
SoftCell: Taking Control of Cellular Core Networks

Xin Jin†, Li Erran Li?, Laurent Vanbever†, and Jennifer Rexford†
Princeton University†, Bell Labs?

ABSTRACT
Existing cellular networks suffer from inflexible and expen-
sive equipment, and complex control-plane protocols. To
address these challenges, we present SoftCell, a scalable ar-
chitecture for supporting fine-grained policies for mobile de-
vices in cellular core networks. The SoftCell controller real-
izes high-level service polices by directing traffic over paths
that traverse a sequence of middleboxes, optimized to the
network conditions and user locations. To ensure scalability,
the core switches forward traffic on hierarchical addresses
(grouped by base station) and policy tags (identifying paths
through middleboxes). This minimizes data-plane state in
the core switches, and pushes all fine-grained state to soft-
ware switches at the base stations. These access switches ap-
ply fine-grained rules, specified by the controller, to map all
traffic to the appropriate addresses and tags. SoftCell guar-
antees that packets in the same connection traverse the same
sequence of middleboxes in both directions, even in the pres-
ence of mobility. Our characterization of real LTE work-
loads, micro-benchmarks on our prototype controller, and
large-scale simulations demonstrate that SoftCell improves
the flexibility of cellular core networks, while enabling the
use of inexpensive commodity switches and middleboxes.

1. INTRODUCTION
The rapid proliferation of cellular devices (e.g., smart

phones, tablets, and smart meters) is pushing existing
cellular networks to their limits. New technologies like
Long Term Evolution (LTE) are helping increase the
capacity of radio access networks, placing even greater
demands on cellular core networks to support many di-
verse devices and applications. Cellular core networks
carry traffic between base stations and the Internet on
behalf of user equipment (UE), as shown in Figure 1.
The network relies on specialized equipment such as
serving gateways (S-GWs) that provide seamless mobil-
ity when UEs move between base stations, and packet
gateways (P-GWs) that perform a wide variety of func-
tions like traffic monitoring and billing, access control,
and parental controls. The base stations, serving gate-
ways, and packet gateways communicate over GTP tun-
nels traversing a network of switches and routers.

Figure 1: LTE network architecture

Cellular core networks are remarkably complex and
inflexible [1, 2], an unfortunate legacy of their circuit-
switched origins. Centralizing critical data-plane func-
tionality at the boundary with the Internet forces all
traffic to flow through the packet gateway—including
device-to-device traffic and local Content Distribution
Network (CDN) services within the same cellular net-
work. With so much functionality in one box, it is not
surprising that packet gateways are complex and ex-
pensive, and force carriers to buy functionality they do
not need. Carriers cannot “mix and match” capabilities
from different vendors (e.g., a firewall from one vendor,
and a transcoder from another), or “scale up” the re-
sources devoted to a specific function [2, 3]. Since the
packet gateways are hard to change, carriers are forced
to replace them to deploy new functionality, even when
the existing equipment suffices for most purposes.

To make matters worse, growing link speeds and more
diverse network policies will put even greater strain on
packet gateways in the future. Cellular networks can
apply customized policies based on a wide variety of
subscriber attributes (e.g., the cell-phone model, the
operating-system version, the billing plan, options for
parental controls, whether the total traffic exceeds a us-
age cap, and whether a user is roaming), as well as the
application (e.g., transcoding for video traffic, caching
for Web traffic, and exemption from usage caps for ap-
plications that pay the carrier on the user’s behalf) [2].
For example, the carrier may direct traffic for older

cell phones through an echo-cancellation gateway, video
traffic through a transcoder during times of congestion,
and all traffic through a firewall, while applying differ-
ent monitoring policies depending on the billing plan,
usage cap, roaming status, and the application.

Rather than perform all these functions at the Inter-
net boundary, we argue that cellular providers should
adopt a network design more akin to modern data cen-
ters. The network should consist of a fabric of simple
core switches, with most functionality moved to low-
bandwidth access switches (at the base stations) and
a distributed set of middleboxes that the carrier can
expand as needed to meet the demands. These middle-
boxes could be dedicated appliances, virtual machines
running on commodity servers [3], or simply packet-
processing rules installed in the switches [4, 5]. A logically-
centralized controller can direct traffic through the ap-
propriate middleboxes, via efficient network paths, to
realize a high-level service policy (e.g., directing a UE’s
video traffic through a transcoder and a firewall).

Cellular networks raise unique scalability challenges,
compared to data-center and enterprise networks. Fine-
grained policies can easily lead to an explosion in the
data-plane state needed to direct traffic through the
right middleboxes. This is especially true for the large
volume of “north-south” traffic arriving from the Inter-
net. In addition, stateful middleboxes require that all
traffic in the same connection traverses the same mid-
dleboxes, even when a UE moves from one base station
to another. The switches need to forward packets dif-
ferently based on multiple factors (e.g., the UE and the
application), which typically requires expensive TCAM
(Ternary Content Addressable Memory) for packet clas-
sification. However, the merchant silicon chipsets used
in commodity switches have just a few thousand to tens
of thousands of TCAM entries. (See Table 2 in [6].)
Supporting much larger packet classifiers would signifi-
cantly increase the cost of the core switches.

To address these challenges, we present SoftCell, a
scalable architecture for supporting fine-grained poli-
cies for mobile devices in cellular core networks. The
SoftCell controller realizes high-level service polices by
directing traffic through a sequence of middleboxes, op-
timized to the network conditions and UE locations.
To ensure data-plane scalability, the core switches for-
ward traffic on hierarchical addresses (grouped by base
station) and policy tags (identifying middlebox paths).
SoftCell pushes fine-grained packet classification to the
access switches, which can be implemented easily in
software. These access switches apply fine-grained rules,
specified by the controller, to map UE traffic to the pol-
icy tags and hierarchical addresses. To ensure control-
plane scalability, a local agent at the base station caches
the service policy for each attached UE, to install rules
in the access switch without involving the controller.

The SoftCell controller guarantees that packets in the
same connection traverse the same sequence of middle-
boxes (policy consistency), and that bidirectional traf-
fic traverses the same middleboxes in both directions
(policy symmetry), even in the presence of mobility.
SoftCell has an asymmetric edge architecture that does
not require sophisticated packet classification of return
traffic arriving at the gateway switches. SoftCell either
embeds the policy tags in the UE IP address and port
number (essentially “piggybacking” the information in
the packets sent to the Internet), or caches them at the
gateway (in a simple Network Address Translation ta-
ble). This ensures return traffic flows through the right
middleboxes, without requiring any support from the
rest of the Internet. SoftCell also does not require any
changes to UEs or the radio access network hardware,
and can run on commodity switches and middleboxes.

In designing, prototyping, and evaluating SoftCell,
we make the following contributions:

Fine-grained service polices: SoftCell supports fine-
grained traffic steering based on applications and sub-
scriber attributes, as well as flexible traffic engineering
in selecting the network and middlebox paths.

Asymmetric edge design: SoftCell places most func-
tionality at the many, low-bandwidth access switches,
allowing the core network to use commodity hardware
for the Internet gateway and other core switches.

Scalable data plane: SoftCell minimizes data-plane
state in the core switches through multi-dimensional ag-
gregation by policy tags, base station IDs, and UE IDs,
and an algorithm for selecting policy tags.

Scalable control plane: To ensure control-plane scal-
ability, access switches run local agents that cache ser-
vice policies for the attached UEs, and the controller
isolates the access switches from core topology changes.

Policy consistency and symmetry: SoftCell ensures
that all traffic in the same TCP or UDP connection tra-
verses the same sequence of middleboxes in both direc-
tions, even in the presence of mobility.

Realistic performance evaluation: We evaluate the
scalability our architecture based on traces from a large
LTE deployment, micro-benchmarks on a prototype con-
troller, and large-scale simulation experiments.

