
Rehoming Edge Links for Better Traffic

Engineering

Eric Keller, Michael Schapira, Jennifer Rexford

Princeton University

ekeller@princeton.edu, ms7@cs.princeton.edu, jrex@cs.princeton.edu

Abstract—Traditional traffic engineering adapts the routing
of traffic within the network to maximize performance. We
propose a new approach that also adaptively changes where
traffic enters and leaves the network—changing the “traffic ma-
trix”, and not just the intradomain routing configuration. Our
approach does not affect traffic patterns and BGP routes seen in
neighboring networks, unlike conventional inter-domain traffic
engineering where changes in BGP policies shift traffic and
routes from one edge link to another. Instead, we capitalize on
recent innovations in edge-link migration that enable seamless
rehoming of an edge link to a different internal router in an ISP
backbone network—completely transparent to the router in the
neighboring domain. We present an optimization framework
for traffic engineering with migration and develop algorithms
that determine which edge links should migrate, where they
should go, and how often they should move. Our experiments
with Internet2 traffic and topology data show that edge-link
migration allows the network to carry 18.8% more traffic (at
the same level of performance) over optimizing routing alone.

I. INTRODUCTION

The rapid growth of online services, from video streaming

to 3D games and virtual worlds, is placing tremendous

demands on the underlying networks. ISP backbone networks

carry more traffic than ever. To address these challenges,

network operators do traffic engineering (TE). Traditionally,

traffic engineering involves tuning routing-protocol param-

eters to control how traffic is routed across the network,

to optimize performance and use network resources effec-

tively. Thus, today’s traffic engineering adapts routing within

the network for a given traffic matrix, i.e., the volume

of traffic between fixed traffic ingress and egress points.

Traditional traffic engineering assumes that the locations of

traffic sources and sinks cannot change over time. Recent

innovations challenge this approach.

A recently proposed mechanism—“router grafting” [1]—

allows an ISP to dynamically rehome its ends of links to

neighboring networks. For example, an ISP could move a

customer that connects in New York to a different router in

nearby New Jersey, transparently to the customer. With this

capability, traffic engineering can go beyond adapting the

routing protocol to control where traffic enters and exits the

network. In effect, an ISP now has the power to change the

traffic matrix without disrupting its neighbors. The flexibility

enabled by router grafting gives rise to new possibilities

in traffic engineering. Dynamically relocating traffic end-

points can redirect traffic to decrease the traffic traversing

a congested bottleneck, or capitalize on unused bandwidth.

In this paper, we introduce traffic engineering with migra-

tion, and present a framework that addresses the following

questions:

• How much can traffic engineering with edge-link mi-

gration improve over traditional traffic-engineering tech-

niques?

• Which edge links should migrate, and where should they

migrate to?

• How often should traffic edge links migrate?

• Can a “good” placement of edge links be computed

efficiently?

We present and analyze traffic engineering with migration

in the context of edge-link migration via router grafting in

backbone ISP networks.

A. Edge-Link Migration via Router Grafting

An ISP network connects to neighboring networks (cus-

tomers, peers, or providers) at its perimeter. To establish a

link to another network, the ISP selects one of its routers

to connect to the adjacent network. Traditionally, the link

remains fixed unless there is significant reason for change.

This is because changing to a different internal router in real

time can be extremely disruptive to the Border Gateway Pro-

tocol (BGP) session with the neighboring network, requiring

significant coordination such as scheduling a maintenance

window. During the transition period, data packets may be

lost or delivered out of order, and routers throughout the

Internet receive additional BGP update messages.

New mechanisms for rehoming links make the change

transparent [1], [2]. Router grafting [1] enables an ISP to

move its end of the link without disrupting user performance

and without coordination with the neighboring network; the

earlier RouterFarm [2] does so with slight downtime. Router

grafting rehomes the layer-three link (through signaling in

the programmable transport network), migrates the local

end-point of the TCP connection to the neighbor’s router,

and transparently transfers the routing-protocol state to a

different internal router. Router grafting has no impact on the

neighboring network—the neighbor is not aware that grafting

has happened, and sees no change in where traffic enters or

leaves its own routers. This is in sharp contrast to traditional

inter-domain traffic engineering, where an ISP changes its

BGP policies to shift traffic from one edge link to another—

triggering both BGP update messages and changes in where

traffic enters or leaves neighboring networks [3]–[6].

2

Router grafting enables an ISP to migrate a link within a

few seconds without disruption, allowing network operators

to change the ingress and egress points for traffic in real time.

The overhead of router grafting is relatively low. Grafting

involves the export of state from one router, the transference

of state, and the import of state at another router. Changing

the network topology requires some routers to repeat the

route-selection process, leading to a temporary increase in

CPU load. In addition, some routers may change their routing

decisions, leading to a temporary increase in BGP update

messages. These overheads are short-lived, and do not disrupt

the flow of data traffic. As such, network operators can afford

to make periodic adjustments to where they terminate the

links to neighboring networks.

