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Abstract

Users of Internet services are increasingly intolerant of delays and outages, while demand-

ing a consistent online experience. A website that is down or misbehaving is reported

within seconds, often with an embarrassing screenshot that spreads through the news like

wildfire. Among these failures, the most notorious are the ones that manifest arbitrary

behavior, such as returning the wrong content to users or accidentally deleting their data.

Unfortunately, protecting against such failures—whether due to misconfigurations, bugs, or

even malice—is prohibitively expensive, because most existing solutions do not scale be-

yond a single server’s performance. As a result, these solutions are not used for customer-

facing services, where scalability is required to cope with large user populations.

This thesis describes new systems and algorithms for tolerating arbitrary failures in

Internet services, inspired by real-world debacles. Unlike prior work, our solutions are

highly scalable. Our approach integrates theoretical innovations into the later stages of

system design, giving robust guarantees that are also practical. We begin with a real failure

that occurred in the indexing technique used by a certain database provider, and explain

theoretically why the technique failed. We remedy the technique by introducing a new class

of tree data structures, called relaxed trees, with provably good properties. Our analysis of

relaxed trees makes use of exponential potential functions.

Then, we describe a general system for tolerating arbitrary failures, called Prophecy,

that delivers scalable performance on read-mostly workloads. With a modest trust assump-

tion, Prophecy is practical for modern Internet services, as our evaluation confirms. Finally,

we devise two techniques to scale this fault tolerance to very large-scale systems and gen-

eral workloads. The first is an algorithm for securely composing many small replica groups,

subject to an adversary that can coordinate faulty nodes across the groups dynamically. The

second is a technique for improving the fault tolerance within each replica group, by adding

small, trusted broadcast channels that mitigate the impact of faulty nodes.
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Chapter 1

Introduction

Customers of Internet services today—whether end users browsing the web, or companies

hosting their services on the cloud—have become increasingly intolerant of delays and

outages, while demanding a consistent online experience. Every year, downtime costs

North American businesses an estimated $26.5 billion [168]. The rise in cloud hosting has

exacerbated this cost: failures in Amazon’s EC2 cloud infrastructure, for example, have

single-handedly taken down popular websites like Reddit, Netflix, and Edmodo [38, 39],

resulting in public outcry.

The most notorious of these failures, and indeed the most damaging to the affected com-

pany and its customers, are the ones that result in incorrect service behavior. For example,

Amazon S3 was taken offline because a single bit flip corrupted system state information

and caused nearly all customer requests to fail [11]. A bug in Amazon EBS’s clean-up soft-

ware caused customer data to be incorrectly deleted [182]. Google posted safety warnings

on every search result because someone mistyped a URL into its list of malware-suspected

sites [71]. Facebook leaked source code due to one misconfigured server [167]. Flickr

mixed up user images due to one faulty cache server [60].

In each of these examples, the affected service manifested arbitrary, or so-called Byzan-

tine, behavior. In the case of Amazon S3, Facebook, and Flickr, the underlying error af-
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fected each server independently, causing just one or a handful of them to misbehave. In

the case of Amazon EBS and Google, the underlying error had a correlated effect across

the servers, affecting many of them simultaneously. Protecting against correlated failures

is difficult in general because it is hard to predict their size and extent. Several existing

approaches, such as relying on massive redundancy [78] or using history to predict failure

patterns [174], have limited benefits in alleviating the true cost of correlated failures [123].

Thus, point solutions are often used in practice. We will see an example of a real-world

correlated failure, and its solution, later in this thesis.

In contrast, if failures are independent, or if they can be made independent—for exam-

ple, using techniques like opportunistic N-version programming [17, 32], where distinct

implementations of the same service (e.g., a database) are run on different machines—

then one can reasonably assume a fixed bound on the number of simultaneous failures,

because the probability of such an occurrence drops exponentially. In this case, gen-

eral solutions are possible, such as Byzantine-fault-tolerant (BFT) replicated state ma-

chines [29, 150], in which system state and functionality are replicated and executed across

multiple machines. These protocols ensure the correctness and availability of the service

when fewer than 1/3 of the replicas are faulty. Unfortunately, despite considerable ef-

fort [31, 73, 100, 101, 170, 176, 178, 180], state-of-the-art BFT protocols [29, 73, 100]

still scale poorly with system size, because they require each replica to participate in ev-

ery request, more than 2/3 of the replicas to maintain the service state [180], and multiple

rounds of quadratic communication per request. Even services that already replicate their

data, such as the Google File System [69], would see their throughput drop significantly

when using BFT agreement. Thus, the application of these protocols has been limited to

small sets of nodes within larger systems, e.g., as a lock service [36].

This thesis describes scalable systems and algorithms for tolerating Byzantine failures,

by both fixing the causes of failures and masking their effect from customers. We first

describe a specific solution that fixes a real-world correlated failure. Then, we show how to

2



avoid such correlations, and describe general solutions for masking independent failures.

Our main technique for achieving scalability is avoiding work, but doing so in a principled

manner. We use a combination of systems and theory techniques to achieve this. In some

cases, due to existing lower bounds, we must relax the guarantees of our protocols, or rely

on trusted primitives, in exchange for added. However, we show that the guarantees are

still strong enough for most applications, and any additional assumptions are both minimal

and practical on commodity machines.

1.1 Contributions and outline

We begin by describing a real-world failure that befell a certain database provider. The

provider was trying to optimize the tree index structure of a particular database, but ended

up triggering a bug that brought down all of the database’s replicas. We present a new

class of search trees, called relaxed trees, that fixes the cause of the failure (Chapter 2).

This incident sets the stage for the remainder of the thesis, by illustrating the difficulties

imposed by Byzantine failures and correlated failures when designing reliable, scalable

services.

Fortunately, there are well-known techniques for avoiding correlations in certain repli-

cated systems, such as databases and file systems, which allows us to use BFT protocols

to mask the effect of failures. We present a system called Prophecy that interposes itself

between clients and any BFT group to perform fast, load-balanced reads when results are

historically consistent, while only slightly weakening the group’s semantics to what we

term delay-once semantics (Chapter 3). Intuitively, delay-once consistency implies that

faulty nodes can at worst return slightly stale (not arbitrary) data.

To overcome Prophecy’s scalability limitations on write-heavy workloads, we present

commensal cuckoo, an algorithm that securely composes many small BFT groups, despite

a dynamic adversary that can coordinate faulty nodes across groups (Chapter 4). Finally,

3



we improve the scalability of both commensal cuckoo and Prophecy by increasing the fault

resilience within a BFT group, by introducing small broadcast channels that prevent faulty

nodes from sending contradictory messages (Chapter 5).

We end with some conclusions (Chapter 6).

Most of the results in this thesis previously appeared in several conference and journal

proceedings [87, 152, 153, 155].
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Chapter 2

Relaxed Trees: A Data Structural

Solution to a Real-World Failure

Here is the true story that motivated this work, fictionalized to protect the parties involved.

A database provider was contracted to build a real-time database to store customer informa-

tion, to be queried and updated on a regular basis. The provider decided to use a red-black

tree [74] to index the database, but implemented rebalancing only after insertions, not af-

ter deletions. As a safety check, a limit of 80 was placed on the allowed height of the

tree. This limit would allow storage of 240 records in a valid red-black tree, far exceed-

ing the anticipated number. Exceeding the height bound was interpreted as an error and

triggered a recovery process intended to restore the database. For reliability and scalabil-

ity, the database was replicated across several machines: updates were sent to all replicas,

and queries were load-balanced to individual replicas. Sometime after the database was

deployed, an update caused the height bound of the tree to be exceeded on one replica,

triggering the recovery. This process, too, caused the height bound to be exceeded, and this

cycle repeated, taking down the replica. Since all replicas received the same update (and

all were running identical code), each suffered the same fate in turn, causing an extended

service outage.
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The above outage occurred for two reasons: there were bugs in the tree maintenance

and recovery code, and the same code ran on all replicas—i.e., the failures were correlated.

Thus, there are two ways in which we can address the outage. First, we can fix the bugs

that caused the failure; this would improve the quality of the database code and prevent the

same failure from recurring. Second, we can run distinct implementations of the database

to avoid correlated failures, and use a BFT protocol to mask the effect of future failures.

This chapter focuses on the first approach; the next chapter discusses the second approach.

Avoiding deletion rebalancing in search trees

Ultimately, the real cause of the database outage was the fact that the red-black tree used by

the provider became very unbalanced and exceeded a predefined height limit. This raises

an interesting theoretical question: can one maintain balance in a search tree by rebalancing

only after insertions, not after deletions? Before considering this question, we review some

of the literature concerning deletion in balanced trees. Such a review provides insight into

how the event described above came about.

The original paper on balanced search trees [3], which introduced AVL trees to the

world, is only four pages long. It describes how to rebalance an n-node AVL tree after

an insertion by doing one or two rotations and updating height information in O(log n)

nodes. An algorithm for rebalancing after a deletion appeared several years later, in a

technical report by a different author [61]; deletion rebalancing requires O(log n) rotations

rather than O(1). For all existing forms of balanced trees, of which there are many (e.g.,,

[13, 22, 23, 74, 79, 80, 124, 131, 151]), deletion is at least a little more complicated than

insertion, although for some kinds of balanced search trees, notably red-black trees [74] and

the recently introduced weak AVL (wavl) trees [79, 80], rebalancing after a deletion can be

done in O(1) rotations. Many textbooks describe algorithms for insertion but not deletion.

If operations on the search tree occur concurrently, as in many database systems that use

some form of B-tree as the underlying data structure, the synchronization necessary to do
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rebalancing on deletion reduces the available concurrency [72]. Several database systems,

including Berkeley DB [132, 133], use a B+ tree with underfilled nodes that is rebalanced

after insertions but not deletions. Thus it was perhaps natural to try something similar for

red-black trees. But disaster ensued.

A more precise version of our question is this: can one maintain a search tree so that

search time is logarithmic but rebalancing is done only after insertions, not after deletions?

To answer this question, we need to ask, “logarithmic in what parameter?” If there is no re-

balancing after deletions (and none after accesses, which excludes self-adjusting structures

such as splay trees [161]), then the tree can evolve to have arbitrary structure, which means

that the search time can become Θ(n). But such an evolution may take many deletions, and

it is still possible that the tree height, and hence the search time, could remain logarithmic

in m, the number of insertions. We answer this question affirmatively.

Results and outline

We introduce a new kind of binary tree, the ravl tree (relaxed AVL tree), which is rebal-

anced only after insertions, not after deletions, and whose height is at most logφm, where

φ is the golden ratio. This bound is the same as that for an ordinary AVL tree without

deletions. Indeed, without deletions a ravl tree is exactly an AVL tree. Furthermore, re-

balancing affects nodes exponentially infrequently in their heights, which means that the

amortized rebalancing time per insertion is O(1) and most of the rebalancing occurs deep

in the tree. Mehlhorn and Tsakalidis [116], proved the latter property for standard AVL

trees if only insertions are allowed, not deletions. They used a multilevel credit method to

obtain their result. Our analyses use exponential potential functions, a tool that unifies and

simplifies the multilevel credit method, and which we also used [79, 80] to analyze wavl

trees. Our results hold for bottom-up rebalancing; we extend them to top-down rebalancing

with finite look-ahead as well. Perhaps surprisingly, we obtain better constant factors for

many of our bounds than the corresponding bounds for wavl trees. Thus not only does
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rebalancing after deletions complicate the implementation, it makes the performance of the

data structure worse in some ways.

It is natural to ask whether one can obtain similar results for multiway trees, in particular

B trees or B+ trees. The answer is yes, and indeed B+ trees with underfilled nodes have

the desired properties, as we show in companion work [154, 156]. Red-black trees can be

viewed as a special case of B-trees, and our ideas apply to them as well.

The price we pay for our results on binary trees is that each node in the tree must store

lg lgm+ 1 bits of balance information (or lg lg n+ O(1) with periodic rebuilding)1, rather

than the one bit per node needed in AVL [3], wavl [79, 80], and red-black trees [74]. Indeed,

we provide evidence to suggest that O(1) bits suffice only if one does cascading swaps of

items between nodes during deletions. (We leave rigorous resolution of this question as an

open problem.) We conclude that the approach used by the unfortunate database provider

to keep red-black trees balanced without rebalancing on deletion was theoretically doomed.

That this would manifest itself in practice is a wonder to a theoretician.

The body of this chapter consists of nine sections. Section 2.1 contains our tree ter-

minology. Section 2.2 defines ravl trees and describes bottom-up rebalancing after an in-

sertion; the rebalancing algorithm is that of AVL trees, extended to ravl trees. Section 2.3

analyzes the amortized efficiency of bottom-up rebalancing. Section 2.4 describes and

analyzes top-down rebalancing with fixed look-ahead, an alternative rebalancing method

that improves concurrency. Section 2.5 applies the ideas in Sections 2.2-2.4 to red-black

trees. Section 2.6 describes a way to rebuild the trees efficiently if they becomes unbal-

anced. Section 2.7 examines other ways of handling insertions and deletions, including

doing deletions lazily using the “tombstone” method, and gives examples showing that

natural eager methods that use one balance bit per node fail. Section 2.8 explores the pros

and cons of rebalancing after deletions. Section 2.9 contains final remarks.

1We denote by lg the base-two logarithm.
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2.1 Tree Terminology

Our tree terminology is the same as in [79, 80]. We repeat it here (almost verbatim) for

completeness. A binary tree is an ordered tree in which each node x has a left child left(x)

and a right child right(x), either or both of which may be missing. Missing nodes are exter-

nal; non-missing nodes are internal. Each node is the parent of its children. We denote the

parent of a node x by p(x). The root is the unique node with no parent. A leaf is a node with

both children missing. The ancestor, respectively descendant relationship is the reflexive,

transitive closure of the parent, respectively child relationship. If x is a node, its left, re-

spectively right subtree is the binary tree containing all descendants of left(x), respectively

right(x). The left, respectively right spine of a binary tree is the path from the root down

through left, respectively right children to a missing node. The height h(x) of a node x is

defined recursively by h(x) = 0 if x is a leaf, h(x) = max{h(left(x)), h(right(x))} + 1

otherwise. The height h of a tree is the height of its root.

We are most interested in binary trees as search trees. A binary search tree stores a set

of items, each of which has a key selected from a totally ordered universe. We shall assume

that each item has a distinct key; if not, we break ties by item identifier. In an internal

binary search tree, each node contains an item and the items are arranged in symmetric

order: the key of the item in a node x is greater, respectively less than those of all items

in its left, respectively right subtree. Given such a tree and a key, we can search for the

item having that key by comparing the key with that of the item in the root. If they are

equal, we have found the desired item. If the search key is less, respectively greater than

that of the root, we search recursively in the left, respectively right subtree of the root.

Each key comparison is a step of the search; the current node is the one whose item’s key

is compared with the search key. Eventually the search either locates the desired item or

reaches a missing node, the left or right child of the last node reached by the search in the

tree.

9



To insert a new item into such a tree, we first do a search on its key. When the search

reaches a missing node, we replace this node with a node containing the new item. Deletion

is a little harder. First we find node x containing the item to be deleted by doing a search on

its key. If neither child of x is missing, we find either the next item or the previous item, by

walking down through left, respectively right children of the right, respectively left child of

x until reaching a node y with a missing left, respectively right child. We swap the items in

x and y. Now the node containing the item to be deleted is either a leaf or has one missing

child. In the former case, we replace it by a missing node; in the latter case, we replace it

by its non-missing child. If each node has pointers to its children, an access, insertion, or

deletion takes O(h+ 1) time in the worst case, where h is the tree height.

An alternative kind of search tree is an external binary search tree: the external nodes

contain the items, the internal nodes contain keys but no items, and all the keys are in

symmetric order. Henceforth, unless we explicitly state otherwise, by a binary tree we

mean an internal binary search tree. Our results extend to external binary search trees and

to other binary tree data structures. We denote by n, m, and d, respectively the current

number of nodes, the number of insertions, and the number of deletions in a sequence of

intermixed searches, insertions, and deletions; n = m− d.

2.2 Relaxed AVL Trees

We define balance in a binary tree by giving each node a rank and imposing a rank rule that

constrains the ranks. For a general discussion of this approach, which captures all forms of

height balance of which we are aware, see [80].

A ranked binary tree is a binary tree in which each node x has an integer rank r(x).

Missing nodes have rank−1. The rank difference of a node x with parent p(x) is r(p(x))−

r(x). An i-child is a node of rank difference i; an i, j-node is a node whose children have

rank differences i and j. The latter definition does not distinguish between left and right

10



z

C

A

x

B

x

A

B

z

C

(right) rotation at x

(left) rotation at z
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children. An AVL tree is a ranked binary tree in which every node is a 1,1-node or a 1,2-

node. The leaves of an AVL tree are 1,1-nodes of rank zero. A relaxed AVL tree, or ravl2

tree, is a ranked binary tree that obeys the following rank rule: every rank difference is

positive.

Lemma 2.2.1. In a ravl tree, each node has height no greater than its rank.

Proof. Every node has rank greater than the maximum of the ranks of its children. Since

missing nodes have rank −1, leaves have non-negative rank. The lemma follows by induc-

tion on the node rank.

Any binary tree can be made into a ravl tree by a suitable choice of node ranks; indeed,

there are always many ways to do it. The efficiency of ravl trees comes not from their static

structure but from the implementation of insertions and deletions and how this affects the

tree structure over time. We consider ravl trees built from the empty tree by a sequence

of intermixed insertions of leaves and deletions of arbitrary nodes. A new leaf x replaces

a missing node and has a rank of zero. If the parent p(x) of x was itself a leaf before the

insertion, x is a 0-child and violates the rank rule. We restore the rank rule by promoting

and demoting nodes and doing rotations. A promotion increases the rank of a node by one,

a demotion decreases it by one. A rotation at a left child x with parent y makes y the right

child of x while preserving symmetric order; a rotation at a right child is symmetric. (See

Figure 2.1.) The insertion rebalancing algorithm is as follows (see Figure 2.2):

2One meaning of “ravel” is “to undo the intricacies of”. Ravl trees undo the intricacies of deletions.
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Insertion rebalancing:

While p(x) 6= null and p(x) is 0,1, repeat the following step:

Promote: Promote p(x); replace x by p(x).

Now either the rank rule holds or x is a 0-child whose sibling is an i-child with i > 1. In the

latter case, proceed as follows. Assume x is the left child of z = p(x); the other possibility

is symmetric. Let y be the right child of x; y may be missing. Do the appropriate one of

the following two steps:

Rotate: If node y is missing or a 2-child, rotate at x and demote z.

Double Rotate: Otherwise (node y is a 1-child), rotate at y twice, making x its left
child and z its right child; promote y and demote x and z.

During rebalancing, there is exactly one violation of the rank rule: x is a 0-child. A

rotate or double rotate step restores the rank rule and terminates rebalancing, as does a

promote step that promotes the root or results in the new x being an i-child with i > 0. In

the first rebalancing step, x is a leaf of rank zero and hence a 1,1-node; in each rebalancing

step after the first, x is a 1,2-node. The rank of a rebalancing step is the rank of p(x) just

before the step. Each step has rank one higher than that of the previous step. The rank of

an insertion is the rank of the last rebalancing step, or zero if there is no rebalancing.

To delete an item in a leaf in a ravl tree, we replace the leaf by a missing node. To delete

an item in a node with one child, we remove the node and replace it by its child; this child

becomes the left or right child of the old parent of the deleted node if the deleted node was

a left or right child, respectively. To delete an item in a node with two children, we swap

the item with its symmetric-order predecessor or successor, thereby moving it to a leaf or a

12



≥2

≥1

≥2

BA

x

≥1

0 1

BA

x

≥0

1 2

z

C

≥1

0

A

x

B

y1 2

x

A

≥1

11

B

y

z

C

1

z

D

≥1

0

A

x

2 1

B

y

C

y ≥1

1

A

x

1

B

1

C

z

D

Promote

Rotate

Double Rotate

≥1

Figure 2.2: Bottom-up rebalancing after an insertion in ravl trees. Numbers are rank dif-
ferences. The first case is possibly non-terminating.

node with one child, and proceed as above. In a deletion, no rotations occur and no ranks

change.

As long as there are no deletions, all nodes remain 1,1- or 1,2-nodes (except in the

middle of rebalancing), so the tree remains an AVL tree. Indeed, the rebalancing algorithm

is just the standard bottom-up rebalancing algorithm for AVL trees. All the results we shall

derive for bottom-up rebalancing hold as a special case for AVL trees built by insertions

only. Deletions can create nodes of arbitrary positive rank difference, however, and thus

can create trees that are not AVL trees. Indeed, deletions can produce trees of arbitrary

structure.

We represent a ravl tree by storing with each node its rank and pointers to its left and

right children. An alternative is to store ranks in difference form: the root stores its rank,

and every child stores its rank difference. This only works if access to the tree is always

via the root, and it requires computing node ranks during an insertion by summing rank
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differences along the path from the root to the new leaf. In an AVL tree, rank differences

are one or two, so one bit per node suffices to store rank differences. But in a ravl tree,

rank differences can become arbitrarily large, and storing ranks in difference form offers

no advantages and at least one disadvantage. Thus we prefer to store ranks explicitly.

The rebalancing process after an insertion needs access to the affected nodes on the

search path. There are several ways to provide such access, as we have discussed pre-

viously [80]. One way is to add parent pointers, which requires three pointers per node

instead of two and increases the cost of rotations. By using an alternative representation

that saves space but costs time, this can be reduced to two pointers per node [64].

Instead of adding or modifying pointers to support parental access, we can store the

search path during the search from the root for the insertion position, either in a separate

stack or by reversing child pointers along the path.

A third method is to maintain a safe node during the search. This node is the topmost

node that will be affected by rebalancing. Metzger [117] and Samadi [148] used safe nodes

to limit the amount of locking in a concurrent B-tree. We apply this idea to binary trees and

use it for a slightly different purpose: to avoid the need for parent pointers or a stack to do

rebalancing. During an insertion, the safe node is either the root or the parent of the nearest

ancestor of the current node that is not a 1-child and not a 1,1-node. A simpler alternative

is to define the safe node to be the parent of the nearest ancestor of the current node that

is not a 1,1-node, or the root if there is no such node. The latter definition gives the same

node as the former, or its parent. We initialize the safe node to be the root and change it to

the parent of the current node each time the current node is not a 1,1-node (or not a 1-child,

if we are using the former definition). Once the search reaches the bottom of the tree, we

do rebalancing steps (modified appropriately) top-down from the safe node to the new leaf.

One advantage of this method is that it extends naturally to support top-down rebalancing

with fixed look-ahead, as we discuss in Section 2.4.
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2.3 Analysis of Bottom-Up Rebalancing

A search in a ravl tree takes O(h + 1) time, where h is the tree height. A deletion takes

O(h+ 1) time to find the item to be deleted and the node containing its replacement, if any,

plus O(1) time to do the deletion. An insertion takes O(h + 1) time to find the location of

the new leaf, plus at most two rotations and O(h + 1) rebalancing steps. All these bounds

are worst-case. To obtain better bounds for rebalancing and to bound the height of the tree,

we use the potential method of amortized analysis [165]. To each state of the data structure

we assign a non-negative potential, zero for an empty structure. We define the amortized

cost of an operation to be its actual cost plus the net increase in potential it causes. Then,

for any sequence of operations on an initially empty structure, the total amortized cost of

the operations is an upper bound on their total actual cost.

Our first, simple amortization argument shows that each insertion takes O(1) amortized

promote steps. We define the potential of a tree to be the number of 0,1-nodes plus the

number of 1,1-nodes of positive rank. We define the cost of an insertion to be the number of

promotion steps done during rebalancing. A deletion cannot increase the potential since it

cannot create a 0,1-node or a 1,1-node. Consider an insertion. Adding a new leaf increases

the potential by at most one, by creating a 0,1-node or a 1,1-node of positive rank. A non-

terminal promote step decreases the potential by one: the promoted node changes from a

0,1-node to a 1,2-node; the potential of its parent does not change. Thus such a step has an

amortized cost of zero. This is also true of a promote step that promotes the root. A terminal

promote step that promotes a node other than the root can leave the potential unchanged (if

the parent of the promoted node becomes a 1,1-node), and thus has an amortized cost of

one. A rotate or double rotate step can increase the potential by at most two, by creating

two 1,1-nodes of positive rank. We conclude that the amortized cost of an insertion is at

most three: one for the increase in potential caused by inserting a new leaf, plus zero for

each non-terminal promote step, plus at most two for the last rebalancing step. This gives

the following theorem:
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Theorem 2.3.1. Starting with an empty ravl tree, a sequence of m insertions with bottom-

up rebalancing intermixed with arbitrary deletions does at most 3m promote steps.

An exponential potential function of the kind first used by us to analyze wavl trees [79,

80] gives our most important result: a ravl tree built from an empty tree has height loga-

rithmic in the number of insertions, even if deletions are intermixed arbitrarily. Recall the

definition of the Fibonacci numbers Fk and of the golden ratio φ: F0 = 0, F1 = 1, Fk =

Fk−1+Fk−2 for k > 1; φ = (1+
√

5)/2. The inequality Fk+2 ≥ φk is well-known [98]. We

define the potential of a node of rank k to be Fk+2 if it is a 0,1-node, Fk+1 if it has a 0-child

but is not a 0,1-node, Fk if it is a 1,1-node, and zero otherwise. We define the potential of

a tree to be the sum of the potentials of its nodes. We call this the Fibonacci potential.

