
Infinite CacheFlow in Software-Defined Networks

Naga Katta
Princeton University

Jennifer Rexford
Princeton University

David Walker
Princeton University

Abstract
Software-Defined Networking (SDN) enables firewalls, load
balancers, routers, traffic monitoring, and other functional-
ity to be built using commodity hardware. While Ternary
Content Addressable Memory (TCAM) enables OpenFlow
switches to process packets at high speed based on multiple
header fields, today’s commodity switches support just thou-
sands to tens of thousands of rules. To realize the potential
of SDN on this hardware, we need efficient ways to sup-
port the abstraction of an infinite switch. To do so, we define
a new hardware-software architecture called CacheFlow. In
designing CacheFlow, we observe that any infinite SDN
switch must satisfy four core criteria: (1) elasticity (combin-
ing the best of hardware and software switches), (2) trans-
parency (supporting native OpenFlow semantics faithfully),
(3) fine-grained rule caching (placing popular rules in the
TCAM, despite dependencies on less-popular rules), and (4)
malleability (to enable incremental changes to rule caching
as traffic demands change). We propose a new architec-
ture called CacheFlow that, unlike previous caching systems,
supports all these properties while rewriting, reordering and
caching important switch rules using a novel set of algo-
rithms specifically tailored for the challenges and opportu-
nities in SDN.

1. Introduction
Software-Defined Networking (SDN) enables a wide range
of applications by applying fine-grained packet-processing
rules in the switches [1]. While a routing application may
forward packets based on the destination prefix, more so-
phisticated applications (e.g., access control and server load
balancing) match on multiple packet-header fields. Even ba-
sic routing in transit backbones, large data centers, and IPv6
networks would require many rules, and finer-grained poli-
cies push the number of rules even higher.

Hardware switches implement these rules using Ternary
Content Addressable Memories (TCAM) [2] that perform
a parallel lookup on wildcard patterns at high speed. To-
day’s commodity switches support just 2K to 20K rules [3].
High-end backbone routers have much larger forwarding ta-
bles, but typically match only on destination IP prefix (and
VLAN tag or MPLS label). Continued advances in switch
design will undoubtedly lead to larger rule tables [4], but

the cost and power requirements for TCAMs will continue
to limit the granularity of policies SDNs can support. For
example, TCAMs are 400X more expensive [5] and 100X
more power-consuming [6] per Mbit than the RAM-based
storage in servers.

On the surface, software switches built on commod-
ity servers are an attractive alternative. Modern software
switches achieve a high rate of packet processing [7–9]
(about 39Gbps per port) and store large rule tables in main
memory (and the L1 and L2 cache). However, software
switches have relatively limited port density, and handling
multi-dimensional wildcard rules in software is difficult.
While software switches like Open vSwitch cache exact-
match rules in the “fast path” in the kernel, the first packet
of each microflow undergoes slower user-space processing
(i.e., a linear search) to identify the highest-priority match-
ing wildcard rule [10].

In this paper, we present the design and implementation
of an architecture called CacheFlow, which presents unmod-
ified SDN applications with the illusion of an infinite rule
table using a new set of rule-caching algorithms tailored for
SDNs. While rule caching dates back to early work on IP
route caching [11–14] and to some recent work on TCAMs
[15, 16], SDNs introduce several new challenges and oppor-
tunities:

Elasticity: An infinite switch architecture must use all
available resources efficiently. CacheFlow combines the fast
processing of hardware switches with the large rule-table
space of software. While Cache-Flow logically sits between
the controller and the hardware switch, the system could
easily run on the controller, a local agent on the hardware
switch, or an adjacent software switch. Moreover, flow space
may be partitioned so that multiple software switches can
handle cache misses for a single hardware switch. The direct
control of network switches offered by SDN makes it partic-
ularly easy to manipulate rule caches in the hardware switch
and flexibly forward cache misses to an appropriate backup
switch.

Transparency: SDN applications can add or remove
rules, can query traffic counters associated with each rule
and may expect the switch to automatically delete rules
when a timeout expires. Thus, any rule-manipulation done
by a caching abstraction has to be transparent with respect to

these expectations. Thus, CacheFlow cannot combine rules
that have related patterns, as is common in many rule com-
pression techniques [17], without losing the traffic counters.
In addition, CacheFlow must also maintain traffic statistics
for rules not currently in the cache, to return the correct re-
sponses to queries. CacheFlow must also approximate hard
and soft timeouts.