B. Traffic Engineering with Edge-Link Migration

We develop techniques to determine which edge-links

should migrate, to where, and how often. We first present

a formal framework for traffic engineering with edge-link

migration. We show that finding the optimal solution, or even

a reasonable approximation of the optimal solution, in this

new traffic-engineering setting is computationally intractable.

We then present two relatively simple heuristics for traffic

engineering with edge-link migration and show that they

offer significant performance improvements in practice. Our

experiments with Internet2 traffic and topology data show

that migration would enable the network to carry 18.8%more
traffic at the same level of performance. Importantly, we can

achieve close to this level of improvement without frequently

re-optimizing the topology—performing this re-optimization

every 12 hours still sees a nearly 15% improvement. Simi-
larly, only a small fraction of links need to be migrated in

each interval. Migrating about 10% of the links results in the

full improvement, but migrating less than 5% of the links still

achieves 95% of the benefits.

Organization. After a brief review of traditional traffic

engineering, we introduce traffic engineering with migration

in Section II. Section III shows that computing an optimal

solution is hard, and presents two heuristics for traffic engi-

neering with migration. Section IV presents our experimental

evaluation of both of these heuristics. We wrap up with a

presentation of related work in Section V, and conclusion in

Section VI.

II. TRAFFIC ENGINEERING MODEL

A. Traffic Engineering Today

In traditional traffic engineering, the network is repre-

sented by a directed graph G = (V,E), where the vertex
set V represents routers, and the edge set E represents the

links. Every edge e ∈ E has capacity ce > 0. We are also
given a traffic matrix D = {dij}i,j∈V , where entry dij ≥ 0
is the amount of traffic that vertex i wishes to send vertex

j. The goal is to distribute flow across the paths from i to j

to minimizing total link usage (TLU).

Fig. 1. Network model for traffic engineering with migration.

TLU minimization reflects a common goal in ISP net-

works [7]. Each link e has a “cost” that reflects its level of

congestion, where lightly-loaded links are “cheap” and links

become exponentially more “expensive” as the link becomes

heavily loaded. The cost function φe specifies the cost as

a function of fe (the total flow traversing the edge) and ce
(the edge capacity). Every φe is a piecewise linear, strictly

increasing and convex function. We use the cost function

from [7], shown below:

φe(fe, ce) =







































fe 0 ≤ fe
ce

< 1
3

3fe −
2
3ce

1
3 ≤ fe

ce
< 2

3

10fe −
16
3 ce

2
3 ≤ fe

ce
< 9

10

70fe −
178
3 ce

9
10 ≤ fe

ce
< 1

500fe −
1468
3 ce 1 ≤ fe

ce
< 11

10

5000fe −
16318

3 ce
11
10 ≤ fe

ce
< ∞

The goal is to distribute the entire demand between every

pair of vertices in a manner that minimizes the sum of all

link costs (i.e., Σe∈E φ(fe, ce)). (Observe that the flow along
an edge can exceed the edge’s capacity.) TLU minimization

can be formulated as minimum-cost multicommodity flow and

is thus computable using existing algorithms for computing

multicommodity flows. Realizing this objective in practice

can be done via MPLS and a management system that

solves the optimization problem and installs the resulting

paths. Network operators often take the indirect approach of

tuning Interior Gateway Protocol (IGP) weights to closely

approximate the optimal distribution of the traffic [7].

B. Migration-Aware Traffic Engineering

We now extend the traffic-engineering model in Sec-

tion II-A to incorporate migration. Table I summarizes the

notation.

Distinguishing users from network nodes: In our model for

traffic engineering with migration, the network (see Figure 1)

is represented by a directed graph G = (V,E), where the
vertex set V is the union of two disjoint subsets, U and

N . U is the set of network users, that is, originators and

receivers of traffic, and N is the the set of network nodes,

that is, the routers in the network. The term “users” here

refers to users of the network and not to end-users. In an ISP

network, the set of users U represents routers in neighboring

3

Notation Description

G Network graph G = (V, E)
V Network vertex, union of U and N
E Network edge, union of EU and EN

U Set of network users
N Set of network nodes
EU Subset of edges that connect user u ∈ U to network

nodes in N , EU ⊆ U ×N
EN Subset of edges that connect network node n ∈ N to

network nodes in N , EN ⊆ N ×N
ce capacity of edge e ∈ E
Lu Potential links, Lu ⊆ EU

D Demand matrix, D = {dij}i,j∈U

dij Amount of traffic that user i wishes to send user j
φe cost function used in TLU minimization, function of

fe/ce
fe Total flow traversing the edge e

TABLE I
SUMMARY OF NOTATION USED IN MODEL OF TRAFFIC ENGINEERING

WITH MIGRATION.

networks (“adjacent routers”) and the set of network nodesN

represents the routers in the ISP’s internal network (“internal

routers”).

