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Abstract

In enterprise and data center networks, the scalability of the data plane
becomes increasingly challenging as forwarding tables and link speeds
grow. Simply building switches with larger amounts of faster memory
is not appealing, since high-speed memory is both expensive and power
hungry. Implementing hash tables in SRAM is not appealing either be-
cause it requires significant overprovisioning to ensure that all forward-
ing table entries fit. Instead, we propose the BUFFALO architecture,
which uses a small SRAM to store one Bloom filter of the addresses as-
sociated with each outgoing link. We provide a practical switch design
leveraging flat addresses and shortest-path routing. BUFFALO gracefully
handles false positives without reducing the packet-forwarding rate, while
guaranteeing that packets reach their destinations with bounded stretch
with high probability. We tune the sizes of Bloom filters to minimize
false positives for a given memory size. We also handle routing changes
and dynamically adjust Bloom filter sizes using counting Bloom filters in
slow memory. Our extensive analysis, simulation, and prototype imple-
mentation in kernel-level Click show that BUFFALO significantly reduces
memory cost, increases the scalability of the data plane, and improves
packet-forwarding performance.

1 Introduction

The Ethernet switches used in today’s enterprise and data-center networks do
not scale well with increasing forwarding-table size and link speed. Rather
than continuing to build switches with ever larger and faster memory in the
data plane, we believe future switches should leverage Bloom filters for a more
scalable and cost-effective solution.

1.1 Memory Problems in the Data Plane

Enterprises and data centers would be much easier to design and manage if
the network offered the simple abstraction of a virtual layer-two switch. End
hosts could be identified directly by their hard-coded MAC addresses, and re-
tain these addresses as they change locations (e.g., due to physical mobility or



virtual-machine migration). The hosts could be assigned IP addresses out of a
large pool, without the artificial constraints imposed by dividing a network into
many small IP subnets. However, traditional Ethernet can only support this ab-
straction in small network topologies, due to a heavy reliance on network-wide
flooding and spanning tree. Recent advances [Il 2, B] have made it possible to
build much larger layer-2 networks, while still identifying hosts by their MAC
addresses. These new architectures focus primarily on improving the control
plane, enabling the use of shortest-path routing protocols (instead of spanning
tree) and efficient protocols for disseminating end-host information (instead of
flooding data packets).

As these new technologies enable the construction of ever larger “flat” net-
works, the scalability of the data plane becomes an increasingly serious problem.
In today’s Ethernet and in proposed solutions like TRILL [Il B, each switch
maintains a forwarding-table entry for each active MAC address. Other solu-
tions [3] cache a smaller number of end-host MAC addresses, but still require a
relatively large amount of data-plane state to reach every switch in the network.
Large networks can easily have tens or hundreds of thousands of end-host MAC
addresses, due to the proliferation of PDAs (in enterprises) and virtual machines
(in data centers). In addition, link speeds are increasing rapidly, forcing the use
of ever-faster—and, hence, more expensive and power-hungry—memory for the
forwarding tables. This motivates us to explore new ways to represent the for-
warding table that require less memory and (perhaps more importantly) do not
require memory upgrades when the number of end hosts inevitably grows.

To store the forwarding table, one simple solution is to use a hash table in
SRAM to map MAC addresses to outgoing interfaces. However, this approach
requires significant overprovisioning the fast memory for three reasons: First,
when switches are out of memory, the network will either drop packets in some
architectures [Il ] or crash in others [3]. Second, it is difficult and expensive
to upgrade the memory for all the switches in the networks. Third, collisions
in hash tables (i.e., different destination addresses mapped to the same place in
the hash table) require extra memory overhead to handle them, and affect the
throughput of the switch.

Given these memory problems in the data plane, our goal is to make efficient
use of a small, fast memory to perform packet forwarding. Such small fast
memory can be the L1 or L2 cache on commodity PCs serving as software
switches, or dedicated SRAM on the line cards. When the memory becomes
limited with the growth of forwarding table, we ensure that all packet-forwarding
decisions are still handled within the SRAM, and thus allow the switches last
longer with the increase of forwarding table size.

1.2 The BUFFALO Forwarding Architecture

Most enterprise and data center networks are “SPAF networks”, which uses
Shortest Path routing on Addresses that are Flat (including conventional link-
state, distance-vector, and spanning tree protocols). Leveraging the unique
properties in SPAF networks, we propose BUFFALO, a Bloom Filter Forwarding



Architecture for Large Organizations. BUFFALO performs the entire address
lookup for all the packets in a small, fast memory while occasionally sending
the packets through a slightly longer path.

To make all packet-forwarding decisions with a small fast memory, we use
a Bloom filter ], a hash-based compact data structure for storing a set of
elements, to perform the flat address lookup.  Similar to previous work on
resource routing [Al mﬂ, we construct one Bloom filter for each next hop (i.e.,
outgoing link), and store all the addresses that are forwarded to that next hop.
By checking which Bloom filter the addresses match, we perform the entire
address lookup within the fast memory for all the packets. In contrast, previous
work [6] uses Bloom filters to assist packet lookup and every address lookup still
has to access the slow memory at least once.

To apply our Bloom filter based solution in practice, we provide techniques
to resolve three issues:

Handling false positives: False positives are one key problem for Bloom
filters. We propose a simple mechanism to forward packets experiencing false
positives without any memory overhead. This scheme works by randomly se-
lecting the next hop from all the matching next hops, excluding the interface
where the packet arrived. We prove that in SPAF networks the packet expe-
riencing one false positive (which is the most common case for the packet) is
guaranteed to reach the destination with constant bounded stretch. We also
prove that in general the packets are guaranteed to reach the destination with
probability 1. BUFFALO gracefully degrades under higher memory loads by
gradually increasing stretch rather than crashing or resorting to excessive flood-
ing. In fact, in enterprise and data center networks with limited propagation
delay and high-speed links, a small increase in stretch would not run the risk of
introducing network congestion. Our evaluation with real enterprise and data
center network topologies and traffic shows that the expected stretch of BUF-
FALO is only 0.05% of the length of the shortest path when each Bloom filter
has a false-positive rate of 0.1%.

Optimizing memory and CPU usage: To make efficient use of limited
fast memory, we optimize the sizes and number of hash functions of the Bloom
filters to minimize the overall false-positive rate. To reduce the packet lookup
time, we let the Bloom filters share the same group of hash functions and reduce
the memory access times for these Bloom filters. Through extensive analysis
and simulation, we show that BUFFALO reduces the memory usage by 65%
compared to hash tables.

Handling routing dynamics: Since routing changes happen on a much
longer time scale than packet forwarding, we separate the handling of routing
changes from the packet forwarding and use counting Bloom filters in the large,
slow memory to assist the update of the Bloom filters. To reduce the false-
positive rate under routing changes, we dynamically adjust the sizes and number
of hash functions of Bloom filters in fast memory based on the large fixed-size

IThese studies design the algorithms of locating resources by using one Bloom filter to
store a list of resources that can be accessed through each neighboring node.



counting Bloom filters in slow memory.

We implement a prototype in the Click modular router [7] running in the
Linux kernel. By evaluating the prototype under real enterprise and data center
network topologies and traffic, we show that in addition to reducing memory
size, BUFFALO forwards packets 10% faster than traditional hash table based
implementation. BUFFALO also reacts quickly to routing changes with the
support of counting Bloom filters.

The rest of the paper is organized as follows: Section ] describes the under-
lying SPAF networks we focus on in this paper. Section Bl presents an overview
of the BUFFALO architecture. Section Bl describes how to handle false positives
and proves the packet reachability. In Section Bl we adjust the sizes of Bloom
filters to make the most efficient use of limited fast memory. In Section B, we
show how to dynamically adjust the sizes of Bloom filters using counting Bloom
filters. Section [ presents our prototype implementation and the evaluation.
Section B discusses several extensions of BUFFALO. Section [ and [[ discuss
related work and conclude the paper.

2 Shortest Paths & Flat Addresses

This paper focuses on SPAF networks, the class of networks that perform
Shortest-Path routing on Addresses that are Flat. In fact, most enterprise
and data center networks are SPAF networks.

Flat addresses: Flat addresses are used widely in enterprise and data center
networks. For example, MAC addresses in Ethernet are flat addresses. New
protocols with flat address spaces (e.g., SEATTLE [B], ROFL [§], AIP [A])
have been proposed to facilitate network configuration and management, be-
cause they simplify the handling of topology changes and host mobility without
requiring administrators to reassign addresses. Even IP routing can be done
based on flat addresses, by converting variable-length IP prefixes into multiple
non-overlapping fixed-length (i.e., /24) sub-prefixes.

Shortest path routing: We also assume shortest-path routing on the network
topology, based on link-state protocols, distance-vector protocols, or spanning-
tree protocolsE Recent advances in Ethernet such as Rbridges [1} 2] and SEAT-
TLE [3] all run link-state protocols that compute shortest paths.

Based on the above two properties, we define the SPAF network as a graph
G = (V, E), where V denotes the set of switches in the network, and E denotes
all the links viewed in the data plane. In the SPAF network we assume all the
links in F are actively used, i.e., the weight on link e(A, B) is smaller than that
on any other paths connecting A and B. This is because if a link is not actively
used, it should not be seen in the data plane. Let P(A, B) denote the set of all
paths from A to B. Let [(A, B) denote the length of the shortest path from A
to B, i.e., the length of e(4, B), and the length of a path p is I(p) = >_ ., l(e).

2In today’s Ethernet the control plane constructs a spanning tree and the data plane
forwards packets along shortest paths within this tree.



We have:
VA, B € V,p e P(A, B), (4, B) < l(p).

