
Virtualizing Network File Systems

Junwen Lai

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

Advisor: Kai Li

January 2009

c© Copyright by Junwen Lai, 2009.

All rights reserved.

Abstract

Over the years, centralized file server appliances based on standard protocols such as

NFS and CIFS have been adopted as the de facto standard for file service. The scala-

bility limitations of centralized file servers have led large organizations to deploy nu-

merous independent appliances to meet huge increases in their storage demand caused

by phenomenal data growth and more stringent regulatory compliance requirements.

Unfortunately, this stop-gap approach brings administrators into another manage-

ment quagmire: forcing them to manage numerous independent storage islands and

fight bottlenecks and load imbalances at a high cost. In addition, this approach often

causes significant outage in file service as well as other business critical services that

depend upon file service, resulting in loss of revenue as well as direct and significant

customer impact.

This dissertation proposes a new virtual file service (vFS) layer to automatically

manage file server infrastructure as a single resource pool with minimal or no attention

from system administrators. vFS provides non-disruptive file service to clients even

during server capacity expansion, server capacity shrinkage, server load balancing and

other server maintenance events through protocol virtualization and transparent data

migration. It consists of a dynamically growable set of light-weight vFS nodes placed

between the clients and the file servers, and in achieving this, it requires no changes

iii

to the clients, the servers and the protocols they use for communication. vFS nodes

serving the same virtual volume also form a federation amongst themselves such that

they can be used interchangeably for load balancing and failover purposes.

A proof-of-concept vFS prototype has been implemented on Linux with easily

manageable software complexity. This prototype was used to measure the virtualiza-

tion overhead for different NFS operations and the results indicate that most of the

delay was caused by dual network traversals. A single vFS node without optimization

is able to manage about 7 file servers in the experimental setup and adding more vFS

nodes to a federation can aggregate the throughput of even more servers effectively.

vFS nodes in the same federation are able to take over the responsibility of failed

nodes quickly and transparently without clients noticing even for very strict client

retry configurations. Transparent online data migration also has proved to be an

effective mechanism in correcting load imbalance and access hotspots on file servers.

iv

Acknowledgements

My work was funded by NSF grants CCR-9984790 and CNS-0313089.

First and foremost I would like to thank my co-advisors Kai Li and Randy Wang.

For all these years, they have been extremely patient with my thesis progress and

always provided support, advice and encouragement. It was my privilege to be able

to receive guidance from two brilliant minds with extraordinary insight and vision in

both academic and industrial researches. The inspiration from Kai and Randy also

vastly deepened my understanding of the meaning of life.

I am grateful to Larry Peterson and David August for serving as readers on my

thesis committee and for their valuable comments and suggestions on the thesis drafts.

I would also like to thank other faculty members in the department who keep their

doors open to graduate students. Graduate coordinator Melissa Lawson and other

highly responsive CS staff members made my experience at Princeton a more enjoy-

able one. I am especially grateful to Melissa for her going above and beyond to help

me and other Chinese students with our spoken English in my first year of study.

I am indebted to Ram Swaminathan and Mustafa Uysal for their mentorship at HP

Labs. The quality of my PhD research was enhanced considerably by my interaction

and collaboration with Ram and Mustafa.

No words are enough to describe my gratitude to my parents, Jingfeng and Jinxiu,

v

for their love, nurturing and support. Finally I would like to thank my wife Daijue

without whose love, continued patience, understanding and encouragement, I could

not have imagined finishing this thesis a few years after leaving school.

vi

To My Parents

vii

Contents

Abstract iii

Acknowledgements v

Contents viii

List of Figures xii

List of Tables xvii

1 Introduction 1

1.1 Remote File Systems . 2

1.2 Storage Islands and Server Sprawl . 4

1.2.1 Storage Island Management Problems 6

1.2.2 Server Sprawl . 8

1.3 Thesis Focus . 8

1.4 Thesis Organization . 11

2 Overview of vFS 12

2.1 Design Principles . 12

2.2 Architecture . 14

viii

2.2.1 Protocol Virtualization . 17

2.2.2 Transparent Migration . 18

2.3 Related Work . 20

2.3.1 File System Protocol Virtualization 20

2.3.2 Cluster File Systems . 21

2.3.3 Storage Virtualization and Federation 22

2.3.4 Migration . 23

2.3.5 Utility Computing . 23

3 Protocol Virtualization 24

3.1 NFS Overview . 25

3.1.1 File Handles . 27

3.1.2 Compromises to the Stateless Design 28

3.2 NFS Protocol Virtualization Requirements 29

3.3 ID Space Virtualization . 30

3.3.1 Permanent ID virtualization 31

3.3.2 Virtualization of other IDs . 36

3.4 Name Space Virtualization . 37

3.4.1 Subtree . 37

3.4.2 Virtualization . 40

3.5 Virtual Volume Consistency . 46

3.6 Special Procedure Virtualization . 47

3.7 Authentication Virtualization . 49

3.8 Lock Virtualization . 49

3.9 Replicated Persistent Directory Service 50

ix

3.9.1 Paxos Protocol . 50

3.9.2 Read Optimization . 52

3.10 Summary . 53

4 Transparent Migration 55

4.1 Migration . 57

4.1.1 Choke Point Mechanism . 58

4.1.2 Migrating a File . 59

4.1.3 Migrating a Directory . 62

4.1.4 Virtual Volume Fragmentation and Subtree Merger 70

4.1.5 Crash Recovery During Migration 71

4.2 Automated Migration Case Studies 73

4.2.1 File Server Load Balancing . 73

4.2.2 File Server Capacity Management 75

4.2.3 Tiered Storage Management 76

4.3 Summary . 77

5 vFS Federation 79

5.1 Mount-Time Load Balancing . 80

5.2 Online Load Balancing . 82

5.3 Failover . 85

5.4 Summary . 85

6 Evaluation 87

6.1 vFS Prototype Implementation . 88

6.2 Virtualization Overhead . 89

x

6.3 Virtualization Scalability . 92

6.4 Transparent Failover . 96

6.5 Migration . 97

6.6 Summary . 100

7 Conclusion 102

7.1 Thesis Contribution . 102

7.2 Future Work . 103

References 105

xi

List of Figures

1.1 An example single server remote file system hosted on server S accessed

by four clients: C1, C2, C3 and C4. S exports volume /share. C1

mounts it as /server and C4 mounts it as /public. All the files and

directories under /share on S can be accessed by C1 and C2 as if there

they are stored on a local device. For example, /share/bin/ls on S

can be accessed as /server/bin/ls by C1 and /public/bin/ls by C4

respectively. 3

1.2 A typical file system configuration of a university department. Volume

S1:/fac is mounted under /home/fac, volume S2:/stud is mounted un-

der /home/stud and volume S3:/staff is mounted under /home/staff.

5

xii

2.1 An example configuration showing the vFS architecture with four servers,

three vFS nodes and six clients. All clients see the same coherent name

space, but they mount the name space from different vFS nodes for

load balancing purposes. vFS nodes communicate with servers and

clients via standard NFS protocol. Besides the vFS nodes that di-

rectly deliver file service to clients, vFS also includes a Replicated Per-

sistent Directory Service (RPDS) that provides global virtualization

information shared by all vFS nodes, a Migration Coordinator (MC)

that orchestrates the transparent migration process, a Migration Policy

Manager (MPM) that automatically initiates migration based on pre-

defined load/capacity/storage management rules, and a Mount-Time

Lad Balancer (MTLB) and an Online Load Balancer that help bal-

ance out the load on the vFS nodes, and finally a management console

that can be used to monitor the whole vFS system or manually initiate

migration. All these various vFS components communicate with each

other through a separate vFS protocol. 14

2.2 The six steps showing how a typical file system request is processed.

In this configuration, client Ci mounted a virtual volume from vFS

node Vj. Ci sends all requests to Vj. Most requests can be satisfied by

contacting only one server say Sk. A very small fraction of the requests

however may involve RPDS (not shown above). 17

2.3 An example virtual volume consisting of five subtrees distributed among

three servers. The shapes of the objects represent the servers on which

the objects are stored. 19

xiii

3.1 The typical layout of the file system of a vFS managed NFS server

(N = 2). In the graph, each small triangle represents one subtree. . . 38

3.2 Three subtrees hosted on three different servers. Subtree q and subtree

r are to be attached to directory p in subtree x one after another.

Directory p has direct children a and b; directory q has direct children

c and d ; and directory r has direct children e, f and g. 39

3.3 The client view of subtree x after q has been attached to directory p.

Object a, b, c, and d all appear to be direct children of directory p to

clients. 39

3.4 The client view of subtree x after r has also been attached to directory

p. Object a, b, c, d, e, f and g all appear to be direct children of

directory p to clients. 40

4.1 Before the migration of subtree c that includes object c, d, e/, f , g

and h. The first tree in the figure is the file system on server S1, the

second tree is the file system on server S2 and the third tree is clients’

view of the virtual volume. 65

4.2 Subtree c is chosen to be migrated to S2:/1. First a directory with

a unique name uniq is created under S2:/1 and then S1:/0/root

and S2:/1/uniq are turned into a jdirectory. This jdirectory uses the

default static object creation policy: new objects are always created

under S1:/0/root. 66

xiv

4.3 Directory S1:/0/root/c has been partially migrated to S2 as S2:/1/uniq/c

and object :/0/root/c/d has been migrated to S2 as S2:/1/uniq/c/d.

S1:/0/root/c and S2:/1/uniq/c are turned into a jdirectory to pro-

vide unchanged virtual volume view to clients. This jdirectory’s static

object creation policy directs all new objects to S2:/1/uniq/c. . . . 67

4.4 The end of migration. The temporary jdirectory consisting of S1:/0/root/c

and S2:/1/uniq/c is gone, but the jdirectory consisting of S1:/0/root

and S2:/1/uniq is made permanent. During the entire migration pro-

cess, clients’ view of the virtual volume remains unchanged. 68

4.5 The subtree distribution of a sample virtual volume. The three trees on

the left are the file systems on server S1, S2 and S3 respectively and the

tree on the right is the virtual volume view. Directory S1:/0/root/b,

S2:/1/uniq and S3:/0/uniq are constituents of jdirectory /b. 70

4.6 After subtree S2:/1/uniq is migrated to S3 and merged with S3:/0/uniq,

there is only two constituent directories in jdirectory /b. 71

6.1 The client perceived latency of different NFS operations in three se-

tups: accessing the server directly (Direct), accessing it through a RPC

Forwarder (RPC) and accessing it through vFS (vFS). 90

6.2 Throughput of a single vFS node aggregating multiple file servers. The

number of file servers used ranges from 1 (1S) to 10 (10S). For each

configuration, the number of load generators used is the same as the

number of servers. The maximum offered load is 14,000 NFS operations

per second. 93

xv

6.3 Client perceived latency of a single vFS node aggregating multiple

servers. The vFS node does not add noticeable latency under a realistic

workload. For each configuration, the number of load generators used

is same as the number of servers. 94

6.4 A federation of vFS nodes can collaboratively manage more servers.

The number of vFS nodes in a federation varies between 1 and 5. The

federation virtualizes 15 file servers. Each vFS node uses only one CPU

so that more nodes are needed to saturate the file servers. The number

of load generators is the federation size times the number of file servers

(15). 95

6.5 Aggregate throughput from a vFS federation during transparent online

data migration period when it transfers data and load from busy servers

to less busy ones. 98

6.6 Aggregate throughput achieved by “background” clients and “hotspot”

clients while a vFS federation splits the heavily accessed subtree to less

loaded servers. 99

xvi

List of Tables

1.1 An email sample from the administrator of a prestigious research in-

stitute notifying users of file service disruption and coordinating the

maintenance schedule. 7

3.1 Brief summary of NFS procedure calls. 26

3.2 The format of vhandles. Virtual volume IDs uniquely identify virtual

volumes, file systems and devices. Virtual file IDs uniquely identify

different objects within the same virtual volume. Parent vhandle sum-

mary gives all vhandles under the same directory the same prefix and

Hash protects vFS nodes from forged vhandles. 35

5.1 In a sample vFS federation, each vFS node owns three identifies by

binding to three IP addresses. The first column is the name of vFS

nodes, the second column is the IP addresses each vFS node binds to,

the third column is the number of requests per second each IP address

receives and the last column is the total number of requests per second

each vFS node receives. 83

5.2 V1 has more load than V2. Reassigning clients currently associated with

192.168.0.2 from V1 to V2 achieves perfect balance. 84

xvii

6.1 The time in microseconds a RPC forwarder and a vFS node spend

processing typical operations, and the difference between the two. . . 92

6.2 Client perceived latency in the event of failover, with varying retrans-

mission period. 97

xviii

Chapter 1

Introduction

File systems are a core component of any modern operating system. They store and

organize data on storage devices such as hard disks, CD-ROMs and CompactFlash

cards; and translate the low level physical views of data to high-level logical views such

as files and directories/folders. File systems make the task of locating, navigating,

accessing and manipulating data significantly simpler and faster; as a result, they

have long been relied upon by organizations and personal users alike to manage data.

The insatiable need of these users for higher throughput and lower latency has led

researchers to invent various creative file system designs [43, 54] by taking into account

the mechanical nature of storage devices [56, 73, 33].

Enabled by digital communication channels, remote file systems naturally emerged

to satisfy another equally important need of file system users to share information

across different machines in an easily accessible manner. With a remote file system,

one machine can access files and directories which are not stored and managed locally

as if they were. As the bandwidth of LAN such as Ethernet continues to improve at

a phenomenal rate, remote file systems keep gaining more and more popularity.

1

CHAPTER 1. INTRODUCTION 2

1.1 Remote File Systems

The simplest form of remote file systems is single-server file systems. In a single-

server file system, one centralized server exposes a portion of its local file system,

usually called a volume, to clients. Each client mounts the exported volume under its

own local file system and can then access the volume similar to if it were mounted

from a local storage device. Single-server file systems employ the typical “fat-server,

thin-client” architecture in which the server assumes all the responsibility of storing

and managing data, making administration relatively easy. Clients usually do not

communicate with each other. Figure 1.1 shows a single-server file system hosted on

server S accessed by four clients: C1, C2, C3 and C4. S exports volume /share. C1

mounts it as /server and C4 mounts it as /public in their own local file systems,

respectively.

One of the earliest and most well known single-server file systems is the Sun Net-

work File System (NFS) [60]. NFS’s simple, open and portable design made it easy

to implement NFS servers and clients on any operating system and machine archi-

tecture, thus enabling NFS to quickly gain massive success. Today, implementations

of NFS is probably available on almost every computer and every operating system

in the world, from mainframes to PCs, from Linux to Microsoft Windows. NFS has

gone through a few rounds of Internet Engineering Task Force (IETF) standardiza-

tion processes, and the currently dominant versions of NFS standards are NFSv2 [45]

and NFSv3 [46]. Another highly popular single-server file system is Microsoft Com-

mon Internet File System (CIFS) [26, 14]. All versions of Microsoft Windows include

CIFS client implementation and Microsoft Windows Server includes CIFS server im-

plementation. Most Linux distributions also come with Samba [58], a suite of native

CHAPTER 1. INTRODUCTION 3

ls catxbox ps2

game bin

server...

/

ls catxbox ps2

game bin

public ...

/

ls catxbox ps2

game bin

shareusr

/

S

C 1 C 2 C 3 C 4

Figure 1.1: An example single server remote file system hosted on server S accessed
by four clients: C1, C2, C3 and C4. S exports volume /share. C1 mounts it as
/server and C4 mounts it as /public. All the files and directories under /share
on S can be accessed by C1 and C2 as if there they are stored on a local device.
For example, /share/bin/ls on S can be accessed as /server/bin/ls by C1 and
/public/bin/ls by C4 respectively.

implementation of CIFS. The underlying messaging protocol Server Message Block

(SMB) [24] of CIFS has already been an Open Group (formerly X/Open) standard

for PC and Unix inter-operability since 1992.

The relatively simple single-server architecture makes NFS and CIFS easy to im-

plement correctly and reliably, and the standardization makes different implementa-

tions inter-operable. As a result, the overwhelming majority of today’s deployed file

server infrastructure is based on either NFS or CIFS. As storage demands increase,

CHAPTER 1. INTRODUCTION 4

however, this architecture inevitably creates scalability limitations which eventually

lead to serious storage island and server sprawl problems.

1.2 Storage Islands and Server Sprawl

The annual growth rate of total disk storage systems capacity shipped is about 50%

per year, according to latest reports from IDC worldwide disk storage systems quar-

terly tracker [29]. This is also consistent with the annual growth rate of the amount

of stored information, estimated to be somewhere between 50% and 125% according

to most analysts. During the Internet bubble, taking into account only online data

(excluding tapes, optical disks, and other tertiary storage media), storage system

capacity was even estimated to have doubled every six to twelve months [50].

The combination of rapid data growth and the single-server architecture forces

large organizations to deploy numerous file server appliances [27]. For example, even

a wine and spirits distributor needs to “add two or three servers each month just

to keep up with storage demands” [3]. In such a multi-server environment, each file

system client mounts all the volumes exported by all the file servers based on a mount

table. Figure 1.2 depicts the file system configuration of a typical university depart-

ment. All faculty members’ home directories are hosted on server S1’s /fac volume,

all students’ home directories are hosted on S2’s /stud volume and all staff members’

home directories are hosted on S3’s /staff volume. Such that different clients (such

as C1 and client C2 in Figure 1.2) see the same name space, they share the same mount

table: volume S1:/fac mounted under /home/fac, volume S1:/stud mounted under

/home/stud and volume S1:/staff mounted under /home/staff. The “state-of-the-

art” practice in the field to manage NFS mount tables is to use automounter [13]

CHAPTER 1. INTRODUCTION 5

joe bob

fac...

/

S1 S2 S3

C 1 C 2

...

/

home

tom lucy

stud...

/

cathy mary

staff...

/

joe bob

fac

tom lucy

stud

cathy mary

staff

...

/

home

joe bob

fac

tom lucy

stud

cathy mary

staff

/home/fac S1:/fac
/home/stud S2:/stud
/home/staff S3:/staff

Figure 1.2: A typical file system configuration of a university department. Volume
S1:/fac is mounted under /home/fac, volume S2:/stud is mounted under /home/stud
and volume S3:/staff is mounted under /home/staff.

CHAPTER 1. INTRODUCTION 6

or autofs [12] optionally combined with some light weight directory service such as

LDAP [38]. CIFS also allows multiple CIFS servers to be mounted under one direc-

tory tree based on Distributed File System [18] and Active Directory [2] technologies.

This server management practice has two important characteristics: (1) the parti-

tioning of data among different servers is done manually and (2) once the partition

is determined, it is kept unchanged for an extended period of time. This manual

and static approach to managing file servers treats them as independent boxes which

essentially form storage islands. Since each storage island is managed independently,

the operation and management of the entire infrastructure is overly complex and

costly. In addition, the practice often leads to very significant file service outage,

and introduces significant server under-utilization, a phenomenon often referred to as

Server Sprawl.

1.2.1 Storage Island Management Problems

There are numerous management tasks storage administrators need to carry out on a

regular basis: (1) when file service needs outgrow existing resources, either new servers

need to be added or existing servers need to be upgraded; (2) when there is significant

load or capacity imbalance among servers, some data need to be shifted from one

server to another; (3) when vendors release functionality/vulnerability patches for

software or firmware, they need to be applied; (4) when some file server components

such as disks fail, they need to be replaced; (5) old servers often also need to be retired.

While clients are accessing the storage servers, none of these system administrative

tasks can be done correctly and reliably. In order to avoid data loss, administrators

often follow the lengthy recipe described below.

1. Send out “system downtime” email to all users affected and coordinate the

CHAPTER 1. INTRODUCTION 7

. . . sysadmin needs to take several NFS servers offline . . . These servers will be patched
to the most current Sun OS patches and device drivers, sysadmin will also be upgrad-
ing the SCSI cards. . . . any NFS client which attempts to make use of /u/share or
any other filesystem on the affected servers will hang. sysadmin strongly recommends
you log out prior to If you believe that this downtime will cause a severe impact
to your schedule, please notify me immediately. . .