We believe SoftCell significantly improves the flexi-
bility of cellular core networks, while enabling the use
of inexpensive commodity switches and middleboxes.

2. SOFTCELL ARCHITECTURE
A SoftCell network consists of commodity middle-

boxes and switches managed by a controller. The con-
troller supports flexible, high-level service policies by
computing and installing rules in the switches to di-

2

Figure 2: SoftCell network architecture

rect traffic through the right middleboxes and network
paths. To support flexible policies without compromis-
ing scalability, SoftCell capitalizes on the unique prop-
erties of cellular core networks—particularly the fact
that most traffic begins at the base-station edge, where
the small number of flows and the small uplink band-
width enable the use of flexible software switches.

2.1 SoftCell Core Network Components
The cellular core network connects to unmodified UEs

(via base stations) and the Internet (via gateway switches),
as shown in Figure 2. SoftCell does not require the
specialized network elements (e.g., serving and packet
gateways) or point-to-point tunneling (e.g., user-level
GTP tunnels) used in today’s LTE networks, as shown
earlier in Figure 1.

Middleboxes: SoftCell supports commodity middle-
boxes implemented as dedicated appliances, virtual ma-
chines, or packet-processing rules on switches. Each
middlebox function (e.g., transcoder, web cache, or fire-
wall) may be available at multiple locations. Many mid-
dleboxes require all packets in both directions of a con-
nection to traverse the same instance of the middlebox.

Access switches: Each base station has an access
switch that performs fine-grained packet classification
on traffic from UEs. Access switches can be software
switches (such as Open vSwitch [7]) that run on com-
modity server hardware. The server can also run a local
agent that caches service policies for attached UEs, to
minimize interaction with the central controller.

Core switches: The rest of the cellular core consists
of core switches, including a few gateway switches con-
nected to the Internet. These core switches perform
multi-dimensional packet classification at high speed,
but only for a few thousands or tens of thousands of
rules. We assume that the packet-processing hardware
can perform arbitrary wildcard matching on the IP ad-
dresses and TCP/UDP port numbers (as in today’s

merchant silicon), or can cache flat rules after process-
ing wildcard rules locally in software (as in DevoFlow [8]).
Our gateway switches are much cheaper than P-GWs.
They can be flexibly placed at many locations with ac-
cess to the Internet. SoftCell enables a “flatter’ ’ core
network architecture with more efficient routing than
current LTE does.

Controller: The controller computes and installs switch-
level rules that realize a high-level service policy, speci-
fied based on subscriber attributes and applications, by
installing paths that direct traffic through middleboxes.
The controller knows the attributes (e.g., billing plan,
phone model, and usage cap) of each UE, allowing the
controller to identify the appropriate clauses in the ser-
vice policy for handling the UE’s traffic.

The radio access networks consist of base stations
that connect to unmodified UEs using existing proto-
cols for mobility management, session management, and
authentication. Just as today, a UE retains a single IP
address as it moves between base stations in the same
cellular core network; any changes our cellular core net-
work makes to the IP addresses of packets are not visible
to the UEs. We do not change the radio hardware at
the base station, or common functions such as schedul-
ing, radio resource management, and paging. SoftCell
only changes how the base stations communicate with
the core network, by having the base stations coordinate
with the controller to enforce service policies. Similarly,
SoftCell does not require changes to commodity middle-
boxes, or any support from the rest of the Internet.

2.2 Flexible, High-Level Service Policies
The SoftCell controller directs traffic over network

and middlebox paths, based on the service policy. We
believe that carriers should specify service policies at a
high level of abstraction, based on subscriber attributes
and applications, and rely on the controller to han-
dle low-level details like ephemeral network identifiers,
the locations of middleboxes and switches, and applica-
tion identification. A service policy has multiple clauses
that each specify which traffic (specified by a predicate)
should be handled in what way (specified by an action):

Predicates: A predicate is a boolean expression on
subscriber attributes, application type, and cell proper-
ties. Subscriber attributes consist of device type, billing
plan, device capabilities, provider, etc. Application types
include web browsing, real-time streaming video, VoIP,
etc. Cell attributes include the air interface congestion
level, capacity, etc.

Service action: An action consists of a set of middle-
boxes, along with quality-of-service (QoS) and access-
control specifications. Specifying the set of middleboxes
as a partial order allows the carrier to impose con-
straints (e.g., firewall before transcoder). The action

3

Pri Predicates Service Action
1 provider = B Firewall
2 provider != A Drop
3 app = video ∧ plan = Silver [Firewall, Transcoder]

∧ congestion > 7
4 app = VoIP QoS = expedited-forward

∧ Firewall
5 ∗ Firewall

Table 1: Example service policy for carrier A

does not indicate a specific instance of each middlebox,
allowing the controller to select middlebox instances
and network paths that minimize latency and load.

Priority: The priority is used to disambiguate overlap-
ping predicates. The network handles traffic using the
highest-priority clause with a matching predicate.

Table 1 shows an example service policy that carrier
A applies to traffic arriving at UEs, where outbound
traffic follows the reverse sequence of middleboxes. Car-
rier A has a roaming agreement with carrier B, so the
first clause directs traffic from B’s subscribers through
a firewall. The second clause disallows traffic from sub-
scribers from all other carriers. The remaining clauses
specify the handling of A’s own subscribers, with all
traffic going through a firewall. The third clause indi-
cates that the video traffic to subscribers on the “silver”
billing plan must go through a transcoder (after the fire-
wall) when cell congestion at the base station exceeds
a target level. The fourth clause specifies that VoIP
traffic should be assigned to the “expedited forwarding”
service class to protect this application from a heavy
load of best-effort traffic. The fifth clause requires that
all other traffic goes through a firewall. In this paper, we
focus on middlebox service policies, since they require
more sophisticated traffic steering rather than simple
local processing to drop packets or mark the type-of-
service bits.

2.3 Scalability Design Principles
The main challenge in SoftCell is to support flexible

policies without compromising scalability. To motivate
our main design decisions, we briefly discuss the main
factors affecting the scalability of cellular core networks,
and perform back-of-the-envelope calculations based on
publicly-available statistics. We consider the design of a
typical cellular core network serving a large metropoli-
tan area with 1000 base stations [9].

Microflow rules in software access switches: A
modern base station can serve around 1000 UEs [10].
Not surprisingly, most UEs have just a handful of ac-
tive TCP or UDP connections at a time [11, 12]. A
base station with 1000 UEs, each with (say) 10 ac-
tive TCP/UDP connections, would have 10K simulta-
neously active flows. The backhaul link from the base
station to the rest of the core network has a capacity of

anywhere from 20 Mbps to 1 Gbps [9, 13]. A software
switch like Open vSwitch [7] can easily store 100K mi-
croflows in a hash table, and perform packet forwarding
at several gigabits per second [14], comfortably within
these requirements. Open vSwitch can install around
1K flow entries every 100 msec [15], able to support a
new flow from each UE every tenth of a second. These
results suggest that a software switch can easily keep
up with the number of flows, flow set up rates, and ag-
gregate bandwidth at each base station.

Exploit the dominance of UE-initiated traffic:
Most traffic in cellular networks is “north south”, as op-
posed to data-center networks where most traffic is“east
west”. What’s more, clients are usually (almost always)
UEs in these “north south” traffic, which means traf-
fic is first initiated from UEs. Actually, many cellular
operators deploy NATs and stateful firewalls to forbid
connections initiated from the Internet [16], as a way to
protect their networks. This factors into our solution to
place most key functionality at access switches.