In this paper, we propose an efficient data plane that supports any-to-any
reachability between flat addresses over (near) shortest paths. We do not con-
sider data-plane support for Virtual LAN (VLANs) and access-control lists
(ACLs), for three main reasons. First, the new generation of layer-two net-
works [Il 2 B] do not perform any flooding of data packets, obviating the need
to use VLANSs simply to limit the scope of flooding. Second, in these new archi-
tectures, IP addresses are opaque identifiers that can be assigned freely, allowing
them to be assigned in ways that make ACLs more concise. For example, a data
center could use a single block of TP addresses for all servers providing a partic-
ular service; similarly, an enterprise could devote a small block of IP addresses
to each distinct set of users (e.g., faculty vs. students). This makes ACLs much
more concise, making it easier to enforce them with minimal hardware support
at the switches. Third, ACLs are increasingly being moved out of the network
and on to end hosts for easier management and better scalability. In corpo-
rate enterprises, distributed firewalls [0 [[T], managed by Active Directory [12]
or LDAP (Lightweight Directory Access Protocol), are often used to enforce
access-control policies. In data-center networks, access control is even easier
since the operators have complete control of end hosts. Therefore, the design
of BUFFALO focuses simply on providing any-to-any reachability, though we
briefly discuss possible ways to support VLAN in Section B

3 Packet Forwarding in BUFFALO

In this section, we describe the BUFFALO switch architecture in three aspects:
First, we use one Bloom filter for each next hop to perform the entire packet
lookup in the fast SRAM. Second, we leverage shortest-path routing to for-
ward packets experiencing false positives through slightly longer paths without
additional memory overhead. Finally, we leverage counting Bloom filters in
slow memory to enable fast updates to the Bloom filters after routing changes.
Figure 0l summarizes the BUFFALO design.

3.1 One Bloom Filter Per Next Hop

One way to use a small, fast memory is route caching. The basic idea is to
store the most frequently used entries of the forwarding table (FIB) in the fast
memory, but store the full table in the slow memory. However, during cache
misses, the switch experiences low throughput and high packet loss. Malicious
traffic with a wide range of destination addresses may significantly increase the
cache miss rate. In addition, when routing changes or link failures happen, many
of the cached routes are simultaneously invalidated. Due to its bad performance
under worst-case workloads, route caching is hardly used today.

To provide predictable behavior under various workloads, we perform the
entire packet lookup for all the packets in the fast memory by leveraging Bloom
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Figure 1: BUFFALO Switch Architecture

filters, a hash-based compact data structure to store a set of elements. We set
one Bloom filter BF(h) for each next hop h (or outgoing link), and use it to
store all the addresses that are forwarded to that next hop. For a switch with
T next hops, we need T Bloom filters. A Bloom filter consists of an array of
bits. To insert an address into Bloom filter BF'(h), we compute k hash values
of the address, each denoting a position in the array. All the k positions are set
to 1 in the array. By repeating the same procedure for all the addresses with
next hop h, Bloom filter BF(h) is constructed.

It is easy to check if an address belongs to the set with Bloom filter BF'(h).
Given an address, we calculate the same k hash functions and check the bits
in the corresponding %k positions of the array. If all the bits are 1, we say that
the element is in the set; otherwise it is not. To perform address lookup for an
address addr, we check which BF(h) contains addr, and forward the packet to
the corresponding next hop h.

Note that there are different number of addresses associated with each next
hop. Therefore we should use different size for each Bloom filter according to the
number of addresses stored in it, in order to minimize the overall false-positive
rate with a fixed size of fast memory. We formulate and solve the false-positive
rate optimization problem in Section



3.2 Handling False Positives in Fast Memory

One key problem with Bloom filters is the false positive — an element can be
absent from the set even if all k£ positions are marked as 1, since each position
could be marked by the other elements in the set. Because all the addresses
belong to one of the Bloom filters we construct, we can easily detect packets
that experience false positives if they match in multiple Bloom filtersH

One way to handle packets experiencing false positives is to perform a full
packet lookup in the forwarding table stored in the slow memory. However, the
lookup time for packets experiencing false positives will be much longer than
others, leading to the throughput decrease. Attackers may detect those packets
with longer latency and send a burst of them. Therefore, we must handle false
positives in fast memory by picking one of the matching next hops.

For the packets that experience false positives, if we do not send them
through the next hop on the shortest path, they may experience stretch and
even loops. One way to prevent loops is to use a deterministic solution by stor-
ing the false positive information in the packets (similar to FCP [I3]). When a
packet is detected to have false positives in a switch, we store the switch and the
next hop it chooses in the packet. So next time the packet travels to the same
switch, the switch will choose a different next hop for the packet. However, this
method requires modifying the packets and has extra payload overhead.

Instead, we use a probabilistic solution without any modification of the pack-
ets. We observe that if a switch sends the packet back to the interface where
it comes from, it will form a loop. Therefore, we avoid sending the packet
to the incoming interface. To finally get out the possible loops, we randomly
pick one from all the remaining matching next hops. In Section Hl we prove
that in SPAF networks, the packet experiencing one false positive (which is the
most common case for the packet) is guaranteed to reach the destination with
constant bounded stretch. In general, packets are guaranteed to reach the des-
tination with probability 1. This approach does not require any help from the
other switches in the network and thus is incrementally deployable.

3.3 CBFs for Handling Routing Changes

When routing changes occur, the switch must update the Bloom filters with a
new set of addresses. However, with a standard Bloom filter (BF) we cannot
delete elements from the set. A counting Bloom filter (CBF) is an extension
of the Bloom filter that allows adding and deleting elements [I4]. A counting
Bloom filter stores a counter rather than a bit in each slot of the array. To
add an element to the counting Bloom filter, we increment the counters at the

3The handling of addresses that should have multiple matches (e.g., Equal-Cost Multi-
Path) are discussed in Section[ Addresses that have no match in the FIB should be dropped.
Yet these packets may hit one Bloom filter due to false positives. We cannot detect these
addresses, but they will eventually get dropped when they hit a downstream switch that has
no false positives. In addition, an adversary cannot easily launch an attack because it is hard
to guess which MAC addresses would trigger this behavior.



positions calculated by the hash functions; to delete an element, we decrement
the counters.

A simple way to handle routing changes is to use CBF's instead of BFs for
packet forwarding. However, CBFs require much more space than BFs. In addi-
tion, under routing changes the number of addresses associated with each next
hop may change significantly. It is difficult to dynamically increase/decrease
the sizes of CBFs to make the most efficient use of fast memory according to
routing changes.

Fortunately, since routing changes do not happen very often, we can store
CBF's in slow memory, and update the BFs in small fast memory based on the
CBFs. We store CBF in slow memory rather than a normal FIB because it is
easier and faster to update BFs from CBF's under routing changes. With a CBF
layer between BFs and control plane, we can even change the sizes of BFs to
the optimal values with low overhead. By using both CBFs and BFs, we make
an efficient use of small fast memory without losing the flexibility to support
changes in the FIB. The details of using CBFs are discussed in Section

As shown in Figure [l there are three layers in our switch architecture. The
control plane can be either today’s Ethernet or new Ethernet techniques such
as Rbridges [0, 2] and SEATTLE [3]. CBFs are stored in slow memory and
learn about routing changes from the control plane. BFs are stored in the
fast memory for packet lookup. During routing changes, the related BFs will
be updated according to the corresponding CBFs. If the number of addresses
associated with a BF changes significantly, BFs are reconstructed with new
optimal sizes from CBFs.

4 Handling False Positives

When BUFFALO detects packets that experience false positives, it randomly
selects a next hop from the candidates that are different from the incoming
interface, as discussed in Section B2 In the case of a single false positive, which
is the most common, avoiding sending the packet to the incoming interface
guarantees that packets reach destination with tightly bounded stretch. In the
improbable case of multiple false positives, this randomization guarantees packet
reachability with probability 1, with a good bounds on expected stretch.

Notation Definition

NH,,(A) | The next hop for shortest path at switch A
NHy,(A) | The matching next hop due to a sole false
positive at switch A

(A, B) The length of the shortest path from
switch A to B

P(A,B) All the paths from switch A to B

Table 1: Notations for the false-positive handler
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4.1 Handling One False Positive by Avoiding Incoming
Interface

We first investigate the case that a packet only experiences one false positive
at one switch, i.e., at switch A, the packet has two matching next hops. Let
NH,,(A) denote the next hop A should forward the packet to on the shortest
path, and NHy,(A) denote the additional next hop matched by a Bloom filter
false positive. (The notations are summarized in Table Bl) Note that this
single false positive case is the most common case, because with reasonable
Bloom filter parameters the probability of multiple false positives is much lower
than one false positive. Since switch A connects to each end host through one
switch port, there is no false positives for the ports that connect to end hosts.
Therefore, NHy,(A) must be a switch rather than an end host.

The one false positive case is shown in Figure H(a). (We hereafter use --» to
denote false positive link, and — for shortest path link.) Switch A has a false
positive, and randomly picks a next hop B (NH,(A) = B). Switch B receives
the packet, and may (i) send it to a next hop different from A, which leads to
the destination or (ii) send it back to A. For (i), we will prove that there are
not any loops. For (ii), when A receives the packet, it will not pick B since the
packet comes from B.

In general, we have the following theorem:

Theorem 1. In SPAF networks, if a packet only experiences one false positive
i one switch, it is gquaranteed to reach the destination with no loops except a
possible single transient 2-hop one.



