . . . . . . . . . . . . . . . . . . 62

3 Foundations of Parallelization 67

3.1 Introductory example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 CCS-Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 The parallelization transformation . . . . . . . . . . . . . . . . . 77

3.3 Contrasimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Delayed observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Proof of parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6.1 Coq proof development . . . . . . . . . . . . . . . . . . . . . . . . 94

4 A Semantic Framework 95

4.1 Technical development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 Machine state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.3 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.4 Iteration bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.5 Program syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.6 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.7 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1.8 Free variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Program equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Bisimilarity and contrasimilarity . . . . . . . . . . . . . . . . . . 111

4.3 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.1 Supporting lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.2 Algebraic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.3 Compositional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Loop folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.1 Loop decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.2 The proof of loop folding . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.6 Hoare triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.7 Coq Proof Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 Conclusion & Future Work 137

5.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ix



5.1.1 Loop folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1.3 Loop parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.4 Coq proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.1 Divergence sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.2 Incorporation into an existing verified compiler . . . . . . . . . 141

Bibliography 142

x



Chapter 1

Introduction

For most of the history of computer science, programmers could count on the fact

that year after year, hardware advances would make virtually all their applications

run faster. Unfortunately, this is no longer the case. Despite continuing increases in

chip transistor counts, hardware designers are unable to produce new single-processor

chips that perform significantly better than their predecessors. Consequently, the

microprocessor industry has embraced multicore architectures as the new dominant

design paradigm.

The shift to multicore processors has significant ramifications for application de-

velopers. No longer do these developers – and their substantial investment in existing

programs used by scientists, banks, industries, and consumers – get increasing per-

formance for free with each new generation of processors. They must find a way

to parallelize their [sequential] applications in order to exploit the many cores now

supplied by chip manufacturers.

This is a daunting prospect for even new applications; parallelism is often at

odds with legibility and maintainability, and requires expertise in order to implement

correctly. One must take great care to avoid introducing concurrency errors when

transforming a well-tested, successful application. A solution is to use emerging com-
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piler technology to automatically, partly automatically, or mostly manually manage

the parallelization, allowing programmers to take advantage of the increasing number

of cores found in modern CPUs with little additional effort. These optimizations free

the programmer from dealing with the inherent complexities of writing multithreaded

code directly and bring new vigor to a large base of existing sequential source code

by the simple act of recompilation.

Automated optimizations come with a high payoff, but at a cost – compilers are

large and complex, even without parallelizing optimizations, and are prone to subtle

bugs that are difficult to track. In consumer-facing applications, it can be worth

the cost. But for critical systems, like medical devices, satellites, banking, security,

and transportation, failure is unacceptable. Thus it is common practice to prove the

correctness of these programs by hand, by using model-checking tools, or by carefully

inspecting the generated machine code. There is no room for additional risk, so

compiler optimizations are simply turned off.

Advances in machine-checked proofs and many man-hours have given rise to veri-

fied compilers, which provide a very high assurance that the compiler does not contain

bugs (or at least does not introduce bugs into compiled programs). These compilers,

and particularly the optimizations they can perform, are currently the focus of active

research. For parallelizing optimizations, the primary focus of research has been to

develop better program analysis techniques to determine when and where they may be

applied, some of which has been formally verified. However, the formal justification

of the program transformations that such optimizations apply has received relatively

little attention – only a handful of published papers prove the soundness of any kind

of parallelization transformation, and no verified compiler currently implements one.

Thesis: We develop a theory for proving the soundness of loop parallelization, and

thus study the intersection of verified compilers and parallelizing optimizations. To

2



apply this theory, we create a framework of local, generic, and sound rewrite rules that

programmers or compilers may compose together in order to parallelize programs in a

way that is correct by construction. We demonstrate this framework by implementing

instances of classic parallelizing optimizations: DOALL, DOACROSS, and decoupled

software pipelining (DSWP) [29, 17, 28]. Our main technical results are:

� A bisimulation-style relation that holds for parallelization (and loop folding) in

the presence of internal choice.

� A proof of soundness for a general transformation that can parallelize sequential

programs and also combine parallel programs together, where the programs

may have nontrivial termination properties and may communicate over shared

queues.

� A proof of soundness for a general loop transformation, which uses a combining

function (i.e. a program transformation) to fold all of the iterations of a loop

together, and which does not require the loop to terminate. When composed

with a transformation that combines parallel programs, loop folding is power-

ful enough to implement each of the classic loop parallelizing transformations

(DOALL, DOACROSS, and DSWP).

� A formalization of the theorems and proofs appearing in this thesis that is

checked by the Coq Proof Assistant [21].

1.1 Related work: parallelizing optimizations

Parallelizing optimizations have a long history and there are many techniques, such

as vectorization, transactional memory, and loop parallelism. Banerjee et al. [2] and

Wolfe [45] thoroughly review the classic optimizations.

We study optimizations that rewrite single loops into multiple loops that run

concurrently. A canonical example targets loops with no loop-carried dependencies
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(i.e. between iterations), called DOALL loops, by dividing the iterations of a se-

quential DOALL loop into multiple parallel loops that run independently of each

other, called DOALL parallelization. These were first developed in the early Fortran

compilers [29, 45], and many strategies have arisen to enable them, ranging from

programmer-assisted (e.g. doall loop constructs in the language) to advanced static

analyses that automatically identify dependencies between iterations.

When applicable, DOALL parallelism is very effective. However, proving that

iterations are independent is hard (generally undecidable) and, in many programs of

interest, the iterations are not necessarily independent. To enable more applications

of DOALL parallelism, loop-carried dependencies can sometimes be eliminated by re-

organizing the loop structure. Techniques such as polyhedral methods, loop skewing,

and loop distribution attempt to do just that. But they are foiled by complicated

control flow, shared memory, uncounted loops (i.e. loops with no index variable to

count each iteration), and nonterminating loops.

DOACROSS extends DOALL parallelization and resolves some of the above issues

by inserting synchronization, in order to respect loop-carried dependencies, so that

the iterations take turns accessing shared resources [17]. Increased parallelism comes

from the portions of iterations that do not rely on loop-carried dependencies, which

overlap in time. In the worst case, the iterations effectively run in sequence. But

even in the ideal case, a slowdown in one iteration, perhaps due to a cache miss or

synchronization latency, will delay all subsequent iterations in every thread. As a

result, DOACROSS suffers a multiplicative slowdown (with respect to the number of

iteration executed) as communication latency increases.

A third approach is to exploit pipelined parallelism in loops, which is the premise

of DSWP [27, 28]. DSWP breaks a loop body into a sequence of tasks with acyclic de-

pendencies, forming a pipeline, then runs each stage of the pipeline in parallel, where

each stage communicates dependencies to the next using shared queues. Because
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the parallel stages have acyclic dependencies that are buffered, they do not run in

lock-step; a slowdown in one stage does not necessarily delay the other stages. Thus

communication latency only adds to the overall running time. An added advantage

of DSWP is that it effectively reorganizes the dependencies so that other optimiza-

tions are easier to apply to each stage. For example, parallel-stage decoupled software

pipelining (PS-DSWP) first performs DSWP, and then attempts to apply DOALL

parallelization on the resulting stages [34].

1.2 Related work: formal verification of compilers

A compiler is formally verified if the source and compiled (target) programs are proven

to be within a relation such as behavioral equivalence or semantic refinement. Formal

verification of a compiler provides a very high assurance that the compiler does not

contain bugs, or at least does not introduce bugs into compiled programs; especially

when the proofs are machine-checked using a tool such as the Coq Proof Assistant or

Isabelle [21, 31]. Proof-carrying code, translation validation, and compiler verification

are some general approaches that have been used to verify a compiler.

There is a delicate balance between choosing a weak or strong correctness criterion.

If too weak, then the compiler may introduce or remove termination, divergence, or

crashing behaviors; but proof automation and adding new features is easier. If too

strong, then the proof becomes more difficult or tedious, and the compiler may not

be allowed to apply certain optimizations or be able to satisfy the criterion at all.

Another challenge is to find a relation that is compositional, which allows modular

proofs of correctness and separate compilation of modules. Some common criteria that

are used to verify compilers, in order of weak to strong, are semantic equivalence, trace

equivalence, and variations on bisimulation such as weak bisimulation and branching
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bisimulation (Sangiorgi [36] is a good introduction for these relations and we define

several of them in chapter 3).

Proof-carrying code (PCC) is a mechanism to generate a certificate, a formal

and independently-checkable proof, along with the compiled program to prove that it

satisfies certain kinds of specifications [24]. Usually, PCC is used to ensure that the

resulting machine code is type- and memory- safe, but not necessarily equivalent to the

source program. When running the program, the user or system can make sure that

the program satisfies the specification (type or memory safety) by running a validator

on the accompanying certificate. Only the validator, which is typically much smaller

and less complex than the compiler, needs to be either trusted or formally verified.

Translation validation is a technique that can work independently of the compiler

(although the compiler may also provide hints): it takes the source and compiled pro-

grams and attempts to automatically construct a proof that they are equivalent [32].

It has been used to prove the correctness of parts of the GCC compiler and of opti-

mization frameworks [25, 18]. However, translation validation tends to be limited by

lack of information (some of which the compiler could provide), is not easily extended,

and is not modular. This last issue has been partially addressed by parameterized

equivalence checking [18]. The main advantage of translation validation is that it can

be used with any existing compiler with little or no modification to the compiler.

Verified compilers are proved correct by construction: compilation either results

in a correct program or it fails to compile. As depicted in Fig. 1.1, a verified compiler

translates a source program into successive stages of intermediate languages until

finally being translated into the target (compiled) language, which is typically an

assembly language, machine code, or bytecode. Optimizations may be performed at

each translation step and also within the same intermediate language. Each transla-
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Source language
Intermediate
language #1

Intermediate
language #k

Target language

(optimizations) (optimizations)

...

Thm: correct-opts1 Thm: correct-optsk

Thm: correct0 ... Thm: correctk

Thm: correct = correct0 ○ correct-opts1 ○ correct1 ○ ⋯ ○ correct-optsk ○ correctk
Figure 1.1: Structure of a verified compiler. The source language, for example, could
be C, Java, ML, or Haskell, and the target language could be assembly, bytecode, or
machine code.

tion is proven to preserve a correctness criteria, and then the proofs of correctness are

composed together (e.g. via transitivity) to form an end-to-end proof of correctness

between all source and compiled programs. Well-known examples of verified compil-

ers include CompCert (and variations such as CompCertTSO, and XCERT), Piton,

Vellvm, and Bedrock [20, 40, 41, 23, 46, 9].

CompCert supports a substantial subset of the C language, including recursive

functions, pointers, structs, and function pointers. Like regular compilers, it trans-

lates a C source program into successive stages of intermediate languages until it

finally generates PowerPC, ARM, or x86 assembly code. However, each translation

is proved correct with respect to a forward simulation (i.e., the target simulates the

source); by transitivity, a forward simulation holds at the top level between the input

C program and generated assembly code. Specifically, CompCert uses weak simu-

lation, which is equivalent to weak bisimulation in this context because the target

program is deterministic.

There are two main efforts to add support for compiling concurrent programs with

CompCert: the Verified Software Toolchain (VST) and CompCertTSO [1, 40]. In

order to minimize changes to CompCert, VST treats threading primitives as external
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function calls and uses a strong memory model. It also uses a cooperative threading

semantics that yields upon calling each synchronization instruction. Because they

only consider data-race free programs, this is equivalent to a preemptive interleaving

semantics. In contrast, CompCertTSO diverges further from CompCert by adopting

a relaxed memory model directly and adding threading primitives to the underlying

semantics (rather than treat them as external function calls).

Vellvm mechanically formalizes the sequential semantics of LLVM [46]. Like Comp-

Cert, it is developed in the Coq Proof Assistant and the correctness criterion for the

transformations (e.g. SoftBound) and optimizations they implement is a simulation.

The advantage of targeting LLVM is that it is used by many existing compilers de-

veloped in both academia and industry.

The Bedrock Structured Programming System has more specific goals than

the previously mentioned compilers: to compile low-level systems software, such as op-

erating systems or drivers, that are paired with Hoare logic specifications [9]. Bedrock

programs are written directly in Coq, using its built-in “Notation” system, and are

evaluated into a low-level Bedrock bytecode. Instead of providing a high-level source

language with structured control flow, Bedrock provides an extensible macro facility

that generate bytecode. Many control structures and high-level language features can

be implemented as macros, and it is these macros that are verified by the compiler.

The correctness criterion of Bedrock is to preserve the Hoare logic specification

of a program. Although generally much weaker than the simulation/bisimulation

criteria in use by other verified compilers, it is roughly equivalent when the programs

are deterministic and guaranteed to terminate; it is often considered good enough.

An advantage of using the weaker correctness criterion is that extending Bedrock

with new macros is much easier than adding new language features or optimizations

to the other verified compilers, and this allows most of the proofs to be automated.
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1.3 Nondeterminism

A program may have many behaviors, and which ones manifest can depend on in-

teractions with other programs, the operating system, user input, hardware events,

or thread scheduling. When it is impractical or impossible to know which behavior

a program or its environment will exhibit, we can abstract the set of possibilities

as an arbitrary choice. This is an example of nondeterminism, which is when the

choice between behaviors is not fully specified; it may be stochastic, defined later (for

example, when compiled modules are linked together), or simply unknown.

To make reasoning about the behavior of a large system more manageable, we

break it into smaller components and reason about them in isolation (i.e. locally).

Then we compose proofs about the smaller units together into a statement about the

entire system. When focusing on a single unit, such as a process or subprogram, we

assume that the other units obey some given specification. However, the specifications

of the units may not tell us everything about how they interact with the unit of focus,

so we use nondeterminism to model everything that is not specified about the other

units. When nondeterminism models a choice that an observer makes – for example,

from the operating system, other units, or user – then we call it an external choice.

Internal choice is nondeterministic behavior that the local unit may exhibit; i.e.

choices that are not controlled by the observer. Some examples can include memory

allocation (malloc()) and pseudorandom number generation (rand()), although a

conservative compiler may always treat them as external choices. Internal choice also

exists in some programming languages (such as C) as unspecified behavior, which we

also call compiler choice because the compiler may refine the choice statically (during

compilation) or dynamically (at runtime). A common example of compiler choice is

the order in which expressions may be evaluated between sequence points in C.

The key strength of bisimulation-style relations are that they generally preserve

nondeterminism and thus enable the modular reasoning described above. However,
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we have discovered that none of the relations used by existing verified compilers hold

for the parallelization of programs that contain internal choice (even for very simple

programs). We know of two solutions.

Because the only form of internal choice used by current verified compilers is

compiler choice, the first solution is to refine all internal choice before parallelization.

Then it will preserve a weak bisimulation. A second solution is to find an alternate

program equivalence that allows parallelization of programs with internal choice.

While a compiler may refine compiler choice, the first solution forces it to do so.

It is plausible that a compiler would prefer to refine compiler choice after paralleliza-

tion, or even preserve it in the compiled program. For example, loop peeling is an

optimization where one or more iterations of a loop are executed outside (before or

after) the loop. For each peeled iteration and the loop itself, compiler choice may be

refined differently. Whether loop peeling is applied and how compiler choice is refined

depends on the nature of the loop, but the loop parallelization that we explore in this

thesis might dramatically change the nature of the loop (especially DSWP) such that

a compiler can optimally apply loop peeling and refinement only after parallelization.

Furthermore, it is not clear whether all forms of internal choice should be compiler

choice; some might instead be program choice, which is internal choice that cannot

be refined by the compiler. A potential source of program choice is rand() because,

intuitively, neither the observer nor compiler should be able to influence the stochastic

nondeterminism found within a program. As compiler choice, the compiler would be

allowed to change the probability distribution of rand() by hardcoding the result

to 0. Although the compiler may conservatively treat rand() as an external choice,

doing so disallows optimizations that would commute rand() – e.g. transforming

x:= rand(); y:= rand() into y:= rand(); x:= rand().

For example, existing research shows that allowing operations such as rand() and

malloc() to commute, i.e. treating these calls as internal choice, is instrumental

10



to getting good parallel speedup [33]. Testing eight benchmark programs with their

parallelizing compiler, they achieved a geomean speedup of 1.5x on eight cores, but

were able to increase this to 5.7x by allowing such operations to commute. Without

this flexibility, the compiler was unable to parallelize half of the test programs.

In this thesis, we treat rand() as a program choice, but note that we do so only

for demonstration purposes; our definitions of program equivalence also allow the

probability distribution to be changed1.

Another potential source of program choice is the thread scheduler, particularly if

we are to perform parallelizing optimizations. If the thread schedule were an external

choice, then the observer could trivially distinguish between a program that uses one

thread and a (parallelized) program that uses two threads by choosing to schedule

just one of the threads; this would rule out parallelizing optimizations.

However, it is unclear whether the thread schedule should be a compiler or pro-

gram choice. The compiler cannot arbitrarily refine the thread schedule (i.e. remove

potential thread interleavings), else nearly all programs that use synchronization could

be compiled into programs that deadlock. But we are not aware of a (mainstream)

language specification that explicitly states whether or not a compiler may otherwise

remove behaviors by refining the schedule. If it can, then the compiler may transform

x:= 1 ∥ x:= 2 into x:= 2 (assuming that the assignments are atomic).

Regardless of whether the thread schedule is a program or compiler choice, there

is an advantage in finding a program equivalence that allows internal choice to be pre-

served. If a compiler chooses the first solution in order to preserve a weak bisimulation

and also accepts multithreaded source programs, then it faces the burden of (effec-

1We propose two ways to resolve this issue in a way that enables optimizations involving rand().
First, we could allow the observer to see each invocation of rand(), but not its result – this would
allow commuting consecutive calls to rand() while preventing them from being combined (which can
change the probability distribution if we are not careful). Or we could use a variation of probabilistic
bisimulation that accounts for stochastic choices and allows them to be combined and commuted
while preserving their distribution [19, 39].
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tively) linearizing source programs – and proving that no deadlocks are introduced

by the linearization – before it can apply parallelization.

Thus we have developed eventual similarity and identify contrasimilarity [13] as

alternate relations, based on bisimilarity, that hold for parallelizing programs with

internal choice and have many of the nice properties that the well-known bisimulations

have: a coinductive proof method and preservation of nondeterminism. This allows

verified parallelizing compilers to support program choice in source programs, to

target multithreaded source programs without having to linearize them, and to wait

until after the parallelization phase to refine compiler choice. Furthermore, we prove

that these alternate relations are equivalent to bisimulation when the programs do

not contain internal choice. Thus the results in this thesis are directly applicable to

compilers that do choose to refine all internal choice first.

1.4 Mechanized proofs

We base all results in this thesis on proofs that are mechanically checked using the

Coq Proof Assistant. Chapter 3 is fully checked. The results in chapter 4 and

the soundness of the transformation rules presented in chapters 2 and 4 are mostly

formalized and proven, but some of the results are been split between two Coq proof

developments. Section 2.6 identifies which rewrite rules have been proved sound and

in which context. Throughout this thesis, we either conclude each proof with or

(if we have elided the proof) annotate each lemma with if there is a proof in Coq.

1.5 Thesis structure

Our rewriting framework is presented in chapter 2, where we motivate our paral-

lelization and loop folding transformations by using them to implement instances of

DOALL, DSWP, and DOACROSS optimizations. The remainder of our thesis is de-
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voted to proving the soundness of our framework. In chapter 3, we work with a model

language based on the Calculus of Communicating Systems to study parallelization

in order to find a strong notion of bisimulation that holds (eventual similarity and

contrasimilarity). The results from this chapter are based on our conference paper,

Certifiably Sound Parallelizing Transformations [3]. In chapter 4, we apply what we

learned from the previous chapter in order to formalize the imperative language from

chapter 2, and then prove the soundness of loop folding, parallelization, and several

other rewrite rules in the framework. Proving the soundness of the rewrite rules shows

that the optimizations based on our framework are correct by construction.
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Chapter 2

A Transformation Framework for

Loop Parallelization

We demonstrate two of our main contributions:

� a loop-folding transformation, which folds a “combining transformation” over

potentially nonterminating loops;

� a parallelizing transformation, capable of parallelizing iterations and combining

them together;

and introduce our high-level proof strategy by using a framework of rewrite rules to

apply loop parallelization to a few example programs.

Using a framework of rewrite rules on a high-level structured language, as opposed

to proving optimizations directly and/or targeting a backend intermediate language

of the compiler (such as a control flow graph), allows us to break the steps of our

proofs into smaller components that are easier to understand. Other advantages of

this approach are that it is compositional, so that new optimizations can be created

simply by finding new ways of combining the rules, and because it is easier to integrate

with the front-end of existing verified compilers (which we discuss as a topic of future

work in Section 5.2.2). Although we limit ourselves to using rewrite rules for each
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t ∶∶= x:= e assign the value of e to x∣ x:= rand V assign a random value from V to x∣ skip do nothing∣ if e then t1 else t2 branch; if e then execute t1, otherwise t2∣ while e do t loop; iterate t while e is true∣ {P} assertion; is stuck iff P does not hold on the state∣ t1; t2 instruction sequencing∣ [P1] t1 ∥ [P2] t2 run t1 in parallel with t2∣ send a e enqueue the value of e in channel a∣ x:= recv a dequeue a value from channel a into variable x

Figure 2.1: Program syntax

transformation in this chapter, this does not preclude combining this framework with

other techniques, such as a Hoare logic analysis or translation validation.

The target language for loop parallelization in this thesis is listed in Fig. 2.1; it

is a small imperative language that has most of the basic features one would expect,

such as local variables, assignment, if-statements, loops, and concurrency. We also

add asynchronous thread communication through shared queues, or channels, which

we use to synchronize iterations and to pass values between threads in order to satisfy

dependencies as we apply DOACROSS and DSWP. However, we forgo some common

features that are unnecessary to demonstrate loop parallelization: functions, a heap,

and allocation/scoping of local variables.

Instruction send a e sends the value of expression e into channel a, and instruction

x:= recv a blocks until it can receive the next available value from channel a, and

then assigns it to variable x. The assertion and fork-join parallelism statements will

be explained in Section 2.1.

When running a program, the state consists of a set of channels (a mapping

from channel names to queues of values) and the set of threads being executed. Each

thread has a local state consisting of an environment (a partial mapping from variable

names to values) and current instruction. We consider two programs equivalent if,

for any initial state, there is an observational congruence between them. That is,
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two programs are equivalent if an adversary (the observer) cannot tell them apart,

where the adversary may observe the final state of each program (and thus whether it

terminated) and may interact with each program by communicating over any channel

that is not private.

For this chapter, we use a congruence between program terms, ≡, to state that

two programs are equivalent for any initial state. An example rewrite rule is T-SkipL,

which replaces any occurrence of skip;t in a program with t (for any t):

skip; t ≡ t
T-SkipL

Although presented in an axiomatic style, we give our rewrite rules a semantic defini-

tion in chapter 4. In other words, all rewrite rules presented in this chapter are just

theorems, and we annotate each with when we have proved it in Coq. A summary

of the core rewrite rules in our framework and whether they have been proved in Coq

is given in Section 2.6.

2.1 Assertions

Assertions ensure that the current state satisfies a predicate. If the predicate is

satisfied by the current state, then the assertion does nothing and steps to the next

instruction. Otherwise, the assertion is stuck. If an assertion is satisfied by some

state, then it must be satisfied by any extension of the state with more channels

or variables. As we apply parallelization to the example programs in this chapter,

assertions play a key role in justifying each step.

We write the predicates using separation logic, which is a convenient way to state

that blocks of code are independent, in order to support parallelization [35]. Because
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our language is limited to channels and variables (and has no heap), we use a separa-

tion logic that defines both variables and channels as resources [6]. However, our use

of separation logic is primarily limited to stating the preconditions of transformations.

We will also avoid formal proofs to discharge the entailments that result from trans-

formation side-conditions in this thesis. (Thus we can use a variables-as-resources

style separation logic without having to deal with the additional complexity that it

often adds to proving entailment.)

A selection of predicate forms we will use in this chapter are:

P ∶∶= true ∣ false ∣ ¬P ∣ e1 = e2 ∣ e ∣ P1 ∧ P2 ∣ P1 ⋆P2 ∣ ownsx∣ ownsa ∣ cansend a ∣ canrecv a ∣ a = [e1, . . . , en] ∣ . . .

Predicate P1 ⋆P2 holds when the current state can be broken into two substates,

having disjoint channels and variables, such that P1 holds on one substate and P2 holds

on the other. To assert ownership of program variable x so that no other thread may

read from or write to it, we use ownsx; for ownership of both variables x and y, we

assert ownsx⋆owns y, which we abbreviate as ownsx, y; etc. Because substates must

be disjoint, writing ownsx⋆ownsx is equivalent to false. Given expressions e1 and e2,

predicate e1 = e2 holds when they both evaluate to the same value. Expressions can

also be directly lifted to predicates; predicate e is equivalent to e = true. We will

explain forms ownsa, cansend a, canrecv a, and a = [e1, . . . , en] later in Section 2.3;

the remaining predicate forms are standard. When one predicate implies another for

all states, we write P1 ⊢ P2; we write P1 ⊣⊢ P2 when they are equivalent.

Many transformations use assertions as guards on the program state. For example,

{x = e}; x:= e ≡ {x = e} T-AssertAssign
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is a transformation that replaces an assertion stating that variable x is equal to

expression e, followed by an assignment from e to x, with just the assertion; i.e., it

eliminates a redundant assignment. We can also make inferences from assignments:

x:= e ≡ x:= e;{x = e} T-AssignAssert

can be used to satisfy the guards of subsequent transformations that require x and e

to be equal.

We rule out the possibility of inserting false assertions by allowing termination to

be observed (i.e. termination must be preserved by ≡); an assertion that is not always

true may become stuck, and thus will not preserve all termination properties of the

program. This also means that we may assert false wherever there is dead code (e.g.,

after an infinite loop or crash) because the assertion will never run. If we can assert

false, then we can insert or remove any subsequent program code:

{false}; t ≡ {false} T-AssertFalse

We can always prove “true”, thus:

{true} ≡ skip
T-AssertTrue
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{owns i,j,x,y,m,n∧j=i};
while i<>0 do

x:= x + m;

i:= i - 1;

y:= y + n;

j:= j - 1

(a)

{owns i,j,x,y,m,n∧j=i};⎡⎢⎢⎢⎢⎢⎢⎢⎣
[ownsi,x,m] [ownsj,y,n]
while i<>0 do

x:= x + m;

i:= i - 1

while j<>0 do

y:= y + n;

j:= j - 1 ;

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(b)

Figure 2.2: Demonstration of loop parallelization.

Manipulation of assertions can be done by rewrite rules alone, but we can also use

analyses based on Hoare logic via the following rule:

⊢{P} t {Q}{P}; t ≡ {P}; t;{Q} T-Hoare

The converse of T-Hoare does not hold because safety is not implied by assertions.

