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Abstract

An ad hoc data formats any nonstandard, semi-structured data
format for which robust data processing tools are not apkgldn
this paper, we presentM\E, a new kind of mark-up language de-
signed to help users generate documentation and data pirnges
tools for ad hoc text data. More specifically, given a new ad ho
data source, an WNE programmer will edit the document to add
a number of simple annotations, which serve to specify itgagy
tic structure. Annotations include elements that speaifiystants,
optional data, alternatives, enumerations, sequendasiatadata,
and recursive patterns. TheNAE system uses a combination of
user annotations and the raw data itself to extract a cofrest
grammar from the document. This context-free grammar can th
be used to parse the data and transform it intx|n parse tree,
which may be viewed through a browser for analysis or delmgygi
purposes. In addition, the MNE system will generate BADS/ML
description [21], which may be saved as lasting documentaif
the data format or compiled into a host of useful data praosgss
tools ranging from parsers, printers and traversal libsaid format
translators and query engines. OveralNMe simplifies the pro-
cess of generating descriptions for data formats and ingsrtive
productivity of programmers who work with ad hoc data regyla
In addition to designing and implementingnAE, we have de-
vised a semantic theory for the core elements of the langdduse
semantic theory describes the editing process, whichlassa
raw, unannotated text document into an annotated docurardt,
the grammar extraction process, which generates a cofnésxt-
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various low-level chores like parsing and format transtatio ex-
tract the valuable information they need from their datakida
these tasks more difficult is the fact that many ad hoc dasahsete
limited or out-of-date documentation. Moreover, these datmats
evolve, so documentation that is up-to-date one month malgpe
recated the next.

1.1 Past Solutions

In the past, two starkly different research communities, pio-
gramming languages (PL) community and the machine learning
(ML) community, have attempted to apply their technolodies
help solve the problem of using ad hoc data files productively

PL Solutions. In the programming languages community, work
has centered on the development of a variety of domain{fspeci
languages that allow data analysts to batttumentand program
with their ad hoc data. Examples of such languages inclugie >
TER[20], PACKETTYPES[23], DATASCRIPT[4], PADS[10, 21] and
BINPAC [27]. When used for documentation purposes, these lan-
guages provide a means to write clear, concise and deekasgtec-
ifications of a data source’s syntax and important semanbipgy-
ties. Moreover, the fact that the documentation produceekés
cutable {.e., there exist tools for checking that ad hoc data sources
adhere to the format specification given) means that thexe &u-
tomatic way to check whether documentation is up to datellanga
behind. When used for programming support, these languages
their associated compilers provide a means to generateigtyar
of useful programming libraries for manipulating ad hocadii-

grammar from an annotated document. We also present an alter cluding parsers, printers, and visitors as well as endatb-data

native characterization of system behavior by drawing ugpeas
from the field of relevance logic. This secondary charazadion,
which we callrelevance analysjspecifies a direct relationship be-
tween unannotated documents and the context-free granthars
our system can generate from them. Relevance analysissallsw
to prove a number of important theorems concerning the sxpre
siveness and utility of our system.

1. Introduction

The world is full of ad hoc data formats— those nonstandard,
semi-structured data formats for which robust data pracgssols
are not available. Examples of ad hoc data formats inclueldith
lions of log files that are generated by web servers, file sgrve
billing systems, network monitors, content distributioystems,
and other applications that require monitoring, debuggingu-
pervision. Ad hoc data formats also commonly appear in time-co
putational sciences. For example, chemists deal with at 8xdif-
ferent file formats [1] on a regular basis. Biologists andgitigts
handle many more. In fact, just about anyone who has evetewrit
a computer program has, at some point, needed to creategmana
use and understand a variety of such formats.

processing tools.

While these language-based solutions have many useful, eve
essential features, there is still room for improvemenpdrticular,
producing descriptions of unknown data sources is stilhaesghat
tedious, time-consuming and error-prone process. Farnast ex-
periments with theaDS system suggest that expert users can cre-
ate descriptions for many simple line-based system logsughly
one to two hours, on average, and sometimes less than that. Be
ginners take substantially longer — often a day or two to reset
vant parts of the manual, figure out the syntax, grasp the imgan
of various error messages and complete a robust descriftan
more complicated data sources, and especially for datzs®f
massive size, the process of creating descriptions becsubssan-
tially more difficult, even for experts. Kathleen Fisherogged that
she struggled off-and-on for three weeks in her attemptesoribe
one particularly massive data file at AT&T that had the unfoate
property of switching formats after a million and a half kfe

Another related property afabps and similar languages is that
they tend to promote writing relatively complete specifimas of

1See table 2, page 10 of earlier work pabs [12] for anecdotal evidence
regarding creation of descriptions for a variety of simpjstem log for-

The data analysts and programmers who find themselves work-mats.

ing with ad hoc data formats waste significant amounts of time

2personal communication, 2008.



data sources. While this is often a positive factor, as spelii-
cations serve as useful documentation, it can also sometime
negative as it increases the start-up time for users who toasal
a full description, but only want to extract key bits of infioation
necessary to perform a particular data processing task.

1.2 ANNE: A New Approach

Given the challenges faced by both traditional ML approache
traditional PL approaches, we have developed a new systéiadc
ANNE, to help improve the productivity of programmers who need
to understand, document, analyze and transform ad hoc a¢t d
In particular, we have focused on text data organized in-iypie

ML Solutions. On the other end of the spectrum, the machine line or tabular formats, as this is the most common sort obuay
learning community has sought to tame ad hoc data sources byin systems log files and a variety of other domains. However, i

developing algorithms for analyzing complex data sourced a
either automatically extracting key bits of informatiooifn the data
sources in question [30, 17, 18, 3, 6] or inferring a gramrhat t
describes them [14, 7, 25, 31, 16, 13, 24, 28, 12].

principle, our techniques are sufficiently general to harzoily data
format that can be described as a context-free grammar.

Rather than requiring programmers to write complete data de
scriptions, as in the conventional PL approach, or simptgpting

Whereas the programming |anguages approaches incur soméhe unvarnished results of a fU”y automatic, heuristicx)Eitgm,

significant start-up cost, the machine learning approacakeally
require less initial work by the programmer. For examplesun
pervised learning approaches, users must label some siflseir
data to indicate the content of interest. Then, various inadbarn-
ing algorithms can be used to learn the features of the kdhelhta
in order to be able to extract it from its contéxBtephen Soder-
land’s Whisk system was one of the first to do this effectively

as in the conventional ML approach,NAE combines ideas from
both communities in search of the best of all worlds. To beemor
specific, the process of generating a description for a t@stichent
begins by having the user edit the text itself to add anranatthat
help describe it. These annotations, and the surroundiagno:
tated text, are used to generate a human-readaloie description.
ThePADs description may then be fed through thweds compiler,

based on annotations from a few examples, the system was abledenerating a host of useful artifacts ranging from programgrti-

to learn the structure of Craigslist apartment ads suffilsiemell
to allow extraction of key information. Even better, unswed
approaches require no initial user input. They merely amaly
given dataset, uncover patterns and produce a synthesiaet g
mar. In principal, perfect grammatical inference is imjploles[14]
but, nevertheless, researchers such as Stolke and OmoH®idir
have shown empirically that one can sometimes synthesifellus
grammars using statistical techniques and heuristic Bearc
While fully automated approaches involving machine leagni
are usually easy to try, they often suffer from the joint peofs
of producingunreliable resultsand having those resulisrd to un-
derstand or analyzeBy unreliable results, we do not mean unsound

results — rather we mean that the grammars produced may not be

particularly compact or well-organized. Moreover, everewtan
automated system performs perfectly in a structural seéhséll
generate a description teaming with machine-generate@siéon
data subcomponents such anf on_237” or “Enum99.” Such
descriptions are naturally difficult for people to use anguiee a
human post-processing pass to add semantically meaniiagitd
tifiers.

