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Abstract

Geo-replicated, distributed data stores that support complex online applications, such

as social networks, strive to provide an always-on experience where operations always

successfully complete with low latency. Today’s systems sacrifice strong consistency and

expressive semantics to achieve these goals, exposing inconsistencies to their clients and

necessitating complex application logic. In this work, we identify and define a consistency

model—causal consistency with convergent conflict handling, or causal+—that is the

strongest achieved under these constraints.

We explore the ramifications of and implementation techniques for causal+ consistency

through the design and implementation of two storage systems, COPS and Eiger. COPS

is a key-value store that provides causal+ consistency. A key contribution of COPS is its

scalability, which can enforce causal dependencies between keys stored across an entire

cluster, rather than a single server like previous systems. Eiger is a system that provides

causal+ consistency for the rich column-family data model. The central approach in COPS

and Eiger is tracking and explicitly checking that causal dependencies between keys are

satisfied in the local cluster before exposing writes.

Our work also provides stronger semantics, in the form of read- and write-only transac-

tions, that allow programmers to consistently interact with data spread across many servers.

COPS includes the first scalable read-only transactions that can optimistically complete in

one round of local reads and take at most two non-blocking rounds of local reads. Eiger

includes read-only transactions with the same properties that are more general—they are

applicable to non-causal systems—and more fault-tolerant. Eiger also includes scalable

write-only transactions that take three rounds of local non-blocking communication and do

not block concurrent read-only transactions.

We implemented COPS and Eiger and demonstrate their performance experimentally.

The later of these systems, Eiger, achieves low latency, has throughput competitive with an
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eventually-consistent and non-transactional production system, and scales to large clusters

almost linearly.
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Chapter 1

Introduction

Large-scale data stores are a critical infrastructure component in many of today’s largest

Internet services. These services support many millions of concurrent users interacting with

many petabytes of data. The extreme scale of the infrastructure needed to support these

services provides a new environment to explore distributed storage designs. In contrast to

classical distributed storage systems that focus on local-area operation in the small, these

services are typically characterized by massive wide-area deployments across a few to tens

of datacenters, as illustrated in Figure 1.1.

In these systems each datacenter stores a full replica of the data, i.e., there is a copy of

each data item in each datacenter.1 For example, Facebook stores all user profiles, comments,

friends lists, and likes at each of its datacenters [30]. Replicating data in this way across

geographically distinct locations is called geo-replication. Geo-replication brings two key

benefits to web services: fault tolerance and low latency. It provides fault tolerance through

redundancy: if one location fails, other locations can continue to provide the service. It

provides low latency through proximity: users can be directed to and served by a nearby

location to avoid speed-of-light delays associated with cross-country or round-the-globe

communication.
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Figure 1.1: The general architecture of modern web services. Multiple geographically
distributed datacenters each have application clients in the web tier that read and write state
from a data store that is distributed across the datacenters, each of which distributes data
across a large number of servers.

The scale of the data stored at each datacenter is far too large to fit on a single physical

machine. Instead, it must be spread across clusters of 10s to 1000s of machines. A typical

technique for spreading the data is sharding, which puts disjoint subsets of data on different

servers. As a primitive example, Server 1 might store and serve user profiles for people

whose names start with ‘A’, Server 2 for ‘B’, and so on. Such sharding allows clusters

to scale in capacity and throughput. Adding additional machines to a cluster results in a

rebalancing of shards across the new larger set of servers. Each server in the new cluster is

then responsible for a smaller shard of the data. This allows the throughput and capacity

of a cluster to increase, or scale, with the addition of more machines. The storage systems

that support these large web services are thus doubly distributed systems. Replicas are

distributed geographically and each is itself distributed across many machines via sharding.

When users initiate a connection with a service they are directed to a nearby datacenter.

Within that datacenter users are a connected to one of many identical front-end web servers.

Front-ends serve requests by reading and writing data to and from storage tier nodes. (In

a three-tier web service the web server and application logic are considered separate tiers.

We describe a two-tier web service where they are combined in this dissertation, but all

discussion applies in the three-tier model as well with the application logic tier as our client.)

1Extending this work to settings where data may be only replicated over some subset of the datacenters is
an interesting avenue of future work.
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New York City Los Angeles Paris Tokyo Sydney
Princeton to 8ms 72ms 110ms 195ms 240ms

Table 1.1: Example round trip times from Princeton to servers in the named cities.

For the storage system, the clients are the front-end web servers that issue read and write

operations on behalf of the human users. When we say, “a client writes a value,” we mean

that an application running on a web or application server writes into the storage system.

In this dissertation, we address the problem of building a geo-replicated data store

targeted at applications that demand low latency. Such applications are common: Amazon,

EBay, and Google all claim that a slight increase in user-perceived latency translates into

concrete revenue loss [28, 29, 51, 65]. User-perceived latency consists of many components.

These include, at a minimum, the network delay to the service instance a user is connected

to; processing time on the front-end web server that accepts the user’s request; one or more

rounds of accesses to the storage system; additional processing time on the front-end web

server; the network delay for the response to travel back to the user; and user-side rendering

time. Performance goals vary across services, but typical targets are in the hundreds or low

thousands of milliseconds.

These low page-load-time targets help demonstrate the latency benefit of geo-replication:

when less time is used for user-to-service-and-back network delay (also called round trip

time or RTT) it easier to meet these targets. Table 1.1 shows some examples RTTs from a

user in Princeton to servers around the world. Clearly, the page load time for a Princeton

user will be much faster when accessing a service instance in New York City (8ms RTT)

than when accessing one in Los Angeles (72ms RTT) or Sydney (240ms RTT).

Given the low targets for page load time and the many components that add to it, it

is imperative that accesses to the data store have low latency. To this end, many storage

systems—including those described in this dissertation—serve all accesses from the local

replica of the data store. Reads return a current view of data from this replica; they do not

3



examine remote replicas. Writes are applied at this replica immediately; they return before

being applied at remote replicas.

The local-replica-only design helps ensure low latency by avoiding slow accesses to

remote replicas, which would take at least the RTT between datacenters. Table 1.1 is again a

good reference point for the magnitude of these RTTs that are avoided. The local-replica-

only design, however, precludes providing the strongest forms of consistency, which restricts

the execution of operations to make the data store more intuitive for users and programmers.

For instance, linearizability, a strong consistency model, specifies that a read issued after a

write returns must see the effects of that write. Linearizability is clearly incompatible with

the local-replica-only design because writes return after being written to their local replicas,

but a read issued to a different replica instantaneously after that write returns must see its

effects even though it is impossible for them to have propagated to the other replicas yet due

to the speed-of-light delay. Theoretical results formalize the trade-off between low latency

and the strongest forms of consistency [10, 52].

The strongest forms of consistency are also at odds with other desirable properties of

geo-replicated storage systems. The famous CAP theorem, conjectured by Brewer [17] and

proved by Gilbert and Lynch [37], shows it is impossible to create a system that is lineariz-

able, always available for reads and writes, and able to continue operating during network

partitions. As a result, many modern web services have chosen to embrace availability and

partition tolerance at the cost of linearizability [27, 35, 46]. We refer to scalable systems

with these three properties as ALPS systems, because they provide Availability, low Latency,

Partition-tolerance, and high Scalability. We define the ALPS properties more rigorously

and give an in-depth discussion of the trade-offs with consistency in Chapter 2.

Given that ALPS systems must sacrifice strong consistency (i.e., linearizability), we seek

the strongest consistency model that is achievable under these constraints. Such “stronger”

consistency is desirable because it makes systems easier for a programmer to reason about

and exposes fewer anomalies to end users of the system. In this paper, we consider causal

4



consistency with convergent conflict handling, which we refer to as causal+ consistency.

Many previous systems believed to implement the weaker causal consistency, such as

Bayou [59] and PRACTI [12] actually implement the more useful causal+ consistency,

though none do so in a scalable manner.

The causal component of causal+ consistency ensures that the data store respects the

causal dependencies between operations [47]. Consider a scenario where a user uploads a

picture to a web site, the picture is saved, and then a reference to it is added to that user’s

album. The reference “depends on” the picture being saved. Under causal+ consistency,

these dependencies are always satisfied. Programmers never need to reason about the

situation where they can get the reference to the picture but not the picture itself, unlike in

systems with weaker guarantees, such as eventual consistency.

The convergent conflict handling component of causal+ consistency ensures that replicas

never permanently diverge and that conflicting updates to the same key are dealt with

identically at all sites. When combined with causal consistency, this property ensures that

clients see only progressively newer versions of keys. In comparison, eventually consistent

systems may expose versions out of order. By combining causal consistency and convergent

conflict handling, causal+ consistency ensures clients see a causally-correct, conflict-free,

and always-progressing data store.

Beyond causal+ consistency, we seek stronger semantics from our data store that give

programmers more powerful tools for interacting with the data. These stronger semantics

include a rich data model, read-only transactions, and write-only transactions.

Key-value storage—perhaps the simplest data model provided by data stores—is used

today by many services [5, 34]. This data model, however, does not provide the abstractions

typically used to build web services such as counters, lists, and graphs. In contrast, the

column-family data models offered by systems like BigTable [23] and Cassandra [46] do

provide these abstractions. These rich data models provide hierarchical sorted column-

families and numerical counters. Column-families are well matched to many services, e.g.,

5



Facebook, while counter columns are particularly useful for numerical statistics, as used by

collaborative filtering (Digg, Reddit), likes (Facebook), or re-tweets (Twitter). In this work,

we demonstrate how to provide causal+ consistency for the simple key-value data model

and the rich column-family data model.

In a scalable setting where data is spread across many machines, asynchronous requests

to a consistently-updated data store are insufficient for providing consistency to clients of

the system. Simultaneously issued requests to different servers may arrive at different times,

thus returning distinct and potential inconsistent views of the data. Instead, what is needed

are read-only transactions that provide programmers with a consistent and up-to-date view

of data spread across many machines in the system. Write-only transaction similarly benefit

programmers by enabling them to atomically update data spread across many machines in

the system.

In this dissertation we describe three systems that provide causal+ consistency: COPS,

COPS-RT, and Eiger. Each progressing system is a step forward for scalable geo-replicated

storage, with Eiger superseding our original efforts on COPS and COPS-RT.

Our COPS system (Clusters of Order-Preserving Servers) provides causal+ consistency

and is designed to support complex online applications that are hosted from a small number

of large-scale datacenters, each of which is composed of front-end servers (clients of COPS)

and back-end key-value data stores. COPS executes all read and write operations in the

local datacenter in a linearizable fashion, and then replicates data across datacenters in a

causal+ consistent order in the background.

COPS-RT2 builds on COPS by adding read-only transactions that give clients a consis-

tent view of multiple keys spread across many servers. Read-only transactions are needed to

obtain a consistent view of multiple keys, even in a fully-linearizable system. Our read-only

transactions require no locks, are non-blocking, and take at most two parallel rounds of intra-

datacenter requests. These read-only transactions do come at some cost: compared to the

2The RT in COPS-RT stands for “read-only transactions.” In the original COPS paper [53] we called these
“get transactions” and referred to COPS-GT instead of COPS-RT.
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regular version of COPS, COPS-RT is less efficient for certain workloads (e.g., write-heavy)

and is less robust to long network partitions and transient datacenter failures.

Our Eiger system continues this line of work by providing stronger semantics for ALPS

systems. These stronger semantics include providing causal+ consistency for the rich

column-family data model, improved read-only transactions, and write-only transactions.

Eiger’s read-only and write-only transaction algorithms each represent an advance in the

state-of-the-art. COPS introduces a read-only transaction algorithm that normally completes

in one round of local reads, and two rounds in the worst case. Eiger’s read-only transaction

algorithm has the same properties, but achieves them using logical time instead of explicit

dependencies. Not storing explicit dependencies allows Eiger to avoid the drawbacks of

COPS-RT; Eiger is as efficient as COPS for all workloads and is robust to long network

partitions and transient datacenter failures.

The scalability requirements for ALPS systems creates the largest distinction between

this work and prior causal+ consistent systems. Previous systems required that all data fit on

a single machine [2, 15, 59] or that all data that potentially could be accessed together fit on

a single machine [12]. In comparison, data stored in COPS and Eiger can be spread across

an arbitrarily-sized datacenter, with dependencies, read-only, and write-only transaction that

can stretch across many servers in the datacenter. To the best of our knowledge, our work

describes the first scalable systems to implement causal+ (and thus causal) consistency.

The contributions of this dissertation are as follows:

• We explicitly identify four important properties of distributed data stores and use them

to define ALPS systems.

• We name and formally define causal+ consistency.

• We present the design and implementation of COPS, the first scalable system that

efficiently realizes the causal+ consistency model.
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• We present the design and implementation of Eiger, a causally-consistent data store

based on a column-family data model, including all the intricacies necessary to offer

abstractions such as column families and counter columns.

• We present a non-blocking, lock-free read-only transaction algorithm in COPS-RT

that provides clients with a consistent view of multiple keys in at most two rounds of

local operations.

• We present an improved non-blocking, lock-free read-only transaction algorithm in

Eiger that is performant and partition tolerant.

• We present a novel write-only transaction algorithm that atomically writes a set of

keys, is lock-free (low latency), and does not block concurrent read transactions.

• We show through evaluation that COPS has low latency, high throughput, and scales

well for all tested workloads; and that COPS-RT has similar properties for common

workloads.

• We show through evaluation that Eiger has performance competitive to eventually-

consistent, non-transactional Cassandra.
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Chapter 2

ALPS Systems and Trade-offs

Distributed storage systems have multiple, sometimes competing, goals: availability, low

latency, and partition tolerance to provide an “always on” user experience [27]; scalability

to adapt to increasing load and storage demands; and a sufficiently strong consistency model

to simplify programming and provide users with the system behavior that they expect. In

slightly more depth, the desirable properties include:

1. Availability. All operations issued to the data store complete successfully. No

operation can block indefinitely or return an error signifying that data is unavailable.

Availability is important for data storage because it ensures clients can interact with a

functioning service. Unresponsive storage results in an unresponsive service that quickly

becomes an unused service. Our definition of availability also importantly avoids designs

that “cheat” to provide low latency by quickly returning an error.

2. Low Latency. Client operations complete “quickly.” Commercial service-level

objectives suggest average performance of a few milliseconds and worst-case performance

(i.e., 99.9th percentile) of 10s or 100s of milliseconds [27].

Low latency is critical for data storage as discussed in Chapter 1: it prevents slow page

load times that are correlated with lost revenue.
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3. Partition Tolerance. The data store continues to operate under network partitions,

e.g., one separating datacenters in Asia from the United States. The failure of a datacenter is

equivalent to it being partitioned from the rest of the system, and thus a partition tolerant

system also continues to operate during the failure of a datacenter.

Partition tolerance and availability are different, but complementary requirements. Sys-

tems can provide one property but not the other. Quorum-based systems are considered

partition tolerant because the “majority” partition can continue operating, but are not consid-

ered available because nodes in the “minority” partition cannot form a valid quorum and

thus are unable to complete operations [17]. A system that assumes away partitions could

be describes as available, even though that property would not hold in practice if a partition

did occur.

Providing both partition tolerance and availability guarantees that all replicas of a system

will continue to operate and be available as long as they have not failed.

4. High Scalability. The data store scales linearly. Adding N resources to the system

increases aggregate throughput and storage capacity by O(N).

Scalability is paramount for modern storage systems. The amount of data backing web

services continues to grow. Systems with all data fitting on a single machine are not longer

practical. Instead, scalable storage must be used that spreads data across many machines

and that can grow along with the data.

Enabling larger storage systems enables supporting a larger number of users, which is

an important goal for almost all web services. Larger storage also enables an increase in the

amount of storage per user that can be used to provide a richer web service, which is also an

important goal for many web services.

