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Abstract

A transient fault occurs when an energetic particle strikehip and causes a change in
state in the processor. Although there is no permanent dantiag current computation
may become corrupt. Transient faults have been shown teelimatkse of crashes at major
companies, and current technology trends will make futuoegssors more susceptible
to them. Researchers have already developed a number tibeslusing combinations
of software and hardware where the general approach is ticdtgpcomputations and
check for consistency between the copies. Unfortunatelerating correct fault-tolerant
code is difficult, and there has been little research on pgptie correctness of these
techniques. Reasoning formally about fault tolerance &lehging, because invariants
that hold at compile time, such as standard type safety, mbgatually hold at runtime.
Previous work on formalizing fault tolerance has been atigha level, including proofs
about fault-tolerant algorithms and the definition of a faalerant lambda calculus.

This dissertation presents the first set of techniquesdticsally proving fault-tolerance
properties of actual executable code. To address thissrigs| we develop modifications
to the general methodology for typed assembly languagesasdéambly-level type sys-
tem incorporates invariants about fault tolerance thasamng enough to prove that all
well-typed programs have the desired behaviors. All thaedgiired to guarantee that
a specific piece of code is fault-tolerant is to type-cheek ¢hde at the conclusion of
compilation.

More specifically, we introduce a family of three type syssenTALgt is a core
language with simple instructions that guarantees thdttyeéd programs implementing
a hybrid fault-tolerance scheme will always detect a sifeyldt before the fault can affect
the observable behavior of the program. EFAlextends TAlgt with features necessary

to support realistic compilation, including stack activatframes and dynamic memory



allocation. The third language, TAJs, precisely captures the behavior of software so-
lutions for control flow faults and can provably detect anylfahat causes incorrect
control transfers between basic blocks before controlsetkiat first incorrect block.
Although each typed assembly language is designed for dfisgeardware context, the
type systems and proof methods use similar designs, alipusrto demonstrate general
approaches needed for reasoning in the presence of trafsigts. For example, to
statically reason about values that may be corrupted atmentve generalize the “color
systems” of previous work into a framework for classifyirgjues with related reliability
properties.

As well as being the first to prove that executable code ig-talgrant, this disserta-
tion makes three additional contributions. By includingaaguage of static expressions
within the type system, we can verify low-level fault-t@det code independently of the
compilation process. We show to apply fault-tolerant typedembly languages to two
different fault models: a hybrid system to detect data faattd a software-only system
to detect control-flow faults. Finally, we investigate hawgenerate fault-tolerant typed

assembly language for a realistic compiler.
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Chapter 1

Introduction and Background

1.1 Transient Faults

A transient faultoccurs when an energetic particle strikes a transistor og imia pro-
cessor and causes a change in state. These particles dorm@neatly damage the
hardware, but they may corrupt the computation that is atigr@xecuting by depositing

a charge that alters stored values and signals.

1.1.1 Issues Caused by Transient Faults

As one might expect, transient faults can cause a host oégssin particular, as these

anecdotes show, systems can crash due to transient faults.

¢ In 2000, Sun Microsystems acknowledged that transienisaterfered with cache
memories and caused crashes in server systems at majomeustives, including

AOL, eBay, and dozens of other§]]
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e Cypress Semiconductor has stated “The wake-up call canhe iartd of 2001 with
a major customer reporting havoc at a large telephone coynpanhnically it was

found that a single soft fail...was causing an interleawetesn farm to crash”

[76].

e At Los Alamos in 2003, the ASC Q supercomputer crashed regudae to soft

errors 7).

Of course, and perhaps even worse, there is always the pipgsitat the result of a
program is incorrect. Such an outcome is referred teilast data corruption Although
these issues with crashing and correctness are bad encaggient faults can also cause
some more surprising problems.

Researcher2f] have shown how an attacker can exploit transient faultake bver
a Java Virtual Machine. In a Java Virtual Machine, the virtmachine runs in the same
address space as the untrusted program, relying on typty saf&eep the untrusted
program from touching its address space. Essentially, ttaeker can craft a program
that waits until a fault results in a pointer with a runtimg@eythat does not match its
static type and then uses this mismatch to execute arbitcaty.

Cryptographic protocols can be broken using transientddd) 8, 19, 56, 4]. For
example, certain implementations of RSA based on the CaiResnainder Theorem are
vulnerable to a single faul®]. RSA relies on the inability to factor a large numidémto
two prime number$ andg. A signature computed from a messagand a private key
d has the formax s, + b * sy wherea andb are precomputed values agglis a function
of m, d andn. If an attacker obtains two signatures (one correct, ongyfaof the same

message, he can take the difference of the two signaturesoftthe two terms cancels
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Cosmic Flux vs. Altitude Feature Size vs. Soft Error Rate
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Figure 1.1: Effects of Altitude76] and Feature Siz€elfl] on Transient Faults

out, leaving the difference of the other. Then by factoringtbe precomputed value and

calculating a greatest common divisor, the attacker cagrahehep andg.

1.1.2 Transient Fault Trends

It is difficult to get precise numbers on transient fault sataut as a benchmark, in 2004,
a typical laptop with 1GB DRAM had approximately 1 soft faédmpyear [/ ).

The particles that cause transient faults are mostly higdrgyy neutrons in cosmic-
ray radiation 76|, and so fault rates increase with altitude. The graph infgd.1shows
that the amount of cosmic ray flux in Denver, Colorado is alfiout times that of New
York City. The data was gathered over three years beginmri86, with New York
City averaging one failure every 45 days, and Leadville agierg one failure every two
days.

These results are for transient faults that affect memomangient faults can also
affect the latches in the processor itself, and these fawksmuch harder to detect.
Unfortunately, trends in processor manufacturing are inguthese fault rates to in-
crease over time. Faster clock rates, increasing trangistusity, decreasing voltages

and smaller feature sizes are resulting in processorsthahare susceptible to transient
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faults [5, 46, 63]. For example, decreasing voltages reduce the criticahgel of each
transistor, making it more likely that adding the extra geafrom a fault will change a
value. On the other hand, decreasing feature size makss itkely that a fault will affect
a given transistor. As a result, the fault rate per bit is efga:to remain roughly constant
for the next few generation®2§, 31]. However, the number of transistors per chip is
increasing, and so the overall result is an increase in thier@e per processor. Figure
1.1shows how the transient fault rate increases as the fearerdecreases in a processor.
Because of the combination of these factors, fault ratesareasing approximately 8%
per processor generatiodq).

So although the average computer user may not be aware sfenariaults today,

transient faults are likely to become a significant problarthe near future.