Yet another difficulty with fully automatic grammar indumti is
that it appears difficult to design a single system that dperaell
over a broad range of domains. For example, experience hgth t
LEARNPADS system [12] suggests that though it works well for
the sorts of systems log files on which it has been tuned, ieaan
ily be thrown off when it encounters data outside its domkirthis
latter case, it often generates far more complex, diffitadtead
and difficult-to-use descriptions than a human would. Thibfem

braries for parsing, printing and traversal to end-to-esmlst for
format-conversion, querying, and simple statistical gsial In ad-
dition to generating ®ADS description, the system will translate
the text data into a structureduL parse tree. Th&mL parse tree
can be viewed through a browser, analyzed and used for detgugg
purposes.

The annotations that constitute thevRe language perform a
number of different roles including each of the following:

e associating user-friendly names with bits of text or degimns
generated from sub-documents

¢ defining atomic abstractions such dates, ip addresses, tme
urls using regular expressions,

identifying sequences, constants and enumerations,
¢ delimiting tabular data and its headers,

relating different variants of a field to one another, and
e introducing recursive descriptions.

Together this set of annotations is both convenient and galve
and overall, the benefits of this new approach are numerous.

First, as in the PL approachesNAE provides the user with
great controlover the resulting description, when they want it. The
user can introduce meaningful, human-readable namedifidere
correct atomic abstractions, and shape key parts of thergeam
however they desire.

Second, again as in the PL approachesiNA is extremely
powerful For example, AINE easily supports tables and recursive
grammars even though identifying tables in text data is fcdif

commonly occurs when the data in question depends on some newmachine learning challenge [24, 28, 19] and learning carfter

basic format element — a new sort of date representatioffeaetit
way of formatting phone numberstc. Humans draw upon their
worldly experience to identify, modularize, and espeygjatame
the new element effectively whereas theARNPADS algorithms
are often unable to tease apart the details of the new elenoamt
the rest of the description and they certainly cannot ch@oses-
sonable name for it. Hence, even thoughARNPADS, and other
systems like it, can certainly be improved, the overall apph has
some fundamental limitations.

3Naturally, if a lot of labelling is required of a machine learg approach,
then it too has a substantial start-up time, perhaps ever than that of a
PL approach. A great deal depends upon the domain in whi¢haggaroach
is used and the specifics of the approach itself.

grammars is even harder than the already-hard challeng=of-|
ing regular expressions.HARNPADS supports neither of these
features.

Third, as in the ML approachekess work is requiredf the pro-
grammer. Importantly, unannotated text in the surroundimgext
is used to “fill in the blanks” left in a description using vaus de-
fault mechanisms. This means that the programmer does wet ha
to, and is not encouraged to, write the entire descripti@nde, in
some respects, MNE resembles a supervised learning approach ex-
cept that rather than using simple labels to identify immatrdata,
ANNE uses more powerful, higher-level commands.

Fourth, the annotation language has small number of cartstru
in it and, perhaps more subjectively, we find it is relativelsy
to use Ease of use comes from the fact that programmers can
stare directly at the text they are interested in and diyeethp an



207.136.97.49 - - [15/Cct/1997: 18: 46: 51 -0700]
207.136.97.49 - - [15/Cct/1997: 18: 46: 51 -0700]
pol ux. entel chile.net - - [15/Cct/1997:21:02: 07 -0700]
152.163. 207. 138 - - [15/Cct/1997:19: 06: 03 - 0700]
i p160. ri dgewood. nj . pub-i p. psi.net - -

"GET /turkey/amtyl.gif HTTP/1.0" 200 3013

"GET /turkey/clear.gif HTTP/1.0" 200 76

"GET /| atinan spoeadp. html HTTP/ 1. 0" 200 8540
"CGET /images/spot5.gif HTTP/1.0" 304 -

[ 15/ Cct/1997: 23: 45: 48 - 0700]

"GET /what snew. ht i HTTP/ 1. 0" 404 168

ppp31.igc.org - ammesty [16/Cct/1997:08:40: 11 -0700] "GET /nenbers/afreport.html HTTP/1.0" 200 450

Figure 1. Excerpt from the web server lag . 3000.

annotation around it to capture it. There is no counting ddfier
the possibility of off-by-one errors. In this way, the systsupports
a “what-you-annotate-is-what-you-get” style of inteiant The
XML -generation tool provides immediate feedback and fatekta
debugging.

In addition to designing and implementingNAE, we have
developed an elegant theory to explain its semantics. Heisry
is based aroundDEALIZED ANNE (IA for short), a idealized
core annotation calculus. The semantics of the IA progrargmi
process is given by a relation between annotated and uretedot
documents and the semantics of |A itself is given by a fumctiat
generates context-free grammars from annotated documents

In order to understand the capabilities of A in greater Hepe
prove a number of theorems that characterize the kinds ofi-gra

mars that can be generated by our system. In doing so, we in-

troduce an interesting new set of relations, inspired bgvarice
logic [2], that more precisely define the relationship betwgen-
erated grammars and the data they describe. We use thetsensla
to prove important theorems concerning the expressivenfessr
system.

Contributions. To summarize, this paper makes a number of im-
portant contributions:

¢ We introduce a highly practical, new technique for generati
of format specifications from text data. We illustrate ite as
a number of examples and evaluate its effectiveness.

We develop an idealized, core annotation calculus thaticagpt

2.1 A Web Server Log

Our first example involves the problem of processing a webeser
log. The log itself is presented in Figure 1. System adnmiaiets
query, transform and analyze logs just like this (and huttelief
variants thereof) as part of their day-to-day job of assesthe
health and security of the systems they oversee.

The Preamble. The first step in processing any log like this is to
edit the file at the top to add the following linés.

L #
#i ncl ude "systens. config"
1 #

This step adds the preamble defined by thesfilet ens. confi g,
which is presented in Figure 2. A config file such as this is com-
posed of a series of lines with one regular expression definiter

line. Each line begins with eithetef or exp and is followed by

a name and a regular expression. Those lines beginningexith

will exportthe named regular expression so it can be used in de-
scribing formats. Those lines beginning widlef provide alocal
definitionfor the name. A local definition can be used in subsequent
def s orexps but is not in scope in the rest of the file. Comment
lines begin with & symbol.

The syst ens. confi g file has been specially designed for
system administrators dealing with log files. Consequeittiyon-
tains many basic data types of use to them including datessti
ip addresses, email addresses, urls and others. This ocatfigu

the key elements of our design. We give a semantics to the file will be of less use to computational biologists or finah@n-

calculus to describe how MNE programming and grammar
extraction works.

We introduce a secondary characterization ofik based on

alysts or chemists, but each new domain can create its owof set
common, reusable data definitions to speed up data format con
struction.

concepts drawn from relevance logic. We use this secondary |ntroducing Nonterminals. The next step is to identify, describe

characterization to analyze the expressive power of ouesys

and give names to elements of interest in the file. For instaac

We have implemented the system and combined it with the sysadmin might start with the first line after the preambie legin
PADS language and compiler, allowing users of our system to to edit it as follows (though the annotation process cart atany
easily generate useable documentation along with a suite of place in the file that happens to be conveniént).

programming libraries and end-to-end data processing.tool

In the following section of the paper, we explain our langaag
design and how to use it in more detail. In section 3, we dgvelo
the syntax and semanticSs#ALIZED ANNE. In section 4, we intro-
duce our relevance analysis and use it to prove key theorbog a
the expressiveness obkALIZED ANNE. In Section 5, we com-
ment further on our experiences usingu¥e to generate format
specifications and evaluate its effectiveness relativetb manual
construction ofPADS formats and the grammar induction system
developed in earlier work [12]. Section 6 describes relatedk
and Section 7 concludes.