5. Stronger Consistency. The data store provides consistency stronger than eventual

consistency, which we define in this dissertation as achieving causal+ consistency. We define

causal+ consistency in Chapter 3.
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An ideal data store would provide linearizability—sometimes informally called strong

consistency—which dictates that operations appear to take effect across the entire system

at a single instance in time between the invocation and completion of the operation [41].

In a data store that provides linearizability, as soon as a client completes a write operation

to an object in one datacenter, read operations to the same object in all other datacenters

will reflect its newly written state. Linearizability simplifies programming—the distributed

system provides a single, consistent image—and users experience the storage behavior they

expect. Weaker, eventual consistency models, common in many large distributed systems,

are less intuitive: not only might subsequent reads not reflect the latest value, reads across

multiple objects might reflect an incoherent mix of old and new values.

The CAP theorem, proposed by Brewer [17] and proved by Gilbert and Lynch [37],

proves that a shared-data system that has availability and partition tolerance cannot achieve

linearizability. This impossibility result can be explained quite intuitively: if a network

partition occurs, availability requires that a write on one side of the partition must be able

to complete, while linearizability requires that later reads on the other side of the partition

must return the result of that write, which is clearly impossible.

Several forms of strong consistency, such as linearizability, serializability, and sequential

consistency have been proven incompatible with low latency—defined as latency for all

operations that is less than half of the maximum speed-of-light delay between replicas [10,

52]. Linearizability, for example, is easily demonstrated to be incompatible: it requires that

a write to a datacenter in Asia be reflected immediately in a read to a U.S. datacenter. To

achieve this property, either the write must be propagated to the U.S. site before returning,

or the read must query Asia before returning. Both approaches are incompatible with the

goal of low latency. In general, all consistency models with a total order over operations

on multiple data locations have been shown to be incompatible with low latency. Refer to

Theorem 1 of Lipton and Sandberg [52] and/or Theorem 4.1 of Attiya et al. [10] for the

proof of this property.
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To balance between the requirements of ALPS systems and programmability, we define

an intermediate and achievable consistency model in the next section.
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Chapter 3

Causal+ Consistency

A storage system’s consistency guarantees can restrict the possible orderings and timing

of operations throughout the system, helping to simplify the possible behaviors that a

programmer must reason about and the anomalies that clients may see.

Given that the strongest forms of consistency—linearizability, serializability, and se-

quential consistency—are provably incompatible with our low-latency requirement [10, 52],

previous partition-tolerant, low-latency systems [27, 35, 46] settled for the weakest form

of consistency, eventual consistency. The commonly agreed upon definition of eventual

consistency is that writes to one replica will eventual appear at other replicas and that if all

replicas have received the same set of writes, they will have the same values for all data.

This weak form of consistency does not restrict the ordering of operations on different keys

in any way, forcing programmers to reason about all possible orderings and exposing many

inconsistencies to users. For example, under eventual consistency, after Alice updates her

profile, she might not see that update after a refresh. Or, if Alice and Bob are commenting

back-and-forth on a blog post, Carol might see a random non-contiguous subset of that

conversation.

Fortunately, causal+ consistency can avoid many such inconvenient orderings, including

the above examples, while guaranteeing low latency.
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To define causal consistency with convergent conflict handling (causal+ consistency),

we first describe the abstract model over which it operates. There are two basic operations

in our model: read and write. Data is stored and retrieved from logical replicas, each of

which hosts the entire key space. In our work, a single logical replica corresponds to an

entire local cluster of nodes.

An important concept in our model is the notion of potential causality [2, 47] between

operations. Three rules define potential causality, denoted ; :

1. Thread-Of-Execution. If a and b are two operations in a single thread of execution,

then a ; b if operation a happens before operation b.1

2. Reads-From. If a is a write operation and b is a read operation that returns the value

written by a, then a ; b.

3. Transitivity. For operations a, b, and c, if a ; b and b ; c, then a ; c. Thus, the

causal relationship between operations is the transitive closure of the first two rules.

These rules establish potential causality between operations within the same execution

thread and between operations whose execution threads interacted through the data store.

Our model, like many, does not allow threads to communicate directly, requiring instead

that all communication occur through the data store.

An example execution of the operations in Figure 3.1(a) is shown in in Figure 3.1(b).

This example demonstrates all three rules. The thread-of-execution rule gives w1 ; r4; the

reads-from rule gives w1 ; r2; and the transitivity rule gives w1 ; w8.

3.1 Definition

We define causal+ consistency as a combination of two properties: causal consistency and

convergent conflict handling. We present intuitive definitions here and the formal definitions
1The original causality papers [2, 47] refer to “processes” instead of “threads of execution”, we use the

latter term because it is more clear in the context of today’s systems.
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User Op ID Operation

Alice w1 write(Alice:Town, NYC)
Bob r2 read(Alice:Town)
Bob w3 write(Bob:Town, LA)
Alice r4 read(Bob:Town))
Carol w5 write(Carol:Likes, Cats, 8/31/12)
Alice w6 write(Alice:Likes, Cats, 9/1/12)
Alice r7 read(Carol:Likes, Cats)
Alice w8 write(Alice:Friends, Carol, 9/2/12)
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Figure 3.1: A set of example operations is shown in (a) and the graph of causality between
them is shown in (b). Between operations, bold edges indicate potential causality from the
thread-of-execution rule, dotted edges indicate potential causality from the reads-from rule,
and a path of length greater than 1 indicates potential causality from the transitivity rule.

in Appendix A. Previous work describes systems that provide causal+ consistency [27, 32,

43, 56, 59]. Our contribution includes identifying the difference between causal and causal+,

naming causal+, and explicitly defining causal+.

Causal consistency requires that values returned from read operations at a replica are

consistent with the order defined by ; (causality) [2]. In other words, it must appear that the

operation that writes a value occurs after all operations that causally precede it. For example,

in Figure 3.1(b), it must appear that w1 happened before w3, which in turn happened before

w6. If a client saw w6 but not w1, causal consistency would be violated.

Causal consistency does not order concurrent operations. If a 6; b and b 6; a, then a

and b are concurrent. Normally, this allows increased efficiency in an implementation: two

unrelated writes can be replicated in any order, avoiding the need for a serialization point

between them. If, however, a and b are both writes to the same key, then they are in conflict.

Conflicts are undesirable for two reasons. First, because they are unordered by causal

consistency, conflicts allow replicas to diverge forever [2]. For instance, if a writes 1 to

location X and b writes 2 to location X , then causal consistency allows one replica to forever

return 1 for X and another replica to forever return 2 for X . Second, conflicts may represent
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an exceptional condition that requires special handling. For example, in a shopping cart

application, if two people logged in to the same account concurrently add items to their cart,

the desired result is to end up with both items in the cart.

Convergent conflict handling requires that all conflicting writes be handled in the same

manner at all replicas, using a handler function h. This handler function h must be associative

and commutative, so that replicas can handle conflicting writes in the order they receive

them and that the results of these handlings will converge (e.g., one replica’s h(a,h(b,c))

and another’s h(c,h(b,a)) agree).

One common way to handle conflicting writes in a convergent fashion is the last-writer-

wins rule (also called Thomas’s write rule [72]), which declares one of the conflicting writes

as having occurred later and has it overwrite the “earlier” write. Another common way to

handle conflicting writes is to mark them as conflicting and require their resolution by some

other means, e.g., through direct user intervention as in Coda [43], or through a programmed

procedure as in Bayou [59] and Dynamo [27].

All potential forms of convergent conflict handling avoid the first issue—conflicting

updates may continually diverge—by ensuring that replicas reach the same result after

exchanging operations. On the other hand, the second issue with conflicts—applications

may want special handling of conflicts—is only avoided by the use of more explicit conflict

resolution procedures. These explicit procedures provide greater flexibility for applications,

but require additional programmer complexity and/or performance overhead. Although

our systems can be configured to detect conflicting updates explicitly and apply some

application-defined resolution, the default versions of our systems use the last-writer-wins

rule.
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Figure 3.2: A spectrum of consistency models, with stronger models on the left. Bolded
models are provably incompatible with ALPS systems.

3.2 Causal+ vs. Other Consistency Models

The distributed systems literature defines several popular consistency models. They include:

linearizability (or strong consistency) [41], which maintains a global, real-time ordering;

serializability [13], which ensures a global ordering of transactions; sequential consis-

tency [48], which ensures a global ordering of operations; causal consistency [2], which

ensures partial orderings between dependent operations; FIFO (PRAM) consistency [52],

which only preserves the partial ordering of an execution thread, not between threads; per-

key sequential consistency [25], which ensures that, for each individual key, all operations

have a global order; and eventual consistency, a “catch-all” term used today to suggest

eventual convergence to some type of agreement.

The causal+ consistency we introduce falls between sequential and causal consistency,

as shown in Figure 3.2. It is weaker than sequential consistency, but sequential consistency

is provably not achievable in an ALPS system. It is stronger than causal consistency and

per-key sequential consistency, and is achievable for ALPS systems.2

To illustrate the utility of the causal component of the causal+ model, consider an

example where a user uploads a photo to an Internet service and then adds that photo to an

album. Under causal and thus causal+ consistency, the photo will always arrive before the

add-to-album operation. Under per-key sequential and eventual consistency, it is possible for

the add-to-album operation to appear before the photo. This forces programmers to reason

about that scenario: should they drop the add-to-album operation, queue up a callback for

when the photo arrives, add a broken reference to the album, or do something else? The

2Mahajan et al. [55] have concurrently defined a similar strengthening of causal consistency; see Section 8
for details.
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generalization of this scenario where operation B appears before a proceeding operation A

maps to many situations where user expectations are not obeyed and/or programmers must

reason about out-of-order operations. Some of these other situations include removing a

boss from a friend’s list (A) and then posting about seeking a new job (B); reading a friend’s

status update (A) and then replying to it (B); adding an item to a shopping cart (A) and then

checking to see if it is there (B); a status update (A) followed by trying to hide it (B); or an

account creation (A) followed by trying to log in (B).

To illustrate the utility of the convergent conflict handling component of the causal+

model, consider an example where Alice and Bob both update the starting time for an event.

The time was originally set for 9pm, Alice changed it to 8pm, and Bob concurrently changed

it to 10pm. Regular causal consistency would allow two different replicas to forever return

different times, even after receiving both write operations. Causal+ consistency requires that

replicas handle this conflict in a convergent manner. If a last-writer-wins policy is used, then

either Bob’s 10pm or Alice’s 8pm would win. If a more explicit conflict resolution policy is

used, the key could be marked as in conflict and future reads on it could return both 8pm

and 10pm with instructions to resolve the conflict.

If the data store was sequentially consistent or linearizable, it would still be possible

for there to be two simultaneous updates to a key. In these stronger models, however, it is

possible to implement mutual exclusion algorithms—such as the one suggested by Lamport

in the original sequential consistency paper [48]—that can be used to avoid creating a

conflict altogether.

3.3 Causal+ in Practice

We use two abstractions in our systems, versions and dependencies, to help us reason about

causal+ consistency. We refer to the different values a data location has as the versions of a

location, which we denote locversion. In our systems, versions are assigned in a manner that
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Figure 3.3: A graph of causality is shown in (a) and the corresponding dependency graph is
shown in (b).

ensures that if xi ; y j then i < j. Once a replica returns version i of a location, xi, causal+

consistency ensures it will then only return that version or a causally later version (note that

the handling of a conflict is causally later than the conflicting writes it resolves).3 Thus,

each replica in our systems always returns non-decreasing versions of a key. We refer to this

as causal+ consistency’s progressing property.

Causal consistency dictates that all operations that causally precede a given operations

must appear to take effect before it. In other words, if xi ; y j, then xi must be written before

y j. We call these preceding values dependencies. More formally, we say y j depends on

xi if and only if write(xi) ; write(y j). These dependencies are the reverse of the causal

ordering of writes and are, by definition, the same as the happens-before relationship [47].

Figure 3.3(a) shows a graph of causality between operations (this is the same graph as

Figure 3.1(b)) and Figure 3.3(b) shows the corresponding dependencies between the write

operations.

3To see this, consider by contradiction the following scenario: assume a replica first returns xi and then xk,
where i 6= k and xi 6;xk. Causal consistency ensures that if xk is returned after xi, then xk 6;xi, and so xi and xk
conflict. But, if xi and xk conflict, then convergent conflict handling ensures that as soon as both are present at
a replica, their handling h(xi,xk), which is causally after both, will be returned instead of either xi or xk, which
contradicts our assumption.
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Our systems provide causal+ consistency during replication by writing a version only

after all of its dependencies are satisfied, meaning those writes have already been applied in

the cluster.

3.4 Scalable Causality

To our knowledge, our work is the first to name and formally define causal+ consistency.

Interestingly, several previous systems [12, 59] believed to achieve causal consistency in

fact achieved the stronger guarantees of causal+ consistency.

These systems were not designed to and do not provide scalable causal (or causal+)

consistency, however, as they all use a form of log serialization and exchange. All operations

at a logical replica are written to a single log in serialized order, commonly marked with a

version vector [58]. Different replicas then exchange these logs, using version vectors to

establish potential causality and detect concurrency between operations at different replicas.

Log-exchange-based serialization impairs replica scalability, as it relies on a single

serialization point in each replica to establish ordering. Thus, either causal dependencies

between keys are limited to the set of keys that can be stored on one node [12, 25, 46, 59],

or a single node (or replicated state machine) must provide a commit ordering and log for

all operations across a cluster.

As we show later, our systems achieve scalability by taking a different approach. Nodes

in each datacenter are responsible for different partitions of the keyspace, but the system

can track and enforce dependencies between keys stored on different nodes. Our systems

explicitly encode dependencies in metadata associated with each key’s version. When

keys are replicated remotely, the receiving datacenter performs dependency checks before

committing the incoming version. They perform these checks by communicating directly

with the nodes responsible for storing the other keys. In this way, they provide the first, to

our knowledge, mechanisms for achieving scalable causal+ replication.

20



Chapter 4

System Design of COPS

COPS [53] is a distributed storage system that realizes causal+ consistency and possesses the

desired ALPS properties. There are two distinct versions of the system. The first, which we

refer to simply as COPS, provides a data store that is causal+ consistent. The second, called

COPS-RT, provides a superset of this functionality by also introducing support for read-only

transactions. With read-only transactions, clients request a set of keys and the data store

replies with a consistent and up-to-date snapshot of corresponding values. Because of the

additional metadata needed to enforce the consistency properties of read-only transactions,

a given deployment must run exclusively as COPS or COPS-RT.

Assumptions. The design of COPS assumes an underlying sharded, reliable, and lineariz-

able data store inside of each datacenter. Specifically, we assume:

1. The keyspace is sharded across logical servers.

2. Linearizability is provided inside a datacenter.

3. Keys are stored on logical servers, implemented with replicated state machines. We

assume that a failure does not make a logical server unavailable, unless it makes the

entire datacenter unavailable.
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Figure 4.1: The COPS architecture. A client library exposes a read/write interface to its
clients and ensures operations are properly labeled with causal dependencies. COPS exposes
the read operation to clients, while COPS-RT exposes read trans. A key-value store
replicates data between clusters, ensures writes are committed in their local cluster only
after their dependencies have been satisfied, and in COPS-RT, stores multiple versions of
each key along with dependency metadata.

Each assumption represents an orthogonal direction of research to our work. By assum-

ing these properties instead of specifying their exact design, we focus our explanation on

the novel facets of our work.

Keyspace partitioning may be accomplished with consistent hashing [42] or directory-

based approaches [7, 36]. Linearizability within a datacenter is achieved by partitioning

the keyspace and then providing linearizability for each partition [41]. Linearizability is

acceptable locally because we expect very low latency and no partitions within a cluster—

especially with the trend towards redundant paths in modern datacenter networks [3, 39]—

unlike in the wide-area. Reliable, linearizable servers can be implemented with Paxos [49]

or primary-backup [4] approaches, e.g., chain replication [74]. Many existing systems [6,

16, 20, 70], in fact, provide all assumed properties when used inside a single datacenter.