Fine granularity: SDN applications can generate rules
with overlapping patterns in multiple dimensions. For exam-
ple, a rule matching on source port 80 overlaps with another
rule matching on destination IP prefix. Unfortunately, over-
lapping rules form dependency chains and complicate the
process of placing select rules. Unable to break these depen-
dences, past caching systems were forced to install rules in
groups, even though many rules handle little traffic. Our new
algorithms “splice” these dependency chains to cache much
smaller groups of rules. Here again, we take advantage of the
rule priority structure in an SDN flowtable – we install ad-
ditional rules at the appropriate priority to maximally splice
dependency chains and direct minimal traffic to a backup
software switch.

Malleability: A key benefit of SDN is the ability to adapt
rapidly to change. Any caching system must be equally
dynamic. When the application makes incremental changes
in forwarding policy, or the load shifts and the caching policy
must change, an effective SDN cache must react quickly
and minimize churn. This demands new “pay-as-you-go”
algorithms that can make incremental adjustments to the rule
cache, without unnecessarily rearranging other rules. Our
algorithm by virtue of the compositional nature of its cache
construction, adds(removes) sets of rules to(from) the cache
with minimal disruption to the rest of the cache.

Related Work Most of the IP route caching literature [11–
14] do not deal with complex packet classification patterns.
The closest work related to our research is by Dong et.
al. [15] which discusses a caching technique for ternary
rules but it requires special hardware and does not preserve
counters due to rule compression. Difane [16] uses auxiliary
TCAMs as secondary caches to the switches already in the
network and hence is a TCAM-hungry solution.

Summary: CacheFlow is a new architecture and a new
set of algorithms that implement the abstraction of an infinite
switch for software-defined networks. The following sec-
tions explain the architectural design (Section 2), the cache-
update algorithms (Section 3) and the techniques our proto-
type uses to preserve transparency (Section 4).

2. CacheFlow
CacheFlow is a transparent caching layer that logically sits
between a SDN controller and a collection of OpenFlow
switches. Many deployment scenarios are possible, includ-
ing CacheFlow running on the controller, a CPU on the hard-
ware switch, or servers near the hardware switch.

Figure 1: CacheFlow architecture

2.1 CacheFlow Architecture
CacheFlow makes a collection of hardware and software
switches act like a single switch with an infinite rule ca-
pacity. CacheFlow consists of CacheMaster module that re-
ceives OpenFlow commands from the controller, and uses
the OpenFlow protocol to distribute rules to the underly-
ing switches, as shown in Figure 1. The switches form a
cache hierarchy, where packets that experience a cache miss
in one layer are forwarded in the data plane to a switch at the
next layer for handling. That is, the CacheMaster is a purely
control-plane component (with control sessions shown as
dashed lines), and the OpenFlow switches forward packets
in the data plane (as shown by the solid lines).

Figure 1 shows a simple configuration where one hard-
ware switch connects directly to a sharded cache consisting
of multiple software switches. On the one hand, the hard-
ware switch provides high port density, high throughput, and
a modestly-sized TCAM. On the other hand, the software
switches provide high rule capacity at reasonable through-
put to handle “cache misses” in the hardware switch. Hav-
ing multiple software switches allows CacheFlow to “shard”
both traffic and rules over multiple switches, to achieve
higher bandwidth and rule capacity. Packets stay in the “fast
path” in the data plane, reducing the performance penalty for
a cache miss.

CacheFlow is designed to be elastic. The cache hierar-
chy can be wide (with multiple switches at each layer) or
tall (with multiple layers). Having multiple switches in a
layer results in a larger rule capacity with higher aggregate
throughput. Having multiple layers consumes fewer ports on
the hardware switch, while offering high rule capacity for a
“long tail” of unpopular rules. The CacheMaster can decide
dynamically how many switches to have at each layer, in-
cluding a mix of hardware and software switches, and how
to partition the rules.