Table 1.1: An email sample from the administrator of a prestigious research institute
notifying users of file service disruption and coordinating the maintenance schedule.

maintenance schedule. Table 1.1 is an email sample that file service users are

not unfamiliar with;

2. Stop all services such as web servers and email servers which depend on file

service, causing application service disruption;

3. Detach affected file servers from the network;

4. Run the real maintenance tasks such as shifting a set of files off the overloaded

server(s) to other servers;

5. Reconfigure affected servers;

6. Update the mount tables on each client or the central database and request all

the clients to remount the file systems affected and

7. Send “back-to-normal” email and restart the application services.

As can be easily observed from this recipe, managing storage islands is very time

consuming as well as error prone. Furthermore, both the complexity and frequency

of maintenance events grow along with the number of servers. As a result, storage

administrators are tied to the eternal fire-fight treadmill to satisfy the ever changing

storage needs; and enterprises have to pay very high cost for each byte of storage. In

fact, it is widely believed that the cost of maintaining a server is five to seven times

CHAPTER 1. INTRODUCTION 8

the purchase price. What is even worse, the current approach to managing file servers

causes significant outage in file service as well as other business critical application

services that depend on file service; for example, web services, email, content and

metadata indexing, and archiving all depend on reliable file service. Frequent service

disruption often leads to a loss of revenue as well as direct and significant customer

impact.

1.2.2 Server Sprawl

Due to the high cost and service disruption associated with upgrading existing servers,

adding new servers and retiring old servers, file servers are often over-provisioned to

accommodate peak loads, resulting in significant resource under-utilization. Another

common source of decision for over-provisioning comes from the practice of dedicat-

ing servers to individual applications. For example, it is common practice for web

servers and email servers to have their own file server backends. These servers take

up more space, consume more hardware, software and management resources than

can be justified by their workloads. Anecdotal evidence shows that servers typically

run at only about 15-20% of their capacity, further bloating enterprises’ spending in

information technology.

1.3 Thesis Focus

This dissertation proposes a new virtual file service (vFS) layer to automatically man-

age file server infrastructure as a single resource pool with minimal or no attention

from system administrators. vFS provides non-disruptive file service to clients even

during server capacity expansion, server capacity shrinkage, server load balancing and

CHAPTER 1. INTRODUCTION 9

other server maintenance events. It consists of a transparently and dynamically grow-

able set of light-weight vFS nodes placed between the clients and the file servers, and

in achieving this, it requires no changes to the clients, the servers and the protocols

they use for communication.

By bringing disparate file servers under one umbrella of control, vFS provides the

following benefits:

Location independence: vFS provides one global name space for each virtual vol-

ume, similar to physical volumes exported by an NFS server. Clients are com-

pletely oblivious of the distributed nature of virtual volumes. Each virtual

volume can be mounted by multiple clients through different vFS nodes.

Resource sharing: vFS enables any virtual volume to dynamically consume re-

sources from any server. It does this by breaking client-to-server bindings

through protocol virtualization and breaking data-to-server bindings through

transparent online migration.

Easy maintenance and scaling: Server maintenance/upgrades, capacity expan-

sion and the retirement of obsolete hardware can be done online transparently

with vFS, thus avoiding any service disruption. Rather than following the com-

plex and error-prone 7 step recipe described above, system administrators now

only need to identify data that needs to be shifted and simply issue migration

instructions to vFS. Load and capacity balancing can even be fully automated

by having an agent monitoring traffic pattern and storage capacity changes.

Transparent services: vFS can act as a file system gateway across isolated networks

enabling the secure sharing of data or enforcing differentiated quality of service

CHAPTER 1. INTRODUCTION 10

levels. vFS also enables other capabilities such as unified user identities and

new authentication schemes.

One of the major challenges in designing vFS is to make directories and files man-

aged by different file servers appear to come from one single server although these

servers were designed to only work independently by themselves and clients may

mount the same volume through different vFS nodes. This challenge is tackled in

vFS through complete protocol virtualization. The second major challenge is to en-

able dynamic resource sharing and data shifting while files and directories are being

actively accessed by clients, potentially at a very high request rate. This concept of

a single resource pool is achieved through transparent online data migration. Trans-

parent migration is also designed to interfere with normal client traffic as little as

possible. Yet another major challenge for vFS is to not introduce a single point of

failure or bottleneck. In vFS, clients can access the same virtual volume through

different vFS nodes, all of which present the same consistent image. These vFS nodes

form a federation among themselves. In such a federation, the load on vFS nodes is

balanced; and one vFS node can monitor another vFS node’s health and transparently

take over its responsibility without clients noticing.

A prototype for vFS has been implemented on Linux to demonstrate the man-

ageable complexity and effectiveness of the vFS concept. The virtualization overhead

experiments using this prototype show that most of the delay was caused by dual

network traversals. Under the industry standard SPECsfs workload, a single vFS

node without optimization has demonstrated the capability of managing about 7 file

servers in the experimental setup. vFS shows linear scaling of throughput as the

number of file servers and vFS nodes are increased. Standard clients accessing vFS

nodes in the prototype have also proved to be able to fail over to another vFS node

CHAPTER 1. INTRODUCTION 11

well before the UDP-based RPC messages time out. Finally, vFS federations can

dynamically and transparently migrate data to increase throughput and to balance

the load among the file servers. In one experiment, vFS migrated over 120,000 files

and directories containing more than 3.6 GB of data in around an hour and a half;

reorganizing file system data among eight file servers and improving the throughput

by about 65%.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 highlights a few principles

used to guide the design of vFS, presents its high level architecture, introduces its

various components, and compares and contrasts it with the literature. Chapter 3

briefly reviews the NFS protocol, studies the challenges virtualization faces in more

detail, then describes how vFS virtualizes various aspects of NFS protocol: ID space,

name space and locks. It also presents the details of a shared replicated persistent

directory service component. The details for transparent migration can be found

in Chapter 4. This chapter not only explains the various vFS migration primitives

and the actual migration algorithms, but also studies how transparent migration can

be used to support file server load balancing, capacity balancing and tiered storage

management. Chapter 5 focuses on the load balancing and failover mechanism in a

vFS federation. The prototype is described in Chapter 6 along with the setup and

results of various experiments designed to evaluate vFS’s overhead, scalability and

the effectiveness of migration. Chapter 7 summarizes this thesis and presents a few

ideas that are worth exploring in the context of vFS in the future.

Chapter 2

Overview of vFS

This chapter presents the high-level design overview of vFS. It starts by describing the

requirements for a good vFS and the four principles that were used to guide the design

process so that vFS is easy to deploy, easy to manage and scalable. Section 2.2 then

presents the architecture and different functional components of vFS: the file service

delivery layer, the replicated persistent directory service, the transparent migration

coordinator, the migration policy manager, the mount time load balancer, the online

load balancer and the management console. The last section examines the vFS work

in the context of related literature.

2.1 Design Principles

As a component introduced to improve file server management, vFS itself should be

self-managing so as not to introduce new management burden; as part of the shared

storage infrastructure, vFS needs to be highly reliable; as an extra layer introduced

into the client-server communication path, vFS needs to be very light-weight so as to

minimize its impact on throughput and latency. With these as key requirements, the

12

CHAPTER 2. OVERVIEW OF VFS 13

architecture of vFS was guided by the following four design principles.

Simplicity: Since vFS nodes are placed on the path of file system requests and

replies, only the minimal and most primitive operations are implemented in vFS

nodes. More complex, but less frequently used functionality, such as transparent

online migration, is implemented under the direction of coordinators outside

the vFS nodes. This separation of responsibility not only reduces the overhead

incurred by the virtualization layer, but also makes the whole system more

robust and easier to diagnose.

Soft state: Any information that the vFS layer maintains should be soft state that is

completely rebuildable from the underlying file servers being managed. Thus,

vFS nodes do not cache any file system data, metadata, or any information

critical to data integrity, the loss of which may render file servers inaccessible. In

the worse case where the whole vFS layer crashes, file service may be temporarily

disrupted but no data should be lost.

Leveraging file servers: Most commercial file server products are equipped with

specialized hardware (e.g., NVRAM) and are highly optimized for file service.

The vFS design seeks to exploit such optimizations as much as possible and

avoid implementing duplicate functionality in the vFS.

Fast common case: Handling common tasks in a fast path is an effective technique

for achieving better performance and higher throughput. vFS makes judicious

use of this principle to minimize the overall performance impact of virtualiza-

tion.

CHAPTER 2. OVERVIEW OF VFS 14

 NFS Protocol

VFS node VFS node VFS node

 NFS Protocol

Client Client Client Client Client Client

 VFS Protocol

MCMPM MTLB OLB

ConsoleServer ServerServer Server RPDS

Figure 2.1: An example configuration showing the vFS architecture with four servers,
three vFS nodes and six clients. All clients see the same coherent name space, but
they mount the name space from different vFS nodes for load balancing purposes.
vFS nodes communicate with servers and clients via standard NFS protocol. Be-
sides the vFS nodes that directly deliver file service to clients, vFS also includes a
Replicated Persistent Directory Service (RPDS) that provides global virtualization
information shared by all vFS nodes, a Migration Coordinator (MC) that orchestrates
the transparent migration process, a Migration Policy Manager (MPM) that auto-
matically initiates migration based on predefined load/capacity/storage management
rules, and a Mount-Time Lad Balancer (MTLB) and an Online Load Balancer that
help balance out the load on the vFS nodes, and finally a management console that
can be used to monitor the whole vFS system or manually initiate migration. All
these various vFS components communicate with each other through a separate vFS
protocol.

2.2 Architecture

The major component of vFS is the file service delivery layer that consists of light-

weight vFS nodes placed in the data path between the clients and the file servers.

These intermediate vFS nodes are transparent to both the clients and the servers:

they behave like a file server to the existing, unmodified clients and act like a client

to the existing, unmodified file servers. This is an important characteristic that

CHAPTER 2. OVERVIEW OF VFS 15

does not require the wholesale replacement of existing file servers and the client

infrastructure. Figure 2.1 shows a vFS configuration with 3 vFS nodes, 4 servers and

6 clients. Typically, clients and servers are placed on isolated networks which can be

either separate physical networks or separate VLANs. All communication between

the clients and file servers is intercepted by the vFS nodes and request/reply packets

are rewritten. This is transparent to the clients and servers, which continue to employ

a standard file system protocol such as NFS or CIFS.

Besides these vFS nodes that directly deliver file service to clients, vFS also in-

cludes other components that assist virtualization, transparent migration, vFS node

load balancing and management. All these various components communicate with

each other through a separate vFS protocol that is explained throughout the rest of

this thesis. The simplest component is the management console. The management

console constantly collects load and health statistics from both the vFS nodes and the

servers and present the aggregate results to administrators. From the management

console administrators may also initiate data migration from one server to another

or selectively shut down a few vFS nodes non-disruptively. vFS nodes do not persis-

tently store any data, they rely on Replicated Persistent Directory Service (RPDS) for

shared virtualization related data structures. RPDS is built upon Paxos [37] protocol

for efficiency and reliability.

Each virtual volume in vFS is composed of a dynamic set of subtrees distributed

among the file servers; though, such distribution is hidden from the clients. The

Migration Coordinator (MC) is a component that orchestrates the transparent sub-

tree migration process. Since the light-weight vFS nodes are on the direct data path

between the clients and the servers, for robustness and simplicity concerns, they

only implement very primitive operations critical to virtual volume consistency. It is

CHAPTER 2. OVERVIEW OF VFS 16

the MC that directs vFS nodes to cooperate with each other to accomplish the rela-

tively complicated migration process. Although administrators can initiate migration

through the management console for “one-shot” management tasks such as adding

some vFS nodes or bringing some vFS nodes offline, migration is initiated more often

automatically by the Migration Policy Manager (MPM) through pre-defined rules.

MPM monitors the access patterns of data and migrates subtrees among the servers

to make sure data is stored and served by servers best optimized for it. For example,

hot data accessed by many clients frequently should be migrated to a high perfor-

mance server and data very infrequently accessed should be migrated to low cost

servers to lower the overall storage cost per byte. MPM also monitors the load and

free capacity on file servers and migrate data as necessary to ensure both the load

and data on file servers are properly balanced.

MC and MPM strive to ensure the load and capacity on file servers are balanced,

the responsibility of the Mount-Time Load Balancer (MTLB) and the Online Load

Balancer (OLB) is however to ensure the load on vFS nodes is balanced. A client

may mount a virtual volume from any vFS node, similar to mounting a file system

from a standard server, but MTLB directs different clients to different vFS nodes

based on nodes’s real time load information to ensure a good initial load distribution.

Once a virtual volume is mounted from a specific vFS node, the client sends all file

system requests to the chosen vFS node per the NFS protocol. However, vFS can still

dynamically and transparently change the binding between the client and the vFS

node through OLB which can dynamically change the identifers (IP addresses) vFS

nodes bind to.

CHAPTER 2. OVERVIEW OF VFS 17

Ci Vj Sk

1 : Req

2 : Req′ =Map(Req)

3 : Req′

4 : Resp

5 : Resp′ =Map(Resp)

6 : Resp′

Figure 2.2: The six steps showing how a typical file system request is processed. In
this configuration, client Ci mounted a virtual volume from vFS node Vj . Ci sends all
requests to Vj. Most requests can be satisfied by contacting only one server say Sk.
A very small fraction of the requests however may involve RPDS (not shown above).

2.2.1 Protocol Virtualization

Since a volume may consist of multiple subtrees from different file servers, vFS employs

protocol virtualization to make these subtrees appear as one single file system tree

to clients. Figure 2.2 shows how a typical file system request is processed. In the

configuration, client Ci mounts a virtual volume from server Vj, therefore it sends

all file system requests to Vj. Each such request Req only contains fields that Vj

understands since to Ci, Vj is the server. Upon receiving Req, Vj parses Req and then

consults a global light-weight virtualization database managed by RPDS or the node’s

own local copy to determine which servers need to be involved to process Req and

how to translate Req into requests that file servers understand. For most requests,

only one server, say Sk needs to be involved. Vj then rewrites Req and transforms it

into Req′ that server Sk can understand. In some cases, Req
′ may be very different

from Req and therefore a full packet reassembly may be needed instead of simple

packet rewriting.

Next, Vj sends Req
′ to server Sk. Sk then processes the request, just as it would

handle a normal client request and sends the response Resp back to Vj. Vj then parses

Resp, translates it to Resp′ by consulting the same global virtualization database

CHAPTER 2. OVERVIEW OF VFS 18

again and then sends Resp′ back to client Ci after optionally asynchronously updating

the database. Note that due to the “write-once read-many” nature of the majority of

the virtualization database and vFS nodes’ aggressive caching, vFS nodes very rarely

need to consult RPDS for any virtualization needs.

Unlike previous designs, the vFS architecture aims to fully virtualize the file system

protocol, aggregating the storage, computation and networking capacity of multiple

file servers through the vFS nodes.

2.2.2 Transparent Migration

The full protocol virtualization in vFS enables transparent migration, that is, dynam-

ically changing the location of files and directories by moving them among the file

servers. This change is transparent to the clients, who can continue to access data

both during and after the migration. This allows the virtualization layer to decide

how much resources to consume from each server, simply by moving objects among

them. Transparent migration is the fundamental mechanism for supporting server

load/capacity balancing, online maintenance and retiring obsolete hardware without

downtime or client reconfiguration.

The basic migration or distribution unit is a subtree which is stored in its entirety

on one server. Figure 2.3 shows an example virtual volume composed of five subtrees

distributed among three servers, each object annotated with a different shape (circle,

square and diamond) to represent the server on which it is stored. Subtree{a, b, c, g}

is stored on the “circle” server; subtree{e, j, k} and subtree{d, i} are stored on the

“square” server; subtree{f, l,m} and subtree{h, n, o} are stored on the “diamond”

server1. The existence of these subtrees is transparent to clients who can perform any

1For simplicity, the rest of this thesis may use the root of a subtree to refer to the entire subtree.

CHAPTER 2. OVERVIEW OF VFS 19

a

b

e

j k

f

l m

c

g

d

h

n o

i

Figure 2.3: An example virtual volume consisting of five subtrees distributed among
three servers. The shapes of the objects represent the servers on which the objects
are stored.

legitimate operations on this virtual volume, oblivious to the fact that the operation

may involve multiple objects stored on different servers. Each subtree can also have

one or more asynchronous replicas which can be brought online for read-only access

when the server that stores the primary copy is down.

The set of subtrees that a virtual volume consists of is dynamic. A new subtree

of varying sizes can be created on the fly from anywhere within any existing subtree

and migrated to another server. The boundary directories that “glue” subtrees stored

on multiple separate servers together are called junction directories (jdirectory). The

directories a, b, and d are examples of jdirectories in Figure 2.3. vFS nodes maintain

additional soft state to facilitate processing of requests involving junction directories.

Note that this construct does not exists in either NFS or CIFS, and is used only by

the virtualization layer to aggregate multiple servers.

Not only can new subtrees be created as necessary, existing subtrees can also

be merged with the parent subtrees from which they were created. For exam-

ple, subtree{h, n, o} is created from subtree{d, h, n, o, i} which becomes subtree{d, i}.

CHAPTER 2. OVERVIEW OF VFS 20

Subtree{d, i} is considered the parent of subtree{h, n, o}. If necessary, subtree{h, n, o}

can be merged with parent subtree{d, i}, reconstructing the original subtree{d, h, n, o, i}.

The newly merged subtree, by definition, is also stored in its entirety on one server,

Subtree merger comes in handy during subtree restructuring and server consolidation.

2.3 Related Work

This section examines the vFS work in the related literature classified into five cate-

gories: file system protocol virtualization, cluster file systems, storage virtualization,

migration and utility computing.

2.3.1 File System Protocol Virtualization

Early file server virtualization schemes placed a single node between clients and servers

to aggregate multiple existing homogeneous NFS or CIFS volumes [9, 31]. The Jade

File System [53] takes a step further, and enables the naming and accessing of multiple

existing heterogeneous file volumes exported through either NFS, FTP or Web in an

internet environment by presenting a per-user logical name space with relaxed file

system semantics. Anypoint [72] enables the automatic distribution of new directories

or files to different NFS servers. Cuckoo [35, 59] improves aggregated throughput

through read-only data replication.

Like all these schemes, vFS is also built on top of the proxy concept [62], using

inter-positioning to add clustering to an existing client-server protocol. However in

these existing schemes, data cannot move around once it is created and the mid-

dle node often becomes a single point of failure and performance bottleneck. More

recently, commercial products such as Acopia [1] add the support for data location

CHAPTER 2. OVERVIEW OF VFS 21

independence, to the best of our knowledge, by fully storing and managing name

spaces and metadata at the middle node, effectively treating the file servers as object

stores only. This approach loses many optimizations at the file servers and renders

the middle node even more prone to be a bottleneck. vFS differs from this work in

three ways. Firstly, vFS is a scalable architecture in which file servers are managed

by multiple vFS nodes that maintain access consistency semantics cooperatively; this

architecture does not introduce a single point of failure or bottleneck. Secondly, vFS

enables transparent fine-grained data migration ranging from any single file to the

whole file systems whereas in Acopia, only pre-defined large partitions can be mi-

grated. Thirdly, vFS exploits the optimizations at the specialized file appliances as

much as possible, making the vFS nodes light-weight and easy to manage.

Slice [7] is a request routing proxy that can implement a virtual, scalable NFS

server using a combination of specialized file servers and storage nodes. Unlike vFS ,

Slice cannot use existing unmodified NFS servers.