Avoid fine-grained packet classifiers at the gate-
way switches: The gateway switches need to handle
the traffic for 1000 base stations, each with (say) 10K
active flows. This results in roughly 10 million active
flows—too large for fine-grained packet classification us-
ing commodity switch hardware. To leverage merchant
silicon with thousands to tens of thousands of TCAM
entries, the data-plane state in the core switches should
not be more than (say) an order of magnitude higher
than the number of base stations. As such, the gate-
way switches should not perform fine-grain packet clas-
sification to identify the base station or service action
associated with the incoming packets.

Exploit locality to reduce data-plane state in
the core switches: Fortunately, cellular core networks
have natural geographic locality, with the access switches
aggregating through metro networks to mobile switch-
ing offices, through the core to gateway switches. Since
a cluster of around 10 base stations connect (in a ring,
tree, or mesh topology) to the core [17], aggregating by
base station clusters can reduce data-plane state by an
order of magnitude. In addition, traffic for these base
stations would often traverse the same nearby middle-
box instances (to minimize latency and network load),
offering further opportunities to reduce the state re-
quired to support service policies.

Avoid fine-grained events at the controller: While
the access switches can maintain per-flow state, the con-
troller cannot manage the network at the flow level.
With an arrival rate of (say) 1-10K flows/second from
each of 1000 base stations, a controller that processes
microflows would need to handle 1M-10M events per
second, roughly doable with today’s SDN controller plat-

4

forms [18], but only at the expense of flow set-up latency
and high overhead. Instead, we believe the SoftCell con-
troller should only handle coarse-grained events, such as
UE arrivals at base stations or traffic requiring a new
service action.

Avoid updating access switches after topology
changes: In addition to satisfying the service policy,
the controller must response in real time to network
events such as link failures or congestion by comput-
ing and installing new rules in the switches. If the
controller also needed to update all 1000 base stations,
routing convergence time would suffer. Instead, routing
changes should be isolated to the core switches, without
updating the access switches.

The first four principles ensure that SoftCell has a
scalable data plane, as discussed in Section 3. Then,
Section 4 applies the last two principles to ensure the
control plane scales.

3. SCALABLE DATA PLANE
To ensure the scalability of the data plane, the ac-

cess switches apply fine-grained rules that map packets
to hierarchical addresses and coarse-grained policy tags,
with the help of the controller. The core switches di-
rect traffic based on these large aggregates. By selecting
base station address blocks and policy tags intelligently,
the controller can enable aggregation across nearby base
stations and related policy tags to further reduce the
state. To avoid classifying packets arriving from the
Internet, SoftCell either embeds the forwarding infor-
mation in the IP+TCP/UDP header (essentially “pig-
gybacking” the state in outgoing packets) or caches pol-
icy tags at the gateway. When a UE moves from one
base station to another, the controller installs tempo-
rary rules in the core switches to direct in-progress flows
to the new location while ensuring policy consistency.

The controller directs traffic over a policy path, a
sequence of switches and middleboxes from one edge
switch to another. To simplify the discussion, we ini-
tially assume that the controller handles the first packet
of each flow, similar in spirit to Ethane [4]. This clearly
would compromise the scalability of the controller—an
issue we address in Section 4.

3.1 Core: Multi-Dimensional Aggregation
Delivering different traffic over different sequences of

middleboxes is hard to achieve in a scalable way. Sup-
pose we have 1000 base stations, each with 1000 UEs,
where each UE has 1000 service policy clauses. In-
stalling a path for each service policy clause would lead
to 1 billion paths. If implemented naively, this would
generate a huge amount of rules in the switches. The
key idea to achieve scalability is to aggregate traffic on
multiple dimensions, i.e., policies, base stations, and

UEs.

Aggregation by policy (policy tag): Service poli-
cies defined on high-level attributes seem very compact.
However, subscriber attributes are not easily translated
or aggregated with network addresses. For example,
since UEs with “Silver Plan” can have a variety of IP
addresses, the third clause of the service policy in Ta-
ble 1 may require a rule for each flow in the worst case.
We could conceivably assign “Silver Plan” UEs IP ad-
dresses under the same subnet, allowing us to assign
one rule that matches on the IP prefix. However, we
cannot do this for every attribute, not to mention that
many service policies are defined on combinations of at-
tributes. To minimize the rules in core switches, we use
a policy tag to aggregate flows on the same policy path.
We associate packets with a policy tag at the access
switch, allowing core switches to forward packets based
on coarse-grained policy tags.

Aggregation by location (hierarchical IP address):
In many core switches, traffic destined to the same base
station would traverse the same output link, even if the
packets go through different middleboxes. By including
location information in the UE addresses, we can ag-
gregate traffic by IP prefix. Furthermore, cellular core
networks have a natural hierarchical structure. There-
fore, we assign each base station an IP prefix, called
base station ID, and IDs of nearby base stations can be
further aggregated into larger blocks. We can aggregate
even more by combining policy tags and IP addresses.
Suppose two policy paths going to two base stations
share a long path segment before branching. If assigned
the same policy tag, a single rule matching on the tag
can forward packets along the shared segment until the
branching point, where traffic divides based on the base
station prefix.

Aggregation by UE (UE ID): Packets also need a
UE identifier (UE ID) that differs from other UEs at
the same base station. For example, some middleboxes
(like intrusion detection systems) need a way to identify
groups of flows associated with the same UE which is
impossible if all flows for the same base station share
the same address. In addition, having a UE ID in each
packet enables optimizations for handling mobility, by
installing switch rules that forward in-progress flows to
the UE at its new location. Together, the base sta-
tion prefix and the UE ID form a hierarchical location-
dependent address (LocIP) for the UE. Using hierar-
chical “care of” addresses to handle mobility is an old
idea [19, 20]. However, prior work does not consider ser-
vice policies, or the techniques described in the next two
subsections to ensure policy symmetry and consistency.

Our key idea is to selectively match on the three di-

5

CS1

CS2 CS3

Transcoder1 Transcoder2

Switch	 Match	 	 Ac+on	

CS1	
10.0.0.0/16	 Forward	 to	 CS2	

10.1.0.0/16	 Forward	 to	 CS3	

10.0.0.0/16 10.1.0.0/16

CS1

CS2

Transcoder1

Transcoder2
Firewall

CS1 AS1

AS2

10.0.0.0/24

10.0.1.0/24

UE 1
10.0.0.7

(a) Location-based routing (c) Flexible policy (b) Mobility

AS1 AS2

10.0.0.0/16

AS1

10.1.0.0/16

AS2

Switch	 Match	 	 Ac+on	

CS1	 tag1	 Forward	 to	 Firewall	

CS2	
tag1,	 10.0.0.0/15	 Forward	 to	 Transcoder1	

tag1,	 10.2.0.0/15	 Forward	 to	 CS3	

CS3	 tag1,	 10.2.0.0/15	 Forward	 to	 Transcoder2	

Switch	 Match	 	 Ac+on	

CS1	

10.0.0.7	 Forward	 to	 AS2	

10.0.0.0/16	 Forward	 to	 AS1	

10.1.0.0/16	 Forward	 to	 AS2	

10.2.0.0/16

AS3

10.3.0.0/16

AS4

CS3

Handoff

Figure 3: Examples of multidimensional aggregation rules for traffic arriving from the Internet

mensions to maximize aggregation of data-plane state:
Location-based routing: In Figure 3(a), core switch

CS1 matches on the base-station prefix to forward traf-
fic to CS2 and CS3. CS2 and CS3 decide whether to
direct traffic to a transcoder based on the policy tag,
but CS1 does not need to base its forwarding decision
on the tag.

UE mobility: In Figure 3(b), CS1 forwards traffic to
base stations based on the destination IP prefix. When
UE1 moves from access switch AS1 to AS2, we install
a high-priority rule at CS1 to match on both the base
station prefix and the UE ID. This ensures that ongoing
flows reach UE1 at AS2 over a direct path.