A deletion cannot increase the potential. Adding a new leaf increases the potential by

at most one, either by creating a new 1,1-node of rank one or by creating a new 0,1-node

of rank zero, since F1 = F2 = 1. Consider a rebalancing step of rank k. A promote step

that promotes z = p(x) and makes p(z) a 0,1-node does not change the potential: z and

p(z), respectively, have potentials Fk+2 and Fk+1 before the step and zero and Fk+3 =

Fk+2 + Fk+1 after. A promote step that promotes z = p(x) and makes p(z) a 0, i-node

with i > 1 also does not change the potential: z and p(z), respectively, have potentials

Fk+2 and zero before the step and zero and Fk+2 after. Likewise, a rotate step does not

increase the potential: nodes x and z = p(x), respectively, have potentials zero and Fk+1 =

Fk +Fk−1 before the step and Fk and at most Fk−1 after. Neither does a double rotate step:

if y = right(x) is a 1,1-node before the step, the total potential of x, y, and z = p(x) is

Fk−1+Fk+1 before the step and at most Fk−1+Fk+Fk−1 after; if y is not a 1,1-node before

the step, the total potential of x, y, and z is Fk+1 before the step and at most Fk + Fk−1

after. The final possibility is a terminal promote step. If the promotion of z = p(x) makes

p(z) a 1,1-node, it does not change the potential: z and p(z), respectively, have potentials

Fk+2 and zero before the step and zero and Fk+2 after the step. If the promotion of z does
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not make p(z) a 1,1-node, in particular if z is the root, the step decreases the potential by

Fk+2.

Theorem 2.3.2. If a ravl tree is built from an empty tree by a sequence of m insertions with

bottom-up rebalancing intermixed with arbitrary deletions, m ≥ Fh+3 − 1 ≥ φh. Thus

h ≤ logφm.

Proof. Let the potential be the Fibonacci potential. The first insertion leaves the potential

at zero. Each subsequent insertion increases the potential by at most one, not counting

decreases resulting from terminal promote steps. If the rank of the root is r, there was a

terminal promote step of rank i that promoted the root, for each i from 0 to r−1, inclusive.

The total decrease in potential caused by these promotions is
∑r+1

i=2 Fi = Fr+3 − 2. Since

the potential is always non-negative, m − 1 ≥ Fr+3 − 2. By Lemma 2.2.1, h ≤ r. Thus

m ≥ Fh+3 − 1 ≥ Fh+2 ≥ φh.

By truncating the Fibonacci potential, we can show that rebalancing steps of rank k

occur exponentially infrequently in k.

Theorem 2.3.3. Starting from an initially empty tree, a sequence of insertions with bottom-

up rebalancing intermixed with arbitrary deletions does at most (m − 1)/Fk ≤ (m −

1)/φk−2 rebalancing steps of rank k, for any k > 0.

Proof. Fix k > 0. Let the potential of a node be its Fibonacci potential if its rank is less than

k, Fk+1 if its rank is k, it has a 0-child, and it is not a 0,1-node, and zero otherwise. Let the

potential of a tree be the sum of the potentials of its nodes. The effect of a rebalancing step

on the potential is the same as discussed above, with the following exceptions. A promote

step of rank k or higher does not change the potential. A promote step of rank j < k that

promotes a node z = p(x) whose parent p(z) has rank at least k decreases the potential by

Fj+2 unless j = k− 1, p(z) has rank k, and p(z) is not a 1,1-node before the step, in which

case it does not change the potential. A rotate or double rotate of rank greater than k does

not change the potential. A rotate or double rotate of rank k decreases the potential by at
17



least Fk+1 − Fk−1 = Fk. Thus no rebalancing step increases the potential. Furthermore a

rebalancing step of rank k either decreases the potential by at least Fk (if it is a rotate or

double rotate) or is preceded by a promote step of rank k − 1 that reduces the potential by

Fk+1. Thus the potential decreases by at least Fk for every rebalancing step of rank k.

2.4 Top-Down Rebalancing

Rather than rebalance bottom-up after a new leaf is added, we can rebalance top-down

before the leaf is added. Indeed, the safe node method described at the end of Section 2.2

does rebalancing top-down once it reaches the bottom of the tree. We can modify this

method to rebalance more eagerly and thereby keep the look-ahead fixed; that is, keep the

safe node within O(1) nodes of the current node of the search. This improves the worst-

case concurrency of the tree, because the critical section of an insertion encompasses only

O(1) nodes at any time. The idea is to force a reset of the safe node after a sufficiently

large number of search steps that do not do a reset. A reset occurs at the next search step

unless the current node is a 1,1-node. If the current node is a 1,1-node but not a 1-child, or

both it and its parent are 1,1-nodes, we can force a reset by promoting the current node and

rebalancing from the safe node top-down. This gives us the following top-down insertion

algorithm, which we describe in complete detail to make its operation crystal-clear. If the

tree is empty, create a new node of rank zero containing the item to be inserted and make it

the root, completing the insertion. Otherwise, initialize t and z to be the root, and promote

the root if it is 1,1. This establishes the invariant for the main loop of the algorithm: z is a

non-null node that is not a 1,1-node; t is the parent of z unless z is the root, in which case

t = z. Repeat the following step until the item is inserted:

Top-down insertion step:
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From z, take one step down the search path, to x. If x is null, replace it by a new node of

rank zero containing the item to be inserted, completing the insertion: the new node cannot

be a 0-child since z was not a 1,1-node and hence has positive rank. In the remaining cases,

x is not null. If x is not a 1,1-node, replace t by z and z by x, completing the step. If x

is a 1,1-node but not a 1-child, promote x and replace t by z and z by x, completing the

step. In the remaining cases, x is a 1,1-node and a 1-child. From x take one step down the

search path, to y. If y is null, replace it by a new node of rank zero containing the item to

be inserted; if the new node is a 0-child, promote x and do a single or double rotate step to

make all rank differences positive. This completes the insertion. The remaining possibility

is y non-null. If y is not a 1,1-node, replace t by x and z by y. Otherwise, promote x and

y, making x a 0-child, and do a single or double rotate step to make all rank differences

positive. If a single rotation is done, replace t by x and z by y. If a double rotation is done,

replace t by y and z by the new node one step down from x along the search path (either x

or z). This completes the step.

If the first insertion step does a single or double rotation, it changes the root. Subsequent

steps do not affect the root and have t 6= z. Each insertion step either finishes the insertion

or replaces z by a node of smaller rank, so the number of insertion steps is at most one plus

the rank of the root. We define the rank of an insertion step to be the rank of x, or zero if x

is null. Every insertion step of positive rank is non-terminal, since in such a step x is non-

null and is either a 1,1-node, in which case y must be non-null, or not a 1,1-node, in which

case the step finishes without descending to y. We call an insertion step rebalancing if it

is terminal or it does at least one promotion or rotation; the non-rebalancing steps merely

traverse the search path without changing the tree.

We can show by a simple potential argument that the number of rebalancing steps is

O(m). Let the potential of a tree be twice the number of 1,1-nodes of positive rank plus
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the number of 1, i-nodes with i > 1. An insertion into an empty tree does not increase

the potential, nor does promoting z in the initialization. An examination of the remaining

cases shows that a non-terminal rebalancing step decreases the potential by at least one,

and a terminal rebalancing step increases it by at most one. This gives us the following

theorem:

Theorem 2.4.1. Starting with an empty ravl tree, a sequence of m top-down insertions

intermixed with arbitrary deletions takes at most 2m rebalancing steps.

To obtain analogues of Theorems 2.3.2 and 2.3.3, we use an exponential potential func-

tion that grows more slowly than the Fibonacci potential. We define the potential of a node

of rank k > 0 to be 2(k+1)/2 if it is a 1,1-node, 2(k−1)/2 if it is a 1, i-node with i > 1,

and zero otherwise; we define the potential of a node of rank zero to be zero; and we de-

fine the potential of a tree to be the sum of the potentials of its nodes. An insertion into

an empty tree does not increase the potential, nor does promoting z in the initialization.

Consider a restructuring insertion step of rank k that is not the last insertion step. If x is

a 1,1-node that is not a 1-child, it is promoted. This increases the potential by at most

2(k+1)/2 − 2(k+1)/2 ≤ 0, since the potential of x decreases from 2(k+1)/2 to zero, and the

potential of z can only increase if it has rank k+2, in which case it increases by 2(k+1)/2. If

x is a 1,1-node that is a 1-child, and y is also a 1,1-node, x and y are promoted and a single

or double rotation is done. In the former case, the potentials of x, y, and z, respectively, are

2(k+1)/2, 2k/2, and 2k/2 before the step and 2(k+2)/2, 0, and at most 2(k+1)/2 after, resulting

in no increase in the potential of the tree. In the latter case, the potentials of x, y, and z,

respectively, are 2(k−1)/2, 2(k+2)/2, and at most 2(k−1)/2 after the step, again resulting in no

increase in the potential of the tree. Consider a terminal insertion step. If the step replaces

x by an empty node, it increases the potential of z, and hence of the tree, by at most one.

Suppose the step replaces y by an empty node. If it does a single rotation, it increases the

potential of x from zero to two and decreases that of z from 1 to zero, for a net increase

of one. If it does a double rotation, it increases the potential of y from zero to two and
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decreases that of z from one to zero, again for a net increase of one. We conclude that a

terminal insertion step increases the potential by at most one.

Theorem 2.4.2. A ravl tree built from an empty tree by a sequence ofm top-down insertions

intermixed with arbitrary deletions has height at most 2 lgm.

Proof. Deletions do not increase the potential. By the discussion above, each insertion

other than the first increases the potential by at most one. If the root has rank k > 0 and

it is promoted, the potential decreases by 2(k+1)/2. For the root to have height h, it must

have rank at least h, which means that root promotions have decreased the potential by at

least
∑h−1

i=1 2(i+1)/2 = 2(h+1)/2/(
√

2 − 1). Since the total decrease is at most m, this gives

2h/2 ≤ m.

Theorem 2.4.3. Starting from an empty tree, a sequence of m top-down insertions inter-

mixed with arbitrary deletions does at most m/2k/2 rebalancing steps of rank k.

Proof. The lemma is immediate for k = 0. Fix k > 0. Redefine the exponential potential

function used to prove Theorem 2.4.2 to be zero for all nodes of rank greater than k. It is

still true that no insertion step increases the potential, and that each terminal step increases

it by at most one. A rebalancing step of rank k is non-terminal. If it does not do a single or

double rotation, it decreases the potential by 2(k+1)/2, by decreasing the potential of y from

2(k+1)/2 to zero. If it does a single rotation, it decreases the potential by at least 2k/2: the

potentials of x, y, and z, respectively, are 2(k+1)/2, 2k/2, and zero before the step and zero,

zero, and at most 2(k+1)/2 after. If it does a double rotation, it also decreases the potential

by at least 2k/2: the potentials of x, y, and z, respectively, are 2(k−1)/2, zero, and at most

2(k−1)/2 after the step. The theorem follows.

By increasing the amount of look-ahead in top-down insertion, we can improve the

constants in Theorems 2.4.2 and 2.4.3. Specifically, we force a reset after traversing k con-

secutive 1,1-nodes, of which the top one is not a 1-child, or traversing k + 1 consecutive
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1,1-nodes of which the top one is a 1-child, by promoting the bottom 1,1-node and rebalanc-

ing appropriately. Here k ≥ 2 is an appropriately large constant. To analyze this method,

we define the potential of a 1,1-node of rank k to be bk for some appropriate constant b > 1,

that of any other node to be zero, and that of a tree to be the sum of the potentials of its

nodes. If the parent of the top 1,1-node has rank k just before the forced reset, then the

rebalancing increases the potential by at most bk− bk−2− bk−3− . . .−1, whether or not the

top 1,1-node is a 1-child. By choosing k sufficiently large, we can choose b arbitrarily close

to φ while guaranteeing that forced resets do not increase the potential, giving an analogue

of Theorem 2.4.2 with b in place of
√

2. By truncating the potential, we obtain an analogue

of Theorem 2.4.3 with b in place of
√

2. Choosing k = 3 is sufficient to give b >
√

2.

Interestingly, for minimum look-ahead (k = 1), this potential function is not useful; for

k > 2, giving positive potential to the 1, i-nodes for i > 1 makes the analysis worse, not

better.

2.5 Relaxed Red-Black Trees

In this section we apply our ideas to red-black trees to obtain relaxed red-black trees. Al-

though the results of this section follow from our results on relaxed B-trees [156], we sketch

them here for completeness, to show that they can be derived directly, without using multi-

way trees as an intermediary, and to enlarge our study in Section 2.7 of what can go wrong

with alternative deletion methods.

A red-black tree [74] is a binary tree is which each node is either red or black, with the

node colors satisfying the following constraints:

Black Rule: Every path from the root to a missing node contains the same number of
black nodes.

Red Rule: The parent of a red node is black.
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Red-black trees are equivalent to 2,4-trees, which are multiway trees in which all leaves

have the same depth, each internal node has 2, 3, or 4 children, each internal node contains

one less item than its number of children, and each leaf contains 1, 2, or 3 items. To obtain

the 2,4-tree equivalent of a given red-black tree, contract each red node into its parent. To

obtain the red-black tree equivalent of a given 2,4-tree, split each node with two items into

a black parent and a red child, each with one item, and split each node with three items

into a black parent and two red children. Since there are two ways to split a node with two

items, the latter mapping is one-to-many.

Red-black trees are also equivalent to ranked binary trees satisfying the red-black rank

rule: every node has a non-negative rank, all rank differences are zero or one, every leaf

has rank zero, and every 0-child has a parent that is not a 0-child [80]. Given a ranked

binary tree satisfying the red-black rank rule, we color its nodes to satisfy the red and black

rules, by coloring the root black and coloring each child black if it is a 1-child or red if it is

a 0-child. Given a red-black tree, we assign ranks to the nodes to satisfy the red-black rank

rule, by giving each node a rank equal to the number of black nodes on every path from it

to a missing node.

Red-black trees were invented by Bayer [23], who called them symmetric binary B-

trees, and popularized by Guibas and Sedgewick [74], who invented the red-black repre-

sentation. A red-black tree of n nodes has height at most 2 lg n. Rebalancing a red-black

tree after an insertion or deletion takes at most two rotations worst-case for an insertion, at

most three rotations worst-case for a deletion, and O(1) amortized color flips for an inser-

tion or deletion [164]. The insertion rebalancing algorithm is like that of AVL trees (and

ravl trees): there are three rebalancing cases (ignoring symmetries); the first does only color

flips but need not terminate, the second does a rotation and some color flips and terminates,

and the third does two rotations and some color flips and terminates. For further results and

discussion about red-black trees see [23, 74, 164, 166].
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Figure 2.3: Bottom-up rebalancing after an insertion in relaxed red-black trees. Numbers
are rank differences. The first case is possibly non-terminating.

We develop a relaxed version of red-black trees in which rebalancing occurs only during

insertions, not deletions, with properties like those of ravl trees. To obtain such trees we

relax the red-black rank rule to allow arbitrary positive ranks. A relaxed red-black tree is a

ranked binary tree such that all ranks and rank differences are non-negative and no 0-child

has a 0-child as a parent. To insert an item into a relaxed red-black tree using bottom-up

rebalancing, follow the search path until reaching a missing node. Replace the missing

node by a node x of rank zero containing the item to be inserted. Then rebalance as follows

(see Figure 2.3):

Insertion rebalancing:

While x is a 0-child with a non-null grandparent z that is a 0,0-node, repeat the following

step:
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Promote: Promote z; replace x by z.

Now either the rank rule holds or x is a 0-child whose grandparent z is a 0, i-node with

i > 0. In the latter case, proceed as follows. Let y be the parent of x. Do the appropriate

one of the following two steps:

Rotate: If nodes x and y are both left or both right children, rotate at y.

Double Rotate: Otherwise (node x is a left child and y a right child or vice-versa),
rotate at x twice.

The rank of an insertion step is the rank of x just before the step.

To delete an item, we proceed exactly as in ravl trees: we find the node containing the

item to be deleted and swap this item with its predecessor or successor if it is in a node with

two non-null children. Now the item is in a leaf or a node with only one non-null child.

If it is in a leaf, we replace the leaf by a missing node; if it is in a node with one non-null

child, we replace this node by its non-null child. No nodes change ranks.

Instead of rebalancing bottom-up after an insertion, we can rebalance top-down during

the search for the insertion position. If the tree is empty, create a new node of rank zero

containing the item to be inserted and make it the root, completing the insertion. Otherwise,

initialize t and z to be the root, and promote the root if it is 0,0. This establishes the invariant

for the main loop of the algorithm: z is a non-null node that is not a 0,0-node and not a

0-child; t is the parent of z unless z is the root, in which case t = z. Repeat the following

step until the item is inserted:

Top-down insertion step:

From z, take one step down along the search path, to y. If y is null, replace it by a new

node of rank zero containing the item to be inserted. This completes the insertion: the new
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node may be a 0-child, but z is not. In the remaining cases, y is non-null. If y is a 0,0-node,

promote y, replace y by t, and replace z by the child of y along the search path; this child

cannot be null since it has non-negative rank. This completes the step. If y is a 1-child that

is not a 0,0-node, replace t by z and z by y, completing the step. In the remaining cases y

is a 0-child and hence a 1,1-node. From y take one step down the search path, to x. If x

is null, replace x by a new node of rank zero containing the item to be inserted; if the new

node is a 0-child, do a single or double rotate step to restore the rank rule. This completes

the insertion. The remaining possibility is x non-null. If x is not a 0,0-node, replace y by y

and z by z, completing the step. Otherwise (x is a 0,0-node), promote x and do a single or

double rotate step to restore the rank rule. If a single rotation is done, replace t by x and z

by the child of x along the search path; if a double rotation is done, replace t by whichever

of y and z is along the search path from x after the rotations, and replace z by the child of

the new t along the search path. This completes the step.

Each top-down insertion step either finishes the insertion or replaces z by a node of

smaller rank, so the number of insertion steps is at most one plus the rank of the root. We

define the rank of a top-down insertion step to be the rank of y, or zero if y is null. Every

such step of positive rank is non-terminal, since if y is a 1,1-node of positive rank, both of

its children are non-null. We call a top-down insertion step rebalancing if it is terminal or

it does at least one promotion or rotation.

We can analyze both bottom-up and top-down rebalancing using the same potential

function. To get an amortized constant bound on the number of rebalancing steps, we

define the potential of a tree to be twice the number of 0,0-nodes plus the number of 0, i-

nodes with i > 0. Deletions do not increase the potential. Insertion of a new node increases

the potential by at most one. Each promote step in bottom-up rebalancing and each non-

terminal rebalancing step in top-down rebalancing decreases the potential by at least one.

26



Each single or double rotate step in bottom-up rebalancing, and each terminal insertion

step in top-down rebalancing does not change the potential. This we obtain the following

theorem:

Theorem 2.5.1. In a relaxed red-black tree built by m insertions, each with either bottom-

up or top-down rebalancing, intermixed with arbitrary deletions, the number of rebalanc-

ing steps is at most 2m.

To bound the root rank and hence the height of the tree, we use an exponential potential

function. We define the potential of a node of rank k to be 2k if it is a 0, i-node with i > 0,

2k+1 if it is a 0,0 node, and zero otherwise; we define the potential of a tree to be the sum of

the potentials of its nodes. Insertion of a new node increases the potential by at most one.

No insertion step, whether bottom-up or top-down, can increase the potential. If the root

has rank k and it is promoted, the potential decreases by 2k+1.

Theorem 2.5.2. In a relaxed red-black tree built by m insertions, each with either bottom-

up or top-down rebalancing, intermixed with arbitrary deletions, the rank of the root is at

most lg(m+ 1)− 1, and the height of the root is at most 2 lg(m+ 1).

Proof. The only increase in potential is caused by insertions of new nodes and totals at

most m − 1. (An insertion into an empty tree does not increase its potential.) If the root

has rank k, there must have been a promotion of the root for each rank between 0 and

k − 1 inclusive, decreasing the potential by 2k+1 − 2. Thus 2k+1 ≤ m + 1, which implies

k ≤ lg(m + 1) − 1. The rank rule implies that the rank of the grandparent of a node

is greater than the rank of the node, which implies that the height of the root is at most

2 lg(m+ 1).

By truncating the exponential potential function, we can show that the number of rebal-

ancing steps of rank k is exponentially small in k.
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Theorem 2.5.3. In a relaxed red-black tree built from an empty tree by m insertions, each

with either bottom-up or top-down rebalancing, intermixed with arbitrary deletions, the

number of rebalancing steps of rank k is at most m/2k.

Proof. The theorem is immediate for k = 0. Fix k > 0. Redefine the exponential potential

to be zero for all nodes of rank k or greater. Inserting a new node still increases the potential

by at most one, and no insertion rebalancing step can increase it, but a non-terminal bottom-

up step of rank k, which must be a promotion, decreases it by 2k, as does a top-down

rebalancing step of rank k. Since each bottom-up step of rank k is preceded by a non-

terminal bottom-up step of rank k − 1, the theorem follows.

We conclude this section with a few comments about ravl trees versus relaxed red-black

trees. Rebalancing does fewer promotions in the latter than in the former, at least locally.

One the other hand, the height bound is smaller by a constant factor for ravl trees with

bottom-up rebalancing than for relaxed red-black trees, and by increasing the look-ahead

we can also make it smaller for ravl trees with top-down rebalancing. In a ravl tree the

height of a node is at most its rank, but in a relaxed red-black tree the height of a node is

at most twice its rank plus one. Thus to compare Theorems 2.3.3 and 2.4.3 with 2.5.3, we

need to compare φ (the base in Theorem 2.3.3) or
√

2 (the base in Theorem 2.4.3) with
√

2

(the square root of the base in Theorem 2.5.3). If rebalancing is bottom-up, or if rebalancing

is top-down and the look-ahead is at least 3, the comparison favors ravl trees. Determining

which variant of which of these data structures is best under what actual circumstances is a

subject for experimental investigation.

2.6 Rebuilding the Tree

As the ratio of the number of deletions to the number of insertions approaches one, the

height of a ravl tree or a relaxed red-black tree can become ω(log n), although it remains

O(logm). For many applications this is not a concern, but for those in which it is, we
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can keep the height O(log n) by periodically rebuilding the tree. How to do the rebuilding,

and how often, are interesting questions that deserve careful study. Here we offer a simple

rebuilding method and some thoughts on how often to rebuild. We discuss the rebuilding

of ravl trees; rebuilding of relaxed red-black trees is analogous.

To rebuild the tree, we initialize a new tree to empty. Then we traverse the old tree in

symmetric order, deleting each visited node and inserting it into the new tree. Traversing

the old tree takes O(n) time. To facilitate building the new tree, we store the nodes on its

right spine in a stack, bottommost node on top. Each insertion into the new tree takes O(1)

amortized time, and rebuilding the entire tree takes O(n) time. The new tree has height at

most lg n + 1: every child is a 1- or 2-child, and the 2-children have parents on the right

spine. The new tree also has potential O(n) for any of the potential functions we have

considered.

To decide when to rebuild the tree, we keep track of n and of the rank r of the root. If we

are using bottom-up rebalancing, we rebuild the tree whenever r > logφ n + c, where c is a

small positive constant. Then the rebuilding time is O(1/(φc− 1)) per deletion. The larger

we choose c, the smaller the overhead for rebuilding, but the larger the height can become

as a function of n. If we allow c to grow as a function of n, we can make the rebuilding

time o(1) per deletion while still maintaining a height bound of logφ n plus a lower-order

term. If we are using top-down rebalancing, we rebuild the tree whenever r > 2 lg n+ c.

We can also make the rebuilding incremental. For example, we can start the rebuilding

when the height bound is violated and move two nodes from the old to the new tree after

each insertion or deletion. During rebuilding, we do each insertion in the old or new tree as

appropriate: such an operation is in the new tree if the key of the new item is at most that of

the last item moved, in the old tree otherwise. We store the left spine of the old tree and the

right spine of the new tree in stacks, so that the next node to be deleted from the old tree,

and its insertion location in the new tree, can be found in O(1) time. We must update these

stacks during insertions and deletions, but this takes O(1) amortized time per insertion or
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deletion. If n is the number of items in the old tree when rebuilding starts, the number in

the new tree will be between n/2 and 2n when rebuilding stops.

Whether the tree is rebuilt incrementally or all at once, the tree height is always at most

logφ n+O(1) with bottom-up rebalancing or 2 lg n+O(1) with top-down rebalancing, and

Theorems 2.3.1 and 2.3.3, or 2.4.1 and 2.4.3 hold, respectively.

2.7 Good and bad alternatives

In this section we explore the effect of alternative insertion and deletion methods on ravl

trees and relaxed red-black trees. Our conclusion, based not on a proof but on considera-

tion of several alternative methods, is that any method for which bounds like ours hold must

rebalance on insertion and must store Ω(log logm) bits of balance information. In particu-

lar, in a rank-based scheme, insertions and deletions cannot increase node ranks except by

rebalancing steps. We now attempt to justify this conclusion.

An alternative way to do deletions in search trees is to do them lazily, via the “tomb-

stone” method: to delete an item, remove it from its node but leave its key, so that search is

still possible. If a new item with the same key is later inserted, store it in the node contain-

ing its key. The tombstone method avoids the need to swap items between nodes during

deletion. In analyzing this method, one can ignore deletions and consider trees built only

by insertions. If the tombstone method is applied to AVL trees with bottom-up rebalancing

on insertion, Theorem 2.3.2 is immediate, and Theorem 2.3.3 follows from Theorem 6.1

in our paper on wavl trees [80]. Alternatively, one can rebalance top-down on insertion, in

which case the results of Section 2.4 hold. If the tombstone method is applied to red-black

trees, Theorem 2.5.2 is immediate since it holds for red-black trees, and Theorem 2.5.3

holds as well.