2.2 CacheFlow Deployment Options
CacheFlow could run in a variety of locations, with different
performance and scalability trade-offs:

On a CPU in the hardware switch: CacheFlow could
run on a processor that is part of the hardware switch. In this
scenario, CacheFlow would consist of a CacheMaster and a
single software switch that handles all cache-miss packets.
This has the advantage of low latency on cache misses, and
not requiring any additional hardware components; however,
cache-miss throughput is limited by the processing and I/O
capacity of the local processor.

Near the hardware switch: CacheFlow could run on a
collection of servers and switches near the hardware switch.
Running on separate components gives CacheFlow more
processing and I/O resources, and allows those resources to
expand and contract dynamically. Running close to the hard-
ware switch minimizes the bandwidth overhead and latency
for handling cache misses.

On the SDN controller: CacheFlow could run on the
logically-centralized controller. This has the advantage of
not requiring additional hardware components, at the ex-
pense of higher latency and overhead on cache misses.
Running CacheFlow at the controller also enables network-
wide optimizations, such as pushing rules into the multiple
switches along a path, in response to shifts in traffic loads.

More generally, CacheFlow could have a hybrid de-
ployment that splits functionality between the SDN con-
troller and components on/near each hardware switch. The
logically-centralized portion of Cache-Flow would perform
the network-wide optimizations for pushing rules, while the
local logic on or near the switches would minimize latency
and bandwidth overhead for handling cache misses. Explor-
ing the range of options is an interesting avenue for future
research.

3. Cache Update Algorithm
In this section, we present CacheFlow’s algorithm for plac-
ing rules in a TCAM with a limited space. But the same algo-
rithm can be easily extended to describe a way to recursively
place rules in a cache hierarchy.

The input is a prioritized list of n rules R1, R2, . . . , Rn,
where rule Ri has higher priority than rule Rj for i < j.
Each rule has a match and action, and a weight wi that
captures the volume of traffic matching the rule. The cache
update algorithm must compute a prioritized list of k rules
to store in the TCAM1. The objective is to maximize the
sum of the weights for traffic that “hits” in the TCAM, while

1 Note that our problem formulation does not simply install rules on cache
misses. Instead, CacheFlow makes decisions based on traffic measurements
over the recent past. This is important to defend against cache-thrashing
attacks where an adversary generates low-volume traffic spread across the
rules. In practice, CacheFlow should measure traffic over a time window
that is long enough to prevent thrashing, and short enough to adapt to
legitimate changes in the workload.

Figure 2: Example rule table

processing “hit” packets according to the semantics of the
original prioritized list.

3.1 Computing Rule Dependencies
At regular intervals, the update algorithm decides which
rules to cache in the TCAM, based on their weights. This
problem is easy to solve if the rules have disjoint matches
(e.g., microflow rules with no wildcarded bits). In this case,
each rule is independent, and a greedy algorithm could sim-
ply cache the k rules with the highest weights.

However, the greedy algorithm is incorrect when rules
have dependencies. Figure 2 shows an example with six
rules that match on a ternary format. If the TCAM can store
four rules (k = 4), we cannot select the four rules with
highest weight (i.e., R3, R4, R5, and R6), because packets
that should match R1 (with pattern 0000) would match R3

(with pattern 000*); simiarly, some packets (with pattern
11**) that should match R2 would match R4 (with pattern
1*1*). That is, rules R3 and R4 depend on rules R1 and R2,
respectively.

To solve the above problem, one could define a depen-
dency that exists between any two rules if the matches in
the rules intersect. In that case, for a given rule R, the de-
pendent set is given by all the rules that have a non-empty
intersection with it. When a rule R is chosen to be cached in
the TCAM, the corresponding dependent set is also packed
along with the R and sent to the TCAM.

However, this simple definition does not capture all the
rule dependencies in a ternary rule table. According to the
previous definition of a dependency, only the match 10*1
in rule R6 overlaps with the match 1*1* in R4, making R6

dependent only on R4. However, R6 also depends on R2

(even though the matches of R2 and R6 do not intersect),
because the match 11** overlaps with that of R4 (1*1*). If
the TCAM stored only R4 and R6, packets that should match
R2 would inadvertently match R4. Therefore one needs to
carefully define what constitutes a dependency so that such
cases are handled properly.