Flexible policy: Figure 3(c) illustrates how to im-
plement the third clause in Table 1, using the tag“tag1.”
CS1 forward “tag1” packets to the Firewall1. Suppose
we assign AS1 and AS2 traffic to Transcoder1, and AS3
and AS4 traffic to Transcoder2. Then CS2 matches
on both the tag and the prefix (more precisely, aggre-
gated prefix of two base stations) to forward AS1 and
AS2 traffic to Transcoder1, and AS3 and AS4 traffic
to CS3. CS3 finally forwards AS3 and AS4 traffic to
Transcoder2.

3.2 Asymmetric Edge: Packet Classification
To minimize data-plane state in the core, we want to

classify packets and associate them with tags as they
enter the network. The access switch maintains mi-
croflow rules that, upon receiving a packet from a UE,
rewrite the IP address (to the location-dependent ad-
dress) and tags the packet with the policy tag. Simi-
larly, upon receiving packets from the core network, the
access switch rewrites the IP address back to the value
the UE expects. The access switch learns the appropri-
ate rules from the controller. For example, the access

1Traffic from middleboxes is identified based on the inport.

Public	 Prefix	 UE	 ID	 Base	 Sta5on	 ID	

Policy	 Tag	 Flow	 ID	

IP:

Port:

Figure 4: Embedding location and policy infor-
mation in source IP address and source port
number. Thus the information can be implic-
itly piggybacked in return traffic.

switch could send the first packet of each flow to the
controller, and have the controller install the appropri-
ate rule to direct the remaining packets over a chosen
policy path. For better control-plane scalability, the
controller can provide a local agent at the base station
with appropriate classifiers for handling any traffic from
this UE, as discussed in more detail in Section 4.

Performing fine-grain packet classification is accept-
able at the access switch, due to the low link speeds
and the relatively small number of active flows. How-
ever, gateway switches must handle orders of magnitude
more flows, and more flow-arrival events, so they should
not perform such fine-grained packet classification. As
such, we adopt an asymmetric design where the gate-
way switches can easily determine the appropriate IP
address and tag to use, in one of two ways:

Embedding state in packet headers: Rather than
encapsulating packets, as is commonly done in data-
center networks, we can embed the policy tag, base sta-
tion ID, and UE ID in the packet header. This ensures
that the return traffic carries these fields. For exam-
ple, we could encode the state as part of the UE’s IP
address (e.g., in IPv6), or a combination of the UE’s
IP address and TCP/UDP port number (e.g., in IPv4)
as shown in Figure 4. The access switch rewrites the
source IP address to the location-dependent IP address
(i.e., the carrier’s public prefix, as well as the base sta-

6

tion and UE IDs), and embeds the policy tag as part
of the source port. UEs do not have many active flows,
leaving plenty of room for carrying the policy tag in the
port-number field. With this embedding mechanism,
our three identifiers are implicitly “piggybacked” in re-
turn traffic arriving from the Internet2. The gateway
switch can simply make forwarding decisions based on
the destination IP address and port number of incoming
packets.

Caching state in gateway switches: Instead of em-
bedding state in packet headers, the gateway switch can
cache the state when forwarding outgoing packets, and
associate the state with the return traffic arriving from
the Internet. In this scheme, the gateway switch per-
forms network address translation, and caches the tag
in the process. In practice, network address translation
may be necessary anyway, if the cellular provider does
not have a large enough public IP address block to allo-
cate a unique address for each UE. While NATing does
introduce per-flow state, the gateway switch does not
need to contact the controller or translate the UE’s ad-
dress into the subscriber attributes. While the gateway
would need a larger table than the other core switches,
supporting microflow rules does not require expensive
TCAM or any sophisticated processing.

3.3 Policy Consistency Under Mobility
Seamless handling of device mobility is a basic re-

quirement for cellular networks. UEs move frequently
from one base station to another, and carriers have no
control over when and where a UE moves. In addi-
tion to minimizing packet loss and delay, carriers must
ensure that ongoing flows continue traversing the origi-
nal sequence of middleboxes (though not necessarily the
same switches), while reaching the UE at its new loca-
tion. Such policy consistency is crucial for traffic going
through stateful middleboxes, like firewalls and intru-
sion prevention systems. However, new flows should
traverse middlebox instances closer to the UE’s new lo-
cation, for better performance. As such, SoftCell must
differentiate between old and new flows, and direct flows
on the appropriate paths through the network

Differentiate between old and new flows: Incom-
ing packets from old flows have a destination IP address
corresponding to the UE’s old location, so these pack-
ets naturally traverse the old sequence of middleboxes.
SoftCell merely needs to direct these packets to the new
base station, which then remaps the old address to the

2This approach raises some security and privacy challenges.
Malicious Internet hosts may spoof policy tags and congest
network links or middleboxes, though these attacks can be
blocked using conventional firewalls. In addition, a UE ’s IP
address changes upon moving to a new base station, mak-
ing it easier for Internet servers to infer the UE’s location.
Network address translation can reduce these concerns.

UE 1

BS 1

BS 2

Transcoder1 CS1

CS3

CS2

CS4 Transcoder2

UE 1
Old Path

New Path

Tunnel Shortcut

Figure 5: Tunnels and shortcuts for old flows

UE’s permanent address. During the transition, the
controller does not assign the old location-dependent
address to any new UEs. For the traffic sent from the
UE, the old access switch has a complete list of mi-
croflow rules for the active flows. Copying these rules
to the new access switch ensures that packets in these
flows continue to be mapped to the old IP address, to
avoid a disruption in service. Each UE has a relatively
small number of active connections (say, 10), limiting
the overhead of copying the rules. To minimize hand-
off latency, the SoftCell controller could copy these rules
in advance, as soon as a UE moves near a new base sta-
tion.

Efficiently reroute the old flows: To handle ongo-
ing connections during mobility events, SoftCell main-
tains long-lived tunnels between nearby base stations,
as shown in Figure 5. These tunnels can carry traffic for
any UEs that have moved from one base station to an-
other. This“triangle routing”ensures policy consistency
and minimizes packet loss, at the expense of higher la-
tency and bandwidth consumption. The many short-
lived connections would not experience any significant
performance penalty. To handle long-lived connections
more efficiently, the controller can establish temporary
shortcut paths for directing traffic between the new base
station and the old policy path, as shown in Figure 5.
The controller can learn the list of active microflows
from the access switch at the old base station, and in-
stall rules in the core switches to direct incoming pack-
ets over the shortcut paths. A single UE may need mul-
tiple shortcuts, since different traffic may go through
different middleboxes3. As such, these shortcut paths
are created when a UE moves, and removed when a soft
timeout expires—indicating that the old flow has ended.

3.4 Rule Minimization in Core Switches
We have shown that we can reduce the number of

core switch rules by relying on multi-dimensional ag-
gregation. We now present an online algorithm that
performs policy path implementation in real time on a

3No short-cut paths are needed in the common case when a
UE moves to another base station in the same cluster, since
these base stations connect to the same core switch. In this
case, simply adding the microflow rules at this core switch
is sufficient.

7

per policy path basis. For ease of description, we first
describe our path implementation algorithm assuming
the policy path is a simple path, as shown in Algorithm
1. We then discuss how to deal with loops.

Simple tag reuse rules: To reduce the amount of
switch rules, we want to maximize the reuse of exist-
ing rules which match policy tags and base station IDs.
Our first step is to pick a tag that is already used in
switches where the new policy path includes. To ensure
correctness, we impose the constraint that different pol-
icy paths originated from the same destination access
switch to have different tags. Otherwise, we would not
be able to distinguish among different policy paths from
the same base station. As shown in Algorithm 1, we
enumerate the candidate tags and choose the tag that
results the minimal number of new rules we need to
install (line 1-8). It is possible that the candidate tags
are an empty set, in which case we will choose a random
unused tag (line 8).