Proof. Suppose the packet matches two next hops at switch A: NH,(A) and
some B = NHy,(A). If A picks NHj,(A), there is no loop. If B is selected, it
will have a path B — ... — dst to forward the packet to the destination, since
the network is connected. With a single false positive, a packet will follow the
correct shortest-path hops at all nodes other than A. Thus, the only case that
can cause a loop is the packet going through A again (A --+ B — ... - A —

.. — dst). However, in SPAF networks, we assume the link e(B, A) is actively
used (This assumption is introduced in Sec. ), i.e.,

I(NHp(A), A) <1(p),Vp € P(NHjp(A), A).

Thus, on a shortest path from B to dst, if the packet visits A at all, it would
be immediately after B. If the packet is sent back to A, A will avoid sending it
to the incoming interface NH,(A), and thus send the packet to N Hy,(A), and
the shortest path from there to dst can’t go through A. Thus, the packet can
only loop by following A --» NH,(A) — A — ... — dst. So the path contains
at most one 2-hop loop. O

Now we analyze the stretch (i.e., latency penalty) the packets will experience.
For two switches A and B, let [(A, B) denote the length of the shortest path
from A to B. Let I'(A, B) denote the latency the packet experiences on the
path in BUFFALO. We define the stretch as:

S =1(A,B) - 1(A, B)

Theorem 2. In SPAF networks, if a packet experiences just one false positive
at switch A, the packet will experience a stretch of at most [(A, NHy,(A)) +
H(NHjpp(A), A).

Proof. Since there is one false positive in A, A will choose either NH,,(A) or
NHy,(A). If A picks NHyg,(A), there is no stretch. If A picks NH,(A), there
are two cases: (i) If NH,(A) sends the packet to the destination without going
through A, the shortest path from NHy,(A) to the destination is followed.
Based on the triangle inequality, we have:

I(NH;p(A), dst)
I'(A,dst) — 1(A, dst)

<IU(NHyp(A),A) +1(A,dst)
(i) If NHy,(A) sends the packet back to A, the stretch is (A, NHy,(A)) +
I(NHp(A), A). O

Therefore, we prove that in the one false positive case, packets are guaranteed
to reach the destination with bounded stretch in SPAF networks.

10



Figure 3: BUFFALO forwarding graph (--» false positive link, — shortest
path tree)

4.2 Handling Multiple False Positives with Random Se-
lection

Now we consider the case where all the switches in the network apply our Bloom
filter mechanism. We choose different hash functions for different switches so
that the false positives are independent among the switches. (We can choose dif-
ferent keys for key-based hash functions to generate a group of hash functions.)
Thus it is rare for a packet to experience false positives at multiple switches.

Let us fix a destination dst, and condition the rest of this section on the fixed
forwarding table and memory size (which, per Section [, means the Bloom
filter parameters are fixed, too). Let f(h) be the probability of Bloom filter
h erroneously matching dst (a priori independent of dst if dst shouldn’t be
matched). Then, k, the number of Bloom filters mistakenly matching d is, in
expectation, F' = %", f(h). If all values of f are comparable and small, F' is
roughly binomial, with Pr[k > z] decays exponentially for x > 2f|E]|.

There may exist loops even when we avoid picking the incoming interface.
For example, in Figure Pi(b), A may choose the false-positive hop to B at first,
and B may choose the false-positive next hop C. However, the packet can
eventually get out of the loop if each switch chooses the next hop randomly:
any loop must contain a false-positive edge, and the source node of that edge
will with some probability choose its correct hop instead. E.g., A will eventually
choose the next hop D to get out of the loop. Such random selection may also
cause out-of-order packets. This may not be a problem for some applications.
For the applications that require in-order packet forwarding, we can still reorder
packets in the end hosts.

11



In general, in SPAF networks there is a shortest path tree for each destina-
tion, with each packet to dst following this tree. In BUFFALO, packets destined
to dst are forwarded in the directed graph consisting of a shortest path tree for
dst and a few false positive links. We call this graph BUFFALO forwarding
graph. An example is shown in Figure Bl where 2 false positives occurred at A
and B. Note that, if the shortest-path links are of similar length, the link from
A to F can’t be less than about twice that length: otherwise F’s shortest path
would go through A. If all links are the same length (latency), no false positive
edge can take more than 1 “step” away from the destination.

If a packet arrives at the switch that has multiple outgoing links in BUF-
FALO forwarding graph due to false positives, we will randomly select a next
hop from the candidates. Thus, the packet actually takes a random walk on the
BUFFALO forwarding graph, usually following shortest-path links with occa-
sional “setbacks”.

Theorem 3. With an adversarially designed BUFFALO network with uniform
edge latencies, and even worst-case placement of false positives, the expected

stretch of a packet going to a destination associated with k false positives is at

most S(k) = p- (V/3)F, where p = 5%2?/—3 < 6.8.

PRrROOF SKETCH: We couple the random walk on the BUFFALO graph with
a random walk on a “line” graph which only records the current hop distance to
the destination, as shown in Figurell The tight bound is produced by the worst-
case scenario of the network shaped like a line itself, with three false positives
at all but 4-6 steps pushing the packet “back up” the line. The complete proof
is shown in the Appendix. O

Though this is exponential, this is counterbalanced by the exponentially low
probability of k false positives. Tuning the Bloom filter parameters to optimize
memory usage will allow us to bound F', yielding at least a superlinear tail
bound on the probability of large stretches, assuming f values are comparable
to 1/2m or smaller, yielding F' = O(1):

Theorem 4. For any z > 60.3 - 7.3221F, the probability of stretch exceeding z
is bounded by 2/z. Asymptotically, the tail will decay as O(1/2%%%), to within
polylog factors. (The proof is given in the Appendiz.)

This bound characterizes the worst-case configuration the network may end
up in after any particular control-plane event. As a description of the typical
behavior, on the other hand, this bound is quite crude. We expect that an
average-case analysis over false positive locations, corresponding to the typical
behavior of BUFFALO, will yield polynomial expected stretch for fixed k: the
exponential worst-case behavior relies on all the false-positives carefully “con-
spiring” to point away from the destination, and randomly placed false positives,
as with real Bloom filters, will make the random walk behave similarly to a ran-
dom walk on an undirected graph, producing polynomial hitting times. This
will allow z = poly(k) and hence an exponentially decaying stretch distribution.

While our scheme works with any underlying network structure, it works
particularly well with a tree topology. Tree topologies are common in the edges

12
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Figure 4: Coupling for the expected stretch proof: all nodes at the same hop
distance from dst are collapsed into 1 node. Forward false positive links, like
D to B, are dropped. The number of backward edges on the line graph is the
maximum over all nodes at that distance of the number of backward and same-
depth false-positive links (B’s edges at d = 1, D’s edges at d = 2). A random
walk on the line graph converges no faster than a random walk on the original.
The line graph itself is a valid network, thus allowing for tight bounds.

of enterprise and data center networks. A logical tree is usually constructed with
the spanning tree protocols in today’s Ethernet. Roughly speaking, in a tree, a
lot of distinct false positives are needed at each distance from the destination
in order to keep “pushing” the packet away from the destination.

Claim 5. If the underlying network is a tree, with no multiple links between any
one pair of routers, the expected stretch with k false positives, even if they are
adversarially placed, is at most 2(k —1)%. (The proof is given in the Appendiz.)

We believe that similar results should apply when we allow heterogeneous
latencies, especially when the per-link latencies are within a small constant
factor of each other, as is likely in many geographically-local networks.

13
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Figure 5: Expected stretch

4.3 Stretch in Realistic Networks

We evaluate the stretch in three representative topologies: Campus is the cam-
pus network of a large (roughly 40,000 students) university, consisting of 1600
switches [IH]. AS 1239 is a large ISP network with 315 routers [I6]. (The
routers are viewed as switches in our simulation.) We also constructed a model
topology similar to the one used in [3], which represents a typical data center
network composed of four full-meshed core routers each of which is connected
to a mesh of twenty one aggregation switches. This roughly characterizes a
commonly-used topology in data centers [I7].

In the three topologies, we first analyze the expected stretch given the false-
positive rate. We then use simulation to study the stretch with real packet
traces.

Analysis of expected stretch: We pick the false-positive rate of Bloom
filters and calculate the expected stretch for each pair of source and destination
in the network by analyzing all the cases with different numbers and locations
of false positives and all the possible random selections. The expected stretch
is normalized by the length of the shortest path. We take the average stretch
among all source-destination pairs. We can see that the expected stretch in-
creases linearly with the increase of the false-positive rate. This is because the
expected stretch is dominated by the one false-positive case. Since we provide
a constant stretch bound for the one false-positive case in BUFFALO, the ex-
pected stretch is very small. Even with a false-positive rate of 1%, the expected
stretch is only 0.5% of the length of the shortest path (Figure Hl).

Simulation on stretch distribution: We also study the stretch of BUF-
FALO with packet traces collected from the Lawrence Berkeley National Lab
campus network by Pang et. al. [I8]. There are four sets of traces, each col-
lected over a period of 10 to 60 minutes, containing traffic to and from roughly
9,000 end hosts distributed over 22 different subnets. Since we cannot get the
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Figure 6: Stretch with real traces in campus network

network topology where the trace is collected, we take the same approach in [3]
to map the trace to the above campus network while preserving the distribution
of source-destination popularity of the original trace. Figure [l shows the distri-
bution of stretch normalized by shortest path length. When the false-positive
rate is 0.01%, 99% of the packets do not have any stretch and 0.01% of the
packets have a stretch that is twice as long as the length of the shortest path.
Even when the false-positive rate is 0.5%, only 0.0001% of the packets have a
stretch of 6 times of the length of the shortest path. Note that in an enterprise
or data center, the propagation delays are small, so the stretch caused by false
positives is tolerable.