The drawback of the tombstone method is that if the number of deletions approaches the

number of insertions, the space required by the tree can become superlinear in the number
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of items. One can keep the space usage linear by deleting each empty leaf and replacing

each empty node with a missing child by its non-missing child [26]. Then every empty

node has two non-empty children, and the number of nodes is at most 2n− 1. This gives a

variant of the ravl tree or relaxed red-black tree in which deletion is done without swapping,

by deleting the item but not its key if it is in a node with two non-null children, or otherwise

deleting the node containing the item and replacing this node by its non-empty child if it

has one. This method can produce leaves of arbitrarily large rank as well as arbitrarily large

rank differences, just as in the original versions of ravl and relaxed red-black trees.

An even more relaxed way to do rebalancing is to avoid rebalancing during both inser-

tions and deletions but maintain a separate thread (or threads, in a multi-threaded imple-

mentation) that does rebalancing. This idea has been studied by several authors (e.g.,, [81,

95, 128, 129]), who call their data structures “relaxed balanced trees” of various kinds.

These papers derive bounds on the total number of rebalancing steps that must be done

to restore the balance of the tree, as a function of the number of updates (insertions and

deletions). The problem with this approach is that a sequence of n insertions of items in

increasing order will produce a linear tree, in which searches will be extremely expensive

until the balancing process has a chance to do its work. Our results, on the other hand, offer

a way to completely avoid rebalancing on deletion while still maintaining, at all times, a

logarithmic bound on search time. A promising idea is to combine rebalancing on insertion

with a rebalancing thread that gradually repairs the incremental damage done by deletions.

Exploring the efficiency of such a method is an interesting direction for future research.

The tombstone method without node deletions produces a data structure in which all

nodes have constant rank difference, and hence each node needs to store O(1) bits of bal-

ance information, but the number of nodes is Θ(m), not Θ(n). This leaves the question of

whether there is a method that avoids rebalancing on deletion while using only n nodes and

O(1) balance bits per node. We show that several approaches to this question fail, including

the approach used by the database provider in the episode mentioned in the introduction.
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Figure 2.4: Counterexample for an alternative insertion method in relaxed red-black trees
that uses one balance bit in every node. Node ranks are shown to the left.

Suppose we store rank differences instead of ranks in the nodes, and we want to keep

the rank differences bounded (to 1 or 2 in a ravl tree, 0 or 1 in a relaxed red-black tree).

How do we do insertions? The most naı̈ve idea is to avoid computing ranks while walking

along the search path, merely inserting each new node with a fixed rank difference. If this

difference is positive, we immediately run into the problem that a sequence of insertions of

items in sorted order will produce a linear tree, making search times linear. The alternative

is to give new nodes a rank difference of zero. But by mixing deletions with insertions,

we can still build a linear tree. In the case of a relaxed red-black tree, giving a new node

a rank difference of zero is equivalent to coloring it red, which is what the insertion algo-

rithm for standard red-black trees does. Insert three items in sorted order into an initially

empty relaxed red-black tree. The third insertion creates a 0-child of a 0-child, causing a

rotation and resulting in a tree whose root has two 0-children. Now repeat the following

sequence of updates indefinitely: insert an item bigger than all previous ones, delete the

two biggest items, and insert two items each bigger than all previous ones. Each sequence

of an insertion, two deletions, and two insertions adds a 1-child to the left spine of the tree

and produces a root with two red children; the tree consists of the left spine of the root and

the right child of the root. (See Figure 2.4.) Thus an intermixed sequence of insertions and

deletions can build a tree of linear depth. This is the method that was used by the database
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Figure 2.5: Counterexamples for two alternative methods of insertion and deletion in ravl
trees that use one balance bit per non-root node. Node ranks are shown to the left.

provider. It is easy to construct a similar counterexample for the variant of ravl trees in

which each new leaf has a rank difference of zero.

It is not surprising that making every new node a 0-child should create problems, since

doing so can increase our rank-based potential functions by an arbitrarily large amount,

destroying our analyses. We can avoid this by maintaining the rank of the tree root. Then

we can compute the rank of each node visited during a search by summing rank differences.

In a ravl tree, if we give a new node a rank equal to the maximum of zero and two less than

the rank of its parent (thereby giving it a rank difference of 0, 1, or 2), then adding such a

node increases the potential by at most one, and all our analyses still hold. The equivalent

method in a relaxed red-black tree is to give a new node a rank equal to the maximum of

zero and one less than the rank of its parent, thereby giving it a rank difference of 0 or 1.

Interestingly, the method of giving a new node in a ravl tree a rank equal to the maximum

of zero and one less than the rank of its parent (thereby giving it a rank difference of 0 or

1) fails, as the following counterexample shows. (See Figure 2.5.) For arbitrary k ≥ 1,

in O(k2) insertions and deletions build a tree Tk of height k consisting of a root of rank k

and a left and right spine, with each child having a rank difference of 1 and the two leaves

having rank zero, as follows. For k = 1, do one insertion into an empty tree followed by

one insertion of an item smaller than the one in the root and one insertion of an item larger

than the one in the root. For k > 1, start with Tk−1. Do 2(k − 1) insertions to give every
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non-leaf a second child of rank difference one. Then insert an item smaller than all those

in the tree followed by an insertion of an item larger than all those in the tree. The first of

these will increase the rank of the root; the second will make the root a 1,1-node. Finally,

delete all the leaves that now have rank difference two. The result is Tk. Thus O(n) updates

suffice to build a tree of height Θ(
√
n).

The idea in the previous paragraph allows us to maintain O(1) rank differences during

insertions, but what about during deletions? Consider ravl trees. Suppose that we leave

insertion unmodified (so that all new nodes get a rank of zero), but we modify deletion

so that when a node with one child is deleted, its child (which replaces it) gets a rank

difference of two. This delays the problem illustrated by the counterexample in the previous

paragraph but does not avoid it, as the following counterexample shows. (See Figure 2.5.)

For arbitrary k ≥ 1, in O(k3) insertions and deletions build a tree T ′k of height k consisting

of a root of rank k in which every child is a 1-child, every leaf has rank zero, every node

on the left and right spines has two children, and the other non-leaves have one child. For

k = 1, build T ′1 = T1. For k > 1, start with T ′k−1. Insert an item less than all items in the

tree and an item greater than all items in the tree. This increases the length of both spines

by one, promotes all the items on the old spines including the root, and leaves the non-spine

children of nodes on the spine with rank difference 2. To each of the leaves of rank zero

and rank difference two, add a child via an insertion. This promotes the parent and results

in a path of two nodes, each of rank difference one. For each of the remaining 2-children,

proceed as follows. Delete the 2-child, replacing it by its only child, which increases in

rank by one and becomes a 2-child. The leaf at the bottom of the path descending from

this node now has rank one. Do two insertions to give this bottom node two 1-children.

Delete the new 2-child, increasing the rank of the two new leaves to one. Choose one of

these new leaves and do two insertions to give it two 1-children. Continue in this way until

every node on the path down from the spine has two 1-children, and the topmost node on

the path is a 2-child. Do one more insertion to add a child to one of the rank-0 leaves at the
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bottom of the path. This promotes every node along the path, creating a path of 1-children

all the way to the spine. Now delete all the 2-children of nodes on this path. Repeating

this construction for every 2-child of a node on the left or right spine produces T ′k. The

number of updates to build T ′k from T ′k−1 is O(k2), so the total number of updates to build

T ′k from an empty tree is O(k3). Thus O(n) updates suffice to build a tree of height Θ(n1/3).

Changing the insertions so that they add nodes of non-negative rank but rank difference 0,

1, or 2 does not affect this counterexample, since all insertions add nodes of rank 0. The

counterexample also works if deletions use the tombstone method, since all deletions are

of leaves or nodes with one child. A similar counterexample exists for relaxed red-black

trees in which deletions are modified to keep all rank differences 0 or 1.

The counterexample in the previous paragraph suggests (but does not prove) that keep-

ing the height logarithmically bounded using O(1) balance bits per node requires a deletion

method that does not increase any ranks. We can obtain such a method by making sure that

only leaves are deleted. This gives a valid method, but it seems to require arbitrarily long

sequences of item swaps during deletions. There are three cases of deletion. To delete an

item e, if e is in a leaf, merely delete the leaf. If e is in a node with a right child, swap e

with the first item in the right subtree of the node containing e, and repeat this step until e

is in a leaf; then delete the leaf. If e is in a node with a left child but no right child, proceed

symmetrically: swap e with the last item in the left subtree of the node containing e, and

repeat this step until e is in a leaf; then delete the leaf. The time for a deletion is O(h+ 1).

If we use this deletion method and modify insertions so that a leaf added by a deletion has

a rank equal to the maximum of zero and the rank of its parent minus two, we obtain a

variant of ravl trees in which every node has rank difference 1 or 2 and the bounds we have

derived hold. To represent ranks we need to store the rank of the root plus one bit per node.

The same idea applies to relaxed red-black trees. We have no better bound on the number

of swaps per deletion than O(logm). Whether this can be reduced to O(1) amortized per
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deletion via, for example, a periodic rebuilding scheme is a question we leave for further

study.

2.8 To Rebalance on Deletion or Not?

Let us compare ravl trees and relaxed red-black trees to standard kinds of balanced trees.

Deletion is much simpler in the former than in the latter. The price we pay for this simplicity

is that the height bound is logarithmic in the number of insertions rather than the number

of nodes, and each node needs to store Θ(log logm) bits of balance information rather

than O(1). Rebalancing in ravl trees and relaxed red-black trees affects node exponentially

infrequently in their height. The same is true in some kinds of standard balanced trees,

including wavl trees and red-black trees [80, 156], but the bounds are not as good, because

deletion rebalancing interferes with insertion rebalancing. Using periodic rebuilding as

discussed in Section 2.6, we can reduce the height bound in ravl and relaxed red-black

trees to logarithmic in the number of nodes. Using the multi-swapping deletion method

discussed in Section 2.7, we can reduce the amount of balance information per node to

O(1) in ravl trees and relaxed red-black trees, as long as we store the rank of the root as

well. Storing the ranks explicitly, however, is only a small space penalty, and it reduces the

context needed in rebalancing steps, so it seems a small price to pay. Indeed, at least some

authors [13? ] have advocated storing ranks in standard balanced trees, since it simplifies

rebalancing. Doing this eliminates the space advantage of standard balanced trees. Our

tentative conclusion is that our theoretical results favor ravl trees and relaxed red-black

trees over their standard cousins.

We have also done some preliminary experiments in which we compared ravl trees and

relaxed red-black trees (without periodic rebuilding) to standard red-black trees and wavl

trees, on typical input sequences. Our results show that ravl trees and relaxed red-black

trees perform significantly fewer rotations and balance information updates than the other

36



Test Red-black trees Wavl trees
# rots # bals avg max # rots # bals avg max
×106 ×106 plen plen ×106 ×106 plen plen

1. Random 26.44 116.07 10.47 15.63 29.55 133.74 10.39 15.09
2. Queue 50.32 285.13 11.38 22.50 50.33 184.53 11.20 14.00
3. Working set 41.71 185.35 10.51 16.18 43.69 159.69 10.45 15.35
4. Static Zipf 25.24 112.86 10.41 15.46 28.27 130.93 10.34 15.05
5. Dynamic Zipf 23.18 103.47 10.48 15.66 26.04 125.99 10.40 15.16

Test Relaxed red-black trees Ravl trees
# rots # bals avg max # rots # bals avg max
×106 ×106 plen plen ×106 ×106 plen plen

1. Random 11.45 38.91 11.30 18.90 14.32 80.61 11.11 16.75
2. Queue 33.56 67.10 11.94 23.50 33.55 134.22 11.38 14.00
3. Working set 22.38 50.25 11.61 19.36 28.00 119.92 11.20 16.64
4. Static Zipf 10.78 38.47 12.73 24.69 13.48 78.03 11.12 17.68
5. Dynamic Zipf 10.24 37.83 11.36 18.86 12.66 74.28 11.11 16.84

Table 2.1: Performance comparison of red-black, wavl, relaxed red-black, and ravl trees
on typical input sequences (rots = rotations, bals = balance information updates, avg plen
= average path length, max plen = maximum path length).

trees, at the cost of slightly greater average and maximum path lengths. All balanced tree

implementations were written in C; all reported quantities are machine-independent.

We generated five tree operation sequences, each performing a total of 226 operations

on a tree of size n = 213. To isolate the effect of rebalancing, only insertions and deletions

were performed; the expected cost of interspersed accesses can be inferred from the average

and maximum path lengths of the tree after each operation. Table 2.1 summarizes our

results; the average and maximum path lengths reported are the average values over all

operations. The first, fourth, and fifth operation sequences perform insertions and deletions

on randomly selected items, chosen uniformly at random in the first sequence and according

to a Zipf distribution [? ? ] with rank exponent α = 0.9346 in the fourth and fifth

sequences. (This value of α is based on a classic measurement study of the number of

unique visitors seen by America Online on December 1, 1997 [? ].) The fifth sequence

simulates a dynamic Zipf distribution by randomly selecting an item and promoting it to the

most popular rank after each operation (this simulates the “flash crowd” or “slashdot” effect

often seen in websites). The second operation sequence simulates a queue by inserting the

items in order and repeatedly deleting the smallest item in the tree and inserting an item
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larger than all other items in the tree. The third operation sequence randomly selects an

item and inserts or deletes the lg n items centered around this item in symmetric order.

The results in Table 2.1 show that ravl trees performed significantly fewer rotations and

balance information updates—over 42% and 35% fewer, respectively, on average—than

red-black trees and wavl trees on the tested sequences. Similarly, relaxed red-black trees

performed over 51% and 68% fewer rotations and balance information updates, respec-

tively, on average. The price for this improvement is a slight increase in the average and

maximum path length of the resulting trees: under 5.6% and 4.3% greater, respectively, for

ravl trees, and under 11.3% and 33.4% greater, respectively, for relaxed red-black trees,

on average. Wavl trees performed more rotations and balance information updates than

red-black trees, but maintained better average and maximum path lengths. The same com-

parison holds for ravl trees and relaxed red-black trees.

We plan to conduct more thorough experiments on these and other balanced tree imple-

mentations, such as left-leaning red-black trees [23, 151]. In particular, we are investigating

the performance of the trees on worst-case sequences, for which periodic rebuilding in ravl

trees may be required to provide competitive performance.

2.9 Remarks

We have shown that one can obtain logarithmic worst-case search time in binary search

trees that are rebalanced only after insertions, not after deletions. The resulting data

structures are simpler than standard balanced search trees, and are preferred by database

providers. Our results seem to require either that Θ(log logm) balance bits be stored per

node, or that deletion be modified to delete only leaves, which seems to require cascaded

swapping of items. Whether this can be proved or disproved is an open question. Also

open is the best way to do incremental rebuilding to overcome the cumulative effect of

deletion without rebalancing. On the experimental side, it would be valuable to do a sys-
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tematic evaluation of the practical performance of ravl trees and relaxed red-black trees as

compared to red-black trees, wavl trees, and other standard kinds of trees. Ravl trees and

relaxed red-black trees combine simplicity with efficiency and may well be very useful in

practice.
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Chapter 3

Prophecy: A Scalable Solution for

Independent Byzantine Failures

Replication techniques are now the norm in Internet services, in order to achieve both re-

liability and scalability. For example, this is the reason the database provider in Chapter 2

replicated its database system. However, leveraging active agreement to mask failures,

whether to handle fail-stop behavior [? ] using protocols like Paxos [105, 130], or arbi-

trary Byzantine failures [107] using a BFT protocol [31], is not yet widely used. There is

some movement in this direction from industry—such as Google’s Chubby [28] and Ya-

hoo!’s Zookeeper [179] coordination services, and Google’s globally-distributed Spanner

database, all based on Paxos [105, 130]—but these services only mask benign faults, and

most are used to manage infrastructure, not customer-facing services.

And yet non-fail-stop failures in customer-facing services continue to occur, much to

the chagrin and concern of service providers. We listed several examples of real-world

Byzantine failures in the introduction. Some of these failures were independent in na-

ture [11, 60, 167], and thus using a BFT protocol could have prevented them. (Recall that

BFT protocols assume a fixed bound on the number of simultaneous failures, which is a

valid assumption when failures are independent.) Other failures [71, 182], including the
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outage that befell the database provider, were correlated in nature, affecting many (or all)

servers simultaneously. For these failures, simply using a BFT protocol would not have

helped. We would also need a way to make the failures independent, such as by running

distinct implementations of the service at different replicas, a form of N-version program-

ming [17]. In fact, such an approach could have been employed by the database provider

to prevent its outage. Databases and file systems are ideal candidates for opportunistic N-

version programming [32], because they expose a common interface (e.g., ODBC [68] and

NFS [127], respectively) and are available in a variety of off-the-shelf implementations. In

fact, several BFT systems [32, 67, 170] use off-the-shelf implementations in this way, with

little or no modification.

While such a BFT database system could have prevented the outage, it would come at

a cost to scalability. Namely, the system would not support load balancing read requests

to individual replicas, because an individual replica could return an incorrect (possibly

arbitrary) result. In general, while extensive prior work on improving performance results

of BFT protocols [1, 10, 31, 32, 43, 73, 83, 100, 101, 170, 176, 178, 180] has reduced their

latency to that of unreplicated reads to individual servers [37, 73, 100, 176], the throughput

of these systems falls far short. This is simple math: a minimum of four replicas [31]

(or sometimes even six [1]) are required to tolerate one faulty replica, and at least three

must execute each request. More generally, 3f + 1 replicas are needed to tolerate f faulty

replicas, and 2f+1 must execute each request. For datacenters in the (tens of) thousands of

servers, requiring four times as many servers for the same throughput may be a non-starter.

Even services that already replicate their data, such as the Google File System [69] and the

database provider in Chapter 2, would see their throughput drop significantly when using

BFT agreement.

But if the replication cost of BFT is provably necessary [25], something has to give.

One might view our work as a thought experiment that explores the potential benefit of

placing a small amount of trusted software or hardware in front of a replicated service.
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After all, wide-area client access to an Internet service is typically mediated by some mid-

dlebox, which is then at least trusted to provide access to the service. Further, a small and

simple trusted component may be less vulnerable to problems such as misconfigurations

or Heisenbugs. And by treating the back-end service as an abstract entity that exposes a

limited interface, this simple device may be able to interact with both complex and varied

services. Our implementation of such a device has less than 3000 lines of code.

Barring such a solution, most system designers opt either for cheaper techniques (to

avoid the costs of state machine replication) or more flexible techniques (to ensure ser-

vice availability under heavy failures or partitions). The design philosophies of Amazon’s

Dynamo [46], GFS [69], and other systems [52, 59, 169] embrace this perspective, pro-

viding only eventually-consistent storage. On the other hand, the tension between these

competing goals persists, with some systems in industry re-introducing stronger consis-

tency properties. Examples include timeline consistency in Yahoo!’s PNUTS [41], per-user

cache invalidation on Facebook [53], and linearizability in Google’s Spanner database [42].

Nevertheless, we are unaware of any major use of agreement at the front-tier of customer-

facing services. In this chapter, we challenge the assumption that the tradeoff between

strong consistency and cost in these services is fundamental.

This chapter presents Prophecy, a system that lowers the performance overhead of fault-

tolerant agreement for customer-facing Internet services, at the cost of slightly weakening

its consistency guarantees. At Prophecy’s core is a trusted sketcher component that medi-

ates client access to a service replica group. The sketcher maintains a compact history ta-

ble of observed request/response pairs; this history allows it to perform fast, load-balanced

reads when state transitions do not occur (that is, when the current response is identical to

that seen in the past) and slow, replicated reads otherwise (when agreement is required).

The sketcher is a flexible abstraction that can interface with any replica group, provided

it exposes a limited set of defined functionality. This chapter, however, largely discusses

Prophecy’s use with BFT replica groups.
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Property BFT D-Prophecy Prophecy
Trusted components No No Yes
Modified clients Yes Yes No
Session length Long Long Short, long
Load-balanced reads No Yes Yes
Consistency Linearized Delay-once Delay-once

Table 3.1: Comparison of a traditional BFT system, D-Prophecy, and Prophecy.

Results and outline

When used with BFT replica groups that guarantee linearizability [85], Prophecy signifi-

cantly increases throughput through its use of fast, load-balanced reads. However, it relaxes

the consistency properties to what we term delay-once semantics. We introduce the notion

of delay-once consistency and define it formally. Intuitively, it implies that faulty nodes

can at worst return slightly stale (not arbitrary) data.

We also derive a distributed variant of Prophecy, called D-Prophecy, that similarly im-

proves the throughput of traditional fault-tolerant systems. D-Prophecy achieves the same

delay-once consistency but without any trusted components.

We have implemented both variants of Prophecy and applied them to BFT replica

groups. We evaluate their performance on realistic workloads, not just null workloads

as typically done in the literature. Prophecy adds negligible latency compared to standard

load balancing, while providing an almost linear-fold increase in throughput. We also show

how to scale out Prophecy to support large replica groups or many replica groups. In the

latter case, we assume that each replica group satisfies the requirement that fewer than 1/3

of its nodes are faulty. Depending on the scenario, this assumption may not be practical:

we show how to remove it in Chapter 4.

Since Prophecy optimizes read requests, it is most effective in read-mostly workloads

where state transitions are rare. We conduct a measurement study of the Alexa top-25

websites and show that over 90% of requests are for mostly static data. We also characterize

the dynamism in the data.
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Table 3 summarizes the different properties of a traditional BFT system, D-Prophecy,

and Prophecy. The remainder of this chapter is organized as follows. In §3.1 we motivate

the design of D-Prophecy and Prophecy, and we describe this design in §3.2. In §3.3 we

define delay-once consistency and analyze Prophecy’s implementation of this consistency

model. In §3.4 we discuss extensions to the basic system model that consider scale and

complex component topologies. We detail our prototype implementation in §3.5 and de-

scribe our system evaluation in §3.6. In §3.7 we present our measurement study. We review

related work in §5 and conclude in §5.6.

3.1 Motivating Prophecy’s Design

One might rightfully ask whether Prophecy makes unfair claims, given that it achieves

performance and scalability gains at the cost of additional trust assumptions compared

to traditional fault-tolerant systems. This section motivates our design through the lens

of BFT systems, in two steps. First, we improve the performance of BFT systems on

realistic workloads by introducing a cache at each replica server. By optimizing the use

of this cache, we derive a distributed variant of Prophecy that does not rely on any trusted

components. Then, we apply this design to customer-facing Internet services, and show

that the constraints of these services are best met by a shared, trusted cache that proxies

client access to the service replica group. The resulting system is Prophecy.

In our discussion, we differentiate between write requests, or those that modify service

state, and read requests, or those that simply access state.

3.1.1 Traditional BFT Services and Real Workloads

A common pitfall of BFT systems is that they are evaluated on null workloads. Not only

are these workloads unrealistic, but they also misrepresent the performance overheads of

the system. Our evaluation in §3.6 shows that the cost of executing a non-null read request
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in the PBFT system [31] dominates the cost of agreeing on the ordering of the request, even

when the request is served entirely from main memory. Thus the PBFT read optimization,

which optimistically avoids agreement on read requests, offers little or no benefit for most

realistic workloads. Improving the performance of read requests requires optimizing the

execution of the reads themselves.

Unlike write requests, which modify service state and hence must be executed at each

replica server, read requests can benefit from causality tracking. For example, if there are

no causally-dependent writes between two identical reads, a replica server could simply

cache the response of the first read and avoid the second read altogether.1 However, this

requires (1) knowledge of the causal dependencies of all write requests, and (2) a response

cache of all prior reads at each replica server. The first requirement is unrealistic for many

applications: a single write may modify the service state in complex ways. Even if we

address this problem by invalidating the entire response cache upon receiving any write,

the space needed by such a cache could be prohibitive: a cache of Facebook’s 60+ billion

images on April 30, 2009 [126], assuming a scant 1% working-set size, would occupy

approximately 15TB of memory. Thus, the second requirement is also unrealistic.

Instead of caching each response r, the replica servers can store a compact, collision-

resistant sketch s(r) to enable cache validation. That is, when a client issues a read request

for r, only one replica server executes the read and replies with r, while the remaining

replica servers reply with s(r) from their caches. The client accepts r only if the replica

group agrees on s(r) and if s(r) validates r. Thus, even if the replica that returns r is

faulty, it cannot make the client accept arbitrary data; in the worst case, it causes the client

to accept a stale version of r. Therefore we only need to ask one replica to execute the

read, effectively implementing what we call a fast read. Fast reads drastically improve

the throughput of read requests and can be load-balanced across the replica group to avoid

repeated stale results. The replica servers maintain a fresh cache by updating it during

1Other causality-based optimizations, such as client-side speculation [176] or server-side concurrent exe-
cution [101] are also possible, but are complementary to any cache-based optimizations.
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Figure 3.1: PBFT’s throughput in the thousands of requests per second for null requests in
sessions of varying length. Note that both axes are log scale.

regular (replicated) reads, which are issued when fast reads fail. Using a compact cache

reduces the memory footprint of the Facebook image working set to less than 27GB.

We call the resulting system Distributed Prophecy, or D-Prophecy, and call the consis-

tency semantics it provides delay-once consistency.