Safe aggregation: When we iterate over each switch
for a given tag t along the policy path, for each switch,
we calculate how many rules we need to install with the
candidate tag and base station prefix (line 4). This is
done in method sw1.getNewRule(t, prefix, sw2). This
method performs safe aggregation. In particular, the
method looks at all switch rules with tag t with an ac-
tion that forwards to the same next-hop switch sw2.
It will try to aggregate the base station prefixes of the
rules. By safe aggregation, we mean that resulting pre-
fix of the aggregate rule contains the exact number of
component prefixes. For example, if there are three /16
base station prefixes, we can not aggregate them into a
/14 prefix. On the other hand, if we have all four com-
ponent prefixes, we can aggregate them into the /14
prefix. After picking the tag tag∗ to use, the algorithm
installs the path with the prefix and the tag. We only
need to install rules to switches where we cannot utilize
existing rules to reach the correct next hop (line 10-15).
We can install aggregate rules if the aggregation is safe
(line 13). Otherwise, we just install this rule (line 15).
Note that safe aggregation is done atomically to prevent
inconsistencies introduced by race condition.

Dealing with loops: Ideally, we should only compute
and install loop-free paths. However, due to the flexi-
bility of service policies and placements of middleboxes,
loops are sometimes unavoidable. For instance, in Fig-
ure 2, there is no way to avoid a loop in the path if a
service policy clause requires outbound video traffic to
go through a firewall before a video transcoder. A loop
that enters a switch twice but from different links can
be easily differentiated by input ports. However, a loop
that enters a switch twice from the same link is more
difficult to handle. In such a case, we use additional
tags to help switches make forwarding decisions. More

Algorithm 1 Install A New Policy Path

Input:
– path: the policy path to install
– prefix: the IP prefix of the base station
– candTag: the set of candidate tags for the base station
– usedTag: the set of tags used by the base station

Output: switch rules and a tag for this policy path

Step 1: Choose a tag to minimize new rules
1: for t in candTag do
2: newRule[t] = 0 . new rules needed if tag t is used
3: for (sw1, sw2) in path do
4: newRule[t]+ = sw1.getNewRule(t, prefix, sw2)

5: if candTag ! = ∅ then
6: tag∗ = arg min

t
{newRule[t]}

7: else
8: tag∗ = random{t|t /∈ usedTags}
9: usedTag = {tag∗} ∪ usedTag

Step 2: Install the path with the prefix and tag
10: for (sw1, sw2) in path do
11: if sw1.getNextHop(tag∗, prefix)! = sw2 then
12: if sw.canAggregate(tag∗, prefix, sw2) then
13: sw.aggregateRule(tag∗, prefix, sw2)
14: else
15: sw.installRule(tag∗, prefix, sw2)

specifically, we break a loop into two segments; each seg-
ment uses one tag for forwarding. At the switch that
connects these two segments, we install a rule to “swap”
these two tags. This approach can be generalized to
support nested loops.

4. SCALABLE CONTROL PLANE
Sending the first packet of every flow to the cen-

tral controller would introduce a high overhead. In-
stead, a local agent at each base station offloads part of
the control-plane functionality. In this section, we first
present the design of the local agent and then describe
how the control plane handles network dynamics.

4.1 SoftCell Local Agent
Each base station runs a local software agent equipped

with the computing power to conduct various manage-
ment tasks, including radio resource allocation for UEs.
The local agent caches a list of packet classifiers for each
UE at the behest of the central controller. The packet
classifiers are a UE-specific instantiation of the service
policy that matches on header fields in the packet and
identifies the appropriate policy tag, if a policy path al-
ready exists. When the UE arrives at the base station,
the controller computes the packet classifiers based on
the service policy, the UE’s subscriber attributes, and
the current policy tags. When the UE starts a new flow,
the local agent consults these classifiers to determine
the right policy tag for these packets, and installs a mi-
croflow rule in the access switch, similar to the “clone”
function in DevoFlow [8]. The local agent only contacts
the controller if no policy tag exists for this traffic—that

8

Access Switch Core Switch
Controller Controller w/ Local Agent

w/o Local Agent Central Controller Local Agent
UE Arrival Yes No Yes Yes Yes
Flow Arrival Yes Sometimes Yes Sometimes Yes
UE Handoff Yes Yes(Relevant) Yes Yes Yes
Topology Change No Yes(Relevant) Yes Yes No
Dynamic Policy No Yes(Relevant) Yes Yes No

Table 2: How network events affect data plane and control plane. Yes means the switch/controller is
involved in the event, No means not involved, Sometimes in Flow Arrival means only involved when
the policy path has not been installed, and Relevant means only relevant switches (a small number
of the whole) are involved. Central controller offloads most Flow Arrival events to local agents.

is, if the packet is the first traffic at this base station,
across all UEs, that need a particular policy path.

Let’s use an example to illustrate this. Suppose UE7
arrives at base station 1 with prefix 10.0.0.0/16. The
local agent first assigns a UE ID 10 to the UE. Now
UE7 is associated with the location-dependent address
10.0.0.10. The local agents also contacts the controller
to fetch a list of packet classifiers for this UE. Suppose
the list includes two packet classifiers:

1. match:dst port=80, action:tag=2
2. match:dst port=22, action:send-to-controller

When a packet with destination port 80 from UE7 ar-
rives, the access switch find any existing microflow rule,
and directs the packet to the local agent. The local
agent determines that the traffic matches the first packet
classifier. Since the policy path already exists, the lo-
cal agent simply installs a microflow rule in the access
switch which (i) rewrites the UE IP address to 10.0.0.10
and (ii) pushes“tag=2”to the source port number, with-
out contacting the central controller. Suppose another
packet arrives from UE7 with destination port 22. This
flow matches the second packet classifier and the action
is “send to controller”. This means the policy path to
base station 1 has not been installed yet. The local
agent sends a request to the central controller to install
a new policy path and returns the policy tag. Then, the
local agent can update the packet classifier and install
a microflow rule for the packets of this flow.

In this way, local agents cache UE-specific packet
classifiers and process most microflows locally, signifi-
cantly reducing the load on the controller.

4.2 Handling Network Dynamics
Next, we discuss how the control plane deals with

network dynamics, as summarized in Table 2. We al-
ready discussed UE and flow arrival in Section 4.1, and
UE handoff in Section 3.3 respectively. Here, we just
briefly discuss topology change and dynamic policy.

Topology change: When the network topology changes
(due to a link, switch, or middlebox failure), the con-
troller calculates and installs new paths for affected poli-
cies. In some cases, like a stateful middlebox crash with-
out any state saved, in-progress flows may experience

Figure 6: SoftCell controller

significant packet loss or even have to terminate. The
topology change is handled by the controller and only
affects relevant switches. There is no need to update all
access switches to change their flow table.

Dynamic policy: In addition to static policy, SoftCell
supports dynamic policy which change the policy path
during the lifetime of a flow. For example, when the air
interface of a base station is congested, the service pol-
icy may require video traffic to go through a transcoder.
In this case, the controller must install a new path for
video traffic. The central controller updates the policy
paths in the core network, based on the policy require-
ments, without changing the policy tags.

5. EXTENSIBLE CONTROLLER DESIGN
In addition to supporting service policies, carriers

need to manage their network and middlebox resources,
to minimize latency and balance load. Our controller
design cleanly separates traffic management from the
low-level mechanisms for installing rules and minimiz-
ing data-plane state, as shown in Figure 6.

Traffic-management layer: The traffic-management
layer computes policy paths through the switches and
middleboxes, to satisfy both the service policy and traffic-
management goals. This layer determines the service

9

attributes for a UE from the Subscriber Information
Base (SIB), and consults the service policy to compute
policy paths that traverse the appropriate middleboxes
and optimize traffic-management objectives.