5 Optimizing Memory Usage

In this section, we consider a switch with M-bit fast memory (i.e., SRAM) and
a fixed routing table. We formulate the problem of minimizing the overall false-
positive rate through tuning the sizes in the Bloom filters. This optimization
is done by a Bloom filter manager implemented in a BUFFALO switch. We
then show numerical results of false positives with various sizes of memory and
forwarding tables.

5.1 Optimizing Bloom-Filter Sizes

Our goal is to minimize the overall false-positive rate. If any one of the T
Bloom filters has a false positive, an address will hit in multiple Bloom filters.
In this case, we send the packets through a slightly longer path as described in
Section Bl To reduce the stretch, we must minimize the false positives in each
switch. We define the overall false-positive rate for a switch as the probability
that any one of the T Bloom filters has a false positive. As above, let f(h) denote
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the false-positive rate of Bloom filter BF'(h). Since Bloom filters for different
next hops store independent sets of addresses, and thus are independent of each
other, the overall false-positive rate of T Bloom filters is

T T
Fe1-T[0-f0) ~ Y )
h=1 h=1
(when f(h) < 1/T,Vh =1..T)

Optimizing the sum approximation for F" also directly optimizes the applicability
threshold for Theorem [CJ]l expressed in terms of the sum as such.

Since there are different numbers of addresses per next hop, we should use
different sizes for the Bloom filters according to the number of addresses stored
in them, in order to minimize the overall false-positive rate with the M-bit fast
memory.

In addition to constraining the fast memory size, we should also avoid over-
loading the CPU. We bound the packet lookup time, which consists of hash
computation time and memory access time. To reduce the computational over-
head of address lookup, we apply the same group of hash functions to all T'
Bloom filters. Since we use the same hash functions for all the Bloom filters, we
need to check the same positions in all the Bloom filters for an address lookup.
Therefore, we put the same positions of the Bloom filters in one memory unit
(e.g., a byte or a word), so that they can be accessed by one memory access. In
this scheme, the packet lookup time is determined by the maximum number of
hash functions in 7 Bloom filters (kpq, = maxi_, (k(h)), where k(h) denotes
the number of hash functions used in BF(h)). Let upqsp denote the number
of hash functions that can be calculated in a second. We need kjaz/Unash
time for hash computation. Let sy denote the access time on small, fast
memory. Assume there are b bits in a memory unit which can be read by one
memory access. We need [(Tkmaz/b)tfmem| memory access time. Since both
hash computation and memory access time are linear in the maximum number
of hash functions k4., we only need to bound k., in order to bound the
packet lookup time

We minimize the lookup time for each packet by choosing m(h) (the number
of bits in BF(h)) and k(h) (the number of hash functions used in BF(h)),
with the constraint that Bloom filters must not take more space than the size
of the fast memory and must have a bounded number of hash functions. Let
n(h) denote the number of addresses in Bloom filter BF'(h). The optimization

4In switch hardware, the 4-8 hash functions can be calculated in parallel. We also assert
that fabrication of 6 to 8 read ports for an on-chip Random Access Memory is attainable with
today’s embedded memory technology [I9]. The cache line size on a Intel Xeon machine is
about 32 bytes to 64 bytes, which is enough to put all the positions of T' Bloom filters in one
cache line.
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problem is formulated as:

T

Min =2 S0 )
h=1

st f(h) = (1 — e FMIn/mR)yk(h) )

k(h) < kmag, Vh € [L.T] (4)
giwven T, M, kyaq, and n(h)(Vh € [1..H])

Equation () is the overall false-positive rate we need to minimize. Equation
@) shows the false-positive rate for a standard Bloom filter. Equation (@) is the
size constraint of the fast memory. Equation (@) is the bound on the number
of hash functions. We have proved that this problem is a convex optimization
problemﬁ Thus there exists an optimal solution for this problem, which can be
found by the IPOPT [20] (Interior Point OPTimizer) solver. Most of our exper-
iments converge within 30 iterations, which take less than 50 ms. Note that the
optimization is executed only when the forwarding table has significant changes
such as a severe link failure leading to lots of routing changes. The optimization
can also be executed in the background without affecting the packet forwarding.

5.2 Analytical Results of False Positives

We study in a switch the effect of forwarding table size, number of next hops,
the amount of fast memory, and number of hash functions on the overall false-
positive ratefl We choose to analyze the false positives with synthetic data to
study various sizes of forwarding tables and different memory and CPU settings.
We have also tested BUFFALO with real packet traces and forwarding tables.
The results are similar to the analytical results and thus omitted in the paper.
We studied a forwarding table with 20K to 2000K entries (denoted by N), where
the number of next hops (7) varies from 10 to 200. The maximum number of
hash functions in the Bloom filters (kyq.) varies from 4 to 8. Since next hops
have different popularity, Pareto distribution is used to generate the number of
addresses for each next hop. We have the following observations:

(1) A small increase in memory size can reduce the overall false-
positive rate significantly. As shown in Figure [, to reach the overall false-
positive rate of 0.1%, we need 600 KB fast memory and 4-8 hash functions to
store a FIB with 200K entries and 10 next hops. If we have 1 MB fast memory,
the false-positive rate can be reduced to the order of 1076.

5The proof is omitted due to lack of space.

6In Section Bl the false-positive rate is defined for each Bloom filter. Here the overall
false-positive rate is defined for the switch because different Bloom filters have different false-
positive rates. The overall false-positive rate can be one or two orders of magnitude larger
than individual Bloom-filter false-positive rate.
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Figure 7: Effect of memory size (T = 10, N = 200K)

(2) The overall false-positive rate increases almost linearly with the
increase of T. With the increase of T" and thus more Bloom filters, we will
have larger overall false-positive rate. However, as shown in Figure B even for
a switch that has 200 next hops and a 200K-entry forwarding table, we can still
reach a false-positive rate of 1% with 600KB fast memory (kpq, = 6). This
is because if we fix the total number of entries IV, with the increase of T, the
number of addresses for each next hop drops correspondingly.

(3) BUFFALO switch with fired memory size scales well with the
growth of forwarding table size. For example, as shown in Figure @ if
a switch has a 1MB fast memory, as the forwarding table grows from 20K to
1000K entries, the false-positive rate grows from 107% to 5%. Since packets
experiencing false positives are handled in fast memory, BUFFALO scales well
with the growth of forwarding table size.

(4) BUFFALO reduces fast memory requirement by at least 65% com-
pared with hash tables at the expense of a false-positive rate of 0.1%.
We assume a perfect hash table that has no collision. Each entry needs to store
the MAC address (48 bits) and an index of the next hop (log(T) bits). There-
fore the size of a hash table for an N-entry forwarding table is (log(T') + 48) N
bits. Figure [[d shows that BUFFALO can reduce fast memory requirements by
65% compared with hash tables for the same number of FIB entries at the ex-
pense of a false-positive rate of 0.1%. With the increase of forwarding table size,
BUFFALO can save more memory. However in practice, handling collisions in
hash tables requires much more memory space and affects the throughput. In
contrast, BUFFALO can handle false positives without any memory overhead.
Moreover, the packet forwarding performance of BUFFALO is independent of
the workload.
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6 Handling Routing Changes

In this section, we first describe the use of CBF's in slow memory to keep track
of changes in the forwarding table. We then discuss how to update the BF from
the CBF and how to change the size of the BF without reconstructing the CBF.

6.1 Update BF Based on CBF

In a switch, the control plane maintains the RIB (Routing Information Base)
and updates the FIB (Forwarding Information Base) in the data plane. When
FIB updates are received, the Bloom filters should be updated accordingly. We
use CBFs in slow memory to assist the update of Bloom filters. We implement
a group of T" CBFs, each containing the addresses associated with one next
hop. To add a new route of address addr with next hop h, we will insert addr
to CBF(h). Similarly, to delete a route, we remove addr in CBF(h). The
insertion and deletion operations on the CBF are described in Section Pl Since
CBFs are maintained in slow memory, we set the sizes of CBFs large enough,
so that even when the number of addresses in one CBF increases significantly
due to routing changes, the false-positive rates on CBF's are kept low.

After the CBF(h) is updated, we update the corresponding BF(h) based
on the new CBF(h). We only need to modify a few BFs that are affected by
the routing changes without interrupting the packet forwarding with the rest
BF's. To minimize the interruption of packet forwarding with the modified BFs,
we implement a pointer for each BF in SRAM. We first generate new snapshots
of BF's with CBFs and then change the BF pointers to the new snapshots. The
extra fast memory for snapshots is small because we only need to modify a few
BF's at a time.

If the CBF and BF have the same number of positions, we can easily update
the BF by checking if each position in the CBF is 0 or not. The update from
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CBF to BF becomes more challenging when we have to dynamically adjust the
size of the BF to reduce the overall false-positive rate.

6.2 Adjust BF Size Without Reconstructing CBF

When the forwarding table changes over time, the number of addresses in the
BF changes, so the size of the BF and the number of hash functions to achieve
the optimal false-positive rate also change. We leverage the nice property that
to halve the size of a Bloom filter, we just OR the first and second halves
together [M]. In general, the same trick applies to reducing the size of a Bloom
filter by a constant ¢. This works well in reducing the BF size when the number
of addresses in the BF decreases. However, when the number of addresses
increases, it is hard to expand the BF.

Fortunately, we maintain a large, fixed size CBF in the slow memory. we
can dynamically increase or decrease the size of the BF by mapping multiple
positions in the CBF to one position in the BF. For example in Figure [l we
can easily expand the BF with size m to BF* with size 2m by collapsing the
same CBF.