User edges are potential links: To capture the ability

to migrate, we introduce the notion of potential links that

represent the locations where the user can possibly connect

to the network. The edge set E is the union of two disjoint

subsets, EU and EN , where EU ⊆ U ×N is the subset of

edges connecting users to network nodes, and EN ⊆ N ×N

is the subset of edges connecting network nodes to other

network nodes. Each edge e ∈ EN has capacity ce ≥ 0,
which measures the amount of flow that can traverse edge

e. We impose no capacity constraints on the edges in EU

(that is, these edges have infinite capacity). We call the set

of all edges Lu ⊆ EU that connect user u ∈ U to network

nodes in N “the set of u’s potential links” (that is, ∀u ∈ U ,

Lu = {e = (u, v)| e ∈ EU}).
In ISP networks, the set of potential links Lu for each

adjacent router (user) u represents the points at which u can

connect to the ISP network. This can, in practice, depend

on the underlying transport network that can, for example,

limit a user to connecting only to network nodes in nearby

geographical regions. In addition, the set of potential links

can reflect latency considerations, e.g., it is beneficial to

home frequently-communicating users near each other.

Demand matrix is user-to-user: Our model distinguishes

network users from network nodes, and our demand matrix

captures this distinction; we are now given a demand matrix

D = {dij}i,j∈U , where each entry dij specifies the amount

of traffic user i wishes to send user j.

Each user must use a single potential link: The high-level

goal is, for every pair of users i and j such that dij > 0,
to distribute flow from i to j between the routes from i to

j in G, subject to the constraint that every user can only

connect to the network via a single link. That is, for every

user u ∈ U , traffic flowing from that user to the other users,

and vice versa, can only traverse a single edge in Lu; traffic

along all other edges in Lu must be 0. When optimizing the
flow of traffic through the network we again consider the

TLU minimization objective function.

C. Practical Considerations

Naturally, our formal framework does not capture all the

constraints that could arise in practice. We now present

several such constraints and discuss how these can be in-

corporated into our model. We revisit some of these in later

sections and leave the others as interesting directions for

future research.

Cost of migration. Our framework does not model the cost

of migration (in terms of processing, offline time, and more),

yet this is expected to be a consideration in practice; we

present some indication of the impact of this cost, based on

experiments with Internet2 data, in Section IV-E. We can

incorporate that cost into our model as follows. The input

will include, in addition to the other components, an edge

eu ∈ Lu, for every user u ∈ U , that represents the link

that user u is currently using to connect to the network, and

also costs associated with changing each user u’s current

connection edge to other edges in Lu.

Router limitations. Other practical considerations are the

physical limitations of the individual vertices in the network,

including the number of links that each vertex can support,

and also the capacity of the node (in terms of processing,

memory, bandwidth, etc.). This can be incorporated into

our model through additional constraints (e.g., limits on the

number of incoming links per node, node-capacity functions

dependent on incoming traffic amount, etc.).

Multi-homed users. We did not model the case that users

are multi-homed, that is, that users connect to the network

at more than one location. This alters our constraint that a

single potential link must be chosen per user. To incorporate

this into our model we can introduce a variable for each user

u that specifies how many links in Lu that user is allowed

to send/receive traffic along. It also adds the complexity that

changing the ingress point may alter the egress point (i.e.,

“hot-potato routing” [8]), thus changing the traffic matrix

beyond the change introduced with migration. The design

and evaluation of heuristics/algorithms for this more general

environment is left for future work.

III. TWO EDGE-LINK MIGRATION HEURISTICS

Ideally, we would be able to find a TLU-minimizing

solution in which each user sends/receives traffic along a

single potential link in a computationally-efficient manner.

Unfortunately, we prove that finding an optimal solution

is NP-hard and that even well-approximating the optimal

solution is intractable. We thus seek heuristics which fare

well in practice. We present two heuristics—the max-link

heuristic and the cluster-user heuristic. We experimentally

evaluate these heuristics in Section IV.

4

Fig. 2. Example network for proof of NP hardness.

A. “Good” Solutions are Hard to Compute!

Computing an optimal solution is hard. In the traditional

traffic-engineering setting (see Section II-A), where migra-

tion is not considered, existing algorithms for computing

multicommodity flow provide the optimal solution in a

computationally-efficient manner. Unfortunately, we show

that computing the multicommodity flow in our “TE with

migration” setting is computationally intractable. In fact, this

is true even when every user has at most two potential links.

Theorem 3.1: Minimizing TLU subject to the restriction

that each user send/receive traffic along a single potential

link is NP-hard even when |Lu| ≤ 2 for every user u.

Proof: We show a reduction from the NP-hard PARTI-

TION problem. In PARTITION, the input is a set of positive

numbers S = {a1, . . . , an} and the objective is to determine
whether this set of numbers can be partitioned into two

disjoint subsets of numbers, S1 and S2, such that the sum of

the numbers in each of the subsets is the same (and hence

equals precisely Σiai

2). Given an input to PARTITION, we

construct a network as described in Figure 2. The vertex set

consists of the three network nodes N = {A,B,C} and also
of a set of users U = [n] ∪ {d}. Each user i ∈ [n] aims to
send ai

3 units of traffic to user d and can connect to the

network at nodes A and B. User d connects to the network

at node C. Let the capacity of both network edges (A,C)
and (B,C) be Σiai

2 .

