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ABSTRACT
Datacenter networks should support high network utilization. Yet
today’s routing is typically load agnostic, so large flows can starve
other flows if routed through overutilized links. Recent proposals
for datacenter routing, such as centralized scheduling or end-host
multi-pathing, do not offer optimal throughput, and they suffer from
scalability concerns and other limitations.

We observe that most datacenter networks have a symmetry prop-
erty that admits a better solution. We develop a simple, switch-
local algorithm called LocalFlow that routes the maximum multi-
commodity flow in these networks, while tolerating failures and
asymmetry. LocalFlow evades existing hardness results by allowing
flows to be fractionally split, but it minimizes the number of split
flows by considering the aggregate flow per destination and allow-
ing slack in the splitting. Through an optimization decomposition,
we show that LocalFlow, in conjunction with unmodifed end hosts’
TCP, achieves an optimal solution. Splitting flows presents several
new technical challenges that must be overcome in order to achieve
high accuracy, interact properly with TCP, and be implementable
on emerging standards for programmable, commodity switches.

LocalFlow acts independently on each switch. This makes it
highly scalable, allows it to adapt quickly to dynamic workloads,
and enables flexibility in the deployment of its control-plane schedul-
ing logic. We present detailed packet-level simulations that demon-
strate LocalFlow’s practicality and optimality, comparing it to a va-
riety of alternative schemes and configurations, using distributions
and traces from real datacenter workloads.

1. INTRODUCTION
The growth of popular Internet services and cloud-based plat-

forms has spurred the construction of large-scale datacenters, which
may contain thousands to hundreds of thousands of servers. Tradi-
tional enterprise network architectures fare poorly in such environ-
ments [2], however, which has led to a rash of research proposals
for new datacenter networking architectures. Many such architec-
tures (e.g., [2, 19]) are based on Clos topologies [11]; they primarily
focus on increasing bisection bandwidth, or the communication ca-
pacity between any bisection of the end hosts. Unfortunately, even
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with full bisection bandwidth, the utilization of the core network
suffers when large flows are routed poorly, as collisions with other
flows can limit their throughput even while other, less utilized paths,
are available (see Figure 2).

The problem of simultaneously routing flows through a capac-
itated network is the multi-commodity flow (MCF) problem. This
problem has been studied extensively by both the theoretical and
networking systems communities. Solutions deployed in datacen-
ters today are typically load agnostic, however, such as Equal-Cost
Multi-Path (ECMP) [21] and Valiant Load Balancing (VLB) [35].
More recently, the networking community has proposed a series of
load-aware solutions including both centralized solutions (e.g., [3,
6]), where routing decisions are made by a global scheduler, and
distributed solutions, where routing decisions are made by end hosts
(e.g., [24, 36]) or switches (e.g., [25]).

As we discuss in §2, these current approaches have limitations.
Centralized solutions like Hedera [3] face serious scalability and
fault-tolerance challenges with today’s datacenter workloads [5, 26].
End-host solutions like MPTCP [36] offer greater parallelism but
lack a global view of the network, forcing them to continuously
react to path congestion. Switch-local solutions like FLARE [25]
scale well, but their local view of network traffic makes efficient
routing difficult. In fact, we are unaware of any prior load-aware,
switch-local solution that is practical for datacenter networks.

Only a few of these current solutions split flows across multiple
paths. This makes the majority of them suboptimal, by the hardness
of the unsplittable multi-commodity flow problem [17]. Indeed, our
experimental evaluation shows a significant throughput drop when
flows are not split. Yet at the same time, splitting flows is prob-
lematic in practice because it causes packet reordering, which in
the case of TCP may lead to throughput collapse [27]. Solutions
that do split flows are either load agnostic [9, 13], use non-trivial
protocols [18, 36], or rely on specific traffic patterns [25].

Empowered by the rise of commodity switches with software-
controlled dataplanes (e.g., via OpenFlow [29]), but cognizant of
their limitations in centralized solutions [12], this paper explores
whether purely switch-local algorithms could better handle today’s
high-scale and dynamic datacenter traffic patterns. We introduce
LocalFlow, the first practical switch-local algorithm that routes flows
optimally in symmetric networks, a property we define later. Most
proposed datacenter architectures (e.g., fat-trees [2, 19]) and real
deployments satisfy the symmetry property. To derive our solution,
we decompose the MCF optimization problem using a dual-dual
approach [8, 31], and show that the slave dual component is essen-
tially solved by end hosts’ TCP, while the master dual component
can be solved locally at each switch by LocalFlow. In fact, a naïve
scheme called PacketScatter [9, 13], which essentially round-robins
packets over a switch’s outgoing links, solves the master component
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Figure 1: A set of flows to the same destination arrives at switch
S. PacketScatter (left) splits each individual flow, whereas
LocalFlow (right) distributes the aggregate flow, and only splits
an individual flow if the load imbalance exceeds δ .

optimally in symmetric networks. However, PacketScatter is load
agnostic: it splits every flow, which causes packet reordering and
increases flow completion times, and it cannot handle network fail-
ures or asymmetry.

LocalFlow overcomes these limitations with the following in-
sights. By considering the aggregate flow to each destination, rather
than individual transport-level flows, we split at most |L|−1 flows,
where |L| is the number of candidate outgoing links (< 10 in most
cases). By further allowing splitting to be approximate, using a
slack parameter δ ∈ [0,1], we split even fewer flows (or possibly
none!). Figure 1 illustrates these ideas. In the limit, setting δ = 1
yields a variant of LocalFlow that schedules flows as indivisible
units; we call this variant LocalFlow-NS (“no split”). Like Pack-
etScatter, LocalFlow proactively avoids congestion, allowing it to
automatically cope with traffic unpredictability, a major headache
in other solutions [6, 36]. However, by using flexible, load-aware
splitting, LocalFlow splits much fewer flows and can even tolerate
failures and asymmetry in the network.

The benefits of a switch-local algorithm are profound. Because
it acts locally without coordination between switches, LocalFlow
can operate at very small scheduling intervals at an unprecedented
scale. This allows it to adapt to highly dynamic traffic patterns. At
the same time, LocalFlow admits a wide variety of deployment op-
tions of its control-plane logic. For example, the scheduler could
run locally on the switch’s CPU itself, or more remotely on com-
modity servers spread throughout the network, or even on a single
server for the entire network. In all cases, however, the schedul-
ing performed for each switch is independent of that for others. On
the flipside, a purely local algorithm has its limitations. For exam-
ple, it cannot optimally route a dynamic workload when faced with
network failures or asymmetry.

Splitting flows introduces several technical challenges in order to
achieve high accuracy, use modest forwarding table state, and in-
teract properly with TCP. (Although LocalFlow may be used with
UDP, this paper primarily focuses on TCP traffic.) Besides mini-
mizing the number of flows that are split, LocalFlow employs two
novel techniques to split flows efficiently. First, it splits flows spa-
tially for higher accuracy, by installing carefully crafted rules into
switches’ forwarding tables that partition a monotonically increas-
ing sequence number. Second, it supports splitting at multiple reso-
lutions to control forwarding table expansion, so rules can represent
groups of flows, single flows, or subflows. Our mechanisms for im-
plementing multi-resolution splitting use existing (for LocalFlow-
NS) or forthcoming (for LocalFlow) features of OpenFlow-enabled
switches [1]. Given the forthcoming nature of one of these features,
and our desire to evaluate LocalFlow at scale, our evaluation fo-

cuses on simulations. We use a network simulator that implements
full packet-level TCP behavior [36], as well as simulations based
on real datacenter traces [5, 19].

Our evaluation shows that LocalFlow achieves near-optimal through-
put, outperforming ECMP by up to 171%, MPTCP by up to 19%,
and Hedera by up to 23%. Compared to PacketScatter which splits
all flows over time, it split less than 4.3% of flows on a real switch
packet trace and achieved lower flow completion times through-
out. By modestly increasing the duplicate-ACK threshold of end
hosts’ TCP, LocalFlow avoids the adverse effects of packet reorder-
ing. Interestingly, the high accuracy of spatial splitting turns out to
be crucial, as even slight load imbalances, such as those incurred
by temporal splitting (e.g., [25]), significantly degrade throughput
(e.g., by 17%). Our evaluation also uncovered several other inter-
esting findings, such as the high throughput of LocalFlow-NS on
VL2 topologies [19].