To minimize the overall false-positive rate under routing changes, we monitor
the number of addresses in each CBF, and periodically reconstruct BFs to be
of the optimal sizes and number of hash functions. Since resizing a BF based
on a CBF requires the BF and CBF to use the same number of hash functions.
We need to adjust the number of hash functions in the CBF before resizing
the BF. The procedure of reconstructing a BF with an optimal size from the
corresponding CBF is described in three steps:

Step 1: Calculate the optimal BF size and the number of hash functions. Solv-
ing the optimization problem in Section B we first get the optimal size of each
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BF and denote it by m*. Then we round m* to m’, which is a factor of S,

Finally we calculate the optimal number of hash functions to minimize false
positives with size m’ and the number of addresses n in the BF, which is
m’In2/n based on standard Bloom filter analysis H]. We also need to bound
the number of hash functions by k4. Thus the number of hash functions is

m’ = S/c, where ¢ = [S/m*].

k' = min(kpae, m In2/n).
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Step 2: If k # k', change the number of hash functions in the CBF from k to
k’.  The number of hash functions does not always change because routing
changes are sometimes not significant and we have the k4, bound. When we
must change k, there are two ways with either more computation or more space:
(i) If ¥’ > k, we obtain all the addresses currently in the forwarding table from
the control plane, calculate the hash values with the & — k new hash functions
on all the addresses currently in the BF, and update the CBF by incrementing
the counters in corresponding positions. If k' < k, we also calculate k — &’ hash
values, and decrementing the corresponding counters. (ii) Instead of doing the
calculation on the fly, we can pre-calculate the values of these hash functions
with all the elements and store them in the slow memory.

Step 3: Construct the BF of size m' = S/c based on the CBF of size S. As
shown in Figure [T} the value of the BF at position x (xz € [1..m/]) is updated
by ¢ positions in CBF z, 2z, ... cx. If all the counters in the ¢ positions of CBF
are 0, we set the position z in BF to 0; otherwise, we set it to 1. During routing
changes, the BFs can be updated based on CBFs in the same way.

7 Implementation and Evaluation

To verify the performance and practicality of our mechanism through a real
deployment, we built a prototype BuffaloSwitch in kernel-level Click [7. The
overall structure of our implementation is shown in Figure [l BuffaloSwitch
consists of four modules:

Counting Bloom filters: The counting Bloom filter module is used to receive
routing changes from the control plane and increment/decrement the counters
in the related CBFs correspondingly.

Bloom filters: The Bloom filter module maintains one Bloom filter for each
next hop. It also performs the packet lookup by hash calculation and checking
all the Bloom filters. When it finds out the multiple next hop candidates due
to false positives, it will call the false positive handler.

Bloom filter manager: The Bloom filter manager monitors the number of
addresses in each BF. If the number of addresses in one BF changes significantly
(above threshold T'H ), we recalculate the optimal size of the BF and reconstruct
it based on the CBF.

False positive handler: The false positive handler module is responsible for
selecting a next hop for the packets that experience false positives.

To evaluate our prototype, we need a forwarding table and real packet traces.
We map the Lawrence Berkeley National Lab Campus network traces [I8] to
the campus network topology [IH] as described in Section 3l We then calculate
shortest paths in the network and construct the forwarding table accordingly.
The forwarding table consists of 200K entries.

We run BuffaloSwitch on a 3.0 GHz 64-bit Intel Xeon machine with a 8 KB
L1 and 2 MB L2 data cache. The main memory is a 2 GB 400 Mhz DDR2
RAM. We take the fast memory size M as 1.5MB to make sure Bloom filters
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fit in the L2 cache. The Bloom filter manager optimizes sizes of Bloom filters
given the forwarding table and M. To avoid the potential bottleneck at the
Ethernet interfaces, we run the Click packet generator on the same machine
with BuffaloSwitch. We send the packet with constant rate and measure the
peak forwarding rate of BuffaloSwitch. The packet size is set as 64 bytes, which
is the minimum Ethernet packet size, so that the packet payload does not pollute
the cache much. For comparison, we also run EtherSwitch — a standard Click
element which performs Ethernet packet forwarding using hash tables.

Our experiment shows that BuffaloSwitch achieves a peak forwarding rate
of 365 Kpps, 10% faster than FtherSwitch which has 330 Kpps peak forwarding
rate. This is because all the Bloom filters in BuffaloSwitch fit in the L2 cache,
but the hash table in EtherSwitch does not and thus takes longer time to access
memory. The forwarding rate with BuffaloSwitch can be further improved by
parallelizing the hash calculations on multiple cores.

To measure the performance of BuffaloSwitch under routing changes, we
generate a group of routing updates which randomly change FIB entries and
replay these updates. It takes 10.7 psec for BuffaloSwitch to update the Bloom
filters for one route change. Under significant routing changes, it takes an
additional 0.47 seconds to adjust the Bloom filter sizes based on counting Bloom
filters. This is because CBF's are very large and takes longer time to scan through
them. However, it is much faster than recalculating hash functions for all FIB
entries to reconstruct Bloom filters.

8 Extensions to BUFFALO

In this section we discuss the extensions of BUFFALO to support ECMP, VLAN,
broadcast and multicast packets, and backup routes.

Supporting ECMP: In shortest-path routing protocols like OSPF and IS-IS,
ECMP (Equal-Cost Multi-Path) is used to split traffic among shortest paths
with equal cost. When a destination address has multiple shortest paths, the
switch inserts the destination address into the Bloom filter of each of the next
hops. Since packets with this address match multiple next hops, the BUFFALO
false-positive handler will randomly choose one next hop from them, achieving
even splitting among these equal-cost multiple paths.

Supporting virtual LANs: VLAN is used in Ethernet to allow adminis-
trators to group multiple hosts into a single broadcast domain. A switch port
can be configured with one or more VLANs. We can no longer use just a single
Bloom filter for each port because due to false positives a packet in VLAN A
may be sent to a switch which does not know how to reach VLAN A and thus get
dropped. To support VLANs in BUFFALO, we use one Bloom filter for each
(VLAN, next hop) pair. For a packet lookup, we simply check those Bloom
filters that have the same VLAN as the packet. However, this does not scale
well with a large number of VLANSs in the network. For future architectures
that have simpler network configuration and management methods rather than
VLAN, we do not have this problem.
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Broadcast and multicast: In this paper, we have focused on packet forward-
ing for unicast traffic. To support Ethernet broadcast, the switch can identify
the broadcast MAC address and forward broadcast packets directly without
checking the Bloom filters. Supporting multicast in the layer-2 network is more
complex. One way is to broadcast all the multicast packets and let the NIC
on the hosts decide whether to accept or drop the packets. Another way is to
allow switches to check whether the destination IP address of the packet is a
multicast-group packet, and leverage IP multicast solutions such as storing the
multicast forwarding information in packets [211, 22].

Fast failover to backup routes: When a significant failure happens such as
one of the switch’s own links fail, many routes change in a short time. In order
to quickly recover from significant failures, we provide an optional optimization
of BUFFALO. The control plane calculates backup routes for every link/node
failure case in advance, and notifies the data plane about the failure event. In
addition to the original routes stored in CBF(h) (h € [1..T]), we pre-calculate
backup counting Bloom filters CBF(hq, hs) (for all hy € [1..T],hy € [1..7]),
which denotes the set of addresses that are originally forwarded to next hop
h1, but if hy is not accessible, they should be forwarded to next hop ho.
When the failure happens and thus h; is not accessible, we simply need to
update the Bloom filters based on the original Bloom filters and backup count-
ing Bloom filters. For example, we update BF(hs) based on the old BF(hg)
and CBF(hy,hs). This is fast because merging two Bloom filters is just OR
operations.

9 Related Work

Bloom filters have been used for IP packet forwarding, and particularly the
longest-prefix match operation [6]. The authors use Bloom filters to determine
the length of the longest matching prefix for an address and then perform a
direct lookup in a large hash table in slow memory. The authors in [23] design a
d-left scheme using d hash functions for IP lookups. To perform an IP lookup,
they still need to access the slow memory at least d times. The paper [24] stores
Bloom filter in the fast memory, and stores the values in a linked structure in
the slow memory such that the value can be accessed via one access on the
slow memory most of the times. Different from these works, we focus on flat
addresses and perform the entire lookup in fast memory at the expense of a few
false positives. We also propose a simple scheme that handles false positives
within fast memory, and proves its reachability and stretch bound.

Bloom filters have also been used in resource routing [ B], which applies
Bloom filters to probabilistic algorithms for locating resources. Our “one Bloom
filter per next hop” scheme is similar to their general idea of using one Bloom
filter to store the list of resources that can be accessed through each neighboring
node. To keep up with link speed in packet forwarding with a strict fast memory
size constraint, we dynamically tune the optimal size and the number of hash
functions of Bloom filters by keeping large fixed-size counting Bloom filters in
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slow memory. We also handle false positives without any memory overhead.
BUFFALO is also similar to Bloomier filters [25] in that we both use a group of
Bloom filters, one for each value of a function that maps the key to the value.
However, Bloomier filters only work for a static element set.

Bloom filters are also been used for multicast forwarding. LIPSIN [22] uses
Bloom filters to encode the multicast forwarding information in packets. False
positives in Bloom filters may cause loops in its design. LIPSIN caches packets
that may experience loops and send the packets to a different link when a loop
is detected. However, they do not show how well they can prevent loops and
the cache size they need. In contrast, our loop prevention mechanism is simple
and effective, and does not have any memory overhead.