4.1 Overview of COPS

COPS is a key-value storage system designed to run across a small number of datacenters, as

illustrated in Figure 4.1. Each datacenter has a local COPS cluster with a complete replica

of the stored data.1 A client of COPS is an application that uses the COPS client library

1As mentioned earlier, investigating partial replication is an exciting area of future research.
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to call directly into the COPS key-value store. Clients communicate only with their local

COPS cluster running in the same datacenter.

System Components. COPS is composed of two main software components:

• Key-value store. The basic building block in COPS is a standard key-value store that

provides linearizable operations on keys. COPS extends the standard key-value store

in two ways, and COPS-RT adds a third extension.

1. Each key-value pair has associated metadata. In COPS, this metadata is a

timestamp. In COPS-RT, it is both a timestamp and a list of dependencies (other

keys and their respective timestamps).

2. The key-value store exports three additional operations as part of its key-value

interface: read by time, write after, and dep check, each described below.

These operations enable the COPS client library and an asynchronous replication

process that supports causal+ consistency and read transactions.

3. For COPS-RT, the system keeps around old versions of key-value pairs, not

just the most recent write, to ensure that it can provide read transactions.

Maintaining old versions is discussed further in Section 4.3.

• Client library. The client library exports two main operations to applications: reads

via read (in COPS) or read trans (in COPS-RT), and writes via write. The client

library also maintains state about a client’s current dependencies through an actor id

parameter in the client library API.

Goals. The COPS design strives to provide causal+ consistency with resource and perfor-

mance overhead similar to existing eventually-consistent systems. COPS and COPS-RT

must therefore:
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• Minimize overhead of consistency-preserving replication. COPS must ensure that

values are replicated between clusters in a causal+ consistent manner. A naive

implementation, however, would require checks on all of a value’s dependencies. We

present a mechanism that requires only a small number of such checks by leveraging

the graph structure inherent to causal dependencies.

• (COPS-RT) Minimize space requirements. COPS-RT stores (potentially) multiple

versions of each key, along with their associated dependency metadata. COPS-RT

uses aggressive garbage collection to prune old state (see Section 6.1).

• (COPS-RT) Ensure fast read trans operations. The read transactions in COPS-

RT ensure that the set of returned values are causal+ consistent (all dependencies

are satisfied). A naive algorithm could block and/or take an unbounded number of

read rounds to complete. Both situations are incompatible with the ALPS goals of

availability and low latency; we present an algorithm for read trans that completes

in at most two rounds of local read by time operations.

4.2 The COPS Key-Value Store

Unlike traditional 〈key, value〉–tuple stores, COPS must track the timestamps of written

values, and COPS-RT must additionally track their dependencies. In COPS, the system

stores the most recent timestamp and value for each key. In COPS-RT, the system maps

each key to a list of versions, each consisting of 〈timestamp, value, deps〉. The deps field is a

list of the version’s zero or more dependencies; each dependency is a 〈key, timestamp〉 pair.

Each COPS cluster maintains its own copy of the key-value store. Operations return to

the client library as soon as they execute in the local cluster; operations between clusters

occur asynchronously.

Every key stored in COPS is stored in a logical server (server). We term the set of

servers for a key across all clusters as the equivalent servers for that key. In practice, COPS’s
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consistent hashing assigns each server a few different key ranges. Key ranges may have

different sizes and node mappings in different datacenters, but the total number of equivalent

nodes with which a given node needs to communicate is proportional to the number of

datacenters (i.e., communication is not all-to-all between nodes in different datacenters).

After a write completes locally, the server places it in a replication queue, from which

it is sent asynchronously to remote equivalent servers. Those nodes, in turn, wait until the

value’s dependencies are satisfied in their local cluster before locally committing the value.

This dependency checking mechanism ensures writes happen in a causally consistent order

and reads never block.

4.3 Client Library and Interface

The COPS client library provides a simple and intuitive programming interface with two

operations:

1. bool← write (key, value, actor id)

2. value← read (key, actor id) [In COPS]

or

2. 〈values〉 ← read trans (〈keys〉, actor id) [In COPS-RT]

The client API differs from a traditional key-value interface in two ways. First, COPS-RT

provides read trans, which returns a consistent view of multiple key-value pairs in a single

call. Second, all functions take an actor id argument, which the library uses internally to

track causal dependencies across each client’s operations [71]. The actor id defines the

causal+ “thread of execution.” A single process may contain many separate threads of

execution (e.g., a web server concurrently serving 1000s of independent connections). By

separating different threads of execution, COPS avoids false dependencies that would result

from intermixing them.
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Figure 4.2: A dependency graph is shown in (a) and the table in (b) lists nearest (bold),
one-hop (underlined), and all dependencies.

We first describe the state kept by the client library in COPS-RT to enforce consistency

in read transactions and then show how COPS can store significantly less dependency state.

COPS-RT Client Library. The client library in COPS-RT stores the client’s context in a

table of 〈key, timestamp, deps〉 entries. Clients reference their context using an actor id in

the API.2 When a client reads a key from the data store, the library adds this key and its

causal dependencies to the context. When a client writes a value, the library sets the write’s

dependencies to the most recent timestamp of each key in the current context. A successful

write into the data store returns the timestamp number ts assigned to the written value. The

client library then adds this new entry, 〈key, ts, deps〉, to the context.

The context therefore includes dependencies on all previous writes in the current session

(thread-of-execution rule), all writes that wrote data that was read during the session (reads-

from rule), and all of those dependencies’ dependencies (transitivity rule), as illustrated

in Figure 4.2(a). This raises two concerns about the potential size of this causality graph:

(i) state requirements for storing these dependencies, both in the client library and in the

2Maintaining state in the library and passing in an ID was a design choice; one could also encode the entire
context table as an opaque blob and pass it between client and library so that the library is stateless.
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data store, and (ii) the number of potential checks that must occur when replicating writes

between clusters, in order to ensure causal consistency.

Fortunately, we can leverage the structure of the dependency graph to mitigate both of

these concerns by only tracking and enforcing a small subset of all dependencies that we

call the nearest dependencies.3 These dependencies, which have a longest path of one hop

to the current operation, transitively capture all of the ordering constraints on this operation.

In particular, because all non-nearest dependencies are depended upon by at least one of

the nearest, if the current operation occurs after the nearest dependencies, then it will occur

after all non-nearest as well by transitivity.

COPS (and Eiger) actually track one-hop dependencies, a slightly larger superset of

nearest dependencies, which have a shortest path of one hop to the current operation. We

elect to track one-hop dependencies because we can do so without storing any dependency

information at the servers. Using one-hop dependencies slightly increases both the amount

of memory needed at the client nodes and the data sent to servers on writes. In contrast,

our alternative design for tracking the slightly smaller set of nearest dependencies put

the dependency storage burden on the servers, a trade-off we did not believe generally

worthwhile. Figure 4.2(b) illustrates the types of dependencies, e.g., w6’s dependency on w1

is one-hop but not nearest.

Checking nearest (and thus one-hop) dependencies are sufficient for the key-value

store to provide causal+ consistency; the full dependency list is only needed to provide

read trans operations in COPS-RT.

COPS Client Library. The client library in COPS requires significantly less state and

complexity because it only needs to learn the one-hop, rather than all, dependencies. Accord-

ingly, it does not store or even retrieve the dependencies of any value it reads: the retrieved

value is nearer than any of its dependencies, rendering them unnecessary.

3In graph theoretic terms the nearest dependencies are called the predecessor set of the transitive reduction
of the dependency graph. We use the term nearest dependencies in this dissertation for consistency with our
earlier work.
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Thus, the COPS client library stores only 〈key, timestamp〉 entries. For a read operation,

the retrieved 〈key, timestamp〉 is added to the context. For a write operation, the library uses

the current context as the nearest dependencies, clears the context, and then repopulates it

with only this write. This write depends on all previous key-timestamp pairs and thus is

nearer than them.

4.4 Writing Values in COPS and COPS-RT

Building on our description of the client library and key-value store, we now walk through

the steps involved in writing a value to COPS. All writes in COPS first go to the client’s

local cluster and then propagate asynchronously to remote clusters. The key-value store

exports a single API call to provide both operations:

〈bool,timestamp〉 ← write after (key, value, one hop, timestamp=/0) [In COPS]

or

〈bool,timestamp〉← write after (key, value, deps, nearest, timestamp=/0) [In COPS-RT]

Writes to the local cluster. When a client calls write (key,value,actor id), the library

computes what dependencies to attach and then calls write after without the timestamp

argument (i.e., it sets timestamp= /0). The attached dependencies vary significantly between

COPS and COPS-RT. COPS-RT requires all dependencies for read-only transactions, but

only need to check nearest dependencies. COPS-RT can calculate nearest dependencies

because it has the full causality graph. For example, in Figure 4.2(a) COPS-RT can see

the edge from w1 to w3 and knows w1 is not a nearest dependency for w6. COPS, however,

can only calculate the one-hop dependencies because it does not store any dependencies on

servers and thus would never see the edge from w1 to w3.
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The key’s server in the local cluster assigns the key a timestamp and returns it to the

client library. We restrict each client to a single outstanding write; this is necessary because

later writes must know the timestamps of earlier writes so they may depend on them.

The write after operation ensures that value is committed to each cluster only after

all of the entries in its dependency list have been written. In the client’s local cluster, this

property holds automatically, as the local store provides linearizability. (If y depends on x,

then write(x) must have been committed before write(y) was issued.) This is not true in

remote clusters, however, which we discuss below.

Clients and servers in COPS maintain logical clocks [47], all messages include a logical

timestamp that updates these clocks, and written values are assigned a timestamp based on

logical time.4 The clocks and timestamps provide a progressing logical time throughout the

entire system. The timestamps for written values have additional low-order bits appended

that are set to the stamping server’s unique identifier, so each is globally distinct.

These logical timestamps allow COPS to derive a single global order over all writes

for each individual key. This order implicitly implements the last-writer-wins convergent

conflict handling policy. COPS is also capable of explicitly detecting and resolving conflicts,

which we discuss in Section 6.3. Note that because Lamport timestamps provide a partial

ordering of all distributed events in a way that respects potential causality, this global

ordering is compatible with COPS’s causal consistency.

Write replication between clusters. After a write commits locally, the server asyn-

chronously replicates that write to its equivalent nodes in different clusters using a stream of

write after operations; here, however, the server includes the key’s timestamp number in

the write after call. This approach scales well and avoids the need for a single serializa-

tion point, but requires the remote nodes receiving updates to commit an update only after

its dependencies have been committed to the same cluster.

4With logical (Lamport) clocks, each node in the system keeps a logical clock that is updated every time
an event occurs (e.g., writing a value or receiving a message). When sending a message, a node includes a
timestamp t set to its logical clock c; when receiving a message, a node sets c← max(c, t +1).
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To ensure this property, a node that receives a write after request from another cluster

must determine if the value’s nearest (COPS-RT) or one-hop (COPS) dependencies have

already been satisfied locally. It does so by issuing a check to the local nodes responsible

for the those dependencies:

bool← dep check (key, timestamp)

When a node receives a dep check, it examines its local state to determine if the dependency

value has already been written. If so, it immediately responds to the operation. If not, it

blocks until the needed timestamp has been written.

If all dep check operations on the nearest dependencies succeed, the node handling

the write after request commits the written value, making it available to other reads

and writes in its local cluster. (If any dep check operation times out, the node handling

the write after reissues it, potentially to a new node if a failure occurred.) The way

that nearest/one-hop dependencies are computed ensures that all dependencies have been

satisfied before the value is committed, which in turn ensures causal consistency.

4.5 Reading Values in COPS

Like writes, reads are satisfied in the local cluster. Clients call the read library function

with the appropriate actor id; the library in turn issues a read to the node responsible for the

key in the local cluster:

〈value, timestamp, deps〉 ← read by time (key, timestamp=LATEST)

This read can request either the latest timestamp of the key or a specific older one. Request-

ing the latest timestamp is equivalent to a regular single-key read; requesting a specific

timestamp is necessary to enable read transactions. Accordingly, read by time operations

in COPS always request the latest timestamp. Upon receiving a response, the client library
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adds the 〈key,timestamp[,deps]〉 tuple to the client context, and returns value to the calling

code. The deps are stored only in COPS-RT, not in COPS.

4.6 Read-only Transactions in COPS-RT

The COPS-RT client library provides a read trans interface because reading a set of

dependent keys using a single-key read interface cannot ensure causal+ consistency, even

though the data store itself is causal+ consistent. Intuitively, this is because asynchronous

requests to distributed servers will not arrive at the servers, or be responded to, simultane-

ously. Concretely, we demonstrate this problem by extending the photo album example to

include access control, whereby Alice first changes her album ACL to “friends only”, and

then writes a new description of her travels and adds more photos to the album.

A natural (but incorrect) implementation of code to read Alice’s album might (1) fetch

the ACL, (2) check permissions, and (3) fetch the album description and photos. This

approach contains a straightforward “time-to-check-to-time-to-use” race condition: when

Eve accesses the album, her read(ACL) might return the old ACL, which permitted anyone

(including Eve) to read it, but her read(album contents) might return the “friends only”

version.

One straw-man solution is to require that clients issue single-key read operations in the

reverse order of their causal dependencies: The above problem would not have occurred

if the client executed read(album) before read(ACL). This solution, however, is also

incorrect. Imagine that after updating her album, Alice decided that some photographs were

too personal, so she (3) deleted those photos and rewrote the description, and then (4) marked

the ACL open again. This straw-man has a different time-of-check-to-time-of-use error,

where read(album) retrieves the private album, and the subsequent read(ACL) retrieves

the “public” ACL. In short, there is no correct canonical ordering of the ACL and the album

entries.
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# @param keys list of keys

# @param ctx_id context id

# @return values list of values

function get_trans(keys, ctx_id):

# Get keys in parallel (first round)

for k in keys

results[k] = get_by_version(k, LATEST)

# Calculate causally correct versions (ccv)

for k in keys

ccv[k] = max(ccv[k], results[k].vers)

for dep in results[k].deps

if dep.key in keys

ccv[dep.key] = max(ccv[dep.key], dep.vers)

# Get needed ccvs in parallel (second round)

for k in keys

if ccv[k] > results[k].vers

results[k] = get_by_version(k, ccv[k])

# Update the metadata stored in the context

update_context(results, ctx_id)

# Return only the values to the client

return extract_values(results)

Figure 4.3: Pseudocode for the read trans algorithm.

Instead, a better programming interface would allow the client to obtain a causal+

consistent view of multiple keys. The standard way to achieve such a guarantee is to read

and write all related keys in a transaction; this, however, requires a single serialization point

for all grouped keys, which COPS avoids for greater scalability and simplicity. Instead,

COPS allows keys to be written independently (with explicit dependencies in metadata),

and provides a read trans operation for retrieving a consistent view of multiple keys.

Read-only transactions. To retrieve multiple values in a causal+ consistent manner, a

client calls read trans with the desired set of keys, e.g., read trans(〈ACL, album〉).

32



Depending on when and where it was issued, this read transaction can return different

combinations of ACL and album, but never 〈ACLpublic, Albumpersonal〉.

The COPS client library implements the read transactions algorithm in two rounds,

shown in Figure 4.3. In the first round, the library issues n concurrent read by time

operations to the local cluster, one for each key the client listed in read trans. Because

COPS-RT commits writes locally, the local data store guarantees that each of these ex-

plicitly listed keys’ dependencies are already satisfied—that is, they have been written

locally and reads on them will immediately return. These explicitly listed, independently

retrieved values, however, may not be consistent with one another, as shown above. Each

read by time operation returns a 〈value, timestamp, deps〉 tuple, where deps is a list of keys

and timestamps. The client library then examines every dependency entry 〈key, timestamp〉.

