Ad Hoc Data and the Token Ambiguity Problem

Qian Xi', Kathleen Fishér, David Walket, and Kenny Q. Zht

L Princeton University
2 AT&T Research

Abstract. PADSIs a declarative language used to describe the syntax arahsem
tic properties ofd hoc data sourcesuch as financial transactions, server logs and
scientific data sets. Theaps compiler reads these descriptions and generates a
suite of useful data processing tools such as format trems|gparsers, printers
and even a query engine, all customized to the ad hoc datafinrquestion. Re-
cently, however, to further improve the productivity of grammers that manage
ad hoc data sources, we have turned to usiaps as anintermediate language

in a system that first infers @aDs description directly from example data and
then passes that description to the original compiler fot geeneration. A key
subproblem in the inference engine is thken ambiguity problem- the prob-
lem of determining which substrings in the example dataespond to complex
tokens such as dates, URLS, or comments. In order to solvekka ambiguity
problem, the paper studies the relative effectivenessrettlifferent statistical
models for tokenizing ad hoc data. It also shows how to inm@ie these mod-
els into a general and effective format inference algorithmraddition to using

a declarative languag®4Ds) as a key intermediate form, we have implemented
the system as a whole L.

1 Introduction

An ad hoc data formats any data format for which useful data processing tools do
not exist. Examples of ad hoc data formats include web séwgsr genomic data sets,
astronomical readings, financial transaction reportscaljural data and more.

PADS [FG05,PADQ7] is a declarative language that describes yhéag and se-
mantics of ad hoc data formats. Tlrabs compiler, developed imL, reads these
declarative descriptions and produces a series of proghagriiararies (parser, printer,
validator and visitor) and end-to-end toolsv(L translator, query engine, reformatter,
error monitor,etc). ConsequentlypADS can dramatically improve the productivity of
data analysts who work with ad hoc data. Howewaips is not (yet) a silver bullet.
It takes time for new users to learn the language syntax aed experienced users
can take hours or days to develop descriptions for complerdts. Hence, to further
improve programmer productivity, we have developed a systalled LEARNPADS
that automatically generates end-to-end data processoig directly from example
data [FWZWO08,FWZ08]. It uses machine learning techniqoesfer aPADS descrip-
tion and then it passes that description on torhes compiler. The compiler will in
turn produce its suite of custom data processing tools. eleabs now serves as a
declarative intermediate language in the tool generationgss.

Our past experiments have shown th&ARNPADS is highly effective when the
set of tokens it uses matches the tokens used in the unknawarséa For instance,
when the unknown data set contains URLSs, dates and mess$egggdrence system
will work very well when its tokenizer contains the correcri@sponding definitions
for URLs, dates and messages used in the file. If the tokedaes not contain these
elements, inference is still possible, but the inferredcdptions are generally much
more complex than they would be otherwise.

The challenge then is to develop a general-purpose tokesungaining a wide vari-
ety of abstractions like URLSs, dates, messages, phone msnfiteepaths and more. The
key problem is that when using the conventional approachiildibg a tokenizeri(e.,
regular expressions), as we did in our previous work, thendiefins of basic tokens
overlap tremendously. For examplgdnuary 24, 2008” includes a word made
up of letters, a couple of numbers, some spaces and Enilesipdnctuation such as
the “, . Does that mean this string should be treated as an anpieat fragment or is
it a date? Perhapgdanuar y” an element of an string-based enumeration unconnected
to integer24 and20087? Perhaps the entire phrase should be merged with surround-
ing characters rather than treated in isolation? Doing algob of format inference
involves identifying that the string of charactersa- n- . . . - 0- 8 should be treated
as an indivisible token and that it is in fact a date. More galhe an effective format
inference engine for ad hoc data solvesTbken Ambiguity Problem the problem of
determining which substrings of a data file correspond tatvtoken definitions in the
presence of syntactic ambiguity.

In this paper, we describe our attempts to solve the tokericarityp problem. In
particular, we make the following contributions:

— We redesign our format inference algorithm [FWZW08] to taldvantage of in-
formation generated from an arbitrary statistical tokerdeloT his advance allows
the algorithm to process a set of ambiguous parses, sgjaébtrmost likely parses
that match global criteria.

— We instantiate the arbitrary statistical token model witiddén Markov Models
(HMMs), Hierarchical Maximum Entropy Models (HMEMSs) and [gort Vector
Machines (SVMs) and evaluate their relative effectivererspirically. We also
compare the effectiveness of these models to our previgusaph, which used
regular expressions and conventional prioritized, lohgedch for disambiguation.

— We augment our algorithm with an additional phase to analygecomplexity of
inferred descriptions and to simplify them when descriptomplexity exceeds a
threshold relative to the underlying data complexity.

