
FlexMove: A Protocol for Flexible

Addressing on Mobile Devices

Matvey Arye

Master’s Thesis

In Partial Fullfillment of the Requirements

for the Master of Science in Engineering

Department of Computer Science

Princeton University

Adviser: Michael J. Freedman

May 2011

Abstract

The Internet has been a wildly successful platform for global communication. However, new

technologies are now running into its limitations. Mobile devices are becoming an increasingly

prevalent, yet the network does not support device movement in a streamlined manner. Existing

solutions either use inefficient “triangle routing” or they allow ongoing connections to break when

a device moves and rely on application-level recovery mechanisms. Similarly, virtual machine mi-

gration allows servers to change locations but runs into some of the same limitations inherent to

device movement. In addition, network-enabled devices often have more than one interface to the

Internet (e.g., Wifi and 3G) but can only use a single interface per connection. We propose Flex-

Move, a protocol that operates between the network and transport layer, and that allows devices to

use multiple interface for a single connection and at the same time preserves ongoing connections

across mobility events. To avoid changing the underlying network architecture, FlexMove uses in-

band signaling to enable communicating hosts to update each other’s addresses as they move. This

allows the network to support device movement while keeping addresses location-dependent. To

verify that this protocol does not exhibit misbehaviours such as livelock and deadlock, FlexMove

has been formally modeled and verified in the SPIN protocol verification tool. This verification

exhaustively verifies protocol correctness for connections with up to five device movement events

and reflects network loss and reordering.

ii

Acknowledgments

I would like to thank my advisor Mike Freedman as well as Jen Rexford for their ideas, support,

and encouragement throughout my studies. I would also like to thank the rest of the Serval group:

Erik Nordstrom, David Shue, and Prem Gopalan, for their input, collaboration, and valuable

critique of this work.

iii

Contents

Abstract ii

1 Introduction 1

2 Related Work 3

3 Functionality Provided by FlexMove 4

3.0.1 Position in network stack . 4

3.1 Communicating over flows and not connections . 5

3.2 Demultiplexing to flows . 6

4 The FlexMove Protocol 6

4.1 Flow Establishment . 6

4.1.1 Flow establishment protocols . 7

4.1.2 Deciding which interface to use . 9

4.1.3 Testing reverse connectivity . 9

4.1.4 Having separate demultiplexing keys on each host 10

4.2 Handling Location Dynamism . 10

4.2.1 Migration protocol . 10

4.2.2 Migrating flows independently . 11

4.2.3 Using sequence numbers . 11

5 Formal Verification 12

5.1 Protocol Correctness . 13

5.2 Properties Verified . 13

5.3 Verification in SPIN . 14

5.4 Description of the model . 15

5.5 Challenges in Modeling FlexMove . 16

5.5.1 Loss and Reordering of Network Packets . 16

5.5.2 Random FlowIDs . 17

5.5.3 Timeouts . 18

iv

5.6 Completeness . 19

5.7 Results . 19

6 Security 20

7 Simultaneous Movement 22

8 Conclusions 23

A SPIN Model 26

v

1 Introduction

The Internet was originally envisioned as a platform for host-to-host communication between hosts

that have one statically-located point of attachment to the network. Currently, the network stack

still only supports connections between two statically-located addresses. This model has proved

useful in allowing the Internet to support incredible expansion and growth, but the introduction of

new technologies is forcing it to change. Mobile devices have created a need to support hosts that

have interfaces to the Internet (e.g., WiFi and 3G) and undergo device mobility. The advent of

virtual machine (VM) technology has introduced VM migration and motivated the need to support

virtual servers that move between physical locations as well [1, 2, 11]. In addition, the research

community is actively pursuing multipath routing which would allow hosts to communicate over

multiple paths [4]. We argue that the Internet needs to evolve to support both path multiplicity

(where a single connection communicates over multiple interfaces or paths) and location dynamism

(where hosts can change locations without breaking connections).

This work presents a solution to both of these problems that is deployable in an incremental

manner. To enable incremental deployment, FlexMove does not change the core addressing and

routing scheme used by the Internet. Specifically, this protocol works on top of the Internet

Protocol (IP) layer and only requires changes to the end-host stack as well as the addition of

some packet headers, which can be implemented as IP options. Furthermore, it is easy for a

FlexMove-aware peer to perform protocol negotiation with another peer (i.e., determine whether

it also supports the protocol during connection establishment), and fall back to legacy vanilla

protocols if the remote peer does not support FlexMove. Previous proposals handle either path

multiplicity or location dynamism, but not both, and are usually not incrementally deployable.

In order to allow the Internet to retain its hierarchical, location-dependent addressing scheme—

critical for address aggregation and hence routing scalability—FlexMove uses an in-band signaling

protocol to support device mobility. This protocol allows an end-host to notify its correspondent

peers of changes to its addresses as it moves. In this way, connections can be preserved as devices

move. In fact, the protocol guarantees that connectivity is preserved in the face of location

dynamism whenever communicating hosts do not move at the exact same time. If hosts do

move simultaneously, connectivity can still be preserved if the network has a special “redirection

1

middlebox” that facilitates the re-establishment of a connection based on previous addresses.

Currently, connections are tied to a particular set of network-level addresses. This makes it

difficult to support path multiplicity since that involves a mapping between multiple addresses to

a single connection. This problem becomes even harder when the set of addresses is dynamic, as

is the case when hosts move location. FlexMove introduces the notion of a flow, which represents

the part of a connection that communicates along a particular set of interfaces. A connection can

then use multiple flows to communicate its data using more than one interface. Multiple flows

may be used for a variety reasons: (i) for performance—to take advantage of the added bandwidth

provided by using multiple interfaces and (ii) for increased connection longevity—using additional

interface guarantees that a connection does not break if one of the interfaces goes down. By

using the flow abstraction exported by FlexMove, the transport layer does not have to worry

about managing the network addresses associated with its interfaces and does not have to perform

demultiplexing of packets to flows. Individual flows can have different congestion control and

performance characteristics because they may send data along different network paths. Thus, the

transport layer must remain aware of individual flows to perform effective congestion control and

to distribute load among flows.

Distributed protocols are notoriously hard to get right because of subtle edge-cases that are

difficult to reason about. So, we formally verified FlexMove using a tool called SPIN[6] to be

assured of its correctness. This verification ensures that the protocol does not have livelocks or

deadlocks even when hosts migrate and the network is unreliable. To our knowledge, this is the

first mobility protocol to be formally verified in such a manner; developing the appropriate formal

model is a contribution in its own right. In the process of building the model, we developed a

detailed state transition diagram for the protocol which the verification proved to be correct.

Finally, any network protocol for mobility and path multiplicity must be secure against hijack-

ing attacks, in which malicious parties redirect ongoing connections towards themselves. While

similar proposals for handling migration have used cryptology to prevent such hijacking attacks,

their cryptographic approaches are computationally expensive. Instead of using cryptology, our

proposal uses random nonces to enforce its security properties against off-path adversaries. In

doing so, FlexMove does not open up any new attack vectors for hijacking attacks compared to

traditional network protocols like TCP.

2

The remainder of this thesis is organized as follows. In Section 2, we will discuss the related

works and the differences between this and previous work to give the reader a sense of where

FlexMove fits into the broader network architecture landscape. In Section 3, we will define the

functionality that FlexMove provides to the rest of the network stack. Next, we will present

the protocol and discuss its motivating design decisions in Section 4. In Section 5, we discuss

how we formally verified that the protocol fulfills its correctness requirements. Then, we address

the security of the protocol in Section 6 and present a solution to the problem of simultaneous

movement in Section 7. Finally, we conclude with some final thoughts.

2 Related Work

Previous work has tried to address the problem of location dynamism. Probably the best known

work in this area is Mobile IP [12, 13] which supports location dynamism but not path multiplicity.

Mobile IP uses triangle routing where each device has a “home-agent” with which it registers its

current address as it moves. When a peer wants to reach a particular device, it sends packets to the

device’s home-agent, which then forwards the packet to the appropriate location. The approach

has two main drawbacks: (i) it is not as efficient as in-band signaling and (ii) it requires a home

agent to be aware of a host’s location as it moves, which is a major privacy concern for devices

such as cellphones whose location history mirrors that of the owner.

TCP Migrate [15] was the first to propose in-band signaling for handling location dynamism.

FlexMove is similar to TCP Migrate but has several advantages: (i) it supports path multiplicity;

(ii) it has support for simultaneous migration; (iii) it is independent of any given transport layer;

(iv) it uses a more lightweight security mechanism; and (v) it is formally verified. Other work

that uses in-band signaling mechanisms, such as the Host Identity Protocol (HIP) [9], requires

changing the addressing architecture and introducing a level of indirection to implement the so-

called location/identity split.