Now, observe that if there is a way to partition S into two

disjoint subsets, S1 and S2, such that the sum of elements

in each subset is the same, then it is possible to send all

traffic to d while utilizing exactly a third of the capacity

of both (A,C) and (B,C); simply connect all users whose
corresponding numbers lie in S1 at A and all users whose

corresponding numbers lie in S2 at B. However, observe

that in the event that S cannot be partitioned into S1 and

S2 as above, then more than a third of the capacity of either

(A,C) or (B,C) must be exceeded, resulting in a higher
TLU value. Thus, an optimal multicommodity flow solution

in our TE setting will enable us to distinguish between the

case that S can be partitioned as desired to the case that this

is impossible. The theorem follows.

Approximating the optimal solution is also hard! We now

prove that even approximating the optimum within a constant

factor better than 1000 is computationally intractable.

Theorem 3.2: Approximating the TLU minimizing solu-

tion within a factor better than 1000 subject to the restriction
that each user send/receive traffic along a single potential link

is NP-hard.

Proof: To establish this inapproximability result, we

present a reduction from MAX-LABEL-COVER. An in-

stance of MAX-LABEL-COVER contains a directed reg-

ular bipartite multigraph G = (A,B,E) and a finite set of
“labels” L = {1, . . . , r}. Each edge e ∈ E leads from a

vertex in A to a vertex in B and is associated with a set

LE ⊆ L×L. The goal is to select a “labeling”, i.e., to assign

every vertex v ∈ A ∪ B a label in l(v) ∈ L, respectively,

so as to maximize the number of “satisfied” edges, where

an edge e = (a, b) is satisfied if (l(a), l(b)) ∈ LE . We say

that γ-fraction of the edges are satisfiable, for γ ∈ (0, 1],
if there exists a labeling that satisfies a γ fraction of the

edges. We say that an instance of MAX-LABEL-COVER

is “completely satisfiable” if there exists a labeling which

satisfies all edges.

We show a reduction from MAX-LABEL-COVER to

TE with migration. We create a user uv for every vertex

v ∈ A ∪ B. For every user uv we create r distinct network

nodes Nv = {nv
1, . . . n

v
r}, each corresponding to a unique

label in L (there is no intersection between such sets of

network nodes that correspond to different users). User uv

has a potential link to all nodes in Nv, each with infinite

(arbitrarily high) capacity. For every pair of users, ua and ub,

there exists a directed edge between network nodes na
i and n

b
j

of capacity 1 if e = (a, b) ∈ E and (i, j) ∈ LE . Otherwise,

the two network nodes are connected by an edge of capacity

δ > 0 otherwise. Every user ua which corresponds to a vertex

a ∈ A wishes to send 1
3 units of traffic to every user ub such

that (a, b) ∈ E. All other demands are 0.

We make use of the following result, due to Moshkovitz

and Raz [9]. Given an instance of MAX-LABEL-COVER,

and ǫ > 0, distinguishing between the case that it is
completely satisfiable, and the case that at most an ǫ-fraction

of its edges are satisfiable, is NP-hard. Intuitively, every TE

solution corresponds to a labeling where the ingress point

of each user represents the chosen label, and vice versa.

Observe that in the event that the MAX-LABEL-COVER

instance is completely satisfiable, it is possible to satisfy

all demands at cost |E|. This is achieved by connecting
each user to the network through the potential link that

corresponds the its label in the completely satisfying labeling.

Observe also that in the event that at most an ǫ-fraction of

the edges are satisfiable every TE solution will have cost at

least
(1−ǫ)|E|

3 × 5000 − 16318δ
3 . This is due to the fact that

most of the flow in this case is bound to traverse δ-capacity

edges. By choosing ǫ and δ to be small enough, we get that

this last expression is greater than 1000|E|.

5

Hence, distinguishing between the case that the TLU is

at most |E|, and the case that it is at least 1000|E|, makes
it possible to distinguish between the case that the original

MAX-LABEL-COVER instance is completely satisfiable,

and the case that at most an ǫ-fraction of its edges are

satisfiable. The theorem follows.

B. Max-Link Heuristic

Intuitively, the max-link heuristic first computes the max-

imum multicommodity flow in the input network that con-

tains all potential links. Then, the heuristic uses this fully-

fractional flow (where users’ traffic can be split between all

their potential links) to choose a single potential link for

each user, thus constructing a feasible (integral) solution. To

do this, the max-link heuristic throws away, for each user,

all potential links but the single potential link along which

the user sends and receives the most traffic. The max-link

heuristic consists of the following three steps:

• Step I: Compute multicommodity flow f in the

input network G (that contains all potential links for

each user). That is, compute the multicommodity flow

without restricting users to sending and receiving traffic

along a single potential link. The multicommodity flow

solution f tells us how much traffic every user u sends

and receives along each of the potential links in Lu. We

let t(lu) denote the sum of traffic that user u sends and
receives along the potential link lu ∈ Lu.

• Step II: Use the most utilized potential links. Choose,

for every user u ∈ U , the single potential link in

lu ∈ Lu for which t(lu) is maximized. (Migrate users’
potential links if necessary.)