Related Work.Statistical methods have been used in many grammar induptizb-
lems, includingxML schema inference [BNSTO06], information extraction frone th
web [Hon02,AGMO03] and natural language understanding §8hél hese areas do not
typically suffer from the token ambiguity problem that we $e ad hoc data, however:
tags cleanly dividexmL and web-based data, while spaces and known punctuation sym-
bols separate natural language words. In contrast, theatepmand token types found

in ad hoc data sources such as web logs and financial recerf&ranore variable and
ambiguous. We contribute to the literature on statistieahgrocessing by analyzing

Penum action { Precord Pstruct entry_t {

install Pfrom("lInstalled"); Pdat e date;
update Pfron("Updated"); Ty Ptime tine;
erase Pfron("Erased"); ', action m
}; ": ", Pid package;
Pstruct version_hdr { Popt sp_version sv;
Pint major; ':’; b
} Psource Parray yum {
Pstruct sp_version { entry_t[];
B b

Popt version_hdr h_opt;
Pi d version;

}

Fig. 1. IdealPADS description ofyum t xt format.

the effectiveness of statistical models in a new applicaticea, that of ad hoc data,
which contains markedly different characteristics from thost frequently studied data
processing domains.

The algorithm we present here is a variant of the algorithetdleed in our earlier
paper [FWZWO08]. We have made substantial modifications,avew to incorporate
probabilistic parsing information into the tokenizatiamdastructure discovery phases.
We have also added a new phase to the algorithm that simpiedy complex de-
scriptions. Our earlier paper contains an extensive coisgraof our basic grammar
induction algorithm to others that have appeared in thedlitee.

2 The Token Ambiguity Problem

Consider the log files generated hym a common software package manager. These
log files consist of a series of lines, each of which is brokea several distinct fields:
date, time, action taken, package name and version. Sipgles separate the fields.
For instance:

May 02 06:19:57 Updated: openssl.i 686 0.9.7a-43.8
Jul 16 12:37:13 Erased: dhcp-devel
Dec 10 04:07:51 Updated: openl dap.x86_64 2.2.13-4

Figure 1 shows aitdeal PADS description ofyum t xt written by a human expert.
The description is structured as a series of C-like typeadtatibns. There afgase types
like Pdat e (adate)Pt i ne (atime) andPi nt (an integer). There are alstructured
typessuch aenum(one of several stringsPst r uct (a sequence of items with dif-
ferent types, separated by punctuation symbé&lspt (a optional type) anéPar r ay
(a sequence of items with the same typa)os descriptions are often easiest read from
bottom to top, so the best place to start examining the figuiteei last declaration in the
right-hand column. There, the declaration says that theeesurce file (as indicated
by thePsour ce annotation) is an array type callgdim The elements of the array

are items with typent ry_t . Next, we can examine the tygst ry_t and observe
that it is a new-line terminated record (as indicated byRhecor d annotation) and
it contains a series of fields including a date, followed byace, followed by a time,
followed by an action (which is another user-defined typajpfved by a colon and a
spacegetc.We leave the reader to peruse the rest of the figure.

Unfortunately, when we ran our original format inferencgaaithm [FWZWO08]
on this data source, rather than inferring a compact 23edeseription, our algorithm
returned a verbose 179-line description that was difficultriderstand and even harder
to work with. After investigation, we discovered the prableThe data can be tokenized
in many ways, and the inference system was using a set ofaregpressions to do the
tokenization that was a poor match for this data set. Moremaly, consider the string
“2.2.13- 4" This string may be parsed by any of the following token s=pes:

Option 1: [int] [.] [int] [.] [int] [-] [int]
Option 2: [float] [.] [int] [-] [int]
Option 3: [int] [.] [float] [-] [int]

Option 4: [id]

The best choice for this format is Optionidd, because d can be used to parse
the data found at this point in all lines of th@mformat. Unfortunately, the simplistic
disambiguation rules for the original system chose Optidd@reover, other lines are
tokenized in different ways. For instanaljcp- devel , which also could have been
ani d is tokenized ag wor d] andO. 9. 7a- 43. 8 is tokenized agfl oat] [.]
[int] [char] [-] [float].As each distinct tokenization of similar data re-
gions is introduced, the inference engine attempts to fimdnaon patterns and unify
them. However, in this case, unification was unsuccessfiitlaa result was an overly
complex format.

The original inference algorithm disambiguates betweesrlapping tokens by us-
ing the same strategy as common lexer-generators: It taiels token in a predefined
order and picks the first, longest token that matches. Wiikctive for some data
sources, this simple policy makes fixed tokenization densiup front, does not take
contextual information into account, and restricts the afscomplex tokens like d,
ur | andnessage thatshadowsimpler ones.

3 The Format Inference Algorithm

Our new format inference algorithm consists of four stagékbuilding a statistical
token model from labeled training data; (2) dividing thetta®o newline-separated
chunksof data and finding all possible tokenizations of each chy8k;inferring a
candidate structureising the statistical model and the tokenizations; and f§g)yéng
rewriting rules to improve the candidate structure. Beeahss algorithm shares the
general structure of our earlier work [FWZWO08], we focus ba salient differences
here.