We next compare LocalFlow to the landscape of existing solu-
tions. We define our network architecture as well as the symmetry
property in §3. We present the LocalFlow algorithm in §4 and our
multi-resolution splitting technique in §5. We conduct a theoretical
analysis of LocalFlow in §6, evaluate it in §7, and then conclude.

2. EXISTING APPROACHES
We discuss a broad sample of existing flow routing solutions

along two important axes, scalability and optimality, while compar-
ing them to LocalFlow. Scalability encompasses a variety of met-
rics, including forwarding table state at switches, network commu-
nication, and scheduling frequency. Optimality refers to the maxi-
mum flow rate achieved relative to optimal routing.

Centralized solutions typically run a sequential algorithm at a sin-
gle server [3, 6, 7]. These solutions lack scalability, because the cost
of collecting flow information, computing flow paths, and deploy-
ing these paths makes it impractical to respond to dynamic work-
loads. Indeed, coordinating decisions in the face of traffic burstiness
and unpredictability is a major problem [6], whereas LocalFlow
avoids such coordination. The rise of switches with externally-
managed forwarding tables, such as OpenFlow [1, 29], has increased
the responsiveness of centralized solutions. For example, Hedera’s
scheduler runs every 5 seconds, with the potential to run at subsec-
ond intervals [3], and MicroTE schedules flows every second [6].
But recent studies [5, 26] have concluded that the size and work-
loads of today’s datacenters require parallel route setup on the order
of milliseconds, making a centralized OpenFlow solution infeasible
even in small datacenters [12]. This infeasibility motivated our pur-
suit of a parallel solution.

End-host solutions employ more parallelism, and most give prov-
able guarantees. TeXCP [24] and TRUMP [20] dynamically load-
balance traffic over multiple paths between pairs of ingress-egress
routers (e.g., MPLS tunnels) established by an underlying routing
architecture. DARD [37] is a similar solution for datacenter net-
works that controls paths from end hosts. (We discuss MPTCP [36]
further below.) These solutions explicitly model paths in their for-
mulation, leading to exponential representation and convergence
time in the worst case. To cope with this, all solutions use only
a handful of paths per source-destination pair. Since end-host solu-
tions lack information about other flows in the network, they must
continuously react to congestion on paths and rebalance load.

Switch-local solutions have more visibility of active flows, espe-
cially at aggregation and core switches, but still lack a global view
of the network. They achieve high scalability and can evade the
exponential representation problem. For example, REPLEX [14]
gathers (aggregate) path information using measurements on adja-
cent links and by exchanging messages between neighbors.



A E IG

Y

X

Core

Aggregation

Edge

F H

Con

output
queues

Control

Data

forwarding 
tables

switch
backplane

Z

W

Figure 2: A FatTree network with 4-port switches. VL2 is a variation on this topology. End hosts A, G, I simultaneously transmit to
E, F, H and collide at switches Y and X, but there is sufficient capacity to route all flows at full rate.

None of the above solutions split individual flows, however, and
hence cannot produce optimal results, since the unsplittable multi-
commodity flow problem is NP-hard and admits no constant-factor
approximation [17]. MPTCP [32, 36] is an end-host solution that
splits a flow into subflows and balances load across subflows via
linked congestion control. It uses two levels of sequence numbers
and buffering to handle reordering across subflows. DeTail [38]
modifies switches to do per-packet adaptive load balancing based
on queue occupancy, with the goal of reducing the flow completion
time tail. It relies on layer-2 backpressure and modifications to end
hosts’ TCP to avoid congestion, as well as additional buffers at the
end hosts to handle reordering. Geoffray and Hoefler [18] propose
an adaptive source-routing scheme that uses layer-2 back-pressure
and probes to evaluate alternative paths. Like DeTail, their scheme
requires modifications to both end hosts and switches. FLARE [25]
is a general technique for splitting flows that can be combined with
systems like TexCP. It exploits delays between packet bursts in
wide-area networks to route each burst along a different path with-
out incurring reordering.

It is instructive to compare our solution, LocalFlow, to the above
schemes. Like all of them, LocalFlow splits flows, but whereas
the above schemes tend to split every flow, LocalFlow minimizes
the number of flows that are split. This is largely due to the fact
that LocalFlow balances load proactively, giving it full control over
how flows are scheduled and split, instead of reacting to conges-
tion after-the-fact. Unlike most of the above schemes, LocalFlow is
purely switch-local and does not modify end hosts. In this respect
it is similar to FLARE, but it also differs from FLARE because it
splits flows spatially (e.g., based on TCP sequence numbers), not
temporally. Our simulations show that spatial splitting significantly
outperforms temporal splitting (§7.6). Finally, LocalFlow achieves
near-optimal routing in practice, which the other solutions have not
demonstrated, despite being considerably simpler than all of them.

The only flow-splitting solution that is truly simpler than Local-
Flow is the PacketScatter scheme [9, 13] we discussed earlier. Local-
Flow can be viewed as a load-aware, efficient version of PacketScat-
ter. We discuss the differences between the two schemes in more
detail while deriving LocalFlow’s design.

A long history of theoretical algorithms exist for multi-commodity
flow that are provably optimal (see, e.g., [16]). However, these so-
lutions are disconnected from practice for reasons we have outlined
before [33]. In contrast, LocalFlow has near-optimal performance
in both theory and practice.

3. ARCHITECTURE
LocalFlow is a flow routing algorithm designed for datacenter

networks. In this section, we describe the components that comprise
this network (§3.1), outline the main control loop of a LocalFlow

scheduler (§3.2), and define the networks on which LocalFlow is
efficient (§3.3).

3.1 Components and deployment
Figure 2 shows a typical datacenter network of end hosts and

switches on which LocalFlow might be deployed. The techniques
we use are compatible with existing or forthcoming features of ex-
tensible switches, such as OpenFlow [1, 29], Juniper NOS [23], or
Cisco AXP [10].

The architecture and capabilities of hardware switches differ sig-
nificantly from that of end hosts, making even simple tasks chal-
lenging to implement efficiently. The detail in Figure 2 shows a
typical switch architecture, which consists of a control plane and
a data plane. The data plane hardware has multiple physical (e.g.,
Ethernet) ports, each with its own line card, which (when simpli-
fied) consists of an incoming lookup/forwarding table in fast mem-
ory (SRAM or TCAM) and an outgoing queue. The control plane
performs general-purpose processing and can install or modify rules
in the data plane’s forwarding tables, as well as obtain statistics such
as the number of bytes that matched a rule. To handle high data
rates, the vast majority of traffic must be processed by the data-
plane hardware, bypassing the control plane entirely.

The hardware capabilities, programmability, and processing/memory
resources of switches are continually increasing [30]. Being a lo-
cal algorithm, LocalFlow’s demands on these resources are limited
to its local view of network traffic, which is orders of magnitude
smaller than that of a centralized controller [5, 12, 26]. Neverthe-
less, since LocalFlow runs independently for each switch, it sup-
ports a wide variety of deployment options of its control plane logic.
For example, it can run locally on each switch, using a rack-local
controller with OpenFlow switches or a separate blade in the switch
chassis of Juniper NOS or Cisco AXP switches. Alternatively, the
number of these controllers can be reduced, causing them to be
shared by switches, and their locations can be changed to meet the
scalability requirements of the network. In the limit, a single cen-
tralized controller may be used. Note that regardless of the deploy-
ment strategy, LocalFlow’s independence allows each scheduler to
execute on separate threads, processes, cores, or devices.

3.2 Main LocalFlow control loop
Each LocalFlow controller runs a continuous scheduling loop. At

the beginning of every interval, it executes the following:

1) Measure the rate of each active flow. This is done by query-
ing the byte counter of each forwarding rule from the previous
interval and dividing by the interval length.

2) Run the scheduling algorithm using the flow rates from step 1
as input.



3) Update the rules in the forwarding table based on the outcome
of step 2, and reset all byte counters.

Steps 2 and 3 are described in §4 and §5, respectively.