1.2 Existing Transient Fault Solutions

The computer architecture and compiler communities aré avedre of the issues sur-
rounding transient faults, and dealing with transient tiallas been an active area of
research for many years. At the high level, all the solutiwosk by adding redundancy.
Redundancy can be added in time (by computing a result amdcthputing it again),
in space (by storing values in two locations), or in inforimatusing techniques such as
checksums or error-correcting codes). The many solutiande divided into two main
categories: hardware-based solutions that duplicaten@aedstructures in the processor
or exploit multiple cores, and software-based solutioas ithsert additional instructions
to verify that values are not corrupted.

Chapter5 goes into more detail on the existing solutions, but as ongldvexpect,

there are trade-offs to each type. It is standard to evalmaiestem in terms of how it
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performs along three axes: cost, performance, and powansient faults add a fourth
axis to be considered — reliability. Hardware solutions geaerally more efficient in
terms of performance, but more expensive in terms of powdrast. In addition,
once a hardware solution is deployed, it cannot be changedtw&e solutions, on
the other hand, are more flexible. Because they are cordrbilea compiler, they can
be deployed when, where, and to the degree necessary. Sofdehitions have no
additional hardware cost, but they often have a noticeabtopnance overhead. The
reliability added by each solution varies, but it is safe &y ¢hat although hardware
solutions can achieve very high rates of fault detectionraedvery, software-solutions
are fundamentally limited without hardware support. Mageently, researchers have
begun proposing hybrid solutions that use small amountslditianal hardware that is
controlled by the software with the hopes that such solstaan combine the best of both

worlds.

1.2.1 An Example Solution: SWIFT

As an example, let us look more closely at one specific salutiSBWIFT (SoftWare
Implemented Fault Tolerance§(] is a software-based solution to transient faults. During
compilation, the SWIFT compiler duplicates the originahymutation, interleaves the
two copies in some manner, and inserts comparisons befmagvalues to memory to
ensure that the two versions of the computation agree. Bectne two computations
are completely independent, a single transient fault Wkily result in a difference
between the two computations. If this corruption spreads talue that will be written

to memory, the inserted comparison will fail, and controfrensferred to a designated

location containing error handling or recovery code. Ifangient fault corrupts a value
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but does not result in a noticeable difference in the valugsam to memory, then it does
not need to be detected.

The researchers who developed SWIFT evaluated it by randiofelcting faults and
looking at the resulting performance and detection ratdirét; the detection rates were
not nearly as good as they were expecting. After more inyastin, they discovered that
the compiler, having added the redundant computation, kad boing what compilers
do best — optimizing the code to remove redundancy. Optiiniza such as common
subexpression elimination were resulting in a single caipan, with additional code
before store instructions that duplicated the value to beedtand then compared the
value and its duplicate. Clearly, faults affecting the comagion itself were not being
detected. The solution was to turn off or reorder the optatians that the compiler
performed until the results were more in line with what wagested:

This leaves an interesting question. How do we know that thaedhat SWIFT
generates now is as reliable as intended? Any realistionagitig compiler is extremely
complicated, and it is very difficult to understand how a# fphases may interact. The
high-level intuition used in SWIFT is simple to understabdi how do we ensure that

the compiled code correctly implements this intuition?

1.2.2 Do Existing Solutions Work?

Most other transient fault solutions are evaluated in similays: a promising idea is
presented, a system is implemented, and experimentatseshdw an increase in fault
detection. None of these solutions provide rigorous probfheir correctness. In fact,

many do not even precisely define which faults they can handle

Ipersonal communication with G.A. Reis, October 20086.
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The goal of this thesis is provide an approach to formallgoesabout the behavior
of transient fault solutions, focusing on those approathaismake use of software. The
initial task is to determine the correct level of abstracmd best proof methodology for
reasoning about these situations. As the example with SVBHélved, it is not enough
to simply reason about th&lgorithm we need to reason about timaplementatioras
well. Transient faults affect the hardware, so the reagptechnique needs to model
primitive instructions, memory, registers, and any otleégvant hardware structures. The
addition of software redundancy occurs as a compiler phaselike optimizations and
register allocation. Because compiler phases may havepented interactions, we want

to reason about the final assembly code generated by the leompi

1.3 Proof-Carrying Code

Proof-Carrying Code43, 42] is a technique for verifying properties of untrusted, low-
level code. In a proof-carrying code system, the compileesponsible for generating
two things: the low-level code and a safety proof that the-level code obeys a prede-
fined set of properties. Then anyone who wishes to run the caxérst verify the proof
to ensure that the code will not behave unexpectedly. Tioadilly, these safety proofs

have included guarantees of memory safety and type safety.

1.3.1 Typed Assembly Languages

One standard way to represent these safety proofs is ugird gssembly languages)].
To generate a typed assembly language, the compiler begima type-safe source pro-
gram. Instead of type checking this program and then digogutte typing information,

the compiler preserves types through every level of inteiate representation. Each
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Source Code Source Code

I
i

Comp:glLlatlon Type -Preserving
Certification Compiler
Native Safety Typed Assembly
Code Proof Language

. Proof Validation ’ Type Checker

Figure 1.2: Proof-Carrying CoddZ] and Typed Assembly Languageq).

intermediate representation has its own associated tygberayand as the representations
become closer to the machine level, the type systems becaregomplicated in order
to maintain information about the program.

Once the compiler generates the final assembly code, typxkicigethe code guar-
antees that the code obeys the properties encapsulatee lypin system. Nothing is
required to be known about the correctness of the compfiénelgenerated code obeys
the safety proof, then that proves that it behaves accotditige properties captured by

the type system.

1.3.2 Using Typed Assembly Languages

Typed assembly languages are an active area of researc@hapters gives some more
background in this area. For now, we will explain the genarathodology for using a

typed assembly language.

1. Model machine execution. The goal of typed assembly languages is to reason

about the execution behavior of a program, so the first stepdevelop a model
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of how programs execute. One common way to do this is by defiaismall-

step operational semantics. Imagine that we could pauseigsre and look at the
current state of an abstract processor. We could inspeeialhes in each register
and in memory, see which instruction will be executed next, o on. The small-
step operational semantics takes a snapshot of the madkénthis and shows
how the snapshot is modified by executing one single instmicBy sequencing
many of these small steps together, we can reason aboutebet®n of an entire

program.

2. Specify the desired execution behaviorGiven the model of execution, we can

define which executions have the behavior that we desire.

3. Design the type systemThe type system encapsulates the desired invariants that
the program should maintain. Whereas high-level type systeack the types of
program variables, assembly-level type systems trackyfhestof the values in the

machine state, including the register file and memory.

4. Prove SoundnessOnce we have these three definitions, the next step is to prove
that the type system is sound with respect to the machine Inbdether words,

any well-typed program is guaranteed to execute as desiréteanachine model.