• Step III: Output the multicommodity flow in the

resulting network, that is, in the network obtained

through the removal from G of all potential links but

those chosen above. The algorithm outputs (i) the choice

of a single potential link for each user and (ii) the

optimal routing of traffic subject to these migration

decisions.

C. Cluster-User Heuristic

We now present the cluster-user heuristic, which considers

the users in groups, and not individually. Grouping users

together is motivated by the fact that, in practice, often

large numbers of users can connect to the network at the

exact same locations (e.g., via a common access network).

In addition, clustering users reduces the network size, thus

making computation more efficient.

The intuition behind the cluster-user heuristic is the fol-

lowing. Consider the scenario that the set of users is divided

into groups (or clusters) of users, such that every cluster

contains a large number of users who all can connect to the

network at the exact same locations (network nodes), and

such that each user’s demands constitute a small fraction of

the demands of the cluster as a whole. We observe that, in

this case, each cluster can be regarded as a single user with

the ability to split traffic among its potential links almost as in

the optimal multicommodity flow solution. This follows from

the fact each user in the cluster sends/receives a negligible

amount of the total traffic, and so users in the cluster can

be mapped to outgoing links so as to closely mimic the

multicommodity flow solution.

To illustrate this point, consider the example in Figure

3(a). There are six users (labeled A-F) which are grouped

into two clusters (cluster 1 and cluster 2). In the cluster user

approach, users can (but do not necessarily) belong to the

same cluster if their sets of potential links connect to the

network at the exact same network nodes.

We create a new network where each user cluster is

replaced by a single user (with a set of potential links that

connect to the network at the exact same network nodes). We

then solve multicommodity flow for this network (allowing

traffic to be split between multiple potential links) to get the

fraction of traffic flowing over each potential link (shown in

Figure 3(a)).

We now use the multicommodity flow solution to map

users to potential links, as shown in Figure 3(b). In our

example, 0.79 units of cluster 1’s traffic should be via w

and 0.21 units via x. Hence, we map A (0.60) and B (0.20)
to w, and C (0.20) to x. Observe that this is the “best fit”

as splitting the traffic exactly as in the multicommodity flow

is impossible.

We note that, in general, finding the best fit can easily be

shown to be NP-hard, even in the case that every user has

2 potential links, yet good approximations are achievable. In
our experiments, we were able to use a brute-force approach

to determine the best fit; for each cluster, we go over all

possibilities for mapping users to potential links; we pick

the mapping that minimizes the sum of gaps between the

traffic sent along the potential links in the mapping and in the

multicommodity flow solution. In Figure 3(a), for example,

a possible mapping is to map user A to node w, and users

B and C to node x, which leads to a “penalty” of 0.38 (as
0.38 = |0.79−0.60|+ |0.21−(0.2+0.2)|); mapping users A
and B to w and C to x is the optimal solution with penalty

0.02.

IV. EVALUATING TE WITH MIGRATION

We now present our experimental evaluation of the max-

link heuristic. The goal of this evaluation is to demonstrate

the benefits of using migration in traffic engineering, even

with a simple heuristic. We first show in Section IV-C that

our max-link heuristic does indeed lead to an improvement

in network performance. We then examine two additional

concerns relating to more practical questions—how often do

links need to be migrated (Section IV-D) and how many links

need to be migrated (Section IV-E).

A. Experimental Setup with Internet2 Data

We based all of our experiments on data collected from

Internet2 [10], which consists of N = 9 core routers and
U = 205 external routers. We collected one week of data
starting January 18, 2010. From each router, we downloaded

6

(a) (b)

Fig. 3. Illustration of the cluster user approach.

the previously collected NetFlow data which provides sum-

maries of the sampled flows (at the rate of 1/100 packets)
in 5-minute intervals (1-week of traffic is 2016 5-minute

samples). We also downloaded the routing information base

(RIB) and the output for the ‘show bgp neighbor’ command,

both of which are captured every two hours. Every NetFlow

entry contains the incoming interface, which we used to

represent an external source user. We used the routing tables

for each of the routers to determine the egress router for each

flow, along with the specific interface on the egress router

that the flow exits the network on, which we used to represent

the external destination user. This enabled us to generate an

external-user-to-external-user traffic matrix.

Our choice of the set of potential links (the Lu’s) in

the experiments was based on geographical distance, with

the users’ locations inferred from which router they are

connected to in the original topology—e.g., some users

connected in Chicago would have New York as a second

potential link (in addition to Chicago), others would have

Kansas as a second potential link

Our choice of the set of potential links (the Lu’s) in the

experiments was based on geographical distance. The first

potential link for a given user is to the router the user is

connected to in the original topology. The second potential

link is to a router randomly selected from the routers nearest

the original 1.