The algorithm in Figure 3 captures all such dependencies
properly. Rather than considering the dependencies for each
rule separately, our algorithm constructs a single dependency
graph, as shown in Figure 4(a). To find the rules that depend
on R, the algorithm scans the rules Ri with lower priority

// Add dependency edges

procedure add_dependency(P:Policy) {
deps = ∅;

// p.o : priority order

for each R in P in descending p.o

reaches = R.match;

for each Ri in P with Ri.p.o < R.p.o

in descending p.o:

if (reaches ∩ Ri.match) != ∅ then

deps = deps ∪ {(R,Ri)};
reaches = reaches - Ri.match;

return deps;

}

Figure 3: Building the dependency graph

than R in order of decreasing priority. As the algorithm
proceeds, it keeps track of the set of packets that can reach
each successive rule (the variable reaches). For each such
new rule, it determines whether the predicate associated with
that rule intersects the set of packets that can reach that
rule. If it does, there is a dependency. Moreover, the rule Ri

will occlude lower-priority rules. Hence, we subtract Ri’s
predicate from the current reaches set.

3.2 Caching Under Rule Dependencies
We first present a simple strawman algorithm to build intu-
ition, and then present a new algorithm that avoids caching
low-weight rules. Each rule is assigned a “cost” correspond-
ing to the number of rules that must be installed together and
a “weight” corresponding to the number of packets expected
to hit that rule. For example, R5 depends on R1 and R3,
leading to a cost of 3, as shown in Figure 2. In this situation,
R5 and R6 hold the majority of the weight, but cannot be in-
stalled simultaneously on the switch, as installing either has
a cost of 3 and together they do not fit. The best we can do
is to install rules R1, R2, R4 and R6. This maximizes total
weight, subject to respecting all dependencies. In order to do
better, we must restructure the problem.

The current problem, however, of maximizing the total
weight can be formulated as a linear integer programming
problem, where each rule has a variable indicating whether
the rule is installed in the cache. The objective is to max-
imize the sum of the weights of the installed rules, while
installing at most k rules; if rule Rj depends on rule Ri, rule
Rj cannot be installed unless Ri is also installed. The in-
teger programming problem can be solved with an O(nk)
brute-force algorithm but is computationally expensive for
large k. The current problem, however, can also be reduced
to a Budgeted maximum coverage problem [18], which has
an efficient greedy approximation algorithm. At each stage,
this greedy algorithm chooses a set of rules that maximizes
the ratio of combined rule weight to combined rule cost, until

the total cost reaches k. This algorithm achieves an approxi-
mation ratio of 1− 1

e .
If one follows this greedy algorithm for the example

rule-table, one selects R6 first (and also the dependent set
{R2, R4} along with it) and then R1 which brings the total
cost to 4. Thus the set of rules that will now be in the TCAM
are R1, R2, R4 and R6. We refer to this algorithm as the
dependent-set algorithm.

3.3 Avoiding Caching Low-Weight Rules
Respecting rule dependencies can lead to high costs, espe-
cially if a high-weight rule depends on a large number of
low-weight rules. For example, consider a firewall that has
a single low-priority “accept” rule that depends on many
high-priority “deny” rules that match relatively little traffic.
Caching the one “accept” rule would require caching many
“deny” rules. We can do better than past algorithms by al-
lowing the set of rules to be modified in various semantics-
preserving ways instead of simply attempting to pack the
best set of existing rules in to the available cache space—this
is the key observation that leads to our superior algorithms.
In particular, our algorithm truncates the dependency chain
by creating a small number of new rules that cover many
low-weight rules and send packets to CacheFlow.

For the example in Figure 4(a), instead of selecting all
dependent rules for R6, we calculate new rules that cover
the set of packets that would otherwise incorrectly hit R6.
The extra rules direct these packets to CacheFlow, thereby
truncating the dependency chain. For example, we can in-
stall a high-priority rule R∗

4 with match 1*1* and action
forward to L1 cache,2 along with the low-priority rule
R6. Similarly, we can create new rule R∗

3 to trucate de-
pendencies on R5. Extending the policy with these new
rules allows the two high-weight rules R5 and R6 to in-
habit the cache simultaneously, as shown in Figure 4(b). By
truncating dependencies, we avoid installing higher-priority,
low-weight rules like R2 and can make significantly better
caching decisions.