2.3.2 Cluster File Systems

Over the last two decades, numerous cluster and distributed file systems have been

designed and implemented both in academia such as Andrew File System [28], xFS [8]

and Frangipani [66] and in industry such as the open source Lustre [40], the Google

File System [22] and the IBM General Parallel File System [61]. A cluster or dis-

tributed file system consists of multiple cooperative servers, clients are aware of all

the servers and may contact different servers for data access. More recently, there

have also been lots of attempts in the industry to make clustered NFS servers, such

as Polyserve [52], Panasas [49] and SpinServer [34].

Cluster file systems provide scalability without sacrificing manageability. Despite

CHAPTER 2. OVERVIEW OF VFS 22

the success of these file systems in niche applications, NFS and CIFS continue to be

highly popular, widely deployed, and supported by virtually all OSes. Managing and

scaling the performance of these independent file server appliances continues to be a

pressing problem.

In fact, the industry has been reluctant to embrace cluster file systems due to

the excessive cost associated with the loss of existing investment in server hard-

ware/software and administrator training and the lack of new (and potentially much

more complex) client software for every platform and every operating system within

a large enterprise. vFS on the other hand, provides most of the benefits cluster

file systems provide without requiring the wholesale replacement of existing hard-

ware/software infrastructure and administrators, presenting very low deployment hur-

dle.

2.3.3 Storage Virtualization and Federation

Storage virtualization and federation such as Federated Array of Bricks (fab) [57] and

System Area Network (SAN) [63] storage have long focused on “block virtualization”.

Storage virtualization aggregates multiple storage devices and presents the illusion

of one single disk with higher capacity, throughput and reliability. It is already a

fairly well understood concept and technology, all major storage vendors now provide

storage virtualization products such as Veritas Volume Manager and more recently

Veritas Storage Foundation from Symantec [67], and PowerPath from EMC [20]. The

vFS work is complementary to block virtualization, and targets file-based interfaces

which still have to be provided by independent servers and the virtualization and

federation of which are considerably more difficult due to their richer API and more

complex semantics.

CHAPTER 2. OVERVIEW OF VFS 23

2.3.4 Migration

Databases, logical volume managers, disk arrays, and file systems have long provided

support for transparent data migration. vFS introduces this capability to existing

independently managed NFS servers. Almost all of these systems, including vFS,

could throttle I/O performance during data migrations and can benefit from using

systems like Aqueduct [39] to reduce such performance impact.

2.3.5 Utility Computing

Finally, the evolutionary utility computing (also known as on demand computing)

vision advocates achieving adaptive infrastructures [30, 68, 10, 70] by aggregating

existing server, network, and storage systems into a single, centrally managed pool of

resources while maintaining full functional isolation. Our work on vFS bolsters this

vision by enabling file service utilities.

Chapter 3

Protocol Virtualization

Protocol virtualization breaks the bindings between clients and file servers, aggregates

all the resources of file servers and presents the illusion of consistent virtual volumes,

similar to physical volumes exported by a single file server. This chapter presents

the challenges NFS protocol virtualization faces and how vFS tackles them. It starts

with a brief overview of the NFS protocol in Section 3.1 and introduces file handles,

a very important concept in protocol virtualization. Section 3.2 highlights a few re-

quirements that need to be satisfied for protocol virtualization to be fully transparent

to clients. The details of virtualization are presented in Section 3.3 and Section 3.4,

with focus on ID space and name space virtualization respectively. Section 3.5 tries

to answer the question of how vFS nodes exporting the same virtual volume manage

to present the same coherent image to clients. Section 3.6, 3.7 and 3.8 explain the

details of virtualizing the special NFS procedures, the authentication schemes and

the lock service. Section 3.9 presents the lightweight Replicated Persistent Directory

Service built on top of the Paxos protocol that manages global information shared by

all vFS nodes. The last section summarizes.

24

CHAPTER 3. PROTOCOL VIRTUALIZATION 25

3.1 NFS Overview

The NFS protocol provides transparent remote access to shared files stored on a

single server to a set of clients [60]. It was designed to be machine, operating system,

network architecture and transport protocol independent. In order to achieve such

independence, client-server communication is based on Remote Procedure Call (RPC)

primitives built on top of an eXternal Data Representation (XDR [71]). The XDR

specification provides a standard way of representing a set of basic data types such

as string, integer, union, boolean and array in heterogeneous environments. More

complex data structures can be built from these basic types. XDR therefore solves

the problem of different sizes, different byte orders, different alignment conventions

and different data type representations on different machines. There are currently

two versions of NFS protocols in wide use: NFS version 2 [45] and NFS version 3 [46].

Our virtualization work is based on NFS version 3, but the design applies to both

versions. Hereafter we will use the term “NFS” or “NFS protocol” to refer to NFS

version 3 unless otherwise explicitly stated.

The NFS protocol is stateless. The arguments to each procedure call request

contain sufficient information for the server to complete the call and the server does

not keep track of past procedure calls. When a server crashes and then restarts, it

does no crash recovery at all other than checking the underlying local file systems for

errors. Clients merely resend procedure calls, potentially with exponential backoff,

until a response is received, without even being able to differentiate between server

crashes and servers simply being slow. From our experience, the stateless design of

NFS protocol also makes the virtualization complexity more manageable since vFS

nodes may virtualize each procedure call independently, avoiding the need to keep

CHAPTER 3. PROTOCOL VIRTUALIZATION 26

ID Name Brief Description

0 null Test service availability and service latency
1 getattr Retrieve the metadata of an object
2 setattr Modify the metadata of an object
3 lookup Resolve an object name to its FH
4 access Check if given user has given access to given object
5 readlink Read the content of a symbolic link
6 read Read a chunk of data from a file
7 write Write a chunk of data to a file
8 create Create a file under a given directory
9 mkdir Create a directory
10 symlink Create a symbolic link for a given object
11 mknod Create a special device node
12 remove Delete a file
13 rmdir Delete an empty directory
14 rename Rename a given object
15 link Create a hard link
16 readdir Read a portion of a directorys content
17 readdirplus Read a portion of a directorys content and FH
18 fsstat Retrieve the dynamic file system information
19 fsinfo Retrieve the static file system information
20 pathconf Retrieve the POSIX information for a given object
21 commit Flush cached data on the server to stable storage

Table 3.1: Brief summary of NFS procedure calls.

track of procedure calls clients made in the past.

The NFS protocol provides 22 procedure calls to clients to request access or make

changes to the file systems on a NFS server. These procedures are very briefly sum-

marized in Table 3.1. Some of the procedure calls allow clients to query system wide

information such as file system capacity and file system free space; some of them

allow clients to read and write files; some of them allow clients to create or delete

existing files or directories; the rest of them enable clients to traverse the file system

namespace hierarchy.

CHAPTER 3. PROTOCOL VIRTUALIZATION 27

3.1.1 File Handles

One of the most important concepts in the NFS protocol is File Handle (fhandle).

Fhandles are created and issued by servers and are used to uniquely identify objects

(files or directories) on servers. The exact format and content of fhandles are imple-

mentation specific, but fhandles should be unique among all objects ever created on a

server, including those created and then deleted. Clients treat fhandles as sequences

of opaque bytes, and can only pass them as arguments to procedure calls to refer to

different objects.

A NFS client obtains from a server the first fhandle, the root fhandle of an ex-

ported volume FH/ , at mount time through a separate MOUNT protocol [46]. The

fhandles of other existing objects are usually resolved through lookup calls com-

ponent by component. Given the fhandle of a directory and the name of an object

under that directory, lookup returns the fhandle for the object. For example, in

order to get the fhandle of file /usr/bin/bash FH/usr/bin/bash, a client needs to get

the fhandle of /usr FH/usr through lookup(FH/, “usr”) first, then get the fhandle

of /usr/bin FH/usr/bin through lookup(FH/usr, “bin”), and finally get the desired

FH/usr/bin/bash through lookup(FH/usr/bin, “bash”). lookup resolves the name of

one object at a time, readdirplus on the other hand returns the fhandles along

with the names and other attributes of all the children under a given directory. If the

directory is too large, multiple readdirplus requests may be required.

When a new object is created, the fhandle of the newly created object is returned

as part of the procedure call response. Related procedure calls include create for

creating a new file, mkdir for creating a new directory, link for creating a hard link,

symlink for creating a symbolic link and mknod for creating a new special device

file.

CHAPTER 3. PROTOCOL VIRTUALIZATION 28

3.1.2 Compromises to the Stateless Design

The stateless design of NFS allows a server to respond to different procedure calls

independently. Should the need to associate multiple procedure calls arise, a NFS

server returns some temporary identifiers as part of the reply; clients then use them

as arguments to subsequent procedure calls. A NFS server relies on such identi-

fiers to track the progress of a series of calls or detect whether the server state has

changed since previous calls. For example, clients may want to read the content of a

huge directory that does not fit in one RPC message through multiple readdir or

readdirplus requests1. In response to each such request, a server fills in a direc-

tory cookie representing an offset within the directory of interest. Clients then send

the directory cookies in subsequent readdir or readdirplus requests to read the

rest of directory entries. While the large directory is being read, another client may

step in and delete existing objects or create new objects in the directory and hence

invalidate the previously issued directory cookies. To handle such cases, a server also

issues a directory cookie verifier as part of the response along with a directory cookie

to identify different versions of the same directory.

For performance considerations, NFS supports asynchronous writes. In an asyn-

chronous write, a client sends data to a server through a write call with an unstable

flag followed by a commit call some time later. The server does not need to flush

data or metadata to stable storage until it receives the commit call. Asynchronous

writes not only allow a server to aggregate more data to write at once and therefore

more effectively utilize disk bandwidth, but also give clients much better response

time. However, if the server crashes before flushing the data to stable storage and

1The difference between readdir and readdirplus is that the latter returns the fhandles of
directory entries and the former does not.

CHAPTER 3. PROTOCOL VIRTUALIZATION 29

then receives commit after a reboot, it will respond to commit with a success as it

is not aware of the data loss. In order to give clients enough information to safely

determine whether the server could have lost data and whether the data needs to

be retransmitted, both write and commit return a server instance identifier called

write verifier that changes after each reboot.

The majority of NFS procedure calls are idempotent — executing the call once

or multiple times leads to the same result — hence they are safe in the presence of

retransmissions. However there are exceptions and create is one such example. In

order to support exclusive creation semantics, NFS allows a client to specify a unique

identifier called create verifier in a create request. The server stores the create

verifier in stable storage, associates it with the newly created file, and returns success

rather than failure if it sees a duplicate request with the same create verifier.

3.2 NFS Protocol Virtualization Requirements

The goal of protocol virtualization was to break the bindings between clients and file

servers, and to aggregate the storage, computation, and networking capacity of all

servers together. We take the extreme approach of transparent virtualization where

unmodified clients and servers run unmodified file system protocol and a virtualization

layer transparently interposes on the traffic between the client and the servers. This

approach is also known as in-band virtualization.

There are three main requirements and challenges protocol virtualization faces.

The first requirement is to aggregate multiple ID and name spaces independently

managed by different servers, form one consistent name space and one consistent ID

space for each virtual volume, and present them to clients. When this requirement

CHAPTER 3. PROTOCOL VIRTUALIZATION 30

is met, clients should not be able to observe ID or name clashes. Neither should

clients be able to observe the fact that objects may be spread over multiple servers

and multiple storage devices. The second requirement is to efficiently locate and

access pertinent file servers and the objects with as little processing as possible in the

vFS layer, given a NFS request. The last but not least requirement is to guarantee

the file system semantics with the same level of consistency as NFS to all clients

accessing the same virtual volume, potentially through multiple different vFS nodes;

and to ensure that existing ad hoc NFS caching algorithms on clients work flawlessly.

On top of these requirements and challenges, we need to also keep in mind one

additional implicit requirement: all virtualization effort should use only the standard

NFS operations from NFS servers.

Clients interact with NFS servers only through various identifiers and the virtual

volume name space, if vFS manages to present a coherent ID space and a coherent

virtual name space just as a single NFS server, clients will not be able to tell the

difference. The next three sections will explain in detail how the ID spaces and name

spaces of multiple servers are aggregated and how the virtual volume consistency

semantics is achieved.

3.3 ID Space Virtualization

The NFS ID space contains various long-lived permanent identifiers such as fhandles,

file system IDs, file IDs and device IDs which uniquely identify different file systems,

files2 and devices respectively within the same server. The NFS ID space also contains

various temporary identifiers such as directory cookies, directory cookie verifiers, write

2File IDs are only unique among live objects, similar to inode numbers on Unix. Fhandles however
are guaranteed to be unique for all objects ever created.

CHAPTER 3. PROTOCOL VIRTUALIZATION 31

verifiers and create verifiers. Since all these IDs opaque to clients are independently

managed by different servers, they pose two problems: a client dealing with multiple

servers may experience ID conflicts; and the same object, after being migrating to a

different server, is almost guaranteed to have a different ID. Both problems confuse

client software and may trick them into treating different files as the same or treating

the same file as having changed. Existing ad hoc caching algorithms also almost

always break.

vFS’s solution is for the vFS nodes to issue virtual IDs, completely hide physical

IDs from clients and perform the translation between virtual and physical IDs. vFS

nodes communicate with clients using only virtual IDs and communicate with NFS

servers using only physical IDs. Furthermore, vFS nodes guarantee that virtual IDs

are unique and survive object migrations. The next two sub-sections provide more

details on the different approaches vFS employs in virtualizing permanent IDs and

temporary IDs.

3.3.1 Permanent ID virtualization

vFS nodes issue virtual file handles (vhandle) to clients for the objects stored in virtual

volumes; akin to physical file handles (phandle) issued directly by NFS servers. vFS

also explicitly maintains a mapping table called v-table, each entry of which associates

the vhandle of an object with the IP address of the current server storing the object

and the phandle it issues for the object. The server address and the phandle together

are hereafter called a <server, phandle> pair. Before settling down on the explicit

v-table, two other alternatives were considered and neither of them fully satisfies our

requirements. The first alternative embeds <server, phandle> in its corresponding

vhandle, an approach employed by all existing NFS virtualization effort [9, 72] to

CHAPTER 3. PROTOCOL VIRTUALIZATION 32

the best of our knowledge. This alternative suffers from two problems: the changing

vhandle problem since the <server, phandle> pair for an object changes once it is

migrated; and the fhandle length limit problem which prevents a vhandle from being

constructed if the length of <server, phandle> exceeds the fhandle length limit. The

second alternative computes the hash of <server, phandle> as the corresponding

vhandle. Although very elegant, this approach also suffers from the changing vhandle

problem, and in addition one still can not translate a vhandle back to the <server,

phandle> pair. Since clients may access the same virtual volume through different

vFS nodes, to guarantee the consistency of vhandle space, the v-table is managed by

a shared light weight Replicated Persistent Directory Service (RPDS, described in

section 3.9).

Query is the most common operation on v-table. Every NFS procedure call in-

cludes at least one fhandle in its arguments3, and therefore the virtualization of every

procedure call involves the translation of vhandles to <server, phandle> pairs. In

order to minimize the overhead introduced by this translation, each vFS node aggres-

sively caches a local in-memory copy of the v-table. The local copy and the RPDS

copy are called local v-table and global v-table respectively. A vFS node may supply

a vhandle and retrieve one v-table entry from RPDS or supply a vhandle prefix and

retrieve the v-table entries for all the objects with the matching prefix. Given the

need to translate a vhandle, a vFS node always checks its local v-table first and then

performs the translation if the corresponding entry is found. Otherwise, vFS node

consults RPDS for the entry. Besides this on-demand “page-in” of v-table entries,

each vFS node also periodically pulls from RPDS new v-table entries to reduce v-

table lookup misses which may directly increase the user perceived latency of NFS

3Except null which is not a “real” NFS procedure call.

CHAPTER 3. PROTOCOL VIRTUALIZATION 33

operations. In addition to translating vhandles to <server, phandle> pairs in every

procedure call request, vFS nodes also need to translate <server, phandle> pairs

back to vhandles for every lookup and readdirplus response. The process is very

similar to the translation in the other direction.

The v-table expands as part of the process of virtualizing create and mkdir

procedure calls when new vhandles and new v-table entries are created. Upon re-

ceiving the response for a create or mkdir request, the vFS node does six things:

(1) allocating a new vhandle; (2) creating the corresponding v-table entry, inserting

it into its local v-table and marking it as non-evictable; (3) rewriting the response

with the new vhandle; (4) sending the response back; (5) sending the new vhandle

and v-table entry to RPDS for persistent storage; and (6) removing the non-evictable

flag on the new v-table entry when the confirmation from RPDS comes back. (3)(4)

and (5)(6) happen in parallel so as to avoid introducing unnecessary virtualization

latency. Note also that the allocation of vhandles and the construction of new v-table

entries are done independently by multiple vFS nodes to reduce latency and improve

throughput. So as to avoid vhandle clashes, vFS nodes only allocate vhandles from

its own local chunk of vhandle space, containing about a few thousand of vhandles.

Before the local chunk of vhandle space runs out, vFS nodes request a new chunk

from RPDS.

The v-table does not just expand as the result of mkdir and create. Some

procedure calls such as rmdir and delete delete objects stored on a server, rendering

their phandles and therefore the corresponding vhandles and v-table entries useless.

A mechanism to prune the v-table therefore is also required. Unfortunately, although

vFS nodes know exactly which vhandles are created and when, they do not possess

the information about when and which vhandles can be deleted. A delete or rmdir

CHAPTER 3. PROTOCOL VIRTUALIZATION 34

request only includes the name of the object being deleted but not its vhandle. One

possible solution is to maintain a consistent mapping between the vhandle and the

name of an object, but it leads to much higher storage requirement on vFS nodes and

RPDS and requires strong coherence protocol among all the vFS nodes exporting the

same virtual volume and thus is very expensive.

vFS’s final solution exploits the uniqueness of fhandles in NFS protocol and uses

a lazy garbage collection technique to prune the obsolete entries. In the back-

ground, RPDS periodically scans the global v-table and for each phandle sends a

harmless pathconf request to the server currently hosting the object. If the object

has been deleted or the phandle is obsoleted, the server returns NFS3ERR STALE or

NFS3ERR BADHANDLE in which case RPDS may safely remove the pertinent v-table

entry. Such a scan of the whole v-table is expensive, RPDS in fact maintains an extra

last-accessed timestamp field with each v-table entry and only those entries that have

not been accessed or scanned for a long time are scanned.

The virtualization of other permanent IDs can also follow the way fhandles are

virtualized, but doing so certainly involves extra complexity and extra performance

hit. We made three important observations: (1) the content of a vhandle can be any

random bits as long as the uniqueness is guaranteed (2) other permanent IDs such as

file system ID, file ID, and device ID are short and (3) they do not change throughout

the lifetime of a vhandle. Therefore, different fields of vhandles can be used to store

these IDs. The format of the initial version of vhandles includes only a one byte

virtual volume ID and a 10 byte virtual file ID. Virtual volume IDs uniquely identify

different virtual volumes and all the vhandles issued for the same virtual volume share

the same virtual volume ID. Virtual volume IDs are also returned to clients as file

system IDs and device IDs; a virtual volume thus appears to be hosted on one file

CHAPTER 3. PROTOCOL VIRTUALIZATION 35

Field Name Size (bytes)

1 Virtual volume ID 1
2 Parent vhandle summary 3
3 Virtual file ID 10
4 Hash 0 - 50

Table 3.2: The format of vhandles. Virtual volume IDs uniquely identify virtual
volumes, file systems and devices. Virtual file IDs uniquely identify different objects
within the same virtual volume. Parent vhandle summary gives all vhandles under
the same directory the same prefix and Hash protects vFS nodes from forged vhandles.

system and one storage device. Different vhandles in the same virtual volume have

different virtual file IDs which are allocated by vFS nodes as described.