Training the statistical modelsTo speed up the training cycle, we created a tool ca-
pable of reading anyADS description and labelling the described data with the teken
specified in the description. This way, all data for which vaxdwPADS descriptions

can serve as a training suite. As we add more descriptiomsraning data improves.
Currently, the training suite is biased towards systema, @atd includes tokens for in-
tegers, floats, times, dates, IP addresses, hostnamestfig, pJRLs, words, ids and
punctuation. Parsing of tokens continues to use longesthregmantics and hence
the string “43.8” can be parsed by sequencessu¢has] [.] [int] or[int]
[.] [float] or[fl oat],butnotbyfloat] [.] [int] or[float] [.]

[fI oat] . We have experimented with a number of statistical modeltenization,
which we discuss in Section 4.

Tokenization.When inferring a description, the algorithm computes ttie@§all pos-
sible tokenizations of each data chunk. Because these ssggishare subsequences,
we organize them into a directed acyclic graph callsg@seT For example, Figure 2
shows theseQsETfor the substring “2.2.13-4".

float

Fig. 2. seQseTfrom parsing string “2.2.13-4".

Each edge in theEQSETrepresents an occurrence of a token in the data, while each
vertex marks a location in the input. If a token edge ends argexv, thenwv indi-
cates the position immediately after the last characterartaken. The first vertex in a
SEQSETmMarks the position before the first character in its outgeidges.

Structure discoveryThe structure discovery phase uség@downdivide-and-conquer
algorithm outlined in Figure 3 in the pseudo-ML functidnscover . Each invocation

of di scover calls theor acl e function to guess the structure of the data represented
by the current set 06EQSES. The oracle can prophecy eithebase typea struct
anarray or aunion Theor acl e function also partitions the inpBEQSES into sets

of subsEQSES, each of which corresponds to a component in the guessedustr.
Thedi scover function then recursively constructs the structure of esathof sub-
SEQSET.

How does theor acl e produce its prophecy? First, it uses the trained statlstica
model to assign probabilities to the edges in the inpEQSES. Next, it computes
for eachseQseTthe most probable token sequen@dPTS) among all the possible
paths using a modifiediterbi algorithm [Rab89], which we discuss in Section 4. Then,
based on the statistics of the tokens in the MPTSs, the opaetiicts the structure of
the current collection o6EQSE® using the heuristics designed for our earlier algo-
rithm [FWZWO08].

As an example, consider applying the oracle to determinéogrdevel structure of
the first line inyum t xt . It would predict the following:

) 1 [N}

struct {date; ;o time; c word; ':’; ° ' id; TBD}

type description (* abstract syntax of pads description *)
type seqset (* the seqset data structure x)
type seqsets = seqset |ist

(» A top-level description guess *)
dat at ype prophecy =
BasePr ophecy of description
| StructProphecy of seqsets I|ist
| ArrayProphecy of seqsets * seqgsets * seqsets
| Uni onProphecy of seqsets |ist

(* Guesses the best top-level description *)
fun oracle : seqsets -> prophecy

(* I'nmplements a generic inference algorithm =)
fun discover (sqgs:seqgsets) : description =
case (oracle sqs) of

BaseProphecy b => b

| StructProphecy sqss =>
let Ts = map di scover sqgss in
struct { Ts }

| ArrayProphecy (sqsfirst, sgsbody, sgsl ast) =>

let Tfirst = discover sqgsfirst in
l et Tbhody = discover sqgsbody in
let Tlast = discover sgslast in

struct { Tfirst; array { Tbody }; Tlast; }

| Uni onProphecy sqss =>
let Ts = map di scover sqgss in
union { Ts }

Fig. 3. A generic structure-discovery algorithm in Pseudo-ML.

i.e, astruct containing nine sub-structures includim@D, which is a sub-structure
whose form will be determined recursively. At this poing tir acl e partitions every
SEQSETIN the input into nine parts, corresponding to sub-strictuwundariesi.e.,
at the vertices after tokertkat e, space, ti ne, etc. During partitioning, the oracle
removessEQSETedges that cross partition boundaries because such eégagkmvant
for the next round of structure discovery. For example, & thacle cuts after the first
f | oat token in thesEQSETIN Figure 2, then it removes thel edge and thé| oat
edge between vertices 42 and 46, creating the two $EQSES in Figure 4. Finally,
theor acl e function returns the predicated structure as a “prophelyigwith the
partitionedSEQSES.

float
float

1 dasty/ /—>
int dot int | dot int int
40 41 42 43) 1+ (43 44 46
! float
! float

Fig. 4. Cutting SEQSETfor “2.2.13-4" after the first float token.