Guarded threads. Threads have form [P1] t1 ∥ [P2] t2 and compose two programs,

t1 and t2, in parallel (i.e. to be run concurrently). However, t1 and t2 cannot claim

ownership to the same resources, so the threads are guarded by predicates P1 and P2.

In order to fork into two threads, P1 ⋆P2 must hold; after each thread is created, P1

will hold for the initial state of t1, and P2 will hold for the initial state of t2. If the

guards cannot be satisfied, then the program will get stuck.

2.2 Example: DOALL parallelization

Figure 2.2 presents a simple example of DOALL parallelization. A defining feature

of a DOALL loop is that each iteration is independent of the other iterations; in

Fig. 2.2a, this is approximated by having the loop contain two independent tasks

that can be run in parallel: one that modifies x and i, and one that modifies y and j.
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{owns i,j,x,y,m,n ∧ j = i};

while i<>0 do

{owns i,j,x,y,m,n∧j=i};
if i<>0 then

x:= x + m;

i:= i - 1;

if j<>0 then

y:= y + n;

j:= j - 1

Figure 2.3: Separating the loop body into two tasks.

Each program is guarded by an initial assertion that defines a list of distinct variables

that the program will use and that ensures i and j are equal.

Despite its simplicity, Fig. 2.2 is not trivial to parallelize because it will not ter-

minate if i is initially less than 0. Thus we will be unable to prove correctness by

inducting on the number of iterations that execute.

We first split the loop body into two tasks, where the first task increments x

and decrements i, and the second task increments y and decrements j. Then we

parallelize the two tasks in the body of the loop and finally apply parallelization to

the whole loop.

To split the tasks, we first infer a loop invariant, owns i,j,x,y,m,n ∧ j = i, by the

following rules:

{e ∧ P}; t ≡ {e ∧ P}; t;{P}{P}; while e do t ≡ while e do ({e ∧ P}; t); {¬e ∧ P} T-WhileAssertI

{e}; if e then t1 else t2 ≡ {e}; t1 T-TrueIf

We use T-WhileAssertI to move the assertion into the loop; the side condition that

the assertion must continue to hold at the end of the iteration is easy to prove by
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T-Hoare and standard Hoare logic. The tasks are finally split into two if statements,

respectively guarded by i<>0 and j<>0, using T-TrueIf.

2.2.1 Parallelize the loop body

Parallelizing the loop body is performed by just one rule:

P1 ∶ t1 ⇓
freechans t1 ∪ freechans t2 = ∅

writes t1 ∩ freevars t2 = freevars t1 ∩writes t2 = ∅{P1 ⋆P2}; t1 ≡ [P1] t1 ∥ [P2] skip{P1 ⋆P2}; t2 ≡ [P2] t2 ∥ [P1] skip{P1 ⋆P2}; t1; t2 ≡ [P1] t1 ∥ [P2] t2 T-SeqParA

The transformation guard, P1 ⋆P2, ensures that the state (e.g. variables) can be

divided into two disjoint substates satisfying P1 and P2, respectively. Once paral-

lelized, P1 and P2 guard threads t1 and t2, respectively, and it is no longer necessary

to explicitly assert P1 ⋆P2. We use P1 and P2 to list what t1 and t2 can do, and the

free variables/channels of t1 and t2 to state what they cannot do.1 We explain the

judgments in order:

� P1 ∶ t1 ⇓ – if P1 holds on an initial state, then any future state that t1 may reach

will be able to terminate.

� freechans t1∪freechans t2 = ∅ – The set of channels that t1 and t2 use are disjoint.

(For now, we assume that the threads cannot communicate/synchronize with

each other.)

� writes t1∩ freevars t2 = freevars t1∩writes t2 = ∅ – t1 cannot write to variables that

are accessed by t2, and t2 cannot write to variables that are accessed by t1.

1We could instead place such restrictions on variable and channel usage via Hoare triples. (As-
sertions cannot state such restrictions because ≡ does not imply safety.)
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{owns i,j,x,y,m,n∧j=i};
while i<>0 do

{owns i,j,x,y,m,n∧j=i};⎡⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,m] [ownsj,y,n]
if i<>0 then

x:= x + m;

i:= i - 1

if j<>0 then

y:= y + n;

j:= j - 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Figure 2.4: Parallelized loop body

� {P1 ⋆P2}; t1 ≡ [P1] t1 ∥ [P2] skip – The behavior of t1 does not change between

whether we give it access to resources that are associated with P2 or take them

away (by putting them in another thread). In other words, t1 cannot attempt

to use any variables or channels that are specified by P2. (This is essentially

a “frame rule” for transformations, and lemma 4.32 shows how to prove this

transformation using a Hoare triple).

� {P1 ⋆P2}; t2 ≡ [P2] t2 ∥ [P1] skip – likewise, t2 cannot attempt to use any

variables or channels that are specified by P1.

To parallelize the loop body, we apply T-SeqParA to Fig. 2.3 by choosing thread-

guards P1 = ownsi,x,m and P2 = ownsj,y,n. This divides the variables between the

threads. The conditions for T-SeqParA are met because the threads use disjoint

variables, will always terminate, and do not use any channel communication. We

do not parallelize the loop invariant assertion because neither thread-guard may, by

itself, assert j=i due to ownership of the referenced variables being split between

them. Figure 2.4 is the result of parallelizing the loop body.

2.2.2 Folding parallelism into the whole loop

We will now parallelize the whole loop, resulting in Fig. 2.2b. Let t1 and t2 represent

the left and right threads, respectively, of the parallelized loop body in Fig. 2.4.

Conceptually, we first unfold the loop by peeling every iteration:
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while i<>0 do (t1 ∥ t2) ≡ (t1 ∥ t2); (t1 ∥ t2); (t1 ∥ t2); (t1 ∥ t2); (t1 ∥ t2); . . .

And then we combine the iterations together:

≡ (t1;t1 ∥ t2;t2); (t1 ∥ t2); (t1 ∥ t2); (t1 ∥ t2); . . .≡ (t1;t1;t1 ∥ t2;t2;t2); (t1 ∥ t2); (t1 ∥ t2); . . .⋮≡ (t1;t1; . . .) ∥ (t2;t2; . . .)≡ while i<>0 do t1 ∥ while j<>0 do t2.

The result is akin to folding a list. We explain, in four parts, how to apply this

idea toward transforming Fig. 2.4 into Fig. 2.2b. The first is a loop transformation

that, by itself, does not know about parallelization (Section 2.2.3). Instead, it ab-

stracts the iteration-combining transformation into a loop schema. The second part

introduces a language extension to describe the intermediate number of iterations

shown in the process above; an explicitly-bounded while loop (Section 2.2.4). The

third introduces a parallelizing transformation that we will use to combine parallel

iterations together (Section 2.2.5). And finally, we piece these together to complete

the DOALL parallelization in Section 2.2.6.

2.2.3 Loop schema & folding

A loop schema is defined as (f, e,P ), where f[z] is the program that results from

combining any z iterations, e is the loop condition, P is the loop invariant, and the

following properties hold:

� if P holds, it will continue to hold after an iteration;

� if the loop condition is false, then the loop is effectively terminated;

� if the loop terminates, then the loop condition will be false; and
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� two combined iterations, composed in sequence, may be combined together.

Because f[1] corresponds to the loop body, the original loop is equivalent to

while e do f[1]. The result of the transformation is the combination of f for an

unbounded number of iterations: f[∞]. Thus we have derived the following rule,

where n is positive, u is either finite or ∞, and n� u is roughly equivalent to n + u:

{P}; f[1] ≡ {P}; f[1]; {P}∀u. {¬e ∧ P}; f[u] ≡ {¬e ∧ P}{P}; f[∞] ≡ {P}; f[∞]; {¬e ∧ P}∀n ≥ 1, u. {P}; f[n� 0]; f[u] ≡ {P}; f[n� u]{P}; while e do f[1] ≡ {P}; f[∞] T-FoldLoop

To prove the rule sound, we do not actually peel every iteration at once because

there will be an unknown (and possibly infinite) number of them. Instead, we peel

the loops only as needed while the source and target of the transformation execute;

we give a proof in Section 4.4.

2.2.4 Bounded loops

To represent a sequence of up to z iterations, we extend while loops to be parame-

terized by a bound on the maximum number of iterations that it may execute:

while e max z do t.

If a loop reaches a finite bound, then it is forced to terminate even if the loop

condition is still true. A normal [unbounded] loop, while e do t, is equivalent to
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while e max ∞ do t. A loop with an iteration bound of 1 is equivalent to an if-

statement and a loop with a bound of 0 is equivalent to skip:

while e max 1 do t ≡ if e then t T-WhileIf

while e max 0 do t ≡ skip T-WhileZero

There is also a third kind of iteration bound, which we call an iteration barrier,

that has form n � u. After n iterations, while e max n � u do t will “pause” (i.e.

become stuck) rather than allow the remaining u iterations to run. (But if e becomes

false, it will terminate.) We write t▶ to resume all loops in program t; in other words,

to replace all occurrences of n � u with n + u. Finally, we restrict ≡ from making

any assumptions about whether a loop will pause at an iteration barrier by requiring

every equivalence to continue to hold after resuming all loops:

t1 ≡ t2
t1▶ ≡ t2▶ T-Resume

To use T-FoldLoop, the user must prove f[n � 0];f[u] ≡ f[n � u] instead of

f[n];f[u] ≡ f[n + u]. (By T-Resume, the former equivalence implies the latter.)

In other words, to prove the combining transformation, the user must provide an

equivalence that does not assume f[n] can terminate after the (finite) n iterations.

There are two reasons behind our use of iteration barriers. The first is the existence

of degenerate loop schemas that satisfy f[n];f[u] ≡ f[n + u], but do not hold for

while e do f[1] ≡ f[∞]. The second is that iteration barriers provide an extensional
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way to dissect the looping behavior of f (so that it is treated as a black box). We

explain these reasons in more detail in Section 4.4.

Iteration barriers also provide a convenient way to write programs that are pa-

rameterized by holes (f) to be later filled with iteration bounds (f[z]). We define

f[z] as the substitution of every occurrence of n�u in f with n+z+u. Thus resuming

loops, t▶, is equal to t[0]. (Both t and f denote the same kinds of programs, but we

use f to indicate that we are using it as a loop schema.)

A very simple loop schema can be defined by while-max for any t, e, and P :

Proposition 2.1. If {P}; t ≡ {P}; t;{P}, then (while e max � do t , e , P ) is a

loop schema (see lemma 4.25),

where we abbreviate 0 � 0 as �. The termination properties – that e is a loop

condition such that ¬e implies and is implied by termination – trivially hold by:

{¬e}; while e max z do t ≡ {¬e} T-FalseWhile

while e do t ≡ while e do t; {¬e} T-WhileFalse

To prove the last property, combining iterations for a while loop, we first define an

addition operation, z|u, which adds finite or infinite iterations to the end of bound

z. If z is finite or ∞, then | is equivalent to +; otherwise, (n′�u′)|u = n′� (u′ +u)
for z = n′ � u′. Combining iterations for a while loop is analogous to loop splitting:

while e max (z| u) do t ≡ (while e max z do t); (while e max u do t) T-Split|
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The programmer is restricted to writing programs with unbounded loops. Finite

bounds and iteration barriers are only introduced by T-FoldLoop when the user must

prove the combining transformation. Through transformation rules such as T-Split|,

the user can construct combining transformations to prove complicated loop schemas

(such as parallel loops) without reasoning directly about whether the iteration bounds

are finite, infinite, or barriers.

2.2.5 Combining parallelism

We need a combining transformation for parallelized iterations, which we get by

generalizing T-SeqParA. If the following conditions hold for any t1, t2, t3, and t4:

� [P1] t1 ↕↕ [P2] t2 – t1 and t2 coterminate: if we run [P1] t1 ∥ [P2] t2 and t1

terminates, then t2 is able to terminate without being observed. If, instead, t2

terminates first, then t1 can terminate without being observed. Cotermination

is also satisfied when neither program terminates. When we (later) present

a parallelizing transformation that allows threads to communicate, they may

coordinate termination to satisfy cotermination as well.

� precise P3 and precise P4 – P3 and P4 unambiguously divide resources (channels)

between themselves. In other words, P3 ⋆(A ∧B) ⊣⊢ (P3 ⋆A) ∧ (P3 ⋆B) for all

A and B, and likewise for P4 [26].

� freechans(t1;t3) ∪ freechans(t2;t4) = ∅ – again, we assume for now that no com-

munication channels are used.

� writes(t1;t3)∩ freevars(t2;t4) = ∅ – neither t1 nor t3 can write to a variable that

is accessed by t2 or t4.

� freevars(t1;t3)∩writes(t2;t4) = ∅ – neither t2 nor t4 can write to a variable that

is accessed by t1 or t3.

27



{owns i,j,x,y,m,n∧j=i};
while i<>0 do

f[1];

(a)

{owns i,j,x,y,m,n∧j=i};
f[∞]

(b)

Figure 2.5: Parallelizing the loop

� {P1}; t1 ≡ {P1}; t1;{P3} – assuming P1 holds in the initial state, t1 is equivalent

to t1;{P3}; this means that P3, which is the guard for t3, will always hold after

t1 terminates.

� {P2}; t2 ≡ {P2}; t2;{P4} – the termination of t2 ensures that the guard for t4

(i.e., P4) will hold.

Then we may combine the parallel programs:

[P1] t1 ↕↕ [P2] t2 precise P3 precise P4

freechans(t1;t3) ∪ freechans(t2;t4) = ∅
writes(t1;t3) ∩ freevars(t2;t4) = ∅
freevars(t1;t3) ∩writes(t2;t4) = ∅{P1}; t1 ≡ {P1}; t1;{P3}{P2}; t2 ≡ {P2}; t2;{P4}([P1] t1 ∥ [P2] t2); ([P3] t3 ∥ [P4] t4) ≡ [P1] (t1;t3) ∥ [P2] (t2;t4) T-SeqParB

In effect, T-SeqParB parallelizes t1 with t4 and t2 with t3 in one step. It implies

T-SeqParA by choosing either t2 = t3 = skip for t1;t4 ≡ t1 ∥ t4 or t1 = t4 = skip for

t2;t3 ≡ t2 ∥ t3, depending on whether t1 or t3 communicates over a public channel.

2.2.6 Loop parallelization

We transform Fig. 2.4 into Fig. 2.2 using T-FoldLoop and the loop schema

(f, i<>0, owns i,j,x,y,m,n ∧ j = i),
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where

f[z] = ⎡⎢⎢⎢⎢⎢⎢⎢⎣
[ownsi,x,m] [ownsj,y,n]
while i<>0 max z do

x:= x + m;

i:= i - 1

while j<>0 max z do

y:= y + n;

j:= j - 1 .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Figure 2.4 is equivalent to Fig. 2.5a by T-WhileIf. By T-FoldLoop, Fig. 2.5a is equiv-

alent to Fig. 2.5b, which is equivalent to the fully parallelized loop, Fig. 2.2b. Then

we show that (f,i<>0, . . .) has the properties of a loop schema. Proving that i<>0

implies and is implied by termination of f[1] is straightforward using T-FalseWhile

and T-WhileFalse.

The loop invariant property cannot be proved by propagating the assertion forward

through the parallelized body because ownership of i and j is split. However, it

suffices to prove the loop invariant for the (sequential) loop body of Fig. 2.2a because

we have already proved it equivalent to f[1].
The combining transformation is the most interesting property because it uses

T-SeqParB to combine the iterations together. By T-SeqParB and then T-Split|:

{owns i,j,x,y,m,n∧j=i};
f[n� 0];f[u]

= {owns i,j,x,y,m,n∧j=i};⎡⎢⎢⎢⎢⎢⎢⎢⎣
[ownsi,x,m] [ownsj,y,n]
while i<>0 max n� 0 do

x:= x + m;

i:= i - 1

while j<>0 max n� 0 do

y:= y + n;

j:= j - 1; ;

⎤⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,m] [ownsj,y,n]
while i<>0 max u do

x:= x + m;

i:= i - 1

while j<>0 max u do

y:= y + n;

j:= j - 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

by def. of f
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≡ {owns i,j,x,y,m,n∧j=i};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,m] [ownsj,y,n]
while i<>0 max n� 0 do

x:= x + m;

i:= i - 1;

while i<>0 max u do

x:= x + m;

i:= i - 1

while j<>0 max n� 0 do

y:= y + n;

j:= j - 1;

while j<>0 max u do

y:= y + n;

j:= j - 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

by T-SeqParB

≡ {owns i,j,x,y,m,n∧j=i};⎡⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,m] [ownsj,y,n]
while i<>0 max n� u do

x:= x + m;

i:= i - 1

while j<>0 max n� u do

y:= y + n;

j:= j - 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

by T-Split|

= {owns i,j,x,y,m,n∧j=i}; by def. of f

f[n� u].

The side conditions of T-SeqParB are satisfied:

� The first pair of threads, bounded by n � 0, coterminate. In other words, if

either thread terminates, then i=0 and j=0, so both will terminate.

� Neither thread uses channels.

� The threads use disjoint local variables.

� The first left thread preserves its guard at termination, and thus satisfies the

(same) guard of the next left thread.

� The first right thread preserves its guard at termination, and thus satisfies the

(same) guard of the next right thread.

2.3 Example: Decoupled software pipelining

Figure 2.6 is a program that approximates π via Monte Carlo simulation. The first

line is an assertion that defines the variables, channels, and their initial states that

we will use to justify transforming the program. In short, the assertion holds for any
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{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ i=N ∧ j=i>0};

while i>0 do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send pi (4*m/N);

j:= i>0

Figure 2.6: Approximating π

state where i and j are initialized to N and i>0, respectively, and which can be divided

into three substates that define disjoint variables and channels. The first substate has

exclusive (read & write) ownership of the variables, the second has empty channel a,

and the third has empty channel b. By stating that the buffer of a channel is empty,

the second and third components of the assertion imply that the program has full

ownership of a and b; i.e. the two channels are private. (An assertion may not refer

to the contents of a public channel because it may change at any time.)

The program consists of a loop that runs for N iterations, where each iteration

generates a point with x and y coordinates distributed uniformly at random between

0 and 1. This point is then checked to determine if it is within a circle of unit radius.

If so, the program increments a counter (m) that tracks the number of generated

points that fell within the circle. When the loop completes, the program estimates π

by using the fraction of points generated inside the circle as an approximation for the

relative area of the circular sector with respect to the enclosing square of edge length

one. The estimate is made observable by sending the value to channel pi.

Finally, we set j to i>0 at the end of the program because we will use j for a loop

condition, equivalent to i>0, in the parallelized program. Without this assignment

in the source program, the parallelized program would have to restore the original

value of j in order to use it for its own purposes because, in our program equivalence
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model, an observer may inspect the value of all variables (and the contents of all

channels) once the program terminates. Preemptively including j (and channels a

and b) in the source program like this is necessary only because the language does

not support scoping. (With such support, we would use transformations to insert

temporary variables and channels rather than including them in the source program.)

Notably, the process of correctly transforming a program does not necessarily

require the program itself to be safe or correct. For example, the initial assertion in

Fig. 2.6 is just strong enough to support our transformations, but the program may

get stuck on the last line (i.e. crash) because the assertion does not define channel

pi. Another potential bug in the program is that m may not be initially equal to 0,

causing the value sent over pi to be meaningless. Although “bad” programs may not

be desirable, they will be faithfully preserved by the transformations.

2.3.1 The DSWP transformation

We apply a DSWP-style pipelined parallelizing optimization by breaking the program

into two tasks. The first task generates a random point and computes the distance

from the origin, and the second task increments m whenever it determines membership

in the circle. In the resulting program, the tasks run in parallel loops that correspond

to two stages of a pipelined operation. The first task/stage sends the value of the loop-

condition and distance from the origin to the second task/stage through a channel.

Figure 2.7 is the result of this parallelization, where each loop is preceded by a

guard to ensure that the variables and channels are properly divided between the two

threads. The left thread requires write access to variables i, x, and y, and the ability

to send values over channels a and b. The right thread owns variables j, x, and m,

and has the ability to receive values from channels a and b. Finally, we have removed

the assignment of i>0 to j because it is now being set within the right loop to convey

the loop condition.
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{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ i=N ∧ j=i>0};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[owns i,x,y⋆ cansend a,b] [owns j,z,m⋆ canrecv a,b]
while i>0 do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

send b (i>0)

while j do

j:= recv b;

z:= recv a;

if z<1 then

m:= m + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;
send pi (4*m/N)

Figure 2.7: DSWP parallelization of Fig. 2.6

We prove the correctness of this transformation in three phases: phase 1 (Sec-

tion 2.3.2) decouples the dependencies of the two tasks, phase 2 (Section 2.3.3) par-

allelizes the tasks in the body of the loop, and phase 3 (Section 2.3.4) folds the

parallelism into the entire loop.

2.3.2 Phase 1: Decoupling dependencies

Our first step is to decouple the tasks by expressing data and control-flow dependen-

cies explicitly using channels. A data dependency exists between two tasks if a task

relies on a variable that the other has modified. A control-flow dependency exists

when the execution of one task depends on the control-flow choices of the other task;

these are generated by if-, while-, and recv- statements.

To decouple data dependencies, we first ensure that each task uses a disjoint set

of local variables by inserting new variables as needed; in this example, the tasks

already use disjoint variables. Then we ensure that the dependencies are transmitted

between tasks by replacing certain assignments with send and recv instructions on

empty channels.
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{ . . . };
while i>0 do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send pi (4*m/N);

j:= i>0

(a)

{owns i,j,x,y,z,m ⋆a=[]⋆b=[]∧i=N∧j=i>0};
while i>0 do

{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[]};

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

z:= recv a;

if z<1 then

m:= m + 1;

send pi (4*m/N);

j:= i>0

(b) target

Figure 2.8: Decoupling z via a by transforming Fig. 2.6 into (b) (step 1/4)

We achieve this using rewrite rule T-AssignSendRecv, which transforms an as-

signment into a pair of send and receive instructions.

{a=[]}; x:= e ≡ {a=[]}; send a e; x:= recv a
T-AssignSendRecv

It uses an assertion to state that the channel must be empty, which also implies

that the channel is private. Without the assertion, the equivalence might fail for two

reasons. First, if the channel is not empty, then recv will retrieve the oldest value

in the channel, not the value just sent. Second, if the channel is not private, then an

observer may steal the value between send and recv (causing recv to block) or it

may inject a different value to be received into x.

In Fig. 2.8b, we first infer a loop invariant stating that channels a and b are

empty at the beginning of each iteration. Task two has a data dependency on task one

through variable z. For this particular example, we do not need to create a redundant

variable for z because it is only used by task two. We transmit the dependency from

task one through channel a to task two by using T-AssignSendRecv. It replaces the
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{ . . . };
while i>0 do

{ . . . };
i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

z:= recv a;

if z<1 then

m:= m + 1;

send pi (4*m/N);

j:= i>0

(a)

{owns i,j,x,y,z,m ⋆a=[]⋆b=[]∧i=N∧j=i>0};
while i>0 do

{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

j:= i>0;

z:= recv a;

if z<1 then

m:= m + 1;

send pi (4*m/N);

(b) target

Figure 2.9: Duplicating loop condition i>0 via j by transforming Fig. 2.8b into (b)
(step 2/4)

assignment to z with a send instruction that produces x*x+y*y followed by a recv

instruction to consume the value into variable z.

In Fig. 2.9b, we move the assignment to j into the loop using T-AssignCom,

T-AssertAssign, and T-WhileAssign.

writes t ∩ ({x} ∪ freevars e) = ∅
x:= e; t ≡ t[e/x]; x:= e T-AssignCom

x ∉ reads t ∪ freevars e1 ∪ freevars e2

while e1 do t; x:= e2 ≡ while e1 do (t; x:= e2); x:= e2
T-WhileAssign

T-AssignCom commutes an assignment around a subprogram when the subprogram

does not also write to the same variable (t[e/x] denotes the substitution of any read

from x in program t with expression e). T-WhileAssign moves an assignment that

appears after a loop into the loop when the variable does not appear in the assignment

expression, loop body, or loop condition. Then we strengthen the loop invariant by
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{ . . . };
while i>0 do

{ . . . };
i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

j:= i>0;

z:= recv a;

if z<1 then

m:= m + 1;

send pi (4*m/N)

(a)

{owns i,j,x,y,z,m ⋆a=[]⋆b=[]∧i=N∧j=i>0};
while i>0 do

{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

send b (i>0);

j:= recv b;

z:= recv a;

if z<1 then

m:= m + 1;

send pi (4*m/N)

(b) target

Figure 2.10: Decoupling j via b by transforming Fig. 2.9b into (b) (step 3/4)

{ . . . };
while i>0 do

{ . . . };

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

send b (i>0);

j:= recv b;

z:= recv a;

if z<1 then

m:= m + 1;

send pi (4*m/N)

(a)

{owns i,j,x,y,z,m ⋆a=[]⋆b=[]∧i=N∧j=i>0};
while i>0 do

{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};

if i>0 then

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

send b (i>0);

if j then

j:= recv b;

z:= recv a;

if z<1 then

m:= m + 1;

send pi (4*m/N)

(b) target

Figure 2.11: Decoupling control flow by transforming Fig. 2.10b into (b) (step 4/4)

adding condition j=i>0 so that it is nearly identical to the initial assertion (but where

the value of i is not known).

In Fig. 2.10b, we prepare to separate the control-flow dependency by introducing

send/recv instructions that transmit the loop condition over channel b to variable j

(T-AssignSendRecv). (We infer that b is empty at this point from the loop invariant.)
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Then we use T-WhileAssertI to infer that i>0 and j are both true within the

loop in order to insert two if-statements via T-TrueIf. This intercepts the control

dependence from the while-loop to its body, in Fig. 2.11b, fully dividing the body

into the two tasks. Although the if-statements are currently redundant, they will

allow us to parallelize the loop in phase 3 (Section 2.3.4) without directly reasoning

about the termination condition of the current loop.

2.3.3 Phase 2: Parallelizing the loop body

We first parallelized a loop body in Section 2.2.1 using T-SeqParA. But since our

current example uses channels, we introduce a more general rule:

P1 ∶ t1 ⇓
recvs t1 ∩ recvs t2 = ∅

P1 ⋆P2 ⊢ (owns (freechans t1) ∨ owns (freechans t2))⋆ true
writes t1 ∩ freevars t2 = freevars t1 ∩writes t2 = ∅{P1 ⋆P2}; t1 ≡ [P1] t1 ∥ [P2] skip{P1 ⋆P2}; t2 ≡ [P2] t2 ∥ [P1] skip{P1 ⋆P2}; t1; t2 ≡ [P1] t1 ∥ [P2] t2 T-SeqParC

We explain the new judgments in order:

� recvs t1∩recvs t2 = ∅ – the set of channels that t1 receives from, recvs t1, is disjoint

from the set of channels that t2 receives from. In other words, t1 and t2 cannot

both receive from the same channel. Doing so would allow t2 to steal values

destined for t1 in the parallelized program, possibly causing t1 to block.