Later on two more fields were introduced into vhandles: a 3 byte parent vhandle

summary field and an optional hash field. Table 3.2 briefly describes all four different

fields. The parent vhandle summary is a short hash (such as the last 3 bytes) of

the virtual file ID of the object’s parent. Note that all the vhandles under the same

directory have the same (virtual volume ID, parent vhandle summary) prefix. vFS

nodes use exactly this prefix to retrieve all the v-table entries for the objects under

the same directory4. The hash field is calculated by running a secure hash function

on the virtual volume ID, virtual file ID, parent vhandle summary and a secret known

only to vFS. This hash field is a measure to guard against clients using the vFS nodes

as gateways to gain access to servers by forging vhandles. The secure hash function

can be any existing secure hashing schemes such as SHA-1 or SHA-256 [44] as long

as the hash result is shorter than 50 bytes. With this scheme, it is computationally

expensive for clients to forge a vhandle without being detected and it is relatively

easy for any vFS node to verify the validity of a vhandle presented to it.

4The probability that different vhandles have the same summary is low.

CHAPTER 3. PROTOCOL VIRTUALIZATION 36

The hash field is not stored in either local v-tables or the global v-table. Typically,

phandles are shorter than 15 bytes, so conservatively a v-table entry is shorter than

40 bytes including a 1 byte server ID (mapped through a small table to the server’s

IP address) and a 2 byte last-accessed timestamp. A vFS node with 4GB RAM can

store 100 million entries for the most frequently accessed objects, and a RPDS service

with 40GB storage can store a v-table for one billion objects.

3.3.2 Virtualization of other IDs

Write verifiers identify different incarnations of the NFS service on a particular server.

They are used to facilitate the detection of server reboots by clients such that clients

can resend data contained in previous unstable write procedure calls that may not

have been committed to stable storage before the server rebooted. As an object is

migrated to a new server, the write verifiers issued by this new server may confuse

clients, therefore vFS also issues virtual write verifiers and translates between virtual

and physical ones. The initial design tries to pass virtual write verifiers between one

vFS node and another in the event of vFS node failover, and naturally the solution

gets RPDS involved since the behavior of a failing node can not be relied upon. The

final design was simplified by one important observation: write calls are idempo-

tent and requesting clients to resend data adds overhead but does not violate NFS

consistency semantics. Each vFS node independently allocates virtual write verifiers.

Virtual write verifiers have a one byte vFS node ID field, a 4 byte current time field

and a 3 byte monotonically increasing ID field to ensure that all the virtual write

verifiers allocated by vFS nodes are unique. Like fhandle virtualization, each vFS

node also maintains a translation table between virtual write verifiers and <server,

physical write verifier> pairs, but this table is purely local to each node and RPDS is

CHAPTER 3. PROTOCOL VIRTUALIZATION 37

completely unaware of it. Whenever objects are migrated from one server to another

or when one vFS node takes over another vFS node’s responsibility, vFS creates the

illusion that the NFS server has been rebooted so that clients can resend data. Since

both migration and failover events are very rare and clients do not accumulate much

data before committing them, vFS throughput is hardly affected.

Creation verifiers are a client side concept, no virtualization is necessary. The

virtualization of directory cookies and directory cookie verifiers is described in the

next section since they are used for name space operations.

3.4 Name Space Virtualization

Each virtual volume in vFS has its own name space constructed by virtualizing the

name spaces of all the underlying file servers. For the clients, the name space is similar

to that of a centralized NFS server even though the objects in a virtual volume may

span multiple servers. For the most part, the vFS design seeks to leverage file servers

to implement name space operations by storing each subtree in its entirety in a file

server. This way, name space operations within a subtree are handled by the file

servers with vFS nodes interposing on the requests and replies only to apply the ID

space virtualization.

3.4.1 Subtree

The root directory of each NFS server managed by vFS has exactly N (typically 4)

first level directories named 0, 1, 2, ∙ ∙ ∙ , N − 1 respectively. Each first level directory

also has N second level directories, also named 0, 1, 2, ∙ ∙ ∙ , N−1 respectively. Second

level directories are the parents of all subtrees. The first and second logN bits of the

CHAPTER 3. PROTOCOL VIRTUALIZATION 38

/

0/ 1/

0/ 1/ 0/ 1/

Figure 3.1: The typical layout of the file system of a vFS managed NFS server (N = 2).
In the graph, each small triangle represents one subtree.

virtual file ID of a subtree root determine under which second level directory the

subtree should be hosted. For example, for all the subtrees hosted under directory

/2/3/, the first and second 2 (N = 4) bits of the virtual file ID of their roots are 2

and 3. Figure 3.1 shows the typical layout of a NFS server’s file system hosting 10

subtrees, each represented by a small triangle. In total, each server is expected to

have about a few tens of subtrees.

Individual subtrees spread across multiple NFS servers are not visible to clients,

instead, they are “glued” together through attachment operations to construct one

single tree which is the virtual volume clients observe. An attachment operation

attaches the root of one subtree to a directory (called host directory) in a different

subtree (called host subtree), usually stored on a different server. More than one

subtree can be attached to the same directory, one at a time. Once an attachment

operation finishes, the host directory appears to clients as one normal directory con-

taining both the original children it had before the operation and all the children of

the subtree root just attached, although the latter are physically stored on a different

CHAPTER 3. PROTOCOL VIRTUALIZATION 39

x

y p

a b

q

c d

r

e f g

Figure 3.2: Three subtrees hosted on three different servers. Subtree q and subtree
r are to be attached to directory p in subtree x one after another. Directory p has
direct children a and b; directory q has direct children c and d ; and directory r has
direct children e, f and g.

x

y p

a b c d

Figure 3.3: The client view of subtree x after q has been attached to directory p.
Object a, b, c, and d all appear to be direct children of directory p to clients.

CHAPTER 3. PROTOCOL VIRTUALIZATION 40

x

y p

a b c d e f g

Figure 3.4: The client view of subtree x after r has also been attached to directory p.
Object a, b, c, d, e, f and g all appear to be direct children of directory p to clients.

server. Figure 3.2 shows three subtrees x, q and r hosted on three different servers.

Figure 3.3 shows the client view of subtree x after subtree q is attached to directory p

in subtree x and Figure 3.4 shows the client view of x after subtree r is also attached

to p. The client view of a directory after attachment operations, such as that of p

in Figure 3.4, is called a junction directory (jdirectory) which is different from the

underlying host directory.

3.4.2 Virtualization

Name space operations on a virtual volume can be divided into three categories:

category I operations only involve objects within one subtree; category II operations

involve objects from 2 subtrees; and category III operations involve objects at the

boundaries between subtrees, i.e. jdirectories. Since each subtrees is stored in its

entirety on a single server, category I operations are simply forwarded by vFS nodes

to the server that stores the subtree involved. For example, in Figure 3.4, only ID

space virtualization is required for a create request trying to create a new file under

directory a or a readdir request trying to list the content of directory c. Since each

CHAPTER 3. PROTOCOL VIRTUALIZATION 41

jdirectory has a physical counterpart: the host directory, requests that operate on

the parents of jdirectories also fall in category I and hence can be directly handled

by servers. For example, a readdir request listing the content of x in Figure 3.4

will see jdirectory p, and a request to rename jdirectory p to y will fail since the

server storing x can detect the name clash due to the existence of another directory

y under x. By allowing file servers to serve most of the metadata operations which

can be dominant in a lot of workloads [19], the vFS architecture fully exploits the

optimizations at the servers and keeps the vFS nodes light-weight.

The only type of name space operations that falls into category II is rename

requests renaming an object from one subtree to another subtree. The initial design

of vFS supports the virtualization of category II operations, however as we gained

more and more experience building the system, it became evident that the complexity

introduced is not justified by the value added and hence the support for category II

operations was dropped. For example, supporting category II operations requires very

strong synchronization between RPDS and all the vFS nodes. rename operations

are very uncommon and the majority of them only involve objects within the same

directory. vFS’s support for rename operations within the same subtree is sufficient

for almost all applications.

Category III requests are those that operate on jdirectories, which appear to

clients no different from any other normal directories. For example, a client listing the

content of p through readdir requests shall see object a, b, c, d, e, f and g. It shall

be able to create a new object or deleting an existing object under p. Furthermore,

it shall also be able to rename objects within p, such as renaming object a to e,

which are physically managed by two separate servers. The illusion of jdirectories

is provided through RPDS and all category III requests are forwarded to RPDS by

CHAPTER 3. PROTOCOL VIRTUALIZATION 42

vFS nodes in order to preserve a cohesive view to clients. For each jdirectory, RPDS

maintains an ordered list of the root vhandles of attached subtrees. In the case of p in

Figure 3.4, the list is (vhandle-q, vhandle-r). For each child under a jdirectory, RPDS

also maintains an entry that associates the vhandle of that child with the name of

that child and the vhandle of the jdirectory. The table that stores all such entries is

called j-table. For p in Figure 3.4, RPDS keeps the following entries in the j-table:

<vhandle-p, a> ↔ vhandle-a

<vhandle-p, b> ↔ vhandle-b

<vhandle-p, c> ↔ vhandle-c

<vhandle-p, c> ↔ vhandle-d

<vhandle-p, d> ↔ vhandle-e

<vhandle-p, e> ↔ vhandle-f

<vhandle-p, g> ↔ vhandle-g

Note that RPDS does not store, cache or manage the metadata of any children of a

jdirectory. The virtualization of different category III requests uses the j-table and

the v-table in very different ways as described below:

lookup: when RPDS sees a lookup request that tries to resolve the name of an

object to its file handle, it takes the vhandle of the jdirectory and the name

of the object from the request, consults the j-table it maintains and sends the

resolved vhandle directly back to clients.

create/mkdir: a create or a mkdir request requires that the new object cre-

ated have a unique name in its parent directory; since none of the constituent

subtrees, neither the host subtree nor the attached subtrees, have the complete

view of the jdirectory, it is the responsibility of RPDS to check for name clashes

CHAPTER 3. PROTOCOL VIRTUALIZATION 43

before forwarding the requests to servers for object creation. By default, all

legitimate new object creation requests are forwarded to the server that man-

ages the host subtree for processing. However, vFS also allows a creation policy

to be associated with each jdirectory which supports load and capacity bal-

ancing by controlling where new objects are created. Currently three simple

policies are supported: a static policy which directs new objects to one desig-

nated constituent subtree; a round robin policy which directs new objects to

all the constituent subtrees in a round robin fashion; and a hash policy which

directs new objects to all the constituent subtrees based on new object names.

Once the response comes back, RPDS updates its j-table; and like any other

create or mkdir request, RPDS also updates the v-table.

readdir/readdirplus: a readdir or readdirplus request lists the children of a

directory, their attributes and file handles (in the case of readdirplus). If a

directory has too many children and the response does not fit into one message,

the NFS server sets the EOF flag in the response message to false, and returns a

directory cookie that essentially represents how many children’s information has

been returned and a directory cookie verifier that effectively represents the up-

date time stamp/version of the directory. The client, upon seeing the the false

EOF flag, sends subsequent readdir or readdirplus requests until the EOF

flag is set to true in the response. RPDS exploits this support for large directo-

ries and returns the content of a jdirectory through multiple request/response

exchanges. Again we use jdirectory p as one example, assuming host directory p

(not jdirectory p) is very large and its content can be returned to clients through

2 messages; and directory q and r are fairly small and their content can fit into

one message, a client C needs to go through the following 4 steps in order to

CHAPTER 3. PROTOCOL VIRTUALIZATION 44

retrieve all the content of jdirectory p:

1. C sends readdir(vhandle-p, 0)5 to the vFS node V from which it mounted

the virtual volume. V forwards the request to RPDS which upon seeing the

cookie value 0, knows C intends to read the content of p from the begin-

ning, and therefore sends request readdir(phandle-p, 0) to Sp, the server

hosting subtree x. Sp sends back to RPDS the first portion of the content

of directory p: response(content, cookie-1, false) where cookie-1 is a di-

rectory cookie and false is the EOF flag. RPDS creates a virtual directory

cookie vcookie-1, creates an association between vcookie-1 and (cookie-1,

vhandle-p) in its vcookie table and then sends response(content, vookie-1,

false) to V which in turn sends it back to C.

2. C sends readdir(vhandle-p, vcookie-1) to RPDS through V . RPDS looks

vcookie-1 up in its vcookie table, learns that vcookie-1 is issued by Sp for

directory p, and sends readdir(phandle-p, cookie-1) to Sp which returns

the second portion of the directory content: response(content, cookie-2,

true) where true means Sp has no more content to return. RPDS creates a

virtual directory cookie vcookie-2, creates an association between vcookie-

2 and (0, vhandle-q), and sends response(content, vcookie-2, false) back

to C through V . Note that V rewrites the EOF flag to false.

3. C sends readdir(vhandle-p, vcookie-2) to RPDS via V . Seeing vcookie-2,

V learns about the directory reading progress and issues readdir(phandle-

q, 0) to Sq, the server hosting directory q. Sq replies with the full con-

tent of q in response(content, cookie-3, true). Upon receiving the re-

50 is a special directory cookie value representing the beginning of a directory.

CHAPTER 3. PROTOCOL VIRTUALIZATION 45

ply, V creates vcookie-3 and an association between vcookie-3 and (0,

vhandle-r) since it knows that q has no more content to offer, and sends

response(content, vcookie-3, false) back to C via V .

4. C sends readdir(vhandle-p, vcookie-3) to RPDS via V . V issues

readdir(phandle-r, 0) to Sr, the server hosting directory r. Sr replies

with the full directory content in response(content, cookie-4, true). Upon

receiving the reply, V finally sends response(content, 0, true) back to C

via V , signaling that there is no more content to read for jdirectory p.

Since the virtual directory cookies are meaningful only during the process of

reading directories, RPDS only keeps them in main memory for a very short

while, such as 1 minute. Since clients are already aware of possible cookie

expiration, clients will simply try to read the jdirectory from beginning afresh

in case virtual directory cookies expire.

The above description did not mention virtual directory cookie verifiers. They

are incremented by one each time the related jdirectory is modified or when

virtual directory cookies for the jdirectory expire. They are also sent back in

the response to readdir or readdirplus as a normal NFS server would do.

rename: a rename operation renames a src object to a dst object. If dst does

not exist or dst is hosted on the same server as src, such as rename(c, d) and

rename(e, f) under jdirectory p in Figure 3.4, RPDS does three things: (1)

forwarding (with rewriting) the request to the server hosting src; (2) updates

its j-table based on whether the operation succeeds or not; and (3) sends a

(rewritten) reply back. If however src and dst are located on two different

servers, RPDS essentially needs to use a combination of a delete request and

CHAPTER 3. PROTOCOL VIRTUALIZATION 46

a rename request to emulate one single rename operation issued by clients,

as outlined in the following steps:

1. RPDS sends rename(dst, uniq) request to the server manages dst where

uniq is a unique name generated by RPDS on the fly.

2. If rename(dst, uniq) succeeds, RPDS removes dst from its j-table, and

sends rename(src, dst) to the server hosting src.

3. If rename(src, dst) succeeds, RPDS updates its j-table, sends the reply

back to the client and potentially asynchronously issues delete(uniq) to

the server that manages uniq to delete it.

4. Otherwise RPDS issues rename(uniq, dst) to the server manages uniq

to bring dst back to normal.

RPDS serializes such cross-subtree rename requests to ensure their atomicity.

The tactic to rename rather than delete dst first avoids the partial-failure

state where dst is gone but src is not renamed.

3.5 Virtual Volume Consistency

In the vFS design, multiple clients can access a virtual volume using any of the vFS

nodes that exports it. It is critical to keep the file access semantics unchanged de-

spite the underlying implementation being distributed. vFS design maintains the

access semantics using a simple mechanism referred to as coordination point preser-

vation. This means that requests that used to meet each other at a coordination

point continue to do so when vFS is interposed between the servers and clients. In

the traditional NFS, the coordination point is always the NFS server. In vFS, the

CHAPTER 3. PROTOCOL VIRTUALIZATION 47

coordination point is the underlying file server storing the data for the most cases.

Only requests on jdirectories require special care, and in these cases RPDS serves the

role of the coordination point. vFS nodes do not cache data or metadata; there are

no NFS operations performed by a vFS node that do not end up o n a file server.

vFS is able to preserve the access semantics by supporting the following property

through the coordination point preservation mechanism: clients are able to observe

changes made by other clients if and only if those changes are visible without the vFS

layer. For example, if a file’s content is changed by one client, other clients will be

able to observe that change because the final data always comes from the physical file

stored on a file server. Similarly, two objects with the same name can not be created

under the same directory since the real creation requests are either carried out by a

file server or checked by RPDS.

3.6 Special Procedure Virtualization

There are two operations that vFS does not support. The first one is link which

creates a hard link to an existing object. There are three reasons why vFS elected

not to support it. Firstly, in the context of vFS, the concept of cross-server hard

links is very difficult to enforce and it also prevents us from using data migration

as the fundamental mechanism for load and capacity balancing. Secondly, since the

introduction of symbolic links, hard links became almost completely obsoleted due to

its inflexibility. Lastly, hard links are not a feature required by NFS protocol and in

fact, even quite a few modern file systems do not support hard links. vFS does not

support mknod and the concept of device files either yet. This feature is very rarely

used and can be added relatively easily if needed, unlike hard links.

CHAPTER 3. PROTOCOL VIRTUALIZATION 48

There are three NFS operations that are not directly tied to specific file system

objects although they do pass along a file handle to locate a specific file volume: fs-

stat, fsinfo and pathconf6. fsstat retrieves volatile volume state information,

including maximal volume size, volume free space, maximal number of objects sup-

ported, number of additional objects that can be created. Since each volume can

span multiple servers and the total capacity of a single server may be split among

multiple physical volumes, vFS can not afford to retrieve all the information needed

for fsstat in real time. vFS nodes periodically queries all the servers by issuing

fsstat requests to them and calculates the summary. A loose per-user quota, can

also be implemented in this manner.

Procedure fsinfo retrieves nonvolatile volume state information and general in-

formation about the NFS protocol implementation such as the preferred and maxi-

mal size of a read request and a write request, whether hard links are supported,

whether symbolic links are supported, and whether the update time of an object can

be changed through setattr requests. vFS, of course, makes it clear that hard links

are not supported. In addition, vFS declares a slightly smaller maximal write size

and a slightly smaller preferred write size than those declared by servers such that

after rewriting and reassembly, a write request from clients does not grow beyond

servers’ limits. Similarly, vFS declares a slightly larger maximal read size and a

slightly larger preferred read size such that clients do not get caught by surprise

receiving a bigger read reply from vFS.

Procedure pathconf retrieves the pathconf information for a file or directory such

as the maximal number of hard links to it, the maximal path component length and

whether file names are case sensitive. vFS presents the most restrictive pathconf from

6Technically, null is not associated with any specific object either, but we’ll ignore it for the
purpose of this discussion.

CHAPTER 3. PROTOCOL VIRTUALIZATION 49

all the servers, especially the limit on the maximal path name length. Fortunately, all

existing commercial or open source NFS servers have similar pathconf information.

3.7 Authentication Virtualization

The RPC protocol beneath the NFS protocol includes a slot for authentication param-

eters in every call, the content of which is determined by the type of authentication

scheme used by the server and the client. The most widely used authentication scheme

is called auth unix, which requires each call to include a series of UNIX-style cre-

dentials: a user ID, a group ID and groups the user belongs to. NFS servers check

permissions after extracting the credentials from the RPC authentication fields in

each remote request. Since existing manual storage management approaches today

already allow one client to access different servers, these servers are most likely al-

ready sharing the same user and group ID space. But for servers that do have different

views about which ID represents which user, their access right checking is completely

broken. vFS’s remedy is again to store a table on RPDS that maps global user/group

IDs to server specific user/group IDs and this table is constantly propagated to all

the vFS nodes to avoid having to go through RPDS for lookup operations.