Multipath TCP [4] discusses how to use multiple network paths for one connection at the

transport layer but does not address device mobility. We envision that FlexMove will be used

in conjunction with a transport-layer protocol like Multipath TCP. Ford has previously proposed

structured streams [5] which uses application-level flows and subflows to provide a more robust

3

!""#$%&'(#

)*'+,-.'#

/(%01"-(2#$%&'(#

!""#$%&'(#

)*'+,-.'#

3'24-(5#$%&'(#

/(%01"-(2#$%&'(#

!""#$%&'(#

/(%01"-(2#$%&'(#

3'24-(5#$%&'(#

)*'+,-.'#

!""#$%&'(#

/(%01"-(2#$%&'(#

3'24-(5#$%&'(#

Figure 1: The current network stack is shown on the right, while the network stack with FlexMove
is shown on the left. The solid red arrows represent a connection stream used by the application
layer. The green arrows with diamonds represent flows. The purple arrows with dots represent
the non-demultiplexed stream of packets.

transport-layer. However, the flows used by Ford did not operate between different interfaces but

rather allowed connections to use multiple transport layer protocols; they could be used on top of

FlexMove.

Previous papers have described network protocol verification in SPIN. However, FlexMove

needed to model a network without any reliability guarantees. Specifically, FlexMove models both

message loss and message reordering in the network. Most previous works on network verification

in SPIN either did not model message loss [16] or did not model packet reordering [8, 10, 14].

Fersman and Jonsson [3] did model lossy, reordered channels but did not identify the most efficient

ways of doing so.

3 Functionality Provided by FlexMove

3.0.1 Position in network stack

In order to motivate our design of the FlexMove protocol we first define the functionality that

FlexMove should provide to the rest of the network stack. As can be seen in Figure 1, in the current

network stack the transport layer is responsible for taking an application stream, breaking it up

4

into packets, and sending it to the network layer for transmission to a single remote interface. The

transport layer also demultiplexes incoming packets to the correct connection and reconstructs the

application stream from these packets. In our modified network stack, we insert a FlexMove layer

between the transport and network layers. In this new design, the transport layer is responsible

for taking an application stream, breaking it up into packets, and then multiplexing those packets

across the flows corresponding to the connection. When performing this multiplexing the transport

layer is aware that each flow correspond to a different network path, with different performance

and congestion-control characteristics, but is unaware of the network addresses corresponding to

the interfaces used by the flows. The transport layer then sends these packets to the FlexMove

layer which attaches the current interface addresses (negotiated using the FlexMove protocol) for

the flow onto the packets and sends them to the network layer. When receiving packets, the

network layer sends packets to the FlexMove layer, which demultiplexes these packets to flows and

send them up to the transport layer. The transport layer then uses the packets received across all

of the flows of a connection to reconstruct the application stream. Location dynamism is handled

by the FlexMove layer which updates its mapping of flows to addresses as hosts move and their

interface change addresses. Path multiplicity is supported by allowing a single connection to have

more than one flow and by making FlexMove responsible for demultiplexing packets to flows.

We will now discuss why FlexMove needs to communicate over flows instead of connections.

Finally, we will end this section by motivating why we need to demultiplex to flows and not

connections.

3.1 Communicating over flows and not connections

The communication between the transport and FlexMove layers occurs using the flow abstraction

instead of using the connection abstraction. A connection can use more than one flow to send data

using different interfaces. Each flow will potentially use different paths with different performance

characteristics. Therefore, the transport layer may need to send packets along a particular flow

of a connection; to do this it must notify the FlexMove layer of which flow to use on a per-packet

basis. Similarly, when receiving a packet, the transport-layer needs to know which flow a packet

arrived from to accrue statistics relating to the performance and congestion of network paths used

by flows. Thus, all packets sent between the FlexMove and transport layers must be labeled with

5

the flow corresponding to the packet.

3.2 Demultiplexing to flows

Currently, transport-layer protocols are responsible for demultiplexing packets to connections and

they do this using an implicit demux key called the 5-tuple, which consists of the source address,

the destination address, the source and destination ports, and the protocol number. For current

transport-level protocols, there is exactly one never-changing 5-tuple throughout the lifetime of

each connection. However, if addresses used by interfaces are allowed to change and path mul-

tiplicity is supported, then each connection may have multiple, dynamic 5-tuples. This makes

demultiplexing using the 5-tuple very complex. To avoid this complexity, our design uses a new

explicit demux key that is added to packet headers. We wavered on whether to make this demux

key represent the connection or the flow. We finally decided to demultiplex directly to flows since

given a flow it is possible to determine the connection using only the internal mapping of flows

to connections. Conversely, given a connection, the only way to determine the flow of a packet

is to do additional demultiplexing on the packet headers, which adds complexity and processing

overhead. We believe that there is a general lesson here: given the need for an explicit demux key,

it is better to have that key demux to the most fine-grained category possible.

4 The FlexMove Protocol

Fundamentally, FlexMove is responsible for handling two issues. First, it must establish flows

with peers and establish state that allows it to map flows to addresses. Second, it must be able

to respond to changes in host locations by updating the addresses used to send packets on flows.

We describe how FlexMove handles each of theses issues in turn, by first describing the protocols

that address each issue and then describing the motivation behind the design of these protocols.

4.1 Flow Establishment

FlexMove is responsible for establishing flows and creating state that allows it to map flows to

interfaces (and their addresses). After a flow is established, FlexMove should be able to attach the

appropriate network addresses to packets sent over the network as well as to demultiplex incoming

6

Client Server

SYN
FlowIDc (A1)

(A1, A2)
SYN-ACK
FlowIDc

FlowIDs(A3)
(A3, A4)

ACK
FlowIDc
FlowIDs

timetime

Figure 2: The FlexMove protocol for establishing a new connection.

packets to flows. We first discuss the protocol to establish the initial flow for a connection and how

to add additional flows. Then, we discuss how hosts decide which interface to use for a particular

flow. Next, we state why we need to test for reverse connectivity when establishing a connection.

Finally, we discuss why we have separate demultiplexing keys on each host.

4.1.1 Flow establishment protocols

As can be seen in Figure 2, when creating a connection, the client sends a SYN packet with three

identifiers:

• FlowIdc—the explicit demux key which the client will use to demultiplex packets which it

receives.

• The interface address to use for this initial flow (in this case A1).

• The interface list—a list of interfaces (represented by their addresses) which the client is

willing to use for additional flows on this connection (e.g., A1, A2).

The server then responds with a SYN-ACK that has FlowIds, its own address for the new flow

(e.g., A3), and its own interface list (e.g., A3, A4). Note that the SYN-ACK, like all subsequent

packets, includes FlowIdc so that the client can appropriately demultiplex the incoming packet.

7

Abstraction State
Connection sequence number, list of flows

my flowID, peer flowID
Flow my Address, peer Address

peer interface list

Table 1: State stored by FlexMove for connections and flows

Client Server

SYN
FlowID′

c (A2)
FlowIDs

SYN-ACK
FlowID′

c

FlowID′
s(A3)

ACK
FlowID′

c

FlowID′
s

timetime

Figure 3: The FlexMove protocol for adding a new flow to an existing connection.

Finally, the server would reply with an ACK to ensure reverse connectivity as described below in

Section 4.1.3. The state that is created during flow establishment and is maintained throughout

the lifetime of the flow is shown in Table 1.

A connection can have more than one flow and either the client or the server can decide to

add an additional flow to a connection. Let us assume the client is adding a new flow. To do

so, the client would send the server a SYN packet with a new flow identifier FlowId′c and one of

the existing server flow identifiers for the same connection FlowIds, as shown in figure 3. Upon

receiving the packet, the server would use FlowIds to demultiplex to an existing flow and would

then lookup which connection that flow was on. It would then create a new flow for that connection

and establish a new flowID, FlowId′s, which it would send back in the SYN-ACK.

8

4.1.2 Deciding which interface to use

When a host decides to establish a flow for a connection, that flow needs to be associated with

a particular interface on each host. Different transport-layer protocols may decide to settle on

which interfaces to use for new flows based on different criteria. Some protocols may worry

about performance and thus decide to create one flow between each set of interfaces and test the

performance criteria of each. Others, may be optimized for uptime and thus may decide to open

one backup flow between a set of low-performing but high-uptime interfaces (e.g., 3G) so that it

could use that flow if all other flows fail. FlexMove need to be able to cleanly support all of these

scenarios. However, it also needs to avoid divergence where the two communicating hosts disagree

on which interfaces a flow is using. FlexMove achieves both of these goals by allowing the party

initiating the new flow to hint to its peer which interface a flow should be on by sending the SYN

to the address of that interface. However, the passive peer has the final say as to which interface

to use on its end and specifies the address of the interface to use for the flow in the SYN-ACK. The

active end is bound to accept this decision by its peer or else refuse to complete the handshake

and abandon the flow.

Since some transport layer protocols may require the host establishing an additional flow to

provide a hint about which interface to use on its peer for the new flow, each host needs to be

aware of the list of interfaces addresses its peers are willing to use for additional flows; this interface

list is exchanged during flow establishment. While at any given point in time each interface has

a single address, that address may change as the host moves. Thus, the interface list must be

updated when hosts move and obtain new interface addresses, as discussed in Section 4.2.

4.1.3 Testing reverse connectivity

Network paths can exhibit asymmetric connectivity. The fact that host A can send data to host B

does not imply that B can send data to A. However, a connection requires symmetric connectivity.