Mechanism layer: The mechanism layer realizes the
policy paths by installing rules in the underlying switches,
using the techniques proposed in the previous two sec-
tions. This layer hides all the details of location-dependent
addresses, the encoding of policy tags, the path im-
plementation algorithm, and assuring path consistency
during mobility. The mechanism layer could also poll
traffic counters in the switches and aggregate them to
the level of policy tags to enable the traffic-management
layer to operate on a coarser-grain view of the traffic.

A modular controller design allows each layer to evolve
independently, to adopt new innovations in how to man-
age traffic and data-plane state, respectively.

6. PERFORMANCE EVALUATION
In this section, we demonstrate the scalability and

performance of our SoftCell architecture. First, we mea-
sure the workload that SoftCell would face in a typical
cellular core network by analyzing a trace from a large
LTE network. We then show that SoftCell is able to sus-
tain several times of this workload by performing micro
benchmark. Finally, we show that SoftCell can han-
dle thousands of service policy clauses on commodity
switches trough large simulations.

6.1 LTE Workload Characteristics
As a first step towards SoftCell deployment, we mea-

sured the workload of a real cellular network to un-
derstand the practical performance requirements of the
controller.

Dataset Description: We collected about 1TB traces
from a large ISP’s LTE network during one week in
January 2013. The dataset covers a large metropolitan
area with roughly 1500 base stations and 1 million mo-
bile devices (including mobile phones and tablets). The
trace is bearer-level and includes various events such as
radio bearer creation, UE arrival to the network, UE
handoff between base stations, etc. A radio bearer is
a communication channel between a UE and its asso-
ciated base station with a defined Quality of Service
(QoS) class. When a flow arrives and there is an ex-
isting radio bearer with the same QoS class, the flow
will use the existing radio bearer. Since radio bearers
timeout in a few seconds, it is possible that a long flow
may trigger several radio bearer creation and deletion.
Since we do not have flow-level information, we use ra-
dio bearers as an estimation of flow activity. We present
measurement results for a typical week day.

Network wide characteristics: Figure 7(a) shows
the CDF of UE arrival events and handoffs in the whole

network. A UE arrival event means a new UE first
attaches to the network, e.g., after a UE is powered
on. When a UE arrives at the network, the central
controller fetches the UE attributes from the SIB and
send the UE’s packet classifiers to the local agent. A
UE handoff event means a UE transfers from one base
station to another. Upon handoff, the controller has
to copy state from the old access switch to the new
access switch with the help of local agents, and set up
shortcuts for long flows. We do not account for UE
handoffs between cells of the same base station as they
do not cause forwarding changes. From the figure, we
can see that the 99.999 percentile of UE arrival and
handoff events per second are 214 and 280, respectively.
While each of these events requires the central controller
to contact local agents or update core switches, it is not
a problem as today’s commodity servers and software
switches can easily handle tens of thousands of these
events per second. Actually, even if we account for the
exponential growth of mobile data [21] (18 times in the
next five years), the workload can still be easily handled
by commodity servers and software switches.

Load on each base station: Figure 7(b) shows the
CDF of active UEs per base station. We see that a
typical base station handles hundreds of active UEs si-
multaneously, with a 99.999 percentile of 514. Figure
7(c) depicts the radio bearer arrival rate at each base
station. The number is relatively small, i.e. only 34
for the 99.999 percentile. As one radio bearer typically
carries a handful of concurrent flows [11, 12], we ex-
pect the actual flow arrival rate to be around several
hundred flows per second. These results imply that
the local agent has to keep state for several hundred
of UEs and process a maximum of tens of thousands
new flows per second. However, as most of the time
policy paths would have already been installed in the
network, new flow requests only require the local agent
to install packet classification rules at the access switch.
Again, tens of thousands of these events per second can
be easily handled by today’s software switches.

6.2 Controller Micro Benchmark
We have implemented a SoftCell control plane proto-

type on top of the popular Floodlight [22] OpenFlow
controller. The prototype implements both SoftCell
central controller and SoftCell local agent. To perform
topology discovery, we rely on the “TopologyService”
module provided by Floodlight. Since there is no sup-
port for middlebox discovery in Floodlight, we encode
middlebox placement and specification in a configura-
tion file that is provided to the controller. The local
agent fetches packet classifiers from the global controller
upon every new UE arrival, then it uses the packet clas-
sifiers to handle all the following flows from the new
UE. The communication between a local agent and the

10

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of events per second in the whole network

C
D

F

UE Arrival

Handoff

(a) Events in the whole network

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Number of active UEs per base station

C
D

F

(b) Active UEs per base station

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of radio bearer arrivals per second per base station

C
D

F

(c) Radio bearer arrivals per base station

Figure 7: Measurement Results of a LTE network

global controller is implemented with the Floodlight
REST API.

In the following, we perform micro benchmark on the
prototype, then we compare the results with the mea-
surement results obtained earlier to demonstrate the
ability of our controller to sustain the workload. We
benchmark the prototype using Cbench [23]. Cbench
emulates a number of switches, generates packet-in events
to the tested controller, and counts how many events
the controller processes per second (throughput). Each
test server has an intel XEON W5580 processor with 8
cores and 6GB of RAM.

Central controller performance: First, we evalu-
ate the throughput of the controller. Recall that the
controller has to send packet classifiers to local agents
when a UE attaches or moves to a base station. We use
Cbench to emulates 1000 switches and let these switches
keep sending packet-in events to the controller. From
the controller viewpoint, these packet-in events corre-
spond to packet classifier requests coming from 1000 lo-
cal agents. The controller then replies to these requests
with packet classifiers as fast as it can.

Our results show that the controller can process 2.2
million of requests per second with 15 threads. These
results clearly demonstrate that the SoftCell controller
can sustain the load of a large LTE network as, from
our measurement study, we know that only hundreds
to thousands of such events are encountered per sec-
ond. Also, these results are similar to the ones reported
by [18], the difference being mainly due to different set-
tings and platforms.

Local agent performance: Second, we evaluate the
throughput of the local agent. Recall that the local
agent needs to fetch packet classifiers from the controller
when processing events. The throughput of the local
agent therefore depends on how frequently it needs to
contact the controller which itself depends on the cache
hit ratio. Table 3 shows the evolution of the local agent
throughput in function of the cache hit ratio. A cache
hit ratio of 80% means that the local agent can handle
80% of events locally and need to contact the controller

Cache Hit Ratio 0% 20% 40% 60% 80% 100%
Throughput 1.8K 2.3K 3.0K 4.5K 8.6K 505.8K

Table 3: Effect of cache hit ratio on local agent
throughput

for the remaining 20% of the events. To measure the
throughput, we use Cbench to emulate the access switch
connected to the local agent and let it keep sending
packet-in events to the local agent. Upon the reception
of a packet-in event, the local agent performs a lookup in
its cache and contact the controller upon cache misses.
The local agent and the controller run on two separate
servers connected by the department LAN.

Again, the local agent throughput is sufficient to han-
dle the number of new flows measured at a base station
(a few to tens of thousands per second). Indeed, even
in the worst case where the local agent has to contact
the controller for every event, it is still able to handle
1.8K events per second. Not to mention that we can
also optimize the cache hit ratio, e.g., by prefetching
packet classifiers from the controller.

6.3 Large-Scale Simulations
We now demonstrate the scalability of SoftCell data

plane through large scale simulations. In particular, we
show that SoftCell only requires a few thousand TCAM
entries to support thousands of service policy clauses for
thousands of base stations.

Methodology: We generate hierarchical topology com-
posed following the description of cellular core networks
in [9, 17]. Each topology is composed of three layers:
access, aggregation and core. The access layer is com-
posed of a cluster of 10 base stations interconnected
in a ring fashion. Among these 10 base stations, two
of them is connected to the aggregation layer [17]. The
aggregation layer is composed of k pods, each of which is
composed of k switches connected in full-mesh. In each
pod, k/2 switches are connected to k/2 base station
clusters. The remaining k/2 switches are connected to
k/2 switches residing in the core layer. The core layer is
itself composed of k2 switches connected in full-mesh.