3.3 Symmetric networks
Although LocalFlow can be run on any network, it only achieves

optimal throughput on networks that satisfy a certain symmetry
property. This property is defined as follows:

DEFINITION 1. A network is symmetric if for all source-destination
pairs (s,d), the following holds: all switches p on the shortest paths
between s and d that are the same distance from s have identical
outgoing capacity to d.

In other words, any of the p switches are equally good interme-
diate candidates for routing a flow between s and d. Using the ex-
ample of Figure 2, switches Y and Z are both on a shortest path
between (A,E), and both have one link of outgoing capacity to E.

Real deployments and most proposed datacenter architectures
satisfy the symmetry property. For example, it is satisfied by fat-
tree-like networks (e.g., [2, 19]), which are Clos [11] topologies ar-
ranged as multi-rooted trees that support full-bisection bandwidth.
FatTree [2] is a three-stage fat-tree network built using identical
k-port switches arranged into three levels—edge, aggregation, and
core—supporting a total of k3/4 end hosts. Figure 2 shows a 16-
host FatTree network (k = 4). VL2 [19] modifies FatTree by using
higher-capacity links between Top-of-Rack (ToR, i.e., edge), ag-
gregation, and intermediate (i.e., core) switches. Unlike FatTree,
the aggregation and intermediate switches form a complete bipar-
tite graph in VL2.

Real datacenters are typically oversubscribed due to cost and
practicality reasons, because it is uncommon for all hosts to simul-
taneously transmit at full rate (i.e., utilize the full bisection band-
width). The networks above can be oversubscribed by simply con-
necting more hosts to each edge/ToR switch, which preserve their
symmetry property.

4. ALGORITHM LOCALFLOW
This section presents LocalFlow, our switch-local algorithm for

routing flows in symmetric datacenter networks. It is invoked in
Step 2 of the main control loop (§3.2). At a high-level, Local-
Flow attempts to find the optimal flow routing for the following
max multi-commodity flow (MCF) problem:

maximize: ∑
i

Ui(xi) (1)

subject to: ∑
u:(u,v)∈E

f s,d
u,v = ∑

w:(v,w)∈E
f s,d
v,w : ∀v,s,d,

∑
u:(s,u)∈E

f s,d
s,u = ∑

i:s→d
xi : ∀s,d

∑
s,d

f s,d
u,v ≤ cu,v : ∀(u,v) ∈ E, link capacity cu,v

variables: xi commodity send rates, f s,d
u,v link flow rates

It does so by balancing the flow across links between adjacent
switches; this technique is similar to, but more aggressive than, that
of Awerbuch and Leighton [4]. The key insight is that if we split a
flow evenly over equal-cost links along its path to a destination, then
even if it collides with other flows midway, the colliding subflows
will be small enough to still route using the available capacity.

Link balancing on its own does not guarantee an optimal so-
lution to the max MCF objective (1), which depends on the per-
commodity utility functions Ui. Fortunately, LocalFlow can rely on

the end hosts’ TCP congestion control for this purpose [28]. By bal-
ancing the per-link flow rates, LocalFlow adjusts the flow routing in
response to TCP’s optimized send-rates, while TCP in turn adapts
to the new routing. We show how this interaction achieves the MCF
optimum in §6. Intuitively, this works because the splitting strategy
above guarantees that all avoidable congestion has been avoided;
any congestion beyond this implies that the destination link is over-
saturated, and end hosts must throttle their flows.

We first describe a basic load-agnostic solution for link balanc-
ing called PacketScatter (§4.1). We then improve this solution to
yield LocalFlow (§4.2). Finally, we discuss a simple extension to
LocalFlow that copes with failures in the network (§4.3).

4.1 Basic solution: PacketScatter
The simplest solution for link balancing is to split every flow over

every equal-cost outgoing link of a switch ( f s,d
u,v = f s,d

u,w). We call
this scheme PacketScatter. PacketScatter round-robins packets to
a given destination over the switch’s outgoing links and has been
supported by Cisco switches for over a decade now [9]. Recent
work by Dixit et al. [13] studies variants of the scheme that select a
random outgoing link for each packet to reduce state. However, this
approach is problematic because even slight load imbalances due to
randomness can significantly degrade throughput, as our evaluation
confirms (§7.6).

While PacketScatter may be optimal in terms of flow routing, be-
cause it unconditionally splits every flow at individual-packet bound-
aries, as shown in Figure 1, it can cause excessive reordering at end
hosts. These out-of-order packets can inadvertently trigger TCP
fast-retransmit, disrupting throughput, or delay the completion of
short-lived flows, increasing latency. On the upside, because the
splitting is load agnostic, it is highly accurate and oblivious to traf-
fic bursts and unpredictability. However, by the same token, it can-
not adapt to partial network failures since it will continue to send
flow down under-capacitated subtrees.

4.2 LocalFlow
We obtain LocalFlow by applying three ideas to PacketScatter

that remove its weaknesses while retaining its strengths. The pseu-
docode is given in Algorithm 1.

First, instead of unconditionally splitting every flow, we group
the flows by destination d first and then distribute their aggregate
flow rate evenly over |Ld | outgoing links (lines 2-6 of Algorithm 1).
This corresponds to a simple variable substitution : f d

u,v = ∑s f s,d
u,v

in the MCF formulation which gives the modified constraints:

∑
w:(v,w)∈E

f d
v,w− ∑

u:(u,v)∈E
f d
u,v = ∑

i:v,d
xi : ∀v,u 6= d (2)

∑
d

f d
u,v ≤ cu,v : ∀(u,v) ∈ E

This means that LocalFlow splits at most |Ld | − 1 times per des-
tination. Function BINPACK does the actual splitting. It sorts the
flows according to some policy e.g., increasing rate and succes-
sively places them into |Ld | equal-sized bins (lines 17-25). If a flow
does not fit into the current least loaded bin, BINPACK splits the
flow (possibly unevenly) into two subflows, one which fills the bin
and the other which rejoins the sorted list of flows (lines 20-21).

Our second idea is to allow some slack in the splitting. Namely,
we allow the |Ld | bins to differ by at most a fraction δ ∈ (0,1] of the
link bandwidth (line 19). This not only reduces the number of flows
that are split, but it also ensures that small flows of rate ≤ δ are
never split. Note that small flows are still bin-packed by the algo-
rithm; it is only the last such flow entering a bin that may give rise
to an imbalance. After BINPACK returns, LOCALFLOW ensures



1 function LOCALFLOW(flows F, links L)
2 dests D = { f .dest | f ∈ F}
3 foreach d ∈ D do
4 flows Fd = { f ∈ F | f .dest = d}
5 links Ld = {l ∈ L | l is on a path to d}
6 bins Bd = BINPACK(Fd , |Ld |)
7 Sort Bd by increasing total rate
8 Sort Ld by decreasing total rate
9 foreach b ∈ Bd , l ∈ Ld do

10 Insert all flows in b into l
11 end

12 bins function BINPACK(flows Fd , |links Ld |)
13 δ = . . .; policy = . . .
14 binCap = (∑ f∈Fd

f .rate)/|Ld |
15 bins Bd = {|Ld | bins of capacity binCap}
16 Sort Fd by policy
17 foreach f ∈ Fd do
18 b = argmaxb∈Bd

b.residual
19 if f .rate > b.residual +δ then
20 { f1, f2}= SPLIT( f ,b.residual, f .rate−b.residual)
21 Insert f1 into b; Add f2 to Fd by policy
22 else
23 Insert f into b
24 end
25 end
26 return Bd

Algorithm 1: Our switch-local algorithm for routing flows on fat-
tree-like networks.

that larger bins are placed into less loaded links (lines 7-10). This
ensures that the links stay balanced to within δ even after all desti-
nations have been processed, as we prove in Lemma 6.2. Figure 1
illustrates the above two ideas. In the example shown, no flows are
actually split by LocalFlow because they are accommodated by the
δ slack while PacketScatter splits every flow.