� P1 ⋆P2 ⊢ (owns(freechans t1) ∨ owns(freechans t2))⋆ true – any channels used by

t1 (or alternately, t2) are jointly owned by t1 and t2. In other words, one of

the threads may only communicate with the other thread; not with an observer

or other threads in the surrounding context. Otherwise, we would be able to

parallelize send a 0 with send b 1 for observable channels a and b, but doing
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{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ i=N ∧ j=i>0};

while i>0 do

{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[owns i,x,y⋆ cansend a,b] [owns j,z,m⋆ canrecv a,b]
if i>0 then

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

send b (i>0)

if j then

j:= recv b;

z:= recv a;

if z<1 then

m:= m + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;
send pi (4*m/N)

Figure 2.12: Parallelized loop body

so would result in different observed traces between the parallel and sequential

programs. (Joint ownership arises from owns being derived from P1 ⋆P2, and

(. . .⋆ true) allows P1 ⋆P2 to specify even more channels or variables than stated

by owns(freechans t1) ∨ owns(freechans t2).)
To parallelize the loop body, we apply T-SeqParC to Fig. 2.11b by choosing thread-

guards P1 = ownsi,x,y⋆ cansend a,b and P2 = ownsj,z,m⋆ canrecv a,b. This divides

the variables between the threads and splits access to channels a and b such that the

left thread only sends (cansend a,b) and the right thread only receives (canrecv a,b).

We do not parallelize the assertion of the loop invariant because neither thread-

guard may, by itself, assert that the channel contents are empty or that j=i>0 due

to ownership of the referenced channels and variables being split between them. (See

Section 2.5.3 on how we might overcome this.) The conditions for T-SeqParC are met

because the threads use disjoint variables, will always terminate, do not receive from

the same channel, and do not communicate over any observable channel. Figure 2.12

is the result of parallelizing the loop body.

2.3.4 Phase 3: Loop folding

We transform Fig. 2.12 into Fig. 2.7 using T-FoldLoop and the loop schema
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{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[]∧ i=N ∧ j=i>0};

{owns i,j,x,y,z,m⋆a=[]⋆b=[]∧j=i>0};
while i>0 do

f[1];
send pi (4*m/N)

(a)

{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[]∧ i=N ∧ j=i>0};

{owns i,j,x,y,z,m⋆a=[]⋆b=[]∧j=i>0};
f[∞];
send pi (4*m/N)

(b)

Figure 2.13: Parallelizing the loop

(f,i>0,owns i,j,x,y,z,m⋆a=[]⋆b=[] ∧ j=i>0),

where

f[z] = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[owns i,x,y⋆ cansend a,b] [owns j,z,m⋆ canrecv a,b]
while i>0 max z do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

send a (x*x+y*y);

send b (i>0)

while j max z do

j:= recv b;

z:= recv a;

if z<1 then

m:= m + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
Figure 2.12 is equivalent to Fig. 2.13a by T-WhileIf and T-WhileAssertI. By

T-FoldLoop, Fig. 2.13a is equivalent to Fig. 2.13b, which is equivalent to Fig. 2.7.

Then we show that (f,i>0, . . .) has the properties of a loop schema. Proving that i>0

implies and is implied by termination of f[1] is straightforward using T-FalseWhile

and T-WhileFalse.

The loop invariant, particularly that a and b will be empty upon termination of

f[1], cannot be proved directly because the assertion logic is not strong enough to

reason about how the channels are used between threads. However, it suffices to

prove the loop invariant for the (sequential) loop body of Fig. 2.9b because we have
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already proved it equivalent to f[1]. This is fairly straightforward, particularly by

first converting the pair of send/recv instructions back into assignment statements.

The last property is the combining transformation. In Section 2.2.5, we used

T-SeqParB to combine parallelized iterations, but it does not support communication

channels. Thus we introduce our final, more general, parallelization rule:

[P1] t1 ↕↕ [P2] t2 precise P3 precise P4

recvs(t1;t3) ∩ recvs(t2;t4) = ∅
P1 ⋆P2 ⊢ owns(freechans(t2;t4))⋆ true

writes(t1;t3) ∩ freevars(t2;t4) = ∅
freevars(t1;t3) ∩writes(t2;t4) = ∅{P1}; t1 ≡ {P1}; t1; {P3}{P2}; t2 ≡ {P2}; t2; {P4}([P1] t1 ∥ [P2] t2); ([P3] t3 ∥ [P4] t4) ≡ [P1] (t1;t3) ∥ [P2] (t2;t4) T-SeqPar

We explain the new judgments in order:

� recvs(t1;t3) ∩ recvs(t2;t4) = ∅ – neither t1 nor t3 receive from the same (public

or private) channels as t2 and t4.

� P1 ⋆P2 ⊢ owns(freechans(t2;t4))⋆ true – t2 and t4 never communicate over an

observable channel; any channel used by either must be fully owned by P1 ⋆P2.

This allows private communication with t1 and t3.

T-SeqPar implies T-SeqParC by choosing either t2 = t3 = skip for t1;t4 ≡ t1 ∥ t4 or

t1 = t4 = skip for t2;t3 ≡ t2 ∥ t3, depending on whether t1 or t3 communicates over a

public channel. Thus T-SeqPar trivially implies T-SeqParA and T-SeqParB as well.

By T-SeqPar and then T-Split|:

{owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};

f[n� 0];f[u]
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= {owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};⎡⎢⎢⎢⎢⎢⎣
[owns i,x,y⋆ cansend a,b] [owns j,z,m⋆ canrecv a,b]
while i>0 max n� 0 do

. . .
while j max n� 0 do

. . .

⎤⎥⎥⎥⎥⎥⎦;⎡⎢⎢⎢⎢⎢⎣
[owns i,x,y⋆ cansend a,b] [owns j,z,m⋆ canrecv a,b]
while i>0 max u do

. . .
while j max u do

. . .

⎤⎥⎥⎥⎥⎥⎦

by def. of f

≡ {owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[owns i,x,y⋆ cansend a,b] [owns j,z,m⋆ canrecv a,b]
while i>0 max n� 0 do

. . .
while i>0 max u do

. . .

while j max n� 0 do

. . .
while j max u do

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

by T-SeqParC

≡ {owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0};⎡⎢⎢⎢⎢⎢⎣
[owns i,x,y⋆ cansend a,b] [owns j,z,m⋆ canrecv a,b]
while i>0 max n� u do

. . .
while j max n� u do

. . .

⎤⎥⎥⎥⎥⎥⎦

by T-Split|

= {owns i,j,x,y,z,m ⋆ a=[] ⋆ b=[] ∧ j=i>0}; by def. of f

f[n� u].

The side conditions of T-SeqPar are satisfied:

� The first pair of threads, bounded by n � 0, coterminate. If the left thread

(conditioned on i>0) terminates, then ≤ n values were sent on both local chan-

nels a and b; either exactly n iterations were made, or the last value sent on

b is false. The right thread (conditioned on j) can receive as many values

without blocking, at which point it will have either made n iterations or the

value received into j will be false and it will terminate. If the right thread

terminates, then ≤ n values were received. Because the loop invariant is that

both a and b are empty, it must be the case that as many values were sent from

the left thread. Either n iterations were made or false was sent on channel b

(in which case ¬i>0), so the left thread must also terminate.
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.14: Approximating π; this is the same program as Fig. 2.6, but with minor
adjustments to allow us to introduce duplicate variables.

� The left threads (conditioned on i>0) never receive values (and thus do not

receive from the same channels as the right threads).

� No threads communicate over observable (public) channels.

� The threads use disjoint local variables.

� The first left thread preserves its guard at termination, and thus satisfies the

(same) guard of the next left thread.

� The first right thread preserves its guard at termination, and thus satisfies the

(same) guard of the next right thread.

2.4 Example: DOACROSS parallelization

Our final example is to apply DOACROSS parallelization to (nearly) the same

program that we worked with in the preceding section, listed in Fig. 2.14. Like

DOALL parallelization, DOACROSS divides the iterations of a sequential loop into

multiple parallel loops. However, the iterations need not be independent – we add

synchronization to coordinate access to shared resources. In particular, we introduce

pairs of send/recv instructions so that the threads strictly alternate their access of

the shared resources.
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,y,z,m ⋆
canrecv a⋆ cansend b

] [ownsi’,x’,y’,z’,m’ ⋆
cansend a⋆ canrecv b

]
if i>0 do

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

while i>0 do

i:= i - 1;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

i:= i - 1;

if i>0 do

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

m:= recv a

while i’>0 do

i’:= i’ - 1;

if i’>0 then

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

m’:= recv b;

if i’>0 then

i’:= i’ - 1;

if z’<1 then

m’:= m’ + 1;

send a m’

;

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.15: DOACROSS parallelization of Fig. 2.14

Figure 2.15 lists the final result of our application of DOACROSS. To parallelize

the program, we introduce temporary variables i’, x’, y’, z’, and m’ to duplicate vari-

ables i, x, y, z, and m, respectively. (Because the language does not support scoping,

we define the variables in the initial assertion and set them to 0 at the end.)

The shared resource is the counter. When the left thread has exclusive access,

it is stored in m, and when the right thread has exclusive access, it is stored in m’.

Initially, the left thread has access to the counter, and each time that it is done

using the resource, it releases access by sending its value into channel b; to reacquire

the resource, it receives from channel a. Likewise, the right thread acquires access by

receiving from channel b and releases access by sending into channel a. It is important

for each thread to do as much computation as possible without requiring access to the
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

if i>0 then

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.16: Unroll the loop by T-Unroll.

shared resource in order to maximize concurrency, thus we have mostly minimized

the amount of code that appears between each recv and subsequent send.

We implement DOACROSS in four phases: decoupling, parallelization, loop fold-

ing, and maximizing concurrency. In the first phase, we decouple odd iterations from

even iterations by making them use disjoint variables and using send/recv to pass

the counter from odd to even via channel b and even to odd via a. Then we parallelize

each odd iteration with its subsequent even iteration in phase 2, followed by folding

this parallelism into the whole loop in phase 3. Finally, phase 4 attempts to maximize

concurrency by reordering instructions so that most of the odd computation can be

performed in parallel with the even computation.
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i’=i};
i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

m’:= m;

i’:= i;

{i’=i};

if i’>0 then

i’:= i’-1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’+1;

m:= m’;

i:= i’;

send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.17: Make odd and even iterations use disjoint variables.

2.4.1 Phase 1: Decoupling

Shown in Fig. 2.16, we start by unrolling the loop using the following rule:

while e do t ≡ while e do (t; if e then t) T-Unroll

The first half of the resulting loop computes odd iterations and the second half com-

putes even iterations.

Then in Fig. 2.17, we introduce duplicate (prime) variables so that the even it-

erations use different variables than the odd iterations. To support this, we also

introduce assignments from m to m’ and from i to i’when transitioning from odd to
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i’=i};
i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m;

m’:= recv b;

i’:= i’ - 1;

{i’=i};

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’;

m:= recv a;

i:= i - 1;

send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.18: Decoupling the dependency between i and i’, and between m and m’.

even iterations, and from m’to m and from i’to i when transitioning from even to odd

iterations. By adding assignments i’:= i and i:= i’, we can introduce assertions to

state that i’ and i are equal in between odd and even iterations in order to simplify

later reasoning.

In Fig. 2.17, we replace i’:= i with i’:= i’ - 1 and i:= i’ with i:= i - 1

to remove the dependency between i and i’. To remove the dependency between m

and m’, we instead introduce send/recv pairs using T-AssignSendRecv because the

counter will be modified by both odd and even iterations in a nontrivial way. We use

two different channels, a and b, for this to avoid having the odd and even iterations
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i’=i};
if i>0 then

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m;

if i’>0 then

m’:= recv b;

i’:= i’ - 1;

{i’=i};

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’;

if i>0 then

m:= recv a;

i:= i - 1;

send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.19

both receive from the same channel, as this would be incompatible with T-SeqPar

when we later attempt to parallelize them.

Finally, we split up the control flow between odd and even iterations in Fig. 2.19

Because we introduced assignments between m, m’, i, and i’ in the previous step, the

odd and even iterations are now broken into two parts each that are interleaved. The

first part of the odd iteration computes x, y, and z, and then releases the counter;

the first part of the even iteration decrements i’ and acquires the counter. This is

followed by the second part of the even iteration, its computation and release of the
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counter, and then the second part of the odd iteration, to decrement i and reacquire

the counter. We separate these parts by surrounding them by if-statements.

The first two if-statements are introduced by T-TrueIf because i>0 and i’=i hold

at the beginning of the loop. We obtain the last if-statement by T-TrueIf and:

{¬e}; if e then t1 else t2 ≡ {¬e}; t2 T-FalseIf

if e then (t1; t3) else (t2; t3) ≡ if e then t1 else t2; t3
T-IfBack

First, we use T-TrueIf to surround the assignment to m and i by an if-statement

conditioned on i>0, and we then use T-FalseIf to introduce the same if-statement

into the false-branch of the preexisting if-statement. We use T-IfBack to move the

newly-introduced if-statements to just after the preexisting if-statement.

2.4.2 Phase 2: Parallelizing the loop body

We apply T-SeqParC to parallelize the first parts of the odd and even iterations.

The we apply T-SeqParC again to parallelize the second parts of the odd and even

iterations, followed by applying rule:

[P1] t1 ∥ [P2] t2 ≡ [P2] t2 ∥ [P1] t1 T-ParCom

to swap the threads so that the left and right threads correspond to the odd and even

iterations, respectively. Parallelization holds because the odd and even iterations use

disjoint variables, all channels are private, they do not receive from the same channel,

and the relevant parts always terminate. This results in Fig. 2.20.
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i’=i};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,y,z,m ⋆
canrecv a⋆ cansend b

] [ownsi’,x’,y’,z’,m’ ⋆
cansend a⋆ canrecv b

]
if i>0 then

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m

if i’>0 then

m’:= recv b;

i’:= i’ - 1

;

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
{i’=i};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,y,z,m ⋆
canrecv a⋆ cansend b

] [ownsi’,x’,y’,z’,m’ ⋆
cansend a⋆ canrecv b

]
if i>0 then

m:= recv a;

i:= i - 1

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’ ;

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.20: Both parts of the odd and even iterations have been parallelized

Finally, we remove assertion {i’=i} and apply T-SeqPar to combine the two

parallel sections so that the odd and even iterations are performed by the single

left and right threads, respectively. This results in Fig. 2.21. The preconditions of

T-SeqPar are satisfied because they use disjoint variables, all channels are private,

they do not receive from the same channel, and the first part of the odd and even

iterations coterminate. Cotermination holds in one direction because the first part of

the odd iteration always terminates, and in the direction because channel b is initially

empty and either both i>0 and i’>0 are false, or else running send b m (when the

odd part terminates) ensures that m’:= recv b will not block.
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i’=i};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,y,z,m ⋆
canrecv a⋆ cansend b

] [ownsi’,x’,y’,z’,m’ ⋆
cansend a⋆ canrecv b

]
if i>0 then

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1

if i’>0 then

m’:= recv b;

i’:= i’ - 1;

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’ ;

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.21: The two parallel sections are combined.

2.4.3 Phase 3: Loop folding

Folding parallelism into the loop proceeds like Section 2.3.4. Before folding, however,

we first nest the second if-statement of each thread inside their preceding if-statements

by rules T-IfBack and T-FalseIf (Fig. 2.22). Then we apply T-FoldLoop using schema:

(f,i>0,owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[] ∧ i’=i),

where
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};
while i>0 do

{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i’=i};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,y,z,m ⋆
canrecv a⋆ cansend b

] [ownsi’,x’,y’,z’,m’ ⋆
cansend a⋆ canrecv b

]
if i>0 then

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1

if i’>0 then

m’:= recv b;

i’:= i’ - 1;

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’ ;

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.22: The last if-statement of each thread is nested in the first if-statements.

f[z] = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,y,z,m ⋆
canrecv a⋆ cansend b

] [ownsi’,x’,y’,z’,m’ ⋆
cansend a⋆ canrecv b

]
while i>0 max z do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1

while i’>0 max z do

m’:= recv b;

i’:= i’ - 1;

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’ .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The result of loop folding is listed in Fig. 2.23. To use T-FoldLoop, we must

prove that (f,i>0, . . .) has the properties of a loop schema, which is true for the same

reasons found in Section 2.3.4. Proving that i>0 implies and is implied by termination

of f[1] is straightforward using T-FalseWhile and T-WhileFalse.
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{owns i,x,y,z,m,i’,x’,y’,z’,m’⋆a=[]⋆b=[]∧i=N∧i’=i};⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ownsi,x,y,z,m ⋆
canrecv a⋆ cansend b

] [ownsi’,x’,y’,z’,m’ ⋆
cansend a⋆ canrecv b

]
while i>0 do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1

while i’>0 do

m’:= recv b;

i’:= i’ - 1;

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’ ;

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
send pi (4*m/N);

i’:= 0; x’:= 0; y’:= 0; z’:= 0; m’:= 0

Figure 2.23: The result of folding parallelism into the loop.

The loop invariant, particularly that a and b will be empty upon termination of

f[1], cannot be proven directly because the assertion logic is not strong enough to

reason about how the channels are used between threads. However, it suffices to prove

the loop invariant for the (sequential) loop body of Fig. 2.18 because we have already

proved it equivalent to f[1]. The last property is the combining transformation,

which follows from T-SeqPar and then T-Split|.

2.4.4 Phase 4: Maximize concurrency

At this point, we have applied DOACROSS such that the loop is parallelized and

access to the counter is correctly synchronized. However, the program in Fig. 2.23 will

be slower than the original program because of the added synchronization operations

and the fact that all computation is still being performed in sequence. Specifically,

all of the computation is performed in critical sections – generally between recv and

send. To make DOACROSS worthwhile, we need to move as much of the computation

as possible outside of such critical sections.
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while i>0 do

i:= i - 1;

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1

(a) The left loop

while i>0 do

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

i:= i - 1;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1

(b) Commute i:=i-1

while i>0 do

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

if i>0 then

i:= i - 1;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1

(c) Intro if-statement

Figure 2.24: Moving the left loop computation outside of its critical section (1/2).

We start by focusing on the loop in the left thread that performs the odd iterations,

shown in Fig. 2.24a. The computation of x, y, and z is effectively in a critical

section because the recv statement at the end of the loop blocks it from going to the

next iteration to perform the next computation. We can resolve this by moving the

computation, which does not depend on m, above the preceding recv statement.

Thus our immediate goal is to reorder the loop via a loop rotation so that the first

computation is performed before the loop and the recv statement appears before the

remaining computations inside the loop body. We use the following rule in reverse:

if e then t1;
while e do (t2; if e then t1) ≡ while e do (t1; if e then t2) T-Rotate

In T-Rotate, the computation will be represented by t1 and the rest of the loop by

t2. To prepare for rotation, we isolate the computation to the top of the loop body.

We first commute the decrementing of i to below the computation (Fig. 2.24b), and

then introduce an if-statement to surround the rest of the loop (Fig. 2.24c).
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if i>0 then

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

while i>0 do

i:= i - 1;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1;

if i>0 then

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y

(a) Rotate

if i>0 then

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

while i>0 do

i:= i - 1;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

m:= recv a;

i:= i - 1;

if i>0 then

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y

(b) Nest if-statement

if i>0 then

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

while i>0 do

i:= i - 1;

if z<1 then

m:= m + 1;

send b m;

if i>0 then

i:= i - 1;

if i>0 then

x:= rand[0..1];

y:= rand[0..1];

z:= x*x + y*y;

m:= recv a

(c) Commute recv

Figure 2.25: Moving the left loop computation outside of its critical section (2/2).

After applying T-Rotate, we get Fig. 2.25a. Then we nest the last if-statement

inside of the preceding if-statement via T-IfBack and T-FalseIf in Fig. 2.25b. Finally,

we commute m:= recv a after the computation. Thus Fig. 2.25c has moved most of

its computation outside of its critical section.

Now we focus on the loop in the right thread, which performs the even iterations

and is shown in Fig. 2.26a. Conveniently, we will not need to perform loop rotation

because the computation already appears syntactically after a recv statement. The

first step, shown in Fig. 2.26b, is to move the computation above the if-statement; this

is to separate it from computing m’. Finally, we move recv below the computation,

as shown in Fig. 2.26c.

After reorganizing the left and right loops to maximize concurrency, the final

result of our DOACROSS parallelization is the program listed in Fig. 2.15.
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while i’>0 do

m’:= recv b;

i’:= i’ - 1;

if i’>0 then

i’:= i’ - 1;

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if z’<1 then

m’:= m’ + 1;

send a m’

(a) The right loop

while i’>0 do

m’:= recv b;

i’:= i’ - 1;

if i’>0 then

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

if i’>0 then

i’:= i’ - 1;

if z’<1 then

m’:= m’ + 1;

send a m’

(b) Commute xyz

while i’>0 do

i’:= i’ - 1;

if i’>0 then

x’:= rand[0..1];

y’:= rand[0..1];

z’:= x’*x’ + y’*y’;

m’:= recv b;

if i’>0 then

i’:= i’ - 1;

if z’<1 then

m’:= m’ + 1;

send a m’

(c) Commute recv

Figure 2.26: Moving the right-loop computation outside of its critical section.

2.5 Conclusion & related work

2.5.1 Remarks on loop folding

We considered three variations of loop folding before settling on our current rule.

{P}; f[1] ≡ {P}; g[1] (f, e,P ) (g, e,P ){P}; f[∞] ≡ {P}; g[∞] (2.1)

In eq. (2.1), using two loop schemas allows the user to perform more direct loop

transformations. For example, we could have transformed Fig. 2.11b into Fig. 2.13b

without first parallelizing the loop body (Fig. 2.12). Rather, parallelizing the loop

body would have been done by proving {P}; f[1] ≡ {P}; g[1].
However, this is equivalent to first transforming each loop schema into a while

loop, as we did in T-FoldLoop. To transform a loop schema into a while loop, how-

ever, it is necessary to strengthen the termination property so that {¬e∧P}; f[u] ≡
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{¬e ∧ P} for any u (or precisely, for u ∈ {1,∞}). But we expect that, in practice,

¬e will always cause any loop schema to terminate regardless of how many itera-

tions it is given, so we think this is worth the simplicity of only dealing with one

loop schema. (We are not certain whether this more strict termination property is

actually equivalent; nondeterminism makes it less clear.)

x > 0{P}; f[x] ≡ {P}; f[x];{P}{¬e ∧ P}; f[∞] ≡ {¬e ∧ P}{P}; f[∞] ≡ {P}; f[∞];{¬e ∧ P}∀n ≥ 1, u. {P}; f[n� 0];f[u] ≡ {P}; f[n� u]{P};while e do f[x] ≡ {P}; f[∞] (2.2)

In eq. (2.2), parameter x allows the user to prove loop invariants by considering a

number of iterations that may be more convenient; for example, the user could choose

a P that holds only every 5 iterations. It also implies loop unrolling. However, we

instead prove loop unrolling separately (see T-Unroll in table 2.2) because we can

then derive eq. (2.2) from T-FoldLoop.

y ≥ 0{P}; f[1] ≡ {P}; f[1];{P}{¬e ∧ P}; f[∞] ≡ {¬e ∧ P}{P}; f[∞] ≡ {P}; f[∞];{¬e ∧ P}∀n ≥ 1, u. {P}; f[n� 0];f[u] ≡ {P}; f[n� y + u]{P};while e do f[1] ≡ {P}; f[∞] (2.3)

Parameter y in eq. (2.3) performs loop rotation, but like loop unrolling, we instead

prove rotation separately (T-Rotate) so that we may derive eq. (2.3) from T-FoldLoop.

2.5.2 Remarks on parallelization

Although we believe T-SeqPar is very general, there are various uses where it is

too strong. In particular, we cannot generally parallelize mutexes (implemented via
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send/recv) because it does not allow the threads to mutate the same variables (there

is a syntactic restriction) and because it does not allow the threads to receive from

the same channel (which would be required to implement the mutex). We have not

yet looked at adding more kinds of parallelizing transformations.

In the future, we would like to investigate a “cross parallelization” rule that is

supported by smaller parallelization transformations and that abstracts further away

from how channels and variables are used. What we have in mind might look like:

{P1 ⋆P4}; t1;t4 ≡ [P1] t1 ∥ [P4] t4 {P2 ⋆P3}; t2;t3 ≡ [P2] t2 ∥ [P3] t3 (. . .)([P1] t1 ∥ [P2] t2); ([P3] t3 ∥ [P4] t4) ≡ [P1] (t1;t3) ∥ [P2] (t2;t4)

2.5.3 Strengthening the assertion logic

We present a simple assertion logic in this thesis that, as we mentioned in Sec-

tion 2.3.4, is too weak to reason about how channels are used between threads. Thus

we resorted to re-sequentializing the program in order to prove that certain chan-

nels remain empty as a postcondition. However, there are several ways to extend

this logic to enable a direct proof that a channel is empty upon the join of multiple

communicating threads. One is to combine concurrent separation logic with session

types [14]. Another is to record the local history of channel usage for each thread, and

then combine the histories when the threads join [4, 43]. These approaches effectively

record a trace of channel usage that can be used to infer the state of a channel, such

as the size of its buffer and possibly its contents, once all ownership is accounted for.

2.5.4 Finite communication channels

We chose to use unbounded communication channels for simplicity. In practice (i.e.

in real compilers), these channels will likely have a finite capacity so that send will
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block if its channel is full. Because our examples, rewrite rules, and proofs only

assume that the capacity of each channel is nonzero, making such a change should

have little impact on the results of this thesis. However, a general rule to commute

send around recv for the same channel would need to ensure that neither instruction

blocks. We would use the stronger assertion logic (above) to prove that the current

capacity of the channel is not exceeded when send appears first and that the channel

is not empty when recv appears first.

2.5.5 Existing proof of DSWP

Ottoni gave an informal proof of DSWP, although his primary goal was to demonstrate

that DSWP is an effective parallelizing optimization. We denote, by “DSWP”, the

entire process of finding and applying pipelined thread-level parallelism to loops.

However, he makes a distinction between partitioning a loop into tasks, which he

calls DSWP, and using the partitioning to generate a parallelized program, which he

calls multi-threaded code generation (MTCG).

In his implementation, a sequential source program is first converted into a pro-

gram dependency graph (PDG) [12]; a graph that denotes the semantics of a program,

where edges represent data and control flow dependencies and nodes generally rep-

resent blocks of sequential code. DSWP is the process of analyzing the PDG to

search for potential pipelined thread-level parallelism in arbitrary loops; it attempts

to find the most optimal parallelization strategy and proceeds to mark each node

of the PDG with a thread ID accordingly. The next step is for MTCG to take the

annotated PDG and, for each dependency between different thread IDs, inserts a pair

of send and receive instructions into the connected nodes in order to communicate

it between them (using a fresh channel for each edge). The modified PDG is then

linearized – the nodes are transcribed into a straight-line program and instructions
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are added to create channels and to manage the threads (create, fork, and join) that

each node is associated with.