We want to avoid a situation where a single host believes that it has a connection with its peer,

but that peer cannot receive the messages that the host sends due to network asymmetry. Thus,

we need to verify that there is symmetric connectivity before establishing a connection. For this

reason we use a three-way handshake that verifies that there is forward and reverse connectivity.

For example, in the initial flow establishment protocol, the final ACK assures the server that there

9

is connectivity on the path from the server to the client and that the client was thus able to

receive the SYN-ACK. We also want to verify that symmetric connectivity still exists after a host

migrates. Therefore, we use a three-way handshake for the migration protocol as well.

4.1.4 Having separate demultiplexing keys on each host

As discussed previously, FlexMove uses explicit flowIDs that uniquely identify the flow. There are

two flowIDs per flow, each one representing a single host in the flow instead of a single shared

flowID for three reasons:

1. It is easier to guarantee uniqueness independently on each host rather than jointly on some

shared identifier.

2. It is easier to reason about independent identifiers and to prove properties about flow de-

multiplexing.

3. To allow each host to choose an identifier in any way it wants to.

Each host demultiplexes based on only its identifier but stores the value of its peer’s flowID so

that it can send packets to the peer with the correct flowID.

4.2 Handling Location Dynamism

When a host moves, it needs to preserve flow connectivity by notifying its peers of its new network

addresses. We first present the protocol used to update the peers. Then, we discuss why we send

separate migration messages for each flow even if more than one flow needs to be migrated as

a results of a change in location. Finally, we discuss the necessity of sequence numbers in the

migration protocol.

4.2.1 Migration protocol

As seen in figure 4, when a host moves locations, whether due to device mobility or VM migration,

the moving host sends an RSYN packet to the stationary host once it has acquired its new address.

The RSYN packet has the appropriate flow identifier for the flow as well as the new interface

address for the flow and a new interface list for the connection. The stationary host sends back an

10

Mobile Stationary

RSYN
Sequence #

FlowIDm (A5)
FlowIDs
(A5, A6)

RSYN-ACK
Sequence #
FlowIDm
FlowIDs

ACK
Sequence #
FlowIDm
FlowIDs

timetime

Figure 4: The FlexMove protocol for changing the address associated with a flow.

RSYN-ACK to let the mobile host know that it got the packet. The handshake is then finalized

with an ACK packet to verify reverse connectivity over the new path.

4.2.2 Migrating flows independently

When a host moves, many of its addresses may change at once. Therefore, it may seem more

efficient to have migration requests refer to connections or to interfaces instead of having each

host migrate each flow independently. However, this complicates the protocol by introducing

dependencies between flows and introducing complexity into control message demultiplexing. In

addition, disparate flows can have different timeout timers and different timers related to migration

events (e.g., how long after a migration to initiate a migration handshake). For this reason, all

migration messages concern a single flow.

4.2.3 Using sequence numbers

The FlexMove migration protocol requires sequence numbers so that a host getting a new migration

request can determine whether it has received a notification about a migration event that has been

previously processed or a new migration event. For example if a client moves from Address A1

11

to A2 to A3, the server may receive the migration request for A3 before A2, and must then know

to ignore the old migration request to guarantee correctness.1 Furthermore, the sequence space is

global to the connection and not to an individual flow to keep updates to the interface list consistent

and to ensure that there is only one active interface list per connection. Sequence numbers must be

monotonically increasing for each RSYN event. To handle sequence number wraparound correctly,

we use a scheme similar to PAWS [7], which use timestamps that are already embedded in packets

to verify that wraparound has indeed occurred correctly.

Originally, we considered an alternative design that avoided sequence numbers. Since each

change of a sequence number is accompanied by a three-way handshake, it is possible to require a

change in the flowID after all successful migrations. This change in flowID could force an ordering

on migration control packets if only packets containing the most current flowID would be accepted

as valid. This method, while it does work, adds a lot of complexity to the protocol and introduces

some non-obvious edge cases into the demultiplexing rules without adding much benefit. Thus,

we added sequence numbers to make the design cleaner.

5 Formal Verification

Distributed protocols are notoriously hard to reason about because of the large number of possible

execution scenarios. For example, in the FlexMove protocols, packets may be lost, reordered,

or duplicated and hosts may move at any time, including in the middle of the protocol. It is

very hard to reason about all of the executions of such a protocol and yet it is well known that

protocols that may look good on paper can have subtle edge-cases that lead to misbehaviors and

security vulnerabilities. To be sure that the FlexMove protocol is correct we used a formal protocol

verification tool to check that the protocol is free of livelocks and deadlocks and thus fulfills its

correctness requirements.

First, we give a definition of protocol correctness for FlexMove. Next, we discuss the abstract

properties that we use to verify correctness. We follow that with a brief overview of SPIN and how

it enables us to verify these properties. Then, we describe our model of FlexMove. The challenges

inherent to modeling FlexMove are discussed next. Then, we will discuss the completeness of the

1We create a new sequence space and do not reuse the sequence space of the transport layer to make FlexMove
independent of any given transport level protocol.

12

model. Finally, we will discuss the results of the verification. The full SPIN model is presented in

Appendix A.

5.1 Protocol Correctness

We need to first define what it means for the protocol to be correct. Intuitively, we want the

FlexMove protocol to maintain connectivity as long as possible in the face of migration events.

We give the following formal definition of correctness:

Whenever two connected hosts undergo non-simultaneous movement, the protocol must

ensure that the connection is able to resolve to a new common state where each host

is able to send packets to the other host along all of its flows.

We formally define simultaneous movement as any change in location where both hosts move

before either one could receive a single packet2 from its peer informing it of the peer’s new address.

Therefore, during non-simultaneous movement, at least one of the hosts is able to successfully in-

form its correspondent host of the new address it has acquired. We exclude the case of simultaneous

migration because no in-band signaling protocol can correctly handle this case, rather additional

techniques must be used, as discussed in Section 7.

5.2 Properties Verified

Traditionally, a protocol needs to be verified for two properties: safety and liveness in order to

prove correctness. Verifying the safety property checks that no execution of the protocol can

deadlock. Deadlocks violate the correctness of FlexMove since connectivity cannot be restored

between two hosts if they are both deadlocked. Verifying liveness involves checking that all cycles

in the state-space of a protocol do something useful. Any cycle in this state space can be executed

repeatedly an infinite amount of times. If the actions performed during the cycle are not useful

actions for the protocol to perform then that cycle defines a livelock. In order to check the

absence of a cycle that livelocks, you need to define a liveness property that can check any cycle

to verify that it performs a useful action. For FlexMove, we defined the liveness property as the

2Note that simultaneous movement talks about a single packet reaching the peer, not about the completion of
a handshake.

13

ability to send a message to the correspondent host (such as a ping) and get a response back.

This liveness property directly corresponds to the definition of protocol correctness stated in the

previous section. In fact, the combination of the safety and liveness properties guarantee protocol

correctness.

5.3 Verification in SPIN

We verified these correctness of the FlexMove protocol with a formal methods tool called SPIN [6].

SPIN is a C-like language which allows you to define several different processes and the commu-

nication between them (using reliable FIFO channels). SPIN then runs all possible interleaving of

process execution including arbitrary message delivery delay, thus exploring all possible global sys-

tem executions. The state-space of the verification refers to the set of states in all possible global

executions. Cycles in the state-space represent a possible infinite execution path since a protocol

execution can just remain in the cycle. In order for verification to complete, the state-space must

be kept relatively small and bounded. However, exploring all possible interleavings of a protocol

can easily create exponential blow-up in the state-space. One of the biggest challenges in creating

a model is in using the right amount of simplification to avoid such state-space explosion, while

at the same time making sure that the model remains sound—that these simplifications do not

remove misbehaviours that exist in the real protocol from the model.

SPIN can perform various checks on the states in the state-space that it verifies. FlexMove

uses the following type of checks to verify the protocol:

• asserts - these familiar C checks verify some conditional expression. These checks are used

to sanity-check protocol execution.

• progress labels - are code labels used to mark pieces of code that must be executed during

any state-space cycle. Specifically, at least one progress label must be executed as part of a

cycle . Otherwise, the code is in a cycle that is not producing useful work and we conclude

that progress is no longer being made. There are two progress labels in this model. One

is located when a host receives a response message back from its correspondent host. This

verifies the liveness property described above. The second progress label marks the code

that models packet loss, as described in the next section.

14

• safety checks - these are used to verify that the code never deadlocks. They are imple-

mented by simply verifying that each state in the state-space has a possible transition to

another state. This verification checks that any state visited by SPIN either transitions to

another state or that the state marks the end of one possible run of the verification. This

verifies that no deadlock exist since a protocol that is deadlocked would be in a state that

would not be able to transition to any other states.