2. ANNE by Example

ANNE is a language and system for deriving grammatical specifi-
cations and text processing tools directly from example fites.

In this section, we will illustrate the basic functionality the lan-
guage through a number of examples.

{Record: 207.136.97.49 - - \
[15/ Cct/1997: 18: 46: 51 -0700] \
"GET /turkey/amtyl.gif HTTP/1.0" 200 3013}

Intuitively, the simple annotatiofNane: ... } begins the pro-
cess of defining a scannerless context-free grarfirirathis case,

the portion of the grammar so-defined involves a single marite
nal namedRecor d:

Record ::= ...

Moreover, since there are no other annotations to guide rgeam
generation, the system uses a simple default rule to gentrat

4We will be highlighting text added to the file using a grey bgrckund.

5To format lines within the boundaries of the narrsivgpl anconf style,
we will break lines where necessary with a slash and contmera indented
two spaces on the next line.

6 Note that if braces{” and “}” already appear in the file, a command line
switch can alter the bracketing syntax.



Regul ar Expression

def trip [0-9][0-9][0-9]\|[0-9][0-9]\|[0-9]

def db [0-9][0-9]

def zone [+-][0-1][0-9]00

def anmpm anm | AM | pnm | PM

def str [ A Za-z] [ A-Za-z0-9_\-] *

def strl [0-9A-Za-z]+

def dom \({str1}\.\)+{stri}

exp Tinme {db}:{db}:{db}\ ([ ]*{anpni\)?\ ([ \t]+{zone}\)?
exp IP {trip}\.{trip}\.{trip}\.{trip}

exp Email {strl1}@ don}

Figure 2. Excerpt fromsyst ens. confi g

right-hand side — it assumes the desired right-hand sidsimmple
concatenation of basic tokens derived by running a defautrl
over the data enclosed in braces.

Record ::= Num’.’ NumWs '-" W5 '-’ WS '[’

In order to maintain predictability and ease-of-use, thetdefault
tokens has been kept to the barest minimum. It includes nismbe
(Num- integer or floating point), punctuation symbadsg.,’ [ ' or
.7 or’']’, etc), words Wor d), and whitespaca/). The default
tokenization scheme can be overridden by extending theririea
with new programmer-defined tokens expressed as regulaeexp
sions. However, doing so changes the tokenization gloliatithe
entire file, which is not particularly useful here.

Using the Preamble. Instead of overriding the preamble, we will
take advantage of some of the regular expression definiiions
syst ens. confi g to further refine the grammar for tikecor d
nonterminal:

{Record: {IP<: 207.136.97.49} - -\

[ {Date<: 15/Cct/1997 } : {Tinme<: 18:46:51 -0700} ] \
"GET /turkey/amtyl.gif HTTP/1.0" 200 3013}

Above, we used several annotations with the fdianme<:

} to introduce regular expressions nanmidare. For instance, we

identified an ip address$ P), a date Dat e) and atimeTi ne). All

of these named regular expressions were introduced in daepr

ble (by including their definitions fromyst ens. confi g). Af-

ter this refinement, our generated grammar has the follofaing.
IP::=
Date ::
Tine ::
Record ::

1PV '-" Ws'-' W6 '[' Date':' Time ']’

The right-hand sides dfP, Dat e and Ti ne will be regular ex-
pressions defined by the preamble.

Annotations for Termination Symbols. The next refinement of
the grammar involves dealing with the strifgET /t ur key/
amtyl.gi f HTTP/ 1.0". In many applications, the internal
structure of this string might be irrelevant. If this is these, one
could simply wrap the contents of the string with an annotatf
the form{Nane>: ... }. In this caseNane introduces another
nonterminal into the grammar and the greater-than sigrcatels
that the extent of nonterminal’s reach is defined by a tertimiga
character — the character that follows the close brace. Idate
annotation used in context:
{Record: {I P<:207. 136. 97.49} - - \

[ {Dat e<: 15/ Cct/ 1997} : { Ti me<: 18: 46: 51 - 0700}] \

" {Message>: CET /turkey/amtyl.gif HTTP/1.0} " \

200 3013}

In the text above, the annotation introduces the Message non-
terminal and its extent is terminated by a quotation symBoth a

token can easily be defined by a regular expression, butiexger
with the PADS data description language [10] confirms that this id-
iom is extremely common in all kinds of log files. Building ini$
shorthand is a nice programmer convenience.

Generating XML and Debugging Results. At this point, the
“programming burden” has been minimal. It consists of idatg

the preamble in the data source and writing five simple arnota
tions, which mainly involve naming key parts of the data-isHall

the job of describing the data may have taken a minute or teo. T
debug the work, one can invoke thexAE compiler, which will
generate a number of artifacts, includingapsdescription and an
XML parse tree of the data. Viewing tixeiL through a browser,
as shown in the screen shot in Figure 3, reveals that the gaamm
generated so far only covers a subset of the data in the fillorecb
lines indicate lines covered by the generated grammar agckedr
out lines indicate lines that are uncovered. A quick exationa

of the first greyed out line indicates that there is more Vana

in the data file than had been apparent at first glance. Faelyna
generating a complete cover is relatively easy with justarfere
annotations.

Introducing Alternatives. Alternatives can be introduced into the
grammar in several ways. The simplest way is merely to use-a pa
ticular nonterminal name repeatedly. We illustrate thishteque
below by using the nontermin&i ze twice, once around an in-
teger (which represents the normal case — the number of bgres
turned by the server is reported properly) and once ardurid
(which represents the nonstandard case of no data available

{Record: {| P<: 207. 136. 97. 49} - - \
[{Date<: 15/ Cct/1997}: { Ti me<: 18: 46: 51 -0700}] \
"{Message>: GET /turkey/amtyl.gif HTTP/1.0}" 200 \
{Size: 3013} }

152.163.207. 138 - - \
[ 15/ Cct/1997: 19: 06: 03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size: - }

Such annotations extend the grammar with a union of two oemor
options:

Num + °’

Size ::= -
IPWs -~

Record :: = WS- W5 ... Size
An alternative technique is to use a collection of annotetiof the
form {Narme/ Nanel: ...} and{Narme/ Narme2: ...} and

{Name/ Nane3: ...}, etc.as follows.

{Record: {| P<: 207. 136. 97. 49} - - \
[{Date<: 15/ Cct/1997}: { Ti ne<: 18: 46: 51 -0700}] \
"{Message>: GET /turkey/amtyl.gif HTTP/1.0}" 200 \
{Size/S: 3013} }

152.163.207.138 - - \
[ 15/ Cct/1997: 19: 06: 03 -0700] \
"GET /images/spot5.gif HTTP/1.0" 304 {Size/Dash: - }

This technique names the alternatives and generates theifud
equivalent grammar.

S ::= Num

Dash ::="-’

Size ::= S + Dash

Record ::= IPWs'-" W6 '-" WS ... Size

One reason to use the more verbose form with named alteggativ
is that it will generate a nicePADS/ML description for the user —
one that uses datatype descriptions with well-named aactstis
(See Section 2.3).