Since LocalFlow may split only a few flows, and may split a flow
over a subset of the outgoing links, possibly unevenly, we cannot
use the (load-agnostic) round-robin splitting scheme of PacketScat-
ter. Instead, we introduce a new, load-aware scheme called multi-
resolution splitting that splits traffic in a flexible manner, by in-
stalling carefully crafted rules into the forwarding tables of switches.
Along with their current rates (as measured by Step 1 of the main
control loop), these rules comprise the set F that is input to func-
tion LOCALFLOW. Multi-resolution splitting (the implementation
of SPLIT) is discussed in §5.

These changes eliminate the weaknesses of PacketScatter while
retaining its strengths. Even though LocalFlow’s splitting strategy
is load aware, it is still based on purely local measurements and
actions, which allows it to cope with traffic burstiness and unpre-
dictability. By using flow and subflow rules, LocalFlow retains
the accuracy of round-robin splitting at the cost of increased state
(see §5.3).

4.3 Handling failures and asymmetry
Perhaps surprisingly, many failures in a symmetric network can

be handled seamlessly, because they do not violate the symme-
try property. In particular, complete node failures—that is, failed
end hosts or switches—remove all shortest paths between a source-
destination pair that pass through the failed node. For example, if
switch X in Figure 2 fails, all edge switches in the pod now have
only one option for outgoing traffic: switch W. The network is still
symmetric, so LocalFlow’s optimality (Theorem 6.3) still holds. In-
deed, even PacketScatter can cope with such failures.

Partial failures—that is, individual link or port failures, includ-
ing slow (down-rated) links—are more difficult to handle, because
they violate the symmetry property. For example, consider when
switch X in Figure 1 loses one of its uplinks. PacketScatter at the
edge switches would continue to distribute traffic equally between
switches W and X, even though X has half the outgoing capacity as
W. This results in suboptimal throughput. However, with a simple
modification, LocalFlow is able to cope with this type of failure.
When switch X experiences the partial failure, other LocalFlow
controllers learn about it from the underlying link-state protocol
(which automatically disseminates this connectivity information),
or by piggy-backing over the underyling distance-vector protocol.
The upstream controllers determine the fraction of capacity lost and
use this information to rebalance traffic sent to W and X, by simply
modifying the bin sizes used in lines 14-15 of Algorithm 1. In this
case, LocalFlow sends twice as much traffic to W than X. Note that
it may not be possible to send this much traffic to W (due to link
capacity constraints), and it may even be the case that distributing
traffic equally would have fared better (e.g., if there are no com-
peting flows in the network). In general, determining the optimal
rebalancing strategy requires non-local knowledge of the current
flows. This is the cost of asymmetry.

Another advantage of LocalFlow in the above situation is that,
because it splits fewer flows than PacketScatter, fewer flows are
likely to be affected by the link failure. This can be seen in Figure 1.

Since failures in a symmetric network effectively introduce asym-
metry, a scheme similar to the one above can be used to run Local-
Flow in an asymmetric network. However, as we noted, determin-
ing the optimal link weights to use at each switch may require non-
local knowledge of the current traffic, which LocalFlow does not
have access to. disposal. We believe that simple heuristics that
should do reasonably well, however.

5. MULTI-RESOLUTION SPLITTING
Multi-resolution splitting is our spatial splitting technique for im-

plementing the SPLIT function in Algorithm 1. It splits traffic at
different granularities by installing carefully crafted rules into the
forwarding tables of emerging programmable switches [1, 34]. Fig-
ure 3 illustrates each type of rule. These rules can represent sin-
gle flows and subflows (§5.1), leading to a variant of LocalFlow
that is very accurate and time-efficient. They can also represent
“metaflows” (§5.2), or groups of flows to the same destination, lead-
ing to a variant of LocalFlow that is less accurate but more space-
efficient.1 We describe the two LocalFlow variants in §5.3.

5.1 Flows and subflows
To represent a single flow, we install a forwarding rule that ex-

actly specifies all fields of the flow’s 5-tuple. This uniquely identi-
fies the flow and thus matches all of its packets.

To split a flow into two or more subflows, we use one of two tech-
niques. The first technique extends a single-flow rule to addition-
ally match bits in the packet header that change during the flow’s
lifetime, e.g., the TCP sequence number. (Currently, OpenFlow
switches do not support matching bits of the TCP sequence number,
although its roadmap [34] suggests that functionality will appear in
an upcoming version.) To facilitate finer splitting at later switches,
we group packets into contiguous blocks of at least t bytes, called
flowlets, and split only along flowlet boundaries. Our notion of

1Since metaflow and subflow rules use partial wildcard matching, they must appear
in the TCAM of the switch, a scarcer resource. However, our simulations show that
LocalFlow minimizes the amount of splitting and hence the number of rules required.



Type Src IP Src Port Dst IP Dst Port TCP seq/counter Link

* *11 E * * 1
M * *10 E * * 2

* * E * * 3

F A u F v * 1

A x G y *0*********** 1
S A x G y *10********** 2

A x G y *11********** 3

Figure 3: Multi-resolution splitting rules (M = metaflow, F =
flow, S = subflow).

flowlets is spatial and thus different from that of FLARE [25], which
crucially relies on timing properties.

By carefully choosing which bits to match and the number of
rules to insert, we can split flows with different ratios and flowlet
sizes. Specifically, to split a flow evenly over L links with flowlet
size t, we add L forwarding rules for each possible lgL-bit string
whose least significant bit starts after bit dlg te in the TCP sequence
number.2 Since TCP sequence numbers increase consistently and
monotonically, this causes the flow to match a different rule every
t bytes. Also, since initial sequence numbers are randomized, the
flowlets of different flows are also desynchronized. Uneven split-
ting can be achieved in a similar way. For example, the subflow
rules in Figure 3 split a single flow over three links with ratios
(1/4,1/4,1/2) and t = 1024 bytes. By using more rules, we can
support uneven splits of increasing precision.

Since later switches along a path may need to further split sub-
flows from earlier switches, they should use a smaller flowlet size
than the earlier switches. In hierarchical networks like fat-trees, this
means the flowlet size should decrease as you go up the tree. For
example, edge switches in Figure 2 may use t = 2 maximum seg-
ment sizes (MSS) while aggregation switches use t = 1 MSS. In
general, smaller flowlet sizes lead to more accurate load balancing,
as our evaluation confirms.

An alternative technique that avoids the need for flowlets is to as-
sociate a counter of bytes with each flow that is split, and increment
it whenever a packet from that flow is sent. Such counters are com-
mon in OpenFlow switches [1]. The value of the counter is used in
place of the TCP sequence number in the subflow rules of Figure 3.
Since each switch uses its own counter to measure each flow, we no
longer rely on contiguous bytes (flowlets) for downstream switches
to make accurate splitting decisions. The counter method is also
appropriate for UDP flows, which do not have a sequence number
in their packet headers.

Compared to the above techniques, temporal splitting techniques
like FLARE are inherently less precise, because they rely on unpre-
dictable timing characteristics such as delays between packet bursts.
For example, during a bulk data shuffle between MapReduce stages,
there may be few if any intra-flow delays. This lack of precision
leads to load imbalances that significantly degrade throughput, as
shown in §7.6.

5.2 Metaflows
To represent a metaflow, we install a rule that specifies the des-

tination IP field but uses wildcards to match all other fields. This
matches all flows to the same target, illustrated by the third metaflow
rule in Figure 3. To split a metaflow, we additionally specify some
least significant bits (LSBs) in the source port field. In the example,

2Since TCP sequence numbers represent a byte offset, the bit string should actually
start after bit dlg(t×M)e, where M is the maximum number of bytes in a TCP segment.

the metaflow rules split all flows to target E over three links with
ratios (1/4,1/4,1/2). Note that the “all” rule is placed on the bot-
tom to illustrate its lower priority (although, unlike here, priorities
are explicit in OpenFlow); it captures the remaining 1/2 ratio.

If source ports are diverse, this scheme splits the number of flows
by the desired ratios. It may not split the total flow rate by these
ratios, however, as individual flow rates may vary. We describe how
to use metaflow rules effectively despite such inaccuracies below.