5. Show that the type system is expressiverinally, the last step is to show that the
typed assembly language is expressive. We want to rule eygdksibility that we
have designed an overly restrictive type system. If thez@alinteresting programs
that type-check, then it means nothing to prove propertesiethe behavior of all
well-typed programs. We can show that this is not the casaking a high-level
language and showing how any well-typed source program eaimpiled into a

well-typed assembly program.
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1.4 Thesis Scope

This thesis investigates the use of typed assembly languagy@a method for verifying
software-based transient fault solutions.

Typed assembly languages are especially well-suited ferlibcause of the sheer
complexity of reasoning about transient faults. Just asrthey possible interleavings of
threads make it difficult to reason about concurrent progrdine many possible transient
faults make it difficult to reason about fault tolerance. HEus reason, testing is not
sufficient. To truly test that the code a compiler generaé@sdetect all possible faults, it
would be necessary to test all combinations of featuresicdmpiler in conjunction with
all possible faults. The drastic explosion in the numbeest tases makes this infeasible.
By using a typed assembly language, we can statically gtesahat a program will
achieve perfect fault coverage relative to the fault model.

In particular, this thesis defines two families of typed assly languages, each de-
signed for a different type of solution. TAk and its close cousin ETAiy are designed
for a hybrid solution that uses a mix of hardware and softviargetect faults. TAkp
is a separate language that takes the first steps towardasnegsabout software-only
solutions to control-flow faults. In order to use these typesdembly languages for
verifying the behavior of programs in the presence of tramsfaults, we make some

slight modifications to the usual methodology for typed addg languages.

1.4.1 Modeling Transient Faults

The machine model needs to represent hardware that maydwteafioy transient faults.
We will assume that memory is protected by error-correctiogdes (ECC)Z5]. Un-

like simple parity which only detects single-bit errors, EG capable of both correcting
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single-bit errors and detecting multi-bit errors. Eachcpief data has a corresponding
ECC code. The size of the code depends on the size of the dadgtotected. Protecting
32 bits of data requires a 7 bit code, and protecting 64 bitiatd requires an 8 bit code.
When data is written to memory, the memory controller ensdbe data using a device-
specific algorithm and updates the corresponding ECC cotlethe result. When data
is read from memory (or during periodic consistency chedk®) read value is encoded
and the result is compared to the stored code. If the two cdal@®t match, the memory
controller corrects a single-bit error or reports a muitidsror to the operating system.
ECC has been shown to be extremely effective for protectiagmory [L2] and has been
used since the 195089, 64].

However, applying ECC to the register file is too costly imisrof both performance
[68] and power §5] because of the frequency of accesses. We assume that thiereg
file contents are vulnerable to transient faults and speadlifiecnodel transient faults to
registers in between the execution of two instructions. esrhodel machine executes
its small-step semantics, it may nondeterministicallyerhgin additional step rule that
corrupts a random register value.

Transient faults may actually affect any part of the prooestatapath or control.
Many “inter-instruction” faults can be modeled as a corriestruction execution fol-
lowed by a fault to the destination register. For exampleaasient fault that strikes the
ALU during the execution of an add instruction can be modaked correct add and then
a register fault to the destination register. A fault thatses a multiply to be performed
instead of add can be handled in the same way. However, thig the case for all faults.
The model does not account for faults that affect instringtiovith side effects beyond
the register file, instruction decoding, the virtual mempage table, memory buses, and

so on. (Sectior2.1.2gives a concrete example of a fault is not modeled.) This igmo



CHAPTER 1. INTRODUCTION AND BACKGROUND 12

say that solutions such as SWIFT would fail to detect all¢h@smodeled faults, in fact
many such faults would likely result in a difference betw#sntwo computations and be
detected, but only that all such faults are not guaranteeé teandled in such a system.

By specifying the machine with precise operational rules,clearly identify which
transient faults are under consideration and what hardaetravior we rely on. If a fault
can modify the assumed hardware behavior and cannot be ewbdsla register fault,
then this identifies a vulnerability that needs to be adéesath additional hardware or
software techniques.

As is standard in the literatur&T, 61], we will work under the assumption that only
one fault occurs during the execution of a program. This du#snean that multiple
faults would not be caught, only that with multiple faulteté is a minuscule chance
that they may occur in a way that tricks the fault detectiorcha@isms. For example,
the first fault may corrupt a value, while the second affdutsahecking code that would
have otherwise detected the error. Multiple faults mighbaause both computations to

calculate the same incorrect result.

1.4.2 Defining Fault Tolerance

The goal is to prove that programs are fault-tolerant, bst ¥ire need to formally define
what this means. Abstractly, a program is fault-toleranbifault can change the observ-
able behavior of a program. The definition of “observableyrakaange, but one example
would be to assume the system operates in the presence of aryagrapped 10 device.
In this case, the program is fault-tolerant if a fault doesaause a change the sequence
of values written to memory up until the point where a fauliétected.

We will focus only on formalizingfault detection and not specifyfault recovery

There are a number of known recovery techniques applicablkis problem domain.
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The simplest way to recover from a transient error is to reskee computation. For
example, Google’s MapReduce implementation distributedcwver thousands of ma-
chines. When a machine fails, its task is reassigned to anathchine 18]. By running
three copies of a computation, it is possible to use majudating to recover from a single
error [69, 73], though this requires consistently paying a high perfaroeaoverhead to
recover from a rare event. Checkpointing and rollback regpare commonly used to
recover from faults in databases and parallel syst@&@hs[7]. In our current setting, we
already assume that memory is protected, so this can easilgdx as stable storage for
the checkpointing. Because transient faults are rare nioisinreasonable to pay a high

performance cost for rolling back to the most recent cheitkpo

1.4.3 Invariants of Fault Tolerance

The type systems are designed specifically to capture ammarabout the fault-tolerance
solution. For example, when using two computations to dedata faults, there are
three main invariants that must be maintained. The copi@seoéomputation need to be
independent, so that a fault to one computation cannottafiemther computation. The
computations need to be redundant, so that in the abseneelts they calculate equal
values. In addition, any action that may affect the obsdevabhavior of the program

must be guarded by a comparison of the two computations.

1.4.4 Proving Fault Tolerance

We formalize the behavior of well-typed programs as a matieal theorem that relates
faulty and non-faulty executions of a program. First, wertkefi simulation relationship

between a program snapshot and the equivalent faulty soeibsih essentially means that
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the uncorrupted computations are identical, although treupted computations may
differ. Then we show that continuing to execute the two shafswill always maintain

the simulation relationship up until the point where theltfésidetected. This is used to
guarantee that a well-typed program behaves equivalemdtver or not it is affected by
a single fault. In addition, we show that well-typed codeyoribims to have detected a

fault when a fault has actually occurred.