3.8 Lock Virtualization

NFS uses the Network Lock Manager (NLM) protocol to support file locking and

the Network Status Monitor (NSM) protocol to notify clients and servers about their

lock states in the presence of server crashes and reboots. NLM follows the same

simple one-server architecture as NFS, and NLM servers are often co-located with

NFS servers. By their very nature, locking protocols are stateful: they maintain

CHAPTER 3. PROTOCOL VIRTUALIZATION 50

the information about which clients currently own a lock on which file and which

other clients are waiting for a lock. This poses a problem for the lock protocol

virtualization as there does not exist a mechanism to query the internal states of lock

managers. Therefore, it becomes almost impossible to migrate a file from one file

server to another file server and reinstate the file’s lock state there. Furthermore,

NLM and NSM are used very rarely, there is no need to leverage the file servers for

load balancing purposes. As a result, vFS virtualizes NFS lock service through a

different approach than the virtualization of ID space and name space; it completely

bypasses the server implementation of NLM and NSM and provides such functionality

from scratch through RPDS.

3.9 Replicated Persistent Directory Service

Replicated Persistent Directory Service provides both a reliable store with limited

capacity and processing that needs to be serialized. RPDS is replicated among an

odd number of machines, typically 3 or 5, to achieve higher reliability and higher

availability; it survives the non-Byzantine failure of bn/2c replicas where n is the

total number of replicas (nodes).

3.9.1 Paxos Protocol

Like most other existing fault tolerant systems [57][11][41], at the core of RPDS is

the well known Paxos protocol. The Paxos protocol was first proposed by Leslie

Laport [36][37] as a more efficient alternative to voting [23][25] for achieving asyn-

chronous distributed consensus. Distributed consensus refers to the agreement among

CHAPTER 3. PROTOCOL VIRTUALIZATION 51

machines7 within a particular distributed group, and asynchrony refers to the fact that

these machines can progress at vastly different speeds and message delivery latency is

unbounded. Another protocol equivalent to the Paxos protocol was independently in-

vented by Oki and Liskov under the name of viewstamped replication [48]. The Paxos

protocol guarantees the safety property: no value is chosen unless it is proposed by

a member; and no two distinct values are both chosen. The Paxos protocol however

relies on the existence of clocks on the members with bounded clock skews to over-

come the impossibility result of the liveness property [21]: the eventual termination

of the protocol.

The viewstamped replication version of the protocol is less complex and easier

to understand, and therefore it is chosen to be briefly described here. Viewstamped

replication protocol is based on the primary copy technique. One replica is desig-

nated as the primary and the others as backups. Only the primary can take client

requests and process them; it notifies the backups of what it has done. The primary

also assigns a monotonically increasing request ID to each request and ensures that

requests are sent to backups in order. A view is a subset of the replicas capable

of communicating with each other; each view is uniquely identified by a view ID.

All the replicas constantly send “I’m alive” messages to each other to detect “view

changes” which may be caused by replica crashes, replica reboots, network partitions

and network reparations. Once a replica detects a view change, it initiates a view

change protocol that aims to elect a new primary which has to be accepted by a

majority of the replicas to ensure there is at most one primary in the same group.

The combination of a request ID and a view ID is called a viewstamp and viewstamps

are used to detect lost information during view changes. However, if a request has

7Often called processes.

CHAPTER 3. PROTOCOL VIRTUALIZATION 52

been processed by a majority of replicas, the state changes are guaranteed to survive

into subsequent views.

RPDS clients, such as vFS nodes, have the knowledge of the membership of the

RPDS group, but do not get notifications when primaries get elected; they discover

such information by sending requests to any random member. A RPDS member

R1 that is currently not the primary rejects all requests and informs clients about

the current primary R2 it knows about, and clients will try to send requests to R2.

If when requests arrive at R2, the primary changes again, R2 informs clients about

the more up-to-date primary information. The process may go on and on until the

primary stabilizes although it usually takes only one round. If clients talk to dead

R2, the requests will time out and clients will try another random member. A simple

but effective optimization technique to the primary discovery protocol is caching the

location of the primary on clients since the group primary changes very infrequently.

3.9.2 Read Optimization

In the Paxos protocol, read operations are also replicated to a majority of the group

members otherwise stale information may be returned since other replicas may have

formed a different view and elected a different primary. This increases the observable

latency of any NFS client request that involves access of RPDS such as a request with

a vhandle that can not be resolved by a vFS node. RPDS introduces the primary

status lease into the Paxos protocol; the lease assumes the existence of clocks on

all the replicas with clock skews smaller than 1 second. The assumption is a fairly

weak one given that Network Time Protocol[47] (NTP) implementations based on

Marzullo’s thesis work [42] is widely available already; these implementations achieve

accuracies within 100 milliseconds over the public Internet and 200 microseconds or

CHAPTER 3. PROTOCOL VIRTUALIZATION 53

better in local area networks. Each time a primary p is elected by at least a majority

of the replicas, they promise not to participate in any view change protocol within

t + 1 seconds (t is usually 2 or 3) even after a reboot, unless the view change is

initiated by p itself. With such a promise from a majority of the replicas, p is sure

that no new primary can be elected within t seconds and therefore, p may respond to

read operations without worrying about returning stale information before the lease

expires. The primary p also renews its lease t/2 seconds after it grabs the primary

status to avoid unnecessary primary switching. The primary status lease improves

read operation latencies at the price of availability: if the primary replica crashes,

RPDS will be unavailable for up to t + 1 seconds. The temporary unavailability

problem does not pose a significant problem since NFS clients retransmit requests.

Since the primary RPDS replica handles all the read requests and coordinates

write requests, it apparently needs more computation power than backup replicas. It

is therefore beneficial to have one machine that is more powerful in RPDS to function

as the primary replica. This machine can not be manually assigned the primary

status, but RPDS can be configured such that when multiple replicas are competing

for the primary status, preference is given to this special candidate.

3.10 Summary

NFS protocol virtualization enables vFS to aggregate the resources of file servers to-

gether and make the servers appear like a single one to clients. Clients can interact

with this virtual server only by sending NFS requests and observing its ID space,

name space and file contents. No special handling is required for file content, but

it is crucial to ensure that clients observe one coherent ID space and name space.

CHAPTER 3. PROTOCOL VIRTUALIZATION 54

The basic technique for ID space virtualization is ID rewriting based on either a local

table managed by each vFS node or a global table; in the latter case, the global table

is managed by a light weight replicated persistent directory service (RPDS) and ag-

gressively cached by each vFS node. Name space virtualization leverages file servers

for all the operations within the same subtree and relies on RPDS to handle opera-

tions that cross subtree boundaries. RPDS is built upon a well known asynchronous

distributed protocol— Paxos protocol—with a couple of optimization techniques to

improve the latency of read operations. Besides ID space virtualization and name

space virtualization, vFS also manages the uniform credential space and provides its

own lock service.

Chapter 4

Transparent Migration

Protocol virtualization breaks the bindings between clients and file servers, and ag-

gregates the storage, computation, and networking capacity of all servers together. In

addition to protocol virtualization, vFS provides the glue for independent file servers

to cooperate with each other by adding the capability to transparently move objects

among file servers without clients noticing. Such capability is referred to as transpar-

ent migration. Transparent migration breaks the bindings between data and servers

and along with protocol virtualization, enables resource sharing. With transparent

migration, vFS can treat the NFS file servers as completely interchangeable with each

other.

Transparent migration operations should not be visible to vFS clients and they

need to satisfy two important consistency requirements: 1) during and after migra-

tion, clients should not be able to observe any changes in file system tree structure, file

data or file metadata; and 2) changes made by clients during migration should not be

affected either. Ideally, clients should also be shielded from performance degradation

during migration [39]. In fact, the design of migration focuses more on maintaining

55

CHAPTER 4. TRANSPARENT MIGRATION 56

system simplicity and ensuring correctness than on migration speed.

Transparent migration is usually initiated automatically by a Migration Policy

Manager. Periodically, the migration policy manager collects file server performance

statistics and capacity information from vFS nods. If the performance and/or ca-

pacity statistics match any of the load balancing, capacity balancing or data life

cycle management rules predefined by administrators, the migration policy manager

initiates transparent migration. Administrators may also manually initiate trans-

parent migration mostly for “one-shot” events such as online maintenance and file

server addition or obsolescence. Both automatic and manual migration go through

the same process and vFS guarantees that the system does not start a new migration

session before the previous one finishes, a design tradeoff made to contain the system

complexity.

The migration process in vFS is orchestrated by a Migration Coordinator which

implements the complex migration logic; individual vFS nodes that actually perform

the data copying only implement relatively simple migration primitives. The coor-

dinator invokes these primitives on the vFS nodes and oversees the entire migration

process. This separation of migration primitives from migration algorithms not only

keeps the design of the critical vFS nodes simple, but also allows more sophisticated

migration algorithms to be developed in the future and different migration algorithms

to coexist with each other. The migration coordinator also maintains a migration log

that keeps track of each step of the migration process to assist crash recovery. Finally,

the coordinator can be instructed to control the migration speed in order to reduce

the performance impact on normal client operations that occur during migration.

The rest of this chapter is organized as follows. Section 4.1 presents the concept

of choke point that is critical to ensuring migration consistency, and explains the

CHAPTER 4. TRANSPARENT MIGRATION 57

various vFS migration primitives and the actual migration algorithms. Section 4.2

briefly studies how transparent migration can be used to support file server load

balancing, capacity balancing and tiered storage management. Finally Section 4.3

summarizes this chapter. The rest of this chapter may also use migration in place of

transparent migration for brevity.

4.1 Migration

The basic migration unit in vFS is a subtree. One naive solution to migration is to

first “lock” the whole subtree by temporarily denying client access, and then copying

the whole subtree to a different server before re-enabling client access. This solution

works well for very small subtrees, but employing it for large subtree migration intro-

duces intolerable service disruption which a good design should avoid at all cost. We

observe that in NFS protocol a) all data operations involve only one object and b)

all metadata operations involve at most two objects under the same directory1. The

vFS migration design recognizes this opportunity and selectively “locks” the subtree

one object at a time, minimizing file service disruption. In addition, vFS even allows

most common operations from clients on an “locked” object by temporarily repli-

cating these requests, minimizing the impact migration may have on normal client

operations.

Given a subtree, the migration coordinator traverses it in pre-order and while

visiting each object, it coordinates among all the vFS nodes the migration of this

object from one file server to another through a three phase process: 1) mirroring

the object at the destination file server; 2) switching client access over to the mirror

1vFS only allow rename operation within the same directory.

CHAPTER 4. TRANSPARENT MIGRATION 58

atomically; and 3) deleting the object from the source file server. vFS satisfies the

transparency requirements throughout all three phases.

4.1.1 Choke Point Mechanism

The mirroring phase creates a replica of the original object at the destination server.

An important problem during this phase is how to allow client operations, including

ones that directly modify the object, to continue safely alongside the ongoing migra-

tion. We note that the mirroring itself could take a significant amount of time for big

objects and simply blocking client operations even for a single object during the en-

tire mirroring process would result in downtime and the violation of the transparency

requirement. vFS employs a “choke point” technique to provide transparency during

the migration operation. For each object being migrated, all vFS nodes are instructed

by the migration coordinator to forward requests related to the object to a certain

designated choke point node so that it can manage all operations (client-generated or

those arising from migration) on the object. Any vFS node can serve as a choke point

for migrating any object and it is the responsibility of the migration coordinator to

decide which vFS nodes should be the choke point for which objects. In practice,

such a decision is made according to load balancing or security policies.

The choke point is able to control all the operations on the object to make con-

sistent mirrors. In the switch-over phase, the choke point can switch from the old

object to the new object instantly and the change is visible to all vFS nodes (and

by all clients indirectly) simultaneously. After the switch-over phase, vFS nodes stop

forwarding requests to the choke point; instead, the new requests are forwarded to the

new destination server as part of the normal virtualization process. The last phase

of migrating an object deletes the copy from the original file server, since it is no

CHAPTER 4. TRANSPARENT MIGRATION 59

longer consistent with the object after the switch-over phase. Note that this phase

can be safely delayed if the storage capacity occupied by the object is not immediately

needed.

The next section describes the details of how a choke point operates when migrat-

ing a file, when migrating a full directory subtree, and especially how a choke point

interacts with the migration coordinator which orchestrates the entire migration pro-

cess.

4.1.2 Migrating a File

The vFS node chosen as the choke point for migrating a file reads successive portions

of the file from the source server and writes them to the destination file, created by

the migration coordinator on the destination server. During the copying process, the

choke point receives all client requests for the object. It forwards all the client read

requests to the source file server and all the client write requests to both the source

and the destination server. When all the data has been copied, both the source copy

and the destination copy have identical content. At this stage, the choke point first

temporarily blocks client access to the file and then does two things: 1) mirroring

the file attributes including access bits and various timestamps, and 2) updating

both its local v-table and the global v-table so that the file’s vhandle is mapped to

the phandle of the new copy. Once this is all completed, the choke point returns

the new v-table entry to the migration coordinator. Upon receiving the new v-table

entry, the coordinator propagates it to all other vFS nodes and instructs them to

stop forwarding all requests regarding the file to the choke point and instead start

processing them locally. When all the vFS nodes are updated, the coordinator informs

the choke point that it is off duty. While an object is being mirrored, besides read

CHAPTER 4. TRANSPARENT MIGRATION 60

and write operations and metadata update operations which are treated the same as

writes, clients may also issue object rename and delete requests. The mirroring

process is not affected by rename requests as will be made clear in Section 4.1.3,

but upon the success of a delete operation, the choke point immediately stops the

mirroring process, informs the migration coordinator and deletes the new copy lazily.

Procedure MigrateFile in Algorithm 1 describes the main flow of the migration

coordinator when orchestrating the migration of a single file. The algorithm takes

four arguments as input: the file f to be migrated, the destination directory p under

which to create the new file, the server Sf that manages f and the server Sp that

manages p. The algorithm employs the notation Function[M](arg) to represent a

synchronous or asynchronous RPC call to function Function on machine M with

arguments arg. Note in Algorithm 1 that the coordinator sends instructions to the

vFS nodes in parallel to reduce latency.

ProcedureMirrorFile in Algrithm 2 presents the pseudo code of the main path

for a vFS node when designated as the choke point for a file migration. The procedure

mirrors file f managed by server Sf to file f
′ managed by server Sf ′ . Line 3 to Line

12 describe the phase where the choke point asynchronously duplicates f to f ′ while

forwarding read type of requests to Sf and forking write type of requests to both Sf

and Sf ′ . At line 14, the algorithm blocks clients and other vFS nodes from accessing

f by delaying processing their requests and at line 18 those requests are processed

in order. Since it only takes a few LAN round trips to mirror the file attributes and

updating the corresponding v-table entry in RPDS, the impact to clients is barely

noticeable.

Since vFS nodes need to make arbitrary changes on the file servers to make mi-

gration possible, they use the root user ID to override all access checking on the file

CHAPTER 4. TRANSPARENT MIGRATION 61

Algorithm 1 Migration coordinator’s algorithm for migrating a file

1: procedure MigrateFile(Sf , f , Sp, p) . At the migration coordinator.
2: f ′ ← CreateEmptyFile[Sp](p, f .name)
3: Vc ← SelectChokePoint(f)

4: for all Vi : vFS nodes do . Notify nodes in parallel
5: StartRequestForwarding[Vi](f , Vc)
6: end for
7: WaitForResponses . Synchronization

8: Succ ← StartMirrorFile[Vc](f , f ′) . f may be deleted
9: if Succ = true then
10: for all Vi : vFS nodes do . Notify nodes in parallel
11: StopRequestForwarding[Vi](f , f → (Sp, f ′))
12: end for
13: else . File deleted or failure
14: for all Vi : vFS nodes do . Send requests in parallel
15: StopRequestForwarding[Vi](f)
16: end for
17: end if
18: WaitForResponses . Synchronization

19: ChokePointOffDuty[Vc](f) . Choke point back to normal
20: end procedure

CHAPTER 4. TRANSPARENT MIGRATION 62

servers. The file servers are always configured to allow these accesses by turning off

the user ID rewriting options (e.g., root squash). These options are implemented

by vFS for the virtual volumes, so there is no loss of functionality or additional secu-

rity risks as long as the file servers are placed in a private network directly accessible

only by the vFS nodes as gateways.

Algorithm 2 A file migration choke point vFS node’s algorithm

1: procedure MirrorFile(f , Sf , f
′, Sf ′)

2: Read[Sf](f) . Asynchronous read
3: while not EOF(f) do
4: if data from Sf then
5: Write[Sf ′](f

′, data) . Mirror file data
6: Read[Sf](f) . Read more data asynchronously
7: else if Remove request then
8: Remove[Sf ′](f

′) . Delete mirror
9: Remove[Sf](f) . Delete original file
10: Return
11: else if read type requests then
12: Forward[Sf](f , req) . Read requests forwarded to source file
13: else[Write type requests]
14: Forward[Sf (f , req) . Write type requests forked to both files
15: Forward[Sf ′](f

′, req)
16: end if
17: end while
18: Put all requests related to f in a Lock queue . Lock
19: attr ← GetAttr[Sf](f)
20: SetAttr[Sf ′](f

′, attr)
21: UpdateVTable[RPDS](f → (Sf ′ , f ′))
22: Dequeue the requests and resume normal processing . Unlock
23: end procedure

4.1.3 Migrating a Directory

The migration of a directory is a recursive process consisting of the following steps:

1. The migration coordinator first creates a mirror directory on the destination

CHAPTER 4. TRANSPARENT MIGRATION 63

server, then creates a jdirectory consisting of both the source directory and the

destination (mirror) directory. The static object creation policy is applied to the

jdirectory which creates all new objects under the mirror directory. Since only

RPDS can guarantee the consistency of jdirectories, all vFS nodes are therefore

instructed to forward their operations on the jdirectory to RPDS.

2. The coordinator retrieves a list of the objects under the source directory (via

readdir or readdirplus operations).

3. For each file object in the list, the coordinator starts the file migration process as

described in Section 4.1.2. For each directory object in the list, the coordinator

starts the same process as described in this section, recursively.

4. Once all the objects from the source directory are migrated to the mirror di-

rectory, RPDS temporarily blocks client access to the directory and performs

the switch-over process which involves a) mirroring the directory attributes; b)

modifying the v-table such that the vhandle of the source directory is mapped to

the new mirror directory; and c) removing the jdirectory virtualization, making

the mirror directory directly manageable from all vFS nodes.

5. The coordinator propagates the new v-table entry to all the vFS nodes and

instructs them to stop the forwarding of requests regarding the directory.

The static object creation policy that directs all new objects to mirror directories

is very critical to the predictable completion time of migration and it avoids the need

of migrating objects created after the start of migration; otherwise clients may create

new objects at a faster rate than the migration speed, preventing migration from

completing. During the recursive process of migrating a directory, RPDS is used

to handle requests regarding multiple descendent directories, as many as the depth

CHAPTER 4. TRANSPARENT MIGRATION 64

of the directory. The slightly more formal description of the directory migration

recipe for the coordinator is described in Algorithm 3 where d is the directory to be

migrated, Sd is the server that manages d, p is the parent directory under which d’s

mirror will be created, and Sp is the server that manages p. RPDS’s algorithm is not

much different from its normal behavior. The migration of a subtree is essentially

the same as migrating a directory except that the top level directory in the subtree

is turned into a permanent rather than temporary junction directory. The root of

a virtual volume is a normal non-root directory managed by a server and therefore

has a parent on the server. Should various maintenance needs arise, it can also be

migrated like any other directories.

Figure 4.1–4.4 depicts the process of a subtree migration. There are three trees

in all four figures: the first tree is the file system on server S1, the second tree is

the file system on server S2 and the third tree is clients’ view of the virtual vol-

ume. The root of the virtual volume is managed by S1 as S1:/0/root. Figure 4.1

shows the initial state of the system in which S2 doesn’t host any objects, and now

suppose subtree c, including object c, d, e/, f , g and h, are chosen to be migrated

to S2 under directory S2:/1. Figure 4.2 shows that first a directory with a unique

name2 is created under directory S2:/1, referred to as uniq, such that there is no

name clashes even if other subtrees are later on scheduled to be migrated to S2:/1

as well. S1:/0/root and S2:/1/uniq are then turned into a jdirectory which uses

the default object creation policy: new objects are always created under S1:/0/root.