5.3 LocalFlow variants
Using the above techniques, we obtain a straightforward imple-

mentation of LocalFlow based on flow and subflow rules. When the
first packet of a flow arrives at a switch, the control plane is notified
and subsequently installs a single-flow rule for the flow. After ev-
ery scheduling interval, LocalFlow may decide to split one or more
flows. Since each forwarding rule represents one flow (in whole
or in part), and splitting is at precise, spatial boundaries (per §5.1),
LocalFlow achieves very accurate splitting. On the downside, it
requires one or more rules per flow, more than the per-destination
rules of PacketScatter.

If we forgo tracking individual flows, we can obtain a variant
of LocalFlow that is both more space-efficient and requires fewer
reactive rule installations by the control plane. Now, the control
plane becomes involved only when the switch encounters a flow to
a previously unseen destination, at which time it creates a metaflow
rule that matches all flows to the destination. Then, we use the
technique described in §5.2 to split this metaflow.

Since metaflow splitting does not split individual flows, this scheme
may not achieve the desired load balance, even after several schedul-
ing intervals. To cope with this, if the same metaflow rule has
been split more than O(log |F |) times, where |F | is an estimate
of the number of active flows, we use subflow splitting during the
next split, which is guaranteed to be accurate. The motivation for
O(log |F |) is the bad scenario where many active flows match the
metaflow rule, but only one is large (i.e., a single “elephant” among
the “mice”). Since metaflow splitting eliminates a constant frac-
tion of the number of flows in each split, after O(log |F |) splits, the
large flow will be isolated. Jose et al. [22] used a similar technique
to identify large traffic sources in wildcard flow rules.

Our evaluation of LocalFlow suggests that it splits very few flows
in practice (§7.4). Thus, we use the first variant in our evaluation,
as it is simpler, faster, and more accurate.

6. ANALYSIS
We begin by analyzing the local complexity of LocalFlow, and

then move on to our main analysis, which proves its optimality.
During each round, a LocalFlow controller executes O(|F | log |F |+

∑d |Fd | log |Fd |) = O(|F | log |F |) sequential steps if δ = 0, since
it need not sort the bins and links in lines 7-8, where |Fd | is the
number of flows to destination d. If δ > 0, the controller exe-
cutes O(|F | log |F |+ |F ||L| log |L|) steps, where |L| is the number
of outgoing links. Relative to the number of active flows, |L| can be
viewed as a constant. In terms of space complexity, the first variant
of LocalFlow described in §5.3 maintains at least one rule per flow,
while the second variant maintains at least one rule per destination.
Both of these numbers increase when flow rules are split, in a man-
ner that depends on the workload. We measure LocalFlow’s space
overhead on a real datacenter workload in §7.4.

We now show that, in conjunction with TCP, LocalFlow maxi-
mizes the total network utility (1). Since LocalFlow and TCP al-
ternately optimize their respective variables, we first show that the
“master" LocalFlow optimization adapts link flow rates f t

u,v to min-



imize the max link cost (i.e., utilization ∑t f t
u,v

cu,v
) for commodity flow

rates x∗i determined by the “slave" TCP sub-problem. Then we ex-
amine the optimality conditions for TCP and show how the “link-
balanced" LocalFlow flow rates lead to an optimal solution to the
original MCF objective.

LEMMA 6.1. If δ = 0, algorithm LocalFlow routes the min cost
MCF with fixed commodity flow rates.

PROOF SKETCH. The symmetry property from §3.3 implies that
all outgoing links to a destination lead to equally-capacitated paths.
Thus, the maximum load on any link is minimized by splitting a
flow equally over all outgoing links; this is achieved by lines 6-10
of LocalFlow. No paths longer than the shortest paths are used, as
they necessarily must intersect with a shortest path and thus add to
that path’s load.

Since we can view multiple flows with the same destination as
a single flow originating at the current switch, grouping does not
affect the distribution of flow. Repeating this argument for each
destination independently yields the min-cost flow.

When δ > 0, LocalFlow splits the total rate to a destination d
over |L| outgoing links, such that no link receives more than δ the
flow rate of another. This process is repeated for all d ∈D using the
same set of links L. Then,

LEMMA 6.2. At the end of LocalFlow, the total rate per link is
within an additive δ of each other.

PROOF. The lemma trivially holds when |L|= 1 because no split-
ting occurs. Otherwise, the proof is an induction over the destina-
tions in D. Initially there are no flows assigned to links, so the
lemma holds. Suppose it holds prior to processing a new desti-
nation. Let the total rate on the bins returned by BINPACK be
y1,y2, . . . ,yL in increasing order; let the total rate on the links be
x1,x2, . . . ,xL in decreasing order. After line 10, the total rate on
the links is x1 + y1,x2 + y2, . . . ,xL + yL. If 1 ≤ i < j ≤ L are the
links with maximum and minimum rate, respectively, then we have
(xi + yi)− (x j + y j) = (xi− x j)+ (yi− y j) ≤ δ , since yi ≤ y j and
xi − x j ≤ δ by the inductive hypothesis. The case when j < i is
similar.

Lemma 6.2 does not prevent δ -approximate splits from different
switches combining unfavorably later on. However, this scenario is
unlikely to occur in practice, and even less likely to persist.

THEOREM 6.3. LocalFlow, in conjunction with end-host TCP,
achieves the max MCF optimum.

PROOF. To show that the LocalFlow’s “link-balanced" flow rates
enable TCP to maximize the true max MCF objective (1), we turn
to the node-centric NUM formulation [8] of the TCP sub-problem,
adapted for the multi-path setting which allows flow splits.

maximize: ∑
i

Ui(xi)

∑
i

xi ∑
p:(u,v)∈p

π
p
i ≤ cu,v: ∀(u,v) ∈ E

∑
p

π
p
i = 1: ∀i

variables: xi ≥ 0

Here, LocalFlow has already computed the set of flow variables
f t
u,v which have been absorbed into the path probabilities π

p
i . Each

π
p
i determines the proportion of commodity xi’s traffic that tra-

verses path p, where p is a set of links connecting source s to

destination t. These variables are derived from the link flow rates,
π

p
i = ∏(u,v)∈p

f t
u,v

∑w:(u,w)∈E f t
u,w

, and thus implicitly satisfy the original
MCF flow and demand constraints (2).

To examine the effect of LocalFlow on the MCF objective, we
focus on the optimality conditions for TCP which solves the opti-
mization using dual decomposition [8]. In this approach, we first
form the Lagrangian L(x,λ ) by introducing dual variables λu,v, one
for each constraint.

L(x,λ ) = ∑
i

∫
f (xi)dxi−∑

u,v
λu,v

(
∑

i
xi ∑

p:(u,v)∈p
π

p
i − cu,v

)

For generality, we define the TCP utility to be a concave function
where Ui(xi) =

∫
f (xi)dxi, as in [28], and f is differentiable and in-

vertible. Most TCP utilities fall in this category. Next, we construct
the Lagrange dual function Q(λ ) maximized with respect to xi:

x∗i = f−1(β ) when
∂L
∂xi

= 0 ∀xi, β = ∑
p

π
p
i ∑
(u,v)∈p

λu,v (3)

Q(λ ) = ∑
i

(∫
f (x∗i )dx∗i − f−1(β )β

)
+∑

u,v
λu,v · cu,v

Minimizing Q with respect to λ gives both the optimal dual and
primal variables, since the original objective is concave.

∑
i

f−1(β ) ∑
p:(u,v)∈p

π
p
i = cu,v when

∂Q
λu,v

= 0, ∀(u,v) ∈ E (4)

When (4) is satisfied, the system has reached the maximum network
utility (1). TCP computes this solution in a distributed fashion using
gradient descent. End-hosts adjust their local send rates xi accord-
ing to implicit measurements of path congestion ∑(u,v)∈p λu,v and
switches update their per-link congestion prices λu,v (queuing de-
lay) according to the degree of backlog.