The causal dependencies for that result are satisfied if either the client did not request the

dependent key, or if it did, the timestamp it retrieved was≥ the timestamp in the dependency

list.

For all keys that are not satisfied, the library issues a second round of concurrent

read by time operations. The timestamp requested will be the newest timestamp seen in

any dependency list from the first round. These timestamps satisfy all causal dependencies

from the first round because they are ≥ the needed timestamps. In addition, because

dependencies are transitive and these second-round timestamps are all depended on by

timestamps retrieved in the first round, they do not introduce any new dependencies that

need to be satisfied. This algorithm allows read trans to return a consistent view of the

data store as of the time of the latest timestamp retrieved in first round.

The second round happens only when the client must read newer timestamps than those

retrieved in the first round. This case occurs only if keys involved in the read transaction are

updated during the first round. Thus, we expect the second round to be rare. In our example,

if Eve issues a read trans concurrent with Alice’s writes, the algorithm’s first round of

reads might retrieve the public ACL and the private album. The private album, however,
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depends on the “friends only” ACL, so the second round would fetch this newer timestamp

of the ACL, allowing read trans to return a causal+ consistent set of values to the client.

The causal+ consistency of the data store provides two important properties for the

read transaction algorithm’s second round. First, the read by time requests will succeed

immediately, as the requested timestamp must already exist in the local cluster. Second, the

new read by time requests will not introduce any new dependencies, as those dependencies

were already known in the first round due to transitivity. This second property demonstrates

why the read transaction algorithm specifies an explicit timestamp in its second round, rather

than just getting the latest: otherwise, in the face of concurrent writes, a newer timestamp

could introduce still newer dependencies, which could continue indefinitely.
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Chapter 5

System Design of Eiger

Eiger supersedes both COPS and COPS-RT. Eiger provides read-only transactions like

COPS-RT, but has minimal metadata like COPS. It also operates on a richer data model

than COPS and supports write-only transactions. Eiger make the same assumptions as

COPS: The keyspace is partitioned across logical servers; Linearizability is provided inside

a datacenter; and Keys are stored on logical servers, implemented with replicated state

machines.

We describe the data model Eiger operates on, detail the differences needed in its

architecture to support causal+ consistency for that data model, describe the new algorithm

for read-only transactions, and then present write-only transactions.

5.1 Column-Family Data Model

Eiger uses the column-family data model, which provides a rich structure that allows

programmers to naturally express complex data and then efficiently query it. This data

model was pioneered by Google’s BigTable [23]. It is now available in the open-source

Cassandra system [46], which is used by many large web services including EBay, Netflix,

and Reddit.
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Figure 5.1: The column family data model in (a), as well as an example use of the model for
a social network setting in (b).

Our implementation of Eiger is built upon Cassandra and so our description adheres to

its specific data model where it and BigTable differ.1 Our description of the data model and

API are simplified, when possible, for clarity.

Basic Data Model. The column-family data model is a “map of maps of maps” of named

columns. The first-level map associates a key with a set of named column families. The

second level of maps associates the column family with a set composed exclusively of either

columns or super columns. If present, the third and final level of maps associates each super

column with a set of columns. Figure 5.1(a) shows this structure abstractly and Figure 5.1(b)

gives an example where it could be used for a social network.

1For example, BigTable columns can include multiple timestamped versions of each value, while Cassandra
columns include only a single value. On the other hand, Cassandra’s data model includes super columns,
which BigTable does not.
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bool ←− batch mutate ( {key→mutation}, actor id )
bool ←− atomic mutate ( {key→mutation}, actor id )

{key→columns} ←− multiget slice ( {key, column parent,

slice predicate}, actor id )

Table 5.1: Core API functions in Eiger’s column family data model. Eiger introduces
atomic mutate and converts multiget slice into a read-only transaction.

Within a column family, each location is represented as a compound key and a single

value, i.e., “Alice:Assocs:Friends:Bob” with value “3/2/11”. These pairs are stored in a

simple ordered key-value store. All data for a single row must reside on the same server.

Clients use the API shown in Table 5.1. Clients can insert, update, or delete columns

for multiple keys with a batch mutate or an atomic mutate operation; each mutation is

either an insert or a delete. If a column exists, an insert updates the value. Mutations

in a batch mutate appear independently, while mutations in an atomic mutate appear as

a single atomic group.

Similarly, clients can read many columns for multiple keys with the multiget slice

operation. The client provides a list of tuples, each involving a key, a column family name

and optionally a super column name, and a slice predicate. The slice predicate can be

a (start,stop,count) three-tuple, which matches the first count columns with names

between start and stop. Names may be any comparable type, e.g., strings or integers.

Alternatively, the predicate can also be a list of column names. In either case, a slice is a

subset of the stored columns for a given key.

Given the example data model in Figure 5.1 for a social network, the following function

calls show three typical API calls: updating Alice’s hometown when she moves, ending

Alice and Bob’s friendship, and retrieving up to 10 of Alice’s friends with names starting

with B to Z.
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Figure 5.2: An example of Facebook’s data model in TAO. This data translates into the
column family data model shown in Figure 5.1.

batch mutate ( Alice→insert(UserData:Town=Rome) )

atomic mutate ( Alice→delete(Assocs:Friends:Bob),

Bob→delete(Assocs:Friends:Alice) )

multiget slice ( {Alice, Assocs:Friends, (B, Z, 10)} )

Counter Columns. Standard columns are updated by insert operations that overwrite

the old value. Counter columns, in contrast, can be commutatively updated using an add

operation. They are useful for maintaining numerical statistics, e.g., a “liked by count” for

Cats (not shown in figure), without the need to carefully read-modify-write the object.

Why target the column family model? Its wide popularity in Google, Facebook, and

elsewhere suggests that the column family model meets the needs of many rich services such

as online social networks. For example, the social graph API that Facebook’s front-end web

programmers use can be converted to, and efficiently implemented by, the column family

data model.

We reproduce Facebook’s graph data model in Figure 5.2. It represents each object

(vertex) using a map, and records typed associations (edges) from one object to another [33].

The map for each object can be realized with a column family that contains a column for
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each map entry. Similarly, the associations can be realized with super column for each type,

and a column under that super column for each association from that key.2

5.2 Causal+ Consistency for Column-Families

Eiger operates similarly to COPS: at a high-level it tracks one-hop dependencies and ensures

they are satisfied before applying replicated writes. Eiger does not use the dependency graph

for read-only transactions and thus avoids the complications and inefficiencies of the COPS-

RT system. Here we detail the differences between Eiger and COPS necessary to provide

causal+ consistency for the column-family data model. The differences include having

dependencies on operations, the types of write operations, the results of read operations,

splitting multi-server operations, and counter columns.

Dependencies on Operations. Tracking dependencies on operations significantly im-

proves Eiger’s efficiency. In the column-family data model, it is not uncommon to simul-

taneously read or write many columns for a single key. With dependencies on values (the

original and published design for COPS), a separate dependency must be used for each

column’s value and thus |column| dependency checks would be required; Eiger could check

as few as one. In the worst case, when all columns were written by different operations, the

number of required dependency checks degrades to one per value.

Dependencies in Eiger consist of a locator and a timestamp. The locator is used to

ensure that any other operation that depends on this operation knows which node to check

with to determine if the operation has been committed. For mutations of individual keys, the

locator is simply the key itself. Within a write transaction the locator can be any key in the

set; all that matters is that each “sub-operation” within an atomic write be labeled with the

2This graph model is not unlike the link graph example described in Google’s original BigTable paper,
which also maps well to the column family data model, by presumed design.
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same locator. The timestamp, as in COPS, is globally unique and is used by servers that

receive a dep check to know what operation is being indicated.

New Types of Writes. There are three types of write operations in Eiger—insert, add,

and delete—and each operates by replacing the current (potentially non-existent) column

in a location. insert overwrites the current value with a new column (this is similar to

write in COPS), e.g., update Alice’s home town from NYC to MIA. add merges the

current counter column with the update, e.g., increment a liked-by count from 8 to 9.

delete overwrites the current column with a tombstone, e.g., Carol is no longer friends

with Alice. When each new column is written, it is timestamped with the current logical

time at the server applying the write. Cassandra atomically applies updates to a single

row using snap trees [18], so all updates to a single key in a batch mutate have the same

timestamp. Updates to different rows on the same server in a batch mutate will have

different timestamps because they are applied at different logical times.

New Results for Reads. Read operations return the current column for each requested

location. Normal columns return binary data. Deleted columns return an empty column

with a deleted bit set. The client library strips deleted columns out of the returned results,

but records dependencies on them as required for correctness. Counter columns return a

64-bit integer.

Splitting Operations. batch mutate operations update keys that may be spread across

many different servers. Thus, sometimes the client library must split batch mutate opera-

tions that span multiple server into a set of batch mutate operations, one per server. The

client library issues these in parallel and waits for acknowledgment from all of them before

returning to the client. Similarly, because the keyspace partitioning may vary from datacenter

to datacenter, a replicating server must sometimes also split batch mutate operations.
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Counter Columns. The commutative nature of counter columns complicates tracking

dependencies. In normal columns with overwrite semantics, each value was written by

exactly one operation. In counter columns, each value was affected by many operations.

Consider a counter with value 7 from +1, +2, and +4 operations. Each operation contributed

to the final value, so a read of the counter incurs dependencies on all three. Eiger stores

these dependencies with the counter and returns them to the client, so they can be attached

to its next write.

Naively, every update of a counter column would increment the number of dependencies

contained by that column ad infinitum. To bound the number of contained dependencies,

Eiger structures the add operations occurring within a datacenter. All add operations origi-

nating within a datacenter are already ordered because individual datacenters are linearizable.

Eiger explicitly tracks this ordering in a new add by adding an extra dependency on the

previously accepted add operation from the datacenter. This creates a single dependency

chain that transitively covers all previous updates from the datacenter. As a result, each

counter column contains at most one dependency per datacenter.

Eiger further reduces the number of dependencies contained in counter columns to the

nearest dependencies within that counter column. When a server applies an add, it examines

the operation’s attached dependencies. It first identifies all dependencies that are on updates

from other datacenters to this counter column. Then, if any of those dependencies match

the stored dependency for another datacenter, Eiger drops the stored dependency. The new

operation is causally after any local matches, and thus a dependency on it transitively covers

those matches as well. For example, if Alice reads a counter with the value 7 and then

increments it to 8, her increment is causally after all the operations that commuted to create

the value she read. Thus, any reads of the resulting 8 would only bring a dependency on

Alice’s update.

41



Logical Time 

Location 1 

Location 2 

Location 3 

A B C 

J K L 

X Y 

1 

2 

3 

11 

12 

15 

21 

19 

Figure 5.3: Validity periods for values written to different locations. Crossbars (and the
specified numeric times) correspond to the earliest and latest valid time for values, which
are represented by letters.

5.3 Read-Only Transactions

Read-only transactions—the only read operations in Eiger—enable clients to see a consistent

view of multiple keys that may be spread across many servers in the local datacenter. Eiger’s

algorithm guarantees low latency because it takes at most two rounds of parallel non-blocking

reads in the local datacenter, plus at most one additional round of local non-blocking checks

during concurrent write transactions, detailed in §5.4.4. In contrast with the read-only

transactions in COPS-RT, Eiger’s algorithm is based on logical time and does not use

dependency graphs.

5.3.1 Read-Only Transaction Algorithm

The key insight in the algorithm is that there exists a consistent result for every query at

every logical time. Figure 5.3 illustrates this: as operations are applied in a consistent causal

order, every data location (key and column) has a consistent value at each logical time.

At a high level, our new read transaction algorithm marks each data location with validity

metadata, and uses that metadata to determine if a first round of optimistic reads is consistent.

If the first round results are not consistent, the algorithm issues a second round of reads that

are guaranteed to return consistent results.
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More specifically, each data location is marked with an earliest valid time (EVT). The

EVT is set to the server’s logical time when it locally applies an operation that writes a value.

Thus, in an operation’s accepting datacenter—the one at which the operation originated—the

EVT is the same as its timestamp. In other datacenters, the EVT is later than its timestamp.

In both cases, the EVT is the exact logical time when the value became visible in the local

datacenter.

A server responds to a read with its currently visible value, the corresponding EVT, and

its current logical time, which we call the latest valid time (LVT). Because this value is

still visible, we know it is valid for at least the interval between the EVT and LVT. Once

all first-round reads return, the client library compares their times to check for consistency.

In particular, it knows all values were valid at the same logical time (i.e., correspond to a

consistent snapshot) iff the maximum EVT ≤ the minimum LVT. In other words, the results

are consistent if there is at least one logical time that falls between the EVTs and LVTs

for each of the returned values. If this is the case, the client library returns these results;

otherwise, it proceeds to a second round. Figure 5.4(a) shows a scenario that completes in

one round.

The effective time of the transaction is the smallest LVT ≥ the maximum EVT. In a

single round transaction, this is the same as the minimum LVT across all locations. It

corresponds both to a logical time in which all retrieved values are consistent, as well as the

current logical time (as of its response) at a server. As such, it ensures freshness—necessary

in causal+ consistency so that clients always see a progressing datacenter that reflects their

own updates.

We sketch a proof that read transactions return the set of results that were visible in their

local datacenter at the transaction’s effective time, EffT. By construction, assume a value is

visible at logical time t iff val.EVT ≤ t ≤ val.LVT. For each returned value, if it is returned

from the first round, then val.EVT ≤ maxEVT ≤ EffT by definition of maxEVT and EffT,

and val.LVT ≥ EffT because it is not being requested in the second round. Thus, val.EVT
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Figure 5.4: Examples of read-only transactions. (a) shows one with a single round, and (b)
shows one with two rounds. The effective time of each transaction is shown with a gray line;
this is the time requested for location 1 in the second round in (b).

≤ EffT ≤ val.LVT, and by our assumption, the value was visible at EffT. If a result is from

the second round, then it was obtained by a second-round read that explicitly returns the

visible value at time EffT, described next.

5.3.2 Two-Round Read Protocol

A read transaction requires a second round if there does not exist a single logical time

for which all values read in the first round are valid. This can only occur when there

are concurrent updates being applied locally to the requested locations. The example in

Figure 5.4(b) requires a second round because location 2 is updated to value K at time 12,

which is not before time 10 when location 1’s server returns value A.

During the second round, the client library issues multiget slice by time requests,

specifying a read at the transaction’s effective time. These reads are sent only to those

locations for which it does not have a valid result, i.e., their LVT is earlier than the effective

time. For example, in Figure 5.4(b) a multiget slice by time request is sent for location

1 at time 15 and returns a new value B.

Servers respond to multiget slice by time reads with the value that was valid at the

requested logical time. Because that result may be different than the currently visible one,
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function read_only_trans(requests):

# Send first round requests in parallel

for r in requests

val[r] = multiget slice(r)

# Calculate the maximum EVT

maxEVT = 0

for r in requests

maxEVT = max(maxEVT, val[r].EVT)

# Calculate effective time

EffT = ∞

for r in requests

if val[r].LVT ≥ maxEVT

EffT = min(EffT, val[r].LVT)

# Send second round requests in parallel

for r in requests

if val[r].LVT < EffT

val[r] = multiget slice by time(r, EffT)

# Return only the requested data

return extract_keys_to_columns(res)

Figure 5.5: Pseudocode for read-only transactions.

servers sometimes must store old values for each location. Fortunately, the extent of such

additional storage can be limited significantly.

5.3.3 Limiting Old Value Storage

Eiger limits the need to store old values in two ways. First, read transactions have a timeout

that specifies their maximum real-time duration. If this timeout fires—which happens only

when server queues grow pathologically long due to prolonged overload—the client library

restarts a fresh read transaction. Thus, servers only need to store old values that have been

overwritten within this timeout’s duration.
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Second, Eiger retains only old values that could be requested in the second round. Thus,

servers store only values that are newer than those returned in a first round within the timeout

duration. For this optimization, Eiger stores the last access time of each value.