11

1000 2000 3000 4000 5000 6000 7000 8000
0

2500

5000

7500

10000

12500

15000

Number of service policy clauses

S
w

it
c
h

 t
a

b
le

 s
iz

e
 (

n
u

m
b

e
r

o
f

ru
le

s
)

Maximum

Median

(a) Effect of the number of service policy
clauses

4 5 6 7 8
0

500

1000

1500

2000

2500

Service policy clause length (number of middleboxes)

S
w

it
c
h
 t

a
b
le

 s
iz

e
 (

n
u
m

b
e

r
o
f

ru
le

s
)

Maximum

Median

(b) Effect of service policy clause length

1280 2500 4320 6860 10240 14580 20000
0

500

1000

1500

2000

2500

Network size (number of base stations)

S
w

it
c
h
 t
a
b
le

 s
iz

e
 (

n
u
m

b
e
r

o
f
ru

le
s
)

Maximum

Median

(c) Effect of network size

Figure 8: Large-scale simulation result. With multi-dimensional aggregation, SoftCell data plane is
able to support thousands of service policy clauses on commodity switches.

Each core switch is furthermore connected to a gate-
way switch. The whole topology is composed of 10k3/4
base stations. For example, k = 8 (resp. k = 20) gives
a network with 1280 (resp. 20000) base stations. For
each topology, we assume that they are k different types
of middleboxes. We randomly connect one instance of
each type in each pod composing the aggregation layer
and two instances of each type in the core layer. On
top of this topology, we generate n policy paths for each
base station to the gateway switch. A policy path tra-
verses m randomly chosen middlebox instances. Finally,
we measure the number of rules in each switch flow ta-
ble. In the base case, we consider n = 1000, m = 5
and k = 8. We vary k, n and m to show how the switch
state is affected by the number of service policy clauses,
the policy length and the network size, respectively.

Effect of number of service policy clauses: Fig-
ure 8(a) shows the maximum and median size of the
switch forwarding table with respect to the number of
service policy clauses. We can see that switch table
size increases linearly with the number of service policy
clauses with a small slope (less than 2). In particular,
to support 1000 service policy clauses (1.28 million pol-
icy paths!), switches store a median of 1214 rules and a
maximum of 1697 rules. Even to support 8000 service
policy clauses, the maximum table size is only 13682.
Observe that in practice ISPs may only need tens or
hundreds of service policy clauses, meaning that Soft-
Cell can be easily implemented on commodity switches.
The good performance of SoftCell data plane is a direct
consequence of its multi-dimensional aggregation (see
Section 3) capability. Indeed, even if a service policy
clause instantiates a policy path to each base station,
the corresponding forwarding entries can be aggregated
by prefix in the core layer provided that they traverse
the same middlebox instance like CS1 in Figure 3(c).
Similarly, in the aggregation layer, the forwarding en-
tries corresponding to paths traversing the same mid-
dlebox instance in a pod can be aggregated by prefix

like CS2 and CS3 in Figure 3(c). As such, to install
a new service policy clause, each switch only installs a
handful of new rules in average.

Effect of service policy clause length: Figure 8(b)
shows the switch table size with respect to the policy
length. When the maximum service policy clause length
is 8, the maximum switch table size is 1934. As before,
we see that switch table size increases linearly with the
length of the service policy clause with a small slope.
Indeed, when a service policy clause is longer, the pol-
icy paths traverse more middleboxes and require more
rules for forwarding. However, most affected switches
on the path only need one additional rule to match on
the tag; only a few switches are connected to multiple
middleboxes and therefore need to dispatch traffic to
multiple middlebox instances. Thus the switch table
size increases slowly across all policy clauses. Again,
observe that a service policy clause length of 8 (travers-
ing 8 middleboxes) is an aggressive number, while in
practice 4 or 5 is sufficient.

Effect of network size: Figure 8(c) shows the switch
table size with respect to the network size. We see the
table size decreases as the network grows. It is true that
with more base stations, we have to install more policy
paths for the same service policy clause, thus need more
rules. But remember that we can do aggregation on pol-
icy tags and base station prefixes, and when the network
increases, we have more switches. The increase of rules
is small due to aggregation and all rules are distributed
over the more switches. This leads to the result that
when the network grows, switches maintain smaller ta-
bles for the same number of service policy clauses.

In summary, SoftCell can support thousands of ser-
vice policy clauses in a network of thousands of base
stations with a few thousand TCAM entries, which can
be easily achieved by commodity switches. The gain
essentially comes from the ability to selectively match
on multiple dimensions.

12

7. DISCUSSION

Traffic initiated from the Internet: Although most
traffic in cellular networks today are initiated from UEs,
some carriers [24] also offer various public IP address
options. When a gateway switch receives packets des-
tined to these special public IP addresses, the gateway
will act like an access switch. It will install packet clas-
sifiers that translate the public IP addresses and the
port numbers (with which UEs provide service to the
Internet) to LocIPs and policy tags. Note that these
packet classifiers are not microflow rules and don’t re-
quire communication with the central controller for ev-
ery microflow. They are coarse grained (match on the
UE public IPs and port numbers) and can be installed
once.

Asymmetric Internet routing: For ease of descrip-
tion, we have assumed that flows leaving a gateway
switch return to the same gateway switch. However,
Internet routing is not guaranteed to be symmetric. If
gateway switches are not border routers peering with
other autonomous systems, border routers can be con-
figured to route return traffic to the same gateway switch.
Alternatively, the controller can install corresponding
switch rules for return traffic in all possible gateway
switches (mostly a small fraction of the total number of
gateway switches).

Exact rule matching switches: Our design and eval-
uation of SoftCell has assumed that switches can do
prefix-matching on IP address and port number. To
extend SoftCell to handle exact rule matching switches,
there are two cases. In the case we embed state in packet
headers, SoftCell requires a special gateway switch that
can copy location IP prefix and tag information from IP
headers to fixed fields (if exists and not used for other
purpose or append a header like MPLS) these switches
can match. This is a very simple function (copy some
bits from some fields to other fields) that doesn’t need to
store any state for execution and can be implemented
in hardware with line speeds. In the case of caching
state at gateway switches, our wild card rule can be in
the control plane of the gateway switches. We can use
mechanism like Devoflow [8] to install micro flow rules
on demand.

On-path middleboxes: The only problem with on-
path middleboxes is that it is unavoidable to traverse
them in some cases. If service policy specifies that cer-
tain flows can not traverse certain middleboxes (which
we have not considered in our service policy), then our
path computation has to avoid these middleboxes. In
case no feasible path exists, the policy path request will
be denied.

Radio resource control state tracking, paging and
roaming: Base stations keep track of UE Radio Re-

source Control State (RRC) state and the SoftCell con-
troller keeps track of the current location area of a UE.
Our handling of RRC state tracking and paging is in
principle the same as current LTE. Roaming traffic are
handled the same way as native traffic albeit with dif-
ferent service policy. How to obtain roaming subscriber
information for authentication, and how to do billing
etc are coordinated among controllers of carriers. We
do not discuss the details in this paper.

8. RELATED WORK
Our quest is to build a scalable architecture to sup-

port fine-grained policies for mobile devices in cellular
core networks. SoftCell differs from prior work on cellu-
lar network architecture, scalable data center, software
defined networks, and middleboxes.