1.4.5 Compiling for Fault Tolerance

Finally, we show how to take high-level (unduplicated) paygs and translate them into
well-typed fault-tolerant assembly language programs. iNgude realistic low-level
features such as memory management and discuss the effiecizagions may have on

our typed assembly language.

1.5 Thesis Organization

The remainder of this dissertation is organized as folldsapter® and3 reason about

a hybrid transient fault solution modeled after the CRAF3teyn p1]. Chapter2 begins
the process with a core assembly language called=FfAlnd walks through the first four
stages of using typed assembly languages. In order to shpressiveness, Chapt8r
defines ETAIlgT, an extension to TAEr, and discusses how to use ETALas the target
language of an optimizing compiler. Chapddakes the first steps toward reasoning about
software-only solutions to control-flow faults using a laage called TAgg. Chapter

goes into more detail on related work and ends with some famaarks.



Chapter 2

TAL g7 : Fault-tolerant Typed Assembly

Language

This chapter presents TAk, a typed assembly language designed for reasoning
formally about a hybrid transient fault solution. Our systes abstractly modeled after
CRAFT [61], a solution similar to SWIFT. Being a software-only sotutj SWIFT has
some fundamental limitations. For example, before stoaivglue to memory, SWIFT
performs a comparison between the two computations. Hawavault that occurs after
this comparison, but before the store instruction, will betcaught. CRAFT introduces
a little bit of extra hardware to help close this window of veitability.

The rest of this chapter presents the details of the absttdutbrid fault-tolerance
technique. Sectio.1 presents the syntax and operational semantics of the n&chin
model. It is a RISC-based architecture with special insibas to facilitate reliable

communication with memory and to detect control-flow fauBgction2.2 presents the

Material in this chapter is joint work with Lester Mackey, @ge A. Reis, Jay Ligatti, David I. August,
and David Walker and has been previously publishedbdbdnd [52].

15
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key principles and formal definitions for the type systemthAugh the typing rules are
specific to the particular setting, the underlying prinegplre more general; we believe
many of these principles will apply to reasoning about egldault-tolerant systems. The
combination of a TAL-like type-theory with concepts fronmassical Hoare Logics is a
particularly general and important technical contribnti®@ection2.3 describes the key
theorems we have proven including Progress, PreservatimfFalse Positives,” and
Fault Tolerance. Sectio®.4 provides empirical evidence that our new hybrid solution
to fault tolerance is feasible for many applications by nueag performance results on

simulated hardware. Finally, Secti@®b summarizes the contributions of TAL

2.1 The Fault-Tolerant Hardware

The first task is to develop the machine model so that we caonegbout the execution of
a program. The model hardware is based on a simple RISC ectlni¢, extended with

features to support detection of control-flow faults ancesateraction with memory-

mapped output devices. Correct use of these features miakessible to detect all

faults that might change a program’s observable behaviastiractical systems also
need a fault recovery mechanism of some kind. However, Iseceacovery is largely a
secondary issue to detection, we omit recovery for now.

The general strategy is to maintain two redundant and inthbgrg threads of com-
putation, which we name thgreen(G) computation and thblue (B) computation. The
green computation generally leads slightly, and the bluapdation generally trails,
though there is a fair amount of flexibility in how the insttions in each computa-
tion may be interleaved. Prior to writing data out to a memmigpped output device,

the results of the two computations are checked for equicale If the results are not
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equivalent, the machine will signal that a fault has beeeaet. The arguments to any
control-flow transfer must also be checked for faults.

The execution of assembly programs is specified using a stegdloperational se-
mantics that mapsachine state€) to other machine states. These machine states are
made up of a number of components. The first component is tiehinesregister bank
R, which is a total function that maps register names to theegstontained therein. The
metavariablea ranges over all registers, and metavariablanges only over general-
purpose registersq, ro, ...). In addition to general-purpose registers, theretare
program counter registerp¢s and pcg), which contain the same value unless there has
been the fault. There is one additional special registemgteen destination registegd.
Its role in control-flow checking will be explained later.

To facilitate proofs of certain theorems, the value in eadister is tagged with the
color (either green or blue) of the computation to which ibbgs. However, these tags
have no effect on the run-time behavior of programs. Se@&i@mdiscusses how color
tags can be removed by doing more work in the proofs. In ceptitae tags on instruction
opcodes, to be introduced momentarilg,have an effect on evaluation.

In addition to a register bank, the machine state includesde memory Cwhich
we model as a function mapping integer address#s instructions. Address 0 is not
considered a valid code address. The machine also halsi@ memory Mwhich maps
addresses to integer values. In between the value memorhanmocessor is a special
store queugeQ, which is used to detect faults before data is written to a orgrmapped
output device. The store queue is a queue of address-vahse Y& will discuss the role
of the queue in greater detail later.

Overall, an abstract machine stakg (may have the fornfiault, indicating the hard-

ware has detected a transient fault, or the ordinary $Ri€, M, Q,ir), where the first
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colors c = G|B

integers n = ...]-1|0|1]...

colored values v = cn

general registers r = ry

all regs a = r|gd|pc

register file R = |Ra—vV

code memory C = -|Cn—i

value memory M:= -|Mn—n

store queue Q == (n,n)

ALU ops op = add|sub| mul

instructions i = oprqy,rsrt|OpTry,rs,V
| ld¢rg,rs| st rg,rs| mov rg,v
| bz r,rq | jmpe rg

inst register ir o= il-

state > = (RC/M,Q,ir)| fault

Figure 2.1: Syntax of instructions and machine states.

four components are as discussed above,iamgleither an instructionto be executed,
or “-” indicating the next instruction should be fetched from eademory. Figure.l
summarizes the syntax of machine states. We use overbaiondiaindicate a sequence

of objects.

2.1.1 The Fault Model

The operational semantics is designed both to model progeuéon of machine instruc-
tions and to make explicit, precise, and transparent alhefassumptions about when
and where faults may occur. The central operational judgimas the formy; —3 >,
which expresses a single step transition from sJat® state>, while incurringk faults
and writing datas to a memory-mapped output device. We will work under thedsash
assumption of a single upset eveb¥[ 61] and hencek will always be either 0 or 1.
The datas is a (possibly empty) sequence of address-value pairs.é/itingl operational

semantics models the internal workings of the machine, tthe externally observable
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behavior of the machine is the sequence of writesthe output device or the signaling
of a hardware-detected fault. If faults cause the processbave drastically different
internal behavior, but the externally observable sequereanchanged, we consider the
program to have executed successfully.