5.3.4 Read Transactions for Linearizability

Linearizability (strong consistency) is attractive to programmers when low latency and

availability are not strict requirements. Simply being linearizable, however, does not mean

that a system is transactional: there may be no way to extract a mutually consistent set of

values from the system, much as in our earlier example for read transactions. Linearizability

is only defined on, and used with, operations that read or write a single location (originally,

shared memory systems) [41].

Interestingly, our algorithm for read-only transactions works for fully linearizable sys-

tems, without modification. In Eiger, in fact, if all writes that are concurrent with a read-only

transaction originated from the local datacenter, the read-only transaction provides a consis-

tent view of that linearizable system (the local datacenter).

5.4 Write-Only Transactions

Eiger’s write-only transactions allow a client to atomically write many columns spread

across many keys in the local datacenter. These values also appear atomically in remote

datacenters upon replication. As we will see, the algorithm guarantees low latency because

it takes at most 2.5 message RTTs in the local datacenter to complete, no operations acquire

locks, and all phases wait on only the previous round of messages before continuing.

Write-only transactions have many uses. When a user presses a save button, the system

can ensure that all of her five profile updates appear simultaneously. Similarly, they help

maintain symmetric relationships in social networks: when Alice accepts Bob’s friendship

request, both friend associations appear at the same time.
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Figure 5.6: Message flow diagrams for traditional 2PC and write-only transaction. Solid
boxes denote when cohorts block reads. Striped boxes denote when cohorts will indirect a
commitment check to the coordinator.

5.4.1 Write-Only Transaction Algorithm

To execute an atomic mutate request—which has identical arguments to batch mutate—

the client library splits the operation into one sub-request per local server across which

the transaction is spread. The library randomly chooses one key in the transaction as the

coordinator key. It then transmits each sub-request to its corresponding server, annotated

with the coordinator key.

Our write transaction is a variant of two-phase commit [66], which we call two-phase

commit with positive cohorts and indirection (2PC-PCI). 2PC-PCI operates differently

depending on whether it is executing in the original (or “accepting”) datacenter, or being

applied in the remote datacenter after replication.

There are three differences between traditional 2PC and 2PC-PCI, as shown in Figure 5.6.

First, 2PC-PCI has only positive cohorts; the coordinator always commits the transaction

once it receives a vote from all cohorts.3 Second, 2PC-PCI has a different pre-vote phase

3Eiger only has positive cohorts because it avoids all the normal reasons to abort (vote no): It does not
have general transactions that can force each other to abort, it does not have users that can cancel operations,
and it assumes that its logical servers do not fail.
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that varies depending on the origin of the write transaction. In the accepting datacenter

(we discuss the remote below), the client library sends each participant its sub-request

directly, and this transmission serves as an implicit PREPARE message for each cohort.

Third, 2PC-PCI cohorts that cannot answer a query—because they have voted but have not

yet received the commit—ask the coordinator if the transaction is committed, effectively

indirecting the request through the coordinator.

5.4.2 Local Write-Only Transactions

When a participant server, which is either the coordinator or a cohort, receives its transaction

sub-request from the client, it prepares for the transaction by writing each included location

with a special “pending” value (retaining old versions for second-round reads). It then sends

a YESVOTE to the coordinator.

When the coordinator receives a YESVOTE, it updates its count of prepared keys. Once

all keys are prepared, the coordinator commits the transaction. The coordinator’s current

logical time serves as the (global) timestamp and (local) EVT of the transaction and is

included in the COMMIT message.

When a cohort receives a COMMIT, it replaces the “pending” columns with the update’s

real values, and ACKs the committed keys. Upon receiving all ACKs, the coordinator safely

cleans up its transaction state.

5.4.3 Replicated Write-Only Transactions

Each transaction sub-request is replicated to its “equivalent” participant(s) in the remote

datacenter, possibly splitting the sub-requests to match the remote key partitioning. When

a cohort in a remote datacenter receives a sub-request, it sends a NOTIFY with the key

count to the transaction coordinator in its datacenter. This coordinator issues any necessary

dep checks upon receiving its own sub-request (which contains the coordinator key). The

coordinator’s checks cover the entire transaction, so cohorts send no checks. Once the
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coordinator has received all NOTIFY messages and dep checks responses, it sends each

cohort a PREPARE, and then proceeds normally.

For reads received during the indirection window in which participants are uncertain

about the status of a transaction, cohorts must query the coordinator for its state. To minimize

the duration of this window, before preparing, the coordinator waits for (1) all participants

to NOTIFY and (2) all dep checks to return. This helps prevent a slow replica from causing

needless indirection.

Finally, replicated write-only transactions differ in that participants do not always write

pending columns. If a location’s current value has a newer timestamp than that of the

transaction, the validity interval for the transaction’s value is empty. Thus, no read will ever

return it, and it can be safely discarded. The participant continues in the transaction for

simplicity, but does not need to indirect reads for this location.

5.4.4 Reads when Transactions are Pending

If a first-round read accesses a location that could be modified by a pending transaction, the

server sends a special empty response that only includes a LVT (i.e., its current time). This

alerts the client that it must choose an effective time for the transaction and send the server a

second-round multiget slice by time request.

When a server with pending transactions receives a multiget slice by time request,

it first traverses its old versions for each included column. If there exists a version valid at

the requested time, the server returns it.

Otherwise, there are pending transactions whose potential commit window intersects

the requested time and the server must resolve their ordering. It does so by sending a

commit check with this requested time to the transactions’ coordinator(s). Each coordinator

responds whether the transaction had been committed at that (past) time and, if so, its commit

time.
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Once a server has collected all commit check responses, it updates the validity intervals

of all versions of all relevant locations, up to at least the requested (effective) time. Then, it

can respond to the multiget slice by time message as normal.

The complementary nature of Eiger’s transactional algorithms enables the atomicity of

its writes. In particular, the single commit time for a write transaction (EVT) and the single

effective time for a read transaction lead each to appear at a single logical time, while its

two-phase commit ensures all-or-nothing semantics.

5.4.5 Guaranteed Low Latency

Write-only transactions can guarantee low latency because they take only 2.5 local message

RTTs, no operations acquire locks, and all phases wait on only the previous round of

messages before continuing.

Read-only transactions can still guarantee low latency for the same reasons. To see

this, consider the worst case, a two-round-and-indirected read transaction. That read

transaction would issue a first round of parallel reads that would immediately return. Then it

would determine it needs a second round and send out a second (smaller) parallel round of

reads. When those reads reached their respective servers, they might find relevant pending

transactions and then would send out a commit check to each’s coordinators. Those

coordinators then, because the requested time is in the past, can immediately respond with

the status of the transaction. (The coordinator’s checking of its state is causally after the

first-round read that set the effective time of the transaction, and thus its clock is currently

past that time.) The issuing servers could then immediately respond to the client. This

transaction would require only three local RTTs—first round, second round, indirection

round—as a worst case.
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Chapter 6

Garbage, Faults, and Conflicts

This section describes three important aspects of COPS, COPS-RT, and Eiger: their garbage

collection subsystems that reduce the amount of extra state in the system; their fault tolerant

design; and their conflict detection mechanisms.

6.1 Garbage Collection Subsystem

COPS, COPS-RT, and Eiger clients store metadata; COPS-RT and Eiger servers keep

multiple versions of keys; and COPS-RT servers store dependencies. Without intervention,

the space footprint of the system would grow without bound as keys are updated and inserted.

Our garbage collection subsystem deletes unneeded state, keeping the total system size in

check. Section 7 evaluates the overhead of maintaining and transmitting this additional

metadata.

Version Garbage Collection. (COPS-RT, Eiger)

What is stored: COPS-RT and Eiger store multiple versions of each key to answer

read by time/multiget slice by time requests from clients.

Why it can be cleaned: The read-only transaction algorithm limits the number of versions

needed to complete a read-only transaction. Each algorithm’s second round issues requests
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only for versions later than those returned in the first round. To enable prompt garbage

collection, COPS-RT and Eiger limit the total running time of read-only transaction through

a configurable parameter, trans time (set to 5 seconds in our implementation). If the timeout

fires, the client library will restart the read-only transaction call and satisfy the transaction

with newer versions of the keys; we expect this to happen only if multiple nodes in a cluster

crash.

When it can be cleaned: After a new version of a key is written, COPS-RT and Eiger only

need to keep the old version around for trans time plus a small delta for clock skew. After

this time, no second-round read will subsequently request the old version, and the garbage

collector can remove it.

Space Overhead: The space overhead is bounded by the number of old versions that can be

created within the trans time. This number is determined by the maximum write throughput

that the node can sustain. Our COPS-RT implementation sustains 105MB/s of write traffic

per node, requiring (potentially) a non-prohibitive extra 525MB of buffer space to hold

old versions. This overhead is per-machine and does not grow with the cluster size or the

number of datacenters.

Dependency Garbage Collection. (COPS-RT only)

What is stored: Dependencies are stored to allow read-only transactions to obtain a consistent

view of the data store.

Why it can be cleaned: COPS-RT can garbage collect these dependencies once the ver-

sions associated with old dependencies are no longer needed for correctness in read-only

transaction operations.

To illustrate when read-only transaction operations no longer need dependencies, con-

sider value z2 that depends on x2 and y2. A read-only transaction of x, y, and z requires that

if z2 is returned, then x≥2 and y≥2 must be returned as well. Causal consistency ensures

that x2 and y2 are written before z2 is written. Causal+ consistency’s progressing property
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ensures that once x2 and y2 are written, then either they or some later version will always be

returned by a read-only operation. Thus, once z2 has been written in all datacenters and the

trans time has passed, any read-only transaction returning z2 will return x≥2 and y≥2, and

thus z2’s dependencies can be garbage collected.

When it can be cleaned: After trans time seconds after a value has been committed in all

datacenters, COPS-RT can clean a value’s dependencies. (Recall that committed enforces

that its dependencies have been satisfied.) COPS, COPS-RT, and Eiger can further set the

value’s never-depend flag, discussed below. To clean dependencies each remote datacenter

notifies the originating datacenter when the write has committed and the timeout period

has elapsed. Once all datacenters confirm, the originating datacenter cleans its own depen-

dencies and informs the others to do likewise. To minimize bandwidth devoted to cleaning

dependencies, a replica only notifies the originating datacenter if this version of a key is

the newest after trans time seconds; if it is not, there is no need to collect the dependencies

because the entire version will be collected.

Space Overhead: Under normal operation, dependencies are garbage collected after

trans time plus a round-trip time. Dependencies are only collected on the most recent

version of the key; older versions of keys are already garbage collected as described above.

During a partition, dependencies on the most recent versions of keys cannot be collected.

This is a limitation of COPS-RT, although we expect long partitions to be rare. To illustrate

why this concession is necessary for read-only transaction correctness, consider value b2

that depends on value a2: if b2’s dependence on a2 is prematurely collected, some later

value c2 that causally depends on b2—and thus on a2—could be written without the explicit

dependence on a2. Then, if a2, b2, and c2 are all replicated to a datacenter in short order, the

first round of a read-only transaction could obtain a1, an earlier version of a, with c2, and

then return these two values to the client, precisely because it did not know c2 depends on

the newer a2.
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Client Metadata Garbage Collection. (COPS, COPS-RT, Eiger)

What is Stored: The client library tracks all operations during a client session (single thread

of execution) using the actor id passed with all operation. In contrast to the dependency

information discussed above which resides in the key-value store itself, the dependencies

discussed here are part of the client metadata and are stored in the client library. In all

systems, each read since the last write adds another one-hop dependency. Additionally

in COPS-RT, all new values and their dependencies returned in read trans operations

and all write operations add normal dependencies. If a client session lasts for a long time,

the number of dependencies attached to updates will grow large, increasing the size of the

dependency metadata that our systems needs to store. The design of this garbage collection

is applicable to COPS, COPS-RT, and Eiger, though we have only currently implemented it

for COPS and COPS-RT.

Why it can be cleaned: As with the dependency tracking above, clients need to track

dependencies only until they are guaranteed to be satisfied everywhere.

When it can be cleaned: We reduce the size of this client state (the context) in two ways.

First, as noted above, once a write commits successfully to all datacenters, we flag that key

version as never-depend, in order to indicate that clients need not express a dependence

upon it. Read results include this flag, and the client library will immediately remove a

never-depend item from the list of dependencies in the client context. Furthermore, this

process is transitive: anything that a never-depend key depended on must have been flagged

never-depend, so it too can be garbage collected from the context.

Second, our servers remove unnecessary dependencies from write operations. When a

server receives a write, it checks each item in the dependency list and removes items with

version numbers older than a global checkpoint time. This checkpoint time is the newest

Lamport timestamp that is satisfied at all nodes across the entire system. The server returns

this checkpoint time to the client library (e.g., in response to a write), allowing the library
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to clean these dependencies from the context. Because of outstanding reads, clients and

servers must also wait trans time seconds before they can use a new global checkpoint time.

To compute the global checkpoint time, each storage node first determines the oldest

Lamport timestamp of any pending write in the key range for which it is primary. (In other

words, it determines the timestamp of its oldest key that is not guaranteed to be satisfied

at all replicas.) It then contacts its equivalent nodes in other datacenters (those nodes that

handle the same key range). The nodes pair-wise exchange their minimum Lamport times,

remembering the oldest observed Lamport clock of any of the replicas. At the conclusion of

this step, all datacenters have the same information: each node knows the globally oldest

Lamport timestamp in its key range. The nodes within a datacenter then gossip around the

per-range minimums to find the minimum Lamport timestamp observed by any one of them.

This periodic procedure is performed 10 times a second in our COPS implementation and

has no noticeable impact on performance.

6.2 Fault Tolerance

In this section, we examine how COPS, COPS-RT, and Eiger behaves under failures,

including single server failure, meta-client redirection, and entire datacenter failure.

Single server failures are common and unavoidable in practice. We guard against their

failure with the construction of logical servers from multiple physical servers. For instance,

a logical server implemented with a three-server Paxos group can withstand the failure of

one of its constituent servers. Like any system built on underlying components, our systems

inherit the failure modes of their underlying building blocks. In particular, if a logical server

assumes no more than f physical machines fail, we must assume that within a single logical

server no more than f physical machines fail.

Meta-clients that are the clients of our systems’ clients (i.e., web browsers that have

connections to front-end web tier machines) will sometimes be directed to a different
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datacenter. For instance, a redirection may occur when there is a change in the DNS

resolution policy of a service. When a redirection occurs during the middle of an active

connection, we expect service providers to detect it using cookies and then redirect clients

to their original datacenter (e.g., using HTTP redirects or triangle routing). When a client is

not actively using the service, however, policy changes that reassign it to a new datacenter

can proceed without complication.

Datacenter failure can either be transient (e.g., network or power cables are cut) or

permanent (e.g., datacenter is physically destroyed by an earthquake). Permanent failures

will result in data loss for data that was accepted and acknowledged but not yet replicated to

any other datacenter. The colocation of clients inside the datacenter, however, will reduce

the amount of externally visible data loss. Only data that is not yet replicated to another

datacenter, but has been acknowledged to both Eiger’s clients and meta-clients (e.g., when

the browser receives an Ajax response indicating a status update was posted) will be visibly

lost. Transient datacenter failure will not result in data loss.

Both transient and permanent datacenter failures will cause meta-clients to reconnect to

different datacenters. After some configured timeout, we expect service providers to stop

trying to redirect those meta-clients to their original datacenters and to connect them to a

new datacenter with an empty context. This could result in those meta-clients effectively

moving backwards in time. It would also result in the loss of causal links between the data

they observed in their original datacenter and their new writes issued to their new datacenter.

We expect that transient datacenter failure will be rare (no ill effects), transient failure that

lasts long enough for meta-clients to use a different datacenter even rarer (causality loss),

and permanent failure even rarer still (data loss).