Cellular network architecture: Recently work has
exposed the complexity and inflexibility of current cel-
lular data networks [1, 2]. There are several efforts [1,
2, 25, 26, 27] attempting to fix the problem. However,
only [27, 26] have concrete designs. OpenFlow Wire-
less [27] focuses on virtualizing data path and configu-
ration. [26] proposes an integration of OpenFlow with
LTE control plane so that GTP tunnels can be setup us-
ing OpenFlow. None of them present scalable network
architecture for fine-grained policy.

Scalable data centers: Our addressing scheme shares
some similarity to prior work on scalable data center.
VL2 [28] assigns servers IP addresses that act as names
alone. PortLand [29] assigns internal Pseudo MAC ad-
dresses to all end hosts to encode their position in the
topology. Nicira [30]’s virtual data center networks re-
quire intelligent Internet gateways. Our gateway switches
are much simpler because we “embed” policy and lo-
cation information in the packet header, rather than
relying on the controller to install fine-grain packet-
classification rules.

Software defined networks: Recent work [8, 31] im-
proves upon Ethane [4] to avoid maintaining per micro
flow state in switches. DevoFlow [8] which handles most
micro-flow rules in the data plane. DIFANE [31] dis-
tributes pre-installed OpenFlow wildcard rules among
multiple switches and ensures all decisions can be made
in the data-plane. Unlike SoftCell, they do not support
policy policy symmetry and policy consistency. SoftCell
architecture conforms to [32]. SoftCell distinguishes
edge from core. The core routes on tags and IP prefixes
that are different from the UE addresses. In addition,
SoftCell differentiates access edge from gateway edge.
SoftCell minimizes state kept at gateway switches.

Middleboxes: Prior work has focused on (1) middle-
box design, e.g. a single box with modular capabilities
that can implement a vast variety of services (for in-
stance, see [33, 34]); (2) mechanisms to enforce middle-

13

box traversals [35]. However, they do not present any
scalable network architecture for fine-grained policy.

9. CONCLUSION
Today’s cellular core networks are expensive and in-

flexible. In this paper, we propose SoftCell, a scalable
architecture for supporting fine-grained policies in cel-
lular core networks. SoftCell achieves scalability in the
data plane by (i) pushing packet classification to low-
bandwidth access switches and (ii) minimizing the state
in core network through effective, multi-dimensional ag-
gregation of forwarding rules. SoftCell achieves scalabil-
ity in the control plane by caching packet classifiers and
policy tags at local agents that update the rules in the
access switches. We further design a modular controller
that decouples high-level traffic management from the
low-level details of computing and installing switch-level
rules. Our prototype and evaluation demonstrate that
SoftCell significantly improves the flexibility of future
cellular core networks, while reducing cost through the
use of commodity switches and middleboxes.

10. REFERENCES
[1] B.-j. Kim and P. Henry, “Directions for future cellular

mobile network architecture,” First Monday, vol. 17, no. 12,
2012.

[2] S. Elby, “Carrier vision of SDN and future applications to
achieve a more agile mobile business,” October 2012.
Keynote address at the SDN & OpenFlow World Congress,
http://www.layer123.com/sdn-live.

[3] “Network functions virtualization: Introductory white
paper,” October 2012. http:
//www.tid.es/es/Documents/NFV_White_PaperV2.pdf.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude,
N. McKeown, and S. Shenker, “Rethinking enterprise
network control,” IEEE/ACM Trans. Networking, vol. 17,
August 2009.

[5] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based
server load balancing gone wild,” in Hot-ICE Workshop,
March 2011.

[6] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
“PAST: Scalable Ethernet for data centers,” in ACM
SIGCOMM CoNext Conference, December 2012.

[7] “Open vSwitch.” http://openvswitch.org/, 2013.
[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,

P. Sharma, and S. Banerjee, “DevoFlow: Scaling flow
management for high-performance networks,” in ACM
SIGCOMM, August 2011.

[9] M. Howard, “Using carrier ethernet to backhaul LTE.”
http://tinyurl.com/bdxl6wo, 2011. Infonectics Research,
White Paper.

[10] Alcatel-Lucent, “Alcatel-Lucent 9926 digital 2U eNode B.”
[11] A. Rahmati, C. Shepard, C. Tossell, A. Nicoara, L. Zhong,

P. Kortum, and J. Singh, “Seamless flow migration on
smartphones without network support,” IEEE Transactions
on Mobile Computing, 2013. To appear.

[12] Y. Zhang and A. Arvidsson, “Understanding the
characteristics of cellular data traffic,” in ACM SIGCOMM
CellNet Workshop, August 2012.

[13] L. Whitney, “Ericsson demos faster lte speeds of almost
1Gbps.” http://tinyurl.com/alml5vt.

[14] “The rise of soft switching, part II: Soft switching is
awesome,” June 2012. http://tinyurl.com/bjz8469.

[15] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore, “OFLOPS: An open framework for OpenFlow

switch evaluation,” in Workshop on Passive and Active
Measurement, March 2012.

[16] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An
untold story of middleboxes in cellular networks,” in ACM
SIGCOMM, August 2011.

[17] R. Nadiv and T. Naveh, “Wireless backhaul topologies:
Analyzing backhaul topology strategies,” Ceragon White
Paper, 2010.

[18] “Controller performance comparisons,” May 2011.
http://www.openflow.org/wk/index.php/Controller_
Performance_Comparisons.

[19] R. Ramjee, K. Varadhan, L. Salgarelli, S. Thuel, S.-Y.
Wang, and T. La Porta, “Hawaii: A domain-based approach
for supporting mobility in wide-area wireless networks,”
IEEE/ACM Trans. Networking, vol. 10, June 2002.

[20] A. Campbell, J. Gomez, and A. Valko, “An overview of
cellular IP,” in IEEE Wireless Communications and
Networking Conference, 1999.

[21] Cisco, “Cisco visual networking index forecast projects
18-fold growth in global mobile internet data traffic from
2011 to 2016.” http://tinyurl.com/7gn9x9s.

[22] “Floodlight OpenFlow Controller.”
http://floodlight.openflowhub.org/.

[23] “Cbench OpenFlow Controller Benchmark.”
http://www.openflow.org/wk/index.php/Oflops.

[24] AT&T, “Wireless IP options for mobile deployments.”
https://www.wireless.att.com/businesscenter/
solutions/connectivity/ip-addressing.jsp.

[25] L. Li, Z. Mao, and J. Rexford, “Toward software-defined
cellular networks,” in European Workshop on Software
Defined Networking (EWSDN), October 2012.

[26] J. Kempf, B. Johansson, S. Pettersson, H. Luning, and
T. Nilsson, “Moving the mobile evolved packet core to the
cloud,” in IEEE WiMob, October 2012.

[27] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang,
M. Chan, N. Handigol, N. McKeown, and G. Parulkar,
“Blueprint for introducing innovation into wireless mobile
networks,” in ACM VISA Workshop, August 2010.

[28] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“VL2: A scalable and flexible data center network,” in
ACM SIGCOMM, August 2009.

[29] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and
A. Vahdat, “PortLand: a scalable fault-tolerant layer 2 data
center network fabric,” in ACM SIGCOMM, August 2009.

[30] Nicira, “It’s time to virtualize the network: Network
virtualization for cloud data centers.”
http://tinyurl.com/c9jbkuu.

[31] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
flow-based networking with DIFANE,” in ACM
SIGCOMM, August 2010.

[32] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy,
A. Ghodsi, and S. Shenker, “Software-defined Internet
architecture: Decoupling architecture from infrastructure,”
in ACM SIGCOMM HotNets Workshop, October 2012.

[33] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella,
“Toward software-defined middlebox networking,” in ACM
SIGCOMM HotNets Workshop, 2012.

[34] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi,
“The middlebox manifesto: Enabling innovation in
middlebox deployment,” in ACM SIGCOMM HotNets
Workshop, 2011.

[35] D. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware
switching layer for data centers,” in ACM SIGCOMM,
August 2008.

14