Different fault-tolerance techniques protect differeotnponents of machines. In the
literature, the protected areas are usually insideSihieere of Replicatio(GoR) b7]. In
our case, we target faults that may occur in data manipulaitdn the processor. We
assume that both code mem@yand value memor are fully protected. This is often
the case since error-correcting codes can very efficiemtliept memory. To make these
assumptions explicit, the following three operationa¢ésspecify exactly how faults may

occur within our system.

R(a) =

(RC,M.,Q,ir) —, (R [chr{] cM.Qir) \redzap
Q1 = (ng, ), (Mg, M), (2, 1)
Q2 = (ng,n), (Mg, ), (N, )
(RC.M, QL) —; (RC.M,Qz,ir) (222
Q1= (ng,ny), (m,m), (N2, n5)
Q2 = (ng,ny), (M), (ng,ns)
(Q-zap2

(R,C,M,Ql,”) _)]_ (R7C7M7Q27Ir)

Rule reg-zapnondeterministically introduces a fault into any regidtgrreplacing the

value in that register with some other arbitrary value. €hae no restrictions on how
the underlying value might be changed. For instance, coddeys can be changed to
arbitrary integer values; references may no longer be imdsuHowever, the color tag

is preserved to facilitate fault-tolerance proofs. Beedar® color tag is fictional (has no



CHAPTER 2. TALfT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 20

effect on run-time behavior), this poses no limitation oe tault model. Rule€):1-zap
andQ»-zapalter the contents of the store queue in similar ways.

Formally, these are the only faults that can occur. Howewetice that since the
program counters and targets of indirect jumps are susdept thereg-zaprule, we
effectively capture many forms of “control-flow faults” stied previously. Notice also
that we do not explicitly consider faults that ocaluring execution of an instruction.
However, many such faults may easily be shown to be equivédecorrect execution
of an instruction composed with a fault either immediategfdoe or afterward. For
example, consider a simple register-to-register addungtm. Any fault within the adder
hardware during execution of the add is equivalent to a coadd followed by a fault
in the destination register. On the other hand, as we willaee, a fault during thetg
instruction cannot be modeled in our system.

An important benefit of our formal model is that there is alijua precise, concrete
specification to analyze. Moreover, if a researcher wante#&son about the conse-
guences of some fault that lives outside the formal modg,ittay be done by adding a

new operational rule to the system and studying its semafféct.

2.1.2 Instruction Semantics

The syntax of machine instructions was presented alongththest of the components
of our abstract machine in Figugl The semantics is described formally by the infer-
ence rules in Figure®2.2, 2.3 and2.4, and explained informally below. The formal rules
use several notational conventions. For instanck, ig a register file themR(a) is the
contents of registea andR[a — V] is the updated register file with regiseemapped to

v. Rt+ is the register file that results from incrementing bpth andpcs by 1. If R(a) is

the colored value n, we writeR,4(a) to denoten andR.q(a) to denotec. The function
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Instruction Fetch:

Rval(pCG) = Rval(pCB> Rval(pCG> € DOW(C)

fetch
(RCM.Q.) 4 (RC.M.O.CRalpG)) et
Rval(pCG) 3& Rval(pCB> .
(RC.M,Q, ) — fault retch-fai)
Basic Instructions:
R = R++[rq — Reoi(rt) (Ruai(rs) op Rai(rt))] (0p2n
(RC.M,Q,0p fa.fsf) —g (R,.CM,Q,-) P
R = Rt+[rq — ¢ (Rya(rs) op n)] (op1)

(R7C7M7Q7Op ld,Is,C n) ) (H7C7M7Q7')

mo
(R7C7M7Q7mov laa\/) —>0 (R++[rd|—>V],C,M,Q,') ( \b
Figure 2.2: Operational rules for basic instructions.

find(Q,n) produces the first pain,n’) that appears iQ, or () if no pair (n,n’) appears

in Q.

Instruction Fetch. The machine operates by fetching an instruction from codaong
and executing that instruction. The corresponding opamatisemantics rules are shown
in Figure2.2 When there is no current instruction to execute (re= -), thefetchrule
should fire. This rule tests for equality of the two progranumers to check for faults
and loads the appropriate instruction from code memorycdfand pcs are the same but
Rvai(pcs) is not a valid address in code memory, execution “gets stgoirule fires).
Well-typed programs never get stuck, even when a singlédaalrs. On the other hand,
a fault can render the two program counters inequivalerthigncase, ruléetch-failfires

and causes a transition to the fault state. Abstractly,tthissition represents hardware
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detection of a transient fault. Controlled program terrtioraor perhaps recovery may

follow. The fault model does not allow for the instructiogetf to be corrupted.

Basic Instructions. The arithmetic and move instructions (rulgs2r, oplr, andmoy)
shown in Figure2.2 are completely standard. The first arithmetic operatipnrg, rs, I
performsop on the values inrg andry, storing the result img. The second arithmetic
operation uses a constant operarid addition tors andry. All constants are annotated
with the color of the computation they belong to. Likewides movinstruction loads an

annotated constant into a register.

Memory Instructions. Transient faults are problematic only when they change the
results of computations and those resultsargervedy an external user. In this model,
the only way a result can be observed is for a program to wrii@ memory, where a
memory-mapped output device may read and process it.

Without special hardware it appeamspossibleto guarantee that storage operations
guard access to memory properly. No matter what sophisticedbftware checking is
performed just before a conventional store instructiowjlitbe undone if a fault strikes
between the check and execution of the store instruction.

To address this vulnerability, the machine possesses dieubgiore buffer (the queue
Q), which is similar to the store buffer used in previous haadwb7] and hybrid p1]
fault tolerant systems. In addition, there are two spettabgye instructions, each tagged
with a color. The green store instructiety rq, rs places the address-value pair
(Rvai(rg),Rvai(rs)) on the front of the queue (rulsts-queuein Figure2.3). The blue
store instructiorstg rq, r's retrieves the pai¢ni,n;) on the back of the queue, checks that
it equals(Ryal(rg), Rval(rs)), and then stores it in memory (rusds-men). If the pairs

are different, the hardware signals a fault (rst¢ mem-fai). Because green stores must
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Z—>§ >/

(R,C,M,Q,St@, rd’rs) 0 (R++7C7M7((Rval<rd)7Rval(rs))7Q)7‘) <StG-queue

Ral(ra)=n  Rual(rs) =n|

R p— (stg-mem)
(RC,M, ((n,1), (n,)), Stg Fa,rs) —g"™ (Re+,C, My — 1], (n,1),-)
Rval(rd) # nior Ryal(rs) # ny .
— (stg-mem-fai)
(RC,M,((n,n'),(n;,n)),sts rq,rs) — fault
find(Q, Rai(rs)) = (Ruai(rs),n) I
(RCM.Qldg rare) o (Re+lrar G ,C,M, Q) ldeaUeus
find(Q,Rai(rs)) = () Rualrs) € Dom(M) demens
(R7C7 M7Q7IdG rd7rS) -0 (R++[rd — G M(Rval(rs))]707 M?Q?‘) ©
find(Q, Rval(rs>) - () Rval(rs> ¢ DO”KM> (|d -fail)
(R,C,M,Q,ldg rg,rs) — fault G
Rval(rs) € Dom(M) (Idg-me)

(R7C7 M7Q7IdB rd7rS) —>O (R++[rd = B M(Rval(rs»],ca MaQ?')