COPS-RT is less resilient to datacenter failure than COPS and Eiger. Specifically,

in COPS-RT, dependency garbage collection cannot continue in the face of a datacenter

failure, until either the partition is healed or the system is reconfigured to exclude the

failed datacenter. Without dependency garbage collection, the number of dependencies in
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COPS-RT will continue to grow. This increases the metadata associated with each operation

and the number of dependency checks needed, thus continually lowering the goodput of

COPS-RT. COPS and Eiger do not suffer from this weakness.

6.3 Conflict Detection

Conflicts occur when there are two “simultaneous” (i.e., not in the same context/thread of

execution) writes to a given key. The systems by default avoid conflict detection using a

last-writer-wins strategy. The “last” write is determined by comparing timestamps, and

allows us to avoid conflict detection for increased simplicity and efficiency. We believe this

behavior is useful for many applications. There are other applications, however, that become

simpler to reason about and program with a more explicit conflict-detection scheme. For

these applications, COPS can be configured to detect conflicting operations and then invoke

some application-specific convergent conflict handler.1

COPS with conflict detection, which we refer to as COPS-CD, adds three new compo-

nents to the system. First, all write operations carry with them previous version metadata,

which indicates the most recent previous version of the key that was visible at the local

cluster at the time of the write (this previous version may be null). Second, all write opera-

tions now have an implicit dependency on that previous version, which ensures that a new

version will only be written after its previous version. This implicit dependency entails an

additional dep check operation, though this has low overhead and always executes on the

local machine. Third, COPS-CD has an application-specified convergent conflict handler

that is invoked when a conflict is detected.

COPS-CD follows a simple procedure to determine if a write operation new to a key

(with previous version prev) is in conflict with the key’s current visible version curr:

prev 6= curr if and only if new and curr conflict.

1Eiger does not currently provide conflict detection and adding it is an interesting direction of future work.
In particular, detecting and resolving intersecting write transactions will be challenging.
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We present a proof sketch here. In the forward direction, we know that prev must be

written before new, prev 6= curr, and that for curr to be visible instead of prev, we must

have curr > prev by the progressing property of causal+. But because prev is the most

recent causally previous version of new, we can conclude curr 6; new. Further, because

curr was written before new, it cannot be causally after it, so new 6; curr and thus they

conflict. In the reverse direction, if new and curr conflict, then curr 6; new. By definition,

prev ; new, and thus curr 6= prev.
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Chapter 7

Evaluation

This section presents an evaluation of COPS and COPS-RT, and a separate evaluation of

Eiger. Because COPS and Eiger provide different data models and are implemented in

different languages a direct empirical comparison between them is not meaningful. In

Section 7.4 we do, however, analytically compare COPS and Eiger.

7.1 Experimental Setup

All experiments, excluding Eiger’s scaling experiment, use the shared VICCI testbed [60, 75],

which provides users with Linux VServer instances. Each physical machine has 2x6 core

Intel Xeon X5650 CPUs, 48GB RAM, 3x1TB HDDs, and 2x1GigE network ports.

For experiments with COPS and COPS-RT in Section 7.2 we partition the cluster

into multiple logical “datacenters” as necessary. Microbenchmarks use 1 machine/cluster,

dynamic workload experiments use 4 machines/cluster, scaling experiments use up to 16

machines/cluster. We retain full bandwidth between the nodes in different datacenters to

reflect the high-bandwidth backbone that often exists between them. Our later experiment

with Eiger on VICCI in a wide-area setup confirm wide-area bandwidth is not a bottleneck.

For Eiger, all experiments are between multiple VICCI sites. The latency microbench-

mark uses a minimal wide-area setup with a cluster of 2 machines at the Princeton, Stanford,

59



and University of Washington (UW) VICCI sites. All other experiments use 8-machine

clusters in Stanford and UW and an additional 8 machines in Stanford as clients. These

clients fully load their local cluster, which replicates its data to the other cluster.

The inter-site latencies were 88ms between Princeton and Stanford, 84ms between

Princeton and UW, and 20ms between Stanford and UW. Inter-site bandwidth was not a

limiting factor.

Every datapoint in the evaluation represents the median of 5+ trials. Latency microbench-

mark trials are 30s, while all other trials are 60s. We elide the first and last quarter of each

trial to avoid experimental artifacts.

7.2 COPS

We evaluate COPS and COPS-RT with microbenchmarks that establish baseline system

latency and throughput, a sensitivity analysis that explores the impact of different parameters

that characterize a dynamic workload, and larger end-to-end experiments that show scalable

causal+ consistency.

7.2.1 Implementation

COPS is approximately 13,000 lines of C++ code. It is built on top of FAWN-KV [6, 31]

(~8500 LOC), which provides linearizable key-value storage within a local cluster. COPS

uses Apache Thrift [8] for communication between all system components and Google’s

Snappy [67] for compressing dependency lists. Our current prototype implements all

features described in the paper, excluding conflict detection.

We compare three systems: LOG, COPS, and COPS-RT. LOG uses the COPS code-

base but excludes all dependency tracking, making it simulate previous work that uses log

exchange to establish causal consistency (e.g., Bayou [59] and PRACTI [12]). Table 7.1

summarizes these three systems.
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System Causal+ Scalable Read-only Transactions

LOG Yes No No
COPS Yes Yes No
COPS-RT Yes Yes Yes

Table 7.1: Summary of three systems under comparison.

System Operation Latency (ms) Throughput
50% 99% 99.9% (Kops/s)

Thrift ping 0.26 3.62 12.25 60

COPS read by version 0.37 3.08 11.29 52
COPS-RT read by version 0.38 3.14 9.52 52

COPS write after (1) 0.57 6.91 11.37 30
COPS-RT write after (1) 0.91 5.37 7.37 24
COPS-RT write after (130) 1.03 7.45 11.54 20

Table 7.2: Latency (in ms) and throughput (in Kops/s) of various operations for 1B objects
in saturated systems. write after(x) includes metadata for x dependencies.

7.2.2 Microbenchmarks

We first evaluate the performance characteristics for COPS and COPS-RT in a simple setting:

two datacenters, one server per datacenter, and one colocated client machine. The client

sends read and write requests to its local server, attempting to saturate the system. The

requests are spread over 218 keys and have 1B values—we use 1B values for consistency

with later experiments, where small values are the worst case for COPS (see Figure 7.4(c)).

Table 7.2 shows the median, 99%, and 99.9% latencies and throughput.

The design decision in COPS to handle client operations locally yields low latency

for all operations. The latencies for read by time operations in COPS and COPS-RT are

similar to an end-to-end RPC ping using Thrift. The latencies for write after operations

are slightly higher because they are more computationally expensive; they need to update

metadata and write values. Nevertheless, the median latency for write after operations,

even those with up to 130 dependencies, is around 1 ms.
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System throughput follows a similar pattern. read by time operations achieve high

throughput, similar to that of Thrift ping operations (52 vs. 60 Kops/s). A COPS server can

process write after operations at 30 Kops/s (such operations are more computationally

expensive than reads), while COPS-RT achieves 20% lower throughput when write after

operations have 1 dependency (due to the cost of garbage collecting old versions). As the

number of dependencies in COPS-RT write after operations increases, throughput drops

slightly due to the greater size of metadata in each operation (each dependency is ~12B).

7.2.3 Dynamic Workloads

We model a dynamic workload with interacting clients accessing the COPS system as

follows. We set up two datacenters of S servers each and colocate S client machines in one

of the two datacenters. The clients access storage servers in the local datacenter, which

replicates write after operations to the remote datacenter. We report the sustainable

throughput in our experiments, which is the maximum throughput that both datacenters

can handle. In most cases, COPS becomes CPU-bound at the local datacenter, and that

COPS-RT becomes CPU-bound at the remote one.

To better stress the system and more accurately depict real operation, each client machine

emulates multiple logical COPS clients. Each time a client performs an operation, it

randomly executes a read or write, according to a specified write:read ratio. All operations

in a given experiment use fixed-size values.

The key for each operation is selected to control the amount of dependence between

operations (i.e., from fully isolated to fully intermixed). Specifically, given N clients, the

full keyspace consists of N keygroups, R1 . . .RN , one per client. Each keygroup contains

K keys, which are randomly distributed (i.e., they do not all reside on the same server).

When clients issue operations, they select keys as follows. First, they pick a keygroup by

sampling from a normal distribution defined over the N keygroups, where each keygroup

has width 1. Then, they select a key within that keygroup uniformly at random. The result
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Figure 7.1: In our experiments, clients choose keys to access by first selecting a keygroup
according to some normal distribution, then randomly selecting a key within that group
according to a uniform distribution. Figure shows such a stepped normal distribution for
differing variances for client #3 (of 5).

Parameter Range Default

clients/server 1-218 1024
keys/keygroup 1-2048 512
write:read ratio 64:1-1:64 1:1 or 1:4
variance 1/64-512 1
value size 1B-16KB 1B

Table 7.3: COPS dynamic workload generator parameters. Range is the space covered in
the experiments.

is a distribution over keys with equal likelihood for keys within the same keygroup, and

possibly varying likelihood across groups.

Figure 7.1 illustrates an example, showing the keygroup distribution for client #3 (of 5

total) for variances of 0, 1, and the limit approaching ∞. When the variance is 0, a client will

restrict its accesses to its “own” keygroup and never interact with other clients. In contrast,

when the variance→ ∞, client accesses are distributed uniformly at random over all keys,

leading to maximal inter-dependencies between write after operations.

The parameters of the dynamic workload experiments are those give in Table 7.3 unless

otherwise specified. As the state space of all possible combinations of these variables is

large, the following experiments explore parameters individually.
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Figure 7.2: Maximum throughput and the resulting average dependency size of COPS and
COPS-RT for a given inter-write delay between consecutive operations by the same logical
client. The legend gives the write:read ratio (i.e., 1:0 or 1:4).

Clients Per Server. We first characterize the system throughput as a function of increasing

delay between client operations (for two different write:read ratios).1 Figure 7.2(a) shows

that when the inter-operation delay is low, COPS significantly outperforms COPS-RT.

Conversely, when the inter-operation delay approaches several hundred milliseconds, the

maximum throughputs of COPS and COPS-RT converge. Figure 7.2(b) helps explain this

behavior: as the inter-operation delay increases, the number of dependencies per operation

decreases because of the ongoing garbage collection.

1For these experiments, we do not directly control the inter-operation delay. Rather, we increase the number
of logical clients running on each of the client machines from 1 to 218; given a fixed-size thread pool for clients
in our test framework, each logical client gets scheduled more infrequently. As each client makes one request
before yielding, this leads to higher average inter-op delay (calculated simply as throughput

# of clients ). Our default setting
of 1024 clients/server yields an average inter-op delay of 29 ms for COPS-RT with a 1:0 write:read ratio, 11ms
for COPS with 1:0, 11ms for COPS-RT with 1:4, and 8ms for COPS with 1:4.
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To understand this relationship, consider the following example. If the global-checkpoint-

time is 6 seconds behind the current time and a logical client is performing 100 writes/sec

(in an all-write workload), each write will have 100 ·6 = 600 dependencies. Figure 7.2(b)

illustrates this relationship. While COPS will store only the single nearest dependency (not

shown), COPS-RT must track all dependencies that have not been garbage collected. These

additional dependencies explain the performance of COPS-RT: when the inter-write time is

small, there are a large number of dependencies that need to be propagated with each value,

and thus each operation is more expensive.

The global-checkpoint-time typically lags ~6 seconds behind the current time because

it includes both the trans time delay (per subsection 6.1) and the time needed to gossip

checkpoints around their local datacenter (nodes gossip once every 100ms). Recall that an

agreed-upon trans time delay is needed to ensure that currently executing read trans oper-

ations can complete, while storage nodes use gossiping to determine the oldest uncommitted

operation (and thus the latest timestamp for which dependencies can be garbage collected).

Notably, round-trip-time latency between datacenters is only a small component of the lag,

and thus performance is not significantly affected by RTT (e.g., a 70ms wide-area RTT is

about 1% of a 6s lag for the global-checkpoint-time).

Write:Read Ratio. We next evaluate system performance under varying write:read ratios

and key-access distributions. Figure 7.3(a) shows the throughput of COPS and COPS-RT for

write:read ratios from 64:1 to 1:64 and three different distribution variances. We observe that

throughput increases for read-heavier workloads (write:read ratios < 1), and that COPS-RT

becomes competitive with COPS for read-mostly workloads. While the performance of

COPS is identical under different variances, the throughput of COPS-RT is affected by

variance. We explain both behaviors by characterizing the relationship between write:read

ratio and the number of dependencies (Figure 7.3(b)); fewer dependencies translates to less

metadata that needs to be propagated and thus higher throughput.
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Figure 7.3: Maximum throughput and the resulting average dependency size of COPS and
COPS-RT for a given write:read ratio. The legend gives the variance (i.e., 0, 1, or 512).

When different clients access the same keys (variance > 0), we observe two distinct

phases in Figure 7.3(b). First, as the write:read ratio decreases from 64:1 to 1:1, the number

of dependencies increases. This increase occurs because each read operation increases the

likelihood a client will inherit new dependencies by reading a value that has been recently

written by another client. For instance, if client1 writes a value v1 with dependencies d

and client2 reads that value, then client2’s future write will have dependencies on both

v1 and d. Second, as the write:read ratio then decreases from 1:1 to 1:64, the number of

dependencies decreases for two reasons: (i) each client is executing fewer write operations

and thus each value depends on fewer values previously written by this client; and (ii)

because there are fewer write operations, more of the keys have a value that is older than the

global-checkpoint-time, and thus reading them introduces no additional dependencies.
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When clients access independent keys (variance = 0), the number of dependencies is

strictly decreasing with the write:read ratio. This result is expected because each client ac-

cesses only values in its own keygroup that it previously wrote and already has a dependency

on. Thus, no read causes a client to inherit new dependencies.

The average dependency count for COPS (not shown) is always low, from 1 to 4

dependencies, because COPS needs to track only the one-hop (instead of all) dependencies.

Keys Per Keygroup. Figure 7.4(a) shows the effect of keygroup size on the throughput

of COPS and COPS-RT. Recall that clients distribute their requests uniformly over keys

in their selected keygroup. The behavior of COPS-RT is nuanced; we explain its varying

throughput by considering the likelihood that a read operation will inherit new dependencies,

which in turn reduces throughput. With the default variance of 1 and a low number of

keys/keygroup, most clients access only a small number of keys. Once a value is retrieved

and its dependencies inherited, subsequent reads on that same value do not cause a client to

inherit any new dependencies. As the number of keys/keygroup begins to increase, however,

clients are less likely to read the same value repeatedly, and they begin inheriting additional

dependencies. As this number continues to rise, however, garbage collection can begin to

have an effect: fewer reads retrieve a value that was recently written by another client (e.g.,

after the global checkpoint time), and thus fewer reads return new dependencies. The bowed

shape of COPS-RT’s performance is likely due to these two contrasting effects.

Variance. Figure 7.4(b) examines the effect of variance on system performance. As noted

earlier, the throughput of COPS is unaffected by different variances: read operations in COPS

never inherit extra dependencies, as the returned value is always “nearer,” by definition.

COPS-RT has an increased chance of inheriting dependencies as variance increases, however,

which results in decreased throughput.
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Figure 7.4: Maximum system throughput (using write:read ratios of 1:4, 1:1, or 1:0) for
varied keys/keygroup, variances, and value sizes.
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Figure 7.5: Throughput for LOG with 1 server/datacenter, and COPS and COPS-RT with
1, 2, 4, 8, and 16 servers/datacenter, for a variety of scenarios. Throughput is normalized
against LOG for each scenario; raw throughput (in Kops/s) is given above each bar.

Value Size. Finally, Figure 7.4(c) shows the effect of value size on system performance.

In this experiment, we normalize the systems’ maximum throughput against that of COPS

(the COPS line at exactly 1.0 is shown only for comparison). As the size of values increases,

the relative throughput of COPS-RT approaches that of COPS.