According to the symmetry property, all nodes at the same dis-
tance from source s along the shortest paths must have links of equal
capacity to nodes in the next level of the path tree. Thus, for all links
from a node u to nodes (v, w, etc) in the next level of a path tree, for
any source-destination pair, we have:

∑
i

f−1(β ) ∑
p:(u,v)∈p

π
p
i = ∑

i
f−1(β ) ∑

p:(u,w)∈p
π

p
i (5)

We know that the set of commodities i that traverse these links are
the same, since they are at the same level in the path tree. Thus,
we can satisfy (4) by ensuring that the per-commodity values of (5)
are equal ∀i. PacketScatter satisfies this trivially by splitting every
commodity evenly across the equal-cost links ( f s,d

u,v = f s,d
u,w):

x∗i ∑
p:(u,v)∈p

π
p
i = x∗i ∑

p:(u,w)∈p
π

p
i , ∀i

Recall that the optimal x∗i = f−1(β ), thus satisfying (5)
LocalFlow, on the other hand, groups commodities by destina-

tion when balancing flow rate across links and only splits individ-
ual commodities when necessary. However, by the same argument
for commodities, we know that the set of destinations traversing the
links will be the same as well. Thus, if we group the commodities
in (4) by destination d then the condition is satisfied when:

∑
i:s→d

f−1(β ) ∑
p:(u,v)∈p

π
p
i = ∑

i:s→d
f−1(β ) ∑

p:(u,w)∈p
π

p
i , ∀t

Since LocalFlow distributes per-destination flow evenly across equal-



cost links, f d
u,v = f d

u,w∀d, we have:

∑
i:s→d

x∗i ∑
p:(u,v)∈p

π
p
i = ∑

i:s′→d
x∗i ∑

p:(u,w)∈p
π

p
i (6)

By substituting in (3), we satisfy the per-destination optimality con-
dition for (4). Note that LocalFlow will continue to adjust flow
rates to achieve (6) in response to TCP’s optimized send rates (and
vice-versa). Since LocalFlow minimizes the max link utilization
by balancing per-destination link flow rates, it opens up additional
head room on each link for the current commodity demand x∗i to
grow. At the faster timescale TCP maximizes its demand objective
to consume the additional capacity. The process continues until the
network converges to an optimal utility (1).

7. EVALUATION
In this section, we evaluate LocalFlow to demonstrate its practi-

cality and to justify our theoretical claims. Specifically, we answer
the following questions:

• Does LocalFlow achieve optimal throughput? How does it
compare to Hedera, MPTCP, and other schemes? (§7.2)
• Does LocalFlow tolerate network failures? (§7.3)
• Given the potential for larger rule sets, how much forwarding

table space does LocalFlow use? (§7.4)
• Do smaller scheduling intervals give LocalFlow an advantage

over centralized solutions (e.g., Hedera)? (§7.5)
• Is spatial flow splitting better than temporal splitting (e.g., as

used by FLARE)? (§7.6)
• How well does LocalFlow manage packet reordering compared

to PacketScatter, and what is its effect on flow completion
time? (§7.7)
• When are end-host solutions (e.g., MPTCP) preferable to Local-

Flow? (§7.8)

We use different techniques to evaluate LocalFlow’s performance,
including analysis (§6, §7.8) and simulations on real datacenter traf-
fic (§7.4), but the bulk of our evaluation (§7.2-§7.7) uses a packet-
level network simulator. Packet-level simulations allow us to isolate
the causes of potentially complex behavior between LocalFlow and
TCP (e.g., due to flow splitting), to test pessimistic scenarios that
are difficult to construct in practice, and to facilitate comparison
with prior work. In fact, we used the same simulator codebase as
MPTCP [32, 36], allowing direct comparisons.

7.1 Implementation and experimental setup
Simulations. We developed two simulators for LocalFlow. The
first is a stand-alone simulator that runs LocalFlow in isolation on
pcap packet traces. We used the packet traces collected by Benson
et al. [5] from a university datacenter switch. To stress the algo-
rithm, we simulated the effect of larger flows by constraining the
link bandwidth of the switch.

Our second simulator is based on htsim, a full packet-level net-
work simulator written by Raiciu et al. [32, 36]. The simulator mod-
els TCP and MPTCP in similar detail to ns2, but is optimized for
larger scale and high speed. It includes an implementation of Hed-
era’s First Fit heuristic [3]. We modified and extended htsim to
implement the LocalFlow algorithm.

The htsim simulator models arbitrary networks using pipes (that
add delays) and queues (with fixed processing capacity and finite
buffers). We added a switch abstraction that groups queues together
and maintains a forwarding table for routing. The forwarding ta-
ble supports the multi-resolution splitting rules defined in §5; these

rules are manipulated by LocalFlow every scheduling interval, in-
dependently for each switch. For subflow rules, we used the flowlet
technique instead of counters. We did not use metaflow rules in our
experiments, partly encouraged by the results in §7.4, which show
that LocalFlow’s space utilization is modest.

We allowed the duplicate-ACK (dup-ACK) threshold of end-host
TCP to be modified (the default is 3), but otherwise left end hosts
unchanged. Changing the threshold is easy in practice: on Linux,
for example, one simply writes to the proc filesystem at /proc/sys/
net/ipv4/tcp_reordering.
Topologies. We ran our experiments on the different fat-tree-like
topologies described in §3, including:

• FatTree topology built from k-port switches [2]. We used 1024
hosts (k = 16) when larger simulations were feasible, and 128
hosts (k = 8) hosts for finer analyses.

• VL2 topology [19]. We used 1000 hosts with 50 ToR, 20 ag-
gregation, and 5 intermediate switches. Inter-switch links have
10 times the bandwidth of host-to-ToR links.

• Oversubscribed topologies, created by adding more hosts to
edge/ToR switches in the above topologies. We used a 512-
host, 4:1 oversubscribed FatTree network (k = 8).

All our networks were as large or larger than those used by Raiciu
et al. [32] for their packet-level simulations. Unless otherwise spec-
ified, we used 1000-byte packets, 1Gbps links (10Gbps inter-switch
links for VL2), queues of 100 packets, and 100µs-delay pipes be-
tween queues.
TCP NewReno variants. We noticed in our simulation experi-
ments that flows between nearby hosts of a topology sometimes
suffered abnormally low throughput, even though they did not no-
ticeably affect the average. We traced this problem to the NewReno
variant used by htsim, called Slow-but-Steady [15], which causes
flows to remain in fast recovery for a very long time when network
round-trip times are low, as in datacenters and especially between
nearby hosts. RFC 2582 [15, §4] suggests an alternative variant of
NewReno for such scenarios called Impatient. After switching to
this variant, the low-throughput outliers disappeared.

7.2 LocalFlow achieves optimal throughput
7.2.1 MapReduce-style workloads

We ran LocalFlow on a 1024-host FatTree network using a ran-
dom permutation traffic matrix of long flows, i.e., each host sends a
flow to one other host chosen at random without replacement. This
workload can be satisfied at maximum speed on a FatTree given its
full bisection bandwidth. We used a scheduling interval of 50ms
and a dup-ACK threshold of 10 to accommodate reordering; these
parameters are discussed later. We also ran PacketScatter, ECMP,
Hedera with a 50ms scheduling interval, and MPTCP with 4 and 8
subflows per flow. Note that 50ms is an extremely generous inter-
val for Hedera’s centralized scheduler, being one to two orders of
magnitude smaller than what it can actually handle [3, 32].

Figure 4 shows the throughput of individual flows in increasing
order, with the legend sorted by decreasing average throughput.
As expected, LocalFlow achieves near-optimal throughput for all
flows, matching the performance of PacketScatter to within 1.4%.
LocalFlow’s main benefit over PacketScatter is that it splits fewer
flows when there are multiple flows per destination, as we show
later. Although LocalFlow-NS attempts to distribute flows locally,
it does not split flows and so cannot avoid downstream collisions.
It is also particularly unlucky in this case, performing worse than
ECMP (typically their performance is similar).
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MPTCP with 8 subflows achieves an average throughput that is
8.3% less than that of LocalFlow, and its slowest flow has 45%
less throughput than that of LocalFlow. MPTCP with 4 subflows
(not shown) performs substantially worse, achieving an average
throughput that is 21% lower than LocalFlow. This is because there
are fewer total subflows in the network; effectively, it throws fewer
balls into the same number of bins. ECMP has the same problem
but much worse because it throws N balls into N bins; this induces
collisions with high probability, resulting in an average throughput
that is 44% less than the optimal. For the remainder of our analy-
sis, we use 8 subflows for MPTCP, the recommended number for
datacenter settings [32].