Rval(rs) ¢ DomM)
(R,C,M,Q,ldg rq,rs) — fault

(Idg-fail

find(Q,Rvai(rs)) = () Rval(rs) ¢ Dom(M) d
(R.C,M,Q,ldg r4,rs) —¢ (Rt+[ra — G n,C,M,Q,-) (Idg-rand)

Rval(rs) ¢ DOfT‘(l\/l)
(RC.M. Q.15 Ta,rs) — g (RFHTa s BHL.CM,Q,) |

|dg-rand)

Figure 2.3: Selected operational rules for memory insibast
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always come before blue stores, instruction schedulingnsesvhat constrained. As we

will show later in SectiorR.4, we have evaluated the performance with and without this

scheduling constraint and show that its performance impagtgligible.

As an example, consider the following straight-line seqeen

[ep] ol B> w N
3
<

stpg

r,
2,
2,
rs,
la,

r4,

G5
G 256
r

B S

B 256

r3

These six instruction have the effect of storing 5 into mgnaatdress 256. Moreover, a

fault at any point in execution, to either blue or green valaeaddresses, will be caught

by the hardware when the blue store (instruction 6) comptseperands to those in the

gueue. In addition, our instruction set gives a compilerftaedom to allocate registers

however it choose®(g, reusing registers 1 and 2 in instructions 4-6 instead astegs

3 and 4) and to change the instruction schedule in various \gag, moving instruction

3 to a position between instructions 5 and 6).

Interestingly, however, not all conventional optimizatiare sound. This is why type

checking generated code can be so helpful in detecting dermgtrors. For example,
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common subexpression elimination might result in the feifgy code:

1 mvry, G5
2 mov rp, G 256
3 stg rp ri

4 stg rp 1

In this case, a fault im; after instruction 1, or a fault inp after instruction 2 will cause
both instructions 3 and 4 to manipulate the same, but incraeldress-value pair. The
result would be to store an incorrect value at the correcition or a correct value at an
incorrect location. Fortunately, the TAk type system catches reliability errors like this
one.

As mentioned in Sectio2.1.1, many “intra-instruction” faults can be modeled by
modifying the register file before or after the instructibtawever, this is not the case for
a fault that occurs during the execution of stge-memrule in between the comparisons
and the store. The hardware designer must implement stesctiovat detect or mask any
faults that occur here. If the hardware designer cannot theedpecification given by the
operational semantics, he acknowledges there may be arabllity.

The load instructions also come in paifslg andldg. As Figure2.3 shows, the
only difference in their semantics is thialg checks for a pending store in the queue
before loading its value from memory, wherédg goes directly to memory, ignoring the
gueue. This wrinkle increases the freedom in instructitvedaling by allowing the green
computation to load a value it may have recently stored leefoe blue computation has
necessarily committed the store. Ruleég-queue ldg-mem andldg-memspecify these

behaviors.
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Notice that there is no mechanism for verifying the addressiun loads. Hence, a
fault can result in an invalid address. In practice such d loé&ght induce a hardware
exception such as a segmentation fault (rdtksfail and ldg-fail) or might result in

loading some arbitrary value (ruléds-rand andldg-rand).

Control-Flow Instructions.  Any change in the control-flow of a program may cause a
different sequence of values to be stored and observed bytamal user. Consequently,
the hardware contains mechanisms to detect faults in aslE¢isat serve as jump targets.
Intuitively, these mechanisms mirror the solution to fauttstored data in that execution
of a control-flow transfer is accomplished through two instions. Our solution uses a
combination of software and hardware control-flow protatthat is similar to watchdog
processors3s], but that makes both versions of the control flow explicitrasoftware-
only control flow protection47, 60]. The operational rules that implement this solution
are shown in Figur@.4.

To achieve an unconditional jump, one execut@gs instruction first and a related
jmpg instruction at some point in the future. jpg ri moves the destination address
from rq into the special destination registgd (rule jmpg). Like the store queue, the
destination register stores a programmer intention,ata@tl by the green computation.
Later, when the blue computation attempts to commit the jbsnpxecuting gmpg r2
instruction, the contents ab are compared to the contents of the destination register
and if they are equal, control jumps to that location (rimgg). If the addresses are
different, the hardware detects a fault (see fuhps-fail). Similar to the constraint
for the store queue, forcing green control flow instructibm$e executed before the
corresponding blue version constrains the instructioredale. Sectior?.4 will show

that this scheduling constraint has only a minimal perforoeampact.
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Rval(gd) =0 (
(RC,M,Q, jmpg rg) —¢ (R++[gd — R(rq)],C,M, Q, )

jmpc)

Rval(gd) # 0
(R7C7M7Q7jmpG rd) ) fault

(jmpg-fail)

Ria(gd) # 0 Rya(rd) = Ria(gd)
R = R[pcs — R(gd)][pGs — R(rq)][d — G 0]

(R7C7M7Q7 Jmn?) rd) ) (R7C7M7Q7‘)

(jmps)

Rval(fq) # Ruai(gd) or Ryq(gd) =0
<R7C7M7Q7jmpB rd) -0 fault

(jmpg-fail)

Rval(gd) =0 Rval(rz) # 0 (
(R7C7 M7Q7 bZC Iz, rd) -0 <R++7C7 M7Q7 )

bz-untakeh

Rva(gd) # 0 Ral(rz) # O (
<R7C7M7Q7bzc rZ,rd) -0 fault

bz-untaken-fajl

Rval(gd) =0 Rval(rz) =0
(R7C7 M7Q7 bZG rZ7 rd) —>O (R++[gd = R(rd>]7c7 M7Q7 )

(bzs-taken

Rval(gd) 3& 0 Rval(rz) =0 (
(R,C,M,Q,bzs rz,rq) — fault

bzs-taken-fail

Rval(gd) # 0 Rval(rz) =0 Rval(rd) = Ruai(gd)
R = R[pcc — R(gd)][pcg — R(rq)][gd — G O]
(R7C7 M7Q7 bZB Iz, rd) -0 (R7C7 M7Q7 )

(bzz-taken

Rial(rz) =0 (Rvai(rg) # Rvai(gd) or Ryg(gd) = 0)
(R7C7 M7Q7 bZB Iz, rd) —0 fault

(bzs-taken-fail

Figure 2.4: Operational rules for control flow instructions
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The following code illustrates a typical control-flow tréeis

11ldg r1, r2
2 jnpe I
3 |dB r3, Ia

4 jnpg r3

Initially, registersro andr,4 should point to the same memory location, which contains
a code pointer to jump to. The example illustrates some ofléxévility in scheduling
jump instructions.