We attribute this to two reasons. First, the relative cost of processing dependencies (which

are of fixed size) decreases compared to that of processing the actual values. Second, as

processing time per operation increases, the inter-operation delay correspondingly increases,

which in turn leads to fewer dependencies.

7.2.4 Scaling

To evaluate the scalability of COPS and COPS-RT, we compare them to LOG. LOG mimics

systems based on log serialization and exchange, which can only provide causal+ consistency
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with single node replicas. Our implementation of LOG uses the COPS code, but excludes

dependency tracking.

Figure 7.5 shows the throughput of COPS and COPS-RT (running on 1, 2, 4, 8, or 16

servers/datacenter) normalized against LOG (running on 1 server/datacenter). Unless speci-

fied otherwise, all experiments use the default settings given in subsection 7.2.3, including

a write:read ratio of 1:1. In all experiments, COPS running on a single server/datacenter

achieves performance almost identical to LOG. (After all, compared to LOG, COPS needs

to track only a small number of dependencies, typically ≤ 4, and any dep check operations

in the remote datacenter can be executed as local function calls.) More importantly, we see

that COPS and COPS-RT scale well in all scenarios: as we double the number of servers

per datacenter, throughput almost doubles.

In the experiment with all default settings, COPS and COPS-RT scale well relative to

themselves, although COPS-RT’s throughput is only about two-thirds that of COPS. These

results demonstrate that the default parameters were chosen to provide a non-ideal workload

for the system. However, under a number of different conditions—and, indeed, a workload

more common to Internet services—the performance of COPS and COPS-RT is almost

identical.

As one example, the relative throughput of COPS-RT is close to that of COPS when the

inter-operation delay is high (achieved by hosting 32K clients per server, as opposed to the

default 1024 clients; see Footnote 1). Similarly, a more read-heavy workload (write:read

ratio of 1:16 vs. 1:1), a smaller variance in clients’ access distributions (1/128 vs. 1), or

larger-sized values (16KB vs. 1B)—controlling for all other parameters—all have the similar

effect: the throughput of COPS-RT becomes comparable to that of COPS.

Finally, for the “expected workload” experiment, we set the parameters closer to what

we might encounter in an Internet service such as social networking. Compared to the

default, this workload has a higher inter-operation delay (32K clients/server), larger values
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(1KB), and a read-heavy distribution (1:16 ratio). Under these settings, the throughput of

COPS and COPS-RT are very comparable, and both scale well with the number of servers.

7.3 Eiger

This evaluation explores the overhead of Eiger’s stronger semantics compared to eventually-

consistent Cassandra and shows that Eiger scales to large clusters.

7.3.1 Implementation

Our Eiger prototype implements everything described in Chapter 5 as 5000 lines of Java

added to and modifying the existing 75000 LOC in Cassandra 1.1 [21, 46]. All of Eiger’s

reads are transactional. We use Cassandra configured for wide-area eventual consistency as

a baseline for comparison. In each local cluster, both Eiger and Cassandra use consistent

hashing to map each key to a single server, and thus trivially provide linearizability.

In unmodified Cassandra, for a single logical request, the client sends all of its sub-

requests to a single server. This server splits batch mutate and multiget slice opera-

tions from the client that span multiple servers, sends them to the appropriate server, and

re-assembles the responses for the client. In Eiger, the client library handles this splitting,

routing, and re-assembly directly, allowing Eiger to save a local RTT in latency and poten-

tially many messages between servers. With this change, Eiger outperforms unmodified

Cassandra in many settings. Therefore, to make our comparison to Cassandra fair, we

implemented an analogous client library that handles the splitting, routing, and re-assembly

for Cassandra. The results below use this optimization.
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7.3.2 Eiger Overheads

We first examine the overhead of Eiger’s causal consistency, read-only transactions, and

write-only transactions. This section explains why each potential source of overhead does

not significantly impair throughput, latency, or storage; the next sections confirm empirically.

Causal Consistency Overheads. Write operations carry dependency metadata. Its impact

on throughput and latency is low because each dependency is 16 bytes2; the number of

dependencies attached to a write is limited to its small set of one-hop dependencies; and

writes are typically less frequent. Dependencies have no storage cost because they are not

stored at the server.

Dependency check operations are issued in remote datacenters upon receiving a replicated

write. Limiting these checks to the write’s one-hop dependencies minimizes throughput

degradation. They do not affect client-perceived latency, occuring only during asynchronous

replication, nor do they add storage overhead.

Read-only Transaction Overheads. Validity-interval metadata is stored on servers and

returned to clients with read operations. Its effect is similarly small: only the 8B EVT

(earliest valid time) is stored, and the 16B of metadata returned to the client is tiny compared

to typical key/column/value sets.

If second-round reads were always needed, they would roughly double latency and halve

throughput. Fortunately, they occur only when there are concurrent writes to the requested

columns in the local datacenter, which is rare given the short duration of reads and writes.

Extra-version storage is needed at servers to handle second-round reads. It has no impact

on throughput or latency, and its storage footprint is small because we aggressively limit the

number of old versions (see §5.3.3).
2Dependencies in Eiger are currently uncompressed, they would shrink to 12B if we used compression like

that in COPS.
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Write-only Transaction Overheads. Write transactions write columns twice: once to

mark them pending and once to write the true value. This accounts for about half of the

moderate overhead of write transactions, evaluated in §7.3.4. When only some writes are

transactional and when the writes are a minority of system operations (as found in prior

studies [9, 33]), this overhead has a small effect on overall throughput. The second write

overwrites the first, consuming no space.

Many 2PC-PCI messages are needed for the write-only algorithm. These messages add

1.5 local RTTs to latency, but have little effect on throughput: the messages are small and

can be handled in parallel with other steps in different write transactions.

Indirected second-round reads add an extra local RTT to latency and reduce read

throughput vs. normal second-round reads. They affect throughput minimally, however,

because they occur rarely: only when the second-round read arrives when there is a not-yet-

committed write-only transaction on an overlapping set of columns that prepared before the

read-only transaction’s effective time.

7.3.3 Latency Microbenchmark

Eiger always satisfies client operations within a local datacenter and thus, fundamentally, is

low-latency. To demonstrate this, verify our implementation, and compare with strongly-

consistent systems, we ran an experiment to compare the latency of read and write operations

in Eiger vs. three Cassandra configurations: eventual (R=1, W=1), strong-A (R=3, W=1),

and strong-B (R=2, W=2), where R and W indicate the number of datacenters involved in

reads and writes.3

The experiments were run from UW with a single client thread to isolate latency differ-

ences. Table 7.4 reports the median, 90%, 95%, and 99% latencies from operations on a

single 1B column. For comparison, two 1B columns, stored on different servers, were also

updated together as part of transactional and non-transactional “Eiger (2)” write operations.
3Cassandra single-key writes are not atomic across different nodes, so its strong consistency requires read

repair (write-back) and R>N/2.
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Latency (ms)
50% 90% 95% 99%

Reads
Cassandra-Eventual 0.38 0.56 0.61 1.13
Eiger 1 Round 0.47 0.67 0.70 1.27
Eiger 2 Round 0.68 0.94 1.04 1.85
Eiger Indirected 0.78 1.11 1.18 2.28
Cassandra-Strong-A 85.21 85.72 85.96 86.77
Cassandra-Strong-B 21.89 22.28 22.39 22.92

Writes
Cassandra-Eventual

0.42 0.63 0.91 1.67
Cassandra-Strong-A
Eiger Normal 0.45 0.67 0.75 1.92
Eiger Normal (2) 0.51 0.79 1.38 4.05
Eiger Transaction (2) 0.73 2.28 2.94 4.39
Cassandra-Strong-B 21.65 21.85 21.93 22.29

Table 7.4: Latency micro-benchmarks.

All reads in Eiger—one-round, two-round, and worst-case two-round-and-indirected

reads—have median latencies under 1ms and 99% latencies under 2.5ms. atomic mutate

operations are slightly slower than batch mutate operations, but still have median latency

under 1ms and 99% under 5ms. Cassandra’s strongly consistent operations fared much

worse. Configuration “A” achieved fast writes, but reads had to access all datacenters

(including the ~84ms RTT between UW and Princeton); “B” suffered wide-area latency for

both reads and writes (as the second datacenter needed for a quorum involved a ~20ms RTT

between UW and Stanford).

7.3.4 Write Transaction Cost

Figure 7.6 shows the throughput of write-only transactions, and Cassandra’s non-atomic

batch mutates, when the keys they touch are spread across 1 to 8 servers. The experiment

used the default parameter settings from Table 7.5 with 100% writes and 100% write

transactions.
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Figure 7.6: Throughput of an 8-server cluster for write transactions spread across 1 to 8
servers, with 1, 5, or 10 keys written per server. The dot above each bar shows the throughput
of a similarly-structured eventually-consistent Cassandra write.

Parameter Range Default Facebook
50% 90% 99%

Value Size (B) 1-4K 128 16 32 4K
Cols/Key for Reads 1-32 5 1 2 128
Cols/Key for Writes 1-32 5 1 2 128
Keys/Read 1-32 5 1 16 128
Keys/Write 1-32 5 1
Write Fraction 0-1.0 .1 .002
Write Txn Fraction 0-1.0 .5 0 or 1.0
Read Txn Fraction 1.0 1.0 1.0

Table 7.5: Dynamic workload generator parameters. Range is the space covered in the
experiments; Facebook describes the distribution for that workload.

Eiger’s throughput remains competitive with batch mutates as the transaction is spread

across more servers. Additional servers only increase 2PC-PCI costs, which account for less

than 10% of Eiger’s overhead. About half of the overhead of write-only transactions comes

from double-writing columns; most of the remainder is due to extra metadata. Both absolute

and Cassandra-relative throughput increase with the number of keys written per server, as

the coordination overhead remains independent of the number of columns.
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Figure 7.7: Results from exploring our dynamic-workload generator’s parameter space. Each
experiment varies one parameter while keeping all others at their default value (indicated by
the vertical line). Eiger’s throughput is normalized against eventually-consistent Cassandra.
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Ops/sec Keys/sec Columns/sec

Cassandra 23,657 94,502 498,239
Eiger 22,088 88,238 466,844
Eiger All Txns 22,891 91,439 480,904
Max Overhead 6.6% 6.6% 6.3%

Table 7.6: Throughput for the Facebook workload.

7.3.5 Dynamic Workloads

We created a dynamic workload generator to explore the space of possible workloads.

Table 7.5 shows the range and default value of the generator’s parameters. The results from

varying each parameter while the others remain at their defaults are shown in Figure 7.7.

Eiger’s dynamic workload generator varies from the one in COPS in one notable way: it

does not have clients select keys from keygroups according to a normal distribution with

some set variance. This part of the generator did not affect COPS, as we saw in Figure 7.4(b),

and because Eiger, like COPS, only tracks one-hop dependencies this would not affect its

performance.

We give a brief review of these results. Overhead decreases with increasing value size,

because metadata represents a smaller portion of message size. Overhead is relatively

constant with increases in the columns/read, columns/write, keys/read, and keys/write ratios

because while the amount of metadata increases, it remains in proportion to message size.

Higher fractions of write transactions (within an overall 10% write workload) do not increase

overhead.

The main result of this experiment is that Eiger’s throughput is overall competitive with

the eventually-consistent Cassandra baseline. With the default parameters, its overhead is

15%. When they are varied, its overhead ranges from 0.5% to 25%.
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Figure 7.8: Normalized throughput of N-server clusters for the Facebook TAO workload.
Bars are normalized against the 1-server cluster.

7.3.6 Facebook Workload

For one realistic view of Eiger’s overhead, we parameterized a synthetic workload based

upon Facebook’s production TAO system [69]. Parameters for value sizes, columns/key,

and keys/operation are chosen from discrete distributions measured by the TAO team.

We show results with a 0% write transaction fraction (the actual workload, because TAO

lacks transactions), and with 100% write transactions. Table 7.5 shows the heavy-tailed

distributions’ 50th, 90th, and 99th percentiles.

Table 7.6 shows that the throughput for Eiger is within 7% of eventually-consistent

Cassandra. The results for 0% and 100% write transactions are effectively identical because

writes are such a small part of the workload. For this real-world workload, Eiger’s causal

consistency and stronger semantics do not impose significant overhead.

7.3.7 Scaling

To demonstrate the scalability of Eiger we ran the Facebook TAO workload on N client

machines that are fully loading an N-server cluster that is replicating writes to another

N-server cluster, i.e., the N=128 experiment involves 384 machines. This experiment was

run on PRObE’s Kodiak testbed [62], which provides an Emulab [76] with exclusive access
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to hundreds of machines. Each machine has 2 AMD Opteron 252 CPUS, 8GM RAM, and

an InfiniBand high-speed interface. The bottleneck in this experiment is server CPU.

Figure 7.8 shows the throughput for Eiger as we scale N from 1 to 128 servers/cluster.

The bars show throughput normalized against the throughput of the 1-server cluster. Eiger

scales as the number of servers increases, though this scaling is not linear from 1 to 8

servers/cluster. The 1-server cluster benefits from batching; all operations that involve

multiple keys are executed on a single machine. Larger clusters distribute these multi-key

operations over multiple servers and thus lose batching. As clusters increase in size they

continue to lose batching until every key in an operation is resident on a different server. This

mainly affects scaling from 1 to 8 servers/cluster with a 72% average increase per doubling

of servers and we see almost perfect linear scaling from 8 to 128 servers/cluster with a 96%

average increase per doubling of servers. The inflection point around 8 servers/cluster is a

result of the workload, which has 73% of operations involve 4 or fewer keys and 83% of

operations involve 8 or fewer keys.

7.4 Analytically Comparing COPS and Eiger

COPS and Eiger provide different data models and are implemented in different languages,

so a direct empirical comparison is not meaningful. We can, however, intuit how Eiger’s

algorithms perform in the COPS setting.

Both COPS and Eiger achieve low latency around 1ms. Second-round reads would

occur in COPS and Eiger equally often, because both are triggered by the same scenario:

concurrent writes in the local datacenter to the same keys. Eiger experiences some additional

latency when second-round reads are indirected, but this is rare (and the total latency remains

low). Write-only transactions in Eiger would have higher latency than their non-atomic

counterparts in COPS, but we have also shown their latency to be very low.
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Beyond having write transactions, which COPS does not, the most significant difference

between Eiger and COPS is the efficiency of Eiger’s read-only transactions. COPS-RT’s

read-only transactions add significant dependency-tracking overhead vs. the COPS baseline

under certain conditions as shown in Section 7.2.3. In contrast, by tracking only one-hop

dependencies, Eiger avoids the metadata explosion that COPS’ read-only transactions can

suffer. We expect that Eiger’s read transactions would operate roughly as quickly as COPS’

non-transactional reads, and the system as a whole would outperform COPS-RT despite

offering both read- and write-only transactions and supporting a much more rich data model.
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Chapter 8

Related Work

We divide related work into four categories: ALPS systems, causally consistent systems,

linearizable systems, and transactional systems. Our work on COPS and Eiger primarily

distinguishes itself through scalability—data in a replica (datacenter) may be spread over

many machines—and by guaranteeing low latency.

8.1 ALPS Systems

The increasingly crowded category of ALPS systems includes eventually consistent key-

value stores such as Amazon’s Dynamo [27], LinkedIn’s Project Voldemort [63], and the

popular memcached [34]. Facebook’s Cassandra [46] can be configured to use eventual

consistency to achieve ALPS properties, or can sacrifice ALPS properties to provide lin-

earizability. Unlike COPS and Eiger, each of these systems settled for eventual consistency.

A key influence for our work was Yahoo!’s PNUTS [25], which provides per-key

sequential consistency (they named this per-record timeline consistency). The PNUTS

design does not provide availability, low latency, or partition tolerance because it uses a

per-key master to serialize updates. A straight-forward modification that used lamport

timestamps for per-key serialization would make it an ALPS system. Per-key sequential
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consistency, and thus PNUTS, do not provide any consistency between keys, however;

achieving such consistency introduces the scalability challenges that COPS addresses.