To handle routing changes, both [6] and [24] store counting Bloom filters
(CBFs) in fast memory, which uses more memory space than the Bloom filters
(BFs). We leverage the fact that routing changes happen on a much longer time
scale than address lookup, and thus store only the BF in fast memory, and use
the CBF in slow memory to handle routing changes. Our idea of maintaining
both the CBF and BF is similar to the work in [T4], which uses BFs for sharing
caches among Web proxies. Since cache contents change frequently, the authors
suggest that caches use a CBF to track their own cache contents, and broadcast
the corresponding BF to the other proxies. The CBF is used to avoid the cost of
reconstructing the BF from scratch when an update is sent; the BF rather than
the CBF is sent to the other proxies to reduce the size of broadcast messages.
Different from their work, we dynamically adjust the size of the BF without
reconstructing the corresponding CBF, which may be useful for other Bloom
filter applications.

Our idea of using one Bloom filter per port is similar to SPSwitch [26] which
forward packets on flat identifiers in content-centric networks. Our workshop
paper [27] applies Bloom filters for enterprise edge routers by leveraging the fact
that edge routers typically have a small number of next hops. However, it does
not deal with loops caused by false positives. The paper uses one Bloom filter
for each (next hop, prefix length) pair and discusses its effect on false positives.
It also proposes the idea of using CBF to assist the BF update and resizing. We
consider flat address lookup in SPAF networks in this paper, and thus eliminate
the effect of various prefix lengths. We also propose a mechanism to handle false
positives in the network without extra memory. We perform extensive analysis,
simulation, and prototype implementation to evaluate our scheme.

10 Conclusion

With recent advances in improving control plane scalability, it is possible now to
build large layer-2 networks. The scalability problem in the data plane becomes
challenging with increasing forwarding table sizes and link speed. Leveraging
flat addresses and shortest path routing in SPAF networks, we proposed BUF-
FALO, a practical switch design based on Bloom filters. BUFFALO performs
the entire packet forwarding in small, fast memory including those packets ex-
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periencing false positives. BUFFALO gracefully degrades under higher mem-
ory loads by gradually increasing stretch rather than crashing or resorting to
excessive flooding. Our analysis, simulation and prototype demonstrate that
BUFFALO works well in reducing memory cost and improving the scalability
of packet forwarding in enterprise and data center networks.
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Appendix A Model

For all the results here, we make two simplifying assumptions:

1. We assume the underlying SPAF computation is based on “hop count”
only, or, equivalently, equal edge weights on all edges. We expect that the
bounds we derive under this assumption will not differ qualitatively from
the typical case of edge weights that are diverse but roughly on the same
order of magnitude.

2. BUFFALO implements a “no-bounce” rule: if a node detects a false posi-
tive, it randomly selects a next hop out of the several candidates that the
Bloom filters then offer, but excludes from consideration the hop that the
packet arrived from. We allow the selection of the latter, as well, ignoring
the “no-bounce” optimization in BUFFALQO. This simplifies the analysis,
and we expect that the upper bounds should not get any worse in the
presence of this feature.

We represent the underlying network with an undirected graph G = (V, E),
with n nodes, each representing a switch or an end host. Consider forwarding to
a particular destination dst € V' with some, possibly all, switches in the network
implementing BUFFALO. The underlying protocol builds a shortest-path tree
(V.T C E), directed toward dst.

After any given FIB update, some BUFFALO-using routers may have false
positives for destination dst. A false positive at node v for next hop v’ will
cause BUFFALO to possibly forward from v to v" — but this can only happen
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if the edge {v,v'} exists in G. Let (V, B) be the directed "BUFFALO graph,”
containing all the edges along which BUFFALO switches might forward, given
the current false positives. That is, B consists of T', and, for each false positive
at node v that matches next hop v’ for destination dst, an additional (directed)
edge (v,v"). We use P to denote the false-positive edges alone (P = B\ T).

Observation A.1. Without the “no-bounce” rule, if some or all routers use
BUFFALO, a packet to dst performs an unbiased random walk on (V, B) until
reaching dst.

For background on random walks, we refer the reader to any of a number of
standard books, such as [28] 29, 30].

We denote by dp(v,w) the hop distance from v to w in T, and use d(v) as
shorthand for dr(v,dst), the distance from v to the destination in 7', which we
call the depth of v.

Observation A.2. d(v) = dg(v,dst) = dp(v,dst), since T is a shortest-path
tree, and is contained in B and E. The shortest-path property also ensures that,
for any edge {v,w} € E, |d(v) — d(w)| < 1.

We say a packet traveling from v to dst experiences stretch S if it traverses
d(v) + S hops before reaching dst. The expected stretch of a packet starting at
v is directly connected to the random walk’s expected hitting time from v to
dst: T, 4st = d(v) + E[S].

The simulations in Section Hl show that BUFFALO networks almost never
admit stretch longer than a couple of hops in the networks we examined there.
Here, we present analytic bounds on stretch in worst-case networks and under
worst-case locations of false positives.

A.1 Average-case vs worst-case considerations

We evaluate the scaling of BUFFALO as the number of nodes in the network
grows, considering the worst-case behavior under any possible graph structure
of the network.

The random choice of which next-hop to follow, out of the ones that have a
Bloom filter hit, is independent at each router and not linked to any quantity
that can be influenced by any party outside the router, assuming a secure source
of randomness. Our analysis is thus average-case over these random choices in
a packet’s walk through the network.

Separately, there is the randomness inherent in the Bloom filter behavior
that defines where false positives appear.

Since forwarding happens on a much faster time scale than FIB changes,
the results here focus exclusively on the behavior of the network between two
FIB updates. In this framework, we consider the worst-case placement of Bloom
filter false positives.

Our upper and lower bounds are tight, but, unsurprisingly, the worst exam-
ples that comprise the lower bounds happen when the false positives “conspire”
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to push the packet away from dst. This seems very unlikely given that the Bloom
filters use independent hashes. We expect that much stronger bounds can be
obtained when analyzing the behavior in the average case over false positive
placements. This would better capture both typical behavior of BUFFALO, as
well as the expected long-term average behavior of BUFFALQO, on a time scale
long enough to regularly repopulate the Bloom filters.

In short, the results below evaluate BUFFALO’s forwarding stretch in worst-
case networks, with worst-case false-positive placements, averaged over random
walk choices. We believe relevant and likely much stronger bounds may arise
from analyzing worst-case networks, averaged over possible false-positive place-
ments, and averaged over random walk choices. We leave the latter as a major
open problem of this work.

Appendix B Expected stretch upper bound for
k false positives

Theorem B.1 (Theorem 3 in Section ). With an adversarially designed BUF-
FALO network with uniform edge latencies, and even worst-case placement of
false positives, the expected stretch of a packet going to a destination associated
with k false positives is at most S(k) = p - (V/3)*, where p = 522\2/5 < 6.8.

First, “project” the whole graph (the shortest path tree and the “noise”
false positive edges) onto a line (multi)graph L where node I; corresponds to all
nodes in the real network at depth i away from dst, as shown in Figure @l Let’s
say lg, corresponding to the destination, is on the “right” while [,, where z is
the equivalent of “diameter” (the length of the longest shortest path to d), is
on the left.

l; has 1 edge pointing to the right, and k; edges pointing to the left, where
k; is the max, over all nodes v at depth 7 in the original graph, of the number
of false positives at v that point to nodes of depth ¢ or 7 + 1.

Lemma B.2. The expected stretch of an unbiased random walk on B starting
at v is at most the expected stretch of an unbiased random walk on L starting

at ld(v) .

Proof. The lemma follows from a conventional coupling argument, between the
random walk’s depth in B and the random walk’s depth in L.

Consider the next hop from some node v in B, at depth d, which has i > 1
edges to nodes of depth d — 1, j edges to nodes of depth d, and k edges to nodes
of depth d + 1. By construction, the corresponding node [ has at least k + j
edges to 441 and one edge to l4—1. The probability of the walk moving to depth
d—1in L at most 1/(k + j + 1), while the walk in B moves to depth d — 1
with probability i/(i + k 4+ j) > 1/(k + j 4+ 1). This allows a natural coupling
for depth of the next hop in B and in L:

If the L walk takes a deeper next hop than the B walk, we can “suspend”
the B walk, and let the L walk continue until the next time it reaches a node
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Figure 12: Coupling the depth process in B and L

at the same depth as the B walk — this is guaranteed to happen, since depth
never changes by more than 1 hop. After that point, proceed with the next hop
on both random walks. Since L and B random walks start at the same depth,
this coupling guarantees that L will never move to a lower depth than B, and
thus that L will take at least as many hops as B. O

We now analyze the worst-case expected hitting time for an unweighted ran-
dom walk on L. For any ¢ > j, the hitting time from I; to o must include at least
one visit to [;, guaranteeing that the expected hitting time to /y is maximized
at l,. The transition probability matrix (where P, ; is the probability, when at
l;, of going to I; on the next step) is:

0 1 0 0
koo 1
kmfl‘t‘l ko ko141 0
0 r5h e S
P = . . . (5)
k 1

0 0 k2«2kl 0 ka+1 X

O O klil O ki+1

0 0 0 1

Following the expected hitting time analysis detailed in, e.g., [BI], which
cites [B2], we let @ be the matrix P with the last row and last column removed.
The expected hitting time from v, to vg is then:

T=> (I-Q); (6)

Inversion of (I —@Q)) via Gaussian elimination on the augmented matrix yields:

31



R 1: o 1 P 0 0 1 — R, =(ky—1 +1)Ro—1 + ko1 R,

1
Res: 0 BEE 1 gm0 1 Ry = (ka2 + DRecz + hpa Ry
Ry: 0 0 =% R 1 — Ry = (ka +1)Re + ko R
Ri: 0 0 o 1 — Ry = (ki + )R+ ki Ry
R : 1 -1 0 - 0 1 0 o —RI!=Y.R]
R, : 01 -1 0 - 0 ko (ko1 +1) 0
R, ,: 00 1 -1 - 0 Faiha—z (N (ks2+1) 0
Ry: 0 - 0 0 1 1| kprkezoky (koo + Dhaozoooke (k2 +1) 0
R : 0 00 1 | kpotkpa ook (haot + Dkga - hkoky - (k2 + Dk (ki +1)

(1)

The expecting hitting time, the sum of the top row of the inverse matrix,
is thus the sum of all the entries on the right side. We split the sum of each
column ¢ except the first into 77+ 1= LR TR Dy [[;= kj+1, and then
group the first term with the previous column, ¢ — 1. This yields:

r Tr—Ccx—C

T=or23 S [k )

c=1i=1 j=i

b
=z+2 Y [k (9)

1<a<b<zi=a

Since, with no false positives, a packet may take up to x hops to get to d,
the stretch S is thus upper bounded by S <T =2 =23, ., Hb ki

1=a "V*

We'll use the symbol S for 3° ;- Hl;:a k;, i.e. the sum of products over
each possible substring of integer sequence {k;}.