The argument for its soundness is that MTCG preserves all dependency edges. In

other words, converting each register, memory, or control dependency to send/receive

instructions preserves the edge. Thus the PDGs before and after MTCG are isomor-

phic. Finally, the Equivalence Theorem, as proved by Horwitz et al. [15], states that

any two programs that have isomorphic PDGs are “strongly equivalent.”

They define “strong equivalence” between two programs to mean that, for any

input, both will either terminate in the same state or neither will terminate (they

may diverge or fail). The theorem assumes that the PDG nodes contain only single

assignment statements (rather than blocks of instructions, as used by Ottoni). Sarkar

proves a variations of the Equivalence Theorem [37] that supports nodes with blocks

of sequential instructions, but requires the PDGs to be equal instead of isomorphic.

Although Ottoni provides a good intuition for why DSWP/MTCG should be

sound, it would take a significant amount of work to complete his proof. The first

challenge would be to formalize the semantics of a PDG that has concurrency and

synchronization between threads. But the main challenge would be to prove the

equivalence between a straight-line program and an “optimal” PDG, which we loosely

define as a PDG that has at least enough edges removed so as to justify the kinds

of optimizations that we should be able to perform on the program. In other words,

given a program, it is trivial to find an equivalent PDG: construct a complete graph

(i.e., where every pair of vertices is connected by an edge) that has a node for every

instruction in the program. But for every edge removed from this graph, we must

prove that its behavior does not change.

In our thesis, we have chosen to pursue the foundational questions behind par-

allelization, and not automation. Thus we do not use the PDG because its primary
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purpose is to support automation by recording the results of static analyses so that

it may be efficiently searched for the best optimization strategies.

2.5.6 Existing verified parallelizing optimizations

Hurlin proved partial correctness of an automated implementation of DOALL [16],

which accepts a program with loops that are annotated with Hoare triples (backed by

a separation logic) and transforms them into annotated parallel loops where possible.

Separation logic is also used as the basis for the dependency analysis. The soundness

criteria is that the source and parallelized programs both satisfy the same Hoare triple

specification. In other words, if both programs terminate, then the resulting state

will satisfy the same postcondition.

Botinčan et al. extended Hurlin’s proof-directed approach to support automatic

DOACROSS optimizations by injecting barriers [7]. They prove a termination-

sensitive trace equivalence. Scandolo et al. also proved a loop-parallelizing trans-

formation, by injecting barriers, with respect to a semantic equivalence [38].

Kundu et al. [18] developed program equivalence checking (PEC), a translation

validation framework to prove the correctness of several sequential loop transfor-

mations. Tatlock et al. [41] extended CompCert with this framework and proved

soundness with respect to weak bisimulation.

Thus both parallelism, loop transformations, and the combination of the two have

been explored in prior work. However, there are several differences that set our work

apart. First, we target more general dependency patterns; DOALL and DOACROSS

respectively assume that interiteration dependencies either are symmetric or do not

exist; they use barriers for synchronization. We handle the asymmetric dependencies

that DSWP targets, which allows us to support DOALL and DOACROSS optimiza-

tions as well; we use shared queues for synchronization (without value passing, these

are equivalent to semaphores).
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With respect to loop transformations, T-FoldLoop targets an orthogonal set of

optimizations than what the related work (above) or even standard loop optimizations

perform, such as fission/distribution, permutation, or polyhedra methods. A key

difference is that T-FoldLoop is intended to work with potentially infinite loops – the

user does not need to prove termination of the loop. Most other loop optimizations

only make sense for loops that have fixed number of iterations, or that will at least

terminate eventually. Furthermore, T-FoldLoop is compositional. For example, we

can use it to parallelize a loop by combining it with other transformations, even

though it does not know about parallelization by itself.

Finally, we prove T-SeqPar, T-FoldLoop, and most of the other transformations

presented in this chapter, sound with respect to a termination sensitive bisimulation.

This is a much stronger soundness criterion that typically used (in the work cited

above, only Tatlock et al. prove a bisimulation). In contrast, most prior work prove

either semantic equivalence (i.e., same output upon termination) or trace equivalence

(i.e., same histories of actions). Unlike bisimulation, these two definitions do not

distinguish between programs whose behaviors differ due to nondeterminism.

2.5.7 Automation

A clear difference between the above prior work and our own is that we do not have an

automated implementation. A key challenge lies in the static analysis and heuristics

that were implicit in Sections 2.3.2 and 2.4.1. But DOALL, DOACROSS, and DSWP

already have automated algorithms [27] and we expect that similar techniques will

apply. We used rewrite rules to prove many small and simple transformations, but

translation validation [32] techniques used by Kundu, Tatlock, et al. [18, 41] could

be more practical. In our examples, the loop-parallelization itself was relatively sim-

ple (aside from proving termination and cotermination), so we expect them to be

straightforward to automate. However, any parallelization requires a comparable ter-
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mination analysis on the original sequential program. Thus we need only show that

introducing channel synchronization does not disrupt the results of the termination

analysis that would have been used to plan the optimization in the first place.

2.5.8 Conclusion

We have presented an overview of our strategy for proving soundness of loop paral-

lelization applied to instances of DOALL, DSWP, and DOACROSS. The key result

of this chapter is our development of two general transformations for loop-folding

and parallelization, and how they compose together to achieve loop parallelization.

Another result is the framework of rewrite rules itself; we have shown how to combine

small transformations to form complex optimizations.

In the next chapter, we will explore the foundations of parallelization and intro-

duce the formal reasoning that we will use for proving soundness of the whole frame-

work. In chapter 4, we will apply the theory of chapter 3 to the imperative language

presented here, defining an operational semantics and finally proving T-FoldLoop.

2.6 Summary of framework rewrite rules

Tables 2.1 to 2.3 on the following pages present the transformation rules of our frame-

work. In the course of doing this research, we have developed three different variations

of our system in the Coq Proof Assistant. Various subsets of rules have been verified

in different systems and with respect to slightly different equivalence properties. In

the tables, we label the context in which each rule has been proved sound:

* A variation of the Calculus of Communicating Systems (CCS-Seq; chapter 3)

� An imperative language that was the precursor to the language presented in

this chapter.

� The imperative language presented in this chapter (and formalized in chapter 4)
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Note: T-FoldLoop was proved sound with respect to both bisimulation and con-

trasimulation in �; but only bisimulation in �.

The main differences between � and � are the imperative language, observation

model, and formulation of the correctness criteria. In general, � is a simpler and

cleaned up development based on lessons learned from � and *. It removes language

features that we found to be orthogonal to proving the correctness of parallelization: a

heap and first-class shared channels. The observation model in � was to use an explicit

observer thread that would interact with the program, and this notion was baked into

our definitions of program equivalence. However, bisimulations are typically framed

with respect to a labeled transition system, where each transition between states is

labeled with an action that denotes an observation. We switched to using labeled

transition systems in * to study the program equivalences that we had developed

because it resulted in a cleaner theory. Although not formally proven, we believe

that the program equivalences used in � and � are essentially equivalent, and we have

yet to encounter a rewrite rule that is provable in � or � but not the other. In other

words, all of the following rules should be provable in both � and � (although with

more effort required for the former development).
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Chapter 3

Foundations of Parallelization

We present a simple semantic model for parallelizing programs such that termina-

tion and behavioral properties are preserved. In this setting, we investigate several

foundational questions of parallelization:

� how to state program equivalence (i.e., soundness) in a generic and composable

manner,

� what is the strongest such equivalence we can state,

� how to account for nondeterminism, and

� what a minimal language for modeling parallelization might look like.

Additionally, this chapter serves as a primer on the formalisms that we will use in

latter chapters to reason about programs, such as labeled transition systems, observ-

ability, termination sensitivity, and bisimulation relations. In keeping with existing

efforts to prove compiler correctness, we use a bisimulation relation. Such relations

are among the strongest in use by, for example, CompCert [20].

When comparing program behaviors, threading primitives – fork, join, and syn-

chronization – and the scheduling of threads are often treated as observable actions.

This is partially because it is easier to assume that they are implemented as exter-

nal system calls rather than directly defining a language with concurrency semantics.
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The other reason is that in some situations, how a program uses multithreading is an

important attribute that must be preserved. However, admitting parallelization must

presume that such threading primitives and the scheduler are not directly observable.

Combining parallelization and internal choice – the choices a source program

makes that are not directly visible to the observer – raises an interesting challenge

because parallelization may cause the nondeterminism to interleave with observable

actions. Even when benign, a weak simulation (henceforth referred to as just “sim-

ulation”) is not preserved by this behavior. A potential solution is to first refine all

internal choice, after which parallelization will preserve a weak bisimulation.

Internal choice can be intentional, however, and refining it may either be incorrect

(depending on the language specification), cause the program to run slower (e.g. re-

moving concurrency), or otherwise limit the ability of the compiler to most effectively

choose how to refine internal choice. Thus we prove parallelization sound with respect

to a new type of simulation relation, which we call eventual simulation, that allows

the compiler to preserve internal choice.

Because eventual simulation is not symmetric, we use contrasimulation [13] to

support the algebraic equivalence used in chapter 2. It is implied by eventual sim-

ulation and is a congruence for the imperative language used in chapter 2. When

source programs do not contain internal choice, contrasimulation reduces to [weak]

bisimulation and thus our proof of soundness for parallelization is still applicable in

settings such as CompCert.

The contributions we present in this chapter are

� a proof of soundness for a general parallelizing transformation (corresponding

to rule T-SeqPar, first described in Section 2.3.4);

� a simple model language, which we call CCS-Seq, that extends the Calculus of

Communicating Systems with a sequential operator and semaphores in order to

study parallelization;
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� a new simulation relation, called eventual simulation, that preserves all forms

of nondeterminism throughout parallelization;

� identifying a little-known simulation relation, called contrasimulation, that con-

tains eventual simulation and is a congruence;

� a proof that contrasimulation (and thus eventual simulation) is equivalent to

[weak] bisimulation for programs without internal choice; and

� mechanized proofs of this chapter in the Coq Proof Assistant.

These results are based on our conference paper, Certifiably Sound Parallelizing

Transformations [3].

3.1 Introductory example

We begin by showing how a simple program might be parallelized. This example

introduces a few of the basic concepts that we will be using throughout this the-

sis – transition diagrams, labeled transition systems, observable versus unobservable

actions, internal choice, and comparing program behaviors using simulations and

bisimulations. Finally, we define eventual simulation and prove that it holds for this

example.

The following (sequential) program nondeterministically assigns either 1 or 2 to

x, outputs 0, and then outputs x.

x:= either 1 or 2; print 0; print x (3.1)

A potential result of parallelizing the program is:

(x:= either 1 or 2 ∥ print 0); print x, (3.2)
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(a) sequential (3.1)

q0

q1
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q5

1

0

(x:=1)

q7

0

q2

q4

q6

2

0

(x:=2)

(x:=1)

(x:=2)

(b) parallel (3.2)

Figure 3.1: Semantics of the programs as transition diagrams.

which may also output 0 before choosing a value for x. The either-or statement is

an instance of internal choice because it cannot be observed directly. (It is equivalent

to x:= rand [1,2] from chapter 2.) Although the parallelized program is intuitively

“correct”, the original program does not simulate it because the parallel program can

reorder nondeterministic choice with console output (an observable action).

Figure 3.1 presents the semantics of each program as transition diagrams where

nodes represent program states and directed edges represent the possible transitions

between states. The initial states are represented by the root nodes; p0 and q0 cor-

respond to (3.1) and (3.2) respectively. Unobservable (silent) steps that correspond

with a line of source code are labeled in parentheses. For example, choosing to assign

either 1 or 2 to x is labeled (x:=1) or (x:=2), respectively. In later examples, silent

steps may not be labeled at all. Observable actions (console output) have bold edges

and are labeled with the corresponding observation.

Labeled transition systems. A labeled transition system (LTS) is defined by a

triple, (S,L, δ), where S is the set of states, L is the set of observable actions, and

δ ⊆ S ×(L∪{τ})×S is the transition relation. A step from state p to p′ that performs
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≤≥≉

b

a a

Figure 3.2: Bisimilarity is stronger than simulation equivalence.

action α ∈ L∪{τ} is defined if (p,α, p′) ∈ δ and is denoted by p
αÐ→ p′. τ is reserved for

internal (silent) transitions; we write p→ p′ instead of p
τÐ→ p′.

The transitive reflexive closure of → is denoted by ⇒. We write p
αÔ⇒ p′ for α ∈

L ∪ {τ} when p performs action α by taking zero or more steps to p′; i.e. p
aÔ⇒ p′

for a ∈ L iff p ⇒ ⋅ aÐ→ ⋅ ⇒ p′ and
τÔ⇒ is equivalent to ⇒. A weak transition from p

to p′ that performs actions ~a = [a0, . . . , an] ∈ L∗ is defined as p⇒ ⋅ a0Ô⇒⋯ anÔ⇒ p′ and is

denoted by p
~aÔ⇒ p′. Weak transitions over an empty list of actions may take multiple

silent steps rather than just zero steps.

Two programs can be compared by showing that one mimics the other indefinitely,

which is defined with respect to a LTS.

Definition 1 (p ≤ q). R ⊆ S × S is a simulation when for any (p, q) ∈ R,

� if p
αÐ→ p′, then q

αÔ⇒ q′ and (p′, q′) ∈ R for some q′.
State q simulates p, written p ≤ q (or equivalently q ≥ p), iff there exists a simulation

R such that (p, q) ∈ R.

Many verified compilers are founded on bisimulation. It holds between two pro-

grams when each mimics (simulates) the other indefinitely, such that all pairs of

transitional states continue to be bisimilar. R−1 is the inverse of R: (q, p) ∈ R−1 iff

(p, q) ∈ R for any p and q.

Definition 2 (p ≈ q). R is a bisimulation when R and R−1 are simulations. p and q

are bisimilar, written p ≈ q, iff (p, q) ∈ R for some bisimulation R.

If p ≥ q and p ≤ q for some p and q, then we say that p and q are simulation

equivalent. At first glance, it may appear that simulation equivalence and bisimilarity
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coincide, but bisimilarity is strictly stronger because it distinguishes between the

liveness properties of each program. For example, the two programs in Fig. 3.2 are

simulation equivalent and yet not bisimilar. It is possible for the right program to emit

action a while following its right branch, only to become stuck (and no longer “live”).

The left program simulates it by performing the same action, but then bisimulation

fails between the resulting states because the left program is “live” – it may continue

to emit b – while the right program has become stuck.

It is easy to prove that state q0 simulates p0 (Fig. 3.1) by showing that

{(pi, qi) ∣ 0 ≤ i ≤ 6} is a simulation. However, simulation does not hold in the other

direction:

Lemma 3.1. Program (3.1) does not simulate (3.2): p0 ≱ q0.

Proof. By contradiction: assume p0 ≥ q0. We take step q0
0Ð→ q7 without committing

to print either 1 or 2. By assumption, p0 must be able to mimic this action, thus

p0
0Ô⇒ p′ and p′ ≥ q7 for some p′. Fig. 3.1a shows that p′ is either p3 or p4. In either

case, q7 may perform an action that p′ is not capable of, thus p′ ≱ q7.

Because simulation fails in this direction, we must find a weaker relation for paral-

lelization. Ideally, one that preserves as many of the strong properties of bisimulation

as possible, such as a co-inductive proof method and the fact that related programs

continue to mimic each other during execution (liveness). Observe that when the

simulation fails in lemma 3.1, it is possible for the parallel program to eventually step

to a state where simulation can be reestablished: from state q7 to either q3 or q4.

It turns out that this “eventuality” holds for parallelization in general, and thus we

formalize this idea as eventual simulation.

Definition 3 (p≾ q). R is an eventual simulation when for any (p, q) ∈ R,

� if p
~aÔ⇒ p′, then p′⇒ p′′, q ~aÔ⇒ q′′, and (p′′, q′′) ∈ R for some p′′ and q′′.
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State q eventually simulates p, written p≾ q (or q ≿p), if there exists a simulation R
whose inverse is an eventual simulation and (p, q) ∈ R.

Eventual similarity is like bisimilarity – and unlike plain similarity – in that both

programs mimic each other indefinitely, but we still call it a “similarity” because it is

asymmetric. It differs from them in that multiple actions must be considered for every

point in the relationship. (For simulation and bisimulation, handling multiple actions

at each point is equivalent to considering just one step) Bisimilarity implies eventual

similarity, eventual similarity is reflexive and transitive, and crucially, it holds for a

large class of parallelizing transformations in addition to our simple example. Further

properties are explored in Section 3.3.

Lemma 3.2. If R is a simulation, then it is an eventual simulation.

Proof. By definition 1 and induction on p
~αÔ⇒ p′, we can prove that if p

~αÔ⇒ p′ for any

p′ and α, then there exists a q′ such that q
~αÔ⇒ q′ and (p′, q′) ∈ R. We use this to prove

that R is an eventual simulation by always choosing p′ ⇒ p′ and q
~αÔ⇒ q′ such that

(p′, q′) ∈ R.

Lemma 3.3. If p ≈ q, then p≾ q (and p≿ q because ≈ is symmetric).

Proof. By ≈, there exists a simulation R such that R−1 is a simulation and (p, q) ∈ R.

To prove ≾, we pick the same R because its inverse is an eventual simulation by

lemma 3.2.

Lemma 3.4. ≾ is reflexive.

Proof. Follows by proving that I (the identity relation) is an eventual simulation.

Lemma 3.5. ≾ is transitive.
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Proof. We choose R = {(p, r) ∣ ∃q. p≾ q ∧ q ≾ r}. Proving that

R is a simulation is straightforward. To prove that R−1 is an

eventual simulation, we will need to use the fact that simulation

holds in the other direction. Assume that (p, r) ∈ R and r
~αÔ⇒ r′

for some p and r. By q ≾ r, there is an r′′ and q′′ such that

r′ ⇒ r′′, q ~αÔ⇒ q′′, and q′′ ≾ r′′. By p≾ q, there is a p′′′ and q′′′
such that p

~αÔ⇒ p′′′, q′′ ⇒ q′′′, and p′′′ ≾ q′′′. By q′′ ≾ r′′ (in the simulation direction),

there is an r′′′ such that r′′⇒ r′′′, p′′′ ≾ q′′′ ≾ r′′′, and thus (p′′′, r′′′) ∈ R.

Lemma 3.6. Figure 3.1b eventually simulates Fig. 3.1a: p0 ≾ q0.

Proof. We select relation R = {(pi, qi) ∣ 0 ≤ i ≤ 6}. Trivially, (p0, q0) ∈ R and R is

a simulation. Finally, we prove that R−1 is an eventual simulation. The interesting

case is for (p0, q0) ∈ R, when q0
0Ô⇒ q7. In response, we have p0 follow by p0

0Ô⇒ p3 and

q7 ⇒ q3. (We may have instead chosen to step to p4 and q4.)

3.2 CCS-Seq

We now investigate parallelization for an extension of the Calculus of Communicat-

ing Systems (CCS) [22]. CCS is widely used as a model for analyzing bisimulation

relations and the behavior of programs and systems with multiple concurrent agents

acting in concert via message passing and synchronization. However, we must ex-

tend CCS with a sequential composition operator in order to model parallelizing

transformations. Furthermore, implementing asynchronous communication on top

of CCS-style synchronous channels is tedious and not modular (requiring auxiliary

threads for buffering), so we replace its channels with semaphores. We refer to this

language as CCS-Seq.
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P
αÐ→P ′

P ;Q
αÐ→P ′;Q

P
αÐ→P ′

P ∣Q αÐ→P ′ ∣Q
Q

αÐ→Q′
P ∣Q αÐ→P ∣Q′

P
αÐ→P ′

P +Q αÐ→P ′
Q

αÐ→Q′
P +Q αÐ→Q′

P
αÐ→P ′ α ∉ {a, ā}

υa ∶n.P αÐ→ υa ∶n.P ′
P

āÐ→P ′
υa ∶n.P → υa ∶(n + 1).P ′

P
aÐ→P ′

υa ∶(n + 1).P → υa ∶n.P ′

α.P
αÐ→P

P ∣!P αÐ→P ′
!P

αÐ→P ′ 0;P → P υa ∶n.0→ 0 0 ∣0→ 0 0 + 0→ 0

Figure 3.3: Operational semantics for CCS-Seq.

α ∶∶= τ ∣ a ∣ ā

P ∶∶= 0 ∣ P + P ∣ P ∣P ∣ α.P ∣ !P ∣ P ;P ∣ υa ∶n.P

Metavariables P , Q, M , N , and R refer to processes; a is the name of a semaphore;

α is an action (τ is internal), and n is a natural number. Figure 3.3 lists the oper-

ational semantics. Action prefixing, α.P , emits action α and resolves to P . 0 is a

terminated process (we abbreviate α.0 as α), P ∣Q is parallel composition, P ;Q is se-

quential composition, and P +Q represents a choice between executing either P or Q.

A process may create infinite, parallel copies of itself by replication: !P . Although we

do not use replication directly in this thesis, its presence gives the language “teeth” –

so that proving termination properties is not trivial (for this purpose, a termination

rule for replication is unnecessary).

Restriction, υa ∶n.P , declares that a is a semaphore, local to P , with state n. It

is a way of introducing a fresh semaphore name that is hidden from any observer or

process outside of P . When P emits action ā or a, the semaphore is incremented

or decremented, respectively, and the observed action is τ . If the semaphore count

is zero, then P cannot emit a to decrement the semaphore until the count becomes
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nonzero. We will reason about programs with an arbitrary number of semaphores, so

we define a vectorized form of restriction.

Definition 4. υa1 ∶n1. . . . υak ∶nk.P is abbreviated as Υ~a ∶~n.P .

We define a LTS for CCS-Seq in the usual way. Processes are synonymous with

states, an action is either a or ā for any semaphore a, and the set of single steps

defined in Fig. 3.3 is the transition relation.

Bisimulation alone is not a congruence for sequential composition. For example,

even though 0 ≈ !τ , it is the case that 0;a ≉ !τ ;a. This is easy to fix by augmenting

any simulation relation with termination sensitivity.

Definition 5. A relation R is one-way termination sensitive when for any (p, q) ∈ R,

if p is halted (for CCS-Seq, if p = 0), then q⇒ p. R is termination sensitive if R and

R−1 are one-way termination sensitive.

Definition 6 (p≈↓ q). States p and q are termination sensitive bisimilar, written

p≈↓ q, if there exists a termination sensitive bisimulation R such that (p, q) ∈ R.

Definition 7 (p≾↓ q). State q termination sensitive eventually simulates p, written

p≾↓ q (or q ≿↓ p), if there exists a termination sensitive simulation R, whose inverse is

an eventual simulation, such that (p, q) ∈ R.

Lemma 3.7 (Compositional properties of ≈, ≈↓, ≾, and ≾↓). Where ≡ ranges over

{≈,≈↓,≾,≾↓}; if P ≡ Q then: P ∣R ≡ Q ∣R, α.P ≡ α.Q, !P ≡!Q, υa ∶n.P ≡ υa ∶n.Q,

R;P ≡ R;Q, and τ.P + R ≡ τ.Q + R. If P ≈↓Q, then P ;R≈↓Q;R. If P ≾↓Q, then

P ;R≾↓Q;R.

Before presenting a general parallelization transformation for sequential compo-

sition, we warm up with a simpler form of parallelization in the following lemma.

By targeting the sequentialism found in action prefixing, the lemma suggests that

eventual simulation may have some uses in plain CCS as well.
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Lemma 3.8. τ.(P ∣Q) + τ.(P ∣R) ≾↓ P ∣(τ.Q + τ.R).

Proof. We choose R = ⋃P (τ.(P ∣Q)+τ.(P ∣R), P ∣(τ.Q+τ.R))∪I, where I is the iden-

tity relation. Showing that R is a simulation and that I is an eventual simulation and

simulation is trivial. We show here that the first part of R is an eventual simulation.

The right program may either 1) choose between Q or R, or 2) avoid choosing and

only run P via P ∣(τ.Q+τ.R) ~αÔ⇒P ′ ∣(τ.Q+τ.R). Case 1: the left program can converge

to the same state. Case 2: we arbitrarily pick Q such that P ′ ∣(τ.Q + τ.R) ⇒ P ′ ∣Q;

the left program can then converge to the same state.

If we choose P = 0.0, Q = 1.0, and R = 2.0, then sequential program (3.1) roughly

corresponds to τ.(0 ∣1) + τ.(0 ∣2) and parallel program (3.2) roughly corresponds to

0 ∣(τ.1 + τ.2). (The “rough” difference is that action 0 is allowed to interleave with

actions 1 and 2 in more ways than in Fig. 3.1.)

3.2.1 The parallelization transformation

The key idea of lemma 3.8 is that the more-parallel program may be able to perform

some action (by executing P ) without making an internal choice (between Q and R).

However, the more-sequential program will not be able to simulate this (by running

P ) before first committing itself to one of those choices. Eventual simulation holds

because the more-parallel program can take extra steps to resolve the same choices

so that both programs converge to the same state.

This same idea applies to our key result: a general parallelizing transformation

between sequential and parallel programs. An obvious schema (despite the subtle

premises) for a parallelizing transformation converts two programs in sequence into

two programs in parallel, which we describe here. (Section 3.5 goes into further detail

and provides proof sketches.)
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Proposition 3.1. If P may always silently terminate (modulo ~a), P and Q do not

both decrement any of the same semaphores, and either P or Q never performs an

observable action (modulo ~a), then Υ~a ∶~n.(P ;Q)≾↓Υ~a ∶~n.(P ∣Q).

We specify a list of actions, ~a, to facilitate unobservable communication between P

and Q; when we state that an execution is “silent”, we mean that only hidden actions

(i.e. those named by ~a) may be performed. If P “may always silently terminate”,

then no matter how P executes (even performing observable actions), we can always

ask it to then silently transition to a terminated state. This allows the sequential

program, in response to the parallel program executing Q before P terminates, to

“catch up” by forcing both to terminate P (possibly making some arbitrary internal

choices in doing so) and converging to the same state. (Although this premise is

complex, it is more general than simply not allowing P to diverge at all and requiring

P to be completely silent.)

However, it is not enough for P to terminate in isolation because Q will interleave

with P . The second premise ensures that Q cannot block P by stealing a semaphore

and causing it to deadlock.1 The last premise, where either P or Q must be silent,

prevents parallelization from resulting in new interleavings of actions; such a difference

would be trivial for an observer to detect.