3.1.2 BFT Internet Services

An oft-overlooked issue with BFT systems, including D-Prophecy, is that they are implic-

itly designed for services with long-running sessions between clients and replica servers (or

at least always presented and evaluated as such). Clients establish symmetric session keys

with each replica server, although the overhead of doing so is not typically included when

calculating system performance. Figure 3.1 shows the throughput of the PBFT implemen-

tation as a function of session length, with all relevant optimizations enabled including the

read optimization (indicated by ‘ro’). As sessions get shorter, throughput is drastically re-

duced because replicas need to decrypt and verify clients’ new session keys. For PBFT

sessions consisting of 128 read requests, throughput is half of its maximum, and for ses-

sions consisting of 8 read requests, throughput is one-tenth of its maximum.
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The assumption of long-lived sessions breaks down for Internet services, however,

which are mostly characterized by short-lived sessions and unmodified clients. These prop-

erties make it impractical for clients to establish per-session keys with each replica. More-

over, depending on clients to perform protocol-specific tasks leads to poor backwards com-

patibility for legacy clients of Internet services (e.g., web browsers), where cryptographic

support is not easily available [4]. Instead, we might turn to using an entity knowledgeable

of the BFT protocol to proxy client requests to a service replica group. And since Internet

services already rely on the correct operation of local middleboxes (at least with respect

to service availability), we extend this reliance by converting the middlebox into a trusted

proxy. The trusted proxy interfaces multiple short-lived sessions between clients and itself

with a single long-lived session between itself and the replica group, acting as a client in

the traditional BFT sense.

When using proxied client access to a D-Prophecy group, there is no need to maintain

redundant caches at each replica server: a shared cache at the trusted proxy suffices, and it

preserves delay-once consistency. A fast read now mimics the performance of an unrepli-

cated read, as the proxy only asks one replica server for r and validates the response with

its (local) copy of s(r). Since the cache is compact, the proxy remains a small and simple

trusted component, amenable to verification. We call this system Prophecy, and present its

design in §3.2.

3.1.3 Applications

The delay-once semantics of Prophecy imply that faulty nodes can at worst return stale

(not arbitrary) data. This semantics is sufficient for a variety of applications. For example,

Prophecy would be able to protect against the Facebook and Flickr mishaps mentioned in

the introduction, because it would not allow arbitrary data to reach the client. Applica-

tions that serve inherently static (write-once) data are also good candidates, because here
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a “stale” response is as fresh as the latest response. In §3.7 we demonstrate the propensity

for static data in today’s most popular websites.

Social networks and “Web 2.0” applications are good candidates for delay-once consis-

tency because they typically do not require all writes to be immediately visible. Consider

the following example from Yahoo!’s PNUTS system [41]. A user wants to upload spring-

break photos to an online photo-sharing site, but does not want his mother to see them. So,

he first removes her from the permitted access list of his database record and then adds the

spring-break photos to this record. A consistency model that allows these updates to appear

in different orders at different replicas, such as eventual consistency [54], is insufficient: it

violates the user’s intention of hiding the photos from his mother. Delay-once consistency

only allows stale data to be returned, not data out-of-order: if the photos are visible, then

the access control update must have already taken place. Further, once the user has “re-

freshed” his own page and sees the photos, he is guaranteed that his friends will also see

them.

For applications where writes are critical, such as a bank account, delay-once consis-

tency is appropriate because it ensures that writes follow the protocol of the replica group.

Although reads may return stale results, they can only do so in a limited way, as we discuss

in §3.3. On the other hand, there are some applications for which delay-once consistency

is not beneficial, such as those that critically depend on reading the latest data (e.g., a rail

signaling service), or those that return non-deterministic content (e.g., a CAPTCHA gener-

ator).

3.2 System Design

We first define a sketcher abstraction that lies at the heart of Prophecy. For a more tra-

ditional setting, we use this sketcher to design a distributed variant of Prophecy, or D-

Prophecy. We then present the design of Prophecy.
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3.2.1 The Sketcher

Prophecy and D-Prophecy use a sketcher to improve the performance of read requests to an

existing replica group. A sketcher maintains a history table of compact, collision-resistant

sketches of requests and responses processed by a replica group. Each entry in the history

table is of the form (s(q), s(r)), where q is a request, r is the response to q, and s is the

sketching function used for compactness (s typically makes use of a secure hash function

like SHA-1). The sketcher looks up or updates entries in the history table using a standard

get/set interface, keyed by s(q). In Prophecy, only read requests and responses are stored

in the history table.

The specific use of the sketcher and its interaction with the replica group differs between

Prophecy and D-Prophecy. However, both systems require the replica group to support the

following request interface:

• RESP← fast(REQ q)

• (RESP r, SEQ NO σ)← replicated(REQ q)

We expect the fast interface to be new for most replica groups. The replicated interface

should already exist, but may need to be extended to return sequence numbers. No modifi-

cations are made to the replica group beyond what is necessary to support the interfaces, in

either system.

3.2.2 D-Prophecy

Figure 3.2 shows the system model of D-Prophecy. Except for the sketcher, all other enti-

ties are standard components of a replicated service: clients send requests to (and receive

responses from) a service implemented by N replica servers, according to some replication

protocol like PBFT. Each replica server is augmented with a sketcher that maintains a his-

tory table for read requests. The history table is read by the fast interface and updated by

the replicated interface, as follows.
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Figure 3.2: Executing a fast read in D-Prophecy. Only one replica server executes the read
(bold line); the others return the response sketch in the history table (dashed lines).

A client issues a fast read q by sending it to all replica servers and choosing one of

them to execute q and return r. The policy for selecting a replica server is unspecified, but

a uniformly random policy has especially useful properties (see §3.3.2). The other replicas

use their sketcher to lookup the entry for s(q) and return the corresponding response sketch

s(r), or null if the entry does not exist. If the client receives a quorum of non-null response

sketches that match the sketch of the actual response, it accepts the response. The quorum

size depends on the replication protocol; we give an example below. Otherwise, we say a

transition has occurred and the client reissues the request as a replicated read. A replicated

read is executed according to the protocol of the replica group, with one additional step:

all replica servers use their sketcher to update the entry for s(q) with the new value of s(r),

before sending a response to the client.

Readers familiar with the PBFT protocol will notice that fast reads in D-Prophecy look

very similar to PBFT optimized reads. However, there is a crucial difference: PBFT re-

quires every replica server to execute the read, while D-Prophecy requires only one such

execution, performing in-memory lookups of s(r) at the rest. For non-null workloads,

this represents a significant performance improvement, as shown in §3.6. On the flip side,

each replica server requires additional memory to store its history table, though in practice

this overhead is small. The quorum size required for fast reads is identical to the quorum
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Figure 3.3: Prophecy mediating access to a replica group.

size required for optimized reads: 2f + 1 responses suffices with some caveats (see §5.1.3

of [29]), and 3f + 1 always suffices, for a group with N = 3f + 1 replica servers.

The architecture of D-Prophecy resembles that of a traditional BFT system: clients

establish session keys with the replica servers and participate fully in the replication pro-

tocol. As we observed in §3.1.2, this makes D-Prophecy unsuitable for Internet services,

with their environment of short-lived sessions and unmodified clients. This motivates the

design of Prophecy, discussed next.

3.2.3 Prophecy

Figure 3.3 shows the simplest realization of Prophecy’s system model. (We consider ex-

tensions to the basic model in §3.4.) There are four types of entities: clients, sketchers,

replica clients, and replica servers. Unmodified clients’ requests to a service are handled

by the sketcher; together with the replica clients, this serves as the trusted proxy described

in §3.1.2. The replica clients interact with the service, implemented by a group ofN replica

servers, according to some replication protocol.

The sketcher issues each request through a replica client; the next subsection details

the handling of requests. Functionally, the sketcher in Prophecy plays the same role as

the per-replica-server sketchers in D-Prophecy. Architecturally, however, its role is quite

different. In Prophecy, a fast read is sent only to the single replica server that executes it,
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and neither the fast nor replicated interface accesses the history table directly. Thus, the

replica group is treated as a black box. Since the sketcher is external to the replica group,

writes processed by the group may no longer be visible or discernible to the sketcher; i.e.,

there may exist an external write channel. Since only replica clients interact directly with

the replica servers, each replica client can maintain a single, long-lived session with each

replica server. Wide-area clients are shielded from any churn in the replica group and are

unaware of the replication protocol: the only responses they see are those that have already

been accepted by the sketcher.

The type of session used between clients and the sketcher is left open by our design,

as it may vary from service to service. For example, services that only allow read or sim-

ple write operations (e.g., HTTP GETs and POSTs) may use unauthenticated sessions. A

service like Facebook may use authentication only during user login, and use unauthenti-

cated cookie-based sessions after that. Finally, services that store private or protected data,

such as an online banking system, may secure sessions at the application level (e.g., using

HTTPS). Prophecy’s architecture makes it easy to cope with the overhead of client-sketcher

authentication, because one can simply add more sketchers if this overhead grows too high

(see §3.4). To achieve the same scale-out effect, traditional BFT systems like PBFT and

D-Prophecy would need to add entire replica groups.

Handling a Request

The sketcher stores two additional fields with each entry (s(q), s(r)) in the history table:

the sequence number σ associated with r, and a 2-bit value b indicating whether s(q) is

whitelisted (always issued as a fast read), blacklisted (always issued as a replicated request),

or neither (the default). The sketch s(r) is empty for whitelisted or blacklisted requests.

Algorithm 1 describes the processing of a request and is illustrated in Figure 3.3 (numbers

on the right correspond to the numbered steps in the figure).
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Algorithm 1 Processing a request at the sketcher.
Receive request q from client (1)
if q is a read request then

(s(q), s(r), σ, b)← Lookup s(q) in history table
if (s(r) 6= null) and (b 6= blacklisted) then
r′ ← fast(q) (2)
if (s(r′) = s(r)) or (b = whitelisted) then

return r′ to client (4)
end if

end if
(r′, σ′)← replicated(q) (3)
if (s(r) = null) or (σ′ > σ) then

Update history table with (s(q), s(r′), σ′, b)
end if

else
(r′, σ′)← replicated(q) (3)

end if
return r′ to client (4)

Prophecy requires a sequence number to be returned by replicated , as it seeks to issue

concurrent requests to the replica group using multiple replica clients. Concurrency allows

reads to execute in parallel to improve throughput. Unfortunately, a sketcher that issues re-

quests concurrently has no way of discerning the correct order of replicated reads by itself,

i.e., the order they were processed by the replica group. Thus, it relies on the sequence

number returned by replicated to ensure that entries in the history table always reflect the

latest system state.

The sketcher requires some application-specific knowledge of the format of q and r.

This information is used to determine if q is a read or write request, and to discard ex-

traneous or non-deterministic information from q or r while computing s(q) or s(r). For

example, in our prototype implementation of Prophecy, an HTTP request is parsed by an

HTTP protocol handler to extract the URL and HTTP method of the request; the same

handler removes the date/time information from HTTP headers of the response. In prac-

tice, the required application-specific knowledge is minimal and limited to parsing protocol
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headers; the payload of the request or response (e.g., the HTTP body) is treated opaquely

by the sketcher.

Whitelisting and blacklisting add flexibility to the handling of requests, but may require

additional application-specific knowledge. One use of blacklisting that does not require

such knowledge is to dynamically blacklist requests that exhibit a high frequency of tran-

sitions (e.g., dynamic content). This allows the sketcher to avoid issuing fast reads that are

very likely to fail. (We do not currently implement this optimization.)

3.2.4 Performance

In our analysis and evaluation, the sketcher is able to accommodate all read requests in its

history table without evicting any entries. If needed, a replacement policy such as LRU

may be used, but this is unlikely: our current implementation can store up to 22 million

unique entries using less than 1GB of memory.

The performance savings of a sketcher come from the ability to execute fast, load-

balanced reads whose responses match the entries of the history table. Thus, Prophecy and

D-Prophecy are most effective in read-mostly workloads. We can estimate the savings by

looking at the cost, in terms of per-replica processing time, of executing a read in these

systems. Let t be the probability that a state transition occurs in a given workload. Let

CR be the cost of a replicated read and Cr the cost of a fast read (excluding any sketcher

processing in the case of D-Prophecy), and let Chist be the cost of computing a sketch and

performing a lookup/update in a history table. Below, we calculate the expected cost of a

read in Prophecy and D-Prophecy when used with a BFT replica group that uses PBFT’s

read optimization. For comparison, we include the cost of the unmodified BFT group; here,

t′ is the probability that a PBFT optimized read fails.
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Prophecy: [Cr + 2Chist] + [t(NCR + Chist)]

D-Prophecy: [Cr + (N − 1)Chist] + [t(NCR +NChist)]

BFT: [NCr] + [t′NCR]

The addends on the left and right of each equation show the cost of a fast read and a

replicated read, respectively. The equations do not include optimizations that benefit all

systems equally, such as separating agreement from execution [180]. Prophecy performs

two lookups in the history table during a fast read (one before and one after executing the

read), and one update to the history table during a replicated read. D-Prophecy performs

a history table lookup at all but one replica server during a fast read, and an update to the

history table of each replica server during a replicated read. These equations show that

Prophecy operates at maximum throughput when there are no transitions, because only one

replica server processes each request, as compared to over 2/3 of the replica servers in

the BFT system (assuming, idealistically, that only a necessary quorum of replica servers

execute the optimized read, and the remaining replicas ignore it). Since Chist � Cr for

non-null workloads—the former involves an in-memory table lookup, the latter an actual

read—this is a factor of over (2/3)N improvement. D-Prophecy’s savings are similar for

the same reason. Although t′ may be significantly less than t in practice—given that PBFT

optimized reads may still succeed even when a state transition occurs—our evaluation in

§3.6 reveals that the benefit of PBFT optimized reads over replicated reads is small for real

workloads. Finally, while Prophecy’s throughput advantage degrades as t increases, we

demonstrate in §3.7 that t is indeed low for popular web services.
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3.3 Consistency Properties

Despite their relatively simple designs, the consistency properties of Prophecy and D-

Prophecy are only slightly weaker than those of the replica group. In this section, we

formalize the notion of delay-once consistency introduced in §3.1. Delay-once consistency

is a derived consistency model; here, we derive it from linearizability [85], the consistency

model of most BFT protocols, and obtain delay-once linearizability. Then, we show how

Prophecy implements delay-once linearizability.

3.3.1 Delay-once Linearizability

A history of requests and responses executed by a service is linearizable if it is equivalent

to a sequential history [103] that respects the irreflexive partial order on requests imposed

by their real-time execution [85]. Request X precedes request Y in this order, written

X ≺ Y , if the response of X is received before Y is sent. Suppose one client sends

requests (Ra,W b, Rc) to the service and another client sends requests (W d, Re, Rf ,W g),

with partial order {Ra ≺ Re,W g ≺ Rc}. Then a valid linearized history could look like

the following:

〈Ra
0,W

d
1 ,W

b
2 , R

e
2, R

f
2 ,W

g
3 , R

c
3〉.

The R’s and W ’s represent read and write requests, and subscripts represent the service

state reflected in the response to each request (following [76]). In contrast to this history,

the following is a valid delay-once linearizable history, though it is not linearizable:

〈Ra
0,W

d
1 ,W

b
2 , R

e
0, R

f
2 ,W

g
3 , R

c
2〉.

RequestsRe andRc have stale responses because they do not reflect the state update caused

by sequentially precedent writes (note that the staleness of Re’s response is discernible to

the issuing client, whereas the staleness of Rc’s response is not). At a high level, a delay-
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once history looks like a linearized history with reads that reflect the state of prior reads,

but not necessarily prior writes. The manner in which reads can be stale is not arbitrary,

however. Specifically, a history H is delay-once linearizable if the subsequence of write

requests in H , denoted by H|W , satisfies linearizability, and if read requests satisfy the

following property:

Delay-once property. For each read request Rx in H , let Ry and Wz be the read and
write request of maximal order in H such that Ry ≺ Rx and Wz ≺ Rx. Then either
x = y or x = z.

Delay-once linearizability implies both monotonic read and monotonic write consis-

tency, but not read-after-write consistency. If ≺H is the partial order of the history H ,

delay-once linearizability respects ≺H|W but not ≺H , due to the possible presence of stale

reads.

The delay-once property ensures two things: first, reads never reflect state older than

that of the latest read (they are only delayed to one stale state), and second, reads that are

updated reflect the latest state immediately. Thus, a system that implements delay-once

consistency is responsive. To verify if a read in a delay-once consistent history H is stale,

one can check the following:

Staleness indicator. Given a read request Rx in H , let Wy be the write request of
maximal order in H such that Wy ≺ Rx. Rx is stale if and only if x < y.

The staleness property explains why object-based systems like web services fare particu-

larly well with delay-once consistency. In these systems, state updates to one object are

isolated from other objects, so staleness can only occur between writes and reads to the

same object.

The above derivation of delay-once consistency is based on linearizability, but deriva-

tions from other consistency models are possible. For example, a weaker condition called

read-after-write consistency also yields meaningful delay-once semantics.
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3.3.2 Prophecy’s Consistency Semantics

We now show that Prophecy implements delay-once linearizability when used with a

replica group that guarantees linearizability, such as a PBFT replica group. A similar (but

simpler) argument shows that D-Prophecy achieves delay-once linearizability, omitted

here due to space constraints.

Prophecy inherits the system and network model of the replica group. When used

with a PBFT replica group, we assume an asynchronous network between the sketcher

and the replica group that may fail to deliver messages, may delay them, duplicate them,

or deliver them out-of-order. Replica clients issue requests to the replica group one at a

time; requests are retransmitted until they are received. We do not make any assumptions

about the organization of the service’s state; for example, the service may be a monolithic

replicated state machine [104, 150] or a collection of numerous, isolated objects [85]. The

sketcher may process requests concurrently. We model this concurrency by allowing the

sketcher to issue requests to multiple replica clients simultaneously; the order in which

these requests return from replica clients is arbitrary. Updates to service state may not be

discernible or visible to the sketcher—i.e., there may exist an external write channel—as

discussed in §3.2.3. We show that Prophecy achieves delay-once linearizability despite

concurrent requests and external writers.

Our analysis of Prophecy’s consistency requires a non-standard approach because it is

the sketcher, not the replica servers, that enforces this consistency, and because fast reads

are executed by individual replicas. In particular, we introduce the notion of an accepted

history. LetHi for 1 ≤ i ≤ N be the history of all write requests executed by replica server

i and all fast read requests executed by i that were accepted by the sketcher. Let Rs be the

history of all replicated read requests accepted by the sketcher. An accepted history Ai is

the union of Hi and Rs, for each replica server i. The position in Ai of each replicated

read in Rs is well defined because all reads are accepted at a single location (the sketcher)
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and all replicated requests are totally ordered by linearizability. We claim that the accepted

history Ai is delay-once linearizable.

To see this, observe that replicated requests satisfy linearizability because they follow

the protocol of the replica group. The sketcher ensures that replicated reads update the his-

tory table according to this order by using the sequence numbers returned by the replicated

interface. Further, the sketcher only accepts a fast read if it reflects the state of the latest

replicated read. Since Ai contains all replicated reads accepted by the sketcher (not just

those accepted by i), and since accepted fast reads never reflect new state, it follows that all

fast reads in Ai must satisfy the delay-once property. While Ai may not contain all write

requests accepted by the replica group (e.g., if i is missing an update), this only affects

i’s ability to participate in replicated reads, and does not violate delay-once linearizability.

Thus, we conclude that Ai is delay-once linearizable.

Limiting staleness via load balancing Stale responses are returned by faulty replica

servers or correct replica servers that are out-of-date. We can easily verify if an accepted

history contains stale responses by checking the staleness indicator defined in §3.3. To

limit the number of stale responses, the fast interface dispatches fast reads from all clients

uniformly at random over the replica servers.2 Let g be the fraction of faulty or out-of-date

replica servers currently in the replica group. If g is a constant, then gk, the probability

that k consecutive fast reads are sent to these servers, is exponentially decreasing. For BFT

protocols, g < 2/3 assuming a worst-case scenario where the maximum number of correct

nodes are out-of-date. For a replica group of size 4, the probability that k > 6 is less than

1.6%.
2We assume for simplicity that the random selection is secure, though in practice faulty replica servers

may hamper this process. The latter is an interesting problem, but outside the scope of this work.
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3.4 Scale and Complex Architectures

This section describes extensions to the basic Prophecy model in order to integrate fault

tolerance into larger-scale and more complex environments.

Scaling through multiple sketchers In the basic system model of Prophecy (Figure 3.3),

the sketcher is a single bottleneck and point-of-failure. We address this limitation by using

multiple sketchers to build a sketching core, as follows. First, we horizontally partition the

global history table, based on s(q)’s, into non-overlapping regions, e.g., using consistent

hashing [91]. We assign each region to a distinct sketcher, which we refer to as response

sketchers. The partitioning preserves delay-once semantics because only a single sketcher

stores the entry for each s(q). Second, we build a two-level sketching system as shown

in Figure 3.4, where the first tier of request sketchers demultiplex client requests. That is,

given a request q, any of a small number of request sketchers computes s(q) and forwards q

to the appropriate response sketcher. Using a one-hop distributed hash table (DHT) [91? ]

to manage the partitioning works well, given the network’s small, highly-connected nature.

The response sketchers (the members of this DHT) issue requests to the replica group(s)

and sketch the responses, ultimately returning them to the clients. (Importantly, the replica

servers in Figure 3.4 need not be part of a single replica group, but may instead be organized

into multiple groups.) The larger number of response sketchers reflects the asymmetric

bandwidth requirements of network protocols like HTTP. We evaluate the scaling benefits

of multiple response sketchers in §3.6.7.

Handling sketcher failures The sketching core handles failure and recovery of sketch-

ers seamlessly, because it can rely on the join and leave protocol of the underlying DHT.

Since request sketchers direct client requests, they maintain the partitioning of the DHT. To

preserve delay-once semantics, this partitioning must be kept consistent [28, 179] to avoid

sending requests from the same region of the history table to multiple response sketchers.
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Figure 3.4: Scaling out Prophecy using multiple sketchers.

Prophecy’s support for blacklisting simplifies this task, however. In particular, whenever a

region of the history table is being relinquished or acquired between response sketchers, we

can allow more than one response sketcher to serve requests from the same region provided

the entire region is blacklisted (forcing all requests to be replicated). Once the partitioning

has stabilized, the new owner of the region can unset the blacklist bit. As a result, mem-

bership dynamics can be handled smoothly and simply, at the cost of transient inefficiency

but not inconsistency.

Mediating loosely-coupled groups A sketching core can be shared by the multiple,

loosely-coupled components that typically comprise a real service. Alternatively, com-

ponents that operate in parallel can use Prophecy via dedicated sketchers. Components

that operate in series, such as multi-tier web services, can use Prophecy prior to each tier.

However, applying agreement protocols in series introduces nontrivial consistency issues.

We leave this problem to future work.
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3.5 Implementation

Our implementation of Prophecy and D-Prophecy is based on PBFT [31]. We used the

PBFT codebase given its stable and complete implementation, as well as newer results [10]

showing its competitiveness with Zyzzyva and other recent protocols (much more so than

was originally indicated [100]). We implemented and compared three proxied systems

(Prophecy, proxied PBFT without optimized reads, and proxied PBFT with optimized

reads), as well as three non-proxied (“direct”) systems (D-Prophecy, PBFT without opti-

mized reads, and PBFT with optimized reads). In our evaluation, we will compare proxied

systems only with other proxied systems, and similarly for direct systems, as the architec-

tures and assumptions of the two models are fundamentally different. The proxied systems

do not authenticate communication between clients and the sketcher, though they easily

can be modified to do so with equivalent overheads.

We implemented a user-space Prophecy sketcher in about 2,000 lines of C++ code using

the Tamer asynchronous I/O library [99]. The sketcher forks a process for each core in the

machine (8 in our test cluster), and the processes share a single history table via shared

memory. The sketcher interacts with PBFT replica clients through the PBFT library. The

pool of replica clients available to handle requests is managed as a queue. The sketching

function uses a SHA-1 hash [125] over parts of the HTTP header (for requests) and the

entire response body (for responses). The proxied PBFT variants share the same code base

as the sketcher, but do not perform sketching, issue fast reads, or create or use the history

table.

We modified the PBFT library in three ways: to add support for fast reads (about 20

lines of code), to return the sequence numbers (about 20 LOC), and to add support for

D-Prophecy (about 100 LOC). Additional modifications enabled the same process to use

multiple PBFT clients concurrently (500 LOC), and modified the simple server distributed

with PBFT to simulate a webserver and allow “null” writes (500 LOC), as null operations

actually have 8-byte payloads in PBFT. We also wrote a PBFT client in about 1000 lines of
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C++/Tamer that can be used as a client in direct systems and as a replica client in proxied

systems.

3.6 Evaluation

This section quantifies the performance benefits and costs of Prophecy and D-Prophecy,

by characterizing their latency and throughput relative to PBFT under various workloads.

We explore how the system’s throughput characteristics change when we modify a few

key variables: the processing time of the request, the size of the response, and the client’s

session length. Finally, we examine how Prophecy scales with the replica group size.

3.6.1 Experimental Setup

All of our experiments were run in a 25-machine cluster. Each machine has eight 2.3GHz

cores and 8GB of memory, and all are connected to a 1Gbps switch.

The proxied systems are labeled Prophecy, pr-PBFT (proxied PBFT), and pr-PBFT-

ro (proxied PBFT with the read optimization). The direct systems are labeled D-Prophecy,

PBFT, and PBFT-ro (PBFT with the read optimization). Multicast and batching are not used

in our experiments, as they do not impact performance when using read optimizations; all

other PBFT optimizations are employed. Unless otherwise specified, all experiments used

four replica servers, a single sketcher/proxy machine for the proxied systems, and a single

client machine. The proxied experiments used 40 replica clients across eight processes

at the sketcher/proxy, and had 100 clients establish persistent HTTP connections with the

sketcher/proxy. The direct experiments used 40 clients across eight processes. These num-

bers were sufficient to fully saturate each system without degrading performance. All ex-

periments use infinite-length sessions between communicating entities (except for the one

evaluating the effect of session length). Throughput experiments were run for 30-second

intervals and throughput was averaged over each second.
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System median 1st 99th
pr-PBFT 433 379 706

pr-PBFT-ro 296 255 544
Prophecy 256 216 286

Prophecy-100 617 553 768
PBFT 286 272 309

PBFT-ro 144 135 168
D-Prophecy 144 129 197

D-Prophecy-100 429 412 574

Table 3.2: Latency in µs for serial null reads.