Conditional jumps are more complex, but follow the same qpiles. The green
conditionalbzg ry, rq testsr, and if it is 0, moves the contents of into destination
registergd (rulesbz-untakerandbzs-taker). No control-flow transfer occurs until a blue
conditionalbzs rY, r; tests the contents of it register. Ifr} is O thenr]; must equal the
contents ofyd, and if so, the control flow transfer occurs (rbis-taker). If r,is not 0, it
is not good enough merely to fall through — the contents, ahight be faulty. To avoid
this possibility, the instruction examines the destinatiegister. If it is O (and hence a
prior bzs instruction did not store an address), the fall-throughuoe€rulebz-untakeh
Our metatheory will show that this mechanism suffices toaddgailts either in the green

computation (registens andrg) or the blue computation (registarsandry).

2.2 Typing

The primary goal of the TAEr type system is to ensure that well-typed programs exhibit
fail-safe behavior in the presence of transient faults.theowords, well-typed programs

must guarantee that even when a single fault occurs, a memapyped output device
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Static Expressions

exp kinds K = Kint | Kmem

exp contexts A = -|AX:K

exps E = x|n|EopE|sel BnEy|emp|upd B, Ep En,
substitutions S:= -|SE/x

Types

zap tags Z:= -|c

basic types b:= int|®— void| b ref

reg types t :== (c,b,E) |E' =0= (c,b,E)

reg filetypes I = -|lNa—t

resulttypes RT:= O] void

Contexts
heaptyping Y = -|Wn:b
staticcontext © = A;l;(Eqg,Es);Em

Figure 2.5: TALr7 type syntax.

will never read a corrupt value and make it visible to a uses. dall this property “fault
tolerance.”

The syntax of the type system is presented in Figuge In the following sections,
we explain the intuitions and principles behind the varielesnents of the type system.
Throughout the discussion, the reader will notice that gpimig rules are not syntax-
directed. In other words, there may be situations when ninane one rule can be applied
at a given point. Of course, as with other sorts of typed abetanguage or proof-
carrying code, this presents no particular difficulty ingiige — during the translation,
the compiler knows the correct typing derivation. The cderptan either produce this
full derivation or, for efficiency’s sake, can produce suéit “typing hints” to make type

reconstruction trivial.
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2.2.1 Static Expressions

Our “type system” is actually a combination of two theori@se being a relatively simple
type theory for assembly language, inspired by previouskveor TAL [40], and the
second being a Hoare Logic, designed to enforce the morespriewariants required for
fault tolerance. The latter component requires we definegulage ofktatic expressions
for reasoning about values and storage.

The static expressions are drawn from the standard theoayithimetic and arrays
used in many classical Hoare Logiasf( Necula’s thesis45]). These static expres-
sions are classified as either integers (ki) or memories (kKindkmen). The integer
expressions include variables, constants, simple artibroperations, and values from a
memory el By, Ey, is the integer located at addrdssin En,). The memory expressions
include variables, the empty memomnip, and memory updatesipd En En, En, is @
memoryEn, updated so that addreBs, stores valudsy,).

The contextA is a mapping from variables to kinds and contains the fre@bkes
used in the static expressions at compile time. The judghéent : K classifies expres-
sionE as having kink. At runtime, these variables will have known values, so deoto
reason about program execution we use a substit@veimich maps expression variables
to expressions. The judgmefit- S: A’ holds when the substitutioB maps variables
in Dom(4’) to expressions well-formed i with types inRng4A’). The judgmeniA -
E1 = E> is valid whenE; andE; are equal objects in the standard model. The function
[E]l supplies the denotation of the closed static expression &tlasr an integer or a
memory, depending on its kind. The judgments are definedgnres2.6 and2.7, and

the denotation function is defined in Figl2&.
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%(E-vapb
i I e
5 e EP) R ey (€

AF Eqn:K A+ Ep, K A+ Ep, K
m - Kmem ny |nt. ny, - Kint (E-upd-i)
A+ upd En En, En, | Kmem

A (sub-emp-t

A+ S:A"  AF E:k x ¢ Dom(A) UDom(A”) o
A+ S E/x : A x:K (sub-g

Figure 2.6: Semantics of Static Expressions, Part 1.
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[n] =n

[emp) =

[E10p B = [Ed op[Ea]

[sel En En] = [Em]([Enl)

[upd Bn E1 Ep]] = [[Eml[ [Eall — [Ez] ]

A+ E1: Kint AF E :Kint
Y8 FSiA = [SEN-ISE)
A+ E1=E>

A E1 Kint AF Es: Kint
VS kS8 = [SEZISE] o o
A+ E1#E

AF E1: Kmem A E2 Kmem
Ve € Dom([S(Ey)])) UDom([S(E2)]). [S(E1)]|(€) = [S(E2)](£)
A+ E1=E>

(E-mem-eg

Figure 2.7: Semantics of Static Expressions, Part 2.
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2.2.2 Value Typing

Because faults strike values, corrupting their bit pateénrarbitrary ways, the subtleties
of value typing are a key concern. Informally, the type systgaintains three key pieces

of information about every value:

1. A color (green or blue)The type system is organized to ensure that when a value
is known to be green, its contents can only depend on the mtsndé other green
values not blue ones, and likewise, blue can only depend bjuen Hence, while
a fault in a green value can eventually corrupt arbitrarigryother green values,

it cannot corrupt any blue values, and vice versa.

2. A “basic type”. When no fault has occurred in the value’s color, the valuesid
type describes its shape. Values with typemay have any bit pattern. Values
with type ©® — void are pointers to code (continuations). One must satisfy the
precondition® before jumping to them. Values with tygeref are pointers to

values with typeb.

3. A static expressionWhen there has been no fault in a value’s color, the value
exactly equals the static expression. Static expressienssad to guarantee thatin
the absence of faults, the green and blue computations pecelyual values, and

hence, dynamic fault detection checks always succeed.

To summarize, every value is typed using a trif@éh, E), wherec is a color,b is a basic
type, anck is a static expression. The presence of the static expressées this type a

sort of singleton type.