We also prove a transformation that combines two parallel programs (correspond-

ing to T-SeqParC from chapter 2). Two processes, P1 and P2, coterminate (modulo

~a) when (1) P1 ∣P2
~αÔ⇒0 ∣P ′

2 implies P ′
2 may always silently terminate (modulo ~a); and

when (2) P1 ∣P2
~αÔ⇒P ′

1 ∣0 implies P ′
1 may always silently terminate (modulo ~a).

Proposition 3.2. If P1 and P2 coterminate (modulo ~a), P1 and P3 do not decrement

any of the same semaphores as P2 and P4, and P2 and P4 never perform an observable

action (modulo ~a), then Υ~a ∶~n.((P1 ∣P2); (P3 ∣P4))≾↓Υ~a ∶~n.((P1;P3) ∣(P2;P4)).

1If we were to extend the language with shared queues of values, then this condition would also
prevent Q from interfering by stealing values intended for P , even when it does not cause a deadlock.
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Proposition 3.2 is strictly more general than proposition 3.1 because it allows

P1 and P2 to coordinate termination (or not terminate at all). It results in the

parallelization of P3 with P2 and P4 with P1. The above definitions, including proofs,

are made concrete in Section 3.5.

Now we show that proposition 3.1 is sufficient to parallelize a CCS-Seq implemen-

tation of program (3.1) into (3.2). Below, channels c and d are used to make a silent

internal choice between 1 and 2, respectively. Once 0 is printed, the internal choice

is forwarded via channels e and f to the last statement, which finally prints 1 or

2. (The absence of local variables necessitates the ungainly communication between

sequentially composed programs.) Notice that channels c, d, e, and f have different

scope restrictions. This is because proposition 3.1 does not allow both threads to be

public. It is for this reason that e and f are used in addition to c and d: to forward

the choice to the last statement.

Lemma 3.9. Given

M = Υ[e, f] ∶[0,0]. (Υ[c, d] ∶[0,0]. (τ.c̄ + τ.d̄; 0̄; c.ē + d.f̄) ; e.1̄ + f.2̄)
N = Υ[e, f] ∶[0,0]. (Υ[c, d] ∶[0,0]. ((τ.c̄ + τ.d̄) ∣ (0̄; c.ē + d.f̄)) ; e.1̄ + f.2̄) ,

where M and N correspond to (3.1) and (3.2), respectively: M ≾↓N .

Proof. By proposition 3.1 and lemma 3.7. Because actions c̄ and d̄ are hidden by the

semaphore restriction, τ.c̄+τ.d̄ silently terminates. Finally, τ.c̄+τ.d̄ does not decrement

any semaphores and thus the process does not interfere with 0̄; c.ē + d.f̄ .

3.3 Contrasimulation

Eventual similarity is reflexive, transitive, and compositional, but it is not a con-

gruence because it lacks symmetry. Symmetry is a useful property for the rewriting
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Figure 3.4: Counterexample of transitivity for
...≈ . Each transition diagram depicts

an infinite series of states where the actions continue to increase. Although a
...≈ b

and b
...≈ c, it is not the case that a

...≈ c.

framework presented in chapter 2, and enables some useful optimization strategies.

For example, commuting two blocks of instructions by first parallelizing them, swap-

ping the threads, and then applying parallelization in reverse (via symmetry).

Although symmetry is not always necessary (e.g. when refining unspecified be-

havior), there is no clear benefit to the asymmetry in eventual similarity. In fact, it is

even asymmetric in the wrong direction – it allows more interleavings to be added, not

refined. To obtain symmetry, we might attempt to define a relation where eventual

simulation holds in both directions.

Definition 8. Programs p and q are eventually bisimilar, written p
...≈ q, if there exists

an R such that R and R−1 are eventual simulations and (p, q) ∈ R.

Lemma 3.10. If p≾ q or p≿ q, then p
...≈ q.

Proof. Simulation implies eventual simulation by lemma 3.2.

However,
...≈ is not transitive for divergent LTSs, which have infinite sequences

of silent transitions. Figures 3.4a and 3.4b, and Figs. 3.4b and 3.4c are eventually

bisimilar. But Figs. 3.4a and 3.4c are not because once Fig. 3.4a takes a silent step,

there does not exist an eventual state where Fig. 3.4a and Fig. 3.4c will have the
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same observable actions available to them. This limits its use to languages without

general loops or recursion. (It is transitive for LTSs that do not diverge.)

Parrow and Sjödin worked on a problem similar to parallelization that also needed

a coarser view of internal choice than bisimulation afforded [30]. They developed

coupled simulation to relate the behavior of multiway distributed internal choice to

a reference implementation that resolves all choices in one synchronous step. Cou-

pled simulation is finer than eventual simulation and is also not transitive for diver-

gent LTSs. (Like bisimulation, coupled simulation does not hold between Figs. 3.1a

and 3.1b.) Should they need transitivity, they suggested use of contrasimulation [13],

which contains coupled simulation.

Definition 9 (p≈c q). R is a contrasimulation when for any (p, q) ∈ R,

� if p
~aÔ⇒ p′, then q

~aÔ⇒ q′ and (p′, q′) ∈ R−1 for some q′.
Note the reversal of R. State q partially contrasimulates p, written p≤c q, iff there

exists a contrasimulation R such that (p, q) ∈ R. States p and q are contrasimilar,

written p≈c q, iff there exists a contrasimulation R such that (p, q) ∈ R ∩R−1.

Lemma 3.11. If p≤c q and p≥c q, then p≈c q.

Proof. Follows directly from definition 9.

Lemma 3.12. If p
...≈ q, then p≈c q.

Proof. We prove that R = {(p, q) ∣ ∃q′. q ⇒ q′ ∧ p ...≈ q′} is a contrasimulation and

(trivially) show that p
...≈ q implies (p, q) ∈ R. To prove contrasimulation, assume

(p, q) ∈ R for some p and q, and thus q ⇒ q′ and p
...≈ q′ for some q′. If p

~αÔ⇒ p′, then

by
...≈ , there exists a p′′ and q′′ such that p′⇒ p′′, q′ ~αÔ⇒ q′′, and p′′ ...≈ q′′. Thus q

~αÔ⇒ q′′
and (p′, q′′) ∈ R−1.

When two programs are contrasimilar, they take turns simulating each other in-

definitely, starting with either program. Unlike bisimilarity, the relation between two
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programs only needs to be symmetric for the initial states. Crucially, contrasimulation

is an equivalence.

Lemma 3.13. Contrasimulation is reflexive, symmetric, and transitive.

Proof. Reflexivity is proved by I. We prove transitivity via lemma 3.11 by first

proving it for ≤c using {(p, r) ∣ ∃q. p≤c q∧ q ≤c r}. Symmetry follows directly from the

definition of ≈c.

As a sanity check, contrasimulation is stronger than trace equivalence:

Definition 10 (p ≈tr q). p and q are trace equivalent, written p ≈tr q,

� if p
~αÔ⇒ p′, then there exists a q′ such that q

~αÔ⇒ q′; and

� if q
~αÔ⇒ q′, then there exists a p′ such that p

~αÔ⇒ p′.

Lemma 3.14. If p≈c q, then p ≈tr q.

Trace equivalence can be a sufficient soundness criterion in some situations, but

it is still useful to prove a bisimulation relation because trace equivalence is not a

congruence for parallel composition and the co-inductive proof method can be easier

to work with. Of course, when the LTS is deterministic, these relationships are all

equivalent to bisimulation. But we can prove that contrasimulation is equivalent to

bisimulation when all silent transitions are deterministic. This suggests that it is the

finest behavioral equivalence that contains parallelization.

Theorem 3.1. If p→p′ implies p ≈ p′ for any p and p′, then ≈c is equivalent to ≈.

Proof. Lemmas 3.3, 3.10 and 3.12 prove ≈ ⊆ ≈c. In the other direction, we show that

R = ≈c itself is a bisimulation. Because it is symmetric, we need only prove that

R is a simulation. Assume p≈c q and p
αÐ→ p′; there must exist a q′ such that q

αÔ⇒ q′
and q′ ≤c p′. The trick is to flip the direction in which partial contrasimulation holds

between p′ and q′, which will imply p′ ≈c q′. By q′ ⇒ q′, there exists a p′′ such that
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p′⇒ p′′ and p′′ ≤c q′. By the premise, p′′ ≈ p′, and by lemmas 3.3, 3.10, 3.12 and 3.13,

p′ ≤c q′. Thus p′ ≈c q′.

As a corollary, ≾ also collapses to ≈ when there is no internal choice. We define

termination sensitive contrasimulation and then show that contrasimilarity has the

same compositional properties as bisimilarity and eventual similarity.

Definition 11 (p≈↓c q). States p and q are termination sensitive contrasimilar, writ-

ten p≈↓c q, iff there exists a one-way termination sensitive contrasimulation R such

that (p, q) ∈ R ∩R−1.

Lemma 3.15 (Compositional properties of ≈c and ≈↓c). Where ≡ ranges over {≈c,≈↓c};

if P ≡ Q then: P ∣R ≡ Q ∣R, α.P ≡ α.Q, !P ≡!Q, υa ∶n.P ≡ υa ∶n.Q, R;P ≡ R;Q, and

τ.P +R ≡ τ.Q +R. If P ≈↓cQ, then P ;R≈↓cQ;R.

Like coupled similarity, contrasimilarity is congruent for + when the processes are

equally stable.

Definition 12 (stable p). p is stable if there does not exist a p′ such that p→ p′.

Lemma 3.16. If P ≈cQ and (stable P iff stable Q), then P +R≈cQ +R.

(And likewise for ≈↓c).

Compiled languages do not usually allow “mixed choice”, where one option is

stable and the other is not, so both bisimulation and contrasimulation are often full

congruences in practice. Thus we can build correct, modular optimizations based

on contrasimulation (or bisimulation) using the above congruence results. Because

bisimulation is finer than contrasimulation, all of its algebraic properties for CCS

(and CCS-Seq) hold for contrasimulation.

Voorhoeve and Mauw investigate further properties of contrasimulation and de-

scribe an axiomatization for CCS [44]. Their axiomatization splits a stable internal

choice into the action followed by a silent internal choice.
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Lemma 3.17. a.P + a.Q≈c a.(τ.P + τ.Q).

Interestingly, this holds for ≾ as well.

Lemma 3.18. a.P + a.Q≾a.(τ.P + τ.Q).

a a

P Q

≈c≾≤≱≉

a

P Q

Combined with a few algebraic properties of bisimilarity, like τ.P + P ≈ τ.P ,

lemma 3.17 proves equivalence between programs (3.1) and (3.2).

A drawback in the definition of contrasimulation (definition 9) is that we must

consider any number of steps of p for every point in the relation instead of just

a single step of p at a time (like most other bisimulation-style relations). This is

inconvenient because it requires that we perform induction on the number of steps

taken, or alternately, to find a multistep inversion principle for the basic structures

of our language.

To prove congruence for while loops (from chapter 2), we found it difficult to even

state the multistep inversion principle because more than one iteration could execute.

Then we realized that although it is necessary to match at least one step of p, we

do not need to match all of them. Thus we came up with an equivalent definition of

contrasimulation that affords us some flexibility to choose how many steps to match.

(For while loops, we match no more than one iteration at a time.) We state the next

lemma with respect to counted executions : when p
~aÔ⇒ p′ takes no more than n steps,

we write p
~aÔ⇒n p′.

Lemma 3.19. R is a contrasimulation iff for any (p, q) ∈ R, if p
~aÔ⇒n p′′, then either

� q
~aÔ⇒ q′′ and (p′′, q′′) ∈ R−1 for some q′′, or
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Figure 3.5: Subfigure a is a transition diagram for program (3.3). For comparison,
we reiterate the semantics of (3.2) and (3.1) in subfigures b and c. Contrasimilarity
holds between b and c, but does not hold between a and b (or c).

� p
~a1Ô⇒n1 p

′ ~a2Ô⇒n2 p
′′, q ~a1Ô⇒ q′, n1 > 0, n = n1+n2, ~a = ~a1 ⋅ ~a2, and (p′, q′) ∈ R for some

n1, n2, a1, a2, p′, and q′.
Note that the direction of R only reverses in the first case (normal contrasimulation).

Proof. Contrasimulation trivially implies the above. The other direction follows by

induction on n.

3.4 Delayed observations

Contrasimulation effectively allows a program to delay an internal choice until after

an observable action. In other words, a program that makes a choice before an

observable action is equivalent to a program that can do them in any order. But this

does not allow the observation to be fully commuted.

Consider a sequential program that prints 0 before choosing a value for x,

print 0; x:= either 1 or 2; print x, (3.3)

the semantics of which are presented in Fig. 3.5a. A parallelization of it,

(print 0 ∥ x:= either 1 or 2); print x,
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a b

(a) Internal choice

a b

(b) External choice

Figure 3.6

is equivalent to (3.2); we reiterate its semantics in Fig. 3.5b. For comparison, we also

repeat the semantics of (3.1) in Fig. 3.5c.

All three programs are intuitively (albeit, arguably) equivalent. But Fig. 3.5a is

clearly not contrasimilar to Fig. 3.5b or (3.5c): if the latter programs choose to follow

the x:= 1 branch, then Fig. 3.5a will be unable to commit to the same choice without

first observing 0.

We can relate such programs by modifing definition 3 so that extra observable

actions may be performed when “eventually” simulating each other:

Definition 13. R is an amortized eventual simulation when for any (p, q) ∈ R,

� if p
~aÔ⇒ p′, then p′ ~bÔ⇒ p′′, q ~a⋅~bÔ⇒ q′′, and (p′′, q′′) ∈ R for some p′′, q′′, and ~b.

If we combine this with a simulation relation a la eventual similarity, the resulting

relation is not symmetric. Worse, it would not hold between Figs. 3.5a and 3.5c –

commuting choice around observation would not be admissable. We can obtain sym-

metry a la eventual bisimilarity (definition 8). We can also modify contrasimulation

to keep track of a “deficit” of actions between programs:

Definition 14. R is an amortized contrasimulation when for any (p,~a, q) ∈ R,

� if p
~bÔ⇒ p′, then q

~a⋅~b⋅~cÔ⇒ q′ and (p′,~c, q′) ∈ R−1 for some q′ and ~c.

Programs p and q are amortized contrasimilar if there exists an amortized contrasim-

ulation R such that (p, [], q) ∈ R ∩R−1.

Although these three relations trivially imply trace equivalence, they cannot dis-

criminate between internal and external choice because they hold between Figs. 3.6a
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Figure 3.7: Transition diagrams for programs (3.3), (3.2), and (3.1) for a semantics
with delayed observations. Figures b and c are contrasimilar, while Figs. a and b are
bisimilar.

and 3.6b. Thus they are not appropriate for studying nondeterministic reactive sys-

tems. (They are akin to saying that two vending machines are equivalent when one

lets you choose between coffee and tea, while the other machine arbitrarily chooses

for you.) We have yet to find a satisfactory equivalence that holds for Fig. 3.5a.

However, if (3.3),(3.1), and (3.2) were C programs, their semantics would be subtly

different. Many programmers often first realize this only after attempting find the

source of a bug using printf: most IO operations are buffered. In other words, C

allows observable actions to be delayed. For example, if f(); printf("0"); g()

crashes but 0 is not printed to the console, it is still possible that printf("0") was

executed and that g() caused the crash before the buffer printf could be flushed to

the console.

We say that a LTS has delayed observations when output is queued before ap-

pearing on the screen at a nondeterministic point in the future. Figure 3.7 gives the

semantics of programs (3.3), (3.2), and (3.1) using delayed observations. Figures 3.7b

and 3.7c are still contrasimilar. Moreover, Figs. 3.7a and 3.7b are now bisimilar.

Although contrasimulation cannot directly allow observations to be delayed until

after internal choice, we can side-step the issue by choosing a semantics with delayed
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observations. In such a setting, propositions 3.1 and 3.2 can be used to parallelize

programs such as (3.3). They also become somewhat easier to use: by delaying

all observations until after termination, proving termination is enough to prove silent

termination. However, a limitation remains: not all observations may be delayed. For

example, C’s fflush forces immediate observation, thus commuting it with internal

choice would not maintain a contrasimulation.

3.5 Proof of parallelization

We first define convergence, termination entailment, cotermination, free variables,

and some helper lemmas before describing the proofs of propositions 3.1 and 3.2.

3.5.1 Preliminary definitions

Definition 15. ~α −~a is the trace of labels ~α with the semaphores in ~a removed. It

represents the result of multiple semaphore restrictions on a trace.

Definition 16 (Well-formed traces). A trace of labels ~α is well-formed with respect

to semaphore a with count n if there exists a final count n′ for the semaphore such

that the trace does not decrement the semaphore below a count of 0. We denote this

as n ~α
an′ and define it recursively on the structure of ~α.

n
[]
an

′ if n′ = n
n α′∶∶~α

an
′ if α′ ∉ {a, ā} and n ~α

an
′

n + 1 a∶∶~α
an

′ if n ~α
an

′ (decrements a)

n ā∶∶~α
an

′ if n + 1 ~α
an

′. (increments a)

We then define a well-formed trace with respect to a list of semaphores, ~n ~α
~a~n′,

recursively on the structure of ~a.
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[] ~α [][] always(n ∶∶ ~m) ~α
a∶∶~b(n′ ∶∶ ~m′) if n ~α−~b

an
′ and ~m ~α

~b ~m
′.

Definition 16 appears only in the next definition. However, it is used extensively

by helper lemmas in our Coq proof development to separate the details of how a

particular process runs from how its semaphores are used. For example, to state that

a sequential and parallelized program use their semaphores in the same way despite

their syntactic difference.

Silent termination and cotermination were introduced in Section 3.2.1 for use in

propositions 3.1 and 3.2. We now give concrete definitions; recall the notation for

vectorized semaphore restriction from definition 4.

Definition 17 (Silent termination). P silently terminates, written P ⇓~a∶~n, if for any

P ′ and ~α, P
~αÔ⇒P ′ implies Υ~a ∶~n′.P ′⇒ 0 and ~n ~α

~a~n′ for some ~n′.

Definition 18 (Termination entailment & cotermination). P1 entails the termination

of P2, written P1 ↓↓~a∶~n P2, if Υ~a ∶~n.(P1 ∣P2) ~αÔ⇒Υ~a′ ∶~n′.(0 ∣P ′
2) implies P ′

2 ⇓~a′∶~n′ . P1 and

P2 coterminate, written P1 ↕↕~a∶~n P2, iff P1 ↓↓~a∶~n P2 and P2 ↓↓~a∶~n P1.

In order to state noninterference properties between processes, we define functions

to find the sets of free variables used to increment semaphores, decrement semaphores,

and the union of each within a process.

Definition 19 (Free observable actions).

fa(ā.P ) = {ā} ∪ fa(P )
fa(a.P ) = {a} ∪ fa(P )
fa(τ.P ) = fa(P )

fa(0) = {}
fa(!P ) = fa(P )

fa(υa ∶n.P ) = fa(P ) ∖ a ∖ ā
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fa(P1 + P2) = fa(P1) ∪ fa(P2)
fa(P1 ∣P2) = fa(P1) ∪ fa(P2)
fa(P1;P2) = fa(P1) ∪ fa(P2)

Definition 20 (Free variables: increment, decrement, and both).

fvV (P ) = {a ∣ ā ∈ fa(P )}
fvP (P ) = {a ∣ a ∈ fa(P )}

fv (P ) = fvV (P ) ∪ fvP (P )

The semaphores that a process, P , can increment and decrement are respectively

limited by fvV (P ) and fvP (P ). fv (P ) is the set of semaphores that P can decrement

or increment. We use this, for example, to show that processes P and Q cannot

decrement the same semaphores by ensuring fvP (P ) ∩ fvP (Q) = ∅.

3.5.2 Proof

This first lemma performs case analysis on a single step of a “sequential” program in

order to show that the parallelized program can perform the same action.

Lemma 3.20. If Υ~a ∶~n.((P1 ∣P2); (P3 ∣P4)) αÐ→ p′, then either

� there exists ~n′, P ′
1, and P ′

2 such that

– p′ = Υ~a ∶~n.((P ′
1 ∣P ′

2); (P3 ∣P4)) and

– Υ~a ∶~n.(P1 ∣P2) αÐ→Υ~a ∶~n′.(P ′
1 ∣P ′

2)
– (and thus Υ~a ∶~n.((P1;P3) ∣(P2;P4)) αÐ→Υ~a ∶~n′.((P ′

1;P3) ∣(P ′
2;P4))),

� or P1 = P2 = 0 and p′ = Υ~a ∶~n.0; (P3 ∣P4).

Proof. By case analysis on Υ~a ∶~n.((P1 ∣P2); (P3 ∣P4)) αÐ→ p′.
In the following lemma, we look at an execution of the parallelized program over

multiple steps and show that the sequential program can either simulate it directly,

or that there exists a future state where they can converge.
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Lemma 3.21. If Υ~a ∶ ~n.((P1;P3) ∣(P2;P4)) ~αÔ⇒ p′, P1 ↕↕~a∶~n P2, fv (P2;P4) ⊆ ~a, and

fvP (P1;P3) ∩ fvP (P2;P4) = ∅, then either

� there exists ~n′, P ′
1, and P ′

2 such that

– p′ = Υ~a ∶~n′.((P ′
1;P3) ∣(P ′

2;P4)),

– Υ~a ∶~n.P1 ∣P2
~αÔ⇒Υ~a ∶~n.(P ′

1 ∣P ′
2)

– (and thus Υ~a ∶~n.((P1 ∣P2); (P3 ∣P4)) ~αÔ⇒Υ~a ∶~n.((P ′
1 ∣P ′

2); (P3 ∣P4)));

� or there exists p′′ such that

– p′⇒ p′′ and

– Υ~a ∶~n.((P1 ∣P2); (P3 ∣P4)) ~αÔ⇒ p′′.

Proof. We consider the three outcomes of running Υ~a ∶~n.((P1;P3) ∣(P2;P4)) ~αÔ⇒ p′. In

the illustration below,∗n represents the final state that process Pn reaches (if it takes

at least one step but does not terminate). We focus on the second case as the other

two are relatively easy.

P3 ∣(∗2;P4) ∗3 ∣(0;P4)
(P1;P3) ∣(P2;P4) (∗1;P3) ∣(∗2;P4) ∗3 ∣∗4 0

(∗1;P3) ∣P4 (0;P3) ∣∗4

Case 1 Case 2 Case 3

Case 1. P1 ∣P2
~α1Ô⇒ p1 ∣p2 and ~α = ~α1 − ~a for some p1 and p2. (Neither P3 nor P4

execute.) The sequential program runs P1 ∣P2 to match the actions without converging

to the same state.

Case 2. The parallel program has the form of either p3 ∣(p2;P4) or (p1;P3) ∣p4. We

consider only the first (top) form; the second is similar. Because P1 terminated, p2

can silently terminate. This yields Υ~a ∶ ~n.(p3 ∣(p2;P4)) ⇒ Υ~a ∶ ~n′.(p3 ∣P4) for some
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~n′. However, we need P2 to terminate before P3 even runs in order for the sequential

program to mimic the behavior. This is possible if P2 did not emit observable actions

(a premise of this lemma) and P3 did not influence P2 as they interleaved. The last

could only have happened if P3 incremented a semaphore on which P2 would otherwise

deadlock. Because P2 was capable of terminating by the time P3 ran, such deadlocking

was impossible. Thus we know we can run Υ~a ∶~n.(P1 ∣P2) ~α12Ô⇒Υ~a ∶~n′0.(0 ∣0), followed

by Υ~a ∶~n′0.(P3 ∣P4) ~α3Ô⇒Υ~a ∶~n′.(p3 ∣P4), for some ~n′0 and such that ~α is equal to some

~α12 appended with ~α3. Both sequential and parallel programs can converge to state

p′′ = Υ~a ∶~n′.(p3 ∣P4).
Case 3. P1 ∣P2

~α1Ô⇒0 ∣0, P3 ∣P4
~α2Ô⇒ p3 ∣p4, and ~α = (~α1 ⋅ ~α2) − ~a for some p3, p4, ~α1,

and ~α2. The sequential program runs P1 ∣P2 to termination and then runs P3 ∣P4 to

converge to the same state as the parallel program.

Theorem 3.2 (Proof of proposition 3.2). If

� P1 and P2 coterminate: P1 ↕↕~a∶~n P2;

� the processes do not interfere: fvP (P1;P3) ∩ fvP (P2;P4) = ∅; and

� P2 and P4 cannot be observed: fv (P2) ∪ fv (P4) ⊆ ~a,

then

Υ~a ∶~n.( (P1 ∣P2) ;(P3 ∣P4) ) ≾↓ Υ~a ∶~n.(( P1;
P3

) ( P2;
P4

)) .

Proof. We choose

R = {(p, q) ∣ p≈↓ q} ∪ {(p, q) ∣ ∃~a,~n,P1, P2.∧ p = Υ~a ∶~n.((P1;P3) ∣(P2;P4))∧ q = Υ~a ∶~n.((P1 ∣P2); (P3 ∣P4))∧ P1 ↕↕~a∶~n P2
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∧ fv (P2) ∪ fv (P4) ⊆ ~a∧ fvP (P1 ; P3) ∩ fvP (P2;P4) = ∅} ,

and show that R is a termination sensitive simulation, R−1 is an eventual simulation,

and that, trivially, (Υ~a ∶ ~n.((P1 ∣P2); (P3 ∣P4)),Υ~a ∶ ~n.((P1;P3) ∣(P2;P4))) ∈ R. The

remaining step is to consider all pairs (p, q) ∈ R and show that they behave accordingly

for termination sensitivity, simulation and eventual simulation. We look at both cases

of (p, q) ∈ R:

Case 1: p≈↓ q. Termination sensitivity holds because ≈↓ is termination sensitive.

Simulation and (inverse) eventual simulation hold because ≈↓ implies both.

Case 2. There exists ~a, ~n, P1, and P2 such that p = Υ~a ∶ ~n.((P1;P3) ∣(P2;P4)),
q = Υ~a ∶ ~n.((P1 ∣P2); (P3 ∣P4)), etc. Termination sensitivity holds because neither p

nor q are halted. To satisfy simulation, we assume that p
αÐ→ p′ and must show that

there exists a matching q′ such that q
αÔ⇒ q′ and (p′, q′) ∈ R. This follows directly from

lemma 3.20. Finally, we must satisfy eventual simulation. Assuming q
~αÔ⇒ q′, we show

that there exists a p′′ and q′′ such that p
αÔ⇒ p′′, q′ ⇒ q′′, and (p′′, q′′) ∈ R. (Notice

that this flips the direction of eventual simulation because we started with it holding

for R−1.) This follows from lemma 3.21.

Corollary 3.1 (Proof of proposition 3.1). If

� P1 silently converges: P1 ⇓~a∶~n;

� the processes do not interfere: fvP (P1) ∩ fvP (P2) = ∅; and

� either P1 or P2 cannot be observed: fv (P1) ⊆ ~a or fv (P2) ⊆ ~a,

then Υ~a ∶~n.(P1;P2)≾↓Υ~a ∶~n.(P1 ∣P2).