There is one other detail to consider when it comes to alter-
natives: the most concise grammar is sometimes one in which a
ternatives overlappADS, and many other systems, use prioritized
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Figure 3. View of generateckmL after partial data description.

choice to disambiguate between overlapping alternatimeSNNE,
priorities may be specified as integers using a syntax wéhdhm
{Nanel/ Nanme2[priority]: ...}

Constants and Enumerations.  So far, the message in quotations

has been treated as an uninterpreted string rather than ia sem

structured sub-document. To begin to break the string dona,
may want to specify that it always begins with the keywGHiT.
To generate a grammar that specifies this constraint, assefdpo
to the more liberal grammar that allows any word in that posijt
one uses an equality annotatipNane=: . } or its unnamed
variant{=: . } as in the following example.

{Record: {I P<: 207. 136. 97. 49} - - \
[{ Dat e<: 15/ Cct/ 1997} : { Ti me<: 18: 46: 51 - 0700}] \
" {=: GET} {Message>:/turkey/amtyl.gif HTTP/1.0}" \
200 {Size/S:3013}}

On the other hand, however, after a round of debugging, ogatmi
notice that not all such strings begin wiBET — there are a small
number of other keywords such strings can begin viathit, POST,
HEAD, DELETE, LI NK, and UNLI NK. To generate a grammar
involving the list of keywords that actually appears in tfils,
one can use an enumeration annotation. An enumerationtigmri
as{Nane/ / enunp: . . . }. It generates an initial grammar in the
same way that oukessage specification generates a grammar
(by looking for a terminating symbol). That initial grammniaused

to parse the document at hand and collect all strings thathnihe

spec in the document. The final grammar is one defined using the

instances that match. For instance, we might annotate aungie
as follows.

{Record: {I P<: 207. 136. 97. 49} - - \
[{Date<: 15/ Qct/ 1997} : { Ti me<: 18: 46: 51 -0700}] \
" {Method//enum CET} \
{Message>:/turkey/amtyl.gif HTTP/1.0}"
{Si ze/ S: 3013} }

200 \

If the web log contains examples BUT and POST in addition to
GET, the following grammar fragment will be generated.

'CGET' + 'PUT + ' POST

Method :: =
=I1P ... "\"" Method W5 ...

Record ::

Finishing up the Web Log Example. With just a few more an-
notations, the web log annotation job is complete. In totakas
necessary to add the preamble and annotate four lines oTtede
of the four lines only required annotating one bit of datee Wole
process might have taken five minutes. The resulting arewfde
and generated grammar are presented in Figure 4. Noticdyhat
default, the top-level nonterminal symbol$sur ce and that the
top-level grammatical rule is as follows.

Source ::= Record (NL Record)*

Annotated Web Log:

I#
#i ncl ude
1 #
{Record: {Sender: {| P<: 207.136.97.49 }} {ID: -} \
[ {Date<: 15/CQct/1997 } : {Time<: 18:46:51 -0700} ] \
" {Method//enum CET} \
{Message>: /turkey/amtyl.gif HITP/1.0} " \
200 {Sizel/S: 3013 }}

"systens. config"

{Sender : { Host nane<: pol ux.entelchile.net }} - -\
[ 15/ Cct/1997: 21: 02: 07 -0700] \
"GET /| atinan spoeadp. html HTTP/1.0" 200 8540
152. 163.207.138 - - \
[ 15/ Qct/1997: 19: 06: 03 -0700] \
"CGET /images/spot5.gif HTTP/1.0" 304 \

{Si ze/ Dash: - }
bbbSl. igc.org - {ID amesty} \
[16/ Cct/1997: 08: 40: 11 -0700] \
"GET / menbers/afreport. htm HTTP/ 1. 0" 200 450

Generated Grammar:

IP =

Hostnane ::== ...

Date ::=

Time ::= ...

Method ::='"GET" + 'PUT" + ' POST

Message ::= ...

S ::= Num

Dash ::="'-’

Size ::= S + Dash

Sender ::= | P + Hostnanme

ID::=" + Word

Record ::= Sender W6 '-' W5 ID WS '[' Date’ Tine ']’
W5 "\"" Method WS Message '\"' WS Num WS Si ze

Source ::= Record (NL Record)*

Figure 4. Web Log Annotations and Generated Grammar. Regular
expression definitions of 1P, Hosthame, Date, etc. are ethitt

In the line aboveNL is the newline character and the asterisk
is the familiar Kleene star. In other words, the entire seusa
sequence dRecor ds separated by newline characters. In general,
a programmer can create annotations for any number of tab-le
items, which may be line-by-line descriptions or tables] AmnNE
will produce a top-level grammar with the form

Source ::= (ltenl+. ..

+ltenk) (NL (ltenl+...+ltenk))*



{E#h: Name GP Coals Assists Points +/-
Jason Bl ake, 78 25 38 63 -2

Al exei Poni kar ovsky, 82 23 38 61 6

Lo}

Name GP Goals Assists Points +/-

Al exander Ovechki n, 79 56 54 110 10
82 22 66 88 3

Ni ckl as Backstrom

Figure 5. Fragment of an annotated document containing NHL
player statistics from the 2008-2009 season, one tablesper.t

2.2 Additional Language Features

The web log document discussed in the previous subsectimmeis
example of the sort of ad hoc data source thatA& was designed
to service. It used a good number of different kinds of antinta,
but there are a number of other features of the language hwiéc
describe more briefly in this section.

Repetition. The web log had an implicit, repeated structure at the
top-level, but no internal repetition. Many other ad hoaddes do.

To generate a grammar with a repeated sequence of items,ane m
use a starred annotation as in the following pipe-separaiatber
sequence, which is drawn from one of our data sources:

{Record*[|]: 9152271| 9152271| 1|0/ 0] 0] O] ... }

In the annotation aboveRecor d names a part of a grammar
involving a sequence of items in which each item is separated
by a’ |’ symbol. By default, if there are no further annotations,
the record element structure will be any character sequente
including the separator.

NoBar ::=

Record ::=”(INoBar ("] NoBar)=*)?

Alternatively, the record elements can be specified exactipg
the syntax{Nanmel/ Nane2*[ sep]: ...}, asin the following
example.

{Record/El em[|]: 9152271| {Elem 9152271} | 1| \
o[ojofof...}

The separator (defined in square brackets prior to the c@ay-
tional and, if desired, the programmer can add an optiomniatite-
tor string.

Optional data. Optional data occurs often. The annotatiddane?:
. .. } definesNan® to either be formatted as the grammar gener-
ated by “ . . " or the empty string.

Tables. The last important feature of MNE involves tables. Even
though tables can be specified using concatenation and &&tan
it is worthwhile building special support for them as theypaar
frequently. Identifying tables is a useful programmer @mence
and also makes it easier to generate a good query interfatieefo
data.

Figure 5 shows a small portion of a document containing a se-
ries of tables describing NHL player statistics, with oneleéaper
NHL team. Hockey aficionados use such data regularly to céenpu
player values and argue important points such as “Is Crosby b
ter than Ovechkin?” or “Was John Ferguson Junior the worafd e
GM since the early 80s?” Tables such as the ones displayed her
often have a header row followed by some number of rows with
a fixed number of columns. UsingNNE, deriving a grammar for
such a table simply involves using one of the hash annotgtigin
ther {Nane#: ...} or {Name#h: ...}. Theh in the second
variant indicates that the table has a header row that viarstsuc-
ture from the table data. The number and structure of thenumsu

ptype | P = Pstring_MgE(...)
ptype Hostname = Pstring_MgE(...)

ptype Size =
S of Num

| Dash of

ptype Sender =
IP of IP

| Hostnane of Hostnane

ptype Method =
" GET"

| "PUT"

| "POST"

ptype ID =

| Num

ptype Record = Sender * WS * -’ * WS * ID* WS » '[’
* Date * ":’ « Time » ']’ » Ws  "\"" » Method
* W5 » Message * '\"’" * WB * Int * Size

ptype Source = Record plist(No_sep, No_term

Figure 6. PADS/ML description generated from annotated web log.
Regular expression definitions of IP, Hostnaete, are omitted.

is determined by counting the number of each sort of tokewvin e
ery line. If some tokent appearst times in every line then there
arek + 1 columns and serves as the separator between columns.
If more than one token satisfies this property, one such tikse-
lected heuristically (tokens that serve frequently as isgpes such

as tab, comma, and vertical bar are prioritized). HoweVer pro-
grammer is free to specify the separator in question exiyliasing
square braces as in the Kleene star annotations.