5.4 Description of the model

On a high level, the model is constructed by modeling each host as a different process. Network

communication is modeled using a global array of FIFO queues. The index of the queue element

corresponds to the receiver’s address. Thus, each host process reads from only one element in the

array (corresponding to its own address) and writes to the queue element corresponding to the

address it wants to send a packet to. Random propagation delay is modeled by having the receive

operation return a single message and be nondeterministically interleaved with other operations in

the model. Modeling migration is done by forcing a host process to change the array element that

it receives data on and to notify the correspondent host of its new “address” by sending messages

to the queue with the appropriate array index. The host processes then exchange data messages

that model the migration protocol using the array queue. The end result is that the peer host

process learns the new array index (address) that the host has moved to and sends new messages

on that new queue.

Only two hosts are executed during verifications because hosts cannot interfere with each other

since the flows on different hosts will with high probability have different flowIDs and all packets

are initially demultiplexed to a valid flowID or dropped. Our model also only verifies the FlexMove

protocol for a single flow. This is sound because flows are independent and don’t interfere with

one another. Flows can be considered independent since two flows are only tied to each other

through the interface lists and sequence numbers used on flows belonging to the same connection.

The correctness of interface lists is not verified using formal methods since it is simple to reason

about. The only property that is necessary to verify the correctness of interface lists is that a host

always has the single most recent list it got from its peer. This property directly follows from the

use of sequence numbers that are global to a connection. Since we don’t model interface lists, we

15

can ignore that flow dependency that connection-based sequence numbers create and consider all

flows independent. Independent flows do not interfere with one another because all demultiplexing

to flows is based on flowIDs which are unique to a flow on each host.

5.5 Challenges in Modeling FlexMove

5.5.1 Loss and Reordering of Network Packets

The model of FlexMove has to simulate loss and the reordering of packets in the network. Natively,

SPIN does not model loss and reordering since most application-layer protocols do not need to

simulate these network effects due to the fact that they sit on top of an existing transport layer

that guarantees reliability. FlexMove, however, is below the transport layer and its messages are

not sent reliably. Previous work [3] had identified that there are two major ways of modeling these

network effects. One way is to have a separate process non-deterministically take packets out of

the communication queues and drop or reorder them. The second approach is to have reordering

or loss happen nondeterministically during packet sending and receiving.

After testing both approaches, we conclude that the second approach is much more efficient.

Having a separate process reorder packets leads to more state-space explosion because the verifier

checks all possible interleaving of the network effect process and the host processes. However, it

does not matter to the protocol when the packet it received was reordered (e.g., five or ten steps

earlier), just whether a reordering or loss event occurred. Since the second approach limits the

points at which reordering or loss can happen (i.e., only during send or receive operations), it vastly

reduces the state-space without effecting the soundness of the protocol verification. However, care

must be taken to make sure that loss and reordering perturb the global state space as little as

possible, so that these operations do not create new states that have to be explored. Specifically,

reordering requires the use of some temporary variables to store message data about messages

that are moved from one position in the message queue to another. These variables have to be

reset at the end of the operation to avoid creating new states that are different depending on the

content of the last message that was reordered. Reordering necessitates the creation of new states

corresponding to the new order of messages in the queue, but those states should be agnostic to

the sequence of reorder operations that led to that ordering of messages.

16

The model of FlexMove uses the send operation to introduce network effects. The send op-

eration specifics are abstracted into a macro so that the host code is unaware of network effects.

This solution does present one challenge: message loss needs to contain a progress label, which

cannot exist inside atomic blocks of code, and yet send operations often need to occur within

atomic blocks. The reason that send operations need progress labels is that you do not want the

verifier to flag an infinite cycle of message loss as violating the progress property. Atomic blocks

are blocks of code that are considered indivisible by SPIN and therefore using them cuts down

on the number of possible interleavings that needs to be explored during verification. Send oper-

ations are often located at the end of an atomic block since they represent the final action that

needs to be performed in response to some event (i.e., getting a packet). However, in SPIN send

operations cannot both be inside an atomic block and have a progress label. The key insight that

allowed us to resolve this issue is the idea that not all message loss events needed a progress labels.

Rather, only those message loss events that could be part of a state-space cycle (could be executed

repeatedly) needed progress labels. In reality, the sending of a message was often accompanied by

a change in the state of the host, so that the send operation could not be called repeatedly and

thus did not need a progress label. The primary exception to this is the case of retransmission

of lost packets, which can be executed repeatedly. This case can be handled separately by using

goto statements to jump out of the atomic block, lose the packet, encounter a progress label, and

jump back into the block of code that does retransmission. So, in the end we used a version of

the send operation which does not have progress labels for most sends and then handled the other

cases with code specific to that send operation. We refer the curious reader to the definition of

the send operation in lines 110 to 133 of the full model in appendix A.

5.5.2 Random FlowIDs

SPIN, like most formal method verification methods, cannot deal with randomness well. In order

to verify a protocol with randomness, the verifier has to evaluate all possible values for the random

variables, which leads to intractable state-space explosion. Thankfully, even though the FlexMove

protocol uses randomness, we can avoid introducing randomness into the model. This is due to the

fact that randomness is only used to guarantee the uniqueness of the flowID in the communication.

Instead of having flowIDs randomly assigned, we simply assign them statically to each host and

17

thus guarantee that they are unique. After all, flowID randomness is used for two purposes: to

ensure uniqueness and to prevent flowID guessing by off-path entities. The former property is

needed for correctness—which we can just enforce by static assignment—while the latter property

is used to prevent connection hijacking by malicious third-parties. We do not model security

protections in our formal model, which focuses instead of protocol safety and liveness by well-

behaved endpoints.

5.5.3 Timeouts

Any network protocol that operates over a lossy network needs to have a notion of timeouts to

retransmit packets that may have been lost. SPIN, however, has no notion of time, and so does

not directly model timeouts based on clock time. SPIN does, however, have a predefined boolean

called “timeout” that is activated whenever no process can perform any operation. In effect, the

timeout flag creates a secondary set of operations in each process that are activated whenever the

primary set of operations is blocked for all processes in the system. In our model, we used this

secondary set of operations to perform retransmission. Intuitively, whenever the regular operation

of the protocol cannot make progress, retransmission kicks in to try to remedy the situation. In

this model, retransmissions will not occur unless it is needed by the protocol to make progress;

this does not reflect real retransmission, which can often send spurious packets. To make sure

that spurious packets would not break the protocol, we manually verify that all packet receive

operations are idempotent.

The above technique works well if the timeouts that retransmit packets are fair. Fairness is a

property that states that if we have two or more processes, each individual process will eventually

get a chance to perform its operations in every execution. In other words, a state cycle that

involves only one process will never be explored. This is critical for retransmission timeouts

because the message from any one of the host processes could have been lost, and therefore

the retransmission code from only that particular host process can restore the protocol. If the

retransmission code from the other process is executed infinitely often, then no progress will be

made and the verifier will report a progress violation. SPIN, however, only has the notion of

weak fairness – which means that fairness can only be enforced on operations that can always be

executed. Our implementation of retransmission—that is, using SPIN’s timeout boolean—does

18

not meet this notion of weak fairness, as it can only be executed when there are no other actions

to take in the system.

SPIN could not enforce natively fairness for retransmission because the timeouts that retrans-

mission used could not meet the notion of weak fairness. Therefore, we had to explicitly force the

model to execute retransmission timeouts fairly. Recall that each process in SPIN represents a

single host, each of which may need to perform retransmission of packets to its peer. So, we needed

to enforce fairness among the timeout blocks of all host processes. This was done by creating a

global queue of the host processes and then forcing the execution of timeouts to occur in the same

order as the processes queue. This is inefficient in terms of state space but was the approach we

introduced in order to achieve fairness for retransmissions.

5.6 Completeness

In model checking, the gold standard for verification is if your model reaches a fixed point. This

means that all states transitions from the already explored states lead to other explored states. In

other words, state exploration is complete. Unfortunately, this model does not reach a fixed point

due to sequence numbers. New migration events create new states because they have to increase

the sequence number and thus new states can always be created. Thus, this model cannot validate

all possible migration events over time. It has, however, been verified with up to five migrations.

It is believed that all subsequent migrations would be congruent to the first five, but this has not

yet been proven.

5.7 Results

The verification of the protocol ran on a Sun SunFire X4100 server with two dual-core 2.2GHz

Opteron 275 processors and 16GB of RAM. As expected, the runtime of the verification was

highly dependent on the number of migration events that could occur. For 5 migration events,

the progress property was verified in 14 minutes and 32 seconds and used 5297 MB of memory;

the safety property verified in 3 minutes 18 seconds and used 3129 MB of memory. We could not

get the model to verify for 6 migration events due to the increased memory requirements for the

added state-space.

The model verified the FlexMove state machine, which we present in Figure 5. An unexpected

19

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

NOADDRESS

RSYN RCVD RSYN SENTRSYN SENT RCVD

NOADDRESS RSYN RCVD

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

ACK SYN + ACK/ACK

Lose address

Lose address

Lose address

Lose address

New address/RSYN

New address/RSYN

RSYN/RSYN+ACK

RSYN/RSYN+ACK

RSYN/RSYN+ACK
RSYN+ACK/ACK

RSYN+ACK/ACK

ACK

ACK

Figure 5: The FlexMove state machine

finding was the RSYN SENT RCVD state in the state machine. This state is necessary to ensure

correctness when both hosts move before the migration protocol for either host fully completes.