Figure 4.3 shows the state of the system after directory S1:/0/root/c has been

partially migrated to S2 as S2:/1/uniq/c and object S1:/0/root/c/d has been mi-

grated to S2 as S2:/1/uniq/c/d. S1:/0/root/c and S2:/1/uniq/c are then turned

2The hexidecimal representation of (S1, S1:/0/root’s phandle) is a good candidate.

CHAPTER 4. TRANSPARENT MIGRATION 65

S1:/

0/ 1/

root/

a b c/

d e/ f

g h

S2:/

0/ 1/

/

a b c/

d e/ f

g h

Figure 4.1: Before the migration of subtree c that includes object c, d, e/, f , g and
h. The first tree in the figure is the file system on server S1, the second tree is the
file system on server S2 and the third tree is clients’ view of the virtual volume.

into another jdirectory to provide unchanged virtual volume view to clients. This

jdirectory, however uses a different static object creation policy such that a new

object i, /c/i in clients’ view, is always created under S2:/1/uniq/c. The last fig-

ure, Figure 4.4, shows the state of the system at the end of migration. The whole

subtree c has been successfully migrated from S1 to S2, the temporary jdirectory

consisting of S1:/0/root/c and S2:/1/uniq/c and the temporary jdirectory consisting

of S1:/o/root/c/e and S2:/1/uniq/c/e (not shown in the picture) is gone, but the

jdirectory consisting of S1:/0/root and S2:/1/uniq is made permanent. All these

figures also demonstrate that during the whole migration process, clients always see

the same consistent virtual volume.

CHAPTER 4. TRANSPARENT MIGRATION 66

S1:/

0/ 1/

root/

a b c/

d e/ f

g h

S2:/

0/ 1/

uniq/

/

a b c/

d e/ f

g h

Figure 4.2: Subtree c is chosen to be migrated to S2:/1. First a directory with a
unique name uniq is created under S2:/1 and then S1:/0/root and S2:/1/uniq are
turned into a jdirectory. This jdirectory uses the default static object creation policy:
new objects are always created under S1:/0/root.

CHAPTER 4. TRANSPARENT MIGRATION 67

S1:/

0/ 1/

root/

a b c/

e/ f

g h

S2:/

0/ 1/

uniq/

c/

d e/ i

/

a b c/

d e/ f i

g h

Figure 4.3: Directory S1:/0/root/c has been partially migrated to S2 as
S2:/1/uniq/c and object :/0/root/c/d has been migrated to S2 as S2:/1/uniq/c/d.
S1:/0/root/c and S2:/1/uniq/c are turned into a jdirectory to provide unchanged
virtual volume view to clients. This jdirectory’s static object creation policy directs
all new objects to S2:/1/uniq/c.

CHAPTER 4. TRANSPARENT MIGRATION 68

S1:/

0/ 1/

root/

a b

S2:/

0/ 1/

uniq/

c/

d e/ f i

g h

/

a b c/

d e/ f i

g h

Figure 4.4: The end of migration. The temporary jdirectory consisting of
S1:/0/root/c and S2:/1/uniq/c is gone, but the jdirectory consisting of S1:/0/root
and S2:/1/uniq is made permanent. During the entire migration process, clients’
view of the virtual volume remains unchanged.

CHAPTER 4. TRANSPARENT MIGRATION 69

Algorithm 3 Migration coordinator’s algorithm for migrating a directory

1: procedure MigrateDirectory(Sd, d, Sp, p)
2: d′ = Mkdir[Sp](p, d.name) . Create an empty directory
3: Attach[RPDS](d, d′, static policy) . All new objects created under d′

4: for all Vi : vFS nodes do
5: StartForwarding[Vi](d, RPDS) . Send in parallel
6: end for
7: WaitForResponses

8: L = Readdirplus[Sd](d) . Get the list of objects under d
9: for all o : L do . For each object under d
10: if o is a directory then
11: call MigrateDirectory(Sd, o, Sp, d

′) . Recursion
12: else
13: call MigrateFile(Sd, o, Sp, d

′) . described in section 4.1.2
14: end if
15: end for

16: for all Vi : vFS nodes do
17: StopForwarding[Vi](d, d→(Sd′ , d′)) . Send in parallel
18: end for
19: WaitForResponses
20: end procedure

CHAPTER 4. TRANSPARENT MIGRATION 70

S1:/

0/ 1/

root/

a b/ c

d

S2:/

0/ 1/

uniq/

e/

g h

S3:/

0/ 1/

uniq/

f/

i

/

a b/ c

d e/ f/

g h i

Figure 4.5: The subtree distribution of a sample virtual volume. The three trees on
the left are the file systems on server S1, S2 and S3 respectively and the tree on the
right is the virtual volume view. Directory S1:/0/root/b, S2:/1/uniq and S3:/0/uniq
are constituents of jdirectory /b.

4.1.4 Virtual Volume Fragmentation and Subtree Merger

Since subtrees can only be “carved” out of existing subtrees, excessive or careless use

of migration may get virtual volumes fragmented; that is each virtual volume is split-

ted into a large number of relatively small subtrees. When a virtual volume becomes

fragmented, RPDS needs to manage more jdirectories and therefore may throttle the

throughput of the entire system. Furthermore, migration on the fragmented virtual

volume also becomes less effective since each subtree is too small. vFS allows adjacent

subtrees in the virtual volume name space, whether physically hosted on the same

server or not, to be merged, reducing the total number of subtrees and jdirectories,

and enabling the restructuring of subtrees. Subtree mergers are also a very effective

measure that is usually taken when shrinking the server set.

Figure 4.5 shows the subtree distribution of a sample virtual volume. The three

trees on the left are file systems on three servers and the subtree on the right is the uni-

CHAPTER 4. TRANSPARENT MIGRATION 71

S1:/

0/ 1/

root/

a b/ c

d

S2:/

0/ 1/

S3:/

0/ 1/

uniq/

e/ f/

g h i

/

a b/ c

d e/ f/

g h i

Figure 4.6: After subtree S2:/1/uniq is migrated to S3 and merged with S3:/0/uniq,
there is only two constituent directories in jdirectory /b.

fied virtual volume view. In this virtual volume, directory S1:/0/root/b, S2:/1/uniq

and S3:/0/uniq are constituent directories of jdirectory /b. All these three subtrees

can be merged with one another. For example, subtree S2:/1/uniq may be migrated

to S3 and merged with S3:/0/uniq or vice versa. The result of such a merger is shown

in Figure 4.6. Note that now jdirectory /b only has two constituent directories. Once

all three subtrees are merged together and hence stored on and managed by the same

server, /b becomes a normal directory. vFS nodes no longer need to forward opera-

tion regarding /b to RPDS and all the overhead associated with maintaining /b as a

jdirectory is eliminated.

4.1.5 Crash Recovery During Migration

The migration is a relatively sophisticated process. If any component fails during

the process, vFS is required to guarantee that the integrity of related virtual volumes

is not affected. The integrity requirement for normal file system crash recovery is

CHAPTER 4. TRANSPARENT MIGRATION 72

that file systems be brought back to a consistent state while losing as little data as

possible. Besides integrity, as a shared infrastructure, vFS migration is also required

to guarantee that the performance of the virtual volumes involved in the migration

not be significantly impacted should any component fail for an extended period of

time.

A vFS node stores the vhandles of the objects being migrated and the addresses

of the choke points responsible for mirroring those objects. Such information is kept

only in RAM until the current migration session finishes. Upon restart, possibly

after a crash, a vFS node first queries RPDS to obtain the location of the migration

coordinator if there is any, then retrieves the object vhandles and the choke point

locations from the migration coordinator. For objects for which it is their choke point,

the vFS node picks up the choke point responsibility and restarts the idempotent

mirroring process; for other objects being migrated the vFS node starts forwarding

related requests to their choke points. This design maintains vFS nodes’ stateless

nature and keeps vFS nodes simple.

Most of the migration related states are kept in a migration log persistently stored

and maintained by the migration coordinator. During the course of migration, it logs

every single step it takes to the migration log. For example, before designating a

node as a choke point, it logs a “designate choke point” record containing the

node address and the vhandle of the object; and before instructing all vFS nodes

to forward their requests to the choke point, it logs a special “forward request”

record. Once a record is logged, the migration coordinator blocks on the next step

operation with retries until it succeeds. While a vFS node is down, be it a choke

point or a non-choke point, the migration process will not proceed until the failed

machine comes back online and recovers from crash or is explicitly removed from the

CHAPTER 4. TRANSPARENT MIGRATION 73

vFS node set by administrators. If the choke point is removed from the vFS node set,

the coordinator will choose a different vFS node as the choke point. If the coordinator

itself crashes, it reads the migration log and then restarts the migration from where

it left off before the crash. In the extremely rare case where the coordinator crashes

and can not even recover from the migration logs which might have been corrupted

due to disk failures, the coordinator declares current migration session complete and

leaves behind some temporary jdirectories3 and one file still being handled by a choke

point. Note that in this case, the virtual volume is still consistent and there is no data

loss. A new coordinator may register with RPDS any time. It first queries all the vFS

nodes and determines the file being migrated if any, then instructs all the vFS nodes

to stop forwarding requests related to the file. Administrators can explicitly start a

new session to continue the unfinished subtree migration and remove the temporary

jdirectories.

4.2 Automated Migration Case Studies

Migration can be routinely initiated by a migration policy manager according to rules

predefined by administrators. In this section, we will study how different rules can be

created to deal with three major server management cases: file server load balancing,

file server capacity management, and tiered storage management.

4.2.1 File Server Load Balancing

Enterprises expect maximum performance and maximum efficiency from storage in-

frastructure, driven by both customer needs and competition. Transparent migration

3The maximal number of jdirectories left behind is the depth of the subtree being migrated.

CHAPTER 4. TRANSPARENT MIGRATION 74

provides the basic mechanism to reconfigure storage servers and eliminate perfor-

mance bottlenecks without interrupting data access. The automated file server load

management consists of three parts: monitoring and collecting server performance

statistics; identifying overloaded subtrees; and initiate migration if necessary.

The duty of server performance statistics collecting is assumed by both the vFS

nodes and the migration policy manager. Each vFS node is instrumented to passively

measure the number of NFS operations handled per second by each server, denoted by

ri and the average latency of responses from each server, denoted by li. Since different

vFS nodes may communicate with the same server, these measurement results are

then collected and summarized by the migration policy manager to derive a better

estimate of load li and average response latency ri for each server. These two numbers

can be used independently or combined as the final server load metric Li. A relatively

simple model may define the load as Li = li ∙ ri2. Li is defined as li ∙ ri2 rather than

li ∙ri to compensate for the fact that when a system is overloaded, the average latency

goes up but the number of operations it can handle goes down. In a typical enterprise

environment, file servers with very different throughput and latency characteristics

abound and therefore administrators should be allowed to specify a weight factor wi

for each server. The adjusted server load L′i = Li∙wi = li∙ri
2∙wi is used as the real load

metric. Let L
′

max be the load on the most loaded server and L
′

min be the load on the

least loaded server, and Il = L
′
max/L

′
min be the load imbalance ratio, the migration

policy manager may decide that significant load imbalances exists when Il > δl(δl >

1), where δl is an administrator defined threshold, and the situation continues for an

extended period of time. The selection of δl should be fairly conservative so as to

provide a safety net around inaccurate estimates of wi and temporary load spikes; to

avoid load oscillation where subtrees are moved around without really smoothing out

CHAPTER 4. TRANSPARENT MIGRATION 75

load imbalance; and to avoid introducing too many jdirectories into the system.

Besides what is described above, any existing or future approaches to file server

load modeling should all be applicable to identifying load imbalance. Once the most

loaded server, referred to as S, and the least loaded server, referred to as s, are

identified, the next step is to identify exactly which subtree should be migrated from

the S to s. The policy manager counts the number of NFS operations on each subtree

recursively by collecting the per object number maintained by each vFS node and a

subtree is chosen such that its migration can balance out the load difference between

S and s the fastest.

4.2.2 File Server Capacity Management

Simply buying and owning more storage does not solve all capacity problems; efficient

capacity management requires that storage administrators find and get value from ex-

isting under-utilized file servers before buying more of them. vFS manages the server

set as a resource pool and hence has good visibility into the distribution of all stored

data. Transparent migration adds the ability to move data without interrupting data

access users desire. Similar to load management, capacity management requires the

collecting of server storage utilization information, the identification of suitable sub-

trees and the initiation of migration. Residual capacity Ci for each server can be

collected simply by issuing fsstat requests to that server periodically; in fact, vFS

nodes are already doing so to virtualize fsstat requests from clients, as described

in Section 3.6. Also similar to load management, the policy manager periodically

collects the storage each file, each directory and each subtree consumes recursively

from servers. The policy manager uses Ci to determine the server S with the most

residual capacity Cmax = max{Ci} and the server s with the least residual capac-

CHAPTER 4. TRANSPARENT MIGRATION 76

ity Cmin = min{Ci}. Once the capacity imbalance factor Ic = Cmax/Cmin exceeds

δc(δc > 1), another administrator specified threshold, capacity re-balancing is consid-

ered necessary. The size information of each subtree stored on s is used to choose

the best candidate subtree the migration of which can balance the residual capacity

between S and s the fastest. In a slightly more sophisticated model, the rate at which

a particular subtree is growing over some chosen period can also be calculated and

taken into the subtree selection process. This model may lead to more even capacity

distribution with fewer number of subtree migrations.

4.2.3 Tiered Storage Management

The amount of data in enterprises is growing at unprecedented rates. In addition, data

is being retained for longer periods of time due to business and regulatory constraints.

While not all this data is critical to the day-to-day business operations, it must all

be stored, protected and remain readily accessible should the need arise. In order to

reduce the average cost per byte, enterprises are increasingly deploying more servers

with tiered capacity and performance characteristics. Some servers are fibre channel

based NAS, some can employ cost focused serial ATA (SATA) technology, yet the rest

can be potentially slower content addressable storage [16, 55] or capacity optimized

storage [17]. Tiered storage environment allows managers to assign data to the most

appropriate platform as the value of data changes to reduce the average cost per byte.

More valuable and more frequently accessed data can be assigned to high-performance

hardware, while less critical and less frequently accessed data can be moved to less

expensive storage with lower performance.

Transparent migration enables the relocation of data among different tiers without

interrupting data access and the policy manager can automate the tiered storage

CHAPTER 4. TRANSPARENT MIGRATION 77

management with very little assistance from administrators; they only need to provide

a few simple policies to help data classification based on file age. File age based

policies allow administrators to classify files based on either the last-modified or

last-accessed attributes. This is extremely useful for automatically migrating files

which have not been accessed or modified for some extended period of time to a

different tier of storage. A good example is the massive number of accounting reports

each enterprise maintains; those haven’t been accessed or modified for a few months

should probably quickly be moved to archival storage. Of course, vFS’s migration

unit is a subtree, not an individual file, therefore what the policy manager keeps

track of is the average last-modification time or average last-access time of subtrees

rather than files. Once the data classification policies are determined, administrators

specify where data in each category should be stored. Unlike load and capacity

balancing management, tiered storage management usually does not need to happen

immediately and therefore administrators can also decide exactly when the subtrees

should be migrated so as to minimize impact on normal client traffic.

4.3 Summary

vFS not only aggregates the resources of file servers together, but also enables the

transparent migration of subtrees from one server to another, making file servers

completely interchangeable with each other. Migration is orchestrated by a migra-

tion coordinator which implements reliable logging for crash recovery and directs

individual vFS nodes to accomplish the whole task. Subtree migration is carried out

in a recursive fashion, file by file and directory by directory. Temporary jdirectories

are used judiciously to ensure the timely completion of migration even though more

CHAPTER 4. TRANSPARENT MIGRATION 78

files or directories are still being generated. Different choke points take care of the

actual migration of each file or object and handle all the requests related to the file

or directory being migrated to ensure consistency. Transparent migration builds the

foundation for a variety of automated management tasks: file server load manage-

ment, capacity management and tired storage management. By migrating subtrees

from busy servers to less busy ones, server load can be balanced; by migrating subtrees

away from servers with less capacity, server capacity can be balanced; by migrating

infrequently accessed subtrees to servers with lower performance and more economical

hardware and software, the average storage cost per byte can be reduced.

Chapter 5

vFS Federation

The set of vFS nodes serving the same virtual volume are federated and can be used

interchangeably for dynamic load balancing and failure handling purposes, eliminat-

ing the fixed bindings between clients and vFS nodes. The principle of federation

appeared in all major distributed file systems, but vFS federation strives to preserve

the traditional NFS model and access semantics. vFS federation provides two forms

of dynamic load balancing: mount-time load balancing and online load balancing.

The former allows different clients to be associated with different vFS nodes when a

virtual volume is mounted and hence creates good initial load distribution among vFS

nodes. The latter, when configured, can dynamically change the association between

clients and their assigned vFS nodes if significant load imbalance among the vFS

nodes is observed, without interrupting client access. Besides balancing load among

themselves, a vFS node can also completely take over the responsibility of another

transparently without causing client access disruption. vFS federation compliments

both protocol virtualization which breaks the fixed bindings between clients and file

servers and transparent migration which breaks the bindings between data and file

79

CHAPTER 5. VFS FEDERATION 80

servers.

The next three sections in this chapter present mount-time load balancing, online

load balancing and online failover respectively in detail, and the last section summa-

rizes.

5.1 Mount-Time Load Balancing

A virtual volume in vFS is known to clients by a DNS [5] name. For example, the vir-

tual volume for storing archival data in a company may be called arch.company.com.

A client trying to access the volume first resolves arch.company.com to an IP address

through a DNS server, then uses that IP address to mount the volume and retrieve the

vhandle of its root. The client also sends all subsequent file system requests specific

to the virtual volume to this IP address. All vFS nodes exporting the same virtual

volume of interest are functionally equivalent to clients, vFS can therefore employ a

smart DNS server to make just-in-time decisions as to which vFS node a particular

client should be assigned to by returning the IP addresses of different nodes, provid-

ing the basic mechanism to balance the load on different vFS nodes at client mount

time. Mount-time load balancing is very easy to understand, very easy to implement

and especially attractive to desktops managed by automount, which automatically

unmounts a virtual volume when a long enough volume access gap is observed and

remounts the volume should it be accessed again.

A well known technique called Round-Robin DNS [32, 15] is widely used for web

server load balancing by returning different IP addresses from a list in a round robin

fashion. Content Delivery Networks (CDN) [69, 4] also use customized DNS servers

to return the IP addresses of web severs that are geographically close to clients, so

CHAPTER 5. VFS FEDERATION 81

as to improve client perceived latency and reduce wide area network traffic. Web

server load balancing has three characteristics: (1) server assignment decisions are

made on a per request basis; (2) each web request is short-lived and (3) the resource

consumption of different requests has very small variance. The component in vFS that

decides the vFS node assignment for clients is called mount-time load balancer, which

is essentially a smart DNS server. Unlike other smart DNS servers described above,

the mount-time load balancer’s assignment of a client to a vFS node is permanent

until online load balancing is triggered, and each client can place drastically different

load onto vFS. Therefore, every assignment decision made by the mount-time load

balancer has significant impact. It takes into account the expected traffic volume

of the potential client and assigns it to the vFS node with least current real-time

load. The expected traffic volume of the potential client, measured in the number

of requests per second, can be inferred from historical data or be given explicitly as

administrators’ estimate in the case of a new client. The current real-time load on

each vFS node is similarly measured in the average number of requests it receives per

second over some relatively long period, and reported periodically to the mount-time

load balancer.

So far clients have been assumed to always access a virtual volume by resolving its

DNS name first, in reality they may access vFS nodes using their IP addresses directly.