B. How to Select the Right Clusters?

Before presenting the experimental results, we will discuss

how we selected the clusters. Selecting the “right” cluster of

users (and cluster size) is not trivial for the following reasons:

(1) Traffic sent from a user in a cluster to another user in

the same cluster is not considered (as the entire cluster is

treated as a single user). Interestingly, the intuition that the

bigger the cluster size is the more unconsidered traffic we

have is not necessarily true; sometimes increasing the cluster

1We do not present results for more than two potential links per-user, as
in our small topology almost every two users end up connected to a common
network node when there are many potential links, and thus traffic between
these users does not traverse the network at all. To elaborate, consider the
extreme case in which all users have potential links to all routers. Here, a
multicommodity flow solution will give no guidance on which links to use
since no traffic will even traverse the network.

size changed the division points and resulted in highly com-

municating users falling into different clusters, thus actually

decreasing the unconsidered traffic. (2) Best-fitting users to

potential links to match the computed multicommodity flow

can lead to lost traffic if the fitting is not perfect (e.g., in the

multicommodity flow solution 0.79 units of traffic flow over
the link to node w in Figure 3, yet the closest we can come

is 0.80 units).
While it is ideal to take both the intra-cluster traffic and

the best-fitting penalty into account when selecting clusters,

the best-fit penalty is only known after running through the

entire heuristic (selecting clusters, running multi-commodity

flow, and determining the best-fit). Understanding how to

select user clusters (in a computationally-efficient manner)

is a direction for future work. We suspect that the cluster

user approach is more suitable for larger networks with

more users, where we have more freedom in choosing the

composition of the clusters. In such networks, we can place

users who communicate with each other in separate clusters

so as to avoid not considering that traffic. We can also form

big clusters with even distribution of traffic, thus making it

easier not to lose traffic in the course of best-fitting users to

potential links.

For our experiments we formed clusters by minimizing

the intra-cluster traffic. In Figure 4 we show the effects of

this for the 2 potential links per user case. As expected,
smaller clusters have the least amount of intra-cluster traffic

and it exponentially rises as cluster size increases, eventually

reaching 100% for the case when a cluster consists of all

users.

Fig. 4. Intra-cluster traffic for varying cluster sizes.

7

C. Migration Improves Network Utilization

The first metric of importance is simply the improvement

that can be obtained when utilizing link migration. Here

we first define the metric we are evaluating, show that the

improvement varies depending on the traffic patterns, and

conclude that max-link is slightly better.

1) Defining ‘Improvement’: In order to determine (i)

which heuristic is better, (ii) what is the best cluster size, and

(iii) how much improvement we can achieve over a network

optimizing only the routing we need to clearly define a metric

for which we will compare.

The total link utilization for an example 5-minute period

appears in Figure 5. The Figure shows results for the origi-

nal (optimally engineered) network (the “original topology”

line), and for traffic engineering with migration (using max-

link) with 2 links per user (the “optimized topology” line).

Fig. 5. Evaluation of max-link for a single 5-minute period.

To obtain the graph in Figure 5, we varied the traffic

demand by scaling all entries in the demand matrix by a

multiplicative factor, plotted on the x-axis, and optimized for

the TLU for each. TLU minimization captures the goal of

avoiding congestion, and involves an exponentially increas-

ing cost for utilizing a link (see Section II). We used the cost

function from [7] as detailed in Section II-A.

Due to the exponentially increasing cost, the network

operator will wish to be at a point in the curve that comes

before the exponential rise, that is, before the “knee” in the

curve. Observe that this “knee” shifted to the right by roughly

20%, and so, with migration, the network can handle 20%
more traffic with the same level of congestion.

Note that the original topology is currently operating at

the knee (since the knee is at 1, which is the actual demand

matrix). From this, we define the improvement metric as the

amount of traffic the network can carry in the optimized

topology at the same level of congestion as the original

topology—where the TLU represents the level of congestion.

So, from the original topology, we found the minimal TLU

with a demand multiple of 1 (i.e., the actual amount of

traffic). We then determined which demand multiple in the

optimized topology (i.e., with migration) would result in the

same TLU. In other words, in terms of the graph in Figure 5,

we found the y value for x=1 on the original topology line,

and used that y value to find the x value on the optimized

topology line.

2) Improvement Varies Between Intervals: Not all periods

will see an equal improvement. To expand on this, we

present in Figure 6 the results for max-link for all 2016

5-minute intervals (cluster-user is similar). In Figure 6(a),

we show a time-series representation where each data point

represents the improvement achieved with link migration.

Plotted in Figure 6(b) is a cumulative distribution function

of the same information. The traffic patterns dictate how

much improvement can be achieved—if the network is not

that congested during a particular interval, performing edge

link migration will have minimal affect since, in that case, it

effectively is optimizing an already underutilized network.

3) Max-link is slightly better than Cluster-user: Shown in

Table II is a comparison of the improvements achieved with

the max-link heuristic as well as the cluster-user heuristic,

for different cluster sizes. From this we can see on average,

traffic engineering with migration can increase network uti-

lization by about 18.8% when using max-link, and slightly

less when using cluster-user. Note that in both the max-

link and cluster-user heuristics, we first calculate the TLU

minimizing multicommodity flow of a graph which includes

the potential links. The input is a prediction of what the

expected demands will be so that a new topology can be

optimized for it. For the experiments, we utilized the actual

demand matrix, in essence giving perfect predictive power.