Assertions.  In a number of situations, and particularly when data
is recursive, it is useful for a programmer to be able to asbat
some part of the data satisfies a nonterminal definition witgo-

ing to the trouble of annotating all its subparts. We allowtsas-

}. Forex-
ample, given a simple string of parentheses suchi{ &$()))) ",

the simplest way to annotate the data is as follows.

{Parens?: ( {Parens!: ((())) }) }

An annotation associates the data enclosed in braces witim-a n
terminal name, but it doesn’t generate a grammar rule fontme
terminal. Thus, the above annotation scheme will give risthé
following grammar.
=(0C

Parens :: Par ens

)2

2.3 GeneratingPADS Descriptions

In the previous subsection, we explained the semantics @f th
ANNE language by presenting the context-free grammars that are
generated from each annotation scheme. These contexgriee
mars are used to parse the data source and generateLaparse
tree that can be viewed through a browser or processed using a
one of a number okML -based tools, languages or libraries.

In addition to generating structuredvL, an ANNE mark-up
will also generate @ADS description [10, 11, 21]. TheADsS de-
scription language uses augmented type declarations twildes
the syntactic structure of a document as well as the progiagim
language data structures one generates by parsing the dntum
Figure 6 shows theaDs description generated from the annotated
web log presented in Figure 4.

A pADSdescription such as the one in Figure 6 can serve as per-
manent executable documentation for the data source. laisan
be used to generate a variety of libraries such as parsens; pr
ers, and traversal functions for processing other datacesuwith
the same format. Finally, theaps compiler can link generated li-
braries against various generic tools including a queryrenfg],



Regular Expressions:
b == e€lc|bb]|---

Annotated Documents:
ad == v|adiads...ady | {ad} | {[b] : v} | {A: ad}
| {A/inl:ad} | {A/inr : ad}
| {A/Aciem* : ad} | {A/Aciem*o i}

Figure 7. IDEALIZED ANNE documents.

Nonterminal Clauses:
s w= b|A|s1-s2-..."8n

Nonterminal Right-hand Sides:
r n= s|s1i4s2|?TH+s2|s1+7| Ax | Axo

Nonterminal Definitions:

G x= [ G[A=r]
Grammars:
gram == (A,G)

Figure 8. Grammar Syntax.

data synchronization engine [8], and various format tigtoss.
Consequently, while using NE is a quick and simple process, the
result of this minimal bit of labour is an enduring piece ofitan-
readable documentation (theDs description) and a valuable col-
lection of reusable tools.

3. |IDEALIZED ANNE

The previous section introducedNAE through a series of exam-
ples, but did not answer any general questions about theipies
involved in the language design: What do these annotatiaanf

What grammars do they generate? When do we have sufficient dat

to generate a particular grammar? In this section, we mafe so
initial headway towards answering these more general ipmsst
by defining the syntax and semantics DElLIZED ANNE (lA), a
simplified variant of the full AINE language that encapsulates its
essential features.

3.1 IDEALIZED ANNE Syntax and Programming

In the following formal work, we will letc range over characters
while v andw range over strings (oumannotated documentd\Ve
let “” denote the empty string andv> denote the concatenation
of two strings. Meta-variabled ranges over nonterminal names
andb ranges over regular expressions. We wilt) to denote
the language of regular expressiarRegular expressions with an
empty language are prohibited.

Syntax. The syntax ofannotated documents defined in Fig-
ure 7. An annotated document may either be unannotafedr(
a sequence of annotated documents; ¢ds...ad,, ). Other annota-
tions include the following.

¢ {ad} identifies a sub-document.

o {[b] : v} identifies the data) as inhabiting the language of
regular expressioh

e {A : ad} assigns a nonterminal to the format inferred from
annotated sub-documednd.

e {A/inl : ad} and{A/inr : ad} introduce the left- and right-
hand elements of a union respectively.

7= (anong
v; — ad; i=1.n
(a-con)
V1V2...0n — adiads...ad,
v — ad v e L(b)
Y (ad} (a-group) PR TE R 0l - o] (a-re)
v — ad
——— (a-nam
v— {A:ad} ( ¢
v — ad i v — ad .
a-in a-inr
v — {A/inl : ad} ( ) v — {A/inr : ad} ( )
v —ad

v — {A/Actem* : ad} (a-rep)

S LA Avom®o ) (a-rep-empty

Figure 9. Document annotation.

o {A/Acem* : ad} introduces a repetition namedl with ele-
ments namedi.;..,,. Sub-documentd is used to infetd ;e .
{A/Acem=o :} is a related annotation, added to the calculus
to simplify certain inductive proofs. It need not be used by-p
grammers. It's semantically equivalenteto

The programming process. In order to use DEALIZED ANNE, a
programmer need simply apply some collection of annotation
their data. This programming process is formalized by agunagnt
writtenv — ad, which relates an unannotated documeno any
one of its annotated variantgl. Figure 9 presents the annotation
rules. For instance, rule{nong says that annotating a document
can involve doing nothing. Ruleafcon says that annotating a
document can involve subdividing the document into arklyra
many subpieces, each of which is recursively annotated.ofll
the other rules simply wrap one of the particular annotatisms
around a sub-document (usually after recursively annwatthe
sub-document).

3.2 Grammars

Syntax. The purpose of DEALIZED ANNE is to generate gram-
mars of the form given in Figure 8. Reading from the bottonhef t
figure towards the top, one sees that a grammar is a pair ofta sta
nonterminalA and finite partial mays from nonterminal names to
right-hand sides. A right-hand side may be a clasisa union of
clauses {1 + s2) or a repetition of some nontermindk. A right-
hand side may also be one of thigatial right-hand sides: 1+ s)

or (s + 7) or Ax( (other right-hand sides are calledmpletg. Intu-
itively, the ? symbol represents a missing part of the grammar, and
both ? and o symbols indicate that no underlying data is recog-
nized by that part of the grammar. Partial right-hand sigasear
during the course of constructing a grammar (or inductivelthe
midst of our proofs), but should not appear in any final reslt
clause §) is either a regular expressiob) (a nonterminal 4), or a
sequence of clauses . . . sn.