Format refinement with blob-findingThe refinement phase, which follows structure
discovery, tries to improve the initial rough structure Ipplying a series of rewriting
rules. We have modified the earlier algorithm to use a “bloblifig” rule. This rule tries
to identify data segments with highly complex, structureddiptions where none of
the individual pieces of the description describe much efdhta. Intuitively, such oc-
currences correspond to places where the data containgtl déxjree of variation, and
the inference algorithm built a description that enumetatkthe possible variations in
painstaking detail. The blob rule replaces such complenitly a singleblob token. A
typical example of this kind of data is free-form text comrnsethat sometimes appear
at the end of each line in a log file. The blob-finding rule reshihe overall complexity
of the resulting description and hence makes it more readabl

The format refinement algorithm applies the blob-findingiala bottom-up fash-
ion. It converts into a blob each sub-structure that it deewesly complex and for
which it can find a terminating pattern. ThReDs parser uses the terminating pattern to
find the extent of the blob. The algorithm merges adjacerislo

To decide whether a given structure is a blob, the algorithmputes therariance
of the structure, which measures the total number of unigtek/enum branches and
different array lengths in the structure. When the ratioMeein the variance and the
amount of the data described by the structure exceeds &tidethe algorithm decides
to convert the structure to a blob if it can find a terminatiagusence.

4 Statistical Models

A key component of the format inference algorithm descrilpetie previous section is
a selection of the best token sequence from eshSET To prioritize sequences, the
algorithm assigns probabilities using a statistical tokeydel. This section describes
three such models that we have experimented with.

Character-by-character Hidden Markov Model (HMNhe first model we investigate
is the classic first-order, character-by-character Hiddarkov Model (HMM) [Rab89].
An HMM is a statistical model that includes one set of statbsse values we can ob-
serve and a second set whose valuedhatdenand we wish to infer. The hidden states
determine, with some probability, the values of the obdalevatates. In our case, we
can observe the sequence of characters in the input strohgvesh to infer the token
that is associated with each character. The model assumegsdhability that we see
a particular character depends upon its associated tokemareover, since the HMM
is first-order, the probability of observing a particulakeéa depends upon the previous

token but no other earlier tokens. The picture below illatsts the process of generat-
ing the character sequence “2.2.13-4" from a token sequétidden HMM states are
white and observables are shaded. Notice particularlyttieatdjacent digits “1” and
“3"” are generated from two consecutive instances of thertoké , when in a true token
sequence, both characters are generated from a singléoken. A postpass will clean
this up, but such situations are dealt with more effectiiglyhe HMEMSs described in
the following subsection.

Finally, since our training data is limited, we employ onetlier approximation
in our model. Instead of modelling every individual chaescteparately, we classify
characters using a set of boolean features including fesfor whether the character
is (a) a digit, (b) an upper-case alphabetic letter, (c) eBjtace, or (d) a particular
punctuation character such as a period. We call the featotoss involving (a)-(d)
observations

Let T; denote th&*” hidden state; its value ranges over the set of all token names
Let C; denote the observation emitted by hidden stBteThree parameters determine
the model: the transition matriR(7;|T;—_1), the sensor matri® (C;|T;) and the ini-
tial probabilitiesP (T;|begin). We compute these parameters from the training data as
follows:

occurrences wherg; follows T;;_;

P(T;|T;—1) = 1

(Ti[Ti-) occurrences of;_; (1)
occurrences of’; annotated withl;

P(GIT:) = occurrences df;; (2)
occurrences df’; being first token

P (T [begin) = ~—— L o9 3)

number of training chunks

Given these parameters and a fixed input, we want to find thentslkequence
with the highest probabilityi.e., from the input sequencé, Cs, ..., C,, we want
to find the token sequencg, Ts, ..., T,, that maximizes the conditional probability
P(Ty, Tz, ..., T,|C1, Co, ..., Cy). This probability is defined as usual:

P(Tl,TQ, ceey Tn|Cl, 02, ceey Cn) X P(Tl, TQ, ...,Tn, Cl, CQ, ceey Cn)
= P(Ti[begin) - [[P(Ti|T;-1) 4)
=2

To calculate the highest probability token sequence froim todel, we run a
slightly modified variant of the Viterbi algorithm over tis€QSET

Because the character-by-character HMM is first order anpl@m only single
character features, it cannot capture complex featurdseirdata such as a substring
“ht t p: / /" which indicates a strong likelihood of being part of a URLn&®obvious
solution is increasing the order of the HMM. However, sinte token length is vari-
able in our application, it is not clear what the order shdagdIn addition, increasing
the order also increases the complexity exponentiallyelt in the next sections, we
pursue two hybrid methods that incorporate existing diasgion techniques into the
HMM framework.