In order to ensure the effectiveness of mount-time load balancing, the Time-to-Live

(TTL) of the name resolution results returned by the mount-time load balancer is

set to only one or two seconds. Standard conforming clients cannot cache the results

longer than specified by the TTL. vFS however also provides an ephemeral access

control mechanism that ensures clients can only access the vFS nodes they are assigned

to. Normally, vFS nodes reject mount requests from all clients. Before returning the

CHAPTER 5. VFS FEDERATION 82

IP address of a vFS node to a client, the mount-time load balancer directs the vFS

node to open the admission gate for the specific client for a period that is only two

times as long as the TTL.

Like any other component, the mount-time load balancer may also fail, but it is

a relatively simple component with very light load and thus can be made reliable

very easily through replication. In addition, clients usually are configured with both

a primary DNS server and a secondary DNS server which is resorted to when the

primary fails. What each vFS node needs to do to take advantage of this reliability

mechanism is to report its load to both mount-time load balancers so that both can

respond to client name resolution requests independently.

5.2 Online Load Balancing

The mount-time load balancer allows the creation of good initial distribution of load

among vFS nodes. However, since the NFS protocol binds the clients to a specific file

server after a volume is mounted, additional techniques are necessary to provide the

flexibility of balancing load among the vFS nodes and enable moving responsibility

of handling client requests from one vFS node to another in case significant load

imbalance takes place. This problem has two basic challenges: how to redirect clients

to send requests to a different node without violating the NFS protocol; and how to

shift only some of the clients. vFS solves this problem by requiring each vFS node to

own multiple identities by binding to multiple IP addresses1. The first two columns

in Table 5.1 describe a sample vFS federation configuration in which each vFS node

binds to three IP addresses. For example, V1 binds to 192.168.0.1, 192.168.0.2 and

1All commonly used operating systems now support the binding of multiple IP addresses to the
same network interface.

CHAPTER 5. VFS FEDERATION 83

vFS node IP Addresses Load (#req/sec) Total load (#req/sec)

V1

192.168.0.1 300
1200192.168.0.2 300

192.168.0.3 600

V2

192.168.0.4 100
600192.168.0.5 200

192.168.0.6 300

Table 5.1: In a sample vFS federation, each vFS node owns three identifies by binding
to three IP addresses. The first column is the name of vFS nodes, the second column
is the IP addresses each vFS node binds to, the third column is the number of requests
per second each IP address receives and the last column is the total number of requests
per second each vFS node receives.

192.168.0.3. When a vFS node reports its load to the mount-time load balancer, it

reports the load on a per IP basis. The mount-time load balancer can thus assign

a client to the least loaded IP bound to the least loaded vFS node. The third and

fourth columns in Table 5.1 describe the load on each IP and the aggregated load

on each vFS node. Since V2 has less load (1200 req/sec) than V1 (600 req/sec) and

192.168.0.4 has the least load on V2, the next client will be assigned to 192.168.0.4.

Besides the mount-time load balancer, an online balancer (often co-located with

the mount-time load balancer) also receives the load report from each vFS node. The

online load balancer periodically checks the ratio of the aggregated load on the most

loaded node N to that on the least loaded node n. Once the ratio exceeds a prede-

fined threshold, online load balancing is triggered and the online load balancer picks

an IP address on N such that if all the clients assigned to that IP are reassigned to n,

the load difference between N and n is minimized. For example, in Table 5.1, V1 has

more load than V2. If we were to balance the load between V1 and V2, we would pick

192.168.0.2 since reassigning all clients currently assigned to 192.168.0.2 completely

balances out the load on V1 and V2. As modifications to client side configuration

CHAPTER 5. VFS FEDERATION 84

vFS node IP Addresses Load (#req/sec) Total load (#req/sec)

V1

192.168.0.1 300
900192.168.0.2 300

192.168.0.3 600

V2

192.168.0.2 300

900
192.168.0.4 100
192.168.0.5 200
192.168.0.6 300

Table 5.2: V1 has more load than V2. Reassigning clients currently associated with
192.168.0.2 from V1 to V2 achieves perfect balance.

or software are not an option, the “reassignment” of clients is actually achieved by

rebinding the chosen 192.168.0.2 to V2, a process we call IP-address takeover. The

online load balancer first instructs V1 to unbind from 192.168.0.2, and then upon con-

firmation from V1 requests that V2 bind to 192.168.0.2. The IP address configuration

of the sample vFS when the address takeover completes is described in Table 5.2, all

client requests send to 192.168.0.2 will be handled by V2.

The IP address binding and rebinding rely on the Address Resolution Protocol [51],

a standard protocol designed to resolve an IP address to a Media Access Control

(MAC) layer Ethernet address, the ultimate network interface card (NIC) identity

used by hardware to deliver bits. If 192.168.0.2 is mapped to the NIC address of V1,

requests destined to 192.168.0.2 will be delivered to V1, but if 192.168.0.2 is mapped

to the NIC address of V2, those requests will be delivered to V2 instead. By binding

to an IP address p, the node broadcasts the mapping from p to its NIC address

periodically and also responds with its NIC address to queries from any machine in

the same subnet trying to resolve p. It is this extra layer of IP address to MAC

address translation that frees clients from fixed bindings to vFS nodes.

Note that, this form of load balancing is not fine-grained, e.g., at an individual

CHAPTER 5. VFS FEDERATION 85

request level, but IP address based load transferring among vFS nodes is very fast and

very effective. The drawback is that the short term load spikes may not be handled

gracefully.

5.3 Failover

The IP address takeover process is also critical to the transparent failover of a vFS

node to another in masking node failures. In a vFS federation, each vFS node, say

A, is peered with another vFS node, say B within the same subnet. Constantly, A

and B send to each other probing requests; these probing requests when received are

placed in a separate high priority queue and are responded to immediately with the

list of IP addresses the nodes bind to. If responses are not received from its peer

after a few tries, a node considers its peer dead and starts taking over all its peer’s

IP addresses through a process similar to what is described in Section 5.2. The whole

process is transparent to all clients, though the underline RPC protocol may need to

retransmit some timed-out messages, which is also an automatic process. Apparently,

this failover mechanism only works under the “fail-stop” failure model.

Due to the stateless nature of vFS nodes, the failover process is almost painless.

However, when A takes over all the identifies of its dead peer B, it goes through

the same crash recovery procedure mostly to ensure that it assumes B’s choke point

responsibility, as described in Section 4.1.5, as if B just rebooted quickly.

5.4 Summary

vFS nodes not only manage the backend file servers as a resource pool, making them

interchangeable, but also form a federation among themselves to achieve better re-

CHAPTER 5. VFS FEDERATION 86

liability and better load balancing. A vFS federation relies on a mount-time load

balancer, an intelligent DNS server with vFS node load knowledge, to assign new

clients to lightly loaded vFS nodes. Once new clients are assigned to vFS nodes, the

load balancing responsibility shifts to the online load balancer. The online load bal-

ancer monitors the load on each vFS node periodically, and instructs heavily loaded

nodes to shift portions of the load to lightly loaded nodes. The load shifting process

employs a technique called IP address takeover that allows vFS nodes to dynamically

bind to different identities. Besides balancing load among themselves, vFS nodes also

monitor the health of one another and take over all the identifies and assume all the

responsibilities of failed nodes to provide uninterrupted file service to clients.

Chapter 6

Evaluation

This chapter starts by briefly describing a vFS prototype built to estimate the im-

plementation complexity of file server virtualization. The prototype is also used by a

few sets of experiments designed to establish the feasibility of the new file virtualiza-

tion layer. In these experiments, a cluster of about 30 machines spread out to three

racks function as NFS servers, NFS clients and vFS nodes. All of these machines

have identical configurations: dual Pentium III 1GHz CPUs, 2GB memory, a 36GB

15K RPM internal disk, and a 1Gbps ethernet interface. They all run Fedora Core 2

(Linux version 2.6.5) as their operating system.

The overhead of the vFS prototype is studied in Section 6.2. It focuses on the

additional user perceived latency introduced by the vFS layer for various types of

NFS requests, and based on the CPU time spent on each NFS request estimates the

throughput a highly optimized implementation may achieve. Section 6.3 studies the

scalability of the prototype as the number of servers managed increases and as the

number of vFS nodes operating in a federation collaboratively increases. The vFS

node failover characteristics are demonstrated in Section 6.4 and it shows that a vFS

87

CHAPTER 6. EVALUATION 88

node can fail over to a different one well before the UDP-based RPC messages timeout

and thus doesn’t causing any file service disruption. Section 6.5 shows that vFS

federations can dynamically and transparently migrate data to increase throughput

and to balance the load among the file servers.

For throughput-related experiments, the industry standard SPECsfs97 [65] work-

load generated by the Fstress NFS benchmark tool [6] is used. Fstress is a freely

available, low-overhead load generator widely used to emulate the SPECsfs workload

with high accuracy.

6.1 vFS Prototype Implementation

We have implemented a vFS prototype on Linux that runs in user space, including the

vFS nodes, RPDS, the migration coordinator, the mount-time vFS node load balancer

and the online vFS node load balancer. The prototype supports NFS version 3 over

both UDP and TCP for normal traffic, but online vFS load balancing and transparent

failover are supported only for NFS over UDP. The communication among vFS nodes

and various other vFS components uses standard RPC over UDP configured for a

fixed number of retransmissions with fixed time outs. Each of these components has

a few event-driven non-blocking “fast path” threads and a few “slow path” threads

that communicate with each other via local sockets. The number of fast path threads

is usually equal to the number of CPUs/cores to fully exploit hardware computation

resources, and they process all the requests that only require relatively simple logic,

more akin to a packet filter for NFS requests/responses. The slow path threads

process requests that require communication with other components in the system.

For example, a simple NFS request is processed in a fast path thread if it needs to be

CHAPTER 6. EVALUATION 89

translated and forwarded to only one server and the required translation information

is available locally. If the translation information is only available through RPDS,

the request is passed on to slow path threads.

The main programming language used for the prototype is C++. Various user

space utilities, load monitors and load balancers are implemented in Perl. The total

number of lines of code adds up to around 30,000. A rough estimate of a full fledged

implementation would double the number of lines of code, still very easily manageable.

6.2 Virtualization Overhead

This section mainly studies the overhead introduced by the vFS nodes when they

interpose on the file server requests and replies and apply protocol virtualization. For

this purpose, the client perceived latency is measured and the following seven NFS

operations are chosen as our “microbenchmark”: 1) null RPC call, 2) lookup of a

file handle, 3) read one byte (rds), 4) read 4 KB data (rdl), 5) readdirplus of a

directory containing one single file (dirs), 6) readdirplus of a directory containing

32 files (dirl), and 7) create an empty file (crt). These seven representative

operations vary the amount of data contained in the requests/replies, the complexity

and the amount of work that a vFS node has to perform for virtualization. The latency

measurement experiments compare the perceived latency in three different cases: the

baseline case, the vFS case and the RPC case. In the baseline (labeled Direct) case,

a single client accesses the file server directly, corresponding to the traditional way of

accessing an NFS server. The other two cases are accessing the file server through a

vFS node and through a simple RPC forwarder that only passes requests and replies

back and forth with minimal amount of intervening processing. The latter represents

CHAPTER 6. EVALUATION 90

Figure 6.1: The client perceived latency of different NFS operations in three setups:
accessing the server directly (Direct), accessing it through a RPC Forwarder (RPC)
and accessing it through vFS (vFS).

the baseline for any in-band virtualization scheme.

The average latency measurement results are shown in Figure 6.1. For most of the

operations, both the RPC-forwarder and the vFS roughly doubles the client perceived

latency. This represents the cost of traversing the network twice, and it can only be

improved slightly by implementing the packet forwarding in the kernel. In other

cases, the extra latency incurred is proportional to the amount of virtualization work

that needs to be performed. For instance, in the dirl case where the overhead is

proportional to the number of entries in the directory, the client perceived latency

is only about 25% more than the simple RPC-forwarder, and is less than twice the

original latency. The create operation’s overhead is also higher as it needs to store

the newly created file handle v-table map entry to RPDS; this incurs additional

CHAPTER 6. EVALUATION 91

network accesses over the simple RPC forwarding case. Note that the latency numbers

shown here are derived from the most pessimistic scenario in which the network

latency between client machines and vFS nodes are the same as that between vFS

nodes and file servers. In a more realistic setup, vFS nodes and file servers are

physically close to each other while client machines are a few switches away. The extra

network traversal between vFS nodes and file servers therefore may be insignificant.

Section 6.3 will also demonstrate that the extra network overhead is usually dwarfed

by disk latency as long as a file server is normally loaded (less than 50% of capacity).

The CPU overhead of handling each NFS operation puts an upper bound of

throughput on a vFS node or a RPC forwarder. While processing a request, a RPC

forwarder consumes CPU cycles context switching between the kernel and the user

space and performing memory copy. On top of that, a vFS node incurs additional

processing for parsing/reassembling RPC messages and virtualization. A heavily op-

timized implementation of vFS would reside in the kernel to avoid context switches

and reduce memory copy, so the difference between the overheads introduced by a vFS

node and a RPC forwarder approximates the “true” virtualization overhead. Table 6.1

compares the CPU processing overhead for the vFS and the RPC forwarding case and

shows that the “true” virtualization overhead is small, within 16 microseconds, for

the majority of the NFS operations. Given a highly optimized implementation, each

of the slightly older CPU in our servers can handle up to 83,000 NFS operations per

second. Of course, this is highly dependent on the operation mix and operations

that incur more virtualization processing would bring this number down, to as low

as about 4,700 operations per second for the dirl case.

CHAPTER 6. EVALUATION 92

Op. null lkup rds rdl dirs dirl crt

RPC 45 50 50 87 53 103 53
vFS 55 66 62 100 84 316 110
diff. 10 16 12 13 31 213 57

Table 6.1: The time in microseconds a RPC forwarder and a vFS node spend pro-
cessing typical operations, and the difference between the two.

6.3 Virtualization Scalability

This section studies the scalability of vFS by varying the number of file servers being

virtualized and the number of vFS nodes collaborating in a virtualization federation.

These experiments demonstrate that a vFS node can aggregate the throughput of mul-

tiple servers. They also show that vFS federations can support even more aggregate

throughput from the virtualized file servers.

The first set of scalability experiments measures how many servers a single vFS

node can handle before getting saturated. The prototypical implementation has sig-

nificant room for optimization, hence, these results are highly pessimistic. Figure 6.2

shows the throughput of a single vFS node as the number of file servers being vir-

tualized varies between 1 (1S) and 10 (10S), each handling a portion of the client

workload. For each configuration, the same number of load generators as the number

of servers are used to generate NFS client load. The request rate at each load gen-

erator ranges from 200 NFS operations per second (nfsops) to 1400 nfsops, creating

a total load of up to 14,000 nfsops for the 10S configuration. The D curve, showing

the throughput of accessing a file server directly, and 1S curve are almost identical.

They also clearly reveal the capacity of a single file server: slightly below 2000 nfsops.

Until the number of servers managed increases to 10, the vFS node is not a bottle-

neck; the aggregate throughput first grows linearly as each client increases its request

CHAPTER 6. EVALUATION 93

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14

A
gg
re
ga
te
 T
hr
ou
gh
pu
t (
10
0
nf
so
ps
)

Request rate per load generator (100 nfsops)

10S
7S
5S
3S
1S
D

Figure 6.2: Throughput of a single vFS node aggregating multiple file servers. The
number of file servers used ranges from 1 (1S) to 10 (10S). For each configuration, the
number of load generators used is the same as the number of servers. The maximum
offered load is 14,000 NFS operations per second.

rate, then starts dropping as the file servers get overloaded. For example, in the 5S

setup, the aggregate throughput grows from about 2000 nfsops to about 9500 nfsops,

at which point the 5 servers are saturated. Further increasing client request rate only

leads to reduced throughput. The 10S curve levels out at around 13,000 nfsops, well

below the throughput 10 servers can provide (20,000 nfsops), and further increasing

client request rate doesn’t lead to increased throughput. This suggests a single vFS

node can support roughly 7 servers for the experimental configuration. Since CPU

speed continues to improve at a faster rate than disk latency does, each vFS node is

expected to be able to handle more file servers following the technology trend.

Figure 6.3 shows the client perceived latency of NFS operations for the same

experiments. Again, the 1S curve and D curve are almost identical under different

CHAPTER 6. EVALUATION 94

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

La
te
nc
y
(m

ili
se
co
nd
s)

Request rate per load generator (100 nfsops)

10S
7S
5S
3S
1S
D

Figure 6.3: Client perceived latency of a single vFS node aggregating multiple servers.
The vFS node does not add noticeable latency under a realistic workload. For each
configuration, the number of load generators used is same as the number of servers.

request rates, indicating that the vFS node does not add noticeable latency under a

realistic workload. In fact, the latency is dominated by disk latency; as the number

of file servers being used increases and the load on each server decreases, the client-

perceived latency drops.

The second set of scalability experiments measures the throughput of a vFS feder-

ation consisting of multiple nodes aggregating the throughput of multiple file servers.

For these experiment, all vFS nodes serve the same virtual volume, so the consistency

overhead is included, and the number of vFS nodes in a federation varies between 1

(1V) and 5 (5V), with the federation managing 15 file servers capable of providing

30,000 nfsops in aggregate throughput. The number of load generators used is the

federation size times the number of file servers (15). In addition, since each vFS node

is too “powerful”, it runs only one “fast-path” thread to limit its capacity. Figure 6.4

CHAPTER 6. EVALUATION 95

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

A
gg
re
ga
te
 T
hr
ou
gh
pu
t (
10
0
nf
so
ps
)

Request rate per load generator (100 nfsops)

5V
4V
3V
2V
1V

Figure 6.4: A federation of vFS nodes can collaboratively manage more servers. The
number of vFS nodes in a federation varies between 1 and 5. The federation virtualizes
15 file servers. Each vFS node uses only one CPU so that more nodes are needed to
saturate the file servers. The number of load generators is the federation size times
the number of file servers (15).

CHAPTER 6. EVALUATION 96

shows the aggregate throughput of the vFS federation observed by clients. The 1V

curve indicates that each vFS node peaks at about 7,000 nfsops. As the number of

vFS nodes increases from 1 to 4, the aggregate throughput from the federation scales

up almost linearly. Adding one more vFS node to the federation increases the total

capacity to 35,000 nfsops, exceeding the aggregate throughput of all the file servers;

therefore a big drop of the observed throughput from the federation happens when

the per load generator request rate increases from 400 nfsops (or 30,000 nfsops in

total) to 500 nfsops (or 37,5000 nfsops in total). Further increasing the request rate

doesn’t lead to drop in throughput as the five vFS nodes get saturated and limit the

request rate file servers receive.

6.4 Transparent Failover

Recall that any vFS node can serve any client request and that this property can

be used to support transparent failover among vFS nodes. This section studies the

behavior of vFS nodes in the event of a node failure by measuring the client perceived

latency. For these experiments, three client nodes are used to generate client load for

a 2-node vFS federation. Each client node uses 10 threads to generate NFS requests

in a tight loop, one request at a time, with a maximum of 30 requests pending at

any given time. Node failures are simulated by turning off the power switch of a

vFS node at random moments. Only those requests with client perceived latency

exceeding the RPC retransmission period are counted. By doing so, the measured

latency is biased towards the requests affected by the failover operation. The default

RPC retransmission period is 5 seconds, after this period RPC starts retransmitting

CHAPTER 6. EVALUATION 97

RPC retransmission period
Latency 500 ms 1000 ms 2000 ms 5000 ms

min 1005 ms 1004 ms 2004 ms 5003 ms
avg 1007 ms 1005 ms 2004 ms 5004 ms
max 1009 ms 1006 ms 2005 ms 5005 ms

Table 6.2: Client perceived latency in the event of failover, with varying retransmis-
sion period.

for a maximum of 5 retries1, i.e., for a period of 25 seconds.