Hedera’s average throughput lies between MPTCP with 4 sub-
flows and 8 subflows, but exhibits much higher variance. Although
not shown, Hedera’s variance was ±28%, compared to ±14% for
MPTCP (4). In general, Hedera does not cope well with a ran-
dom permutation workload, which sends flows along different path
lengths (most reach the core, some only reach aggregation, and a
few only reach edge switches).

If instead we guarantee that all flows travel to the core before de-
scending to their destinations, Hedera performs much better. Fig-
ure 5 shows the results of a stride(N/2) permutation workload,
where host i sends a flow to host i+N/2. All algorithms achieve
higher throughput, and Hedera comes close to LocalFlow’s perfor-
mance, though its slowest flow has 49% less throughput than that
of LocalFlow. Further, forcing all traffic to traverse the core incurs
higher latency for potentially local, and yields performance in more
oversubscribed settings. In fact, significant rack- or cluster-local
communication is common in datacenter settings [5, 26], suggest-
ing larger benefits for LocalFlow.

It may seem surprising that LocalFlow-NS has the highest av-
erage throughput in Figure 5, but this is due to the uniformity of
the workload. LocalFlow-NS distributes the flows from each pod
evenly over the core switches; since these flows target the same
destination pod, the distribution is perfect. A similar effect arises
when running a random permutation workload on the 1000-host
VL2 topology, per Figure 6. In a VL2 network, aggregation and in-
termediate switches form a complete bipartite graph, thus it is only
necessary to distribute the number of flows evenly over interme-
diate switches, which LocalFlow-NS does. In fact, LocalFlow-NS
achieves optimal throughput for any permutation workload.

7.2.2 Dynamic, heterogeneous workloads
Real datacenters are typically oversubscribed, with hosts sending

variable-sized flows to multiple destinations simultaneously. Using
a 512-host, 4:1 oversubscribed FatTree network, we tested a realis-
tic workload by having each host select a number of simultaneous

Total throughput, average flow completion time

ECMP 0.0%, 0.0% LF-1 +6.7%, −0.2%
Hedera −7.2%, −17.0% LF-1 (δ =0.01) +10.9%, −2.2%
MPTCP +6.0%, +28.7% LF-1 (δ =0.05) +7.2%, −1.0%
PS +12.7%, +10.4% LF-NS (δ =1) +6.6%, −1.9%

Figure 7: Total throughput and average flow completion time
relative to ECMP, for a heterogeneous VL2 workload on a 512-
host, 4:1 oversubscribed FatTree.

flows to send from the VL2 dataset [19, Fig. 2],3 with flow sizes
also selected from this dataset. The flows ran in a closed loop, i.e.,
they restarted after finishing (with a new flow size). We ran Local-
Flow with a 10ms scheduling interval and also allowed approximate
splitting (δ > 0). We used a 10ms scheduling interval for Hedera
as well, even though this interval is one to two orders of magnitude
smaller than Hedera can handle [3, 32]. Figure 7 shows results for
the total throughput (total number of bytes transferred) and average
flow completion times (which we discuss later in §7.7).

Using the VL2 distributions, there are over 12,000 simultaneous
flows in the network. With this many flows, even ECMP’s load-
agnostic hashing should perform well due to averaging, and we ex-
pect all algorithms to deliver similar throughput; Figure 7 confirms
this. Nevertheless, there are some interesting points to note.

First, LocalFlow-NS outperforms ECMP because it intelligently
distributes flows, albeit locally. In fact, its performance is almost
as good as LocalFlow due to the large number of flows. LocalFlow
does not appear to gain much from exact splitting. We believe this is
because over 86% of flows in the VL2 distribution are smaller than
125KB; such flows are small enough to complete within a 10ms
interval, so it may be counterproductive to move or split them mid-
stream. On the other hand, splitting too approximately (δ = 0.05)
also hurt LocalFlow’s performance, because of the slight load im-
balances incurred. δ = 0.01 strikes the right balance for this work-
load, achieving close to PacketScatter’s performance. All Local-
Flow variants outperform MPTCP.

Hedera achieves 7.17% less throughput than ECMP. This is likely
due to the small flows mentioned above, which are large enough to
be scheduled by Hedera, but better left untouched. In addition, since
Hedera reserves bandwidth along a flow’s path, this bandwidth may
go to waste after the flow completes but before the next scheduling
interval starts.

7.3 LocalFlow handles failures gracefully
Although PacketScatter’s throughput is competitive with Local-

Flow above, this is not the case when network failures occur. As dis-

3We obtained the VL2 distributions by extracting plot data from the paper’s PDF file.
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Figure 8: Individual flow throughputs for a random permuta-
tion on a 128-host FatTree network with failed links.

cussed in §4.3, if an entire switch fails, or if failures are spread uni-
formly throughout the network, PacketScatter is competitive with
LocalFlow. However, if failures are skewed, as is expected in prac-
tice, PacketScatter’s performance suffers drastically. Figure 8 shows
the results of a random permutation on a 128-host FatTree network,
when one aggregation switch (out of four) in each pod loses 3 of
its 4 uplinks to the core. Upon learning of the failure, LocalFlow
at the edge switches rebalances most outgoing traffic to the three
other aggregation switches. From Figure 8, we see that LocalFlow
and MPTCP deliver near-optimal throughput, whereas PacketScat-
ter performs even worse than ECMP, achieving only 48% of the
average throughput LocalFlow achieves.

7.4 LocalFlow uses little forwarding table space
LocalFlow distributes the aggregate flow to each destination, so

if several flows share the same destination, the number of subflows
(splits) per flow is small. With approximate splitting, even fewer
flows are split due to the added slack. This is important because
splitting flows increases the size of a switch’s forwarding tables.

To evaluate how much splitting LocalFlow does in practice, we
ran our stand-alone simulator on a 3914-second TCP packet trace
that saw 259,293 unique flows, collected from a 500-server univer-
sity datacenter switch [5]. We used a scheduling interval of 50ms
and different numbers of outgoing links, while varying δ . Figure 9
(top) shows these results as a function of δ . Although LocalFlow
splits up to 78% of flows when δ = 0 (using 8 links), this number
drops to 21% when δ = 0.01 and to 4.3% when δ = 0.05. Thus, a
slack of just 5% results in 95.7% of flows remaining unsplit! This is
a big savings, because such flows do not require wildcard matching
rules, and can thus be placed in an exact match table in the cheaper,
more abundant, and more power-efficient SRAM of a switch.

The average number of subflows per flow similarly drops from
3.54 when δ = 0 to 1.09 when δ = 0.05 (note the minimum is 1
subflow per flow). This number more accurately predicts how much
forwarding table space LocalFlow will use, since it counts the total
number of rules required. Thus, using 8 links and δ = 0.05, Local-
Flow uses about 9% more forwarding table space than LocalFlow-
NS, which only needs one rule per flow. Although PacketScatter
creates almost 8 times as many subflows, recall that it only needs to
store a small amount of state per destination, of which there are at
most 500 in this dataset. As we will later see, PacketScatter pays for
its excessive splitting in the form of longer flow completion times.

7.5 Smaller scheduling intervals improve per-
formance, up to a limit

The previous experiments suggest that real workloads contain
many short-lived flows. This is partly due to small flows, but even
larger flows can complete in under a second in high-bandwidth data-
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Figure 9: Fraction of flows split (top) and average number of
subflows per flow (bottom) by LocalFlow for different numbers
of outgoing links, compared to other protocols, using a 3914-
second trace from a real datacenter switch.

centers. In order to adapt quickly to these workloads, small schedul-
ing intervals are necessary.

To measure the effect of scheduling interval size, we used a 128-
host FatTree network running a random permutation with closed-
loop flow arrivals. Flow sizes were selected from the VL2 dataset as
before. Figure 10 shows the total throughput relative to ECMP for
different scheduling intervals. Both Hedera and LocalFlow improve
with smaller intervals, increasing 46% and 105%, respectively, as
the interval is decreased from 1s to 1ms. LocalFlow’s improvement
is dramatic: it outperforms MPTCP at 10ms and, remarkably, out-
performs PacketScatter at 1ms by over 7.7%. Hedera never outper-
forms MPTCP and its improvement is more gradual. This is partly
due to the problem of overscheduling small flows, as we observed
in Figure 7.4 Of course, Hedera’s centralized batch coordination
makes such small intervals infeasible; Raiciu et al. experimentally
evaluated Hedera with 5s intervals and argued analytically that, at
best, 100ms intervals may be achievable.