In some experiments, we report numbers for Prophecy-X or D-Prophecy-X , which

signifies that the systems experienced state transitions X% of the time.

3.6.2 Null Workload

Latency Table 3.2 shows the median and 99th percentile latencies for 100,000 serial

null requests sent by a single client. All systems displayed low latencies under 1ms, al-

though the proxied systems have higher latencies as each request must traverse an extra hop.

Prophecy, pr-PBFT-ro, D-Prophecy, and PBFT-ro all avoid the agreement phase during re-

quest processing and thus have notably lower latency than their counterparts. Prophecy-100

and D-Prophecy-100 represent a worst-case scenario where every fast read fails and is reis-

sued as a replicated read.

Throughput Figure 3.5 shows the aggregate throughput of the proxied systems for exe-

cuting null requests. We achieve the desired transition ratio by failing that fraction of fast

reads at the sketcher.

Since replica servers can execute null requests cheaply, the sketcher/proxy becomes

the system bottleneck in these experiments. Nevertheless, Prophecy achieves 69% higher

throughput than pr-PBFT-ro due to its load-balanced fast reads, which require fewer packets

to be processed by replica servers. As the transition ratio increases, however, Prophecy’s
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Figure 3.5: Throughput of null reads for proxied systems (Prophecy, pr-PBFT, and pr-
PBFT-ro).
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Figure 3.6: Throughput of null reads for direct systems (D-Prophecy, PBFT, and PBFT-ro).

advantage decreases because fewer fast reads match the history table. For example, when

transitions occur 15% of the time—a representative ratio from our measurement study in

§3.7—Prophecy’s throughput is 7% lower than pr-PBFT-ro’s.

Figure 3.6 depicts the aggregate throughput of the direct systems. In this experiment, 40

clients across two machines concurrently execute null requests. D-Prophecy’s throughput

is 15% lower than PBFT-ro’s when there are no transitions, and 50% lower when there are

15% transitions. D-Prophecy derives no performance advantage from its fast reads because

the optimized reads of PBFT take no processing time, while D-Prophecy pays the overhead

for sketching and history table operations.
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Figure 3.7: Throughput of proxied systems as processing time increases, normalized
against pr-PBFT-ro.

3.6.3 Server Processing Time

The previous subsection shows that when requests take almost no time to process, Prophecy

improves throughput only by decreasing the number of packets at each replica server, while

D-Prophecy fails to achieve better throughput. However, when the replicas perform real

work, such as the computation or disk I/O associated with serving a webpage, Prophecy’s

improvement is more dramatic.

Figures 3.7 and 3.8 demonstrate how varying processing time affects the throughput of

proxied systems (normalized against pr-PBFT-ro) and direct systems (normalized against

PBFT-ro), respectively. As the processing time increases—implemented using a busy-wait

loop—the cost of executing requests begins to dominate the cost of agreeing on their order.

This decreases the effectiveness of PBFT’s read optimization, as evidenced by the increase

in pr-PBFT’s throughput relative to pr-PBFT-ro, and similarly between PBFT and PBFT-

ro. At the same time, the higher execution costs dramatically increase the effectiveness of

load balancing in Prophecy and D-Prophecy. Their throughput approaches 3.9 times the

baseline, which is only 2.5% less than the theoretical maximum.

The effectiveness of load-balancing is more pronounced in Prophecy than in D-

Prophecy for two main reasons. First, Prophecy’s fast reads involve only one replica
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Figure 3.8: Throughput of direct systems as processing time increases, normalized against
PBFT-ro.

server, while D-Prophecy’s fast reads involve all replicas, even though only a single replica

actually executes the request. Second, Prophecy performs sketching and history table

operations at the sketcher, whereas D-Prophecy implements such functionality on the

replica servers, stealing cycles from normal processing.

3.6.4 Integration with Apache Webserver

We applied Prophecy to a replica group in which each server runs the Apache web-

server [14], appropriately modified to return deterministic results. Upon receiving a

request, a PBFT server dispatches the request body to Apache via a persistent TCP

connection over localhost.

Figure 3.9 shows the aggregate throughput of the proxied systems for serving a 1-byte

webpage. When there are no transitions, Prophecy’s throughput is 372% that of pr-PBFT-

ro. At the representative ratio of 15%, Prophecy’s throughput is 205% that of pr-PBFT-ro.

The processing time of Apache is enough to dominate all other factors, causing Prophecy’s

use of fast reads to significantly boost its throughput.

Figure 3.10 shows the throughput of direct systems. With no transitions, D-Prophecy’s

throughput is 265% that of PBFT-ro, and 141% when there are 15% transitions.
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Figure 3.9: Throughput of reads of a 1-byte webpage to Apache webservers for proxied
systems.
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Figure 3.10: Throughput of concurrent reads of a 1-byte webpage to Apache webservers
for direct systems.

In these experiments, the local HTTP requests to Apache took an average of 94µs. For

the remainder of this section, we use a simulated processing time of 94µs within replica

servers when answering requests.

3.6.5 Response Size

Next, we evaluate the proxied systems’ performance when serving webpages of increas-

ing size, as shown by Figure 3.11. As the response size increases, fewer replica clients

were needed to maximize throughput. At the same time, Prophecy’s throughput advantage
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Figure 3.11: Throughput of proxied systems as response size increases, normalized against
pr-PBFT-ro.
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Figure 3.12: Throughput of direct systems as session length increases, normalized against
PBFT-ro.

decreases as the response size increases, as the sketcher/proxy becomes the bottleneck in

each scenario. Increasing the replica servers’ processing time shifts this drop in Prophecy’s

throughput to the right, as it increases the range of response sizes for which processing

time is the dominating cost. Note that we only evaluate the systems up to 64KB responses,

because PBFT communicates via UDP, which has a maximum packet size of 64KB.
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3.6.6 Session Length

Our experiments with direct systems so far did not account for the cost of establishing

authenticated sessions between clients and replica servers. To establish a new session,

the client must generate a symmetric key that it encrypts with each replica server’s public

key, and each replica server must perform a public-key decryption. Given the cost of such

operations, the performance of short-lived sessions can be dominated by the overhead of

session establishment, as we discussed in §3.1.2.

Figure 3.12 demonstrates the effect of varying session length on the direct systems, in

which each request per session returns a 1-byte webpage. We find that the throughput of

PBFT and PBFT-ro are indistinguishable for short sessions, but as session length increases,

the cost of session establishment is amortized over a larger number of requests, and PBFT-

ro gains a slight throughput advantage. Similarly, D-Prophecy achieves its full throughput

advantage only when sessions are very long.

We do not evaluate the effect of session lengths in the proxied systems, because they

currently do not authenticate communication with the clients. Authentication can easily

be incorporated into these systems, however, at a similar cost to Prophecy and pr-PBFT.

That said, proxied systems can better scale up the maximum rate of session establishment

than direct systems, as we observed in §3.2.3: each additional proxy provides a linear

rate increase, while direct systems require an entire new replica group for a similar linear

increase.

3.6.7 Scaling Out

Finally, we characterize the scaling behavior of Prophecy and proxied PBFT systems. By

increasing the size of their replica groups, PBFT systems gain resilience to a greater number

of Byzantine faults (e.g., from one fault per 4 replicas, to four faults per 13 replicas).

However, their throughput does not increase, as each replica server must still execute every

request. On the other hand, Prophecy’s throughput can benefit from larger groups, as it can
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Figure 3.13: Throughput of Prophecy and pr-PBFT-ro with varying replica group sizes.

load balance fast reads over more replica servers. As the sketcher can become a bottleneck

in the system at higher read rates, we used two sketchers for a 7-replica group and three

sketchers for a 10- and 13-replica group.

Figure 3.13 shows the throughput of proxied systems for increasing group sizes.

Prophecy’s throughput is 395%, 739%, 1000%, and 1264% that of pr-PBFT-ro, for group

sizes of 4, 7, 10, and 13 replicas, respectively. Prophecy does not achieve such a significant

throughput improvement when experiencing transitions, however. We see that a 15% tran-

sition ratio prevents Prophecy from handling more than 32, 000 req/s, which it achieves

with a replica group of size 10. Thus, under moderate transition rates, further increasing

the replica group size will only increase fault tolerance, not throughput.

3.7 Measurement Study of Alexa Sites

The performance savings of Prophecy are most pronounced in read-mostly workloads, such

as those involving DNS: of the 40K names queried by the ConfiDNS system [135], 95.6%

of them returned the same set of IP addresses every time over the course of one day. In

web services, it is less clear that transitions are rare, given the pervasiveness of so-called

“dynamic content”.
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Figure 3.14: A CDF of requests over transition ratios.

To investigate this dynamism, we collected data from the Alexa top 25 websites

by scripting a Firefox browser to reload the main page of each site every 20 sec-

onds for 24 hours on Dec. 29, 2008. Among the top sites were www.youtube.com,

www.facebook.com, www.skyrock.com, www.yahoo.co.jp, and www.ebay.com.3

The browser loads and executes all embedded objects and scripts, including embedded

links, JavaScript, and Flash, with caching disabled. We captured all network traffic

using the tcpflow utility [51], and then ran our HTTP parser and SHA-1-based sketching

algorithm to build a compact history of requests and responses, similar to the real sketcher.

Our measurement results show that transitions are rare in most of the downloaded data.

We demonstrate a clear divide between very static and very dynamic data, and use Rabin

fingerprinting [138] to characterize the dynamic data. Finally, we isolate the results of

individual geographic “sites” using a CIDR prefix database.

3.7.1 Frequency of Transitions

For each unique URL requested during the experiment, we measured the ratio of state

transitions over repeated requests. Figure 3.14 shows a CDF of unique URLs at different

3While one might argue that BFT agreement is overkill for many of the sites in our study, our examples in
the introduction show that Heisenbugs and one-off misconfigurations can lead to embarrassing, high-profile
events. Prophecy protects against these mishaps without the performance penalty normally associated with
BFT agreement.

72



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F
 o

f u
ni

qu
e 

U
R

Ls

Transition ratio

1st party
3rd party

Figure 3.15: A CDF over transition ratios of first-party vs. third-party URLs.

transition ratios. We separately plotted those URLs based on the number of requests sent to

each one, given that embedded links generate a variable number of requests to some sites.

(Where not specified, the minimum number of requests used is 25.) We see that roughly

50% of all data accessed is purely static, and about 90% of all requests have fewer than

15% state transitions. These numbers confirmed our belief that most dynamic websites

are actually dynamic compositions of very static content. The same graph scaled by the

average response size of each request yields very similar curves (omitted), suggesting that

Figure 3.14 also reflects the total response throughput at each transition ratio.

Figure 3.15 is the same plot as Figure 3.14 but divided into first-party URLs, or those

targeted at an Alexa top website, and third-party URLs, or those targeted at other sites

(given that first-party sites can embed links to other domains for image hosting, analyt-

ics, advertising, etc.). The graph shows that third-party content is much more static than

first-party content, and thus third-party content providers like CDNs and advertisers could

benefit substantially from Prophecy.

The results in this section are conservative for two reasons. First, they reflect a workload

of only three requests per minute per site, when in reality there may be tens or hundreds of

thousands of requests per minute. Second, many URLs—though not enough to cause space

problems in a real history table—saw only a few requests, but returned identical responses,
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suggesting that our HTTP parser was conservative in parsing them as unique URLs. An

important characteristic of all of the graphs in this section is the relatively flat line across

the middle: this suggests that most data is either very static or very dynamic.

3.7.2 Characterizing Dynamic Data

Dynamic data degrades the performance of Prophecy because it causes failed fast reads to

be resent as replicated reads. Often, however, the amount of dynamism is small and may

even be avoidable. To investigate this, we characterized the dynamism in our data by using

Rabin fingerprinting to efficiently compare responses on either side of a transition. We

divided each response into chunks of size 1K in expectation [120], or a minimum of 20

chunks for small requests.

Our measurements indicate that 50% of all transitions differ in at least 30% of their

chunks, and about 13% differ in all of their chunks. Interestingly, the edit distance of these

transitions was much smaller: we determined that 43% of all transitions differ by a single

contiguous insertion, deletion, or replacement of chunks, while preserving at least half or

no more than doubling the number of original chunks. By studying transitions with low

edit distance, we can identify sources of dynamism that may be refactorable. For example,

a preliminary analysis of around 4,000 of these transitions (selected randomly) revealed

that over half of them were caused by load-balancing directives (e.g., a number appended

to an image server name) and random identifiers (e.g., client IDs) placed in embedded links

or parameters to JavaScript functions. In fact, most of the top-level pages we downloaded,

including seemingly static pages like www.google.com, were highly dynamic for this

exact reason. A more in-depth analysis is slated for future work.

3.7.3 Site-Based Analysis

A “site” represents a physical datacenter or cluster of machines in the same geographic

location. A single site may host large services or multiple services. Having demonstrated
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Figure 3.16: A CDF of URLs over transition ratios for all sites for which CIDR data was
available.

Prophecy’s ability to scale out in such environments, we now study the potential benefit of

deploying Prophecy at the sites in our collected data. To organize our data into geographic

sites, we used forward and reverse DNS lookups on each requested URL and matched the

resulting IP addresses against a CIDR prefix database. (This database, derived from data

supplied by Quova [137], included over 2 million distinct prefixes, and is thus significantly

finer-grained than those provided by RouteViews [146].) Requests that mapped to the same

CIDR prefix were considered to be part of the same site. Figure 3.16 shows an overlay of

the transition plots of each site. From the figure, a few sites serve very static data or very

dynamic data only, but most sites serve a mix of very static and very dynamic data. All but

one site (view.atdmt.com) show a clear divide between very static and very dynamic

data.

3.8 Related Work

A large body of work has focused on providing strong consistency and availability in

distributed systems. In the fail-stop model, state machine replication typically used pri-

mary copies and view change algorithms to improve performance and recover from fail-

ures [105, 130]. Quorum systems focused on tradeoffs between overlapping read and write
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sets [70, 84]. These protocols have been extended to malicious settings, both for Byzantine

fault-tolerant replicated state machines [31, 32, 107], Byzantine quorum systems [1, 114],

or some hybrid of both [43]. Modern approaches have optimized performance via vari-

ous techniques, including by separating agreement from execution [180], using optimistic

server-side speculation on correct operation [100], reducing replication costs by optimiz-

ing failure-free operation [178], and allowing concurrent execution of independent oper-

ations [101]. Prophecy’s history table is motivated by the same assumption as this last

approach—namely, that many operations/objects are independent and hence often remain

static over time.

Given the perceived cost of achieving strong consistency and a particular desire to pro-

vide “always-on” write availability, even in the face of partitions, a number of systems

opted for cheaper techniques. Several BFT replicated state machine protocols were de-

signed with weaker consistency semantics, such as BFT2F [111], which weakens lineariz-

ability to fork∗ consistency, and Zeno [159], which weakens linearizability to eventual

consistency. Several filesystems were designed in a similar vein, such as SUNDR [110]

and systems designed for disconnected [82, 97] or partially-connected operation [134].

BASE [136] explored eventual consistency with high scalability and partition tolerance;

the foil to database ACID properties. More recently, highly-scalable storage systems being

built out within datacenters have also opted for cheaper consistency techniques, including

the Google File System [69], Yahoo!’s PNUTS [41], Amazon’s Dynamo [46], Facebook’s

Cassandra [52], eBay’s storage techniques [169], or the popular approach of using Mem-

cached [59] with a backend relational database. These systems take this approach partly

because they view stronger consistency properties as infeasible given their performance

(throughput) costs; Prophecy argues that this tradeoff is not necessary for read-mostly

workloads.

Recently, several works have explored the use of trusted primitives to cope with Byzan-

tine behavior. A2M [34] prevents faulty nodes from lying inconsistently by using a trusted
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append-only memory primitive; TrInc [108] uses a simple trusted counter primitive to

achieve the same goal; and CheapBFT uses the same primitive as TrInc while reducing

the number of active replicas during failure-free operation. These systems require only

2f + 1 replicas to tolerate f faults, and thus they can be used with Prophecy instead of

PBFT to reduce replication costs. Chun et al. [33] introduced a lightweight BFT protocol

for multi-core single-machine environments that runs a trusted coordinator on one core,

similar in philosophy to Prophecy’s approach of extending the trusted computing base to

include the sketcher.

Prophecy is unique in its application to customer-facing Internet services and its abil-

ity to load-balance read requests across a replica group while retaining good consistency

semantics. Perhaps closest to Prophecy’s semantics is the PNUTS system [41], which

supports a load-balanced read primitive that satisfies timeline consistency (all copies of

a record share a common timeline and only move forward on that timeline). Delay-once

linearizability is strictly stronger than timeline consistency, however, because it does not

allow a client to see a copy of a record that is more stale than a copy the client has already

seen (whereas timeline consistency does).

There has been some work on using history as a consistency or security metric for par-

ticular applications. Aiyer et al. [6, 7] develop k-quorum systems that bound the staleness

of a read request to one of the last k written values. Using Prophecy with a k-quorum sys-

tem may be synergistic: Prophecy’s load-balanced reads are less costly than quorum reads,

and k-quorum systems can protect against an adversarial scheduler that attempts to hamper

Prophecy’s load balancing. The Farsite file system [5] uses historical sketches to validate

read requests, but requires a lease-based invalidation protocol to keep sketches strongly

consistent. The system modifies clients extensively and requires knowledge of causal de-

pendencies (if these constraints are ignored, then D-Prophecy can easily be modified to

achieve the same consistency as Farsite). Pretty Good BGP [93] whitelists BGP advertise-

ments whose new route to a prefix includes its previous originating AS, while other routes
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require manual inspection. ConfiDNS [135] uses both agreement and history to make DNS

resolution more robust. It requires results to be static for a number of days and agreed upon

by some number of recursive DNS resolvers. Perspectives [175] combines history and

agreement in a similar way to verify the self-signed certificates of SSH or SSL hosts on

first contact. Prophecy can be viewed as a framework that leverages history and agreement

in a general manner.

3.9 Remarks

Prophecy leverages history to improve the throughput of Internet services by expanding

the trusted middlebox between clients and a service replica group, while providing a con-

sistency model that is very promising for many applications. D-Prophecy achieves the

same benefits for more traditional fault-tolerant services. Our prototype implementations

of Prophecy and D-Prophecy easily integrate with PBFT replica groups and are demonstra-

bly useful in scale-out topologies. Performance results show that Prophecy achieves 372%

of the throughput of even a read-optimized PBFT group with 4 replicas, and scales linearly

as the number of replicas increases. Our evaluation demonstrates the need to consider a

variety of workloads, not just null workloads as typically done in the literature. Finally, our

measurement study of the Internet’s most popular websites demonstrates that a read-mostly

workload is applicable to web service scenarios.
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Chapter 4

Commensal Cuckoo: Scaling BFT by

Composing Many Groups

The Prophecy system in the previous chapter scales the performance of BFT groups on

read-mostly workloads. However, as the number of writes in the workload increases,

Prophecy’s performance benefit diminishes, and beyond a 50-50 mixture of reads and

writes, Prophecy offers no benefit at all. The problem is that every write request, and

every load-balanced read that fails and must be reissued as a replicated read, is executed by

over 2/3 of the nodes. Moreover, each node maintains a full copy of the system state. Thus

to build BFT systems at a large scale, we must partition the system into smaller groups that

operate on disjoint (or at least minimally-overlapping) partitions of the system state and

functions. Client requests are then routed to the appropriate group.

One approach, as we observed in Section 3.4, is to run multiple instances of Prophecy

in parallel, each with its own BFT group. In fact, many systems combine BFT groups

in this way, as we will later see. But this assumes that fault occurrences are perfectly

and statically distributed across the groups, i.e., every group has fewer than 1/3 faults by

assumption. Such an assumption may not be practical in some scenarios. For example, in

an open peer-to-peer system like the Vuze DHT [? ] (a million-node BitTorrent tracker),
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any machine connected to the Internet can participate, and nodes may leave and join the

system repeatedly.

More concretely, the challenge in a partitioned system subject to a Byzantine adversary

is to ensure that every group maintains less than a fixed local fraction of faulty nodes (e.g.,

1/3), despite some fixed (smaller) global fraction of faulty nodes that are controlled by the

adversary. A group fails when its fraction of faulty nodes exceeds the local threshold. The

system fails if even a single group fails, since such a group may behave arbitrarily: for

example, it may delete its portion of the system state and try to corrupt other groups. We

assume that the adversary can coordinate the faulty nodes in an arbitrary, adaptive man-

ner. In particular, it may initiate a join-leave attack [45, 49, 162], wherein it repeatedly

rejoins certain faulty nodes to the system using fresh identities [49] with the goal of com-

promising one or more groups. Such attacks pose a significant threat [45, 49, 162] and

have been launched successfully on real DHT systems [177]. We call this the secure group

partitioning problem.

Several systems [44, 96, 102, 141, 144, 173] and some proposals [143, 145] have used

multiple BFT groups for scalability, but these solutions rely on a central configuration

service to manage system-wide membership, or they maintain this information at every

node. Other systems offer better decentralization [5, 30, 88, 89, 109, 118, 121, 160], e.g.,

using a group for each directory of a file system [5], but they assume that faulty nodes are

distributed randomly or even perfectly across groups. Thus, to our knowledge, all systems

are vulnerable to join-leave attacks. For example, Rodrigues and Liskov [142, 144] build

a DHT by mapping nodes and data to a virtual [0, 1) space using consistent hashing [91],

and form BFT groups out of contiguous sets of four nodes, each group tolerating one fault.

Even without a join-leave attack, such a perfect distribution of faults cannot be achieved

even if faults occur uniformly randomly: a standard balls-in-bins argument shows that some

group will have ω(1) faulty nodes with high probability.
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Some theoretical constructions of fault-tolerant DHTs assume that nodes fail randomly

(independent of their location) [86, 122], but these assumptions break down in the presence

of adaptive join-leave attacks. Recent years have seen constructions that can provably

withstand join-leave attacks [18, 19, 20, 55, 149]. Of these, the most promising scheme

for DHTs that does not keep the system in a hyperactive state—e.g., by forcing nodes

to rejoin the system periodically [18]—is the scheme of Awerbuch and Scheideler [19].

They propose a simple, event-based scheme called the cuckoo rule: when a node wishes

to join the system, place it at a random location x ∈ [0, 1) and move, or cuckoo, all nodes

in a constant-sized interval surrounding x to new random locations in (0, 1]. Using this

rule, they prove that groups of size O(log n) remain correct for any polynomial number

of rounds in n, where n is the number of correct nodes in the system. However, as we

will show, the constants in their scheme are prohibitively large, so either groups must be

very large (hundreds of nodes) or the global fraction of faults must be trivially low for the

system to survive a reasonable number of rounds.

Results and outline

In this chapter, we propose a scheme called commensal cuckoo that significantly improves

the performance of the (parasitic) cuckoo rule. We demonstrate that the cuckoo rule fails

largely due to “bad luck”: bad events that occur with non-negligible probability, like con-

secutive malicious joins to the same group. Thus, our approach is to partially derandomize

the cuckoo rule, which we do in two ways. First, we ensure that the number of nodes

cuckood during a join deterministically matches the expected amount. Second, we allow

groups to vet the join process, that is, reject join attempts if they have not received suffi-

ciently many new nodes since the last join. Join vetting has surprisingly deeper benefits: it

naturally addresses a known [19, 21] vulnerability in the cuckoo rule and suggests the pos-

sibility of allowing faulty nodes to choose their join location. Using commensal cuckoo, we
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are able to maintain smaller groups of 64 nodes (as opposed to hundreds), while tolerating

a global fraction of faulty nodes between 32x–41x larger than that of the cuckoo rule.

We define the secure group partitioning problem in §4.1 and examine the cuckoo rule

in §4.2, using simulations to understand why it fails. We introduce our improved scheme,

the commensal cuckoo rule, in §4.3. Commensal cuckoo is just one (critical) piece of

a larger set of mechanisms needed to solve the secure group partitioning problem. We

review these complementary problems in §4.4, as well as our proposed solutions. We

conclude in §4.5.

4.1 Problem definition

Let N = n + εn be the size of the system, such that n nodes are correct and εn nodes are

faulty. The global fraction of faulty nodes is thus ε/(1 + ε). Initially, the n correct nodes

are mapped to random locations in [0, 1]. Next, the adversary joins the εn faulty nodes

one by one. Finally, the adversary begins executing rejoin operations (a leave followed by

a join) on whichever faulty nodes it wants, even basing its decision on the entire system

state. A round consists of a single rejoin operation. Our goal is to devise an efficient join

rule such that, with high probability (i.e., at least 1− 1/n) and for any polynomial number

of rounds, the system can be partitioned into intervals I ∈ [0, 1) that satisfy the following

conditions [19]:

• Balance condition: I contains Θ(|I| · n) nodes.

• Correctness condition: I has less than 1/3 faulty nodes.

The nodes in such an interval comprise a group. In line with our discussion above, we

assume that groups are disjoint to maximize parallelism, and each group runs a BFT pro-

tocol to perform tasks such as generate pseudorandom numbers and agree on membership

changes. In principle, the constant 1/3 can be replaced with any constant less than or equal

to 1/2, a flexibility we exploit later.
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Figure 4.1: (Cuckoo rule) Minimum group size (in powers of 2) needed to tolerate different
ε for 100,000 rounds, where ε/(1 + ε) is the global fraction of faulty nodes. Groups must
be large (i.e., 100s to 1000s of nodes) to guarantee correctness.