Proof. This reduces to proving either Υ~a ∶ ~n. ((P1 ∣0) ; (0 ∣P2)) ≾↓ Υ~a ∶ ~n. ((P1;0) ∣
(0;P2)) or Υ~a ∶ ~n. ((0 ∣P1) ; (P2 ∣0)) ≾↓ Υ~a ∶ ~n. ((0;P1) ∣ (P2;0)) by theorem 3.2, de-

pending on whether P2 or P1 is unobservable.
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3.6 Conclusion

We have proved the soundness of a very general parallelizing transformation for CCS-

Seq with respect to a new type of simulation relation, called eventual similarity, that

allows internal choice to be preserved. Additionally, we identify contrasimilarity as a

congruence that contains eventual similarity when symmetry is needed. In the event

that an input program does not have internal choice, both eventual similarity and

contrasimilarity reduce to bisimulation.

Furthermore, we have identified a potential limitation of using a model based on

CCS to study parallelization, where it is standard for external actions to be imme-

diately observable. In such a setting, we were unable to find a bisimulation-style

congruence that allows an observable action followed by internal choice to be paral-

lelized or commuted. Our solution is to augment our labeled transition systems with

delayed observations (buffered IO) so that eventual similarity and contrasimilarity

hold. Buffered IO is primarily used to increase the performance of programs, and it

is often ignored when modeling concurrency. A surprising result was that its benefits

extend to justifying the correctness of program transformations by allowing us to

side-step the issue altogether.

3.6.1 Coq proof development

Everything in this chapter has been mechanically checked by the Coq Proof Assistant.

We use the resulting proof development as the basis of bisimulation and contrasim-

ulation in the next chapter, where we apply these results to a simple imperative

language and prove the soundness of loop folding and much of the the framework

from chapter 2.
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Chapter 4

A Semantic Framework

In chapter 2, we introduced the imperative language and framework of rewrite rules

that we use to prove the soundness of loop-parallelizing optimizations in this thesis.

Then we formalized a small model language in order to study and prove the correctness

of parallelization in chapter 3. Our final step is to pin down the semantics of the

imperative language and framework presented in chapter 2 using the formal techniques

and results of chapter 3, and then prove loop folding in this new setting.

Parallelization. The lessons from chapter 3 that we will use in this chapter:

� Contrasimulation – at the top level, we will define ≡ as a variation of contrasimu-

lation in order to support the framework of congruent rewrite rules that support

parallelization.

� Delayed observations – allow more flexibility in the types of parallelizing and

commuting optimizations that contrasimulation admits.

Loop Folding. We first introduced our loop folding transformation, T-FoldLoop,

in Section 2.3.4. Viewing a while loop as a stream of iterations, T-FoldLoop uses

a user-supplied combining transformation that we use to co-inductively fold all of

the iterations together. A combination of iterations that have been folded together
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is described by a loop schema, which may take the form of a single while loop or

more complicated structures, such as multiple loops composed in parallel. The loop

schema is parameterized by a bound on the maximum number of iterations that it

may perform, which may be finite, infinite, or an iteration barrier.

A loop schema is defined by (f, e,P ), where e is the loop condition, P is the loop

invariant, and f is a program with holes that are filled by a maximum bound on

the number of iterations it may execute. A combination of z iterations is written as

f[z] (where the holes in f are filled by z). The end result of T-FoldLoop is to show

{P};while e do f[1] ≡ {P}; f[∞].
Overview. We first present the syntax of program terms, program state, and the

operational semantics for the imperative language. Then we give a semantic definition

for algebraic congruence used in chapter 2, ≡, based on bisimilarity and contrasim-

ilarity. We state the soundness theorem for several basic algebraic and congruence

rewrite rules in Section 4.3. In Section 4.4, we motivate our use of iteration barriers

and prove the soundness of T-FoldLoop, and then in Section 4.5, we state the theorem

of soundness for T-SeqParC. At the end of this chapter, we also show how Hoare

triples relate to program equivalence and can be used to prove that assertions may

be inserted into the program while preserving equivalence.

4.1 Technical development

4.1.1 Machine state

The machine state is a tuple composed of a global state and the set of threads and

their respective local states. As described in Fig. 4.1, C denotes the global state,

a partial mapping from channels to a list of values; it represents the current queue

of values that have been sent into each channel and not yet received. A thread is
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t program term
V = {true,false} ∪Z ∪ . . . values include booleans, integers, etc.
v ∈ V value
a ∈ A channel name
x ∈ X variable name
σ ∈ list V list of values
Π = {�,⊺} permissions
π ∈ Π a permission
C ⊆ A⇀ list V channels state
S = A→ Π sending-endpoint permissions
R = A→ Π receiving-endpoint permissions
E = X→ (Π ×V) environment
w ∈ S × R × E local state

w.S ∈ S send endpoint of w
w.R ∈ R receive endpoint of w
w.E ∈ E environment of w

Figure 4.1: Machine state metavariables

b ∶∶= w ∶ t ∣ b; t ∣ b1 ∥ b2

Figure 4.2: Syntax of the state of threads

a pairing of a local state, w, with a program term, t. The state of threads, b, may

include one or multiple threads in parallel or composed in sequence with program

terms; its syntax is given in Fig. 4.2.

When a value is sent or received from a channel, its queue must be updated. We

write C[a↦ σ] to map channel a to queue σ in global state C.

Definition 21 (Channel update).

C[a↦ σ] = λa′.⎧⎪⎪⎨⎪⎪⎩
σ a′ = a
C(a′) otherwise.

The local state of a thread contains an environment that maps variable names

to values. In addition, it maps channel and variable names to permissions, which

are used to track the resources to which each thread claims access: the ability to
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send values over a channel, to receive from a channel, and to read/write a variable.

A permission of � denotes no access to a resource; a permission of ⊺ denotes full

access.1 Given a local state, w, the permissions to send to channels is denoted by w.S;

the permissions to receive from channels is denoted by w.R; and the mapping from

variable names to permissions and values is denoted by w.E.

The contents of a channel is only visible to threads that fully own both producing

and consuming endpoints of the channel. To prevent a thread with less than full

ownership of a channel from referring to its contents, we apply a filter on channels

before testing whether a predicate holds.

Definition 22 (Channel filter).

C#w = (C ′,w), where C ′ = λa.⎧⎪⎪⎨⎪⎪⎩
C(a) w.S(a) = w.R(a) = ⊺
undefined otherwise

To map variable x to value v in world w, we write w[x↦ v].
Definition 23 (Updating a local variable).

w[x↦ v] = (w.S, w.R, E′), where E′ = λx′.⎧⎪⎪⎨⎪⎪⎩
(π, v) x′ = x and w.E(x) = (π,−)
w.E(x′) otherwise.

To remove variable x from world w, we write w[x↦ ⋅].
Definition 24 (Unmapping a local variable).

w[x↦ ⋅] = (w.S, w.R, w.E − x).

We use a separation logic (SL) [35] to enable local reasoning for program trans-

formations; in particular, so that we may state disjoint usage of resources between

1It is straightforward to generalize this to fractional permissions [5], which we have done in our
Coq development a la [10].
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π ⊕ � = π � ⊕ π = π (π, v1) ⊕ (�, v2) = (π, v1) (�, v1) ⊕ (π, v2) = (π, v2)
∀a. w1.S(a) ⊕w2.S(a) = w.S(a)∀a. w1.R(a) ⊕w2.R(a) = w.R(a)∀x. w1.E(x) ⊕w2.E(x) = w.E(x)

w1 ⊕w2 = w
Figure 4.3: Separation algebra; disjoint resources

threads. To provide a semantic model for the separation logic, we use a separation

algebra (SA) [8] over permissions and local states.

We define a SA using a partial binary join operator, ⊕, which forms a cancellative,

partial commutative monoid. The join operator forms a SA over permissions to send

and receive endpoints, and permissions to access local variables (in the variables-as-

resources style [6]), so that two local state join only if their send/receive endpoints

join and they do not both claim ownership on the same variable.

Given an x and y, the existence of a z such that x⊕ y = z is not guaranteed. For

example, (⊺,6)⊕ (⊺,7) is undefined because two threads cannot both claim access to

the same resource.

Figure 4.3 depicts the SA for permissions and local states. The SA for permissions

is specified by two rules such that �⊕π = π and π⊕� = π are defined for any permission

π. Then we lift this to form a SA on pairs of permissions and values; the join is defined

when the permissions join and when the result takes on the value associated with a

permission of ⊺. In other words, if a pair has no permission (�), then the value

associated with it is ultimately ignored. Finally, a SA on local states is defined when,

for each channel, the permissions to send and receive join, and for each variable, the

permissions to access the variable join.
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JvKw = v
JxKw = v if w.E(x) = (π, v) and π ≠ �

Jf(e)Kw = f(v) if JeKw = v
Je1 ⊙ e2Kw = v1 ⊙ v2 if Je1Kw = v1 and Je2Kw = v2

Figure 4.4: Expression semantics; ⊙ ranges over operators such as +, −, <, =, etc.

4.1.2 Expressions

Expressions are partial functions over a local environment. An expression may be

composed of constant values, variables names, simple functions, and operators:

e ∶∶= v ∣ x ∣ e1 + e2 ∣ e1 = e2 ∣ e1 < e2 ∣ . . . ,

but may not refer to channels. The evaluation of expression e under local state

w to value v is denoted as JeKw = v and is defined in Fig. 4.4. A constant value

evaluates to itself, a variable name evaluates to the value that the variable maps

to in the local environment, and a function/operator over expressions evaluates to

the function/operator over the value of the expressions. Evaluation of an expression

may be undefined. For example, if the local state does not have permission to access

variable x, then the evaluation of x + 1 is undefined; evaluation of 5/0 is undefined

regardless of the local state.

4.1.3 Predicates

Predicates are a first-order SL used by programs to assert conditions on the state

of the program and to specify how to divide resources when a program forks into

two threads. SL has been used as the basis of Hoare triple program annotations

and to encode the results of dependency/shape analysis, and thus we find it to be

a convenient way to specify the side conditions for program transformations using

assertions. Chapter 2 introduced several predicate forms:
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C,w ⊧ true always
C,w ⊧ false never
C,w ⊧ ¬P C,w ⊧ P does not hold
C,w ⊧ P1 ∧ P2 C,w ⊧ P1 and C,w ⊧ P2

C,w ⊧ P1 ∨ P2 C,w ⊧ P1 or C,w ⊧ P2

C,w ⊧ P1 ⋆P2 w1 ⊕w2 = w, C,w1 ⊧ P1, and C,w2 ⊧ P2 for some w1 and w2

C,w ⊧ ∀v. Pv C,w ⊧ Pv for all v
C,w ⊧ ∃v. Pv C,w ⊧ Pv for some v
C,w ⊧ emp w.S(a) = w.R(a) = � and w.E(x) = (�,−) for all a and x
C,w ⊧ cansend a w.S(a) ≠ �
C,w ⊧ canrecv a w.R(a) ≠ �
C,w ⊧ ownsx w.E(x) = (⊺,−)
C,w ⊧ ownsa w.S(a) = w.R(a) = ⊺
C,w ⊧ has x w.E(x) = (π,−) and π ≠ �
C,w ⊧ e ⇓ v JeKw = v
C,w ⊧ e C,w ⊧ e ⇓ true
C,w ⊧ a=[e1, . . . , en] C(a) = [Je1Kw, . . . , JenKw] and C,w ⊧ ownsa

Figure 4.5: Predicate semantics

P ∶∶= ¬P ∣ P1 ∧ P2 ∣ P1 ∨ P2 ∣ P1 ⋆P2 ∣ ownsx∣ ownsa ∣ cansend a ∣ canrecv a ∣ a = [e1, . . . , en] ∣ . . .

Predicate P is satisfied by global channels C and local state w when C,w ⊧ P , which

is defined in Fig. 4.5.

Definition 25. P1 entails P2, written P1 ⊢ P2, if C,w ⊧ P1 implies C,w ⊧ P2 for all

C and w.

Definition 26. P1 is equivalent to P2, written P1 ⊣⊢ P2, if P1 ⊢ P2 and P2 ⊢ P1.

Definition 27. precise P iff P ⋆(A ∧B) ⊣⊢ (P ⋆A) ∧ (P ⋆B) for every A and B.

Many of the logical operators are standard. If P1 ⋆P2 holds on a local state, then

the state can be divided into two substates with disjoint channel permissions and

disjoint variable permissions, which respectively satisfy P1 and P2.

101



u ∶∶= ∞ unbounded∣ n finite bound (n ∈ {0,1, . . .})
z ∶∶= u unbounded or finite bound∣ n� u iteration barrier

Figure 4.6: Iteration bounds: the maximum number of iterations a loop may execute.

We use ownsx to specify full ownership of variable x, and has x to specify some

(not �) access to the variable. For the SAs defined in this thesis, the two predicates

are equivalent. However, because our Coq development uses fractional permissions

(for which the two predicates are not equivalent), we make a distinction between them

when writing the theorems and definitions in this thesis.

Several predicates are used for channels: ownsa, cansend a, canrecv a, and a =
[e1, . . . , en]. The first specifies full-ownership of channel a, so that the owner is the

only one able to send or receive values from a. Predicates cansend a and canrecv a

correspond to has, specifying permission to send and receive values to/from channel

a, respectively. Finally, a = [e1, . . . , en] implies ownsa and states that the current

contents of channel a are e1, . . . , en, where e1 is the most recent value sent into the

channel and en is the value that will be consumed by the next receive operation.

4.1.4 Iteration bounds

In Section 2.2.4, we introduced loops that are bounded by a maximum number of iter-

ations. The full syntax of these iteration bounds are given by Fig. 4.6. A normal loop

only terminates if and when its loop condition becomes false, and thus is unbounded

(i.e., bounded by ∞). When bounded by a natural number, n, a loop may execute at

most n iterations (or fewer if its loop condition becomes false), at which point it is

forced to terminate. The last form, n� u, is an iteration barrier that bounds a loop

by n + u iterations; however, it “pauses” (gets stuck) after only n iterations unless it

is “resumed.”
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n ⊞∞ = ∞
n1 ⊞ n2 = n1 + n2

n1 ⊞ (n2 � u) = (n1 + n2)� u

∞| u = ∞
n| u = n ⊞ u(n� u1) | u2 = n� (u1 | u2)

Figure 4.7: Adding a finite number to the beginning (⊞) of an iteration bound and
adding a finite or infinite value to the end (|) of an iteration bound.

∞ ≺∞ n1 < n2
n1 ≺ n2

n1 < n2

n1 � u1 ≺ n2 � u2

Figure 4.8: Comparing iteration bounds

Figure 4.7 defines ⊞ and |, which add a finite or infinite number to an iteration

bound. The first increases the number of iterations an iteration barrier will allow

before pausing. The second increases the bound after an iteration barrier resumes.

Given a loop that is bounded by z1 iterations, we may execute an iteration only if its

loop condition is true and we can find some z2 such that z2 ≺ z1, as defined in Fig. 4.8.

We now define iteration substitution over terms, threads, and machine states:

Definition 28 (Substitution of iteration barriers on terms).

(while e max n� u do t)[z] = while e max n ⊞ z| u do t[z](while e max u do t)[z] = while e max u do t[z](if e then t1 else t2)[z] = if e then t1[z] else t2[z](t1; t2)[z] = t1[z]; t2[z]([P1] t1 ∥ [P2] t2)[z] = [P1] t1[z] ∥ [P2] t2[z](x:= e)[z] = x:= e(x:= rand V )[z] = x:= rand V(skip)[z] = skip({P})[z] = {P}(send a e)[z] = send a e(x:= recv a)[z] = x:= recv a

Definition 29 (Substitution of iteration barriers on threads).

(w ∶ t)[z] = w ∶ t[z](b; t)[z] = b[z]; t[z](b1 ∥ b2)[z] = b1[z] ∥ b2[z]
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t ∶∶= x:= e assign the value of e to x∣ x:= rand V assign a random value in V to x∣ skip do nothing∣ if e then t1 else t2 branch; if e then execute t1, otherwise t2∣ while e max z do t loop; iterate t while e is true for at most z iterations∣ {P} assertion; is stuck iff P does not hold on the state∣ t1; t2 instruction sequencing∣ [P1] t1 ∥ [P2] t2 run t1 in parallel with t2∣ send a e enqueue the value of e in channel a∣ x:= recv a dequeue a value from channel a into variable x

Figure 4.9: Program syntax

Definition 30 (Substitution of iteration barriers on machine states).

(C, b)[z] = (C, b[z])

Substituting iteration barriers with z, written t[z], b[z], and (C, b)[z], causes all

occurrences of bound n � u in a program to be replaced by n ⊞ z | u. Resuming

barriers, written t▶, is defined as t[0] (and likewise for threads and machine states).

4.1.5 Program syntax

The program syntax is listed in Fig. 4.9. Assigning the value of expression e to local

variable x is denoted by x:= e. We also include a special assignment statement,

x:= rand V , which nondeterministically picks a value from set V and assigns it to

local variable x (we do not actually model randomness). We use skip to denote a

terminated program. If-statements are written as if e then t1 else t2, where t1 is

executed if e evaluates to true, and t2 is executed if e evaluates to false (otherwise,

the statement is stuck). We abbreviate if e then t else skip as if e then t.

{P} is an assertion, which is equivalent to skip only if P holds on the current

state; otherwise it is stuck. Instruction sequencing is written t1;t2, which runs t1

until it becomes skip, at which point t2 is run. Fork/join parallelism is written

[P1] t1 ∥ [P2] t2, which forks the current thread and divides the state into two sub-
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states so that the first is satisfied by P1 and the second by P2, and then interleaves

the execution of t1 and t2. If the state cannot be divided as such, then the fork/join

statement is stuck. When both t1 and t2 terminate (i.e. each becomes skip), then

their substates will be joined and the program will step to skip.

A traditional while-loop is written as while e max ∞ do t, which we abbreviate as

while e do t, because it has no maximum bound on the number of iterations that it

may execute. We may instead bound a loop by a finite number of iterations. A loop

bounded by 0, while e max 0 do t, must immediately terminate and thus is equivalent

to skip. Bounded by 1, while e max 1 do t is equivalent to if e then t.

The behavior of a loop bounded by an iteration barrier that immediately pauses

and then terminates upon resuming, while e max 0� 0 do t, depends on the context.

In our proofs, it is stuck unless e evaluates to false or until we tell it to resume.

However, it is not equivalent to while e max 0� 0 do t; {false} because our notion

of “equivalence” must continue to hold after resuming iteration barriers. For any

finite count n, bound z, and finite/infinite u, while e max n ⊞ z do t is equivalent to

while e max n do t; while e max z do t and while e max z | u do t is equivalent

to while e max z do t; while e max u do t. (Recall that ⊞ adds a finite number of

iterations before a barrier, whereas | adds finite or infinite iterations after a barrier;

if z is not a barrier, then ⊞ and | are equivalent.)

Channel communication is done using send and recv statements. Sending the

value of expression e into channel a is performed by send a e; this will never block

because channel queues are unbounded. Receiving a value from channel a and storing

it into variable x is performed by x:= recv a; it will block until a value becomes

available to consume if the channel queue is empty.

Definition 31 (worlds-of). The join of all local states in a program:

worlds-of(w ∶ t) = w worlds-of(b1) = w1 worlds-of(b2) = w2 w1 ⊕w2 = w
worlds-of(b1 ∥ b2) = w
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α ∶∶= τ internal (silent) action∣ wO ∶ a!v the observer sends v into channel a using permissions wO∣ wO ∶ a?v the observer receives v from channel a using permissions wO

Figure 4.10: Label syntax

4.1.6 Labels

Figure 4.10 presents the syntax of labels, α, which have three forms. The first, τ , is an

internal action that is not directly observable. Because we use delayed observations

(see Section 3.4), the remaining two forms are somewhat atypical for a LTS. Rather

than labeling the actions of a program executing send or recv, we label the actions

of the observer as it communicates with the program using channels.

In other words, the observer behaves like a thread that is composed in parallel

with a program and may communicate with the program using public channels. For

example, if action wO ∶ a!v is emitted, then it is as if an external thread with local

state wO (which must claim permission to access channel a) has sent value v into

channel a. We restrict the observer to accessing only public channels by requiring

that wO must join with the local state of the program – if the observer were to access

a private channel, a, then wO must claim the relevant permission to a and would thus

not join with the local state of the program.

To state that an observation joins with the local state of a program, we define

worlds-of for labels to extract the local state claimed by the observer when it makes

an observation.

Definition 32 (Extracting the local state of a label).

worlds-of(τ) = (λa.�, λa.�, λx.(�,0))
worlds-of(wO ∶ a!v) = wO
worlds-of(wO ∶ a?v) = wO
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4.1.7 Operational semantics

Figure 4.11 lists the operational semantics, which contains several unusual rules.

First, S-WhileZero and S-WhileTrue work together to ensure that only loops with a

nonzero bound may iterate. Upon iteration, the bound reduces from z to z′ such that

z′ ≺ z; once the bound reaches zero, S-WhileZero terminates the loop.

Second, we implement delayed observations (Section 3.4): S-Send and S-Recv are

not observable, but they indirectly interact with the observer via S-SendObs and

S-RecvObs by modifying the global state. Observations may only be made by com-

municating with a program using public channels, which S-SendObs and S-RecvObs

do. These “observation” rules result in a label that contains some local state, wO,

which must be joinable with the local state of the running program, worlds-of(b).
When we combine two programs together in parallel, some channels that were

once public may become private. Given observation α, S-ParL and S-ParR make sure

that the permissions of the observer, worlds-of(α), is disjoint from both threads.

We define a LTS for this language in the usual manner (see Section 3.1): program

states have form (C, b) and are often denoted by p or q, labels are defined by α ∈
{a, τ},

αÐ→ is the transition relation, and a is an observation. We abbreviate p
τÐ→ p′ as

p→ p′. The transitive reflexive closure of → is denoted by ⇒. We define p
aÔ⇒ p′ to be

p⇒ ⋅ aÐ→ ⋅ ⇒ p′. A weak transition from p to p′ that performs actions ~a = [a0, . . . , an]
is denoted by p⇒ ⋅ a0Ô⇒⋯ anÔ⇒ p′. A silent transition from p to p′ that takes at least one

step, p→ ⋅ ⇒ p′, is denoted by p⇒+ p′. A transition from p to p′, performing actions

~a, that takes at least one step is denoted by p
~aÔ⇒+ p′; it is equivalent to p⇒+ p′ when

~a = [] and p
~aÔ⇒ p′ when a ≠ []. A counted execution, where p

~aÔ⇒ q takes at most n

steps, is denoted by p
~aÔ⇒n q.
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4.1.8 Free variables

Definition 33 (Free variables of an expression).

freevars e = {x ∣ ∀w. JeKw = v Ô⇒ JeKw[x↦⋅] is undefined}.

Definition 34 (Free variables of a predicate).

freevarsP = {x ∣ ∀C,w. C,w ⊧ P Ô⇒ C,w[x↦ ⋅] ⊭ P}.

Definition 35 (Variables read by a term).

reads(skip) = ∅
reads({P}) = freevarsP

reads(x:= rand V ) = ∅
reads(x:= recv a) = ∅

reads(x:= e) = freevars e

reads(send a e) = freevars e

reads(if e then t1 else t2) = freevars e ∪ reads t1 ∪ reads t2

reads(while e max z do t) = freevars e ∪ reads t

reads(t1; t2) = reads t1 ∪ reads t2

reads([P1] t1 ∥ [P2] t2) = freevarsP1 ∪ reads t1 ∪ freevarsP2 ∪ reads t2

Definition 36 (Variables written by a term).

writes(skip) = ∅
writes({P}) = ∅

writes(x:= rand V ) = {x}
writes(x:= recv a) = {x}

writes(x:= e) = {x}
writes(send a e) = ∅

writes(if e then t1 else t2) = writes t1 ∪writes t2

writes(while e max z do t) = writes t

writes(t1; t2) = writes t1 ∪writes t2

writes([P1] t1 ∥ [P2] t2) = writes t1 ∪writes t2
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Definition 37 (Sending channels of a term).

sends(skip) = ∅
sends({P}) = ∅

sends(x:= rand V ) = ∅
sends(x:= recv a) = ∅

sends(x:= e) = ∅
sends(send a e) = {a}

sends(if e then t1 else t2) = sends t1 ∪ sends t2

sends(while e max z do t) = sends t

sends(t1; t2) = sends t1 ∪ sends t2

sends([P1] t1 ∥ [P2] t2) = sends t1 ∪ sends t2

Definition 38 (Receiving channels of a term).

recvs(skip) = ∅
recvs({P}) = ∅

recvs(x:= rand V ) = ∅
recvs(x:= recv a) = {a}

recvs(x:= e) = ∅
recvs(send a e) = ∅

recvs(if e then t1 else t2) = recvs t1 ∪ recvs t2

recvs(while e max z do t) = recvs t

recvs(t1; t2) = recvs t1 ∪ recvs t2

recvs([P1] t1 ∥ [P2] t2) = recvs t1 ∪ recvs t2

Definition 39 (Variables read by a thread).

reads(w ∶ t) = reads t

reads(b; t) = reads b ∪ reads t

reads(b1 ∥ b2) = reads b1 ∪ reads b2

Definition 40 (Variables written by a thread).

writes(w ∶ t) = writes t
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writes(b; t) = writes b ∪writes t

writes(b1 ∥ b2) = writes b1 ∪writes b2

Definition 41 (Sending channels of a thread).

sends(w ∶ t) = sends t

sends(b; t) = sends b ∪ sends t

sends(b1 ∥ b2) = sends b1 ∪ sends b2

Definition 42 (Receiving channels of a thread).

recvs(w ∶ t) = recvs t

recvs(b; t) = recvs b ∪ recvs t

recvs(b1 ∥ b2) = recvs b1 ∪ recvs b2

4.2 Program equivalence

Program equivalence between terms is just a wrapper around a congruence between

machine states.

Definition 43 (Program equivalence). Given relation ≈ between machine states,

t1 ≡≈ t2 iff (C,w ∶ t1) ≈ (C,w ∶ t2) for any global state C and local state w.

Definition 44 (Compatible with ▶). A relation between machine states, R, is com-

patible with ▶ when for any (p, q) ∈ R,

� (p▶, q▶) ∈ R.

4.2.1 Bisimilarity and contrasimilarity

We define ≡ with respect to bisimilarity and contrasimilarity relations that are itera-

tion, and termination sensitive.
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Definition 45 (Bisimilarity). Machine states p and q are bisimilar, written p≈↓* q,
iff there exists an R such that (p, q) ∈ R and where R is:

� a bisimulation,

� compatible with ▶, and

� termination sensitive.