GFoves ad ~ (s, G)

v e L(b) G(A)=r Gruover v € L(bs) bi € D i=1.n (p-nong
Greoep (9T GFroecA (g-namg vvatm s (b1 bz b )P
GFuv € s i=1.n di ~ (si,Gi = 1.
GF v € (g-con ‘ GGy ¢ i (p-con)
102...Un € 81+ 52 ... " Sn adiadsz...adn ~ (5182 ... S0, G1 D G2 @ ... ® Gy,)
GHves ad ~~ (s, G) v € L(b)
2L V=9 (g- — 7 (p- -re
Groes \gclaus @l = (5.0 PO g P
GF v €81 GF v € 8o ad ~ (s,G)
——— — "= (g-sum —— = =" (g-sum ;
Ghuvi €s1+7 (g u ]) GFuv €7+ 39 (g u a {Aad}W(A,G@[AZS]) (pname
GFo v €51 G v € 52 adi ~ (s1,G1)
————— (g-sum ————— == (g-sum |
GlFwv €514 52 (@ 3 Gl w2 €514 52 (@ 3 {A/inl : adi} ~ (A,G1 B [A =1+ 7)) (p-int)
GFev; €A i=1..n adz ~~ (s2,G2)
(grep) == (9-rep-emp -inr
GF v1v2...0, € A% GF “ € Axo (Ajinr - ada} — (A.Gs @ [A =7 1 s3) (p-inr)
ch A ad ~ (s,G) ( )
vE p-rep
o € (,47 G) (g-gram) {A/Adem* : a’d} ~ (A7 G 3] [A = Aelem*])
Figure 10. Semantics of Grammars. -rep-em
(A Aremr = (A [A = Augemr]) P7EP7EP
Semantics. The semantics of grammars is defined by the judge- Figure 11. Grammar Extraction.

ment- v € gram, which depends upon judgemer@is- v € r
andG ¢ v € s. Intuitively, the latter two may be read “string
is in the language af (or s) when nonterminals are defined By’
The rules defining this judgement are presented in Figura@y
of these rules are self-explanatory. For instance, gul@mestates
that a string is in the language df provided it is in the language
of its defining right-hand side. In rulg-rep, a sequence of strings
is recognized. In a slight abuse of notation, we allewo be 0, in
which case we interpret the rule to say that the repetitioogrizes
the empty string.

The only unusual rules are the rules for the partial righteha
sides. The rules for partial unions+ ? and ? + s state a value
is in their language provided it is in the known alternativerhe
rule for partial repetitionsixo states that the empty string is in its
language.

regular expressions are drawn from tdhefault setD. The default
set for our implementation contains basic tokens such adarsn
words, whitespace and punctuation symbols. The choicefafitie
is unimportant in the theory.

The next rule p-con) explains how to handle a sequence of
annotated sub-documents. In this case, each sub-documeant i
alyzed recursively, producing a clause and a right-hanel. Sitie
result is a concatenation of clauses and a grammar formeddby f
ing together the generated subgrammars.

Many of the other rules should now be relatively self-exptany.
However, the reader should take note of rulesn() and @-inr),
as these rules are primary points where partial grammargeare
erated. Notice in particular that rulp-{nl) infers the shape of the
left-hand side of a union from its sub-document, but has farin
33 Grammar Extraction mation about the right-hand side and hence lea¥és its place.

Rule (p-inr) behaves in a complementary fashion.
Once a document has been annotated, HEALIZED ANNE run

time system can extract a grammar from it. This extracti@tess Grammar fusion. Intuitively, fusing two right-hand sides to-

is implemented by recursively traversing the annotatedichent gether involves eliminating thé symbols and replacing them with
and extracting partial grammars from the subpieces. A firahg real grammar parts. For instance, fusifeg+7?) with (7 + s2)
mar results fronfusing (i.e., combining in a special way) collec-  results in(s; + s3). Fusing two grammars together involves tak-
tions of partial grammars. ing the union of the disjoint grammar parts and fusing togeth
We will define the fusion relation (writte; @ G2) inamo-  the right-hand sides of the overlapping grammar parts. Mare
ment, but first we will direct the reader's attention to Figurt, ~ mally, the right-hand side fusion relation  r is defined as the
which presents the grammar extraction function itself sThinc- symmetric closure of the following rules.
tion, writtenad ~ (s,G), analyzes annotated document and ror = r
generates a clauseas well as partial grammd4s to describe it. (514 @ (?7+s2) = 51482
The first rule in the extraction definitiop{nong explains how (s1452) B (s1+7) = 51482
unannotated data will generate a description. This ocoufiading (51452)®(?+52) = 51482

a sequence of regular expressions that matches the datse The Ax @ Axo Ax



Given the right-hand side fusion, we define the fusion of tvamg
marsG; @ G as follows.D(G) denotes the domain of gramm@ar
(i.e.,the set of defined nonterminals).

Gi(A) if A€ D(G1)andA & D(Gs)
Ga2(A) if A€ D(Gy)andA ¢ D(Gy)
G1(A) @ G2(A)if A € D(G,) andA € D(Gy)

Gl@GQ(A) =

Finally, the fusion of two grammars with the same start syinbo
(A,G1) @ (A, Gz), is defined to bé A, G1 @ G2).

4. |IDEALIZED ANNE Properties

Now that we have defined the semantics DEALIZED ANNE,
we can answer some important questions about its propeties
expressive power. For instance, suppose one has some tiaa
inhabits the language of a grammaram, is it the case that one
can annotate in such a way as to extragtram? Unfortunately,
the answer to this question is no. The simplest counter-pkam

involves choosing the empty string as the data and a grammar

(A,[A = ¢ + Num]) as the target to extract. There is no way
to annotate the empty string to enable generation of thé sigle

of the union. Since the answer to our first question n@s natural
follow-up is to ask what properties data needs to have inrorde
to extract a particular grammar from it. To answer this goest
we develop a new analysis inspired by relevance logic. Taig n
analysis helps us give a more precise accounting of theawesitip
between data and the grammars that can be extracted from them

4.1 Relevance Analysis

Relevance Logif2] is a well-known substructural logic that re-
quires every hypothesis hesed at least oncduring the course of
a proof. Interestingly, a very similar idea can be used taena
value is able to generate a particular grammar: each gramuiear
and all of its subparts, must also bged at least onc@ the deriva-
tion that a string belongs to the grammar.

Based on this intuition, we have developetkevance analysis
that directly relates grammars to the values that can gengram.
The central judgements for this analysis have the fGrin,..; v €
randG ;. v € s. These judgements affirm that all elements of
G are used during the course of proving thas an element of
ands respectively. A third judgement,..; v € gram, affirms that
all elements ofjram are used during the course of provings in
gram. Figure 12 presents the inference rules for these judgement

Rule (e-re) provides an example of how these rules work. It
states thab is recognized by provided it is in£(b). Moreover,

v € L(b) Ghrqver
-— (e-Ie e-nam
[]}—f.elveb( ) G@[A:r]l—ﬁelveA( ¢
G; Ff‘el Vi € 84 1=1..n (e COF)
G PGP ... G, FS v1v2...Uy € 8182 ... - S
GHivEs
———— (e-claus
G Frel ¥ € 8 ( e
Ghig v € 51 GFio v2 € s2
- (e-sum - (Ee-Sum
Ghrev1 € 5147 ( ) Ghrelv2 €74 52 ( 2
GiFigquvieA i=1ln n>0
(e-rep

Gl @ G2 @ @ Gn Frel V1V2...Un € A*

(e-rep-empty

[ Fret € € Axo
G }_r'el v E A
— (e-gral
Fave(Ag gam

Figure 12. Relevance analysis.

Our relevance analysis may be viewed as a relevance logic

primarily because the structural rules tocchangendcontraction
are admissible buveakenings not.

Lemma 1 (Exchange)
L IfG@[A=ra]®[B=rB]® G2+l veEsthen
Gi®[B=rp|®[A=14]®GatiyvEs.
ii. If Gi®[A=ral|®[B=rB|® Gz Fre v Erthen
Gi@[B=re)|®[A=ra]l®GabtraqveEr.

Lemma 2 (Contraction)
i IfGF.,veEsthenGE GHo v €Es.

i If GhrqqverthenGeGh, g ver.

this rule uses no parts of a grammar. Hence, the grammar to the

left of the turnstile must be empty. Rule-Gamé¢ states that ifG

is used in recognizing that belongs tor thenG ¢ [A = r] is
used in recognizing that belongs toA. Rule -con states that

if G; throughG,, are used in recognizing; to s, then the fusion
of these grammars is used to recognize the concatenatidmeof t
clauses.