Our discussion below abstracts away several lower-level mechanisms required to im-

plement a secure group partitioning algorithm, such as a mechanism for constructing and

routing verifiable messages between groups. Since the algorithms we present can be un-

derstood without these mechanisms, we postpone their discussion to §4.4.

4.2 Cuckoo Rule

Awerbuch and Scheideler [19] propose the following simple join rule. For a fixed k > 0,

define a k-region to be a region in [0, 1) of size k/n that starts at an integer multiple of k/n.

For technical (divisibility) reasons, k-regions are rounded from above to the closest value

1/2r where r is an integer.

Cuckoo rule. When a new node wants to join the system, place it at a random x ∈ [0, 1)
and move (cuckoo) all nodes in the unique k-region containing x to random locations in
[0, 1).

We call the new node’s join a primary join and the subsequent joins of the cuckood

nodes secondary joins. Awerbuch and Scheideler prove that in steady state, provided ε <

1/2 − 1/k, all regions of size O(log n)/n have O(log n) nodes (i.e., they are balanced)
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Figure 4.2: (Cuckoo rule) Number of rounds the system maintained correctness with an
average group size of 64 nodes, for varied global fractions of faulty nodes. Simulation was
halted after 100,000 rounds. The global faulty fraction is trivially low and system longevity
drops sharply, for all N .

of which less than 1/3 are faulty (i.e., they are correct), with high probability, for any

polynomial number of rounds. Thus these intervals are the groups. Their analysis further

implies that the best adversarial strategy is to target a single group and repeatedly rejoin

faulty nodes that lie outside the group.

In practice, the random location of the primary join is generated by the group initially

contacted by the new node, and the random locations of the secondary joins are generated

by the group that owns the primary join location (where the new node ultimately joins).

Cuckoo rule analysis. We first observe that the optimal strategy of the adversary is

actually different from that claimed in [19]—namely, target a single group, and have nodes

not in that group rejoin—once constant factors are taken into account. At the beginning of

each round, the adversary should sort all groups by increasing fraction of faulty nodes, and

should have a faulty node belonging to the group with the lowest fraction attempt to rejoin

the system. This Markovian strategy always maintains the largest and most promising

number of targeted groups.

Using this modified adversarial strategy, we simulated the cuckoo rule to investigate the

different constant factors involved. These factors arise from the use of Chernoff bounds in
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Figure 4.3: Evolution of a group that fails for the cuckoo rule (top) vs. commensal cuckoo
rule (bottom). Failure occurs when the group’s faulty fraction exceeds 1/3, shown as a
horizontal line. Primary joins (the black crosses) are often to blame for the group’s ultimate
failure, but their effect is more gradual for the commensal cuckoo rule, which does not fail
until round 3158. For both rules, the maximum faulty fraction per group is much higher
than the average, and the initial maximum fraction group was not the final one that failed.

the analysis, as well as union bounds over all groups and all rounds for which the balance

and correctness conditions must hold. In our experiments, we scaled k to reflect the total

number of nodes N instead of n, so that the expected number of total nodes cuckood from

a k-region is k. For simplicity, we refer to this scaled quantity as k itself.

Figure 4.1 shows the minimum (average) group size required for the system to remain

correct for 100,000 rounds in three consecutive trials, optimizing over k, for different values

of N and ε (recall that ε/(1 + ε) is the global fraction of faulty nodes). We increased the

group size in powers of 2 to avoid divisibility issues. As the figure shows, this size is in the

hundreds of nodes for any reasonable global faulty fraction. Even when ε/(1 + ε) = 0.01,
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the minimum group size is 256 for N ≥ 2048. This situation is degenerate, actually,

because the total number of faulty nodes in the system is itself less than 1/3 of the average

group size. This means that even if all faulty nodes were collocated in the same group, the

group would still be correct (in expectation), unless it was much smaller than the average

group size. The fact that the system still fails suggests that the cuckoo rule causes groups

to become highly imbalanced. In fact, the optimal value of k in these cases was always less

than 2, indicating that the system preferred to cuckoo very few nodes.

To determine what it would take to support groups of size 64—perhaps a performance

upper-bound for any replicated system—we ran the simulation with this constraint and

optimized over ε and k. Figure 4.2 shows the results, where each simulation is an average

of three trials running for a maximum of 100,000 rounds, at which point the system was

deemed non-faulty. For N ≥ 1024, ε/(1 + ε) < 0.015 to achieve a non-faulty result,

dropping to 0.002 when N = 8192. Note that some degradation in this threshold is to be

expected as N increases, because the fixed average group size becomes smaller relative

to the global number of faulty nodes εn. However, all of the thresholds (for different N )

still fall into the degenerate realm described above. They are also sharp, as the number of

rounds to failure drops dramatically when ε is increased (note the log scale). Our goal is to

increase these thresholds.

In order to achieve this increase, we gain a deeper understanding of what goes wrong by

examining the evolution of a group that eventually fails. Figure 4.3 (left) plots the fraction

of faulty nodes in such a group over time, for a system with N = 8192, ε = 0.05, k = 4,

and an average group size of 64 as before. We immediately see two problems. First, each

primary join (indicated by a black cross) causes the faulty fraction of the group to jump.

Although the fraction reduces slightly due to churn in the system caused by joins in other

groups, it does not fully recover to its original level. Second, some primary joins occur

very close together—the probability of such bad events is non-negligible, and can be easily

calculated. These joins have the worst impact. In contrast, during the period from round
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Figure 4.4: Number of cuckood nodes during joins for the cuckoo rule (top) vs. commensal
cuckoo rule (bottom). The expected value is 4. The cuckoo rule yields higher variance in
the number of evicted nodes, likely due to increasing non-uniformity of nodes across the
keyspace, as k-regions are evicted en masse.

507 to 858, there are relatively few primary joins, giving the group enough time to reduce

its faulty fraction.

To investigate the first problem, Figure 4.4 (left) shows the number of nodes cuckood

in each round. Although this number starts out concentrated around its expected value of

k = 4, it spreads out over time, ranging from 0 to as high as 18. This indicates that k-

regions are getting increasingly “clumpy”, likely due to the fact that primary joins empty

out an entire k-region. To investigate the second problem, Figure 4.5 plots a CDF of the

number of secondary joins in between successive primary joins to the failed group. This

number is also expected to be k = 4, since an interval of size i is joined every 1/i rounds

in expectation, during which time k/i other nodes are expected to be cuckood, of which
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Figure 4.5: Number of secondary joins between successive joins for the cuckoo rule (CR)
vs. commensal cuckoo rule (CCR). Commensal cuckoo leads to results more tightly con-
centrated around the expected value of 4, shown as a vertical line.

(i/1)(k/i) = k are expected to land in the interval. However, the actual number shows

enough variance to be problematic, with a considerable fraction at 0, and values as high as

16 for the failed group and 37 over all groups.

4.3 Commensal Cuckoo Rule

The two problems discovered in §4.2 can be remedied in two natural ways. First, to make

cuckoos more consistently sized and evade the “clumpiness” problem, we cuckoo k nodes

chosen randomly from the group being joined, instead of all nodes in the k-region sur-

rounding the join location. However, using k for every cuckoo actually makes things worse,

because a group that is light (i.e., has less than the average group size g), will continue to

become lighter, eventually allowing the adversary to compromise it. Thus, to ensure that

lighter groups cuckoo less and heavier groups cuckoo more, we scale k by the group’s cur-

rent size relative to g. Most prior work (e.g., [18, 55]) calculates g based on an estimate

of n and a target group size c log n for some a priori fixed c > 0. However, g can also

be chosen at the onset of the system (as in most of our experiments), not as a function of
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n, to reflect the scalability of the higher-level application running in each group. Such an

approach is practical if g is large enough for the maximum n ever expected to be seen.

Second, to address the problem of inconsistently spaced primary joins, we allow a group

to vet join attempts by refusing them if it has not received a sufficient number of secondary

joins since the last primary join. This allows the group to replenish the nodes it lost during

the last cuckoo. Together, these techniques derandomize crucial aspects of the cuckoo rule,

yielding our new rule:

Commensal cuckoo rule. When a new node wants to join the system, pick a random
x ∈ [0, 1). If the group containing x has not received at least k − 1 secondary joins since
its last primary join, start over with a new random x ∈ [0, 1). Otherwise, place the node at
x and move (cuckoo) kg′/g random nodes in the group to random locations in [0, 1), where
g′ is the group’s current size and g is the average group size.

Interestingly, these two modifications are synergistic. By ensuring the expected

(weighted) number of nodes are cuckood during each primary join, commensal cuckooing

ensures a sufficient number of secondary joins, which allows a group to wait for enough

of them before accepting another primary join. At the same time, by vetting repeated joins

attempts, the adversary is forced to join distinct groups, which roughly speaking ensures

that all groups are joined, resulting in
∑
kg′/g = (k/g)

∑
g′ = Nk/g total secondary

joins. Thus, if groups wait for slightly less than k secondary joins between primary joins,

a joining node need only try O(1) times before finding a group that accepts it. Cuckooing

a weighted number of nodes but waiting for a fixed number of secondary joins has another

benefit: it pushes the group’s size towards the average size g.

We omit a detailed analysis of the commensal cuckoo rule due to space constraints.

4.3.1 Comparative evaluation

Figures 4.4 (right) and 4.5 show the number of cuckood nodes and the number of secondary

joins between successive primary joins, respectively, using the commensal cuckoo rule.

Compared to the results of the cuckoo rule, these numbers are tightly concentrated around
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their expected values of 4. The combined effect is seen in Figure 4.3 (right), where the

group that ultimately fails does so in a more gradual and consistent manner than with the

cuckoo rule. More importantly, commensal cuckoo is able to benefit from larger values

of k: using k = 6 instead of 4 in Figure 4.3 results in no group failures for over 100,000

rounds.

Table 4.1 shows the largest value of ε/(1 + ε) achieved by each scheme, optimizing

over k, that allows a system with an average group size of 64 to remain correct for at

least 100,000 rounds in three consecutive trials. Commensal cuckoo tolerates a global

faulty fraction over 32x larger than that of the cuckoo rule while maintaining less than

1/3 faulty nodes in each group. Since commensal cuckoo also improves with increasing

k, we enforced an upper bound of k = 12; this was sufficient to scale performance with

increasing N . The cuckoo rule does not improve by increasing k when the average group

size is small, as we discussed in §4.2. In general, commensal cuckoo evicts more nodes

per join than the cuckoo rule, but this eviction is needed to redistribute faulty nodes in the

system.

Interestingly, commensal cuckoo’s technique of join vetting has deeper benefits than

those outlined above. As presented, the cuckoo rule in §4.2 has a known vulnerability [19,

21]: when joining a faulty node, the adversary may repeatedly cause the random number

generation for the primary join location to fail—causing no cuckoos to occur—until it

receives a join location of its liking. Awerbuch and Scheideler address this problem [21]

by spawning artificial cuckoos whenever a join attempt fails. Join vetting, on the other

hand, naturally evades this vulnerability, because regardless of the adversary’s behavior, a

group will not accept a primary join unless sufficient secondary joins have occurred.

The very property that saved us above, however, opens the door to a new type of liveness

attack: if too few secondary joins occur in every group, the system might deadlock because

it might be the case that no group accepts a join. The adversary can implement such an

attack, for example, by having faulty nodes ignore secondary join operations (and leave
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<1/3 faulty per group <1/2 faulty per group

N CR CCR Gain CR CCR Gain

512 0.0284 0.0739 2.60x 0.0534 0.1854 3.47x

1024 0.0144 0.0757 5.25x 0.0293 0.1759 6.00x

2048 0.0080 0.0695 8.70x 0.0144 0.1803 12.5x

4096 0.0036 0.0693 19.0x 0.0080 0.1647 20.6x

8192 0.0020 0.0651 32.4x 0.0040 0.1660 41.4x

Table 4.1: Maximum ε/(1+ε) of the cuckoo rule (CR) vs. commensal cuckoo rule (CCR),
in order for groups of average size 64 to remain correct for at least 100,000 rounds.

the system instead). However, we can protect against this attack in much the same way

Awerbuch and Scheideler protected against failed join attempts above. Namely, the group

that issues a secondary join of a node can inform the group containing the secondary join

location, so the latter group can increment its count of secondary joins even if the node

does not arrive within a given time frame. (We assume correct nodes arrive within this time

frame.) If the node attempts to join the group after this point, it will have to do so as a

primary join. Section §4.4 discusses techniques for dealing with groups that become too

light, e.g., as a result of these “no-shows”.

The power of join vetting suggests the following potential modification to the commen-

sal cuckoo rule: allow faulty nodes to attempt a primary join at any location, not just a

random one. We conjecture that commensal cuckoo with this modification remains secure.

4.3.2 Higher fault thresholds

Table 4.1 also lists the largest ε/(1+ε) achieved when less than 1/2 of the nodes in a group

are allowed to be faulty. These results are significantly better: commensal cuckoo tolerates

a global faulty fraction over 41x larger than that of the cuckoo rule. An upper bound of k =

8 was sufficient to scale this performance with increasing N . Several techniques exist for

improving the resiliency of BFT protocols to 1/2, such as using a broadcast channel [139]

which can be implemented using trusted primitives [34, 108], or separating the thresholds
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of consistency and availability [106]. We discuss the first approach in detail in Chapter 5.

The latter approach allows a group to remain correct as long as fewer than 1/2 of its nodes

are faulty, even though it may become unavailable before that. This means that a correct

group may become unresponsive, but we can mitigate this occurrence by leveraging the

other groups in the system, e.g., as backups or as sources of replacement nodes.

4.4 Towards a complete solution

Commensal cuckoo relies on several lower-level mechanisms that we have assumed in

previous sections. We briefly discuss some of those mechanisms here.

Secure routing. In order to send messages between the groups involved in a join oper-

ation, as well as to process client requests that may arrive at any group, we need a mecha-

nism for routing messages. The cuckoo rule [19] uses a routing scheme based on de Bruijn

graphs that requires O(log n) hops and O(log3 n) total messages. Recent work [147, 181]

reduces the latter overhead to O(log n) messages in expectation. One might even combine

these ideas with O(1)-hop DHT constructions [75] to reduce both the number of hops and

messages, at the cost of increased per-group state.

Group authentication. A group must be able to verify a message it receives even

if it has no knowledge of the sending group’s membership. The cuckoo rule relies on

all-to-all connectivity between adjacent groups along a routing path to authenticate mes-

sages. However, cryptographic techniques can significantly improve the performance and

flexibility of authentication in the DHT [181]. In particular, threshold signatures [158] and

distributed key generation [94] can be used to assign a public/private key pair to each group

that remains constant despite changes in the group’s membership. Specifically, the g group

members use a (t, g)-threshold signature scheme to cooperatively sign a message with their

private key shares, despite up to t faulty nodes. When the group’s membership changes, a

new set of key shares corresponding to the same public/private key pair is generated and
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distributed. The new shares reveal no additional information to faulty nodes than their old

shares, even in combination.

Bootstrapping and heavy churn. Our analysis of the cuckoo and commensal cuckoo

rules assumes the system is in steady state. However, protocols to bootstrap the system

and handle heavy churn are also needed. Prior fault-tolerant DHTs describe such proto-

cols [18, 55], but they use groups that overlap and are based on the current (estimated)

value of n. Thus, all groups necessarily change if n changes by a sufficiently large amount.

Our scheme supports an alternative approach that chooses a target group size g at the onset

of the system, based on the scalability of the intra-group protocol, as discussed in §4.3.

This enables a bootstrapping protocol that creates an initial group spanning the entire [0, 1)

interval and uses split and merge operations to divide a region or merge two regions, re-

spectively, if they get too heavy or too light. Such a protocol is simpler when n is small,

and it localizes the effect of increasing n. For the bootstrapping protocol to work, we must

assume that the number of faulty nodes is at most εn for all values of n.

Other attacks. Our fault model currently allows the adversary to control the behavior

of only faulty nodes. A different type of attack is one of denial-of-service (DoS), in which

the adversary forces a correct node to leave the system, e.g., by overwhelming it with

spurious traffic. Awerbuch and Scheideler propose an extension [20] to the cuckoo rule

that withstands such an attack; commensal cuckoo is compatible with this extension, and

we believe some of the ideas presented in this chapter can be applied to the extended rule

as well.

The adversary may also launch a DoS attack on the data layer of the DHT, for example

by crafting a series of insert or lookup requests that target a particular region or node.

Awerbuch and Scheideler handle such attacks by proactively replicating data items across

groups [19]. A reactive approach may also be practical and more efficient. This is because,

unlike with join-leave attacks, it is possible to detect when a data-layer attack occurs by
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measuring the current request load. The system could use this information to adaptively

replicate data items on-the-fly.

4.5 Remarks

Commensal cuckoo is a practical scheme for partitioning a large-scale system into many

small groups that remain correct despite adversarial join-leave attacks. By carefully man-

aging when it is acceptable for new nodes to join groups, as well as balancing which exist-

ing nodes are evicted by such joins, commensal cuckoo can support significantly smaller

group sizes and a higher fraction of faulty nodes than the state-of-the-art, the cuckoo rule.

Commensal cuckoo relies on several important mechanisms to solve the secure group par-

titioning problem. In our future work, we plan to design protocols for these mechanisms

along the lines of §4.4.
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Chapter 5

Partial broadcast: Scaling BFT by

Tolerating More Faults

Both the Prophecy system (Chapter 3) and the commensal cuckoo algorithm (Chapter 4)

experience significant benefits if the fault resilience of a BFT group can be increased. In

both cases, the cost of replication is reduced, which improves the performance of replicated

requests in each group. In the case of commensal cuckoo, it also dramatically increases the

number of global faults that can be tolerated across all groups (Table 4.1). This chapter

explores how adding broadcast channels to the communication model can increase the

resilience of a BFT group.

It is instructive to take a step back and ask where the requirement of fewer than 1/3

faulty nodes comes from. All BFT protocols have, at their core, a solution to the Byzan-

tine agreement problem: a set of n processors, each with an initial value and any f of

whom may be arbitrarily faulty, must reach agreement on a value proposed by one of the

correct processors.1 Lamport, Shostak, and Pease showed in 1982 that in the standard com-

munication model of a complete synchronous network of pairwise authenticated channels,

1 This variant of the problem is called consensus. The variant where only a single processor has an initial
value is called reliable broadcast. Consensus implies reliable broadcast, but the reverse is only true if faulty
processors are in the minority, i.e., n > 2f .
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Byzantine agreement is possible if and only if n > 3f [107]. Subsequent work showed that

the n > 3f bound is remarkably robust to changes in the underlying communication and

computation model [25, 50, 92].

A closer inspection of these results reveals that the fundamental reason for requiring

n > 3f processors is that faulty processors can equivocate, i.e.,, say different things to

different processors. For instance, in a synchronous system with 3 processors, a single

faulty processor can consistently send different messages to the two correct processors

and make them agree to different values [107]. In asynchronous systems, the adversary’s

ability to delay messages (in addition to its ability to equivocate) can confound the correct

processors even if cryptography is used [50]. Thus, several researchers have considered

using stronger communication primitives such as broadcast channels. Broadcast channels

mitigate equivocation by ensuring that a message appears identically at all recipients on the

channel. In the synchronous model, Rabin and Ben-Or [139] introduced a global broadcast

channel and achieved Byzantine agreement (in fact, any multiparty protocol) if and only

if n > 2f . Fitzi and Maurer [57] added Θ(n3) partial broadcast channels among every

set of three processors to achieve Byzantine agreement if and only if n > 2f . Ravikant et

al. [140] reduced the number of 3-processor channels required for n = 2f + h, where h is

an integer in [1..f ], assuming sufficient connectivity in the underlying network. However,

they get asymptotically tight results only for the same case h = 1 as Fitzi and Maurer

do. Finally, Considine et al. [40] generalized partial broadcast to sets of b > 3 processors,

achieving reliable broadcast (but not consensus) when n > f(b+ 1)/(b− 1).

The above overview of previous work illustrates that the gap between n > 3f and

n > 2f represents a fundamental price of equivocation. In this chapter, we give a complete

and tight characterization of this price, by studying the relationship between the fraction

of processor 3-tuples that are prevented from equivocating, modeled as 3-processor partial

broadcast channels, and the fault resilience required to solve Byzantine agreement. Specif-

ically, we study the use, application, and algorithmic implications of 3-processor broadcast
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channels to Byzantine agreement. We view these channels as 3-hyperedges in the proces-

sor graph. Whereas prior work has almost exclusively focused on resilience n > 2f , we

show that the range n ≥ 2f + h, where h ∈ [1..f ] allows for significantly more efficient

constructions by requiring asymptotically fewer than
(
n
3

)
= Θ(n3) 3-hyperedges, assuming

standard requirements on the connectivity of the underlying graph [113, 140]. We derive

asymptotically tight bounds for all h ∈ [1..f ]. Interestingly, this problem turns out to be

a natural generalization of a well-studied hypergraph coloring problem. Although prior

theoretical work has been limited to the synchronous model, we show how to apply our

results to various other models as well, such as the partially synchronous model used by

the BFT groups in the previous chapters [31].

The motivation for studying 3-hyperedges is two-fold. First, a 3-hyperedge (x, y, z)

represents the fundamental unit of equivocation: a faulty processor x says different things

to correct processors y and z. Second, while it is possible (and likely more efficient) to

create a single or larger broadcast channel with x and the processors it has 3-hyperedges

with, the expressiveness of 3-hyperedges may be useful in practice. For example, if hy-

peredges (x, y, z) and (x, y, w) exist but not (x, z, w), then a protocol may require x to use

partial broadcast when sending a message to y and z or to y and w, but not when sending a

message to z and w.

Results and outline

Let H be a 3-uniform hypergraph on n vertices (representing processors), where each 3-

hyperedge represents a partial broadcast channel. Our main result is an asymptotically

tight characterization of the necessary and sufficient number of 3-hyperedges required to

achieve Byzantine agreement despite f faulty processors, for all n ≥ 2f + h, h a positive

integer in [1..f ]. h is thus the parameter that interpolates between the well-studied cases

n > 2f and n > 3f . As in prior work [140], we assume the underlying graph is at least
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(2f + 1)-connected. Let Tn(h) denote the minimum m such that there exists an H with m

3-hyperedges that achieves Byzantine agreement. We show:

• Tn(h(n)) = Θ
(

n3

h(n)2

)
For comparison, the only other existing work that gives results on this trade-off is by

Ravikant et al. [140], who obtain an upper bound of Tn(h(n)) = O((f − h(n) + 1)f 2) =

O((n−3h(n)+1)n2), which is up to a factor of Θ(n2) off the correct bound, depending on

h(n). They also give a near-tight bound for the case n = 2f + 1, but this result is asymp-

totically identical to the trivial solution of including all 3-hyperedges. Their constructions

are elementary and use a clever and simple recursive structure, though the analysis is non-

trivial. We improve on their results by using the power of expander graphs, building hy-

pergraphs out of existing expander constructions in order to exploit their high connectivity.

Although we can prove our bound on Tn(h(n)) using a simple probabilistic method argu-

ment, in this work we are concerned with explicit constructions. A strong motivation for

this goal is given by the following result.

Theorem 5.0.1. Given a 3-uniform hypergraph H = (V,E) with |V | = n, it is co-NP-

complete to decide, for any n = 2f + h, h ∈ [1..f ], whether Byzantine agreement is

possible in H despite f faulty processors.

The proof of this theorem, a reduction from balanced bipartite independent set, can be

found in Section 5.5. Since it is intractable to detect the possibility of Byzantine agreement

in general, it is possible that explicit construction is the only reliable means of exploiting

the efficiency gains of sparse fault-tolerant hypergraphs.

Our final result gives an exact bound for Un(h(n)), the minimum m such that any H

with m hyperedges achieves Byzantine agreement:

• Un(h(n)) =
(
n
3

)
− n−h(n)

2
· h(n)2 + 1

Section 5 discusses the application of our results to upper and lower bounds for Byzan-

tine agreement in various models. Section 5.1 formally defines the problem and proves an
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equivalence to a more natural combinatorial problem, which we use in the remainder of

the chapter. Section 5.2 proves the lower bound on Tn(h(n)) using a graph projection and

counting arguments. Section 5.3 describes explicit constructions of H that match the upper

bound on Tn(h(n)); we rely on a “lifting” procedure that converts existing constructions

of Ramanujan graphs into hypergraphs with expander-like properties. Section 5.4 proves

the bound on Un(h(n)) using multivariate minimization techniques. Section 5.6 concludes

with some open problems.

Algorithms and applications

The results in this chapter naturally give rise to new upper and lower bounds for Byzantine

agreement in various models (augmented with partial broadcast channels). Specifically,

our results apply to any proof that relies on the following intersection property between

quorums of processors (made precise in Section 5.1), which we call f -tolerance: Consider

a quorum of size n − f ; although n − f is the number of correct processors, a quorum of

this size may still contain up to f faulty processors. Given two such quorums, the correct

processors of one quorum may disagree with those of the other because faulty processors

common to both may equivocate, unless their intersection contains at least one correct

processor: 2(n − f) − n > f =⇒ n > 3f . The key insight is that we get the same

guarantee by replacing the correct processor x with a 3-hyperedge (x, y, z) such that y

and z are correct processors in distinct quorums. Even if x is faulty, hyperedge (x, y, z)

prevents it from equivocating to y and z and making their quorums agree on inconsistent

values.

Ravikant et al. [140] prove that Byzantine agreement is possible in the synchronous

model if and only if a set of conditions which includes f -tolerance holds. The remaining

conditions are the standard connectivity requirements of the underlying graph, which we

also assume in our setting. Thus Theorem 1 in their paper implies lower and upper bounds

for Byzantine agreement in our setting as well. However, the hypergraphs they construct
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are suboptimal: they provide a tight bound only for n = 2f + 1 [140, Sections 5.2 and 5.3]

and loose upper bounds for any n = 2f + h, h ∈ [1..f ] [140, Section 5.1]. By replacing

their construction with ours from Section 5.3, we reduce the number of 3-hyperedges and

the message complexity of their protocol by up to a factor of Θ(n2).