Definition 46 (Partial contrasimilarity). Machine state q partially contrasimulates

p, written p≤↓*c q, iff there exists an R such that (p, q) ∈ R and where R is:

� a contrasimulation,

� compatible with ▶,

� one-way termination sensitive, and

Definition 47 (Contrasimilarity). Machine states p and q are contrasimilar, written

p≈↓*c q, iff there exists an R such that (p, q) ∈ R ∩R−1 and where R is:

� a contrasimulation,

� compatible with ▶,

� one-way termination sensitive, and

Lemma 4.1. If p≤↓*c q and q ≤↓*c p, then p≈↓*c q.

Proof. Follows directly from definitions 46 and 47.

We often find ourselves proving ≈↓* for a symmetric R, in which case it is not

necessary to show simulation and termination sensitivity in both directions. The

following lemma helps us simplify our proofs of bisimulation for symmetric relations.

Lemma 4.2. If R is symmetric, then R is a bisimulation if it is a simulation, com-

patible with ▶, and one-way termination sensitive.

Lemma 4.3. Given relations ≈1 and ≈2, if ≈1⊆≈2, then ≡≈1⊆≡≈2.

Corollary 4.1. If t1 ≡≈↓* t2, then t1 ≡≈↓*c t2.
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We will prove the soundness of the transformation framework presented in chap-

ter 2 by proving ≡≈↓*c for each ≡ rule.

4.3 Congruence

In this section, we state the soundness theorems for several of the basic rewrite rules

in our framework. To support the main theorems, we will list a variety of supporting

lemmas in Section 4.3.1 that will be used in the rest of this section and chapter. Then,

we will state the soundness theorems for some basic algebraic rules in Section 4.3.2

and the compositional rules in Section 4.3.3. For most theorems in this section, we

will not go into much detail because the results are not new. At the end of this section,

we will prove that bisimulation is congruent for while loops because the proof will

be an informative exercise in preparation for proving loop folding.

Although we are only interested in soundness with respect to contrasimulation, we

prove a bisimulation wherever possible because we can apply corollary 4.1 to obtain

a contrasimilarity. However, the compositional rules must be proved with respect to

contrasimulation.

4.3.1 Supporting lemmas

Lemma 4.4 (Resuming barriers). If p≈↓*c q, then p▶ ≈↓*c q▶.

Proof. By p≈↓*c q, there must exist an R that is compatible with ▶ and such that

(p, q) ∈ R. Definition 44 implies (p▶, q▶) ∈ R, thus p▶ ≈↓*c q▶.

Lemma 4.5. If (C,w ∶ skip) ~aÔ⇒(C ′,w ∶ skip), then C#w ⊧ P iff C ′#w ⊧ P .

Proof. The intuition is that assertions are invariant as observations are made. This

holds because C and C ′ can only differ by channel states for which w does not claim

full ownership, so C#w = C ′#w.
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Lemma 4.6. If (C,w ∶ skip) ≈ q, then q⇒ (C,w ∶ skip), where ≈ ∈ {≈↓*,≤↓*c,≈↓*c}.

Proof. Follows by termination sensitivity.

Lemma 4.7. If p ≤ q and p ⇒ (C ′,w′ ∶ skip), then q ⇒ (C ′,w′ ∶ skip), where

≤ ∈ {≈↓*,≤↓*c}.

Proof. There exists a q′ such that q ⇒ q′ and (C ′,w′ ∶ skip) ≥ q′. By q′ ⇒ q′, there

exists a p′ such that (C ′,w′ ∶ skip) ⇒ p′ and p′ ≤ q′. However, skip cannot step, so

p′ = (C ′,w′ ∶ skip). Thus q′⇒ (C ′,w′ ∶ skip) by lemma 4.6.

Lemma 4.8 (Multistep inversion principle for sequential composition).

If (C, b; t) ~aÔ⇒ p′, then either:

� (C, b) ~aÔ⇒(C ′, b′) and p′ = (C ′, b′;t) for some C ′ and b′, or

� (C, b) ~a1Ô⇒(C ′,w′ ∶ skip), (C ′,w′ ∶ t) ~a2Ô⇒ p′, and ~α = ~a1 ⋅ ~a2 for some ~a1, ~a2, C ′
and w′.

Proof. By induction on
~aÔ⇒ .

Lemma 4.9. If (C, b)≈(C, b2;{P}) and (C, b) ~aÔ⇒(C ′, b′), then (C ′, b′)≈(C ′, b′;{P}),

where ≈ is a termination sensitive relation such as ≈↓* or ≈↓*c.

Proof. By induction on
~aÔ⇒ .

Lemma 4.10 (Resuming a loop schema). f[u]▶ = f[u].
Proof. The term, f[u] has already had its iteration holes filled by u (which is either

a finite number or infinity), so there are no iteration barriers to resume.

4.3.2 Algebraic

Lemma 4.11 (T-Refl). t ≡≈↓*c t.
Proof. Follows by the reflexivity of ≈↓*c.
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Lemma 4.12 (T-Sym). If t1 ≡≈↓*c t2, then t2 ≡≈↓*c t1.

Proof. Follows by the symmetry of ≈↓*c.

Lemma 4.13 (T-Trans). If t1 ≡≈↓*c t2 and t2 ≡≈↓*c t3, then t1 ≡≈↓*c t3.

Proof. Follows by the transitivity of ≈↓*c.

Lemma 4.14 (T-WhileIf). while e max 1 do t ≡≈↓* if e then t.

Lemma 4.15 (T-FalseWhile). {¬e};while e max z do t ≡≈↓* {¬e}.

Lemma 4.16 (T-WhileFalse). while e do t ≡≈↓* while e do t;{¬e}.

Lemma 4.17 (T-Split|). while e max z | u do t ≡≈↓*c (while e max z do t);
(while e max u do t).

Lemma 4.18 (T-Split⊞). while e max n ⊞ z do t ≡≈↓*c (while e max n do t);
(while e max z do t).

4.3.3 Compositional

Lemma 4.19 (T-Resume). If t1 ≡≈↓*c t2, then t1▶ ≡≈↓* t2▶.

Proof. This follows directly from lemma 4.4.

Lemma 4.20 (T-Seq). If t1 ≡≈↓*c t′1 and t2 ≡≈↓*c t′2, then t1;t2 ≡≈↓*c t′1;t′2.

Proof. We use lemma 4.1 and, because our goal and premises are symmetric,

need only prove partial contrasimilarity in one direction. We break the remain-

ing proof into two parts. The first is to show that we can substitute t1, for

which the proof is straightforward using I ∪ {((C1, b1;t), (C2, b2;t)) ∣ (C1, b1)
≈↓*c(C2, b2)}. The the second step is to substitute t2, for which we use I ∪
{((C, b;t1), (C, b;t2))}.
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Lemma 4.21 (T-Par). If P1 ⊣⊢ P ′
1, t1 ≡≈↓*c t′1, P2 ⊣⊢ P ′

2, t2 ≡≈↓*c t′2, then

[P1] t1 ∥ [P2] t2 ≡≈↓*c [P ′
1] t′1 ∥ [P ′

2] t′2.

Lemma 4.22 (T-If). If e ⊣⊢ e′, t1 ≡≈↓*c t′1, and t2 ≡≈↓*c t′2, then if e then t1 else t2

≡≈↓*c if e′ then t′1 else t′2.

Proof. Using lemma 4.1, we only need to prove partial contrasimilarity in one

direction, for which we prove that {((C,w ∶ if e then t1 else t2), (C,w ∶
if e′ then t′1 else t′2))} ∪ ≤↓*c is a contrasimulation using lemma 3.19, termi-

nation sensitive, and compatible with ▶. Lemma 3.19 allows us to only consider the

first step of the if statement to see if e is true or false, and then let t1 ≡≈↓*c t′1 or

t2 ≡≈↓*c t′2 take care of the rest.

Before we prove congruence for while with respect to contrasimilarity, we look at

the case of bisimilarity to get a clearer understanding of how it works.

Lemma 4.23 (T-While w.r.t. bisimulation). If t1 ≡≈↓* t2, then while e do t1 ≡≈↓*
while e do t2.

Proof. By definition 43, we assume that (C,w ∶ t1)≈↓*(C,w ∶ t2) for all C and w, and

given some C and w, we must prove (C,w ∶ while e do t1)≈↓*(C,w ∶ while e do t2).
To do so, we propose a relation that holds between the machine states of the two

loops as they execute,

R = {(p, q) ∣ ∃C,w. p = (C,w ∶ while e do t1) ∧ q = (C,w ∶ while e do t2)}∪ {(p, q) ∣ ∃C1,C2, b1, b2. (C1, b1)≈↓*(C2, b2)∧ p = (C1, b1;while e do t1) ∧ q = (C2, b2;while e do t2)}∪ I. (4.1)

The intuition behind eq. (4.1) is that the loops continue to unfold iterations as

long as e is true, and the states derived from those iterations will be equivalent:
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(C1, b1)≈↓*(C2, b2). After each iteration is completed, lemma 4.6 (termination sensi-

tivity) ensures that the loops begin again with the same channel and local state. If

e becomes false, then both loops will step to (C ′,w′ ∶ skip) for some C ′ and w′, and

will thus be in the identity relation, I. The initial loops are related by the first subset

that defines R.

Finally, we prove that R is a bisimulation. Because R is symmetric, we need only

show that it is a simulation, compatible with ▶, and one-way termination sensitive.

Simulation: We are given (p, q) ∈ R and p
αÐ→ p′, and must show that q

αÔ⇒ q′ and

(p′, q′) ∈ R for some q′. Corresponding to the three sets that define R, there are three

cases for (p, q) ∈ R:

Case 1. Assume p = (C,w ∶ while e do t1) and q = (C,w ∶ while e do t2). There are

three ways that (C,w ∶ while e do t1) αÐ→ p′ may step:

1. α is observed (via S-SendObs or S-RecvObs). The same observation can be

made of q.

2. e is true and p′ = (C,w ∶ t1;while e do t1). There exists q′ = (C,w ∶
t2;while e do t2) such that (C,w ∶ while e do t2) αÐ→(C,w ∶ t2;while e do t2)
and (p′, q′) ∈ R.

3. e is false and p′ = w ∶ skip. There exists q′ = (C,w ∶ skip) such that (C,w ∶
while e do t2) αÐ→(C,w ∶ skip) and (p′, q′) ∈ I ⊂ R.

Case 2. Assume p = (C1, b1;while e do t1), q = (C2, b2;while e do t2), and

(C1, b1)≈↓*(C2, b2). There are three ways that (C1, b1;while e do t1) αÐ→ p′ may step:

1. α is observed. The same observation can be made of q.

2. b1 = w1 ∶ skip, α = τ , and p′ = (C1,w1 ∶ while e do t1). The termination

sensitivity of (C1, b1)≈↓*(C2, b2) implies (C2, b2) ⇒ (C1,w1 ∶ skip) because b1 is

halted (lemma 4.6). Thus there exists q′ = (C1,w1 ∶ while e do t2) such that

(C2, b2;while e do t2) ⇒ q′ and (p′, q′) ∈ R.
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3. (C1, b1) αÐ→(C ′
1, b

′
1) and p′ = (C ′

1, b
′
1;while e do t1). There must exist

some (C ′
2, b

′
2) such that (C2, b2) αÔ⇒(C ′

2, b
′
2) and (C ′

1, b
′
1)≈↓*(C ′

2, b
′
2) because

(C1, b1)≈↓*(C2, b2). Thus there exists q′ = (C ′
2, b

′
2;while e do t2) such that

(C2, b2;while e do t2) αÔ⇒ q′ and (p′, q′) ∈ R.

Case 3. Assume p = q. Trivial.

Compatibility with ▶: We are given (p, q) ∈ R, and must show (p▶, q▶) ∈ R. For

each case of (p, q) ∈ R, (p▶, q▶) ∈ R simplifies to a form that holds by lemma 4.4.

One-way termination sensitivity: We are given ((C,w ∶ skip), q) ∈ R, and must

show that q⇒ (C,w ∶ skip). It must be the case that the programs are related by I,

so q = (C,w ∶ skip) (taking 0 steps).

Proving congruence with respect to contrasimilarity works much the same. How-

ever, we must consider multiple steps at once. The inversion principle for while is

complicated because multiple iterations may execute, but by counted contrasimula-

tion (lemma 3.19), we need only consider at most one iteration.

Lemma 4.24 (T-While). If e1 ⊣⊢ e2 and t1 ≡≈↓*c t2, then while e1 max z do t1 ≡≈↓*c
while e2 max z do t2.

Proof. We use lemma 4.1 and, because our goal and premises are symmetric, need

only prove partial contrasimilarity in one direction. The relation we use is:

{(p, q) ∣ ∃C,w, z. p = (C,w ∶ while e1 max z do t1)∧ q = (C,w ∶ while e2 max z do t2)}∪ {(p, q) ∣ ∃C1,C2, b1, b2, z. (C1, b1)≤↓*c(C2, b2)∧ p = (C1, b1;while e1 max z do t1)∧ q = (C2, b2;while e2 max z do t2)}∪ I.
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We prove that this relation has all of the properties of partial contrasimilarity, but use

lemma 3.19 to prove contrasimulation. The proof is very similar to that of lemma 4.23.

4.4 Loop folding

We now begin to fully explain loop folding and the motivation behind iteration barri-

ers. Because loop folding shows that a loop schema behaves like a single while loop,

we use a strategy similar to our proof of T-While in lemma 4.23. The take-away from

the proof is that a while loop has a recurring structure – the loop itself, prefixed by

an executing iteration – that we can use to compare its behavior to other loops. This

same approach can be applied to comparing a folded loop (f[∞]) to another loop

because the folded loop should be equivalent to a while loop.

But to use this strategy, we must show that loop schemas have a loop decomposition

property, which is akin to an inversion principle for the execution of a while loop.

Namely, that any state derived from a loop is equivalent to the sequential composition

of a state derived from a finite number of iterations and the original loop.

Recall that a loop schema is a program, loop condition, and invariant such that a

combining transformation holds and termination implies and is implied-by the loop

condition becoming false.

Definition 48 (Loop schema). Where ≈ is a relation between machine states,

(f, e,P )≈ defines a loop schema such that:

� {P}; f[1] ≡≈ {P}; f[1];{P}, (P is a loop invariant)

� ∀u. {¬e ∧ P}; f[u] ≡≈ {¬e ∧ P}, (¬e implies termination)

� {P}; f[∞] ≡≈ {P}; f[∞];{¬e ∧ P}, and (¬e is implied by termination)

� ∀n ≥ 1, u. {P}; f[n� 0];f[u] ≡≈ {P}; f[n� u]. (combining transformation)

It is a simple exercise to show that while loops are loop schemas.
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Lemma 4.25 (Simple loop schema). If {P}; t ≡≈ {P}; t;{P} and ≈ ∈ {≈↓*,≈↓*c},

then ({P};while e max � do t, e, P )≈.
Proof. Follows by lemmas 4.14 to 4.17.

Up to this point, we have not explained why the combining transformation uses

iteration barriers. As we introduce the concepts behind loop folding, we will initially

assume that iteration barriers are not necessary – that the following property suffices

as the combining transformation:

∀n ≥ 1, u. {P}; f[n]; f[u] ≡ {P}; f[n ⊞ u]. (4.2)

However, as we attempt to prove the loop decomposition property, it will become

clear that we need a stronger definition for loop schemas; by either restricting the

syntax of f or making the combining transformation stronger. We choose the latter

by adding iteration barriers to the combining transformation, which has the added

benefit of enabling extensional reasoning about the looping behavior of loop schemas.

4.4.1 Loop decomposition

We now explain loop decomposition. The purpose of this section is exposition; for

this reason we will introduce the main ideas using bisimilarity (≈↓*) rather than con-

trasimilarity. Although we will reach a dead end in our first attempt to prove loop

decomposition, we will ultimately succeed in Section 4.4.2 with just a minor adjust-

ment (adding iteration barriers) to our approach.

If we were to use the relation in eq. (4.1), verbatim, to prove loop folding for some

(f, e,P )≈, we would quickly fail: if (C,w ∶ f[∞]) αÐ→ p′, it is not necessarily (or even

likely) the case that p′ = (C ′, b′;f[∞]) for some C ′ and b′. But since an execution of

f[∞] can use at most a finite number of iterations, we should be able to run f[n],
for some n, to achieve the same results. More generally:
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Lemma 4.26 (Finite iterations). If p[∞] ~aÔ⇒ p′, then there exists an n > 0 and p′′
such that p[n�∞] ~aÔ⇒ p′′ and p′ = p′′▶.

By the combining transformation, {P}; f[n];f[∞] ≡≈↓* {P}; f[∞], so perhaps p′
is equivalent to (C ′, b′;f[∞]) for some b′ derived from f[n].
Proposition 4.1 (Loop decomposition). Given (f, e,P )≈↓*, if C#w ⊧ P ⋆ true and

(C,w ∶ f[∞]) ~aÔ⇒ p′, then (C,w ∶ f[n]) ~aÔ⇒(C ′, b′) and p′ ≈↓*(C ′, b′;f[∞]) for some n,

C ′, and b′.

With proposition 4.1, we can use the following relation to prove loop folding:

{(p, q) ∣ ∃C, b. p≈↓*(C, b;{P};while e do f[1]) ∧ q ≈↓*(C, b;{P}; f[∞])} (4.3)

Notice that eq. (4.3) is simpler than eq. (4.1), which is a union of three subsets that

handle the three forms a loop may take during its execution. Using a bisimulation rela-

tion, rather than equality, allows us to collapse these cases into one. For example, if p =
(C,w ∶ while e do f[1]), then P holds and p≈↓*(C,w ∶ skip;{P};while e do f[1]).
If p = (C,w ∶ skip), then the loop must have terminated and C#w ⊧ ¬e∧P ⋆ true, so

p≈↓*(C,w ∶ skip;{P};while e do f[1]).
However, proving that eq. (4.3) is a bisimulation by showing that it is a simulation

(among other properties) in both directions is redundant. By generalizing the relation

to compare two loop schemas (see lemma 4.25) so that it is symmetric, we can use

lemma 4.2 to nearly halve our proof obligations.

{(p, q) ∣ ∃f, g,C, b. (f, e,P )≈↓* ∧ (g, e,P )≈↓* ∧ {P}; f[1] ≡≈↓* {P}; g[1]
∧ p≈↓*(C, b;{P}; f[∞]) ∧ (C, b;{P}; g[∞])≈↓* q}. (4.4)
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Proposition 4.1 and eq. (4.4) allow us to prove the soundness of loop folding by

using the same strategy that we used to prove lemma 4.23. We now turn to proving

proposition 4.1.

Assume we are given (f, e,P )≈↓* , C#w ⊧ P ⋆ true, and (C,w ∶ f[∞]) ~aÔ⇒ p′, and

we know that at most n iterations were used in the execution. By the combining

transformation, we can derive:

(C,w ∶ f[∞]) (C,w ∶ f[n];f[∞]) (C,w ∶ f[n]) (C,w ∶ f[n];f[∞])
(C ′,w′ ∶ f[∞])

p′ p′′ (C ′′, b′′) p′′

Premise Case 1 Case 2

~a ~a ~a

~a1

~a2

≈↓*

≈↓*

There are two cases for p′′: either 1) (C,w ∶ f[n]) ~aÔ⇒(C ′′, b′′) and p′′ =
(C ′′, b′′;f[∞]), or 2) (C,w ∶ f[n]) ~a1Ô⇒(C ′,w′ ∶ skip), (C ′,w′ ∶ f[∞]) ~a2Ô⇒ p′′, and

~a = ~a1 ⋅ ~a2. In the first case, loop decomposition trivially holds. But the second case

brings us back to square one – attempting to decompose the behavior of f[∞]. We

might attempt to keep increasing n to see if a big enough value will cause f[n] to not

terminate, but there is no guarantee that the result will be any different. Consider

loop schema (f1,true, true)≈↓* , where

f1 = while true max � do

(x:= 0 ∥ x:= 1);

if x=0 then

skip

else

y:= y+1

(4.5)
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Because the combining transformation is user-supplied, we must assume the worst

case – that for every n, f1[n] will always choose x:=0 and terminate when f1[n];f1[∞]
simulates f1[∞]. We say that f1[n] can “fall through” for every n when this happens.

On the other hand, it is possible for f1[n];f1[∞] to simulate f1[∞] without falling

through. To prove loop decomposition, perhaps a viable strategy is to inspect the

structure of the loop schema to reconstruct a “good” execution that does not fall

through. The next example shows that such “good” executions do not always exist:

f2 = (x:= 0 ∥ x:= 1);

while true max � do

if x=1 then

print 1;

{false}

(4.6)

Unlike eq. (4.5), the ability of f2[n] to fall through is the only reason that eq. (4.2)

holds for eq. (4.6). To illustrate why, consider the following transition diagrams that

are equivalent to f2[n];f2[∞] and f2[∞], respectively:

f2[n];f2[∞]
f2[∞]

p′′

(x:=0
)

1

(x:=1)

(x:=0
)

1

(x:=1)

f2[∞]
p′

(x:=0
)

1

(x:=1)

The left diagram shows that f2[n];f2[∞] can choose between diverging or printing

1 twice. The right diagram shows that f2[∞] may only make this choice once. Thus

in response to f2[∞] transitioning to state p′, a bisimilar state may only be reached

by f2[n];f2[∞] if f2[n] falls through and the subsequent f2[∞] transitions to p′′.
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Furthermore, f2 is a degenerate schema because it does not hold for loop folding.

This is because the folded loop, f2[∞], can initially choose x ∶= 0 and commit to never

printing 1, while the original program, while true do f2[1], cannot because its choice

is repeated upon every iteration.

There are several ways we can resolve these issues. We could disallow internal

choice. (But we have already stated that supporting internal choice is a key goal.)

Or we could restrict the syntax of loop schemas; e.g. by not allowing code to appear

outside of a bounded while loop. We have instead found a third option.

Iteration barriers prevent degenerate loop schemas. For the above example, f2[1�
0];f2[∞] ≢≈↓* f2[1�∞]. If f2[1�∞] picks x ∶= 0, then f2[1�0];f2[∞] must make the

same choice. But there is no way for f2[1�0] to fall through because of the iteration

barrier. By T-Resume, they must remain bisimilar after the barriers are resumed, but

having not fallen through, the program derived from f2[1 � 0];f2[∞] has a second

chance to choose x ∶= 1 and print 1 while the program derived from f2[1�∞] does

not. Iteration barriers also let us prove proposition 4.1 for programs such as eq. (4.5)

via extensional reasoning.

4.4.2 The proof of loop folding

With the combining transformation that uses iteration barriers (definition 48), we

are now ready to prove the loop decomposition property and, finally, loop folding.

Unlike Section 4.4.1, we focus on proving soundness with respect to contrasimilarity

because it is the underlying equivalence of our framework. We start of with two helper

lemmas, which are used by the loop decomposition theorem. The first lemma allows

us to re-run an execution without iteration barriers. The second lemma reasons that

if a program with an iteration barrier terminates, then the iteration barrier must not

have been reached and thus we can substitute it with any iteration bound.

Lemma 4.27 (Resuming executions). If p
~aÔ⇒ p′ then p▶ ~aÔ⇒ p′▶.
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Proof. Iteration barriers only cause programs to become stuck; their removal cannot

reduce the behaviors/transitions available to a program.

Lemma 4.28 (Termination of iteration barriers). If p[n� u] ~aÔ⇒(C ′,w′ ∶ skip) then

p[n ⊞ z] ~aÔ⇒(C ′,w′ ∶ skip) for any z.

Proof. If a program with an iteration barrier terminates, then all loops bounded by

the barrier must have naturally terminated (i.e. their loop conditions became false)

before pausing at a barrier because
~aÔ⇒ does not permit resuming barriers. Thus we

can substitute the barriers with any bound z without changing the execution.

Theorem 4.1 (Loop decomposition; proof of proposition 4.1). Given loop schema

(f, e,Q)≈↓*c, if (C,w ∶ {P}; f[∞]) ~aÔ⇒(C ′, b′), then (C,w ∶ {P}; f[n]) ~aÔ⇒(C ′′, b′′) and

(C ′, b′)≥↓*c(C ′′, b′′;{P}; f[∞]) for some n > 0, C ′′, and b′′.

Proof. We assume that at least one step is taken (otherwise, this theorem trivially

holds), so that the assertion holds: C#w ⊧ P ⋆ true. In our first attempt to prove loop

decomposition, we let n be number of iterations that f[∞] executed and ran f[n].
This time, we make a slight adjustment by running f[n� 0] instead. First, we find

n: by lemma 4.26, there exists n > 0 and b′1 such that (C,w ∶ f[n�∞]) ~aÔ⇒(C ′, b′1)
and b′ = b′1▶.

The combining transformation allows us to split off the ∞ iterations so that

(C,w ∶ f[n � ∞])≈↓*c(C,w ∶ f[n � 0];f[∞]); by the multistep inversion princi-

ple for sequential composition (lemma 4.8), there must exist a p′ such that (C,w ∶
f[n� 0];f[∞]) ~aÔ⇒ p′ and (C ′, b′1)≥↓*c p′. By lemma 4.8, we can break the execution

of f[n� 0];f[∞] into two cases:

Case 1. Assume (C,w ∶ f[n�0]) ~aÔ⇒(C ′
2, b

′
2) and p′ = (C ′

2, b
′
2;f[∞]) for some C ′

2 and

b′2. We can perform the same execution after resuming the barriers such that (C,w ∶
f[n]) ~aÔ⇒(C ′

2, b
′
2▶) (by lemma 4.27) and (C ′, b′)≥↓*c(C ′

2, b
′
2▶;f[∞]) (by lemma 4.4).
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By the loop invariant of f and lemma 4.9, we insert an assertion before f[∞] so that

(C ′
2, b

′
2▶;f[∞])≈↓*c(C ′

2, b
′
2▶;{P}; f[∞]). This theorem holds for n, C ′

2, and b′2▶.

(C,w ∶ f[∞]) (C,w ∶ f[n];{P}; f[∞])
(C,w∶f[n�∞]) (C,w∶f[n�0];f[∞])

(C′,b′1) (C′2,b′2;f[∞])

(C ′, b′) (C ′
2, b

′
2▶;{P}; f[∞])

Case 1

~a ~a ~a~a

≈↓*c

≥↓*c

=▶ ≈ ↓*c▶

≈↓*c▶

≈↓*c

=▶
≥↓*c

Case 2. Assume (C,w ∶ f[n � 0]) ~a1Ô⇒(C ′
3,w

′
3 ∶ skip), (C ′

3,w
′
3 ∶ f[∞]) ~a2Ô⇒ p′, and

~a = ~a1 ⋅ ~a2 for some ~a1, ~a2, C ′
3, w′

3.

Like before, the tricky case of falling through is not prevented by iteration barriers.

The key difference we see by using iteration barriers, however, is what fall through

now entails: if f[n� 0] terminates, then f[∞] must also terminate in the same way.