Hierarchical Maximum Entropy Model (HMEMJ he character-by-character HMM ex-
tracts a set of features from each character to create amvakisa and then runs a
standard HMM over these observations. In contrast, theattbical Maximum En-
tropy Model (HMEM), which we will explore next, extracts at & features from each
substring, uses the Maximum Entropy (ME) procedure [TPR&&07] to produce an
observation and runs a standard HMM over these new kindssareations. Using the
sequence “2.2.13-4" as our example again, the correspghtMdEM may be drawn as
follows.

start int dot int dot int dash int

Formally, letT; be thei” hidden state or token in the sequence (denoted by a white
node in picture above) and I8t be the substring annotated y. Suppose the number
of tokens in the chunk i§ then the target probability is as follows.

l l
P(Ty, Ty, ... To|S1, S2, ... Si) o P(Th|begin) - [[P(TiTi-1) - [[P(SiIT3) (5)
=2 i=1

Equations (1) and (3) allow us to calculate the transitiotrixand the initial prob-
ability. We can comput®(S;|T;) using Bayes Rule,

P(T;|S;) - P(S:)

(6)

Finally, since obtaining accurate estimatedfS;) andP(T;) appears to require
more training data than we currently have, we have furthpr@pmated by simply us-
ing P(T;|S;) to estimateP (.5;|T;). Estimation ofP(T;|.S;) through the ME procedure
involves using the following features (among others): @ltnumber of characters in
the string, (b) the number of occurrences of certain puticmaharacters, (c) the total
number of punctuation characters in the string, (d) thegmes of certain substrings
such as ant, " pnf, "January”, "Jan”, "j anuar y”, and (e) the presence of digit
sequences. When we substitiR€T;|S;) for P(S;|T;) in equation (5), we obtain the
following:

l l
P(T1, Ty, .., Tu|S1, S, ..., S1) & P(Ti[begin) - [[P(TiTi-1) - [[P(T3IS:) (7)
1=2 i=1

Finally, notice that in equation (7), the number of tokena isequence will deter-
mine the number of terms in the product. Consequently, aesemuwith more tokens
will produce more terms, which our experiments have showdpees a significant bias
towards shorter token sequences. To avoid such bias, weéyntegliation (7) to use the
average log likelihood.

log P(Tl, TQ, veey Tn|Sl, SQ, ceey Sl)

 log P(Ty|begin) + Y\, log P(T|Ti_1) + S, log P(T;]S;)

l ®)

Using average log likelihood guarantees that the algorithiimot select shorter token
sequences unless the average value of all conditional pililes P(7;|S;) exceeds a
threshold.

To find the highest probability sequence for a chunk under itinodel, we imple-
mented a modified Viterbi algorithm that takes into accohatrtumber of tokens in the
sequence. In what follows, let the number of charactersdrctiunk be, and the num-
ber of tokens bé. Let C; be the character at positienand PT; be the partial token that
emits the characte?r;. ThenP(PTy, PT, ..., PT;|C1, Cs, ..., C;, k) is the probability
of a partial token sequende&l’, P15, ..., PT; conditioned on a substring of characters
C1,Cs, ..., C;, collectively emitted by a sequence lotokens. Now, lefl;; be a token
that ends at positiohand letS; be the corresponding substring. The probability of the
most likely partial token sequence up to positida

max 10gP(PT1,PT2, ...,Pn,Pn+1|Cl,CQ, ...,OfL’Jrl,k_" 1) X
PTy,...,PT;

logP(Sit1|Tiv1) + Tmax (logP(Ti41|Tiv1-6)+
i+1-6

PTI,I.I.I.%)D(TFI logP(PTy, ..., PT;|C4, ...,C;, k)),

.....

otherwise.

The left-hand-side of (9), known as@ward messageontains the token sequence
up to a positiont in the chunk as well as the lengths of the tokens. At the lasitipa
n, we computé from

P(TP,,TP,... TP,|Cy,Cs, ...,Cp, 1)

i (10)

max log

and select the last token in the most likely token sequerfdés:. tracing backwards
through the chain of messages, we obtain the most likelyntekguences. The modified
Viterbi algorithm is linear to the number of characteri the chunk.

We saw there were some problems with the basic HMM model thaivated the
use of the HMEM model. What further problems plague the HMENIGe most wor-
risome problem is that the HMEM is a generative model thautates the procedure
of generating the data, and estimates the target condifioolability by a joint proba-
bility. Therefore, it is biased towards tokens with morewrcences in the training data.
In practice, we found that when particular tokens appeaeqfently in our training
data, the algorithm would never identify them, even whery thad clear distinguish-
ing features. These difficulties motivated us to exploredtfectiveness of Hierarchical
Support Vector Machines (HSVM), which use a discriminativedel as opposed to a
generative one.

4.1 Hierarchical Support Vector Machines (HSVM)

An HSVM is exactly the same as an HMEM except it uses a Suppertdy Machine
(SVM) [CLO1] as opposed to Maximum Entropy to classify tokeBasically, an SVM
measures the target conditional probabiRyT;|S;) by generating hyperplanes that
divide the feature vector space according to the positidrisaming data points. The
hyperplanes are positioned so that the data points (feataters in our case) are sep-
arated into classes with the maximum margin between any trgses. The data points
that lie on the margins (or boundaries) of each class aredsuipport vectors

5 Evaluation

We use sample files from twenty different ad hoc data sourcesdluate our overall
inference algorithm and the different approaches to priisab tokenization. These
data sources, many of which are published on the web [PAC#@ mostly system-
generated log files of various kinds and a few ASCII spreagtshadescribing business
transactions. These files range in size from a few dozentimagew thousand.