This state was only found thanks to a progress property violation in a previous version of the

model.

6 Security

FlexMove, like other connection-based network protocols, is potentially vulnerable to two main

classes of malicious attacks: denial of service (DoS) and hijacking. A protocol is vulnerable to DoS

20

attacks if a requests that come in from an unverified party causes a host to spend an asymmetric

amount of resources in answering the request compared to the party making the request. The

classic example of this kind of an attack is SYN flooding. We note that nothing in this protocol

requires a large amount of data or computation to process the initial handshake or the migration

protocol. SYN cookies can be used to prevent state from being allocated to a new connection before

return reachability is tested. Unlike TCP Migrate [15], FlexMove does not require cryptographic

operations on the initial handshake or during migration, although it is not robust to on-path

adversaries. We believe that this is a good trade-off since this is the trade-off made by the current

network stack and connections that require protection against on-path attackers probably already

use (or should be using) application-specific authentication mechanisms, which would prevent

on-path attacks.

Hijacking is an attack that occurs when a malicious entity takes an already established (and

often authenticated) connection and re-routes one end towards some nefarious agent. Since au-

thentication sometimes occurs only at the beginning of the session, a victim is often unaware of

this change and can reveal sensitive information during the subsequent data exchange. FlexMove

is vulnerable to hijacking if a malicious host is able to send a valid RSYN to the victim and

thus initiate a migration to an unauthorized host. Hijacking an authenticated connection is only

possible if the endhosts do not authenticate each other after a migration. It is possible that some

authentication mechanisms which authenticate the peer at the beginning of the connection but do

not establish a shared key used throughout the connection, need to be modified to re-authenticate

after a migration. However, we are unaware of any real authentication protocols that operate in

such a manner. Most mechanisms establish a session key which is used throughout the authenti-

cated session and can therefore remain unmodified. We note that unauthenticated communication

sessions, as well as sessions that are only authenticated at the beginning of the communication,

can currently be trivially hijacked by on-path entities simply by changing the forwarding path to

point to malicious entities instead of the intended endhosts. FlexMove does not address this issue

and is not intended to add any new security guarantees to the network. Instead, it simply aims not

to introduce any new vulnerabilities to network communication. Thus, FlexMove only addresses

hijacking by off-path entities. It prevents such an attack by requiring the presence of nonces dur-

ing migration. Nonces are random 64-bits long strings that are only transmitted between the two

21

end-hosts. Off-path entities that are not collaborating with any on-path elements have no way

of determining the correct nonce without resorting to online brute-force search. Brute-forcing a

64-bit random string by sending probe packets is infeasible because it will require, on average,

263 before finding a match. Therefore, using this lightweight approach, FlexMove can prevent

hijacking attacks by off-path hosts.

7 Simultaneous Movement

The FlexMove protocol supports mobility whenever the two communicating hosts do not move at

the exact same time. However, an in-band signaling protocol, without any additional mechanisms,

cannot handle simultaneous changes in location. When two hosts undergo simultaneous movement,

each host moves before it receives a message from its peer about that peer’s new address. In this

scenario, each host does not know the address of its peer and the peer does not know the new

address of the host. Therefore, the host cannot notify its peer of its new address and will never

receive a notification of its peer’s new address.

We now discuss one mechanism that can enable the communicating hosts to recover their

connection. It is possible to use a triangle-routing solution which uses globally-known, statically

located, network-level elements (home-agents). In this solution, each host registers its location

with its designated home-agent as it moves around the network as in Mobile IP [12]. During

simultaneous movement, hosts can contact the home-agents of their correspondent hosts to learn

their new locations. This solution is heavyweight in that it requires that most hosts on the Internet

have static home agents with which they register their locations, which requires a lot of additional

infrastructure and the purchase of home-agent services. This solution also undermines the location

privacy of hosts by creating a central location which is aware of the full movement history of the

host. This is an especially big concern for personal computing devices as we discussed in section

2.

We propose an alternate solution to allow connection recovery during simultaneous movement.

In this solution, each network should have a local redirection middlebox, which keeps a short-

lived redirection cache of the new locations of hosts that have recently moved out of its network.

When a host moves, it should send its new address to the redirection middlebox of its old network

22

to populate the redirection cache. Upon receiving a new cache entry, the redirection middlebox

takes over (via gratuitous ARP-flooding or a similar mechanism) the old topological address of

the moved host for the duration of the life of the cache entry. If the redirection middlebox gets

an RSYN packet for an address in the cache, it simply forwards it to the new address of the host.

All packets other than RSYN packets can be dropped by the redirection middlebox. The address

of the redirection middlebox can be learned when a host joins a network (e.g., through DHCP).

The duration of time during which a redirection box must cache an entry can be short, measured

in seconds, as it just needs to enable a single RSYN exchange between the two hosts and is not

useful after a connection breaks because it exceeded its retransmission count and timeout. For this

to be effective, only one of the communicating hosts needs to be part of a network with a redirection

middlebox. This scheme is lightweight since the cache entries are short and decentralized. It also

preserves privacy since a host needs to notify only the redirection box of the last network it visited

of its new address rather than some central entity that knows the full history of its movements.

8 Conclusions

The Internet architecture needs to evolve to offer better support for new technologies such as

mobile devices and VM migration. Given that a complete overhaul of the Internet is not realistic,

the FlexMove protocol and layer, offers a way to incrementally evolve the Internet to support

location dynamism and path multiplicity. We believe that this extension to the network stack is

relatively easy to deploy and adds much needed functionality. It can also serve as a robust tool

for future innovation that adds better support for multi-interface and multi-path communication

in the transport layer.

A significant part of this thesis was formal verification of the correctness properties of the

FlexMove protocol. This verification was not only useful in checking the correctness of the final

protocol but also motivated the design by making us aware, early on, of the subtle edge-cases that

we needed to consider for this class of protocols.

23

References

[1] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-area migration of vir-

tual machines including local persistent state. In Proceedings of the 3rd international con-

ference on Virtual execution environments, VEE ’07, pages 169–179, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-630-1. doi: http://doi.acm.org/10.1145/1254810.1254834. URL

http://doi.acm.org/10.1145/1254810.1254834.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. Live

migration of virtual machines. In Proceedings of the 2nd conference on Symposium on Networked

Systems Design & Implementation - Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005.

USENIX Association. URL http://portal.acm.org/citation.cfm?id=1251203.1251223.

[3] E. Fersman and B. Jonsson. Abstraction of communication channels in Promela: A case study.

In Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software

Verification, pages 187–204, London, UK, 2000. Springer-Verlag. ISBN 3-540-41030-9. URL

http://portal.acm.org/citation.cfm?id=645880.672086.

[4] A. Ford, C. Raiciu, and M. Handley. TCP extensions for multipath operation with mul-

tiple addresses. Work in progress (draft-ietf-mptcp-multiaddressed-03), March 2011. URL

http://tools.ietf.org/id/draft-ietf-mptcp-multiaddressed.txt.

[5] B. Ford. Structured streams: a new transport abstraction. In Proceedings of

the 2007 conference on Applications, technologies, architectures, and protocols for com-

puter communications, SIGCOMM ’07, pages 361–372, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-713-1. doi: http://doi.acm.org/10.1145/1282380.1282421. URL

http://doi.acm.org/10.1145/1282380.1282421.

[6] G. J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295, 1997.

[7] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. RFC 1323 (Proposed

Standard), May 1992. URL http://www.ietf.org/rfc/rfc1323.txt.

[8] H. E. Jensen, K. G. Larsen, and A. Skou. Modelling and Analysis of a Collision Avoidance Protocol

Using SPIN and UPPAAL. In Rutgers University, pages 1–20, 1996.

[9] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity Protocol. RFC 5201 (Exper-

imental), Apr. 2008. URL http://www.ietf.org/rfc/rfc5201.txt.

24

[10] T. Nakatani. Verification of Group Address Registration Protocol using PROMELA and SPIN. In

International SPIN Workshop, 1997.

[11] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual ma-

chines. In Proceedings of the annual conference on USENIX Annual Technical Confer-

ence, ATEC ’05, pages 25–25, Berkeley, CA, USA, 2005. USENIX Association. URL

http://portal.acm.org/citation.cfm?id=1247360.1247385.

[12] C. Perkins. IP Mobility Support. RFC 2002 (Proposed Standard), Oct. 1996. URL

http://www.ietf.org/rfc/rfc2002.txt. Obsoleted by RFC 3220, updated by RFC 2290.

[13] C. E. Perkins and D. B. Johnson. Mobility support in IPv6. In Proceedings of the 2nd Annual

International Conference on Mobile Computing and Networking, MobiCom ’96, pages 27–37, New

York, NY, USA, 1996. ACM. ISBN 0-89791-872-X. doi: http://doi.acm.org/10.1145/236387.236400.

URL http://doi.acm.org/10.1145/236387.236400.