We rely on an ISP’s ability to predict traffic based on past

history and the improvement obtainable will be related to the

accuracy of the prediction (as we show in Section IV-D, we

can still achieve good results over longer intervals, which are

easier to predict).

Intuitively this improvement comes from two factors. The

first is that by optimizing the homing location based on

the demand matrix, users that communicate will tend to get

closer together. Without link migration, the homing location

must be determined up front and then cannot change. With

link migration, we can alter the topology to bring users that

communicate a lot closer together. The second factor is that

by re-optimizing the topology, we can have a significant

impact on congested links. By giving some traffic the ability

to avoid the congested link (through migration), we can

reduce the congestion on that link. There are, however,

a small number of cases (2.6% in the case of max-link)

where migrating links actually decreased performance. As

mentioned in Section III these are only heuristics which fare

well in practice but do not approximate the optimal result

within some factor. Therefore, it is expected that there can

be conditions which result in poor performance.

The cluster-user heuristic with a cluster size of two is very

comparable to max-link. Within the cluster-user heuristic,

the performance decreased as the cluster size increased. This

suggest there are many factors related to the cluster size and

cluster contents which influence performance as the fitting

8

(a) time-series (b) cumulative distribution function

Fig. 6. Evaluation of max-link over 7 days of traffic.

heuristic min max mean #intervals worse (frac.)

max-link 0.783 1.550 1.188 54 (0.0268)
cluster-2 0.860 1.550 1.172 22 (0.0109)
cluster-4 0.565 1.550 1.121 76 (0.0377)
cluster-6 0.718 1.480 1.080 208 (0.1032)
cluster-8 0.790 1.460 1.066 261 (0.1295)
cluster-10 0.622 1.363 1.051 375 (0.1860)

TABLE II
COMPARISON OF THE IMPROVEMENT OVER THE ORIGINAL TOPOLOGY

OPTIMIZED FOR ROUTING ONLY WHEN WITH MAX-LINK AND
CLUSTER-USER (FOR DIFFERENT CLUSTER SIZES).

penalty decreases with the increase in cluster sizes—a lower

best-fit penalty is better as it means we were able to match the

optimal multi-commodity flow results more closely. Further

research is needed to determine the best cluster composition.

D. Frequent Migration is Not Necessary

In Section IV-C, we examined the benefits of utilizing link

migration in traffic engineering. We looked at the benefits

when we could migrate every interval and knew the traffic in

the next interval. However, predicting this can be difficult on

that short of a time scale. Here, we examine how frequently

we really need to be migrating.

To determine how often migration should occur, we looked

at different periods—every 5 minutes, 30 minutes, 1 hour, 6

hours, 12 hours, and 24 hours. The demand matrix used when

computing the multicommodity flow as per Step I in the

max-link heuristic (i.e., the predicted traffic), was the average

demand matrix for the next interval (e.g., the next 6 hours).

This was used to determine the optimized topology that

would be used for the entire interval. As with the 5-minute

case, errors in the prediction affect the results. We note,

however, that as the intervals become longer, traffic patterns

smooth out and become more predictable. We determined

the TLU for each 5-minutes of traffic using this topology

and compared the results to the original topology.

Table III shows the results for the different intervals. As

could be expected, the longer the interval, the worse the

results. However, even re-optimizing the topology every 6

or 12 hours still has good performance.

interval min max mean #worse (frac.)

5 mins 0.783 1.550 1.188 54 (0.0267)
30 mins 0.757 1.550 1.166 146 (0.0724)
1 hour 0.777 1.550 1.163 152 (0.0753)
6 hours 0.801 1.550 1.149 182 (0.0902)
12 hours 0.856 1.550 1.141 191 (0.0947)
24 hours 0.806 1.550 1.083 465 (0.2306)

TABLE III
COMPARISON OF THE IMPROVEMENT OVER THE ORIGINAL TOPOLOGY
OPTIMIZED FOR ROUTING ONLY WHEN PERFORMING GRAFTING AT

DIFFERENT INTERVALS (OVER 7 DAYS TRAFFIC).

E. Only a Fraction of Links Need to be Migrated

Our formulation of traffic engineering with migration does

not currently incorporate the cost of migration. To decide

which users to migrate, we can weigh the cost of migrating

a user against the gain from migrating that user; when the im-

pact of migrating a user is low (e.g., when that user generates

and consumes negligible amounts of traffic), migration might

be undesirable. To investigate this, we plotted in Figure 7 the

amount of traffic each user sends or receives for an example

5-minute interval. On the x-axis is the index of the user,

sorted by the amount of traffic they generate/consume. On the

y-axis is the cumulative fraction of the total traffic. We placed

markers on each user that our max-link heuristic determined

should be migrated. From this we can see that 85% of the
traffic comes from the first 42 users, of which, max-link only
determined 5 of them should be migrated. Hence, we can still

obtain a significant improvement in network performance

while migrating only a small number of links.

To evaluate this effect across the entire data sample, we

plotted the cumulative distribution functions of the number of

links that need to be migrated for three different thresholds—

100% (i.e., migrate all links that max-link determined need
to be migrated), 95%, and 90%. As can be seen, by not
worrying about a small fraction of traffic, we can greatly

reduce the number of links that need to be migrated.