It is also important to observe how the unions work. In partic
lar, there are ruleefsum) and g€-sum2to explain what the partial
right-hand sides’ 4+ s ands + 7 use, but there are no rules for the
complete right-hand side; + s2. This is because no derivation
can use both the left-hand side and the right-hand side ofanun
simultaneously.

The rules for repetitions are also interesting. Notice thatule
(e-rep is constrained so thais greater thaf. This guarantees that
the underlying element grammar is used. The raleefp-emptyis
for the situation in which the empty string matches an iterafThe
entire reason for including the right-hand side is to distinguish
this case in which the underlying element type is not used.

4.2 Relevant Properties.

The first main property of the relevance analysis is that $oisnd
with respect to ordinary grammar recognition. The proof ys b
induction on the structure of the relevance judgement.

Theorem 3 (Relevance soundness.)
If Fre1 v € gram thenk v € gram.

PROOF Supposgram = (A, G). Proven by simultaneous induc-
tion on the derivation 06 5, v € sandG .., v € r. O

A second important property is that the relevance anabygis
proximatesthe ordinary grammar recognition relation in the fol-
lowing sense. We say that one right-hand sideis an approx-
imation of another right-hand side provided that there exists
yet another right-hand side: such thatr = r; @ r2. Likewise,
G, is an approximation ofs provided there exist&2 such that



G = G; & Go. Finally, gram, is an approximation ofram pro-
vided there existgrams such thatgram = grami @ grams.
We writer; < r whenr; is an approximation of. We use sim-
ilar notation forG and gram. With these definitions in hand, the
approximation theorem is stated as follows.

Theorem 4 (Relevance approximates recognition.)
If - v € gram, then there existgrami such thatram, < gram
andt,.; v € grams.

PROOF. Supposgram = (A, G). Proven by simultaneous induc-
tion on the derivation 06 +°v € sandG v € r. O

Definition 9 (Data is complete for a grammar.)
v1, V2, ...v% IS complete foyram if there exists
gramai, grams, ..., gramy, such that

oty vi € gram; foralli=1,...,k, and
® grami @ grama @ ... ® gramy = gram

Theorem 10 (Complete data enables full grammar extractior).
If v1,v2, ..., v IS complete fogram thenv, vs, ..., vk, ~> gram.

PrROOFE By Theorem 5.0

To summarize, Theorem 10 may be interpreted as giving pro-

The soundness and approximation theorems for our relevancegrammers sufficient conditions€.,data completeness) for extract-

analysis implies it is tightly connected to ordinary grannmexog-
nition. However, the real interest in relevance analyssstfrom
the following essential property: if a grammar is relevara string
then a programmer can useHALIZED ANNE to extract that gram-
mar from the string.

Theorem 5 (Relevance implies grammar extraction.)
i. If G ki, v € s, then there existad such thaty — ad and
ad ~ (s,G);
ii. If G i v € 7, then for anyA, there existaid such that
v — ad andad ~ (A,G® [A =T7]).
ii. If F.c; v € gram, then there existad such thatr — ad and
ad ~ gram.

PrROOF Partsi andii are proven by simultaneous induction on the
the derivations of; F;.; v € s andG k,.; v € r. Partiii follows
from partii. O

By combining Theorems 5 with 3 and 4, we obtain the following
corollary, which states that for anyinhabiting a grammagram,
IDEALIZED ANNE can generate a grammar fothat approximates
gram.

Corollary 6 (Single datum grammar extraction.)
If - v € gram, then there existad such thatv — ad and
ad ~ gram' and- v € gram’ andgram’ < gram.

The grammar extraction theorem above states properties of a

single string, butbEALIZED ANNE can sometimes do more for us
when there is more than one string to annotate. To make thés id
precise, we first define what it means to extract a grammar &om
collection of strings.

Definition 7 (Collective Extraction.)
For grammagram = (A, G) and data , vz, ..., Uk,
V1,02, ..., U~ gram iff there existudy, ..., ady, such that

e v, —ad;, foralli =1,... k;
e ad; ~ (si,G;) foralli =1, ..., k;
e G DGD... G, =G.

Next, we present the following theorem, which extends Gorol
lary 6 to collections of data items.

Theorem 8 (Sound collective extraction.)

Given some data; , vs, ..., vk, if F v; € gram for all i, then there
existsgram’ such that ,va, ..., vy ~ gram’ and- v; € gram’
andgram’ < gram.

Finally, we give sufficient conditions under which some eoll
tion of data iscompletefor extracting a particular grammar. Intu-
itively, the collection is complete when a grammar can bédeit
up into pieces and each piecer@evantto some element of the
collection.

ing a particular context-free grammar from a data set. Térad,
on the other hand, states that no matter what data one hasdn ha
one can extract aapproximationof any grammar for that data.

One final observation is that some grammars do not laaye
complete data sets. In particular, empty grammars or gramima
with empty subcomponents such as the gramnidr§A = A])
or (A,][A = int + B,B = B]) do not have complete data.
Likewise, grammars with disconnected nonterminals do aeeh
complete data.dEALIZED ANNE cannot generate grammars with
empty subcomponents, but it can sometimes generate granmar
with disconnected nonterminals. The latter can occur ifiseon-
nected nonterminal describes some fragment of the datéstalsb
described by some other connected nonterminal. One simple e
ample is the grammatA, [A = int, B = int]). This grammar is
not relevant for any data, but can be extracted from two elamp
documents that each contain a single integer. Given thigt ,pane
might say relevance analysis isaundcharacterization ofDEAL-
IZED ANNE. However, it is not &ompletecharacterization.

5. Evaluation

We conducted a series of experiments to compare USIRYEA
against the process of writingADs descriptions by hand and
against the process of learning descriptions automaticaing
LEARNPADS [12]. When comparing RNE with hand-written de-
scriptions, we focused on the time and efforts users desticat
creating descriptions; when comparing\Re with the LEARN-
PADS system, we focus on the readability and compactness of
descriptions. Our benchmark formats include 19 differehthac
data sources, drawn mainly from various different kindsystem
logs. The same benchmarks have been used previously tagvalu
the effectiveness afabsand its variants [12]. Those readers inter-
ested in the specifics can find the benchmarks on the web [26]. A
experiments were performed on a Dell desktop with two 2.8@ GH
Intel Pentium Processors and 1 GB memory, running Fedora Cor
release 9.

Comparison with hand-written descriptions. In the first set of
experiments, we measured the time and effort spent cotisiguc
descriptions using ANE For each benchmark, Table 1 shows the
total number of annotations the programmer needed to catstr
the description (# annots), the total number of lines thatewe
annotated (# lines) and the approximate time in minutesHer t
user to complete the description. The number of annotatitiths
not include the preamble or the regular expressions defirerdit.

The table shows that for most of our benchmarks, the user
needed to insert anywhere from 1 to 14 annotations (with the
median being 5). On average, the user was required to apribtat
or 4 lines of data. The time taken varied between 5 and 15 esnut
In contrast, a previous study [12] of the time taken to wrhe t
same descriptions by hand showed users with some experience
spent anywhere from 1/2 an hour to an hour or two. Part of the
reason users would take longer to write descriptions by hand



Data Source

[| #Annots [ # Lines | Time(min) |

1967Transactions 6 1 5
ai.3000 14 4 10
yum.txt 6 1 15
rpmpkgs 2 1 1
railroad.txt 10 4 10
dibbler.1000 6 3 5
asl.log 7 2 5
scrollkeeper.log 4 1 3
pagelog 5 1 5
MER_T01.01.csv 1 1 1
crashreporter.log 4 1 3
Is-I 4 2 5
windowserverlast 5 1 10
netstat-an 10 3 10
boot.txt 7 1 5
guarterlyincome 3 2 5
corald.log.head 3 2 5
irvpivl.sel 7 1 15
latitude. txt 10 3 15

Table 1. Number of annotations, lines touched and time taken to
construct descriptions usingNAE.