[14] V. K. Shanbhag and K. Gopinath. A SPIN-based model checker for telecommunication protocols. In

Proceedings of the 8th International SPIN Workshop on Model Checking of Software, SPIN ’01, pages

252–271, New York, NY, USA, 2001. Springer-Verlag New York, Inc. ISBN 3-540-42124-6. URL

http://portal.acm.org/citation.cfm?id=380921.380944.

[15] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host mobility. Pro-

ceedings of ACM MOBICOM, pages 155–166, 2000. doi: 10.1145/345910.345938. URL

http://portal.acm.org/citation.cfm?doid=345910.345938.

[16] A. W. Spin, T. C. Ruys, and R. Langerak. Validation of Bosch’ Mobile Communication Network. In

In Proceedings of SPIN97, the Third International Workshop on SPIN, University of Twente, 1997.

25

Appendices

A SPIN Model

1 /∗
2 ∗
3 ∗ Notes : This model should be v e r i f i e d through a no−progress−cyc l e and sa f e t y

4 ∗ check . The sa f e t y check does not always work here because of f a i r t imeouts

5 ∗ and the f a c t tha t the timeouts are f a i r and thus can almost always run . Thus

6 ∗ you never deadlock on the main loop . However you can deadlock ins ide of an

7 ∗ act ion . For example i f a l l systems wait on another system to send them

8 ∗ something . That case would not be caught by a no−progress cyc l e check , so you

9 ∗ do need both .

10 ∗
11 ∗ Sends never b lock s ince in the Interne t you dont need a rec i ever to get a

12 ∗ packet for the sender to be ab le to send more . Send can loose packets or

13 ∗ reorder them though .

14 ∗
15 ∗/
16

17 #define NADDR 6

18 #define ADDR BITS 4

19 #define MAX MIGRATIONS 5 //num g loba l migrat ions

20 #define MIGRATION BITS 4

21 #define SEQ BITS 4

22 #define CHAN SIZE 4

23 #define NSYSTEMS 2

24

25 #define OUTSTANDING PINGS MAX 1

26 #define OUTSTANDING PINGS BITS 2 // number b i t s to s t o r e OUTSTANDING PINGS

27

28 mtype = {syn , synack , ack , rsyn , rsynack , rack , ping , pong } ;
29

30 chan Addr [NADDR] = [CHAN SIZE] of {mtype , byte , pid , pid , byte } ;
31 // type , s r c addr , s r c f l ow i d , d e s t f l ow id , seq ;

32

33

34 bit takenAddr [NADDR] ;

35 pid t r an s i t i onLock ;

36 unsigned num migrations :MIGRATION BITS = 0 ;

37

38

39 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗NETWORK EFFECTCS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

26

40

41 #define REORDERMSGS 1

42 #define MSG LOSS 1

43 #define TIMEOUT PING RETRANSMIT 1

44

45

46 chan f a i r t ime ou t q = [NSYSTEMS] of {pid } ;
47

48 #define TIMEOUT REGISTER f a i r t imeou t q ! p id ;

49 #define TIMEOUT UNREGISTER f a i r t imeou t q ?? eval (p id) ;

50 #define TIMEOUT CONDITION (len (f a i r t ime ou t q) > 1 && timeout && (f a i r t imeou t q

? [eval (p id)]))

51 #define TIMEOUT INCREMENT atomic {\
52 f a i r t imeou t q ? eval (p id) ;\
53 f a i r t imeou t q ! p id ;\
54 }
55

56

57

58 #define FINDVALUE(l i s t , val , max) temp index = 0 ; \
59 do\
60 : : temp index < max −>\
61 i f \
62 : : l i s t [temp index] == val −> \
63 break ;\
64 : : else −> temp index = temp index + 1\
65 f i ;\
66 : : else−>break\
67 od ;

68

69 //no b lock ing on send a system does not wait f o r another system

70 // to read be f o r e i t can wr i t e .

71

72 #define CLEAR AFTER SEND \
73 tmp type = 0;\
74 tmp dst addr = 0;\
75 tmp ds t f l ow id = 0;\
76 tmp my flow id = 0;\
77 tmp seq no = 0 ;

78

79 #i f REORDERMSGS

80

81 #define SENDREORDER(chan no , type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no) \
82 Addr [chan no] ! type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no−>\
83 tmp count = len (Addr [chan no]) ;\

27

84 do \
85 : : tmp count > 1 −>\
86 printf (”MSC: r eo rde r on %d , %d\n” , chan no , tmp count) ;\
87 d step{\
88 Addr [chan no] ? tmp type , tmp dst addr , tmp dst f l ow id ,

tmp my flow id , tmp seq no ;\
89 Addr [chan no] ! tmp type , tmp dst addr , tmp dst f l ow id ,

tmp my flow id , tmp seq no ;\
90 assert (tmp count > 0) ;\
91 tmp count−−;\
92 }\
93 : : break\
94 od ;\
95 CLEAR AFTER SEND\
96 tmp count = 0 ;

97 #else

98 #define SENDREORDER(chan no , type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no) \
99 Addr [chan no] ! type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no ;

100 #endif

101

102

103 /∗ There are two funct ions for send to get over the l im i t a t i on tha t progress

104 ∗ l a b e l s cannot be ins ide atomic sequences and msg l o s s sometimes requ i res a

105 ∗ progress l a b e l . Otherewise , a non−progress cyc l e of i n f i n i t e msg l o s s can

106 ∗ e x i s t .

107 ∗/
108

109

110 /∗
111 ∗ This f i r s t funct ion does not contain a progress l a b e l . Most sends don ’ t need

112 ∗ a progress l a b e l because when there i s a send there i s usua l l y a l so a change

113 ∗ of s t a t e tha t prevents i n f i n i t e sends unless i t i s a timeout send .

114 ∗/
115

116 #define SEND(chan no , type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no) \
117 i f \
118 : : SEND REORDER(chan no , type , s rc addr , s r c f l ow i d , d e s t f l ow id ,

seq no) ;\
119 : : printf (”MSC: msg l o s s \n”) ;\
120 f i ;

121

122 /∗ The second funct ion can be in an atomic statetement and contains a va l i d

123 ∗ progress l a b e l . However , i t may red i r e c t the f low to the main loop when

124 ∗ done . I t uses a hack with goto statements to enable f low to e x i t an atomic

125 ∗ sequence be fore encountering the progress l a b e l .

28

126 ∗/
127 #define SENDPRGRED(chan no , type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no) \
128 i f \
129 : : SEND REORDER(chan no , type , s rc addr , s r c f l ow i d , d e s t f l ow id ,

seq no) ;\
130 : : goto p r o g r e s s l o s e m s g r e d i r e c t ;\
131 f i ;

132

133

134 #define RECV(chan no , type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no) \
135 Addr [chan no] ? type , s rc addr , s r c f l ow i d , d e s t f l ow id , seq no ;

136 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗END NETWORK EFFECTCS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
137

138 in l ine copy conn in fo (from , to)

139 {
140 to . dst addr = from . dst addr ;

141 to . d s t f l ow i d = from . d s t f l ow i d ;

142 to . s r c f l ow i d = from . s r c f l ow i d ;

143 to . c on t r o l s e q no = from . c on t r o l s e q no ;

144 }
145

146 in l ine c l e a r c o nn i n f o (to)

147 {
148 to . dst addr = 0 ;

149 to . d s t f l ow i d = 0 ;

150 to . s r c f l ow i d = 0 ;

151 to . c on t r o l s e q no = 0 ;

152 }
153

154

155 typedef c onne c t i on i n f o

156 {
157 pid s r c f l ow i d ;

158 pid d s t f l ow i d ;

159 unsigned dst addr :ADDR BITS;

160 unsigned c on t r o l s e q no : SEQ BITS ;

161 } ;
162

163 #define STATEUNCONNECTED 0

164 #define STATE SYN SENT 1

165 #define STATE SYN RECV 2

166 #define STATE ESTABLISHED 3

167 #define STATE NOADDRESS 4

168 #define STATE RSYN SENT 5

169 #define STATE RSYN RECV 6

29

170 #define STATE NOADDRESS RSYN RECV 7

171 #define STATE RSYN SENT RSYN RECV 8

172

173

174 proctype system (byte addr ; byte s e rv e r addr)

175 {
176 unsigned cur rent addr :ADDR BITS = addr ;

177 unsigned o ld addr :ADDR BITS = 0 ;

178 conne c t i on i n f o conn ;

179 conne c t i on i n f o tmp conn ;

180 byte temp index ;

181 unsigned tmp dst addr :ADDR BITS;

182 pid tmp ds t f l ow id ;

183 pid tmp my flow id ;

184

185 //added f o r r eo rde r in SEND

186 mtype tmp type ;

187 unsigned tmp seq no : SEQ BITS ;

188 unsigned tmp count : 4 ;

189

190 unsigned out s tand ing p ings :OUTSTANDING PINGS BITS = 0 ;

191 unsigned s t a t e : 4 = STATEUNCONNECTED;

192 unsigned c n t r l s e q n o :MIGRATION BITS = 0 ;

193

194 atomic

195 {
196 i f

197 : : s e rve r addr > 0 −> conn . dst addr = se rve r addr ;