In general, to carry out the algorithm, we must calculate
the cover set for each rule R. To do so, we find the immedi-
ate ancestors of R in the dependency graph and replace the
actions in these rules with a forward to L1 cache ac-
tion. For example, the cover set for rule R6 is the rule R∗

4 in
Figure 4(b); similarly, R∗

3 is the cover set for R5. The rules
defining these forward to L1 cache actions may also
be merged, if necessary.3 The cardinality of the cover set de-
fines the new cost value for each chosen rule. This new cost
is strictly less than or equal to the cost in the dependent set
algorithm. The new cost value is much less for rules with

2 This is just a standard forwarding action out some port connected to the
cache.
3 To preserve OpenFlow semantics pertaining to hardware packet counters,
policy rules cannot be compressed. However, intermediary rules used for
forwarding cache misses to CacheFlow may be compressed, while still
tracking packet counters accurately.

(a) Dependent Set Algo.
(b) Cover Set Algo. (c) Dep. Set Cost

(d) Cover Set Cost

Figure 4: Dependent-set vs. cover-set algorithms (L0 cache rules in red)

long chains of dependencies. For example, the old depen-
dent set cost for the rule R6 in Figure 4(a) is 3 as shown in
the rule cost table whereas the cost for the new cover set for
R6 in Figure 4(b) is only 2 since we only need to cache R∗

4

and R6. To take a more general case, the old cost for the red
rule in Figure 4(c) was the entire set of ancestors (in light
red), but the new cost (in Figure 4(d)) is defined just by the
immediate ancestors (in light red).

In this setting with cover sets, we can apply the same
greedy covering algorithm with the new cost metrics, and
achieve a higher hit rate in the cache. We refer to this version
as the cover-set algorithm.

To see how this algorithm performs against the dependent-
set algorithm, We evaluated both of them against a synthetic
firewall policy with 100K rules. The policy consists of ac-
cess control chains of depths ranging from 5 and 15. The
rules are randomly assigned traffic volume according to a
zipf distribution. Figure 5 shows the amount of traffic that
“hits” the TCAM (L0) cache as we vary the TCAM rule-
space (k). The cover-set algorithm consistently outperforms
the dependent-set algorithm by holding around 18% more
traffic in the dataplane while the cache size is increased
from 1% to 8% of the total number of firewall rules. The
cover-set algorithm achieves an 80% cache-hit rate with just
8000 TCAM rules.

3.4 Malleable Caching
A key property of the new algorithm for finding the optimal
set of cached rules is that each chosen rule and its cover set
can be added/removed independently of the rest of the cho-
sen rules. In other words, the set covers for two rules are eas-
ily composable and decomposable. This makes the cover-set
algorithm more malleable than the dependent-set algorithm.
For example, it is easy to incrementally run the cover-set al-
gorithm to find the new set of cached rules, when the traffic
weights change. But in the dependent-set algorithm, in or-
der to add or remove a rule R and its dependencies from the
TCAM, we have to be careful not to break the dependent
sets of other rules, which may have significant overlap. For
example, in Figure 4(d), the red rule and its cover set can be
easily added/removed without disturbing the blue rule and

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64

%
 C

ac
he

-h
it

tr
af

fic

% TCAM Cache Size

Dependent-Set Algo
Cover-Set Algo

Figure 5: Comparing % Cache hit Traffic

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000
Number of weights churned

OF command overhead during churn

Dependent-Set Algo
Cover-Set Algo

Figure 6: Comparing OpenFlow overhead

its dependencies whereas you need to do additional analysis
for such a composition to be possible in Figure 4(c).

Even after finding the exact changes to the TCAM rule-
table, the dependent-set algorithm may have to evict or add
entire chains all at once, whereas the cover-set algorithm can
update the TCAM with a small number of OpenFlow rules.
This can help avoid a large transient increase in cache-misses
during the update. It also decreases the control-plane band-
width and the TCAM policy update time. Continuing with
the experimental setup described before, Figure 6 shows the
number of OpenFlow rules that are affected when there is
churn in the traffic weights. Given an L0 TCAM of size
8K rules, the x-axis records the number m of rules that
have their weights changed. The y-axis records the number
of rules (including dependent rules) that must be replaced
due to the change in weights. The dependent-set algorithm
touches approximately 5× more rules than the cover-set al-
gorithm.