To test a given tokenization approach on a particular safitpleve first construct a
statistical model from the other nineteen sample files ugiagiven approach. We then
use the resulting model to infer a description for the selk€ite. We repeat this pro-
cess for all three tokenization approaches (HMM, HMEM, arl@V¥) and all twenty
sample files. We use three metrics described in the followexdions to evaluate the
results:token accuracyquality of descriptiorandexecution time

Token accuracy.To evaluate tokenization accuracy for a modélon a given sample
file, we compare the most likely sequence of tokens predlayed, denoteds,,,, with

the ideal token sequence, denofedVe defineS to be the sequence of tokens generated
by the hand-writterPADS description of the file. We define three kinds of error rates,
all normalized by S|, the total number of tokens ifi:

Data source Token Error (%) Token Group Error (%) || Token Boundary Error (%
lex [HMMJHMEM[HSVM]| Tex [HMMJHMEM[HSVM]| Tex [HMM[HMEM[HSVM
1967Transactiong 30 | 30 | 18.93| 18.93(|11.0711.07] O 0 |{11.0111.07f O 0
ai.3000 70.2315.79| 18.98| 11.20(|70.2314.68| 17.26 | 10.27||53.5312.34 4.79 | 4.00
yum.txt 19.4413.33 21.80| O |[19.1411.73| 21.80| 0 ||19.1711.49 21.80| O
rpmpkgs. txt 99.66 2.71| 15.01| 0.34 (|99.64 2.14| 14.67| 0O |/99.68 0.23| 14.67| O
railroad.txt 51.94 9.47| 6.48 | 5.58 (|51.94 9.36| 5.93 | 5.58 ||46.08 8.77| 5.41 | 5.58
dibbler.1000 15.7243.40| 11.91| 0.00 |[15.7236.78 11.91| 0.00 || 4.54|13.33| 13.15| 0.00
asl.log 89.9298.91] 8.94 | 5.83 (|89.6398.91| 8.94 | 5.83 |/83.2898.54| 6.27 | 3.29
scrollkeeper.log (|18.5828.48| 18.67 | 9.86 ||18.5418.77| 8.96 | 0.12 |{18.5817.83| 8.96 | 0.12
pagelog 77.7215.29 O 7.52 ||72.7§15.290 0 7.52 ||64.7Q 5.64 0 5.64
MER_T01.01.csv|/84.5623.09| 31.32| 15.40(/84.56 23.09| 31.22 | 15.40||84.56 7.71| 13.20| 0.02
crashreporter 51.89 7.91| 4.99 | 0.19 (|51.85 7.91| 4.96 | 0.14 ||51.34 7.91| 4.92 | 0.14
Is-l.txt 33.7318.70| 19.96| 6.65 (|33.7318.23| 19.96 | 6.65 ||19.7Q0 7.45| 19.76 | 6.45
windowserverast|73.3114.98| 10.16 | 3.24 ||71.5014.98 10.07| 3.15 ||69.18411.16| 8.05 | 3.14
netstat-an 13.8917.83] 9.61 | 9.01 |[12.5115.44| 5.95 | 5.95 ||12.51114.90, 5.80 | 5.20
boot.txt 10.6725.40, 9.37 | 2.77 || 3.99(25.10| 9.14 | 2.43 || 3.34|14.48 8.27 | 1.69
quarterlyincome (|82.99 5.52| 1.98 | 1.98 ||82.99 4.22| 1.53 | 1.54 ||77.53 1.54| 153 | 1.54
corald.log 84.89 100 | 5.67 | 3.02 (|83.1198.25 3.93 | 1.27 ||81.7§97.80| 1.27 | 1.27
coraldnssrv.log (|91.0418.17| 10.64| 5.23 ||91.0418.17| 9.33 | 5.22 ||83.0714.37| 4.11 | 3.92
probed.log 1.74127.99| 16.50| 16.50|| 1.74|27.99 16.50| 16.50(| 1.75|27.98 16.42| 16.42
coralwebsrv.log (|86.67 100 | 8.75 | 23.99(|86.674 100 | 8.75 | 23.99((81.9098.33 8.75 | 23.81

token group erroe

token boundary erroe

token error=

Table 1. Tokenization errors

number of misidentified tokens if},,

Bl

number of misidentified groups ifi,,

5]

number of misidentified boundaries .,

5]

The token error rate measures the number of times a tokemegip& but the same
token does not appear in the same plac#,jn A token groups a set of token types
that have similar feature vectors and hence are hard tmgissh,e.g, hex string
andi d, which both consist of alpha-numeric characters. The takeup error rate
measures the number of times a token from a particular tokempgappears ity but
no token from the same group appears in the same locatiéh, inntuitively, if the
algorithm mistakes a token for another token in the samentgkeup, it is doing better
than choosing a completely unrelated token type. fbken boundangrror rate mea-
sures the number of times there is a boundary between takéhst no corresponding
boundary inS,,. This relatively coarse measure is interesting becausadavies are

important to structure discovery. Even if the tokens areiirectly identified, if the
boundaries are correct, the correct structure can be stilbdered.