198 printf (”MSC: S ta r t i ng c l i e n t \n”) ;
199 : : else−>
200 printf (”MSC: S ta r t i ng s e r v e r \n”) ;
201 f i ;

202 }
203

204 TIMEOUT REGISTER

205 main loop :

206 do

207 : : atomic {
208 s t a t e == STATEUNCONNECTED && conn . dst addr > 0−>
209 i f

210 : : tmp conn . s r c f l ow i d == 0−>
211 tmp conn . s r c f l ow i d = pid ;

212 : : else

213 f i ;

214 tmp conn . d s t f l ow i d = 0 ;

30

215 tmp conn . dst addr = conn . dst addr ;

216

217 SEND(tmp conn . dst addr , syn , current addr , tmp conn . s r c f l ow i d , tmp conn .

d s t f l ow id , 0) ;

218 s t a t e = STATE SYN SENT;

219 }
220 : : RECV(current addr , syn , tmp dst addr , tmp dst f l ow id , 0 , 0)−>
221 atomic {
222 i f

223 : : s t a t e == STATE SYN RECV && tmp conn . d s t f l ow i d == tmp ds t f l ow id &&

tmp conn . dst addr == tmp dst addr−>
224 assert (s e rv e r addr == 0) ;

225 SENDPRGRED(tmp conn . dst addr , synack , current addr , tmp conn . s r c f l ow i d ,

tmp conn . d s t f l ow id , 0) ;

226 : : conn . d s t f l ow i d == tmp ds t f l ow id && conn . dst addr == tmp dst addr−>
227 assert (s e rv e r addr == 0) ;

228 : : s e rv e r addr == 0 && s ta t e==STATEUNCONNECTED && tmp ds t f l ow id > 0−>
229 tmp conn . d s t f l ow i d = tmp ds t f l ow id ;

230 tmp conn . dst addr = tmp dst addr ;

231 tmp conn . s r c f l ow i d = pid ;

232

233 SEND(tmp conn . dst addr , synack , current addr , tmp conn . s r c f l ow i d , tmp conn .

d s t f l ow id , 0) ;

234 s t a t e = STATE SYN RECV;

235

236 : : else

237 f i ;

238 d step

239 {
240 tmp dst addr = 0 ;

241 tmp ds t f l ow id = 0 ;

242 }
243 }
244 : : RECV(current addr , synack , tmp dst addr , tmp dst f l ow id , tmp my flow id , 0)−>
245 atomic

246 {
247 i f

248 : : s t a t e == STATE SYN SENT && tmp conn . d s t f l ow i d == 0 && tmp my flow id ==

tmp conn . s r c f l ow i d−>
249 tmp conn . d s t f l ow i d = tmp ds t f l ow id ;

250 copy conn in fo (tmp conn , conn) ;

251 c l e a r c o nn i n f o (tmp conn) ;

252 s t a t e = STATE ESTABLISHED;

253 SEND(conn . dst addr , ack , current addr , conn . s r c f l ow i d , conn . d s t f l ow id , 0)

;

31

254 : : else

255 f i ;

256

257 d step{
258 tmp ds t f l ow id = 0 ;

259 tmp dst addr = 0 ;

260 tmp my flow id = 0 ;

261 }
262 }
263 : : RECV(current addr , ack , tmp dst addr , tmp dst f l ow id , tmp my flow id , 0)−>
264 atomic

265 {
266 i f

267 : : s t a t e == STATE SYN RECV && tmp dst addr == tmp conn . dst addr &&

tmp my flow id == tmp conn . s r c f l ow i d −>
268 assert (tmp conn . d s t f l ow i d == tmp ds t f l ow id) ;

269 conn . c on t r o l s e q no = 0 ;

270 copy conn in fo (tmp conn , conn) ;

271 c l e a r c o nn i n f o (tmp conn)

272 s t a t e = STATE ESTABLISHED;

273 : : else−>
274 f i ;

275 tmp ds t f l ow id = 0 ;

276 tmp dst addr = 0 ;

277 tmp my flow id = 0 ;

278 }
279 : : s t a t e == STATE ESTABLISHED && outs tand ing p ings == 0

280 && empty(Addr [cur rent addr])

281 && empty(Addr [conn . dst addr])

282 −>
283 /∗
284 ∗ t h i s does up to OUTSTANDING PINGS MAX pings and waits for them a l l to

285 ∗ return to do a new batch . Otherwise , you can have 2 outstanding pings ge t a

286 ∗ pong=> 1 outstanding ping , send a ping => 2 outstanding pings there fore you

287 ∗ a l t e rna t e between one and two outstanding pings never reaching 0. An

288 ∗ a l t e rna t e approach i s to have the progress property at the r ec i ep t of the

289 ∗ pong . That may be b e t t e r but you are never guaranteed to reach 0. Is tha t

290 ∗ important?

291 ∗/
292 p r o g r e s s i n f i n i t e p i n g s :

293 atomic {
294 do

295 : : out s tand ing p ings < OUTSTANDING PINGS MAX −>
296 SEND(conn . dst addr , ping , current addr , conn . s r c f l ow i d , conn . d s t f l ow id , 0)

;

32

297 out s tand ing p ings++;

298 : : out s tand ing p ings > 0 −> break

299 od ;

300 }
301 : : RECV(current addr , ping , , , tmp my flow id , 0)−>
302 atomic

303 {
304 i f

305 : : s t a t e == STATE ESTABLISHED && conn . s r c f l ow i d == tmp my flow id −>
306 SENDPRGRED(conn . dst addr , pong , current addr , conn . s r c f l ow i d , conn .

d s t f l ow id , 0) ;

307 : : s t a t e == STATE SYN RECV && tmp conn . s r c f l ow i d == tmp my flow id −>
308 // s e r v e r ge t s msg be fo r he ge t s ack => ack was l o s t accept conn now

309 d step

310 {
311 assert (0 == se rve r addr) ;

312 conn . c on t r o l s e q no = 0 ;

313 copy conn in fo (tmp conn , conn) ;

314 c l e a r c o nn i n f o (tmp conn) ;

315 s t a t e = STATE ESTABLISHED;

316 }
317 SEND(conn . dst addr , pong , current addr , conn . s r c f l ow i d , conn . d s t f l ow id , 0) ;

318 : : else

319 f i ;

320 d step

321 {
322 tmp my flow id = 0 ;

323 }
324 }
325 : : RECV(current addr , pong , , , tmp my flow id , 0)−>
326 atomic

327 {
328 i f

329 : : s t a t e == STATE ESTABLISHED && conn . s r c f l ow i d == tmp my flow id −>
330 outs tand ing p ings −−;
331 : : else

332 f i ;

333 tmp my flow id = 0 ;

334 }
335 : : atomic {
336 s t a t e >= STATE ESTABLISHED

337 && (0 == trans i t i onLock | | p id == trans i t i onLock)

338 && num migrations < MAX MIGRATIONS −>
339

340 o ld addr = current addr ;

33

341 cur rent addr = 0 ;

342 printf (”MSC: Lost addr %d , pid %d num %d , lock %d\n” , old addr , pid ,

num migrations , t r an s i t i onLock) ;

343 num migrations++;

344 cn t r l s e q n o++;

345 t r an s i t i onLock = pid ;

346 i f

347 : : STATE RSYN RECV == sta t e | | STATE RSYN SENT RSYN RECV == s ta t e −>
348 s t a t e = STATE NOADDRESS RSYN RECV;

349 : : else −>
350 s t a t e = STATE NOADDRESS;

351 f i ;

352 }
353

354 atomic

355 {
356 FINDVALUE(takenAddr , 0 , NADDR)

357 assert (temp index<NADDR) ;

358 cur rent addr = temp index ;

359 takenAddr [o ld addr] = 0 ;

360 takenAddr [cur rent addr] = 1 ;

361 printf (”MSC: migr . o ld %d , new %d , peer %d\n” , old addr , current addr , conn .

dst addr) ;

362 o ld addr = 0 ;

363 SEND(conn . dst addr , rsyn , current addr , conn . s r c f l ow i d , conn . d s t f l ow id ,

c n t r l s e q n o) ;

364 i f

365 : : STATE NOADDRESS == s ta t e −>
366 s t a t e = STATE RSYN SENT;

367 : : STATE NOADDRESS RSYN RECV == s ta t e −>
368 s t a t e = STATE RSYN SENT RSYN RECV −>
369 f i ;

370 }
371 : :

372 RECV(current addr , rsyn , tmp dst addr , , tmp my flow id , temp index)−>
373 atomic {
374 i f

375 : :

376 (s t a t e == STATE ESTABLISHED | | s t a t e == STATE RSYN SENT)

377 && conn . s r c f l ow i d == tmp my flow id && temp index > conn . con t ro l s eq no−>
378 conn . c on t r o l s e q no = temp index ;

379 copy conn in fo (conn , tmp conn) ;

380 printf (”MSC: migr . got rsyn old %d , new %d , me %d\n” , conn . dst addr ,

tmp dst addr , cur rent addr) ;

381 tmp conn . dst addr = tmp dst addr ;