V. RELATED WORK

Due to its importance for network performance, there

have been much research on traffic engineering. There has

9

Fig. 7. Fraction of traffic each user node sends in an example 5-minute
period.

Fig. 8. Cumulative distribution function of the number of links that need
to be migrated during each interval over 7 days of traffic (2016 5-minute
intervals). Shown are three lines corresponding to different thresholds – only
links in the top X% of traffic are migrated.

been much work on schemes for traffic engineering in ISP

networks [11] [12] [13] [14] [15]. This work interprets traffic

engineering as the adaptation of the routing of traffic within

the network so as to optimize performance. We, in contrast,

also explore how to adapt traffic’s ingress and egress points.

User actions can also change the traffic matrix. For exam-

ple, using overlay routing to circumvent congested links [16],

[17] changes the offered load. However, such “selfish” over-

lay routing can significantly reduce the effectiveness of traffic

engineering [18].

Previous work on interdomain traffic engineering [3]–[6]

considers how to select among a group of fixed egress points

for directing traffic to neighboring domains. Interdomain

traffic engineering changes the traffic and BGP routes seen

in neighboring networks, whereas edge-link migration is

transparent. Also, the optimization approaches are different.

Interdomain traffic engineering can split traffic over multiple

edge links, whereas our “TE with migration” approach must

select a single edge link for all traffic to and from each user.

Our work builds on earlier research proposing mechanisms

for re-homing customers [2] [1]. However, these papers did

not explore the implications for traffic engineering.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a new approach to traffic engineering where

instead of only optimizing for fixed (predicted) traffic pat-

terns, we also influence where traffic enters and exits the net-

work. We showed that while computing an optimal solution is

hard, even relatively simple heuristics can lead to significant

performance gains without requiring frequent migration or

large numbers of links to migrate. We view our work as a first

step in this direction. Incorporating more practical aspects of

traffic engineering into our model is a promising direction

for future research. Further exploring cluster selection in the

cluster user heuristic is also left for future work. Finally,

while we focused on edge-link migration in ISP networks, we

note that similar capabilities exist in data center networks—

namely, virtual machine migration. Exploring our framework

in data-center networks, which have different patterns and

practical constraints, is also an area for future research.

REFERENCES

[1] E. Keller, J. Rexford, and J. van der Merwe, “Seamless BGP session
migration with router grafting,” in Proc. Networked Systems Design
and Implementation, April 2010.

[2] M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Seshan,
J. van der Merwe, and J. Yates, “RouterFarm: Towards a dynamic,
manageable network edge,” in SIGCOMM Workshop on Internet
Network Management, September 2006.

[3] R. Szabó, A. Takács, and A. Császár, “Optimised multi homing –
an approach for inter-domain traffic engineering,” in Proceedings of
the 2nd International Workshop on Inter-Domain Performance and

Simulation (IPS2004), Budapest, Hungary, March 2004.
[4] R. Mahajan, D. Wetherall, and T. Anderson, “Negotiation-based rout-
ing between neighboring ISPs,” in Proceedings of the 2nd Symposium
on Networked Systems Design and Implementation, Boston, MA, USA,
April 2005.

[5] R. Teixeira, T. Griffin, M. G. C. Resende, and J. Rexford, “TIE
breaking: Tunable interdomain egress selection,” IEEE/ACM Trans.
Networking, August 2007.

[6] M. Roughan and Y. Zhang, “GATEway: symbiotic inter-domain traffic
engineering’,” in The Second International Workshop on Game Theory
in Communication Networks, Athens, Greece, October 2008.

[7] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. IEEE INFOCOM, 2000.

[8] R. Teixeira, T. Griffin, A. Shaikh, and G. Voelker, “Network sensitivity
to hot-potato disruptions,” in Proc. SIGCOMM, 2003.

[9] D. Moshkovitz and R. Raz, “Two query PCP with sub-constant error,”
in Proc. FOCS, 2008.

[10] “Internet2,” http://www.internet2.org.
[11] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Green-

berg, “COPE: Traffic engineering in dynamic networks,” in Proc.
SIGCOMM, 2006.

[12] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
tightrope: Responsive yet stable traffic engineering,” in Proc. SIG-
COMM, 2005.

[13] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in Proc. IEEE INFOCOM, 2001.

[14] D. Applegate, L. Breslau, and E. Cohen, “Coping with network
failures: Routing strategies for optimal demand oblivious restoration,”
in Proc. ACM SIGCMETRICS, June 2004.

[15] C. Zhang, Z. Ge, J. Kurose, Y. Liu, and D. Towsley, “Optimal routing
with multiple traffic matrices: Tradeoff between average case and worst
case performance,” in Proc. International Conference on Network
Protocols, Nov. 2005.

[16] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Za-
horjan, “Detour: A case for informed Internet routing and transport,”
IEEE Micro, January 1999.

[17] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proc. ACM SOSP, October 2001.

[18] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “Selfish routing in
Internet-like environments,” in Proc. SIGCOMM, 2003.