Table 1 lists the token error, token group error, and tokeimdary error rates of
the twenty benchmarks. The results from the origineARNPADS system are pre-
sented in columns marked thyex. The original system produces high error rates for
many files because the lexer is unable to resolve overlappkans effectively. HMM
relies heavily on transition probabilities, which requirdot of data to compute to a
useful precision. Because we currently have insufficietda,ddMM generally does not
perform as well as HMEM and HSVM. In the caseas! . | og, coral d. | og and
cor al websrv. | og, HMM’s failure to detect some punctuation characters catlse
entire token sequences to be misaligned and hence giveigéregrror rates.

Quality of description.To assess description quality quantitatively, we useMirs-
mum Description Length Princip@DL) [Grii07], which postulates that a useful mea-
sure of description quality is the sum of the cost in bits ahamitting the description
(the type cost) and the cost in bits of transmitting the dpan the descriptiorfthe
data cost). In general, the type cost measures the comptEixite description, while
the data cost measures how loosely a given descriptioniasglee data. Increasing the
type cost generally reduces the data cost, o€ versa The objective is to minimize
both. Table 2 shows the percentage change in the type andaidssof the descriptions
produced by the new algorithm using each of the three tokénizschemes when com-
pared to the same costs produced by the origirslRNPADS system. In both cases,
the measurements were taken before the refinement case.

For most of the data sources, the probabilistic tokeniragitheme improved the
quality of the description by reducing both the type and th&adcosts. In the files
di bbl er. 1000, net st at - an andcor al websrv. | og, a few misidentified to-
kens cause the resulting descriptions to differ signifigainom the ones produced by
the original system.

In another experiment, a human expert judged how each géscricompared to
the original LEARNPADS results, focusing on the readability of the descriptidres,
whether the descriptions present the structure of the datass clearly. In this exper-
iment, the judge rated the descriptions one by one, on a $mate-2 (meaning the
description is too concise and it loses much useful infolmmato 2 (meaning the de-
scription is too precise and the structure is unclear). Tweesof a good description
is therefore close to 0, which means the description previdédficient information for
the user to understand the data source and the user canwaddlystand the structure
from the description. Table 3 shows that on average, HMEMHK8Y¥M outperform
the original system denoted bex.

Execution time.Compared to the original system, statistical inferenceiireg extra
time to construc6EQSE® and compute probabilities. We measured the executiostime
on a 2.2 GHz Intel Xeon processor with 5 GB of memory. The adgalgorithm takes
anywhere from under 10 seconds to 25 minutes to infer a ¢htigerj while the new
system requires a few seconds to several hours, dependitige @mount of test data
and the statistical model used. In general, the charagtehbracter HMM model is the
fastest, while HSVM is most time-consuming.

Data source Type Cost Data Cost
HMM [HMEM|HSVM||HMM [HMEM |HSVM
1967Transaction§-39.661| -27.03|-27.03|| -2.80| -2.80 | -2.80

ai.3000 -26.27 | +4.44|-19.27|| -3.16| -6.85 |-12.68
yum.txt -57.60|+50.93|-76.27|| -1.55| -7.93 | -1.05
rpmpkgs.txt -92.03| -76.29(-91.86(| +1.47| -0.00 | +1.47
railroad.txt -31.86 | -20.88|-22.93||-29.54| -29.22|-29.16
dibbler.1000 +611.22+17.83| +7.03/-19.88| -22.11(-22.10
asl.log -75.71|-22.33|-25.54|| +8.57| -15.13|-17.53
scrollkeeper.log || -14.55| -58.86(-21.18|| -7.77 | -9.98 |-11.36
pagelog 0 0 0 -11.46| -11.67|-11.67

MER_T01.01.csv|| -8.59 |-12.74|-12.74||-25.59| -24.15|-24.14
crashreporter +4.03 | -8.66 [-12.73|| -9.38| -9.41 |-12.45

Is-L.txt -74.61|-51.32|-39.30|| +0.10| -7.26 | -2.18
windowserverlast| -62.84 | -33.29(-56.18|| +6.93| -11.12| -9.87
netstat-an +147.07 -12.00|-21.63||+14.18 +6.74 | +7.65
boot.txt -72.60|-38.95|-71.29|| +5.26| -6.54 | -5.03
quarterlyincome || -18.36 | -18.36|-18.36||-32.04| -32.51|-32.51
corald.log -4.75 | -5.53 | -5.53 [|-27.28] -29.81|-29.81
coraldnssrv.log -1.86 | -2.03 | -5.86 [|+59.53 +59.53|+59.53
probed.log -14.61| -33.48|-33.48||+59.53 +63.18|+63.18

coralwebsrv.log || -8.75 |+94.58|-71.55|[-49.30| -15.91|+13.36

Table 2.Increase (+%) or decrease (-%) in type cost and data costebesfinement.