3.5 Handling Low Weight Traffic
The above algorithm computes the set of rules to cache in
the hardware switch. It also has to distribute traffic hitting
the uncached rules equally to the set of lateral L1 software
switches so that the cache misses are handled together by
them effectively. To do this, a post-processing stage scans
the final rule-cache (the red rules shown in Figure 4(b)),
and replaces each of the ”Fwd to L1” actions with an
appropriate ”Fwd to Li

1” action where Li
1 represents the

ith L1 software switch. This is done in such a manner that the
cumulative weight of traffic that is directed to these software
switches is equally balanced. The key insight is that traffic
matching every uncached rule hits a cover set rule of the
form R∗

j . Thus we assign the weight of an R∗
j rule to be

equal to the uncached traffic hitting it. Then we assign the
complete set of R∗

j rules to the set of Li software switches
in such a manner that the total weight of R∗

j rules is balanced
across these switches.

4. Preserving OpenFlow
Here, we give a brief overview of how to ensure transparency
when handling the OpenFlow messages.

(Un)installing rules: The CacheMaster receives the en-
tire set of FlowMod messages from the controller, stores
copies locally, runs the cache update algorithm, and dis-
tributes rules to the underlying switches in the cache hi-
erarchy. CacheMaster adds default rules on each switch to
handle cache misses. The CacheMaster installs three kinds
of rules in the hardware switch: (i) fine-grained rules that
apply part of the policy (a “hit”), (ii) coarse-grained rules
that forward packets to a software switch(a “miss”), and (iii)
coarse-grained rules that handle return traffic from the soft-
ware switches, similar to mechanisms used in DIFANE [16].
The hardware switch tags cache-miss packets with the in-
put port (e.g., using VLAN tags) so the software switches
can apply rules that depend on that information. The rules
in the software switches apply any “drop” or “modify” ac-
tions, tag the packets for proper forwarding at the hardware
switch, and direct the packet back to the hardware switch.
Upon receiving the return packet, the hardware switch sim-
ply matches on the tag, pops the tag, and forwards to the
chosen output port.

Rule timeouts: The controller may install rules with hard
timeouts (that expire after a fixed time) or soft timeouts (that
expire after a period of inactivity). However, in CacheFlow,
having the switches automatically delete rules could in-
terfere with the handling of rule dependencies. Instead,
CacheMaster installs rules with no timeouts, and simulates
the timeouts itself. For a hard timeout, the CacheMaster sets
a fixed timer; for a soft timeout, it periodically queries the
traffic statistics to see if the rule has been inactive since the
previous query.

Traffic statistics: CacheMaster maintains packet and
byte counts for each rule installed by the controller, up-

dating its local information each time a rule moves to a
different part of the cache hierarchy. Upon receiving a
FlowStatRequest query from the controller, CacheMaster
can retrieve the latest counts from the switch that currently
stores the rule, and can combine it with its own statistics.
Note that CacheMaster also needs to query the traffic coun-
ters to update the weights needed by the cache-update algo-
rithm4 Depending on the frequency of queries from the con-
troller, any polling CacheMaster does for the cache-update
algorithm may also retrieve the statistics for the controller.

Barriers: On receiving a Barrier message, a switch
must first complete all previous commands before executing
any subsequent commands. CacheMaster also implements
Barrier messages by making sure that the switch policy
till a barrier is pushed to the caches before proceeding to the
rules after the barrier. All the other messages (Handshakes,
Config request/change messages) are relayed directly to the
switch. Similarly, most of the other messages from the L0

switch (PortStatus, Echo) are relayed directly to the con-
troller.

Packet-in and Packet-out: Handling packetIn mes-
sages properly in the context of a multi-level cache requires
some care because a packetIn from an Li (i > 0) switch
to the controller should have the L0 inport in the message
structure. In this case, the CacheMaster copies the inport that
is encoded in the packet tag to the PacketIn message. If a
PacketIn message comes from the L0 switch, CacheMaster
sends it directly to the controller. All PacketOut messages
are sent to the L0 switch directly.