The fact that LocalFlow outperforms PacketScatter is significant:
it shows that splitting every flow can be harmful, since it exacer-
bates reordering. In contrast, LocalFlow may never even see a flow
that starts and finishes within a scheduling interval. Since Local-
Flow behaves more and more like PacketScatter as the scheduling
interval tends to 0, it is important to place a lower bound on this
interval, e.g., a few milliseconds.

7.6 Spatial splitting outperforms temporal
LocalFlow uses a precise, spatial splitting technique—based on

either flowlets or counters—that is oblivious to the timing char-
acteristics of a flow. Thus, it achieves precise load balancing de-
spite traffic unpredictability, unlike temporal splitting techniques
like FLARE. Load imbalances may arise in other techniques as
well, such as Hedera’s use of bandwidth reservations, or the ran-
dom choices of stateless PacketScatter and its variants [13].

Our experiments showed that even slight load balances can sig-
nificantly degrade throughput, especially for workloads that satu-
rate the network’s core. For example, we ran LocalFlow on a 128-
host FatTree network using a random permutation, but chose an

4We note that our results are slightly different from those reported by Raiciu et al. [32,
Fig. 13]. We believe this is due to their coarser approximation of the VL2 distribution.
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outgoing link at random for each packet (according to the splitting
ratios), instead of based on the packet’s sequence number. We also
ran a stateless variant of PacketScatter, which selects a random out-
going link for each packet. Both of these schemes simulate tem-
poral splitting because they achieve the desired splitting ratios on
average in the long term, but due to randomness, exhibit load im-
balances in the short term.

Figure 11 shows the results. The average throughput of flows
using LocalFlow drops by 17% with temporal splitting; Packet-
Scatter’s performance drops by 14%. We also tested the effect of
using a larger flowlet size with LocalFlow (the results that follow
do not apply if counters are used to implement subflow splitting).
Recall from §5.1 that flowlets facilitate finer splitting downstream,
so higher switches in the FatTree should use smaller flowlets then
lower switches. If instead we use a flowlet size of t = 4 MSS at all
switches, LocalFlow’s performance drops by 31% with temporal
splitting. This is because the penalty of imprecise load balancing is
higher when the scheduling unit is larger.

It is interesting that LocalFlow’s performance itself drops slightly
when using a larger flowlet. The reason for this is fundamental:
even though splitting is spatial within a flow, the presence of other
flows in the network introduces some temporal randomness. In fact,
one of our modifications to htsim was to fix a bug in the existing
implementation of PacketScatter [32], where an incorrect ordering
of loops resulted in flowlets of size larger than 1 between edge/ToR
and aggregation switches (instead of true packet spraying), causing
similar performance degradations.

7.7 LocalFlow manages reordering and flow
completion time better than PacketScatter

A major concern with splitting flows is that it may lead to in-
creased packet reordering. Fortunately, we found that by simply in-
creasing the duplicate-ACK threshold of end hosts’ TCP, we could
eliminate the adverse effects of reordering. Indeed, all of the ex-
periments so far use a dup-ACK threshold of 10 for LocalFlow and
PacketScatter, instead of the default of 3. One could also vary the
threshold dynamically, as in RR-TCP [39], although we did not find
this to be necessary in our experiments.

Although a higher dup-ACK threshold benefits both LocalFlow
and PacketScatter, LocalFlow gains an advantage by splitting many
fewer flows in practice. As Figure 9 shows, LocalFlow splits fewer
than 4.3% of flows on a real datacenter switch trace. Put differently,
over 95.7% of flows were not split and hence incurred no additional
reordering. Further, small flows that complete inside a scheduling
interval are not scheduled by LocalFlow; this gave LocalFlow a
throughput advantage over PacketScatter in Figure 10, where the
workload involved flow sizes from the VL2 distribution.

We now consider the approaches’ flow completion time, which
is sensitive to reordering. Recall that Figure 7 tests a heterogenous
VL2 workload with thousands of simultaneous flows that are mostly
smaller than 125KB. As the figure shows, the average flow comple-
tion time of all variants of LocalFlow is lower than ECMP, while de-
livering higher throughput. In contrast, although PacketScatter also
delivers higher throughput, its average completion time is 10.4%
higher than ECMP. MPTCP’s performs even worse at 28.7% higher
than ECMP, likely due to its overhead from splitting small flows.
Hedera’s numbers are interesting: it delivered lower throughput but
achieved 17.0% lower completion time than ECMP. This is likely
due to the fact that Hedera reserves bandwidth for a flow for the
duration of a scheduling interval, ensuring that the flow completes
quickly. However, since flows often complete before the scheduling
interval ends, the reserved bandwidth may be wasted while waiting
for the next interval to start.

7.8 Discussion: Comparing LocalFlow to end-
host solutions

The previous experiments show that LocalFlow outperforms MPTCP.
However, Raiciu et al. [32] describe three scenarios where MPTCP
outperforms PacketScatter. Since PacketScatter can be viewed as a
naïve version of LocalFlow, some of these criticisms may be rele-
vant to LocalFlow, so we consider them here.

In the first scenario, one-third of the hosts in a 4:1 oversubscribed
FatTree network send continuous flows, saturating the core, while
the remaining hosts periodically send short flows always using ECMP.
If a short flow intersects any of the paths used by PacketScatter for a
flow, the entire flow backs off, whereas MPTCP’s linked congestion
control moves the flow to other paths. However, the assumption that
short flows only use ECMP seems unjustified to us; PacketScatter
(or LocalFlow) could split even these flows, resulting in superior
performance to MPTCP. In fact, we saw this in Figures 7 and 10
using the VL2 workloads, which contain many small flows.

In the second scenario, a “hotspot” arises in the network due to
a faulty link that operates at a lower rate (e.g., at 100Mbps instead
of at 1Gbps). While slow or failed links may degrade PacketScat-
ter’s performance, LocalFlow can cope with these failures using the
scheme described in 4.3.

The third scenario described are networks with variable-length
paths. We agree that LocalFlow’s performance may suffer in such
settings. However, splitting flows over unequal paths has other
problems not addressed in [32]; for example, it leads to increased
queuing at the destination as packets from faster paths arrive out-



of-order. This consumes memory resources proportional to the flow
rate times the latency difference between the paths.

MPTCP is suitable in more general settings than LocalFlow, as
its co-designed congestion control adapts to asymmetric topologies,
such as the wide-area Internet. However, for symmetric networks
like in most datacenter environments, LocalFlow shows that a lo-
cal algorithm can achieve near-optimal routing, and do so without
modifying end hosts.

8. CONCLUSIONS
This paper introduces a practical, switch-local algorithm for rout-

ing traffic flows in datacenter networks in a load-aware manner.
Compared to prior solutions, LocalFlow does not require central-
ized control, synchronization, or end-host modifications, while in-
curring modest forwarding table expansion. Perhaps more impor-
tantly, LocalFlow achieves optimal throughput in theory, and near-
optimal throughput in practice, as our extensive simulation analysis
shows. Our experiments revealed several interesting facts, such as
the benefits of precise, spatial splitting over temporal splitting, and
the impact of reordering on flow completion times.

Beyond its technical benefits, the design of LocalFlow illustrates
two interesting research directions. First, rather than try to provide
a general solution to the multi-commodity flow problem, Local-
Flow takes advantage of certain symmetry properties of datacen-
ter networks—namely, the balanced structure of fat-trees and other
Clos topologies, both in terms of network distance and capacity.
Second, LocalFlow can be realized on commodity hardware by
leveraging emerging standards for configuring their data plane. While
the most popular of these standards, OpenFlow, is designed for cen-
tralized network control, LocalFlow demonstrates using this pro-
grammability in a purely switch-local, or decentralized, fashion.
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