(C,w ∶ f[∞]) (C,w ∶ f[n];{P}; f[∞])
(C,w∶f[n�∞]) (C,w∶f[n�0];f[∞]) (C,w∶f[n])

(C′3,w′3∶f[∞]) (C′3,w′3∶skip) (C ′
3,w

′
3 ∶ skip;{P}; f[∞])

(C′,b′1)(C ′, b′) p′ (C′4,w′3∶skip) (C ′
4,w

′
3 ∶ skip;{P}; f[∞])

Case 2 Step 1 Step 2

~a ~a

~a1

~a2

~a1

~a2

~a1

~a2

≈↓*c

≈↓*c ≈↓*c

≈↓*c

=▶

=▶ ≥↓*c▶≥↓*c ≥↓*c ≥↓*c
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Step 1: By lemma 4.28, (C,w ∶ f[∞]) ~a1Ô⇒(C ′
3,w

′
3 ∶ skip). By the termination

of f[∞], it must be the case that the loop condition has become false: C ′
3#w′

3 ⊧
¬e ∧ P ⋆ true. And because the loop condition is false, the remaining f[∞] is also

(effectively) terminated: (C ′
3,w

′
3 ∶ f[∞])≈↓*c(C ′

3,w
′
3 ∶ skip). We cause (C ′

3,w
′
3 ∶ skip)

to match the behavior of (C ′
3,w

′
3 ∶ f[∞]) so that (C ′

3,w
′
3 ∶ skip) ⇒ (C ′

4,w
′
3 ∶ skip)

and p′ ≥↓*c(C ′
4,w

′
3 ∶ skip). (It is not necessarily the case that C ′

4 = C ′
3 and ~a2 = []

because observations may also be made on terminated processes via S-SendObs and

S-RecvObs.) After removing the loop barrier, by lemma 4.27, we obtain an execution

from f[n] to (C ′
4,w

′
3 ∶ skip).

Step 2: By sequentially composing the execution with {P}; f[∞], we get (C,w ∶
f[n];{P}; f[∞]) ~a1Ô⇒(C ′

3,w
′
3 ∶ skip;{P}; f[∞]) ~a2Ô⇒(C ′

4,w
′
3 ∶ skip;f[∞]). The last

step is to show (C ′
4,w

′
3 ∶ skip)≥↓*c(C ′

4,w
′
3 ∶ skip;f[∞]), which follows by lemma 4.5

and C ′
3#w′

3 ⊧ P ⋆ true.

Thus our theorem holds for n, C ′
4, and w′

3 ∶ skip.

Theorem 4.2 (Loop decomposition for bisimulation). Given loop schema (f, e,Q)≈↓*,

if (C,w ∶ {P}; f[∞]) ~aÔ⇒(C ′, b′), then (C,w ∶ {P}; f[n]) ~aÔ⇒(C ′′, b′′) and (C ′, b′)≈↓*
(C ′′, b′′;{P}; f[∞]) for some n > 0, C ′′, and b′′.
Proof. The proof is nearly identical to theorem 4.1.

Lemma 4.29. If (f, e,P )≈, (g, e,P )≈, and {P}; f[1] ≡≈ {P}; g[1], then {P}; f[n] ≡≈
{P}; g[n] for any n > 0 and ≈∈ {≈↓*,≈↓*c}.

Proof. By induction on n. The base case, n = 0, is a contradiction. The inductive

case follows: {P}; f[1 + n] ≡≈ {P}; g[1 + n] assumption

{P}; f[1];f[n] ≡≈ {P}; g[1];g[n] combining transformation

{P}; f[1];{P}; f[n] ≡≈ {P}; g[1];{P}; g[n] loop invariant

{P}; f[1];{P}; f[n] ≡≈ {P}; f[1];{P}; g[n] assumption

{P}; f[1];{P}; f[n] ≡≈ {P}; f[1];{P}; f[n] inductive hypothesis
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Theorem 4.3 (Loop folding). If (f, e,P )≈↓*c, (g, e,P )≈↓*c, {P}; f[1] ≡≈↓*c {P}; g[1],
and C#w ⊧ P ⋆ true, then (C,w ∶ f[∞])≤↓*c(C,w ∶ g[∞]).

Proof. We adapt the relation from eq. (4.4) by replacing bisimilarity with contrasim-

ilarity and partial contrasimilarity:

R = {(p, q) ∣ ∃f, g,C, b. (f, e,P )≈↓*c ∧ (g, e,P )≈↓*c ∧ {P}; f[1] ≡≈↓*c {P}; g[1]
∧ p≤↓*c(C, b;{P}; f[∞]) ∧ (C, b;{P}; g[∞])≤↓*c q}.

Contrasimulation: Given (p, q) ∈ R and p
~aÔ⇒ p′, show that there exists some q′ such

that q
~aÔ⇒ q′ and (p′, q′) ∈ R−1. By the definition of R, p≤↓*c(C, b;{P}; f[∞]) and

q ≤↓*c(C, b;{P}; g[∞]). We cause b;{P}; f[∞] to mimic p; there are two cases.

Case 1. Only b runs, so b;{P}; g[∞] (and thus q) trivially mimics p. Specifically,

(C, b) ~aÔ⇒(C ′, b′) and p′ ≥↓*c(C ′, b′;{P}; f[∞]). Thus (C, b;{P}; g[∞]) ~aÔ⇒(C ′, b′;
{P}; g[∞]), q ~aÔ⇒ q′, (C ′, b′;{P}; g[∞])≥↓*c q′, and (p′, q′) ∈ R−1 for some q′.

p q

(C,b;{P}; f[∞]) (C,b;{P}; g[∞])

(C′,b′;{P}; f[∞]) (C′,b′;{P}; g[∞])
p′ q′

~a ~a ~a ~a

≤↓*c ≤↓*c

≥↓*c ≥↓*c

R

R−1

Case 2. b runs to termination, and then {P}; f[∞] runs. Specifically, (C, b) ~a1Ô⇒(C ′,
w′ ∶ skip), and then (C ′,w′ ∶ {P}; f[∞]) ~a2Ô⇒(C ′′∞, b′′∞), where p′ ≥↓*c(C ′′∞, b′′∞) and

~a = ~a1 ⋅ ~a2. We cannot directly compare the execution of f[∞] to g[∞], so we compare

a finite number of executions by using loop decomposition (theorem 4.1) to find an

n > 0 such that (C ′,w′ ∶ {P}; f[n]) ~a2Ô⇒(C ′′
n , b

′′
n) and (C ′′∞, b′′∞)≥↓*c(C ′′

n , b
′′
n;{P}; f[∞]).
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Now we construct an execution of q that mimics p. We append {P}; g[∞] to the

execution of b and f[n] to obtain (C, b;{P};f[n];{P}; g[∞]) ~aÔ⇒(C ′′
n , b

′′
n;{P}; g[∞]).

By lemma 4.29, the loop invariant of g, and the combining transformation of g, state

q partially contrasimulates (C, b;{P}; f[n];{P}; g[∞]):

(C, b;{P}; f[n];{P}; g[∞]) ≤↓*c (C, b;{P}; g[n];{P}; g[∞])≤↓*c (C, b;{P}; g[n];g[∞])≤↓*c (C, b;{P}; g[∞])≤↓*c q.

Thus there exists a q′ such that q
~aÔ⇒ q′, (C ′′

n , b
′′
n;{P}; g[∞])≥↓*c q′, and (p′, q′) ∈ R−1.

p q

(C, b;{P};f[∞]) (C, b;{P};f[n];{P};g[∞]) (C, b;{P};g[∞])

(C′,w′∶{P};f[∞]) (C′,w′∶{P};f[n];{P};f[∞])

(C′′∞, b′′∞) (C′′n , b′′n;{P};f[∞]) (C′′n , b′′n;{P};g[∞])
p′ q′

loop decomposition

~a ~a

~a1

~a2 ~a2

~a

≤↓*c ≈↓*c
≤↓*c

≈↓*c

≥ ↓*c
≥↓*c ≥↓*c

R

R−1

Compatibility with ▶: Follows directly by lemmas 4.4 and 4.10.

One-way termination sensitive: Given (p, q) ∈ R and p = (C ′,w′ ∶ skip), show

that q ⇒ (C ′,w′ ∶ skip). From the definition of R, p≤↓*c(C, b;{P}; f[∞]) and

(C, b;{P}; g[∞])≤↓*c q.
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By lemma 4.6 (termination sensitivity), (C, b;{P}; f[∞]) also terminates in state

(C ′,w′ ∶ skip). Because f[∞] terminates, there must exist an n for which f[n] will

terminate in the same state (lemmas 4.26 and 4.28): (C, b;{P}; f[n]) ⇒ (C ′,w′ ∶
skip). Furthermore, e must have become false and, by the loop invariant: C#w ⊧
¬e ∧ P ⋆ true.

We append g[∞] to the execution of b and f[n] so that (C, b;{P}; f[n];g[∞]) ⇒
(C ′,w′ ∶ {P}; g[∞]). Because e is false under w′, (C ′,w′ ∶ {P}; g[∞]) is equivalent

to (C ′,w′ ∶ skip) by the termination property of g; thus (C ′,w′ ∶ {P}; g[∞]) also

converges to state (C ′,w′ ∶ skip) (by lemma 4.6). Finally, q will also converge to the

same halted state by lemma 4.7.

p q

(C,b;{P}; f[∞]) (C,b;{P}; f[n]) (C,b;{P}; f[n];{P}; g[∞]) (C,b;{P}; g[∞])
(C′,w′∶{P}; g[∞])

(C ′,w′ ∶ skip)
=

≤↓*c
≈↓*c

≤ ↓*c

≈↓*c

R

Corollary 4.2 (Contrasimulation of loop folding). If (f, e,P )≈↓*c, (g, e,P )≈↓*c,
{P}; f[1] ≡≈↓*c {P}; g[1], and C#w ⊧ P ⋆ true, then (C,w ∶ f[∞])≈↓*c(C,w ∶ g[∞]).

Proof. Follows by theorem 4.3 and lemma 4.1.

Theorem 4.4 (Bisimulation of loop folding). If (f, e,P )≈↓*, (g, e,P )≈↓*, {P}; f[1] ≡≈↓*
{P}; g[1], and C#w ⊧ P ⋆ true, then (C,w ∶ f[∞])≈↓*(C,w ∶ g[∞]).

Proof. The proof is nearly identical to theorem 4.3 (but uses theorem 4.2 for loop

decomposition).

Corollary 4.3 (Soundness of T-FoldLoop). If
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� {P}; f[1] ≡≈↓*c {P}; f[1];{P};

� ∀u. {¬e ∧ P}; f[u] ≡≈↓*c {¬e ∧ P};

� {P}; f[∞] ≡≈↓*c {P}; f[∞];{¬e ∧ P}; and

� ∀n ≥ 1, u. {P}; f[n� 0];f[u] ≡≈↓*c {P}; f[n� u],
then {P};while e do f[1] ≡≈↓*c {P}; f[∞].
Proof. By definition 43, our goal is to prove (C,w ∶ {P};while e do f[1]) ≈↓*c(C,w ∶
{P}; f[∞]). We create a second loop schema, (g, e,P )≈↓*c where

g = {P};while e max � do f[1]

by lemma 4.25. The rest follows by theorem 4.3.

Corollary 4.4. We can prove a slightly weaker version of T-While (for unbounded

loops) by loop folding. If e1 ⊣⊢ e2 and t1 ≡≈↓*c t2, then while e1 do t1 ≡≈↓*c
while e2 do t2.

Proof. Follows by theorem 4.3 and lemma 4.25 for f = {true};while e1 max � do t1

and g = {true};while e2 max � do t2.

4.5 Parallelization

We will not go into much detail explaining why the parallelization transformation,

T-SeqPar, is sound for the imperative language we present in this chapter. The

interesting and challenging concepts behind the proof have already been explored in

chapter 3, and we also refer the reader to our Coq proofs2 for even more detail.

Between the proof in Section 3.5 and here, the main differences are due to the

model of observation. In particular, we use resources (i.e. permissions on channel

2http://www.cs.princeton.edu/~cbell/par
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endpoints) to delineate between what can and cannot be observed rather than a

syntactic mechanism to restrict the scope of a channel. However, when checking

if an observation can be made on a channel, there is little meaningful difference

between doing so at the site of channel scope restriction (a la CCS-Seq) or parallel

composition (via S-ParL and S-ParR). Other differences between CCS-Seq and our

imperative language do not have much impact on the proofs.

Definition 49 (Commitment to termination). We write p ⇓ when for any ~a and p′,
p

~aÔ⇒ p′ implies p′ ⇒ (C ′′,w′′ ∶ skip) for some C ′′ and w′′. In other words, any state

derived from p can terminate; p cannot become stuck, but this does not preclude

divergence.

Definition 50 (Termination entailment). We write [P1] t1 ↓↓ [P2] t2 when for any ~a,

C ′, w′
1, and b′2, if the left thread terminates via (C,w ∶ [P1] t1 ∥ [P2] t2) ~aÔ⇒(C ′,w′

1 ∶
skip ∥ b′2), then the right thread can also terminate: (C ′,w′

1 ∶ skip ∥ b′2) ⇓. In other

words, as t1 and t2 run in parallel (while possibly communicating), if one terminates

then so may the other.

Definition 51 (Termination entailment of threads). We write b1 ↓↓C b2 when for any

~a, C ′, w′
1, and b′2 such that worlds-of(b1) ⊕ worlds-of(b2) is defined, if the left thread

terminates via (C,w ∶ b1 ∥ b2) ~aÔ⇒(C ′,w′
1 ∶ skip ∥ b′2), then the right thread can also

terminate: (C ′,w′
1 ∶ skip ∥ b′2) ⇓.

Definition 52 (Cotermination). We write [P1] t1 ↕↕ [P2] t2 when [P1] t1 ↓↓ [P2] t2
and [P2] t2 ↓↓ [P1] t1.

Definition 53. State p ensures that P holds upon termination, written p #P , if for

any p▶ ~aÔ⇒(C ′,w′ ∶ skip), it is the case that C ′#w′ ⊧ P ⋆ true. We write b #P when

(C, b) #P for all C.

Lemma 4.30. If (C1, b1)≤↓*c(C2, b2;{P}), then (C1, b1) #P .
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Proof. If (C1, b1) terminates, then by termination-sensitivity, (C2, b2;{P}) must ter-

minate in the same state; this ensures that P will hold in the final state.

Lemma 4.31. If (C, b) #P , then (C, b)≈↓*(C, b;{P}).

Proof. We show that {(p, q) ∣ ∃C, b. p = (C, b) ∧ q = (C, b;{P}) ∧ (C, b) #P} ∪ ≈↓* is

a termination sensitive bisimulation that is compatible with ▶. The interesting case

is when p = (C,w ∶ skip) and q = (C,w ∶ skip;{P}), where (C,w ∶ skip) #P ensures

C#w ⊧ P ⋆ true and thus (C,w ∶ skip)≈↓*(C,w ∶ {P}).
Theorem 4.5. If (C, (b1 ∥ b2); [P3] t3 ∥ [P4] t4) aÐ→(C ′, b′), then either

� one of the threads takes a step: there exists b′1 and b′2 such that b′ =
(b′1 ∥ b′2); [P3] t3 ∥ [P4] t4 and (C, b1 ∥ b2) aÐ→(C ′, b′1 ∥ b′2); or

� the threads join: there exists w1, w2, and w such that b1 = w1 ∶ skip, b2 = w2 ∶
skip, w1 ⊕w2 = w, C ′ = C, and b′ = w ∶ skip;[P3] t3 ∥ [P4] t4.

Theorem 4.6. If (C, (b1;t3) ∥ (b2;t4)) ~aÔ⇒(C ′, b′), and b1 #P3; b2 #P4; b1 ↓↓C b2;

b2 ↓↓C b1; recvs(b1;t3) ∩ recvs(b2;t4) = ∅; writes(b1;t3) ∩ freevars(b2;t4) = ∅; and

freevars(b1;t3) ∩writes(b2;t4) = ∅, then either

� (C, b1 ∥ b2) ~aÔ⇒(C ′, b′1 ∥ b′2) and b′ = (b′1;t3) ∥ (b′2;t4) for some b′1 and b′2; or

� (C ′, b′) ⇒ p′′ and (C ′, (b1 ∥ b2);[P3] t3 ∥ [P4] t4) ~aÔ⇒ p′′ for some p′′.

Theorem 4.7 (Soundness of T-SeqPar). If

� t1 and t2 terminate together:

[P1] t1 ↕↕ [P2] t2;

� the right threads can only communicate with the left:

P1 ⋆P2 ⊢ owns(freechans(t2;t4))⋆ true;

� the left and right threads do not attempt to receive from the same channel:

recvs(t1;t3) ∩ recvs(t2;t4) = ∅;

� only read-only variables are shared:

writes(t1;t3) ∩ freevars(t2;t4) = ∅ and freevars(t1;t3) ∩writes(t2;t4) = ∅; and
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� the termination of t1 and t2 respectively satisfies P3 and P4:

{P1}; t1 ≡≈↓*c {P1}; t1;{P3} and {P2}; t2 ≡≈↓*c {P2}; t2;{P4},

then ([P1] t1 ∥ [P2] t2);([P3] t3 ∥ [P4] t4) ≡≈↓*c [P1] (t1;t3) ∥ [P2] (t2;t4).

4.6 Hoare triples

Many of the rewrite rules in our framework are guarded by assertions that help

ensure the transformation preserves the program behavior. Although not a focus of

this thesis, making effective use of our framework to construct correct optimizations

requires a significant amount of program analysis.

It is possible to perform this static analysis at the level of rewrite rules; table 2.1

lists a selection of rules that would support this. Our framework also supports a

Hoare logic analysis, which is advantageous because it is well known and is used by

many existing static analyses tools.

The following is how a Hoare triple (that respects the frame rule of separation

logic) could be defined in our system.

Definition 54 (Hoare triple). ⊢{P} t {Q} iff for all C, w, and F , if C#w ⊧ P ⋆F
and (C,w ∶ t) ~aÔ⇒(C ′, b′), then either:

� (C ′, b′) → (C ′′, b′′) for some C ′′ and b′′, (safety)

� or b′ = w′ ∶ skip and C ′#w′ ⊧ Q⋆F . (the postcondition holds)

Lemma 4.32. If ⊢{P} t {Q}, then {P ⋆F}; t ≡≈↓* [P ] t ∥ [F ] skip.

Lemma 4.33. If ⊢{P} t {Q} and C#w ⊧ P ⋆ true, then (C,w ∶ t) #Q.

Lemma 4.34 (Soundness of T-Hoare). If ⊢{P} t {Q}, then {P}; t ≡≈↓*c {P}; t;{Q}.

Proof. Definition 53 is directly implied by ⊢{P} t {Q} (lemma 4.33). This lemma

thus holds by lemmas 4.3 and 4.31.
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It is clear to see that definition 54 implies T-Hoare. In fact, we could substantially

weaken definition 54 by not requiring safety, and T-Hoare would still be sound.

4.7 Coq Proof Development

Our initial attempts to prove loop parallelization targeted a richer imperative lan-

guage than we present in this thesis; it included a shared heap and first class channels

(with a concurrent separation logic for passing resources across channels). In this ini-

tial proof development, we mechanically proved parallelization and loop folding, in

addition to many rewrite rules, in the Coq Proof Assistant. (But loop folding was

only proved with respect to bisimulation in this setting.)

However, the shared heap and first class channels complicated many of our proofs,

while having little interesting impact on the correctness of loop parallelization. Fur-

thermore, we had not developed a strong theory behind parallelization at this point,

and thus our definition of program equivalence was ad-hoc and growing more difficult

to work with. Thus our next project was to focus on just parallelization in order to

understand why bisimulation did not hold and whether the definition we had come

up with was a suitably strong notion of equivalence. Our results from this effort were

presented in chapter 3.

The language and other definitions presented in this chapter are the result of

refocusing our previous work in order to more narrowly concentrate on loop paral-

lelization, which has resulted in a new (and much cleaner) Coq proof development.

The main differences are the removal of a shared heap and first class channels, and

a simplification of the definition of program equivalence, which uses the proof devel-

opment from chapter 3. We also reformulated the operational semantics as a labeled

transition system in order to more cleanly align with the bisimulation theory.
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In this new setting, we have mechanically proved the soundness of loop folding

with respect to both bisimulation and contrasimulation, in addition to numerous other

rewrite rules. However, we have not had the time to port the proof of parallelization

to this setting, so the results Section 4.5 are backed only by our original Coq proof

development and by chapter 3. We do not expect any significant challenges in porting

the proof.
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Chapter 5

Conclusion & Future Work

5.1 Concluding remarks

In this thesis, we have explored the theory of loop parallelization as performed by

optimizations such as DOALL, DOACROSS, and DSWP. Our two key contributions

are the development and proof of soundness for a loop folding transformation and

parallelization, which work together to enable loop parallelization. To demonstrate

the effectiveness of these results, we created a framework of rewrite rules and used

them to implement instances of DOALL, DSWP, and DOACROSS. Most of this work

has been formalized and proved in the Coq Proof Assistant.

5.1.1 Loop folding

Our loop folding transformation converts a program with arbitrary structure, but

which behaves like a single loop, into a while loop. Unlike traditional loop transfor-

mations, loop folding

� is not restricted to while loops,

� does not assume that the loop is counted (like a “for” loop),

� does not assume termination (it may be infinite or nondeterministic),
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� uses extensional reasoning (e.g., it does not require the program to have a

particular syntax), and

� is compositional – the side conditions are written as smaller transformations.

To describe a program that “behaves like a loop”, the user provides a program

that is parameterized by a bound on the maximum number of iterations that it may

execute, a loop condition, and a loop invariant. Then the user proves four properties,

which are stated as transformations:

� if the loop condition is false, then the program does nothing and terminates;

� if the unbounded program terminates, then the loop condition will be false;

� if the loop invariant holds, then it will continue to hold after any number of

iterations are run; and

� if the program appears in sequence with itself, each bounded by different itera-

tions, then the programs can be combined into one that is bounded by the sum

of the two iterations.

We have mechanically proved the loop folding transformation sound with respect

to both (weak) bisimilarity and contrasimilarity. The main challenge was that we

needed to reason about the behavior of a program that is parameterized by a finite

bound of iterations, but without allowing the equivalence relation to assume that

the bound is finite. In response, we developed iteration barriers, which are a special

bound on the number of iterations that a loop may execute before becoming stuck.

Then, we required our equivalence relation to be compatible with ▶, so that every

equivalence must continue to hold after removing the iteration barrier.

5.1.2 Parallelization

Our second contribution is the development and proof of soundness of a parallelizing

transformation. The statement of the transformation is unique in that it targets a
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sequential composition of two parallel programs, then combines them together – this

allows it to be used with loop folding.

While developing the parallelization transformation, we discovered that it does

not hold for any of the bisimulation relations that have been used with verified com-

pilers, nor any other well known variation of bisimulation in the presence of internal

choice. In response, we created a model semantics based on CSS to study the issue

and develop an equivalence relation that does work. Our first result was eventual

simulation, which holds for parallelization but cannot be made both transitive and

symmetric in a straightforward manner. Then we discovered an obscure relation,

called contrasimulation, that is implied by eventual simulation, is a congruence for

the imperative language we are studying, and yet maintains the strong properties that

make bisimulation relations desirable to use. Without internal choice, contrasimula-

tion is equivalent to bisimulation.

5.1.3 Loop parallelization

Our loop folding and parallelization transformations compose together to create a

loop-parallelizing transformation. To demonstrate its effectiveness, we wrote down a

set of high-level rewrite rules to serve as an “API” for transforming programs, with

the goal in mind of using these transformations to implement various [parallelizing]

optimizations, such as DOALL, DOACROSS, and DSWP.

By proving each rule in this framework sound with respect to contrasimulation

(which we did for many of the rules, particularly loop folding and parallelization;

see Section 2.6 for a summary), any optimization implemented using the framework

will be correct by construction. Using rewrite rules on high level program syntax

in order to implement optimizations has been done before, but it is still an unusual

approach: existing implementations of automatic DOALL, DOACROSS, and DSWP

optimizations work on control flow graphs instead.
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Working at such a high level allowed us to focus on developing the theory and

proofs. We believe the results of this thesis can be applied to a lower level, unstruc-

tured, language (like an assembly language, LLVM bytecode, or control flow graphs).

On the other hand, targeting a high level language makes the framework more ac-

cessible to users, raising the possibility of allowing programmers to interact with the

compiler to correctly optimize their programs by hand.

5.1.4 Coq proofs

Most of our proofs have been mechanically check by the Coq Proof Assistant. Sec-

tions 2.6, 3.6.1 and 4.7 discuss these results in further detail.

5.2 Future work

5.2.1 Divergence sensitivity

We would like to further strengthen our results by incorporating Dockins’ and van

Glabbeek’s formulation of divergence sensitivity [11, 42]. This would be particularly

important for loop folding because it deals with potentially diverging loops; we need

to be careful not to introduce or remove such behavior. Adapting their definition from

branching bisimulations to weak bisimulations by replacing → with⇒+, the definition

of divergence sensitivity follows:

Definition 55 (Divergence). D is a divergence when for any p ∈ D,

� p⇒+ p′ and p′ ∈ D for some p′.
Program p diverges if there exists a divergence D such that p ∈ D.

Definition 56 (Divergence sensitivity). R is one-way divergence sensitive iff for any

(p, q) ∈ R,
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� if p ∈ Dp and Dp is a divergence, then there exists a divergence Dq such that

q ∈ Dq and ∀q′ ∈ Dq. ∃p′ ∈ Dp. (p′, q′) ∈ R.

Our definition of program equivalence with respect to contrasimilarity (defini-

tions 43, 46 and 47) would then be adjusted to require that R and R−1 also be

one-way divergence sensitive.

We have already made some progress in this direction: many of the simpler rewrite

rules have been proved sound with respect to divergence sensitivity. We have also

informally proved divergence sensitivity (by hand) for loop folding. However, it is a

subtle proof that warrants mechanizing, which we have not yet completed.

Furthermore, it is not yet clear whether definition 56 holds for parallelization, or

whether is is fully compatible with contrasimulation. We may need adjust it so that,

like contrasimulation, the relation (R) is flipped.

5.2.2 Incorporation into an existing verified compiler

The first step to incorporating the results of this thesis into any compiler will be

to implement an automatic loop parallelizing optimization that uses our framework.

Automation is discussed further in Section 2.5.7.

Our choice to use a high-level structured language in this thesis could make com-

bining our results with an existing verified compiler quicker and easier by allowing us

to target the front end of the compiler. After applying all parallelizing optimizations,

we would then translate the language into a concurrent language that is already sup-

ported by a verified compiler. Two candidates are Concurrent C Minor (VST) [1, 40]

and CompCertTSO [40], which have verified compilers based on CompCert. The last

step would be to verify the translation with respect to the verified compiler’s defini-

tion of correctness, and then compose this definition with contrasimulation. However,

composing the two correctness criteria would likely be nontrivial.
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