34

382

383 i f

384 : : STATE ESTABLISHED == s ta t e −>
385 s t a t e = STATE RSYN RECV;

386 : : else −>
387 s t a t e = STATE RSYN SENT RSYN RECV −>
388 f i ;

389

390 i f

391 : : temp index == (num migrations−c n t r l s e q n o) −>
392 t ran s i t i onLock = 0 ;

393 : : else

394 f i ;

395 SEND(tmp conn . dst addr , rsynack , current addr , tmp conn . s r c f l ow i d , tmp conn

. d s t f l ow id , conn . c on t r o l s e q no) ;

396

397 : :

398 (s t a t e == STATE RSYN RECV | | STATE RSYN SENT RSYN RECV == s ta t e)

399 && conn . s r c f l ow i d == tmp my flow id && tmp conn . dst addr == tmp dst addr

400 && conn . c on t r o l s e q no == temp index−>
401 printf (”MSC: migr . resend old %d , new %d , me %d\n” , conn . dst addr ,

tmp dst addr , cur rent addr) ;

402 SEND(tmp conn . dst addr , rsynack , current addr , tmp conn . s r c f l ow i d , tmp conn

. d s t f l ow id , conn . c on t r o l s e q no) ;

403 : :

404 (s t a t e == STATE RSYN RECV | | STATE RSYN SENT RSYN RECV == s ta t e)

405 && conn . s r c f l ow i d == tmp my flow id

406 && temp index > conn . con t ro l s eq no−>
407

408 printf (”MSC: migr . got new rsyn old %d , new %d , me %d , o ld seq no %d\n” ,

conn . dst addr , tmp dst addr , current addr , conn . c on t r o l s e q no) ;

409 conn . c on t r o l s e q no = temp index ;

410 copy conn in fo (conn , tmp conn) ;

411 tmp conn . dst addr = tmp dst addr ;

412 i f

413 : : temp index == (num migrations−c n t r l s e q n o) −>
414 t ran s i t i onLock = 0 ;

415 : : else

416 f i ;

417 SEND(tmp conn . dst addr , rsynack , current addr , tmp conn . s r c f l ow i d ,

tmp conn . d s t f l ow id , conn . c on t r o l s e q no) ;

418 : :

419 s t a t e == STATE SYN RECV && tmp conn . s r c f l ow i d == tmp my flow id −>
420 tmp conn . c on t r o l s e q no = temp index ;

421 copy conn in fo (tmp conn , conn) ;

35

422

423 printf (”MSC: migr . SYN got rsyn old %d , new %d , me %d\n” , tmp conn . dst addr

, tmp dst addr , cur rent addr) ;

424 tmp conn . dst addr = tmp dst addr ;

425 s t a t e = STATE RSYN RECV;

426 SEND(tmp conn . dst addr , rsynack , current addr , tmp conn . s r c f l ow i d ,

tmp conn . d s t f l ow id , conn . c on t r o l s e q no) ;

427 : : else

428 printf (”MSC: d i s c a rd ing rsyn , s t a t e=%d go t f l ow i d %d my f low id %d , seq no

%d\n” , s tate , tmp my flow id , conn . s r c f l ow i d , conn . c on t r o l s e q no) ;

429 f i ;

430 d step {
431 tmp dst addr = 0 ;

432 tmp my flow id = 0 ;

433 temp index = 0 ;

434 }
435 }
436 : :

437 RECV(current addr , rsynack , tmp dst addr , , tmp my flow id , temp index)−>
438 atomic {
439 i f

440 : : (s t a t e == STATE RSYN SENT | | STATE RSYN SENT RSYN RECV == s ta t e)

441 && conn . s r c f l ow i d == tmp my flow id && temp index == cnt r l s e q no−>
442 SEND(conn . dst addr , rack , current addr , conn . s r c f l ow i d , conn . d s t f l ow id ,

c n t r l s e q n o) ;

443 printf (”MSC: f i n migr , addr %d\n” , cur rent addr) ;

444

445 i f

446 : : STATE RSYN SENT == s ta t e −>
447 s t a t e = STATE ESTABLISHED;

448 : : STATE RSYN SENT RSYN RECV == s ta t e −>
449 s t a t e = STATE RSYN RECV;

450 f i ;

451 : : (s t a t e == STATE ESTABLISHED | | STATE RSYN RECV == sta t e)

452 && conn . s r c f l ow i d == tmp my flow id && temp index == cnt r l s e q no−>
453 //NOTE: have to send to address from which rec i eved , not connect ion addr .

454 temp index = tmp dst addr ; //do not use tmp dst addr d i r e c t l y , used by

reo rde r macro .

455 SENDPRGRED(temp index , rack , current addr , conn . s r c f l ow i d , conn .

d s t f l ow id , c n t r l s e q n o) ;

456 : : else

457 printf (”MSC: d i s c a rd ing rsynack , s t a t e=%d go t f l ow i d %d my f low id %d\n” ,

s tate , tmp my flow id , conn . s r c f l ow i d) ;

458 f i ;

459 d step {

36

460 tmp dst addr = 0 ;

461 tmp my flow id = 0 ;

462 temp index=0;

463 }
464 }
465 : :

466 RECV(current addr , rack , tmp dst addr , , tmp my flow id , temp index)−>
467 atomic {
468 i f

469 : : (s t a t e == STATE RSYN RECV | | STATE RSYN SENT RSYN RECV == s ta t e)

470 && tmp conn . s r c f l ow i d == tmp my flow id

471 && tmp conn . dst addr == tmp dst addr &&

472 temp index == conn . c on t r o l s e q no

473 −>
474 copy conn in fo (tmp conn , conn) ;

475 c l e a r c o nn i n f o (tmp conn) ;

476 printf (”MSC: f i n peer migr , new addr %d , my addr %d\n” , conn . dst addr ,

cur rent addr) ;

477 i f

478 : : STATE RSYN RECV == s ta t e −>
479 s t a t e = STATE ESTABLISHED;

480 : : STATE RSYN SENT RSYN RECV == s ta t e −>
481 s t a t e = STATE RSYN SENT

482 f i ;

483 : : else

484 printf (”MSC: d i s c a rd ing rack , s t a t e=%d go t f l ow i d %d my f low id %d\n” ,

s tate , tmp my flow id , conn . s r c f l ow i d) ;

485 f i ;

486 d step {
487 tmp dst addr = 0 ;

488 tmp my flow id = 0 ;

489 temp index = 0 ;

490 }
491 }
492 : :

493 atomic{
494 TIMEOUT CONDITION−>
495 printf (” In timeout , pid %d , s t a t e %d\n” , pid , s t a t e) ;

496 i f

497 : : s t a t e == STATE SYN SENT −>
498 SENDPRGRED(tmp conn . dst addr , syn , current addr , tmp conn . s r c f l ow i d ,

tmp conn . d s t f l ow id , 0) ;

499 : : s t a t e == STATE RSYN SENT−>
500 SENDPRGRED(conn . dst addr , rsyn , current addr , conn . s r c f l ow i d , conn .

d s t f l ow id , c n t r l s e q n o) ;

37

501 : : s t a t e == STATE RSYN RECV −>
502 SENDPRGRED(tmp conn . dst addr , rsynack , current addr , tmp conn . s r c f l ow i d ,

tmp conn . d s t f l ow id , conn . c on t r o l s e q no) ;

503 : : STATE RSYN SENT RSYN RECV == s ta t e −>
504 SENDPRGRED(conn . dst addr , rsyn , current addr , conn . s r c f l ow i d , conn .

d s t f l ow id , c n t r l s e q n o) ;

505 //SEND(tmp conn . dst addr , rsyn , current addr , conn . s r c f l ow i d , conn .

d s t f l ow id , c n t r l s e q n o) ;

506 SENDPRGRED(tmp conn . dst addr , rsynack , current addr , tmp conn . s r c f l ow i d ,

tmp conn . d s t f l ow id , conn . c on t r o l s e q no) ;

507 #i f TIMEOUT PING RETRANSMIT

508 : : s t a t e == STATE ESTABLISHED && outs tand ing p ings > 0−>
509 SENDPRGRED(conn . dst addr , ping , current addr , conn . s r c f l ow i d , conn .

d s t f l ow id , 0) ;

510 #end i f

511 : : else

512 f i ;

513 skip ;

514 TIMEOUT INCREMENT

515 }
516 od ;

517

518 i f

519 : : 0==1−>
520 p r o g r e s s l o s e m s g r e d i r e c t :

521 printf (”MSC: msg l o s s /w prog r e s s \n”) ;
522 d step {
523 tmp dst addr = 0 ;

524 tmp ds t f l ow id = 0 ;

525 tmp my flow id = 0 ;

526 temp index=0;

527 }
528 goto main loop ;

529 : : else

530 f i ;

531 TIMEOUT UNREGISTER

532 }
533

534 in i t {
535 takenAddr [0] = 1 ;

536 takenAddr [1] = 1 ;

537 takenAddr [2] = 1 ;

538

539 run system (1 , 2) ; // c l i e n t

540 run system (2 , 0) ; // s e r v e r

38

541

542 }

39