Data source Type Complexity || Desc. Size
A ] L ATL
1967Transactions|| 52 175 13 | 26
ai.3000 328 437 56 | 47
yum.txt* 84 640 17 | 74
rpmpkgs* 7 314 4 70
railroad.txt * 89 975 28 | 150
dibbler.1000 76 85 21 | 25
asl.log 551 1545 78 | 102
scrollkeeper.log 44 372 8 14
pagelog 206 729 23 | 22
MER_T01.01.csv 96 211 22 | 12
crashreporter.log *| 105 973 16 | 63
Is-I* 195 721 25 | 80
windowserverast || 148 85 24 | 11
netstat-an 822 1324 57 | 138
boot.txt* 98 944 19 | 123
quarterlyincome 520 579 86 | 87
corald.log.head 793 1094 106 | 71
irvpivl.sel* 284 1334 44 ] 130
latitude. txt* 140 500 11 | 77

Table 2. ANNE (A) vs. LEARNPADS (L): Type complexity in
bits and description size in lines. Asterisks indicate nregful
qualitative differences in the performance of the two gyste

that they can add additional information in the form of comisits
— something that is not supported byNAE right now. However,
another good part of the reason is simply thaiNk is easier to
use.

Comparison with LEARNPADS. The second set of experiments,
presented in Table 2, compares the compactness of desospti
generated by ANE vs. LEARNPADS. This table presents two
metrics: thetype complexityof the resulting description and the
number of lines of the resulting description when printeloe Type
complexity measures the number of bits it would take to eacod
the syntax of therADS description. It is one of the metrics that
the LEARNPADS system optimizes for. The number of lines of the

resulting description is simply the number of lines of outfram
the respective pretty printers.

Differences of 20% or so are usually meaningless in thietabl
On the other hand, differences on the order of a factor of Daré
quite meaningful — we placed asterisks in Table 2 to inditadse
formats for which the differences between the results prediby
ANNE and those by EARNPADS were significant. These signif-
icant differences occur for several reasons, but perhapsnibst
pervasive is that the performance &ARNPADS is quite sensitive
to the set of basic tokens (definitions of times, dates, ipesis,
etc) that it starts out with. When the data is defined using usanti
ipated token types, EARNPADS often winds up learning terribly
complex grammars in an attempt to compensate. TR&EApro-
grammer, on the other hand, can adapt much more easily bynmaki
a slight adjustment in the preamble.

Notice that in one case, thei ndowser ver _| ast bench-
mark, the LEARNPADS system produces a much smaller descrip-
tion than ANNE. This occurs becauseelaARNPADS uses a heuris-
tic to simplify grammars, and in this case, it over-simpfifielimi-
nating some useful information about the format. The prognar
could have produced an equally simple description usimgN&
had they chosen to do so.

6. Related Work

ANNE was designed to improve the productivity of data analysts by
providing a quick, simple way to generate documentationdaid
processing tools for an ad hoc data source given the aiyabi
of example data. Many of its commands are directly inspired b
the design of domain-specific languages and language @xtsns
such asPADS [10, 11, 21],DATASCRIPT [4], PACKETTYPES[23],
Demeter [20]BINPAC [27] and Erlang binaries [32, 15].

Some of these languages suctPasSKETTYPES DATASCRIPT,
BINPAC, and Erlang binaries are designed specifically to work
with binary data. In theory, a variant of NNE could work with
binary data, but it seems unlikely that it would be particyla
effective — ANNE will only work well when a human can stare at
a data source, uncover it's structure, and add annotatiopi&ce.
Visually uncovering the format of a binary data source ardirayl
annotations to it does not seem plausible.

When it comes to the domain of semi-structured text data,
ANNE provides an alternative to writing format specificationkd|
pPADSspecifications) by hand. The main advantage nfu& comes
in its ease-of-use and ability to fill in details such as sefuas,
terminating characters, and members of an enumeratiomatto
ically. Having a machine fill in such details is both more canv
nient and less error-prone than manually constructing dserip-
tion. One limitation of ANNE right now is that it does not support
the full range ofPADS features. In particular, it is missing depen-
dency and constraints. We believe the overalNk framework can
support these features; we are currently working on extendur
theory and implementation to include them.

Potter's Wheel [29] is another system with some similagitie
to to ANNE in that it supports an interactive process to manage,
clean and transform data. UnlikeNdE, it uses a spreadsheet-style
interface to represent classical relational data and &sigdo help
users detect errors and transform data to make it ready tb loa
into a commercial database. Whereas Potter's Wheel isdihii
managing relational tables,NNE is designed for a broader range
of context-free grammars. Whereas Potter’'s Wheel is amerfly
interactive transformation system,NAE is a descriptive system
that produces documentation and programming tools for lese.

Whereas Potter's Wheel operates over relational data, many
other data cleaning and transformation systems operatexaue.

For example, SchemaScope [5] is a powerful new tool develope
by Bex, Neven and Vansummeren to inferdbs andxmL Schemas



from unknownXxmL documents and to visualize and edit exist-
ing schema. The inference mechanisms used in SchemaScope
are highly effective as they are tuned to common propertfes o
DTDs [22]. Unfortunately, the grammar inference problem foc ho

data sources is substantially different from the schemerémice

problem forxmL in part because the basic tokenization problem
for ad hoc data is so ambiguous — there is no standard tagtbase

syntax to delineate different parts of an ad hoc documentth®n

contrary, ANNE was created to provide a means for programmers

to delineate and disambiguate elements of their data saurce

The machine learning community has developed a number of

tools that performwrapper induction where awrapperis a pro-
gram that can extract information from designated “slots”ai

document or set of documents. Two examples of such work are
Kushmerick's HLRT induction system [18, 17] and Soderland’

Whisk system [30]. One high-level difference between aesyst
like Whisk and one like AINE or PADS is that Whisk is designed
to work on data with very little regular structure. For exdenp
the working example in Soderland’s paper involved extoactf
features such as price and location from Craigslist apartrad-
vertisements. Such advertisements are pseudo-Englisbshéund
have much less structure than web logs, for instance. Hevidks
Whisk and similar systems can be effective at solving thetie
in a haystack” problem, they are not designed to produceitite k
of documentation or programming tools thatiRe is.

7. Conclusions
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A. Auxiliary Lemmas

The following auxiliary lemmas are useful for proving theima
theorems.

Definition 11 (Subsumption.)
e 1 < rifand only if there existshs, such that, @& ro = r;

e G; < G ifand only if there exist§:> such thaG, @ G = G.

Lemma 12 (Weakening.)
e IfGF°v s, thenforany’,GF v Es®s';

e IfGluver thenforany’',GFverdr;
e IfGF°v e s, thenforanyG’,G& G Fv e s;
e IfGFv e, thenforanyG’,Ge G v € r.

PrROOF By definition of & and by induction on the derivation of
GFvesandGFver. o

Lemma 13 (Summation Bound.)
o If G < GandG: < G, thenG; @ G2 < G;

¢ IfG; <G, i=1,2..n, thenG, &Gy @ ...® G, <G.

PrROOF. By communitivity and associativity @b and by induction
onn. O