Data source lex HMM [HMEM |HSVM||Data source lex HMM |HMEM |HSVM
1967Transactions0 | 0 0 0 ||crashreporter 21 0 1 1
ai.3000 1] 1 1 0 ||ls-l.txt 2| 0 1 1
yum.txt 2| -1 1 0 |lwindowserverlast 2| O 1 1
rpmpkgs.txt 20 -1 -2 0 [|netstat-an 2 -2 0 0
railroad.txt 2| 1 1 1 ||boot.txt 2| -1 1 1
dibbler.1000 0| 2 0 0 ||quarterlyincome | 1| 1 1 1
asl.log 2| -2 2 2 ||corald.log 0| 1 1 0
scrollkeeper.log| 1| 2 1 1 ||coraldnssrviog |0 1 1 -1
pagelog o O 0 0 ||{probed.log 0| O 0 0
MER_T0O10l.csy 0| 1 0 0 |lcoralwebsrviog [0 1 1 -1

Table 3. Qualitative comparison of descriptions learned using abilstic tokenization to de-
scriptions learned by originalEARNPADS algorithm.

We have performed a number of experiments (not shown dueaimesponstraints)
that demonstrate that execution time is proportional tontin@ber of lines in the data
source. Moreover, we have found that for most descriptianglatively small repre-
sentative sample of the data is sufficient for learning itscstire with high accuracy.
For instance, out of the twenty benchmarks we have, sevarsdatces have more than

500 records. Preliminary results show that for these seatnsburces, we can generate
descriptions from just 10% of the data that can parse 95%oofrds correctly.

6 Conclusion

Ad hoc data is unpredictable, poorly documented, filled wittors, and yet ubiquitous.
It poses tremendous challenges to the data analysts thatamaiyze, vet and trans-
form it into useful information. Our goal is to alleviate tharden, risk and confusion
associated with ad hoc data by using the declarahzes language and system.

In this paper, we describe our continuing efforts to develdprmat inference en-
gine for thepADS language. In particular, we show how to redesign our formfztri
ence algorithm so that it can take advantage of informateregated from an arbitrary
statistical token model and we study the effectivenessrekticandidate models: Hid-
den Markov Models (HMMs), Hierarchical Maximum Entropy Med (HMEMs) and
Support Vector Machines (SVMs). We show that each modeléoession is generally
more accurate than the last, but at an increased perforncaste

References

[AGMO03] Arvind Arasu and Hector Garcia-Molina. Extractisgfuctured data from web pages.
In SIGMOD, pages 337-348, New York, NY, USA, 2003.

[BNSTO06] Geert Jan Bex, Frank Neven, Thomas Schwentick, kamtl Tuyls. Inference of
concise DTDs from XML data. INLDB, pages 115-126, 2006.

[Che95] Stanley F. Chen. Bayesian grammar induction fogdage modeling. Irin Pro-
ceedings of the 33rd Annual Meeting of the A@Gages 228-235, 1995.

[CLO1] Chih-Chung Chang and Chih-Jen LilIBSVM: a library for support vector ma-
chines 2001. Software available at http://www.csie.ntu.edldjin/libsvm.

[FGO5] Kathleen Fisher and Robert Gruber. PADS: A domairtifigdanguage for process-
ing ad hoc data. I®RLDI, pages 295-304, June 2005.

[FWz08] Kathleen Fisher, David Walker, and Kenny Q. Zhu. te#3DS: Automatic tool
generation from ad hoc data. 8i5GMOD, June 2008.

[FWZW08] Kathleen Fisher, David Walker, Kenny Q. Zhu, andeP&Vhite. From dirt to shov-
els: Fully automatic tool generation from ad hoc dataP@®PL, January 2008.

[Gru07] Peter D. GrunwaldThe Minimum Description Length PrincipleMIT Press, May
2007.

[Hon02] Theodore W. HongGrammatical Inference for Information Extraction and \asiu
sation on the WebPh.D. Thesis, Imperial College London, 2002.

[MEGO7] MEGA model optimization package. http://www.dsl.edu/ hal/megam/, 2007.

[PADO7] PADS project. http://www.padsproj.org/, 2007.

[Rab89] Lawrence R. Rabiner. A tutorial on hidden markov sie@nd selected applications
inspeech recognitiorProceedings of the IEEE7(2), February 1989.

[TPP96] Adam L. Berger T, Vincent J. Della Pietra, and StepheDella Pietra. A maximum
entropy approach to natural language processmnputational Linguistic22(1),
March 1996.