8.2 Causally Consistent Systems

Many previous system designers have recognized the utility of causal consistency.

Bayou [59] provides a SQL-like interface to single-machine replicas that achieves causal+

consistency. Bayou handles all reads and writes locally; it does not address the scalability

goals we consider.

TACT [77] is a causal+ consistent system that uses order and numeric bounding to limit

the divergence of replicas in the system. The ISIS [15] system exploits the concept of

virtual synchrony [14] to provide applications with a causal broadcast primitive (CBcast).

CBcast could be used in a straightforward manner to provide a causally consistent key-value

store. Replicas that share information via causal memory [2] can also provide a causally

consistent ALP key-value store. These systems, however, are not scalable as they all require

single-machine replicas.

PRACTI [12] is a causal+ consistent ALP system that supports partial replication, which

allows a replica to store only a subset of keys and thus provides some scalability. However,

each replica—and thus the set of keys over which causal+ consistency is provided—is still

limited to what a single machine can handle.

Lazy replication [45] is closest to the COPS/Eiger approach. Lazy replication explicitly

marks updates with their causal dependencies and waits for those dependencies to be

satisfied before applying them at a replica. These dependencies are maintained and attached

to updates via a front-end that is an analog to our client library. The design of lazy replication,

however, assumes that replicas are limited to a single machine: Each replica requires a

single point that can (i) create a sequential log of all replica operations, (ii) gossip that log
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to other replicas, (iii) merge the log of its operations with those of other replicas, and finally

(iv) apply these operations in causal order.

Finally, in concurrent theoretical work, Mahajan et al. [55] define real-time causal (RTC)

consistency and prove that no consistency strictly stronger than it is achievable in an always-

available system. RTC is stronger than causal+ because it enforces a real-time requirement:

if causally-concurrent writes do not overlap in real-time, the earlier write may not be ordered

after the later write. This real-time requirement helps capture potential causality that is

hidden from the system (e.g., out-of-band messaging [24]). In contrast, causal+ does not

have a real-time requirement, which allows for more efficient implementations. Notably,

COPS’s efficient last-writer-wins rule results in a causal+ but not RTC consistent system,

while a “return-them-all” conflict handler would provide both properties.

8.3 Linearizable Systems

A large body of research exists about stronger consistency in the wide area. This includes

classical research about two-phase commit protocols [66] and distributed consensus (e.g.,

Paxos [49]). As noted earlier, protocols and systems that provide the strongest forms of

consistency—linearizability, sequential consistency, and serializability—are provably incom-

patible with low latency [10, 52]. Recent examples includes Megastore [11], Spanner [26],

and Scatter [38], which use Paxos in the wide-area; CRAQ [70], which is a variant of chain

replication [74] that can complete reads in the local-area when there is little write contention,

but otherwise requires wide-area operations to ensure linearizability; and Gemini [50], which

provides RedBlue consistency with low latency for its blue operations, but high latency for

its globally-serialized red operations. In contrast, COPS and Eiger guarantees low latency.
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8.4 General Transactions

The database community has long supported consistency across multiple keys through

general transactions. In many commercial database systems, a single primary executes

transactions across keys, then lazily sends its transaction log to other replicas, potentially

over the wide-area. In scale-out designs involving data partitioning (or “sharding”), these

transactions are typically limited to keys residing on the same server. Eiger does not have

this restriction. More fundamentally, the single primary approach inhibits low-latency, as

write operations must be executed in the primary’s datacenter.

Several recent systems attempt to reduce the inter-datacenter communication needed to

provide transactions. Walter [68] includes optimizations that allow transactions to execute

within a single site in many scenarios; nevertheless, ensuring causal relationships between

keys can require a two-phase commit across the wide-area. Similarly, MDCC [44] reduces

the number of communication rounds involved with transactions for common cases, but at

least one round must always traverse the wide-area. Orleans [19], another recent system,

also tries to minimize latency for general transaction. Calvin [73] is a recent transaction

scheduling and replication layer that can achieve high throughput in the wide-area by

replicating inputs instead of effects. These systems all support general transactions, as

opposed to Eiger’s read- or write-only transactions. They, cannot, however, guarantee

low-latency operations, a fundamental goal and property of Eiger. MDCC and Orleans

both explicitly acknowledge this by giving programmers the option to receive a fast-but-

potentially-incorrect response.

The widely used MVCC algorithm [13, 64] and Eiger maintain multiple versions of

objects so they can provide clients with a consistent view of a system. MVCC provides

full snapshot isolation, sometimes rejects writes, has state linear in the number of recent

reads and writes, and has a sweeping process that removes old versions. Eiger, in contrast,

provides only read-only transactions, never rejects writes, has at worst state linear in the
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number of recent writes, and avoids storing most old versions while using fast timeouts for

cleaning the rest.

8.5 Limited Transactions

The implementers of many recent systems have also recognized the utility of limited

transactions. Sinfonia [1] provides “mini” transactions to distributed shared memory, but

only considers operations within a single datacenter. HBase [40] includes read- and write-

only transactions within a single “region,” which is a subset of the capacity of a single

node.

The designers of Spanner [26], Google’s recent linearizable storage system with general

transactions and synchronous wide-area replication, also recognized the utility of read-only

transactions and included them in their system. Similar to the original distributed read-only

transactions [22], Spanner’s read-only transactions always take at least two rounds and

must block until all involved servers can guarantee they have applied all transactions that

committed before the read-only transaction started. In comparison, COPS’s and Eiger’s

read-only transactions normally only take one round and never have to block.

TxCache [61] provides a transactionally consistent, but potential stale, cache for a

relational database in a single replica (datacenter) setting. To do this, it tracks validity

intervals on versioned data, similar to Eiger’s read-only transaction algorithm. TxCache’s

algorithm is specifically designed to take advantage of the (single) relational database’s

knowledge of validity intervals. Eiger’s algorithm, in contrast, is designed to be entirely

distributed with no single point of control.

8.6 Comparing COPS and Eiger

Our work on Eiger [54] builds on the insights we gained and the techniques we developed

for COPS [53]. As we show by comparing these systems in Table 8.1, Eiger represents a
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COPS COPS-RT Eiger

Data Model Key Value Key Value Column Family
Consistency Causal+ Causal+ Causal+

Read-Only Txn No Yes Yes
Write-Only Txn No No Yes

Transaction Algos Use - Deps Logical Time
Dependencies On Values Values Operations
Transmitted Deps One-Hop All-GarbageC One-Hop

Checked Deps One-Hop Nearest One-Hop
Stored Deps None All-GarbageC None

Garbage Collect Deps Unneeded Yes Unneeded
Versions Stored One Few Fewer

Table 8.1: Comparing COPS and Eiger. Entries shown in bold are preferred.

large step forward for causal+ consistent and ALPS systems. In particular, Eiger supports a

richer data model, has more powerful transaction support (whose algorithms also work with

other consistency models), transmits and stores fewer dependencies, eliminates the need for

garbage collection, stores fewer old versions, and is not susceptible to availability problems

from metadata explosion when datacenters either fail, are partitioned, or suffer meaningful

slow-down for long periods of time.
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Chapter 9

Conclusion

Impossibility results divide geo-replicated storage systems into those that can provide the

strongest forms of consistency and those that can guarantee low latency. Prior to our work,

the general view was that low-latency, scalable distributed storage had to sacrifice strong

consistency and settle for eventual consistency, confusing users and programmers. COPS

demonstrates that this sacrifice is not fundamental; causal+ consistency is achievable in

the ALPS setting. COPS-RT takes this a step farther with its read-only transactions that

allow programmers to extract a consistent view of data spread across many machines. Eiger

continues to push the envelope on the properties ALPS systems can provide with a richer

data model and stronger semantics that include improved read-only transactions and new

write-only transactions.

Our major contributions include rigorously defining our setting, designing and imple-

menting scalable systems that provide causal+ consistency, designing and implementing

scalable systems that provide stronger semantics, and evaluating our implementations. Rig-

orously defining our setting includes identifying the ALPS properties, naming causal+

consistency, and formally defining it. Designing and implementing scalable systems that

provide causal+ consistency includes our description of COPS, the first scalable causal+

consistent system, and our description of Eiger, the first scalable causal+ consistent system
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with a rich data model. Designing and implementing stronger semantics for scalable storage

includes the non-blocking, lock-free read-only transaction algorithm in COPS-RT; an im-

proved non-blocking, lock-free read-only transaction algorithm in Eiger that is performant,

partition tolerant, and applicable to non-causal systems; and a novel write-only transaction

algorithm that atomically writes a set of keys, is lock-free, and does not block concur-

rent read transactions. Evaluating our implementations includes experiments that show

COPS has low latency, high throughput, and scales well for all tested workloads; COPS-RT

has similar properties for common workloads; and Eiger has performance competitive to

eventually-consistent, non-transactional Cassandra.

The key idea in COPS is using explicit dependency metadata and distributed dependency

checks to ensure operations appear in the correct causal order without a serialization bottle-

neck. The key idea in Eiger is that even in a distributed and uncoordinated system, if the

data store is updated consistently, there is a consistent result for every query at every logical

time. Read-only transactions exploit this by returning results from a single logical time,

avoiding the extra dependency tracking necessary in COPS-RT. Write-only transactions

exploit this by appearing at a single logical time, even to concurrent read-only transactions.

This leaves applications with two choices for geo-replicated storage. Strongly-consistent

storage is required for applications with global invariants, e.g., banking, where accounts

cannot drop below zero. COPS-and-Eiger-like systems can serve all other applications,

e.g., social networking (Facebook), encyclopedias (Wikipedia), and collaborative filtering

(Reddit). These applications no longer need to settle for eventual consistency and can instead

make sense of their data with causal+ consistency and stronger semantics.
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Appendix A

Formal Definition of Causal+

We first present causal consistency with convergent conflict handling (causal+ consistency)
for a system with only read and write operations, and we then introduce read-only transac-
tions. We use a model closely derived from Ahamad et al. [2], which in turn was derived
from those used by Herlihy and Wing [41] and Misra [57].

Original Model of Causal Consistency[2] with terminology modified to match this paper’s
definitions:

A system is a finite set of threads of execution, also called threads, that interact via
a key-value store that consists of a finite set of keys. Let T = {t1, t2, . . . , tn} be the set of
threads. The local history Li of a thread i is a sequence of read and write operations. If
operation σ1 precedes σ2 in Li, we write σ1 →

i
σ2. A history H = 〈L1,L2, . . . ,Ln〉 is the

collection of local histories for all threads of execution. A serialization S of H is a linear
sequence of all operations in H in which each get on a key returns its most recent preceding
write (or ⊥ if there does not exist any preceding write). The serialization S respects an order
→ if, for any operation σ1 and σ2 in S, σ1→ σ2 implies σ1 precedes σ2 in S.

The writes-into order associates a write operation, write(k,v), with each read operation,
read(k)=v. Because there may be multiple writes of a value to a key, there may be more
than one writes-into order.1 A writes-into order 7→ on H is any relation with the following
properties:

• If σ1 7→ σ2, then there is a key k and value v such that operation σ1 := write(k,v) and
σ2 := read(k)=v.

• For any operation σ2, there exists at most one σ1 for which σ1 7→ σ2.

• If σ2 := read(k)=v for some k,v and there exists no σ1 such that σ1 7→ σ2, then v = ⊥.
That is, a read with no preceding write must retrieve the initial value.

Two operations, σ1 and σ2, are related by a causal order ; if and only if one of the
following holds:

1The COPS and Eiger systems uniquely identifies values with timestamps so there is only one writes-into
order, but this is not necessarily true for causal+ consistency in general.
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• σ1→
i

σ2 for some ti (σ1 precedes σ2 in Li);

• σ1 7→ σ2 (σ2 reads the value written by σ1); or

• There is some other operation σ ′ such that σ1 ; σ ′; σ2.

Incorporating Convergent Conflict Handling. Two operations on the same key,
σ1:=write(k,v1) and σ2:=write(k,v2), are in conflict if they are not related by causality:
σ1 6; σ2 and σ2 6; σ1.

A convergent conflict handling function is an associative, commutative function that
operates on a set of conflicting operations on a key to eventually produce one (possibly new)
final value for that key. The function must produce the same final value independent of
the order in which it observes the conflicting updates. In this way, once every replica has
observed the conflicting updates for a key, they will all independently agree on the same
final value.

We model convergent conflict handling as a set of handler threads that are distinct from
normal client threads. The handlers operate on a pair of conflicting values (v1,v2) to produce
a new value newval = h(v1,v2). By commutativity, h(v1,v2) = h(v2,v1). To produce the
new value, the handler thread had to read both v1 and v2 before writting the new value, and
so newval is causally ordered after both original values: v1 ; newval and v2 ; newval.

With more than two conflicting updates, there will be multiple invocations of handler
threads. For three values, there are several possible orders for resolving the conflicting
updates in pairs:

x3 

y1 

t2 

v6 

u1 

z4 

!1 

!2 
!1,2 

!1,2 

!2 

!1 

!3 

!1,3 

!1,2 

!2,3 

!1,2,3 

The commutativity and associativity of the handler function ensures that regardless of
the order, the final output will be identical. Further, it will be causally ordered after all of the
original conflicting writes, as well as any intermediate values generated by the application
of the handler function. If the handler observes multiple pairs of conflicting updates that
produce the same output value (e.g., the final output in the figure above), it must output only
one value, not multiple instances of the same value.

To prevent a client from seeing and having to reason about multiple, conflicting values,
we restrict the write set for each client thread to be conflict free, denoted pc fi . A write
set is conflict free if ∀σ j,σk ∈ pc fi , σ j and σk are not in conflict; that is, either they are
writes to different keys or causally-related writes to the same key. For example, in the three
conflicting write example, pc fi might include σ1, σ1,2, and σ1,2,3, but not σ2, σ3, σ1,3, or
σ2,3. The conflict-free property applies to client threads and not handler threads purposefully.
Handler threads must be able to read values from conflicting writes so they may reason
about and resolve them; client threads should not see conflicts so they do not have to reason
about them.
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Adding handler threads models the new functionality that convergent conflict handling
provides. Restricting the write set strengthens consistency from causal to causal+. There are
causal executions that are not causal+: for example, if σ1 and σ2 conflict, a client may read
the value write by σ1 and then the value written by σ2 in a causal, but not causal+, system.
On the other hand, there are no causal+ executions that are not causal, because causal+ only
introduces an additional restriction (a smaller write set) to causal consistency.

If H is a history and ti is a thread, let AH
i+pc fi

comprise all operations in the local history
of ti, and a conflict-free set of writes in H, pc fi . A history H is causally consistent with
convergent conflict handling (causal+) if it has a causal order ;, such that

Causal+: For each client thread of execution ti, there is a serialization Si of AH
i+pc fi

that
respects ;.

A data store is causal+ consistent if it admits only causal+ histories.

Introducing Read-only Transactions. To add read-only transactions to the model, we
redefine the writes-into order so that it associates N write operations, write(k,v), with each
read-only transaction of N values, read trans([k1, . . . ,kN ])=[v1, . . . ,vN ]. Now, a writes-into
order 7→ on H is any relation with the following properties:

• If σ1 7→ σ2, then there is a k and v such that σ1 := write(k,v) and σ2 :=
read trans([. . . ,k, . . .])=[. . . ,v, . . .]. That is, for each component of a read-only
transaction, there exists a preceding write.

• For each component of a read-only transaction σ2, there exists at most one σ1 for
which σ1 7→ σ2.

• If σ2 := read trans([. . . ,k, . . .])=[. . . ,v, . . .] for some k,v and there exists no σ1 such
that σ1 7→ σ2, then v=⊥. That is, a read with no preceding write must retrieve the
initial value.
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