In the asynchronous model, we can adapt the lower bound of Bracha and Toueg [25] to

show that f -tolerance is necessary for Byzantine agreement. The proof is essentially the

same as Theorem 3 in their paper, except that instead of any two (n− f)-sized quorums, a

pair of quorums that violates f -tolerance must be used. We can obtain upper bounds for any

n = 2f +h by modifying the protocols of Bracha and Toueg [25, Figure 2] or Bracha [24],

for example. We do this by overlaying our hypergraph construction onto the processor

graph and requiring x to use hyperedge (x, y, z), if it exists, when sending a message to both

y and z. Although this reduces the efficiency of the protocol, the relevant correctness proofs

([25, Theorem 4] and [24, Sections 3.2 and 6]) are readily adapted because they rely on f -

tolerance. Similarly, there has been tremendous recent interest in the systems community

on designing efficient Byzantine agreement protocols in a partially synchronous model with

cryptography (e.g.,, [10, 43, 73, 90, 100]). This model is subject to Bracha and Toueg’s

lower bound [25], and essentially all upper bounds are derivatives of Castro and Liskov’s

protocol [29], which relies on f -tolerance for correctness [29, Invariants A.1.4 and A.1.5].

Therefore we can improve the resiliency of these protocols as above. This reduces their

replication costs, which is often cited as an obstacle to practical deployment [90, 157, 178,

180].

There are several ways to implement 3-hyperedges in practice. One way is to use multi-

cast groups; another is to use a shared cyptographic key; another is to use trusted primitives

like an append-only log [34] or a trusted counter [108]. Depending on the implementation,

it may not always be possible to force a processor x to use a 3-hyperedge a priori, but it

is always possible for y and z to generate a proof of misbehavior (POM) [8] against x a

posteriori if x violates the protocol. Several systems [8, 77, 100] use POMs in this manner.
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Finally, if each 3-hyperedge is allowed to fail with some probability [57], our hypergraph

construction reduces the probability of failure because there are fewer 3-hyperedges to

union bound over.

Other related work

If cryptography is used, consensus is possible in the synchronous model when n > 2f [50,

107]. Whereas consensus cannot be solved in the asynchronous model [56], the n > 3f

bound applies in this model when using randomized algorithms that terminate almost

surely [25] or with probability 1− ε for fixed ε > 0 [92], even if cryptography is used [50].

The same bound also applies in partially synchronous models [50].

Partial broadcast was first considered by Franklin, Wright, and Yung [62, 63] in the

context of secure point-to-point communication over an incomplete network. Stronger

primitives based on trusted subsystems and cryptography have also been used, such as weak

sequenced broadcast [2] to solve weak Byzantine agreement in the asynchronous model,

and append-only log [34] and trusted incrementer [108] to solve Byzantine agreement in a

partially synchronous model. These primitives achieve resilience n > 2f .

We mention two other lines of work that are related to ours. The first considers hybrid

fault models that combine Byzantine and crash failures (e.g.,, [66, 106]), in which optimal

bounds on resilience [66, 106] depend on the number of faults of each type. The second

considers a non-threshold adversary characterized by an adversary structure (e.g.,, [12,

58]), or a monotone set of subsets of processors any one of which may be faulty. It is

known [58] that Byzantine agreement is possible if and only if no three sets cover all

processors.
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5.1 Problem Definition and an Equivalence

We model a system of n processors as a 3-uniform, n-vertex hypergraph H = (V,E)

where each edge (x, y, z) ∈ E represents a partial broadcast channel. For a fixed integer

f , we analyze the conditions under which Byzantine agreement is possible in H , when up

to f processors are faulty. As in prior work [140], we assume the underlying graph is at

least (2f + 1)-connected (e.g.,, via a complete set of 2-hyperedges (edges) connecting the

processors). As explained in Section 5, this problem is equivalent to ensuring that in the

intersection of any two size-(n − f) quorums S and T , there exists a node z that cannot

equivocate between correct nodes x ∈ S, y ∈ T . We assume w.l.o.g. that S ∩ T contains

only faulty nodes, because a correct node in S ∩ T would prevent equivocation. This

reduces the possibility of Byzantine agreement to the following property of H .

Definition 1. A 3-uniform hypergraph H = (V,E) with |V | = n vertices is f -tolerant if

∀ S, T, Z ⊂ V and S 6= T satisfying the conditions below, ∃ x ∈ S\Z, y ∈ T \Z, z ∈ S∩T

for which (x, y, z) ∈ E:

• |Z| ≤ f,

• |S|, |T | ≥ n− f,

• S ∩ T ⊆ Z ⊂ S ∪ T .

The property as defined is somewhat unwieldy, because the sets S, T , andZ can overlap

in a variety of ways. To simplify our problem statement, we introduce a new property

on disjoint sets and show its equivalence. Consider the sets A = S \ Z, B = T \ Z,

and C = S ∩ T ; A, B, and C are disjoint because S ∩ T ⊆ Z. A and B contain the

correct nodes in quorums S and T , respectively, and C contains the faulty nodes in their

intersection. (There may be other faulty nodes in the two quorums, limiting the size of A

and B, but only in sum.) We will shortly redefine f -tolerance in terms of the following

notion.
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Definition 2. A 3-uniform hypergraph H = (V,E) with |V | = n vertices is h-disjoint if

for all disjoint A,B,C ⊂ V satisfying the conditions below, ∃ x ∈ A, y ∈ B, z ∈ C for

which (x, y, z) ∈ E:

• |A|, |B|, |C| ≥ h,

• |A|+ |B|+ |C| ≥ n+3h
2

.

Figure 5.1 illustrates the equivalence of f -tolerance and h-disjointness. Note that al-

though A, B, and C are symmetric in the above definition, we will often distinguish them

as in Figure 5.1 for ease of exposition. The following theorem makes this equivalence

precise:

Theorem 5.1.1. Let H be a 3-uniform hypergraph on n vertices, and integer f ≥ n
3
. Then

H is f -tolerant if and only if H is (n− 2f)-disjoint.

Note that n > 3f , i.e., f < n
3
, is the trivial case of f -tolerance. For such f , all

3-uniform hypergraphs on n vertices are f -tolerant.

Proof. First we show that (n − 2f)-disjointness implies f -tolerance. Given an S, T, Z

satisfying the conditions of Definition 1, we show an A,B,C satisfying the conditions of

Definition 2 such that an edge crossing A, B, and C certifies that the same edge crosses

S \ Z, T \ Z, and S ∩ Z. Then if H is (n − 2f)-disjoint, an edge between A,B,C must

be present, so H must also be f -tolerant. Specifically, define A = S \ Z, B = T \ Z,

and C = S ∩ T . Since S ∩ T ⊆ Z, A, B, and C are disjoint. Since |Z| ≤ f , we have

|A|, |B| ≥ (n−f)−f = n−2f = h. Also, |C| = |S∩T | ≥ |S|+|T |−n ≥ 2(n−f)−n =

n− 2f = h. Finally, observe that
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|A|+ |B|+ |C| = |S \ Z|+ |T \ Z|+ |S ∩ T |

= |S|+ |T | − |S ∩ T | − Z + |S ∩ T | because S ∩ T ⊆ Z ⊂ S ∪ T

= |S|+ |T | − |Z|

≥ 2(n− f)− f =
3

2
(n− 2f) +

n

2
=
n+ 3h

2
.

Thus, (n − 2f)-disjointness implies f -tolerance. We now show the reverse direction.

Given an A,B,C satisfying the conditions of Definition 2, we show an S, T, Z satisfying

the conditions of Definition 1 with h = n − 2f , such that an edge crossing S \ Z, T \ Z,

and S ∩ T certifies that the same edge crosses A, B, and C. Then if H is f -tolerant, all the

necessary edges must be present, so H must also be (n− 2f)-disjoint.

We may assume w.l.o.g. that |A|+|B|+|C| = n+3h
2

= 2n−3f . Indeed, if |A|+|B|+|C|

is larger, we may consider subsets whose sum of sizes does equal 2n−3f ; any edge crossing

these subsets also crosses A,B,C. Let X, Y ⊆ V be two arbitrary (possibly empty) sets

such that X, Y,A,B, and C are pairwise disjoint, and

|X| = n− f − |A| − |C| |Y | = n− f − |B| − |C|.

Note that |X| is nonnegative, because

|A|+ |C| = 2n− 3f − |B| ≤ 2n− 3f − (n− 2f) = n− f.

Similarly, |Y | is nonnegative. We now verify that the total size of the five disjoint sets is at

most n, so that it is possible to pick such sets.

|A|+ |B|+ |C|+ |X|+ |Y | = 2(n− f)− |C|

≤ 2(n− f)− (n− 2f) = n
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A BC

S TZS TZ

Figure 5.1: The relationship between sets S, T, Z of f -tolerance and sets A,B,C of h-
disjointness. Shaded regions contain faulty nodes. The diagram above shows C ⊂ Z, but
in general C ⊆ Z.

Now set S = A ∪X ∪ C ∪W , T = B ∪ Y ∪ C ∪W , and Z = C ∪X ∪ Y . Then

|S| = |A|+ |X|+ |C| = n− f.

Similarly, |T | = n− f . Finally,

|Z| = |C|+ |X|+ |Y | = 2(n− f)− (|A|+ |B|+ |C|)

≤ 2(n− f)− n+ 3(n− 2f)

2

= 2n− 2f − 2n+ 3f = f

Finally, observe that S ∩T = C ⊆ Z and S ∪T = A∪B ∪C ∪X ∪Y ⊃ Z. Thus S, T, Z

satisfy the conditions of f -tolerance, henceH contains an edge crossing S\Z, T \Z, S∩T .

These sets equal A,B,C ∪W , respectively.

Thus f -tolerance implies (n− 2f)-disjointness.

h-disjointness is equivalent to the notion of (3, f)-hyper-(3f − n + 1)-connectedness

in [140]. However, we find our definition to be simpler and more clearly related to the hy-

pergraph coloring literature, discussed below. The remainder of this chapter characterizes

the hypergraphs that are h-disjoint by deriving tight bounds on the necessary and sufficient

number of edges, Tn(h) and Un(h) respectively. As we observed in Section 5, these results
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imply new upper and lower bounds for Byzantine agreement in different models. We start

with Tn(h):

Definition 3. For positive integers n and h, Tn(h) is the minimum m such that there exists

an h-disjoint 3-uniform hypergraph with m edges.

5.1.1 Related Combinatorial Problems

h-disjointness can be seen as a generalization of a rich body of work on mixed hypergraph

coloring and the upper chromatic number (see Voloshin’s book [172]). We present a single

definition that essentially captures all of these concepts. A k-heterochromatic coloring of

a hypergraph H = (V,E) is a surjection χ : V → [k] such that the restriction of χ to some

e ∈ E is injective. In other words, some edge has no repeated color. When H is k-uniform,

this is equivalent to some edge being k-chromatic, as in h-disjointness.

A primary line of research in this area sought to analyze f(n, k), the minimum number

of edges among k-heterochromatically colorable, k-uniform, n-vertex hypergraphs [15,

16, 27, 47, 171], which was recently resolved up to lower order terms by Bujtás and

Tuza [27]. The specific (earlier) result that is relevant to us is f(n, 3) = n(n−2)
3

. h-

disjointness has immediate connections to f(n, 3), but introduces the additional concepts

of balance and partiality in colorings, controlled by h. When h = 1, h-disjointness is

equivalent to the condition that there is a trichromatic edge for all small partial colorings

A,B,C, with |A|, |B|, |C| non-empty, but total size only |A|+ |B|+ |C| = (n+3)/2. This

condition is strictly stronger than requiring all complete colorings to have a trichromatic

edge, because every complete coloring contains a small partial coloring. In contrast, when

h = f = n/3, h-disjointness is equivalent to the condition that there is a trichromatic edge

for all balanced complete colorings, with |A| = |B| = |C| = n/3. This is strictly weaker

than restricting all complete colorings to have a trichromatic edge. For 1 < h < n/3 the

condition will be that all somewhat small, somewhat balanced colorings have a trichromatic

edge.
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Thus we may already state that Tn(1) ≥ f(n, 3) = n(n−2)
3

and Tn(n/3) ≤ f(n, 3) =

n(n−2)
3

. As we will see, we can in fact do much better and show a smooth transition Tn(h) =

Θ
(

n3

h(n)2

)
. In particular, this gives Tn(1) = Θ(n3), and Tn(n/3) = Θ(n), both a factor of

n from f(n, 3).

5.2 Lower Bounds

In this section, we will give asymptotically tight bounds on

Tn(h(n)) for all non-decreasing functions h(n). We will need the following notion

of a hypergraph-projection.

Definition 4. Let H = (V,E) be a 3-uniform hypergraph, and W ⊆ V a subset of its

vertices. We define the projection of H by W as the graph HW = (VW , EW ). The vertex

set VW is defined as V \W . The edge set EW has an edge (u, v) if and only if E has an

edge (u, v, w), for some w ∈ W .

This definition allows us to apply graph-theoretic theorems to hypergraphs, with po-

tentially little loss. We extend the technique of [163], [15], [48], used to prove the afor-

mentioned lower bound on k-heterochromatically colorable hypergraphs. They consider a

hypergraph H for which every k-coloring contains a k-chromatic hyperedge, and proceed

to lower bound the size of its edge set in two steps. First, they lower bound the number

of edges in the projection of H by each (k − 2)-vertex subset. Then, they upper bound

the number of possible edge-projections of each hyperedge, giving a lower bound on the

number of original hyperedges.

Our analysis is similar, with an added layer of complexity in lower bounding the num-

ber of edges in each projection. Because h(n)-disjointness implies that hyperedges cross

somewhat balanced partitions of subsets of the vertices, we cannot assume that the pro-

jections are connected graphs. For large h(n), we can only assume very weak conditions

on the projections’ connectivity. For small h(n), we can assume conditions even stronger
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than connectedness. To address this, we prove a pair of results on the number of edges in a

simple graph having appropriate connectivity conditions.

5.2.1 Linear h(n)

We first consider the regime in which h(n) is linear in n. In fact, the bound we derive below

holds for all legitimate h(n), but it is asymptotically optimal only for linear h(n). In the

subsequent subsection, we will give a bound that holds for a smaller range of h(n), but is

asymptotically optimal for sublinear h(n).

Theorem 5.2.1. For any positive h(n) that is bounded above everywhere by n
3
,

Tn(h(n)) ≥ 3

4
n(1− o(1)).

Proof. Let H = (V,E) be a 3-uniform hypergraph on n vertices. Consider a coloring

A,B,C of V , for which |C| ≤ n/3. To satisfy h(n)-disjointness, H must contain a hyper-

edge that is trichromatic in A,B,C. In particular, for any bisection (S, S̄) of V \ C, there

is an edge in HC crossing (S, S̄). We will use the following lemma.

Lemma 5.2.2. For graph G = (V,E), |V | = n, if all bisections are crossed by at least one

edge, then |E| ≥ n/2.

Proof. We will prove the contrapositive. Assume |E| < n/2. Let the connected com-

ponents of G be G1, . . . , Gt. Observe that t > n/2, because |E(Gi)| >
∑t

i=1 |V (Gi)|,

so

n/2 > |E| =
t∑
i=1

|E(Gi)| >
t∑
i=1

|V (Gi)| − 1 = n− t.

We will show how to allocate connected components to sets S, S̄, so that each side has

size exactly n/2. We treat each connected component as an integer representing its size,

then simply apply the following claim.
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Claim 5.2.3. Let A be a multiset of integers such that
∑

a∈A a = n, and t = |A| > n/2.

Then there exists S ⊆ A such that
∑

a∈S a = n/2.

This suffices to prove the lemma.

Proof of Claim 5.2.3. We prove the claim by induction over n. Let the numbers in A be

a1 ≥ a2 ≥ . . . ≥ at.

Base Case: If n = 1, the claim is vacuous, because there is no subset of A of size greater

than 1. If n = 2, the only multiset of two integers that sums to 2 is {1, 1}, so let S = {1}.

Inductive Step: We construct a set of integers A′, to which we will apply the claim

inductively. Specifically, set A′ = A ∪ {a1 − a2} \ {a1, a2}. In other words, remove the

two largest values, and replace them by their difference.

Let

n′ =
∑
a∈A′

= n− a1 − a2 + (a1 − a2) = n− 2a2 ≤ n− 2.

We have

|A′| = |A| − 1 > n/2− 1 = (n− 2)/2 ≥ n′/2,

so we may apply the claim inductively. There thus exists a set S ′ ⊆ A′, with |S ′| = n′/2

and
∑

a∈S′ a = n′/2. Either S ′ or S̄ ′ = A′\S ′ contains the ‘new’ integer a1−a2. LetQ refer

to this set. Then consider the sets Q∪{a1} \ {a1− a2}, and (A′ \Q)∪{a2}. The elements

of the former set sum to a2 +
∑

a∈Q a, and the latter set sums to a2 +
∑

a∈A′\Q a. But one of

these sets has size a2+n′/2, and the other has size a2+n′/2. Since n′ = n−2a2, one of the

two sets has size n/2. Choose this set to be S. This proves the inductive hypothesis.

To apply Lemma 5.2.2, observe that since |VC | ≥ 2n/3, we have |EC | ≥ n/3. Now we

sum over all |C| = n/3.
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∑
C⊂V
|C|=n/3

|EC | ≥
(
n

n/3

)
n/3. (5.1)

In order to turn this into a bound on |E|, we need to upper bound the extent to which

hyperedges in E are overcounted in (5.1). A hyperedge in E induces a (single) edge in EC

only if one of its vertices is in C, and two of them are not. For a given hyperedge in E,

there are three possible vertices that could be in C. Conditioned on that vertex being in C,

and the two other vertices being outside C, there are at most
(
n−3
n/3−1

)
ways to choose the

remaining vertices of C. Hence each edge in E contributes 1 to |EC | for at most 3 ·
(
n−3
n/3−1

)
distinct C.

Dividing out the maximum contribution of each edge gives our desired lowered bound:

|E| ≥

(
n
n/3

)
n/3

3 ·
(
n−3
n/3−1

)
=
n!(n)(n/3− 1)!(2n/3− 2)!

9(n− 3)!(n/3)!(2n/3)!

=
(n− 1)(n− 2)

4n/3− 2

=
3

4
n(1− o(1)).

This completes the proof of Theorem 5.2.1.

5.2.2 Sublinear h(n)

Theorem 5.2.4. For any function h(n) that is bounded above everywhere by n
6
,

Tn(h(n)) ≥ Ωn

(
n3

h(n)2

)
.

Proof. First we will need a (weakened) generalization of Lemma 5.2.2.
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Definition 5. Let G = (V,E) be a graph on n vertices. For integers a, b, we say that G is

(a, b)-crossing if for all disjoint X, Y ⊆ V such that |X| = a and |Y | = b, there is an edge

from X to Y . (That is, ∃x ∈ X, y ∈ Y : (x, y) ∈ E.)

Lemma 5.2.5. For positive i ≤ n/2, every (i, n/2)-crossing graph on n vertices has at

least n2

2(n−i)

(
n
2i
− 1
)

edges.

Proof. Note that the bound is vacuous for i = n/2, so assume i ≤ n/2 − 1. First observe

that every subset of size i must have at least n/2− i+ 1 edges leaving it. This can be seen

by contradiction: assume that some set X of size i has at most n/2 − i edges leaving it,

and hence at most n/2 − i vertices in its neighborhood. Then take as Y the set of vertices

in V \X with no edge to X . This set is of size at least n− |X| − (n/2− i) = n/2. Since

there is no edge from X to Y , the graph cannot be (i, n/2)-crossing.

We now show that the lemma in fact holds for any graph having the above boundary

property. There are
(
n
i

)
vertex sets of size i. We count at least n/2− i+1 edges out of each

set. Each edge can only be counted for the sets that it leaves; there are 2
(
n−2
i−1

)
of these,

because we must choose one of the two vertices, not choose the other one, and choose i−1

other vertices. Hence, the total number of edges is at least

(
n
i

)
2
(
n−2
i−1

)(n/2− i+ 1) =
n!(i− 1)!(n− i− 1)!

2i!(n− i)!(n− 2)!
(n/2− i+ 1)

=
n(n− 1)

2i(n− i)
(n/2− i+ 1)

=
n

2(n− i)

(
(n− 1)

( n
2i
− 1
)

+
n− 1

i

)
>

n

2(n− i)

(
(n− 1)

( n
2i
− 1
)

+
n

2i
− 1
)

=
n2

2(n− i)

( n
2i
− 1
)
.
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Now consider an h(n)-disjoint hypergraph H = (V,E) on n vertices. For convenience,

let h = h(n). Since H is h-disjoint, there must exist a hyperedge for every A,B,C satis-

fying the conditions of Definition 2. In particular, consider a C ⊆ V of size |C| = h. As

in Section 5.2.1, we will show that the graph projection of H by C has many edges.

For C ⊆ V having size |C| = h, let GC = (VC , EC) be the projection of H by C. We

bound the size of each |EC |. H is h-disjoint, so for any disjoint A,B ⊆ V \ C such that

|A|, |B| ≥ h and |A| + |B| ≥ n+3h
2
− h = n+h

2
, there exists an edge (x, y, z) ∈ E with

x ∈ A, y ∈ B, z ∈ C. In other words, graph GC has the following property: for D ⊆ VC

with |D| ≥ n+h
2

, for all A ⊆ D,B = D \A with |A|, |B| ≥ h, there is an edge in EC from

A to B.

When h = 1, the above says that each subset of VC of size n+1
2

is connected. In

generality, we would like to lower bound the number of edges in |EC |, which we can do

with Lemma 5.2.5. First let n′ = |VC |, so n′ = n−h. Observe thatGC is (h, n′/2)-crossing,

by choosing A as any set of size h, B as any disjoint set of size n′

2
, and D = A∪B, so that

|D| = |A|+ |B| = h+ n′

2
= h+ n−h

2
= n+h

2
. Hence |EC | ≥ n′2

2(n′−h)

(
n′

2h
− 1
)
.

Now we must bound the extent to which each hyperedge is overcounted. A hyperedge

can only be counted towards a given EC if exactly one of its vertices is contained in C.

There are then
(
n−3
h−1

)
ways to choose the rest of the vertices. So each hyperedge contributes

to |EC | for at most 3
(
n−3
h−1

)
values of C.

There are exactly
(
n
h

)
sets C. Hence the total number of edges in H must be at least

|E| ≥
(
n
h

)
3
(
n−3
h−1

) ( n′2

2(n′ − h)

)(
n′

2h
− 1

)
.

We have assumed that h ≤ n/6, so 3
2
≤ n

4h
and hence

n′

2h
− 1 =

n− h
2h

− 1 =
n

2h
− 3

2
≥ n

4h
.
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Similarly,
n′2

2(n′ − h)
=

(n− h)2

2(n− 2h)
≥ (n− (n/6))2

2(n− 2)
=

25n2

72(n− 2)
.

Then

|E| ≥
(
n
h

)
3
(
n−3
h−1

) ( 25n3

288h(n− 2)

)
=
n!(h− 1)!(n− 2− h)!

3h!(n− 3)!(n− h)!

(
25n3

288h(n− 2)

)
≥ 25n4

864h2(n− 2)
= Ω

(
n3

h2

)
.

This completes the proof of Theorem 5.2.4.

5.3 Upper Bounds

In this section, we give an asymptotically tight upper bound on Tn(h(n)) for almost all n,

and all 1 ≤ h(n) ≤ n/3. We do this by constructing near-Ramanujan expander graphs and

converting them to “lifted” hypergraphs with expander-like properties. Our construction

hence depends on the existence of sufficiently good expanders. These are probabilistically

guaranteed to exist for all n; recall, however, that we are primarily interested in explicit

constructions. Our result is fully constructive, with the exception that it relies on expander

graphs that can be explicitly constructed for an infinite but incomplete set of values of

n. As such, our result is only fully constructive for these n, which we do not consider

a substantial weakness. To ‘fill in the missing values’ would require advances in explicit

expander construction, which would immediately imply corresponding extensions of our

algorithm.

Much of the difficulty of our analysis comes in explicitly bounding the degree. This

is necessary to achieve an eigenvalue gap that can guarantee edges are well-distributed

enough to induce a hyperedge across all “reasonable” colorings.
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In what follows, an algebraic (n, d, λ)-expander will refer to an n-vertex, d-regular

graph whose adjacency matrix has max(|λ2|, |λn|) = λ, where λ1 ≥ . . . ≥ λn are the

matrix eigenvalues.

Definition 6. For graph G = (V,E), we define a lifted 3-uniform hypergraph L(G) =

(V,E ′) as follows. The edge set E ′ contains (x, y, z) if and only if at least two of the edges

(x, y), (y, z), and (x, z) are present in G.

In other words, for a given vertex x in G, we make hyperedges out of x and every

pair of its neighbors. We claim that for an (n, d, λ)-expander G with the right parameters,

hypergraph H = L(G) is h(n)-disjoint and has a number of edges given by:

Theorem 5.3.1. Tn(h(n)) ≤ O
(

n3

h(n)2

)
.

Proof. We construct a lifted 3-uniform hypergraph H = L(G), where G is an (n, d, λ)-

expander. Our goal is to determine the minimum λ such that H is h(n)-disjoint, as a

function of d. Then using an expander G for which an upper bound on λ is known, we can

derive a sufficient lower bound on d and hence the number of hyperedges in H .