5. Conclusion
In this paper, we have introduced CacheFlow, a new archi-
tecture and set of algorithms designed to support the abstrac-
tion of an infinite switch in software-defined networks. In
order to make the abstraction efficient in the face of a large
number of rules, CacheFlow’s design is engineered to sup-
port the key properties of elasticity, transparency, fine gran-
ularity and malleability. As part of the design, we discuss
the challenges posed by these properties and explain how
to overcome them by exploiting the flexible network control
interface that a Software-Defined Network provides.

References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:
Enabling innovation in campus networks,” SIGCOMM CCR,
vol. 38, no. 2, pp. 69–74, 2008.

[2] “TCAMs and OpenFlow: What every SDN
practitioner must know.” See http://www.

sdncentral.com/products-technologies/

sdn-openflow-tcam-need-to-know/2012/07/, 2012.

4 Measurement sources like NetFlow or sFlo, could be used instead, if
available, to reduce the query overhead.

http://www.sdncentral.com/products-technologies/sdn-openflow-tcam-need-to-know/2012/07/
http://www.sdncentral.com/products-technologies/sdn-openflow-tcam-need-to-know/2012/07/
http://www.sdncentral.com/products-technologies/sdn-openflow-tcam-need-to-know/2012/07/

[3] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
“PAST: Scalable Ethernet for data centers,” in ACM SIG-
COMM CoNext, Dec. 2012.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding
metamorphosis: fast programmable match-action processing
in hardware for sdn,” in ACM SIGCOMM, 2013.

[5] “SDN system performance.” See http://pica8.org/

blogs/?p=201, 2012.

[6] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification
using extended TCAMs,” in IEEE ICNP, (Washington, DC,
USA), IEEE Computer Society, 2003.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy,
“RouteBricks: Exploiting parallelism to scale software
routers,” in SOSP, (New York, NY, USA), pp. 15–28, ACM,
2009.

[8] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A
GPU-accelerated software router,” in ACM SIGCOMM, (New
York, NY, USA), pp. 195–206, ACM, 2010.

[9] “Intel DPDK overview.” See http:

//www.intel.com/content/dam/www/

public/us/en/documents/presentation/

dpdk-packet-processing-ia-overview-presentation.

pdf, 2012.

[10] “The rise of soft switching.” See http://networkheresy.

com/category/open-vswitch/, 2011.

[11] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and
X. Huang, “Leveraging Zipf’s law for traffic offloading,” SIG-
COMM Comput. Commun. Rev., vol. 42, pp. 16–22, Jan. 2012.

[12] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting
route caching: The world should be flat,” in Passive and Ac-
tive Measurement, (Berlin, Heidelberg), pp. 3–12, Springer-
Verlag, 2009.

[13] D. Feldmeier, “Improving gateway performance with a
routing-table cache,” in IEEE INFOCOM, pp. 298–307, 1988.

[14] H. Liu, “Routing prefix caching in network processor design,”
in International Conference on Computer Communications
and Networks, pp. 18–23, 2001.

[15] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire speed
packet classification without TCAMs: A few more registers
(and a bit of logic) are enough,” in ACM SIGMETRICS, (New
York, NY, USA), pp. 253–264, ACM, 2007.

[16] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
flow-based networking with DIFANE,” in ACM SIGCOMM,
(New York, NY, USA), pp. 351–362, ACM, 2010.

[17] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A
systematic approach towards minimizing packet classifiers in
tcams,” IEEE/ACM Trans. Netw., vol. 18, pp. 490–500, Apr.
2010.

[18] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum
coverage problem,” Inf. Process. Lett., vol. 70, pp. 39–45, Apr.
1999.

http://pica8.org/blogs/?p=201
http://pica8.org/blogs/?p=201
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/dpdk-packet-processing-ia-overview-presentation.pdf
http://networkheresy.com/category/open-vswitch/
http://networkheresy.com/category/open-vswitch/

	Introduction
	CacheFlow
	CacheFlow Architecture
	CacheFlow Deployment Options

	Cache Update Algorithm
	Computing Rule Dependencies
	Caching Under Rule Dependencies
	Avoiding Caching Low-Weight Rules
	Malleable Caching
	Handling Low Weight Traffic

	Preserving OpenFlow
	Conclusion