The S] notation, as well as the LY and R, notations introduced below, leave
implicit their dependence on the sequence {k;}. When discussing proposed
changes to the sequence, these symbols are to always be interpreted in terms of
the sequence before the change in question.

B.1 Exact patterns for maximizing S{

The remainder of the proof of Theorem [BJl is a detailed combinatorial treat-
ment of maximizing ST over all sequences whose sum, i.e. the total number of
false positives ), k;, is fixed at some k. We proceed by listing a series of trans-
formations of any candidate maximizing sequence that never change the sum,
never decrease the sum of substring products, and converge to a very specific
family of maximum sequences that allows S to be explicitly computed.

We forewarn the reader that this subsection is relatively technical and is
unlikely to be of broader interest outside this proof.

In all the statements below, we implicitly require that ). k; = k.

Observation B.3. To upper-bound stretch, we can assume, WLOG, that k; > 0
for alli. Otherwise, removing that k; and thus shrinking x by 1 cannot decrease
S: the walk before the edge is removed can never return to the part of L above
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this edge, so contracting the edge only adds possible extra upward traversals,
which would still have to return to this node before continuing to dst.

Lemma B.4. There is a sequence {k;} maximizing S that has k; < 3 for all i.

Proof. Suppose there is a k; > 4 in some sequence {k;} maximizing S{. Then,
split k; into two adjacent sequence elements, 2 and k; — 2. Since 2(k; — 2) > k;,
each substring of the original sequence that contained k; will have a correspond-
ing substring including both 2 and k; — 2 in the new sequence, with a product
at least as big as the original substring. Any substring that didn’t include k;
originally will still exist as-is. Also, the new sum of substring products will
also include the substring containing just the new 2 element, which does not
correspond to any of the original substrings, thus guaranteeing a strictly greater
substring product sum. O

Lemma B.5. There is a sequence {k;} that mazimizes S that has 1 < k; < 3
and is dip-free: if a < b < ¢, and kg > kp, then ky > ke; and if a < b < ¢ and
ky < ke, then ko < ky. That is, {k;} matches the regular expression 1*2*3*2*1*.

Proof. Consider a sequence {k;} maximizing S. We will see that it is dip-free
by considering transpositions of two adjacent sequence elements.
Let L? denote 3, .., [ [}, ki, the partial sum of substring products cover-

ing all substrings ending exactly at p. Similarly, let R, denote > 4<b<z H?: q ki,
the partial sum of substring products covering all substrings starting exactly at
g. We define L° =R, = 0.

Note that, since k; > 1, LP = k,LP~! + k, monotonically strictly increases
with p, and Ry, = kyRy+1 + k4, monotonically strictly decreases with g.

For any 1 < i < x — 1, we can now split the full sum of S into several

categories, based on where the substring lies in relation to k; and k;41:

T =S+ S+ Kikiv1 + ki + iy + kikizn (L7 + Riy2 + L7 'Rige)
+ kLT ki Riyo
All except the last two of the terms add up to an expression that is symmetric
with respect to transposing k; and k;y;. Now, suppose k; < k;y1. Then, since

the sequence is maximizing, its S{ is greater than it would be if k; and kiy;
were transposed, requiring:

Bl ' 4 ki aRigo > ki L 4+ EiRigo
(kiy1 —ki)(Riza — L 1) >0
Rijo —L71 >0

Then, for any ' < i, strict monotonicity gives us R;/ 42 — L1 > 0. If ky >
kirt1, we would have (ki 41 — kiv) (Riurg — Li/) < 0, contradicting maximality
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of {k;}, since that would allow us to raise S{ by transposing k; and ky 1.
Inductively applying this argument shows that, if a > b > ¢ and k; < k., then
ko < kp. The other side follows by symmetry. O

Lemma B.6. There exists a maximizing sequence obeying the constraints of
LemmalBA that starts and ends with a 1, i.e., it matches the reqular expression
11%2*3%2*1*1.

Proof. If k1 > 1 in a maximizing sequence, consider splitting it into adjacent
elements 1 and k; — 1. This transforms the original sum of substring products
from ky +k1Ro+S% into 1+ k1 — 1+ 1(k1 — 1)+ (k1 — 1)R2+1(k1 —1)Re + 5% =
1+4+2(k; —1)+2(k; —1)R2 + S%. Since k; < 2(ky — 1), this increases the total
sum of substring products by 1. The same argument holds for k.. O

Observation B.7. An adjacent (1,3) pair can always be replaced with a (2,2)
pair, strictly increasing S¥. It changes from S7™> +S%., + (1 +3)L""2 + (3 +
3)Rit1 +3L7 2R +14+3+3 0 SI2+S2, + 2+ 4L 2+ (2 + 4)Ri1 +
4L72R;41 + 2 4+ 2 4+ 4, an increase by 2L 4+ L'=2R;41 + 1, which is always
positive.

Lemma B.8. For k > 7, there is an mazimizing sequence satisfying [B1 that
has at most two 1’s on each side.

Proof. Consider a sequence satisfying [B] with at least three 1’s at the start. If
the first non-1 element is some k; = 3, Observation allows us to replace it and
the preceding 1 with (2,2).

If the first non-1 element is some k; = 2, consider replacing (1,2) with a 3.
S7 changes from S{7? + 5%, 4+ (14+2)L" "2+ (2+2)R;1 + 2L 2Ry +1+ 242 to
53_2—1—5;”“ +3Li_2+3Ri+1 +3Li_2Ri+1 +3. The increment is Li_2Ri+1 —Riy1—2,
non-negative if (L""2 — 1)R; 41 > 2.

For k > 7, this is satisfied, since either:

1. There are four or more ones before k;. Then, L2 — 1 > 2. By [B] there
is at least one element after k;, guaranteeing R; 1 > 1;

2. Or Z;”:Z.H k; > 2, guaranteeing R; 1 > 2. Since the sequence starts with

three or more ones, L*"2 — 1 > 1.

A symmetrical argument applies to the other end of the sequence. |

Lemma B.9. For k > 18, any mazimizing sequence satisfying [B3 has at least
one 3.

Proof. With k > 18 no 3’s, and at most two 1’s at each end, the sequence must
then have at least seven 2’s. Let k;_o be the first 2. We consider replacing the
third, fourth, and fifth 2’s (k;, k;11, and k;12)) with two 3’s.

Before the change, S{ is S{7' +S%, 5 + (2 + 4+ 8)L'™' + (2 + 4+ 8)Riy3 +
8L Riy3+2+2+2+4+4+8 =S +57 s +14(L" 1+ Ry 3) + 8L 'R 43 +22.
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After the change, it becomes S ' +5%, ;+(3+9)L" 1+ (34+9)R; 15+ 9L 'R,y 3+
34+3+9=S"+5%,+12(L" ' + Ris3) + 9L 'Ry45 + 15. This is an increase
of LT R;43 — 2(L L + Riys) — 7 = (L1 — 2)(Ryys — 2) — 11. With k; o =
ki—1 = kiy3 = k44 = 2, we are guaranteed that both Li-1 and Rit3 are at least
6, making the increase positive. O

Lemma B.10. For k > 18, any mazimizing sequence satisfying [B.4 has exactly
one 1 on each side.

Proof. Suppose, WLOG, there are exactly two 1’s in the beginning (Lemmas
B and [B§ allow us to reach such a maximizing sequence from any other). Use
b for the number of 2’s between the last 1 and the first 3 (b = ¢ — 3). Consider
replacing k2 = 1 and the first 3, k; = 3 (which Lemma [0 guarantees to exist)
with ko = k; = 2. The increment in S7 is:

b
SE +SE T Ry (1-2-20 2422024 2) 2
j=0
b b b
+2- (Y 2 | +2-2 24220 2. 042 [ DV | 4120 [ Y 2| 41
j=0 j=0 j=0
_ b
Sy +SE Ry (1010234120343 2

j=0
b b b

43 (Y 2 | 43214320 111 [ DY | 41 [ DY Y| 41
j=0 j=0 j=0

=Ry (122" —2) — (12-2° = 3)) + ((20- 2" — 5) — (16 - 2" — 4))
=Ry +2°72 -1 (10)

Since b > 1, the increment is strictly positive, violating maximality. A
symmetric argument applies for two 1’s at the end. O

Lemma B.11. For k > 18, any mazimizing sequence satisfying [BI0 has at
most three 2’s on each side of the 3’s.