To demonstrate h(n)-disjointness, we consider each partial 3-coloring A,B,C satis-

fying the conditions of Definition 2, and show that H contains a trichromatic edge for

each such coloring. By the construction of H , it suffices to show that some set of ver-

tices in C has edges in G to both A and B. Our main tool will be the Expander Mixing

Lemma, which states that if G = (V,E) is an (n, d, λ)-expander, then for any S, T ⊆ V ,∣∣∣|E(S, T )| − d|S|·|T |
n

∣∣∣ ≤ λ
√
|S| · |T |. Additionally, we will need the following variant of

the expander mixing lemma. We have not found this precise lemma in the literature, so we

give a proof of it below.

Lemma 5.3.2 (Expander Vertex-Boundary Lemma). Let G = (V,E) be an (n, d, λ)-

expander. Then for any sets S, T ⊆ V ,

|S ∩N(T )| ≥ |S| − 2λn

d

√
|S|
|T |

,
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where N(T ) is the set of vertices having a neighbor in T .

Proof. The intuition is that if S is large, then the subset of S with edges to T cannot be

small, because by the expander mixing lemma, a small set would have a small number of

edges to T , but S must have a large number of edges to T . Let ST = S ∩ N(T ) and

s = |S|, t = |T |, sT = |ST |. Then by definition E(S, T ) = E(ST , T ). By the expander

mixing lemma, we have:

|E(S, T )| ≥ d

n
st− λ

√
st and |E(ST , T )| ≤ d

n
sT t+ λ

√
sT t.

Combining the inequalities and solving for sT gives:

sT ≥ s− λ n

d
√
t
(
√
s+
√
sT )

≥ s− 2λn

d

√
s/t,

where the last inequality follows because sT ≤ s.

Using these tools, we prove the following main lemma:

Lemma 5.3.3. Let A,B,C ⊆ V be colors of sizes a ≤ b ≤ c, respectively, of the vertices

of H = L(G). Define F(a, b, c) =
√

cb
a

(√
a+ b−

√
b
)

. If

λ <
d

n
F(a, b, c),

then H contains a trichromatic edge.

Before proving the lemma, we show how it implies the theorem. By picking a G with

λ < d
n
F(a, b, c), we ensure that H contains a trichromatic edge for all colorings A,B,C.

But the conditions of h-disjointness do not require all colorings to have this property, and

in particular we can show:
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Claim 5.3.4. For a ≤ b ≤ c satisfying the conditions of Definition 2, F(a, b, c) ≥

k
√
h(n− h)) for a fixed constant k > 0.

Proof. We wish to show that:

√
cb

a

(√
a+ b−

√
b
)
≥ k

√
n(n− h)

for some constant k > 0. To do this, we will show that
√
c ≥ k1

√
n− h and√

b
a

(√
a+ b−

√
b
)
≥ k2

√
h for constants k1, k2 > 0, from which the theorem fol-

lows (with k = k1k2) because the LHS and RHS are non-negative in both inequalities. The

conditions a ≤ b ≤ c and a + b + c = n+3h
2

imply that c ≥ 1
3

(
n+3h

2

)
. Since both sides are

positive, we have:

√
c ≥

√
1

6
(n+ 3h) >

√
1

6
(n− h) = k1

√
n− h

for k1 =
√

1
6
.

To lower bound the
√

b
a

(√
a+ b−

√
b
)

expression, we relax the c ≥ b and a+b+c =

n+3h
2

constraints, and leave only the constraints b ≥ a and a ≥ h. Now, since a, b > 0, we

have for fixed a:

d

db

(√
b

a

(√
a+ b−

√
b
))

=
d

db

(√
b2

a
+ b− b√

a

)

=
2b
a

+ 1

2
√

b2

a
+ b
− 1√

a

=
2 + a

b

2
√
a
√

1 + a
b

− 1√
a

=
2 + a

b
− 2
√

1 + a
b

2
√
a
√

1 + a
b

=

(
1−

√
1 + a

b

)2
2
√
a
√

1 + a
b
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which is always positive, indicating that the function is monotonically increasing in b. Thus

in order to minimize the function for fixed a, we choose b as small as possible, namely

b = a. This gives:

√
b

a

(√
a+ b−

√
b
)
≥
(√

2− 1
)√

a ≥ k2
√
h(n)

for k2 =
√

2− 1. Thus the claim holds for k = k1k2 =
√
2−1√
6

.

Thus it suffices to construct a G with λ < dk
n

√
h(n− h). A Ramanujan graph has

λ ≤ 2
√
d− 1 < 2

√
d and hence can be used if 2

√
d < dk

n

√
h(n− h). Rearranging gives

d > 4n2

k2h(n−h) , which is satisfied if d > 6n
k2h

, since h ≤ n/3. That is, if G is Ramanujan

with d = Θ
(
n
h

)
, then H = L(G) is h-disjoint. Since H has a hyperedge for every pair of

edges from a given vertex in G, H has maximum degree O
(
n2

h2

)
and thus at most O

(
n3

h2

)
hyperedges.

To prove the bound, it suffices to assert the existence of Ramanujan graphs for every n

and d. In fact, a much stronger theorem holds: for every ε > 0 and even d ≥ 4, a random

d-regular graph on n vertices satisfies λ ≤ 2
√
d− 1 + ε with high probability [65]. Both

ε and the requirement that d be even have an insubstantial effect on the final number of

edges. This completes the proof of Theorem 5.3.1.

We now give a proof of the main lemma. The idea is to first apply the expander vertex-

boundary lemma to A and C, then the expander mixing lemma to B and the subset of C

with neighbors in A. In so doing, we certify that A contains a vertex with edges to both

B and C, in G. By the definition of a lifted hypergraph, this ensures that H contains a

hyperedge crossing all three colors. Since we show this for arbitrary A,B,C satisfying the

size bounds of Definition 2, this verifies the h-disjointness of H .
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Proof of Lemma 5.3.3. Let CA = C ∩N(A) and a = |A|, b = |B|, c = |C|, cA = |CA|. By

Lemma 5.3.2,

cA ≥ c− 2λn

d

√
c

a
. (5.2)

To prove the existence of a trichromatic edge in H , it suffices to show that

|EG(CA, B)| > 0. By the expander mixing lemma,

|EG(CA, B)| ≥ dbcA
n
− λ
√
bcA.

Hence there exists an edge from CA to B when dbcA
n

> λ
√
bcA, which is equivalent to

cA > λ2n2

bd2
, because all variables are non-negative. Substituting cA with (5.2) and solving

gives n2

bd2
λ2 + 2n

d

√
c
a
λ− c < 0. By the quadratic equation, this is equivalent to

(
λ−
√
cbd

n

(√
1

b
+

1

a
−
√

1

a

))
·(

λ+

√
cbd

n

(√
1

b
+

1

a
+

√
1

a

))
< 0.

Because λ is positive, the LHS is negative when the first term is negative. Thus we need:

λ <

√
cbd

n

(√
1

b
+

1

a
−
√

1

a

)

=

√
cbd

n

√
a+ b−

√
b√

ab

=
d

n

√
cb

a

(√
a+ b−

√
b
)
.

This concludes the proof of the lemma, and hence of Theorem 5.3.1.

We also give a (slightly less general) explicit construction of such hypergraphs.
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Theorem 5.3.5. There is an algorithm that, for an infinite number of integers n, and

any h(n) bounded above by n/3, efficiently constructs an h(n)-disjoint hypergraph with

O
(

n3

h(n)2

)
hyperedges.

In other words, by applying an explicit Ramanujan construction, we constructively

achieve the result of Theorem 5.3.1, for an infinite number of values of n.

Proof. Extending the classic works of Lubotzky-Phillips-Sarnak [112], Margulis [115],

and Morgenstern [119] on explicit constructions of Ramanujan graphs, Cioabǎ and Murty

[35] give a construction that comes very close to the Ramanujan bound for nearly any graph

size and degree.

Theorem 5.3.6 (Cioabǎ and Murty [35]). Let d ∈ Z+ be such that d − 1 is composite.

For any positive ε, there exists an infinite sequence of graphs {Gi}∞i=0 such that Gi is an

(ni, d, (2 + ε)
√
d− 1)-expander, and ni > ni−1 ∀ i > 0.

Recall that Lemma 5.3.3 and Claim 5.3.4 together imply it suffices to construct an

(n, d, λ)-expander G, where λ < dk
n

√
h(n)(n− h(n)) for a fixed k.

Pick d = 2(2+ε)2n
k2h(n)

. Then [35] gives an algorithm to construct (n, d, λ)-expanders with

λ = (2+ε)2

k

√
2n
h(n)

. Then observe:

dk

n

√
h(n)(n− h(n)) =

2(2 + ε)2nk

k2h(n)n

√
h(n)(n− h(n))

≥ 2(2 + ε)2

k

√
n(2/3)

h(n)

>
(2 + ε)2

k

√
2n

h(n)
= λ,

proving the theorem.
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5.4 A Sufficiency Condition for h-disjointness

In this section we consider a complementary question to that of the previous sections.

Namely: how many hyperedges are necessary to ensure that every 3-uniform hypergraph

of that size is h(n)-disjoint? Equivalently, what is the densest 3-uniform hypergraph that

is not h(n)-disjoint? This question is relevant in practice, as it may be impossible in some

systems to implement the set of 3-hyperedges exactly. The theorem below gives guarantees

on reliability in such an oblivious setting.

Definition 7. For integer h ≤ n/3, the sufficiency number Un(h) is the minimum integer

such that, for a 3-uniform hypergraph H = (V,E) on n vertices, |E| ≥ Un(h) implies that

H is h-disjoint.

Theorem 5.4.1. For h ≤ n/3,

Un(h) =

(
n

3

)
− n− h

2
· h2 + 1.

In other words, n−h
2
· h2 is the minimum number of edges one can remove from the

complete 3-uniform n-vertex hypergraph, in order to ensure it is not h-disjoint.

Proof. Let H = (V,E) be an n-vertex 3-uniform hypergraph that is not h-disjoint. By

definition, there must be some partial coloring A,B,C of the vertices with a = |A|, b =

|B|, c = |C|, such that there is no edge crossing A,B,C, and moreover a, b, c ≥ h and

a+ b+ c ≥ n+3h
2

. For any 3-coloring, the complete 3-uniform hypergraph contains exactly

abc crossing hyperedges. Hence for some a, b, c having the properties above, abc is the

smallest number of edges that can be removed from the complete graph to make it not

h-disjoint.

Claim 5.4.2. For integers a, b, c ≥ h such that a+b+c ≥ n+3h
2

, abc is minimized by taking

a = h, b = h, c = n−h
2

.
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Proof. We will assume for the proof that n ≡ h (mod 2). The second case is proved

similarly.

First note that since a + b + c ≥ n+3h
2

, abc is minimized by taking a + b + c = n+3h
2

.

Decreasing the sum can always decrease the product. Hence, we may assume w.l.o.g. that

c = n+3h
2
− a − b, and minimize g(a, b) = ab

(
n+3h

2
− a− b

)
. This gives the following

optimization problem, for arbitrary n and h:

minimize g(a, b)

subject to a ≥ h, b ≥ h, a+ b ≤ n+ h

2

The constraints are linear and hence define halfspaces in the (a, b)-plane. These half-

spaces define P , a polytope (triangle) in which the solution must lie. In particular, the

optimal solution must either be a global minimum of g(a, b) (and hence a root of the gra-

dient); a minimum along one of the faces of the polytope; or a vertex of the polytope. We

check each case in turn.

Proposition 5.4.3. The following three facts about the constrained optima of g(a, b) hold.

• The gradient of g has a single root inside P , and it is a global maximum.

• The minimum value of g along the faces of P is (n+h)2

16
h.

• The minimum value of g at a vertex of P is h2(n−h)
2

.

Proof. We explore the three claims below.

Global minimum. The gradient of g has only a single root in the polytope.

g(a, b) =

[
b(n+ 3h)

2
− 2ab− b2, a(n+ 3h)

2
− 2ab− a2

]
.

We may assume that a 6= 0, b 6= 0, since otherwise [a, b] is not in the polytope. Hence

b(n+3h)
2
− 2ab − b2 = 0 is equivalent to a = n+3h

4
− b

2
. Symmetrically, b = n+3h

4
− a

2
.
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So a = n+3h
4
−
(
n+3h

8
− a

4

)
, i.e., 3

4
a = n+3h

8
, i.e., a = n+3h

6
. Symmetrically, b = n+3h

6
.

Therefore the only root of the gradient that may be in the polytope is
[
n+3h

6
, n+3h

6

]
.

We now show that
[
n+3h

6
, n+3h

6

]
must be a maximum by examining the second deriva-

tives of g(a, b). The second derivatives are

• gaa(a, b) = −2b = −n+3h
3

• gbb(a, b) = −2a = −n+3h
3

• gab(a, b) = n+3h
2
− 2a− 2b = −n+3h

6

The second derivative test says that if gaa(a, b) is negative, and gaa(a, b) · gbb(a, b) −

gab(a, b)
2 is positive, then [a, b] is a local maximum. Indeed, −n+3h

3
is negative, and(

−n+3h
3

)2− (−n+3h
6

)2 is positive. Therefore the only root that may be within the polytope

is a global maximum, so it cannot possibly be the minimum point of the polytope.

Faces. We consider the points along the faces of each constraint. In other words, we set

the constraints to tight, then globally optimize the resulting function.

First make a ≥ h tight. a = hmeans the new objective function is hb
(
n+3h

2
− h− b

)
=

hb
(
n+h
2
− b
)
. We differentiate to find the optimum value of b for this function.

d

db
hb

(
n+ h

2
− b
)

=
h(n+ h)

2
− 2hb,

which is 0 only at b = n+h
4

. Thus g
(
h, n+h

4

)
= h

(
n+h
4

) (
n+h
2
− n+h

4

)
= h(n+h)2

16
is a

potential global minimum for g.

By symmetry, setting b ≥ h tight gives the same potential minimum.

Finally, set a + b ≤ n+h
2

tight. Then the new objective function is(
n+h
2
− b
)
b
(
n+3h

2
−
(
n+h
2
− b
)
− b
)

=
(
n+h
2
− b
)
bh. We differentiate to find the op-

timum value of b of this new function.

d

db

(
n+ h

2
− b
)
bh =

h(n+ h)

2
− 2bh,
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which is 0 only when b = n+h
4

. Plugging this and a = n+h
4

(by symmetry) into g gives

g(a, b) = (n+h
4

)2(n+3h
2
− n+h

2
) = (n+h)2

16
h, the same value found for the other two con-

straints.

Vertices. We now consider the value of g at the three intersections of the three halfspaces.

(Note that the faces only intersect in at most one point because they are unique and on two

variables.)

Setting a = h and a+b = n+h
2

gives b = n−h
2

, hence g(a, b) = h·n−h
2

(
n+3h

2
− h− n−h

2

)
=

h · n−h
2
· h.

By symmetry, setting b = h and a+ b = n+h
2

also gives g(a, b) = h2(n−h)
2

.

Finally, setting a = h and b = h gives g(a, b) = h2
(
n+3h

2
− 2h

)
= h2(n−h)

2
, again.

We now observe how the proposition implies the theorem.

Comparison. There are only two possible minima in the polytope: h(n+h)2

16
and h2(n−h)

2
.

Observe that

(n+ h)2

16
=
n2 + h2 + 2nh

16

=
(n2 + 9h2 − 6nh)− 8h2 + 8nh

16

=
(n− 3h)2

16
+
h(n− h)

2

≥ h(n− h)

2
.

Therefore h(n+h)2

16
≥ h2(n−h)

2
, so h2(n−h)

2
is the minimum of the constrained g(a, b). Recall

that this was obtained by setting two faces to tight. In other words, set any two of a, b, c to

h, and the other to n−h
2

.

By the claim, removing h2(n−h)
2

edges from the complete 3-uniform hypergraph ensures

that a given valid coloring has no trichromatic edge. As a result, the hypergraph cannot be

h-disjoint. Conversely, removing fewer edges cannot remove all the edges crossing any

valid coloring. Hence Un(h) =
(
n
3

)
− n−h

2
· h2 + 1.
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This completes the proof of Theorem 5.4.1.

Theorem 5.4.4. If we remove all edges incident on a given vertex, simultaneously from the

complete n-vertex 3-uniform hypergraph, then we must remove Θ(n2h(n)) edges to make

it not h(n)-disjoint.

Proof. As we know, some coloring of valid sizes a, b, c must have all edges crossing it

removed. If we must remove all edges from a given vertex at once, then we clearly must re-

move all of the edges from all of the vertices in some color to all the other colors. Otherwise

the remaining vertex in that color will still have edges to the other two colors.

The smallest a color A can be is size h(n). So we must remove all of the edges incident

on h(n) vertices. There are
(
h(n)
3

)
edges contained entirely within A,

(
h(n)
2

)
·
(
(n+h(n))/2

1

)
edges with two vertices in A, and

(
h(n)
1

)
·
(
(n+h(n))/2

2

)
edges with one vertex in A. Hence

we must remove

(
h(n)

3

)
+

(
h(n)

2

)
· n+ h(n)

2
+ h(n) ·

(
(n+ h(n))/2

2

)
= Θ(n2h(n))

edges in total.

Note that for h(n) = o(n), this is asymptotically larger than the minimum number of

edges that can be removed from the complete 3-uniform hypergraph to make it not h(n)-

disjoint.

5.5 Hardness of Deciding h-disjointness

In this section, we take a first step towards addressing algorithmic questions related to h-

disjointness. In particular, given a 3-uniform hypergraph H , we would like to determine

the minimum value hopt(n) such that H is hopt(n)-disjoint, or barring this, an approximate

value h that is as close to hopt(n) as possible. This question has practical value because it

allows us to evaluate an existing hypergraph, or perhaps one constructed via the methods
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described in Section 5.3, for h-disjointness. Here we show that deciding whether H is

h-disjoint is co-NP-complete.

Theorem 1 (restated). Given a 3-uniform hypergraph H = (V,E) with |V | = n, it is

co-NP-complete to decide, for integers h ≤ n/3, whether H is h-disjoint.

Proof. The complement problem to h-disjointness is that of finding a disjointA,B,C ⊆ V

satisfying the conditions of Definition 2 such that ∀x ∈ A, y ∈ B, z ∈ C, it holds that

(x, y, z) /∈ E. A certificate for this problem is the sets A,B,C, and it can be verified in

O(|A||B||C|) time by checking that all hyperedges (x, y, z) are not in E. Since comple-

ment h-disjointness is in NP, it follows that h-disjointness is in co-NP.

We show that complement h-disjointness is NP-hard by a reduction from balanced bi-

partite independent set (BBIS), which is NP-complete [9]. Given a balanced bipartite graph

G(X ∪Y ;E) with |X| = |Y | = n/2 and a positive integer t, the decision BBIS problem is

to find sets A ⊆ X , B ⊆ Y with |A| = |B| = t with no edges between A and B. Given an

instance of the BBIS problem, we construct an instance of complement h-disjointness as

follows. Create an empty 3-uniform hypergraph H with n′ = n + (n − t) vertices, where

the first n vertices represent the vertices of G. On the n − t vertices, create a complete

3-uniform hypergraph Z. Add a hyperedge (u, v, w) for each pair of vertices u, v ∈ Z and

every w ∈ G. Add a hyperedge (u, v, w) for each pair of vertices u, v ∈ X and every

w ∈ Z; do the same for every pair of vertices u, v ∈ Y . Finally, add a hyperedge (u, v, w)

for each edge (u, v) ∈ G and every w ∈ Z. The input to the complement h-disjointness

problem is the hypergraph H and the positive integer h = t.

Given a solution (A,B) with |A| = |B| = t to BBIS, we claim thatA,B,Z is a solution

to complement h-disjointness. Since t ≤ |X| = |Y | = n/2, it follows that |Z| = n− t ≥ t,

so all |A|, |B|, |Z| ≥ t. Also, |A|+ |B|+ |Z| = t+ t+ (n− t) = n+(n−t)+3t
2

= n′+3t
2

. Now,

for a hyperedge to cross the sets A,B,Z, there must be some u ∈ A, v ∈ B,w ∈ Z such

that (u, v, w) ∈ H . By our construction, all but one type of hyperedge inH involve vertices

in at most two of the sets A ⊆ X , B ⊆ Y , and Z. The exception are hyperedges (u, v, w)
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where (u, v) ∈ G and w ∈ Z. But since there are no edges crossing A,B, there is no

hyperedge that crosses A,B,Z. Thus A,B,Z is a solution to complement h-disjointness.

In the reverse direction, suppose we have a solution A,B,C to complement h-

disjointness. Since |A|+ |B|+ |C| ≥ n′+3t
2

= n+ t, some vertices in Z must appear in the

sets A,B,C. We claim that these vertices must appear in exactly one set. This is because if

Z appears in all three sets, then there would exist a hyperedge crossing all three sets, since

Z is a complete 3-uniform hypergraph. Similarly, Z cannot appear in exactly two sets,

because then there would exist a hyperedge connecting two vertices of Z (one in each set)

and a vertex in the third set (a vertex in G), also by our construction. Thus Z participates

in exactly one set; assume w.l.o.g. that this set is C. We now claim that the vertices in X

appear in at most two sets, and if they appear in two sets, one of those sets must be C. If

X appears in both A and B, then there would exist a hyperedge connecting two vertices of

X (one in each set) to a vertex of C, because C contains at least some vertices of Z by our

argument above. Therefore, X appears in either A or B, but not both. The same argument

shows that this is also true of Y . Combining these arguments with the fact that A,B,C

are non-empty, it follows that the vertices of X and Y are split across A,B (though they

may appear together in C). Since Z appears in C, A and B consist entirely of vertices in

G. Finally, the same argument used in the forward direction above shows that there cannot

exist an edge (u, v) ∈ G between A and B, since then there would exist a hyperedge

(u, v, w) to a vertex w ∈ Z in C. Thus, since |A|, |B| ≥ t, we can remove excess vertices

so that |A| = |B| = t and the resulting sets are a solution to BBIS.

5.6 Remarks

This chapter studies the price of equivocation in distributed systems. Our tight bounds

on the number of 3-processor partial broadcast channels required for Byzantine agreement

describe the amount of equivocation a system can tolerate for a given level of redundancy.
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Our results thus capture the equivocation vs. redundancy trade-off, an important metric in

the cost-benefit analysis of a fault-tolerant system.

Several interesting theoretical questions remain. For example, given the hardness of

deciding a system’s resilience (h-disjointness) based on its partial broadcast channels, we

are interested in approximation algorithms for this value. We would also like to understand

the combinatorial properties of h-disjointness in greater depth. Can it be shown that h-

disjoint hypergraphs must fundamentally be built on an underlying expander? How do our

definitions and results scale to k-uniform hypergraphs, for k > 3?

On the practical side, it would be very interesting to find a realistic network that

achieves h-disjointness naturally based on its broadcast (e.g.,, network hub) and point-

to-point (e.g.,, network switch) connections, instead of constructing partial broadcast

channels explicitly.
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Chapter 6

Conclusions

Byzantine failures pose a significant challenge to building scalable Internet services be-

cause of their arbitrary nature. Standard techniques like load balancing requests to individ-

ual servers does not work, because a Byzantine-faulty server can return arbitrary results.

And yet these failures continue to befall customer-facing services, much to the chagrin and

concern of service providers.

This thesis describes scalable systems and algorithms for coping with Byzantine fail-

ures. There are two components to this approach: fixing the cause of the failure, and mask-

ing the effect of failures from customers. We described a real-world failure experienced

by a database provider in the index data structure they were using, and fixed the cause of

this failure by designing a new class of data structures called relaxed trees. Relaxed trees

are simpler and more concurrent than standard search trees, while retaining most of their

useful properties. Unfortunately, this particular failure could not have been masked from

customers because it was correlated across all of the database servers, which were running

identical code. We showed how to break this correlation by running distinct, off-the-shelf

database implementations on each server, allowing us to bound the number of simultane-

ous failures that occur. Then, we run a Byzantine-fault-tolerant (BFT) protocol to mask the

effect of the failures. Prophecy is a system that overcomes serious scalability limitations in
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existing BFT protocols, by using a cache validation technique to enable fast, load-balanced

reads when results are historically consistent, while only slightly weakening the semantics

of the BFT protocol. Prophecy achieves linear scale out on read-mostly workloads. To

scale out further and to cope with write-heavy workloads, we devised an algorithm called

commensal cuckoo that securely composes many small BFT groups, despite a dynamic

adversary that can repeatedly leave and rejoin faulty nodes to the system. Such attacks

are common in open peer-to-peer systems like BitTorrent. Compared to the state-of-the-art

algorithm, commensal cuckoo tolerates 32x–41x more faulty nodes with groups as small as

64 nodes (as compared to hundreds). Finally, we improved the scalability of both Prophecy

and commensal cuckoo by increasing the fault resilience of a BFT group from less than 1/3

up to less than 1/2. We did this by adding small (3-processor) partial broadcast channels

that prevent faulty nodes from sending contradictory messages. We proved asymptotically

tight bounds on the number of such channels needed for the complete range of fault re-

siliences, improving prior work by up to a quadratic factor.

Although our work focused on masking failures, this is not to say that fixing failures

is less important. Masking failures prevents customers from seeing their effects, but if a

failure (such as a software bug) does occur, then steps should be taken to remedy it. We

did this for the database provider that experienced the outage. The other service providers

listed in the introduction that suffered Byzantine failures also eventually fixed the causes

of their failures.

As techniques for coping with Byzantine failures become cheaper, more service

providers will employ them to avoid the severe costs of such a failure. This, in turn, will

allow them to deliver richer, more reliable functionality to their customers. For example, a

BFT BitTorrent system might be used to cache and distribute customer-facing web content,

akin to a free alternative to Akamai. This thesis takes a step forward in that direction.
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