Table 6.2 shows the latency of requests that exceed the RPC retransmission period,

ranging from 500 ms to 5000 ms (the default), in the event of a failover. The results

indicate that at most two RPC retransmissions are caused by the failover and none

of the clients noticed the occurrence of node failures. The heartbeat message interval

between the two vFS is 200ms and one node assumes its peer fails if it does not receive

any response to four consecutive heartbeat messages. This means, the grace period

for the failure detection in this experiment is about 800ms. This causes about two

retransmissions on average when the RPC retransmission period is 500ms. For larger

RPC retransmission periods only one retransmission is needed. The latency of the

affected client requests is dominated by the number of retransmissions necessary, as

is shown in Table 6.2. It is therefore safe to conclude that the failover mechanism in

vFS is efficient and that it does not impact file service availability when vFS fail.

6.5 Migration

This section evaluates the effectiveness of the transparent migration mechanism for

online data reorganization, and shows that vFS can improve the throughput of file ser-

1In fact, the majority of the NFS volumes in enterprises are mounted in hard mode, meaning
that clients retry unlimited number of times until they succeed.

CHAPTER 6. EVALUATION 98

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 5 10 15 20 25 30 35 40 45 50 55 60 65

A
gg
re
ga
te
 th
ro
ug
hp
ut
 (
10
0
nf
so
ps
)

Time (100 seconds)

Figure 6.5: Aggregate throughput from a vFS federation during transparent online
data migration period when it transfers data and load from busy servers to less busy
ones.

vice by gradually and transparently migrating files and directories from busy servers

to less loaded ones, without disrupting client access or requiring additional hard-

ware/software investment.

Figure 6.5 plots the aggregate throughput from a vFS federation, which consists

of 3 vFS nodes and manages 8 file servers, over a period of around two hours. During

the entire period, 12 load generators apply the SPECsfs97 workload at a total rate of

about 12,000 nfsops. All the load generators almost exclusively access the data hosted

on the first half of the servers through vFS nodes, ignoring the rest of the servers.

This scenario emulates potentially suboptimal data distribution or the change of data

access pattern. The first 4 servers are overloaded by the clients, and thus yield only

around 72,000 nfsops aggregate throughput, merely 60% their potential. Observing

CHAPTER 6. EVALUATION 99

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90

A
gg
re
ga
te
 T
hr
ou
gh
pu
t (
10
0
nf
so
ps
)

Time (100 seconds)

hotspot
background

Figure 6.6: Aggregate throughput achieved by “background” clients and “hotspot”
clients while a vFS federation splits the heavily accessed subtree to less loaded servers.

the load imbalance and attempting to correct it, vFS starts migrating a few subtrees

from the first half of the servers to the second half of the servers at around 500 seconds

from the beginning of the measurements, and finishes at around 6000 seconds. The

starting and ending times are marked by the two vertical lines in Figure 6.5. During

the one hour and a half period of data migration, vFS moved roughly 1/3 of the data,

consisting of 3.6 GB data organized in about 120,000 files and directories from the

busy file servers to less loaded ones. At the end of the migration, aggregate throughput

is improved by about 65%, close to meeting the full throughput expectation from

clients.

Besides correcting load imbalance, vFS can also alleviate or eliminate file access

hotspots through migration. This is demonstrated through another experiment in

CHAPTER 6. EVALUATION 100

which 4 “hotspot” clients try to access the same subtree with 1000 nfsops request

rate each and get the server hosting the subtree overloaded. This experiment is also

configured with 3 vFS nodes and 8 file servers each of which carries a 250 nfsops

constant load generated by 8 “background” clients. Figure 6.6 plots the aggregate

throughput observed by “hotspot” clients and “background” clients while the vFS

federation splits the heavily accessed subtree to other less loaded servers. As in

Figure 6.5, the starting and ending time of migration are marked by two vertical lines.

The “background” clients’ throughput is barely affected by the migration, while the

“hotspot” clients achieved 5 times throughput improvement when migration finishes.

Since subtrees are migrated file by file and directory by directory and it even

generates additional load on the already busy servers, the migration process is by no

means fast, but it is able to gradually and smoothly shed the load from busy servers

until the throughput contribution from all servers is more balanced. In addition, since

only the standard NFS interface is being used to migrate data, additional efficiencies

that may result from specialized data transfer protocols (e.g., online compression) are

not employed.

6.6 Summary

This chapter briefly described a user space vFS prototype on Linux with easily man-

ageable implementation complexity. This prototype was used to measure the virtual-

ization overhead for different NFS operations. The results indicate that most of the

delay was caused by dual network traversals which is a minor problem in realistic net-

work setups with realistic work load. A single vFS node without optimization is able

to manage about 7 file servers in the experimental setup although optimized imple-

CHAPTER 6. EVALUATION 101

mentation is expected to have much improved performance. Adding more vFS nodes

to a federation can aggregate the throughput of even more servers. Nodes within

the same federation are able to take over the responsibility of failed ones quickly and

transparently without clients noticing even with very stringent client retry configura-

tion. Transparent online data migration also has proved to be an effective mechanism

in correcting load imbalance and access hotspots on file servers.

Chapter 7

Conclusion

7.1 Thesis Contribution

This thesis argued for the separation of file service from file server infrastructure as a

feasible approach to avoid file service disruption and to liberate system administrators

from the management burden introduced by the deployment of large numbers of

independent file servers. In particular, this thesis presented a new architecture called

vFS to virtualize and federate already deployed file servers in large enterprises. This

architecture enables exporting virtual volumes of configurable and scalable capacity

and throughput without requiring any changes to the clients, the file servers and

the protocol they use. vFS employs full protocol virtualization to aggregate the

resources of file servers together under one umbrella of control by breaking the client-

to-server bindings. vFS also introduces transparent migration to support the moving

of files and directories among file servers even when they are being actively accessed.

Transparent migration breaks the data-to-server bindings and enables virtual volumes

to dynamically consumes resources from different file servers. vFS nodes exporting

102

CHAPTER 7. CONCLUSION 103

the same virtual volume also form a federation among themselves to achieve load

balancing and transparent failover.

This thesis also described a vFS prototype implementation in user space on Linux.

The initial experiments indicate that the prototype adds very little performance over-

head and that a single vFS node without optimization can virtualize about seven file

servers under industry standard SPECsfs workload. The throughput of a vFS fed-

eration scales linearly as the number of file servers and vFS nodes increases. The

experiments also show that vFS nodes transfer load or fail over to another with only

a few RPC retransmissions, and can transparently migrate data to improve through-

put and to balance the load among file servers.

To the best of our knowledge, vFS is the first scalable and complete NFS file server

virtualization architecture. It also first introduces transparent data migration to NFS

servers which were designed to work independently.

7.2 Future Work

There are a few ideas related to file system virtualization that are potentially worth

more research effort. vFS can already maintain multiple asynchronous copies of sub-

trees to achieve better reliability and availability, a vFS design that supports syn-

chronous subtree replication however is not explored in this thesis. Synchronous

subtree replication provides even better reliability, but its disadvantage is its com-

plexity. Given that the consistency semantics of NFS is already fairly loose, chances

are that a semi-synchronous subtree replication model exists that may provide an “al-

most consistent” view to client applications while switching from one copy to another

copy online. The complexity of this model should still be fairly manageable.

CHAPTER 7. CONCLUSION 104

This thesis described an un-optimized vFS prototype and predicted the through-

put a highly optimized version may achieve. Such a version however may still need

to solve some non-trivial design and implementation issues. One obvious direction

for optimization is to move the implementation into the OS kernel to avoid the user-

kernel context switches and reduce the number of memory copies. Furthermore,

since most of vFS processing is very simple and regular, it can even be offloaded onto

network cards, further improving throughput and reducing latency [64]. Another per-

formance related area worth further investigation is concurrent migration, as opposed

to current sequential file-by-file and directory-by-directory migration, the result of a

compromise for a simpler design and implementation. The challenge for concurrent

migration, other than its complexity, is to strike a balance between migrating subtrees

as fast as possible and interfering with normal client traffic as little as possible.

File servers and database servers are usually both widely deployed to manage un-

structured and structured data in enterprises respectively. Virtualization has proved

to be effective for managing heterogeneous single-server-architecture file servers, and

it will be interesting to explore the idea of applying file server virtualization techniques

to managing single-server-architecture database servers from different vendors. The

Structured Query Language (SQL) may play the role of a common interface for hetero-

geneous database servers, similar to the NFS protocol for file servers. The database

API is much richer than file system API and its consistency requirement is much

stronger. Therefore database virtualization presents significantly more challenge. On

the other hand, databases also present more flexible ways of distributing data. For

example a database can be distributed by table, by row or by column. Various affin-

ity requirements for different tables, rows or columns need to be satisfied if minimal

query performance degradation is desired.

References

[1] File virtualization with Acopia’s adaptive resource switching.

http://www.acopia.com, 2004.

[2] Windows server 2003 active directory.

http://www.microsoft.com/windowsserver2003/.

[3] Easing server sprawl and storage traffic load.

http://itmanagement.earthweb.com/netsys/article.php/3305701, 2004.

[4] Content delivery network. http://www.akamai.com.

[5] Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly & Associates Inc.,

Sebastopol, CA., USA, 5th edition.

[6] Darrell Anderson and Jeff Chase. Fstress: A flexible network file service bench-

mark. Technical Report TR-2001-2002, Department of Computer Science, Duke

University, May 2001.

[7] Darrell Anderson, Jeffrey Chase, and Amin Vahdat. Interposed request rout-

ing for scalable network storage. In Proceedings of the Fourth Symposium on

Operating System Design and Implementation (OSDI), October 2000.

105

CHAPTER 7. REFERENCES 106

[8] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,

Drew S. Roselli, and Randolph Y. Wang. Serverless network file systems. ACM

Transactions on Computer Systems, 14(1):41–79, February 1996.

[9] S. Baker and J. H. Hartman. The Mirage NFS router. In Prof. 29th Annual

IEEE International Conference on Local Computer Networks (LCN’04), 2004.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualiza-

tion. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating

systems principles, pages 164–177, New York, NY, USA, 2003. ACM Press.

[11] Mike Burrows. The chubby lock service loosely-coupled distributed systems. In

Proceedings of the Seventh Symposium on Operating System Design and Imple-

mentation (OSDI), November 2006.

[12] B. Callaghan and S. Singh. The autofs automounter. In Proc. of the Summer

1993 USENIX Conference, pages 59–68, Cincinnati, OH, 1993.

[13] Brent Callaghan and Tom Lyon. The automounter. In Proc. 1989 Winter

USENIX Technical Conf., pages 43–51, San Diego, California, 30 - 3 1989.

USENIX Association.

[14] Common internet file systems (cifs) technical reference. Technical report, Storage

Networking Industry Association (SNIA), March 2002.

[15] Mark Crovella, Mor Harchol-Balter, and Cristina D. Murta. Task assignment

in a distributed system: Improving performance by unbalancing load (extended

abstract). In Measurement and Modeling of Computer Systems, pages 268–269,

1998.

CHAPTER 7. REFERENCES 107

[16] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Wide-area cooperative storage with CFS. SIGOPS Operating System Review,

35(5):202–215, 2001.

[17] Building practical data protection strategies.

http://www.datadomain.com/, 2007.

[18] Distributed file system technology center.

http://www.microsoft.com/windowsserver2003/.

[19] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo Seltzer. Passive NFS

tracing of email and research workloads. In Proceedings of the Second USENIX

Conference on File and Storage Technologies (FAST’03), pages 203–216, San

Francisco, CA, March 2003.

[20] Powerpath-automated, non-disruptive path management.

http://www.emc.com/, 2007.

[21] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM, 32(2):374–

382, 1985.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-

tem. In SOSP ’03: Proceedings of the 19th ACM Symposium on Operating Sys-

tems Principles, pages 29–43, New York, NY, USA, 2003. ACM Press.

[23] David K. Gifford. Weighted voting for replicated data. In SOSP ’79: Proceedings

of the seventh ACM Symposium on Operating Systems Principles, pages 150–162,

New York, NY, USA, 1979. ACM Press.

CHAPTER 7. REFERENCES 108

[24] The Open Group. Protocols for X/Open PC Internetworking: SMB, Version 2.

The Open Group, Oct 1992.

[25] Maurice Herlihy. A quorum-consensus replication method for abstract data types.

ACM Transactions on Computer Systems, 4(1):32–53, 1986.

[26] Christopher Hertel and Christopher R. Hertel. Implementing CIFS: The Com-

mon Internet File System. Prentice Hall PTR, Aug 2003.

[27] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS file server

appliance. In Proceedings of the USENIX Winter 1994 Technical Conference,

pages 235–246, San Francisco, CA, USA, 17–21 1994.

[28] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,

M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and

performance in a distributed file system. ACM Transactions on Computer Sys-

tems, 6(1):51–81, 1988.

[29] IDC worldwide disk storage systems quarterly tracker.

http://www.idc.com/getdoc.jsp?containerid=IDC p4435.

[30] Mahesh Kallahalla, Mustafa Uysal, Ram Swaminathan, David E. Lowell, Mike

Wray, Tom Christian, Nigel Edwards, Chris I. Dalton, and Frederic Gittler. Soft-

UDC: A software-based data center for utility computing. Computer, 37(11):38–

46, 2004.

[31] Wataru Katsurashima, Satoshi Yamakawa, Takashi Torii, Jun Ishikawa, Yoshi-

hide Kikuchi, Kouji Yamaguti, Kazuaki Fujii, and Toshihiro Nakashima. NAS

switch: A novel CIFS server virtualization. In MSS ’03: Proceedings of the 20

CHAPTER 7. REFERENCES 109

th IEEE/11 th NASA Goddard Conference on Mass Storage Systems and Tech-

nologies (MSS’03), page 82. IEEE Computer Society, 2003.

[32] Eric Dean Katz, Michelle Butler, and Robert McGrath. A scalable HTTP server:

The NCSA prototype. Computer Networks and ISDN Systems, 27(2):155–164,

1994.

[33] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A flash-memory based

file system. In TCON’95: Proceedings of the USENIX 1995 Technical Conference

Proceedings on USENIX 1995 Technical Conference Proceedings, pages 13–13,

Berkeley, CA, USA, 1995. USENIX Association.

[34] Mike Kazar. Spinserver systems and linux compute farms. Technical Report

TR-3304, Network Appliance, February 2004.

[35] Andrew J. Klosterman and Gregory Ganger. Cuckoo: Layered clustering for

NFS. Technical Report CMU-CS-02-183, Carnegie Mellon School of Computer

Science, October 2002.

[36] Leslie Lamport. The part-time parliament. ACM Transactions on Computer

Systems, 16(2):133–169, 1998.

[37] Leslie Lamport. Paxos made simple. SIGACT News, 32(4):18–25, 2001.

[38] Lightweight directory access protocol (v3). http://www.ietf.org/rfc/rfc2251.txt,

December 1997.

[39] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online data

migration with performance guarantees. In FAST ’02: Proceedings of the 1st

CHAPTER 7. REFERENCES 110

USENIX Conference on File and Storage Technologies, page 21, Berkeley, CA,

USA, 2002. USENIX Association.

[40] Lustre file system. http://www.lustre.org.

[41] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath,

and Lidong Zhou. Boxwood: abstractions as the foundation for storage in-

frastructure. In OSDI’04: Proceedings of the 6th conference on Symposium on

Opearting Systems Design & Implementation, pages 8–8, Berkeley, CA, USA,

2004. USENIX Association.

[42] K. A. Marzullo. Maintaining the Time in a Distributed System: An Example of

a Loosely-Coupled Distributed Service. Ph.D. dissertation, Stanford University,

Department of Electrical Engineering, February 1984.

[43] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry.

A fast file system for UNIX. Computer Systems, 2(3):181–197, 1984.

[44] National Institute of Standards and Technology (NIST). Publication YY: An-

nouncement and Specifications for a Secure Hash Standard (SHS), January 22,

1992.

[45] NFS: Network file system protocol specification.

http://www.ietf.org/rfc/rfc1094.txt, 1989.

[46] NFS version 3 protocol specification.

http://www.ietf.org/rfc/rfc1813.txt, June 1995.

[47] Network time protocol (version 3) specification, implementation and analysis.

http://www.ietf.org/rfc/rfc1305.txt, 1992.

CHAPTER 7. REFERENCES 111

[48] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: a general pri-

mary copy. In PODC ’88: Proceedings of the seventh annual ACM Symposium

on Principles of distributed computing, pages 8–17, New York, NY, USA, 1988.

ACM Press.

[49] Panasas active scale file system (PanFS). http://www.panasas.com, 2004.

[50] Greg Papadopoulos. Moore’s law ain’t good enough. In Keynote speech at Hot

Chips X, August 1998.

[51] David C. Plummer. An Ethernet Address Resolution Protocol. Technical Report

825, September 1982.

[52] Matrix server architecture. http://www.polyserve.com, 2004.

[53] Herman C. Rao and Larry L. Peterson. Accessing files in an internet: The jade

file system. Software Engineering, 19(6):613–624, 1993.

[54] Mendel Rosenblum and John K. Ousterhout. The design and implementation of

a log-structured file system. ACM Transactions on Computer Systems, 10(1):26–

52, 1992.

[55] Antony Rowstron and Peter Druschel. Storage management and caching in

PAST, a large-scale, persistent peer-to-peer storage utility. SIGOPS Operating

System Review, 35(5):188–201, 2001.

[56] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.

Computer, 27(3):17–28, 1994.

CHAPTER 7. REFERENCES 112

[57] Yasushi Saito, Svend Frolund, Alistair Veitch, Arif Merchant, and Susan Spence.

FAB: building distributed enterprise disk arrays from commodity components.

SIGOPS Operating System Review, 38(5):48–58, 2004.

[58] Samba. http://www.samba.org/.

[59] Raja R. Sambasivan, Andrew J. Klosterman, and Gregory R. Ganger. Replica-

tion policies for layered clustering of nfs servers. In MASCOTS ’05: Proceedings

of the 13th IEEE International Symposium on Modeling, Analysis, and Simula-

tion of Computer and Telecommunication Systems, pages 361–370, Washington,

DC, USA, 2005. IEEE Computer Society.

[60] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.

Design and implementation of the Sun Network Filesystem. In Proc. Summer

1985 USENIX Conf., pages 119–130, Portland OR (USA), 1985.

[61] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large

computing clusters. 2002.

[62] Marc Shapiro. Structure and encapsulation in distributed systems: the Proxy

Principle. In Proceedings of the 6th International Conference on Distributed

Computing Systems, pages 198–204, Cambridge, Mass. (USA), May 1986. IEEE.

[63] Storage Networking Industry Association. http://www.snia.org/.

[64] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb. Building a

robust software-based router using network processors. In SOSP ’01: Proceedings

of the eighteenth ACM symposium on Operating systems principles, pages 216–

229, New York, NY, USA, 2001. ACM.

CHAPTER 7. REFERENCES 113

[65] Standard Performance Evaluation Corporation. SPEC SFS 3.0 run and report

rules, 2001.

[66] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani:

A scalable distributed file system. In Proceeding of the 16th ACM Symposium

on Operating Systems Principles, pages 224–237, 1997.

[67] Veritas storage foundation 5.0 dynamic multi-pathing.

http://eval.symantec.com/, May 2007.

[68] Carl A. Waldspurger. Memory resource management in VMware ESX server.

SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[69] Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peter-

son. Reliability and security in the CoDeeN content distribution network. In

ATEC’04: Proceedings of the USENIX Annual Technical Conference 2004 on

USENIX Annual Technical Conference, pages 14–14, Berkeley, CA, USA, 2004.

USENIX Association.

[70] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and per-

formance in the Denali isolation kernel. SIGOPS Operating System Review,

36(SI):195–209, 2002.

[71] XDR: External data representation standard.

http://www.ietf.org/rfc/rfc1832.txt, 1995.

[72] Ken Yocum, Darrell Anderson, Jeff Chase, and Amin Vahdat. Anypoint: Ex-

tensible transport switching on the edge. In Proc. 4th USENIX USITS, March

2003.

CHAPTER 7. REFERENCES 114

[73] Xiang Yu. Trading Capacity for Performance in Disk Arrays. PhD thesis, Prince-

ton University, 2003.