Proof. Consider a maximizing sequence with at least four 2’s before the 3’s.
First, apply to ensure that we’re considering a maximizing sequence starting
and ending with a 1.

By Observation [Bl in a maximizing sequence, there must be at least one 2
after the 3’s — else the total is strictly increased by replacing a (3, 1) pair with
(2,2).

Like in Lemma [B:9 above, we consider replacing the last three 2’s before the
3’s with two new 3’s, which will increase the total if (L*"! —2)(R;13 —2) > 11.
But the existence of at least one 3, at least one 2, and a 1 after the triple we're
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replacing guarantees that R;43 —2 > 346+ 6 — 2 = 13. Since there must be
at least one extra 2 before the triple, and at least one 1, we have Li=1 > 4,
guaranteeing the strict inequality. O

We are now guaranteed, for k > 18, the existence of a maximizing sequence
of form 1232?91 where 1 < b,d < 3 and ¢ > 1. We can now obtain a convenient
closed form for S{ for such sequences. First note that the substring products of
a homogeneous sequence z"™ add up to:

b
m(z,n) = Z H k;
1<a<b<ni=a
n n
=z Z 20
a=1b=a

Z(nfaJrl) -1

I
-

z—1

Using this, we can split up the computation of S{ based on which part of
the sequence the substring starts and ends in:
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T=14+m(2,0) +m(3,¢) +m(2,d)+1

b c d
F1-) 24120 > 3 12030y T2 20302 ]

i=1 i=1 i=1

(5 () (5 + (£ (57) -
+ <§3> <§2> + <§3> od g

d
+ <Z2> 1
- 9.9

9
f— .b_ —_ .d_ — _C__ _——
=42 20— 4442~ 20— 4+ 13— - 7

+

3 3
+(2—2+3)+(2—5—3)2b+(2—§—3)2d

+ §c
4
(=344 —-3)3°

3 3
+(§—2+3—4)2b36+(5—2+3—4)3C2d+(2+1+4+2)2b362d

=9.2°3%2¢ — 1.5.3°2% +29) 4 0.25 -3 + 1.5(2° +29) — 2(b + d) — 1.5¢ — 6.25
(11)

Lemma B.12. For k > 18, any mazimizing sequence satisfying [B11 cannot
contain three consecutive 2’s.

Proof. Suppose, WLOG, b = 3. We consider two cases for d:

Suppose d = 1. Consider “balancing” the sequence, by setting b = d = 2,
and leaving ¢ fixed. In equation [} this preserves the value of b + d and 2°2¢.
Thus, the only change to S¥ is in the terms involving (2° +2%), which goes from
9 to 8. Since ¢ > 1 by Lemma [B this guarantees a strict increase in S¥, by
1.5-3°—1.5>3.

Suppose 2 < d < 3. Consider replacing k3 and kg4, the second and third 2
at the beginning, and k,_q, the first 2 at the end, with two 3’s. This changes b
from 3 to 1, d to d — 1, and ¢ to ¢+ 2. Thus, S7 is incremented by:

9-3°(2-2971.9-8.29) — 1.5.3%9(2+2971) — (8 +2%)) +0.25-3°(9 — 1)
+ 15024297 =821 —2(1+(d—1)— (3+d) —1.5-2=
=75-3271 —13.3°~15-2771 —¢6
>15-3°-13-3°—1.5-4—6
=2.3°-12

Since there are at most three 2’s and exactly one 1 on each side of the

sequence, k > 18 requires ¢ > 2, which renders the increment strictly positive.
O
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We now know that 1 < b,d < 2 in a maximizing sequence. But, at this
point, if £ mod 3 = 0, this only allows b = d = 1; if £k mod 3 = 1, this only
allows b = d = 2; and if k£ mod 3 = 2 this only allows b = 2 and d = 1 or vice
versa — and since the formula for S{ is symmetric with respect to reversing
the sequence, in all three cases, this specifies the exact sequence maximizing SY,
and hence the expected stretch.

For k > 18, Theorem [B] follows from substituting each of the three possi-
bilities into equation [Tk

(9-4-6+40.25)3k=0)/3 1556464625 (k mod 3 = 0)
S(k) < 2maxq (916 — 12+ 0.25)3k=10)/3 15500 4 19 8 —6.25 (kmod 3 =1)
(9-8—-9+40.25)3k=8/3 1558 1 9_6—6.25 (k mod 3 = 2)

121/36 (k mod 3 = 0)

<233 max { 529/(108¥/3) (kmod3=1)
253/(36v/9)  (k mod 3 = 2)
_ 92 ks
54+/3

For 1 < k < 17, brute force search among sequences adding up to k& and
obeying Lemma shows that the sequences in Table Bl maximize stretch,
which obeys the bound of Theorem [Bl as well, concluding the proof of the
latter.

B.2 Tight lower bound

Observation B.13. Assuming that there can be multiple (a,b) edges from a
particular node a to a particular node b, the line graph L itself is then a valid
“tree and false positives” configuration, which means the sequence defined by
Lemma [BIA corresponds to a concrete, valid example that makes the above
bound exactly tight for k mod 3 = 1.

Observation B.14. If multiple edges between the same pair of nodes are not
allowed, we expect that the worst-case stretch will be somewhat better, but can
still be exponential under worst-case false positive placements. An example of
such an arrangement is in Figure I3

Appendix C Tail bound on stretch

Theorem C.1 (Theorem 4 in Section H). For any z > 60.3 - 7.3221F, the
probability of stretch exceeding z is bounded by 2/z. Asymptotically, the tail will
decay as O(1/225%), to within polylog factors.
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max S(k) L 529 3k/3J

54 /3

Maximum stretch at:

0 O Uk Wi

Nej

10
11
12
13
14
15
16
17

2
6
12
20
32
52
76
120
170
260
370
544
786
1126
1622
2370
3400

9
14
20
29
42
61
88
127
183

264
381
550
793
1144
1650
2380
3433

1

11

111

1111
1121
1221
11221
12221
12321
122221
122321
1222221
1223221
1223321
12223221
12233221
12233321

Table 2: Optimal sequences for 1 < k < 17, obtained by brute-force search.
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Figure 13: Exponential stretch with £ false positives and no multiple edges: an
1 4+ 1-row network like the one on the left has 9i false positives, with worst-case
stretch equivalent to the line graph on the right: S(k) = ©(3%) = ©(3%/9)
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Proof. Assume the worst-case arrangement of false positive locations. Consider
packets starting at the source with the worst expected stretch to the destina-
tion. With k false positives, by the Markov bound, the stretch will be at most
25(k) with probability at least 1/2. After every 2S(k) steps, any such packet
not at the destination can be “reset” to the worst possible starting location
without shortening its current expected arrival time. Thus, for any integer «,
the probability of the stretch being more than 2a.S(k) is at most 1/2.

We can bound the overall stretch by setting k, with foresight, to the solution
of k3k/3 = ﬁ (here and below, e is Euler’s constant), which is a unique

positive value, by monotonicityﬁ.
This value of k£ will allow us to productively apply the following union bound:

Pr[stretch > z] < Pr[stretch > z| < k false pos] + (12)
+ Pr[> k false pos] (13)

The above iterated Markov bound covers the first term, which is then bounded
by 1/22/2S(k) — 1/2]@(171/28).

For the second term, let F' = 3" f(h) be the expected number of false pos-
itives anywhere in the system for any fixed destination, i.e. the sum of the
probabilities of false positives along each possible edge. If k& > 2eF (where e
is Euler’s constant), we can use the fact that the hashes for each Bloom filter
are chosen independently and apply the following form of the Chernoff bound
29: Pr[X > (14 6)E[X]] < 27°EX], for any § > 2¢ — 1. With X as the ran-
dom variable counting the false positives for our destination, we set 6 = k/F —1
yielding Pr[X > k] < 2= W/ F-DF — 9=k+F 1 /9k(1=1/2¢) ‘hounding the overall
probability by 2/(2'~1/2¢)F < 2/1.76%.

To satisfy the k > 2eF requirement of the Chernoff bound, we need z =
(2 —1/e)pk3F/3 > 60.3 - 7.3221%. The same constraint, since F' > 0, guarantees
z > 29, ensuring that 2/1.76% < 2/((2 — 1/e)pk3¥/3) = 2/2.

With z = 3/3+000g(R) | the tail asymptotically decays as O(1/2'°%¥5176),
to within polylog factors, yielding the second part of the theorem. O

Appendix D Forwarding on an underlying tree
network

Observation D.1 (Claim 5 in Section Hl). If the underlying network is a tree,
with no multiple links between any one pair of routers, the expected stretch with
k false positives, even if they are adversarially placed, is at most 2(k —1)2.

Proof. Consider any configuration of the shortest path tree and the extra false
positive edges. Since there are no multiedges, each edge of the shortest path tree
has 1 or 0 antiparallel false positive edges. Contracting all the tree edges without
a corresponding false positive edge will not decrease the expected stretch, by an

"We omit the details of dealing with rounding and integrality.
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argument similar to Observation[B3F Any such edge renders the subtree behind
it unreachable after it’s traversed. Shrinking this edge only adds the possibility
of an extra detour back into the subtree, which would have to pass through this
node again before proceeding — at that point, the expected remaining time
until destination will be the same as when this node was first visited in the
original graph.

The resulting graph is effectively undirected, with each edge having a corre-
sponding antiparallel edge. A random walk is thus identical to a random walk
on an undirected tree, shown in, e.g., Sec. 5.3 of 28] to have the expected
hitting time of at most 2(k — 1) O
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