Value Typing Judgment. The value typing judgment in Figug&8has the form¥; A -2

v :t, whereW maps heap addresses to basic types,/aedntains the free expression
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BF none MY G n:Ww(n) (base-}

WARL vt

WYk n:b AF E=n
W;A+4 cn:(cb,E)

(val-t)

n#0  W,AF* cn:{cb,E) AF E =0
WA+ cn:E' =0= (c,b,E)

(cond-

AF E'#0
W;A? c0:E'=0= (c,b,E)

(cond-t-nQ

A+ E :Kint
W;AC cn:{(cDb,E)

(val-zap-9

A E :Kint
W;AF¢ cn:E'=0= (c,b,E)

(val-zap-condl

Figure 2.8: Value Typing.
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variables. In the rul@al-t, a colored value nis given the typgc,b, E) when the static
expressiork is equal ton, and¥ - n: b. The judgmentV - n: b allowsn to be given
either the basic typmt or the type of the addressin memory.

The two rulescond-tandcond-t-nOare used to type the conditional type’ = 0 =
(G, — void, E/)). When the static expressi@iis equal to zero, values of this type also
have type(G, © — void, E/). WhenE' is not equal to zero, values with this type must be
0.

The final two rules fol; A F2 v : t make use of theap tag Z which is either empty
or a colorc. If the zap tag is a coloc, then there may have been a fault affecting data
of that color. Data colored the same as the zap tag can be gnetype, as it may have
been arbitrarily corrupted. The static expression usetiigitype may not contain any

free expression variables.

Value Subtyping. There is also a subtyping relatidni-t < t’ that allows all types
(c,b,E1) to be subtypes ofc,int,E2) whenA + E; = Ep. This relation is extended to
register file subtypind\ - I'1 < I'5, by requiring that the type of each general-purpose
register inl"» be a supertype of the corresponding register in Note that here is no
required relationship between the special regisjerpcs, andpcs. The rules for these

judgments appear in Figuge.

2.2.3 Instruction Typing

While many of the instruction typing rules are quite complthe essential principles

guiding their construction may be summarized as follows.

1. In the absence of faults, standard type theoretic prinaigleould be validln order

to guarantee basic safety properties, the type system sls¢éakdard properties in
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A+ E1=E>
A+ <C,b,E1>§<C,b,E2> (

subtp-triple

A E1=E
Ar <C7 b7 El) < <C7 int7 EZ)

(subtp-in}

AFt<t AFE=F
AF (E=0=1)< (E'=0=t

(subtp-condl

A-T1<TI

Vr € Dom(rz). Fl(r) < rz(l’)
A T1<I>

(reg-file-comp

Figure 2.9: Subtyping.

much the same manner as previous typed assembly langutiie&dr example,
jump targets must have code types, while loads and storetsapersate over values

with reference types.

2. Green values only depend on other green values, and bluevally depend on
blue values.When this invariant is maintained, a fault in a blue value nawer

corrupt a green value and vice versa.

3. Both green and blue computations have equal say in any daogections Dan-
gerous actions include storing values to memory-mappepubutevices and ex-
ecuting control-flow operations. When both blue and greenpdations are in-
volved, a faultin just one color is insufficient to deceive trardware fault detection

mechanisms.
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4. In the absence of faults, green and blue computations muspote identical
values. To be more precise, green and blue computations must stergigell
values to identical storage locations and must issue otdetrmnsfer control to
identical addresses. If not, the hardware will claim to detaults when there have

been none, or alternatively, might exhibit incorrect bebs/when there is a fault.

The first three principles are relatively straightforway@nforce. The fourth principle
leads to the most technical challenges as it requires wk@upality constraints between
values. Moreover, since construction of these values dkpen storage, the type sys-
tem must maintain a relatively accurate static representaf storage. We accomplish
this latter challenge using techniques drawn from HoareidsogThe former challenge
(testing values for equality) is achieved through the usihefsingleton types described

earlier.

The Instruction Typing Judgment. The judgment for typing instructions has the form
Y:0F ir = RT. Unlike the context¥, which only contains invariant heap typing as-
sumptions© contains fine-grained context-sensitive information dlibe current state
of memory and the register file. More specifical§, consists of the following sub-
contexts: (1)A, which describes the free expression variables appeanirigel other
context-sensitive objects, (£) which describes the mapping of register names to types
for register values, (3)Eq,Es), which describes the values in the queue, and&4)
which describes memory, as one does in Hoare Logic.

The “result” of checking an instruction is a result tylR&. A result type may either
be void, indicating control does not proceed past the instructioms(a jump), or a
postconditior®’, which describes the state of memory and the register fi akecution

of the instruction.
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The typing rules are defined using several notational aldittexds. The notation

'++ adds one to the static expression associated with eachapnogwunter register in

. The expressiompd En (Eg,Es) is (upd (...(upd By Eg, Es)...) Eq, Es;) when

(Ed,Es) = ((Eqy,Es;), -, (Eq, Es.)). Figures2.1Q 2.11, and2.12 presents the typing

rules for instructions, and the following paragraphs eixpllae main points of interest.

Typing Basic Instructions. Basic arithmetic operations are not “dangerous” to execute
so the definitions of their typing rules are driven by prinegl and 2, mentioned earlier.
Consider, for example, rul@p2r-tfor an arithmetic operatioap. This rule requires that
the operand registers contain integers with the same cataccordance with principal 2
(green depends on green, blue depends on blue). The regaterey has a type colored

c as well. In accordance with principle 1, the result has ieteégpe. The rule also states
that the static expression describing the result regist€fop E and that the state of the

gueue and memory are unchanged by evaluation of the instnuct

Typing Memory Instructions. Store operations are “dangerous” — they make com-
puted values observable by the outside world — so we must tieydarly careful in

the formulation of their typing rules. In accordance withnpiple 1, both green and
blue store instructions (ruless-t andstz-t) require that the address register has the basic
typeb ref and the value register has the corresponding basicliypeuitively, the store
gueue is a green object, and in accordance with principlae€gteen store instruction
may push an address-value pair onto the front the queue gsabthe address and the
value are green. In accordance with principle 4, the rulgherblue store checks that
the address-value pair to be stored is exactly equal to ttheeastvalue pair at the end of

the queue. Since the arguments to the blue store have a lpeatgd the queue always
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W;0F ir = RT|

(-0

W; (AT (Eq,Es);Em) - = (4;T; (Eqg, Es); Em)

r(rS) - <Cvint7 Eé> r(rt> - <C,int7 Et/>
["=T++[rg — (c,int,E,op §)]
= — (op2r-t)
W; (A;T; (Eqg,Es);Em) - 0P rq,rs, 1t = (A;T';(Eq,Es); Em)

[(rs) = (c,int, EL)
[ =T++rg— (c,int,E,op n)]
o - (oplr-t)
W; (A;T; (Eg,Es); Em) - 0P 1g,rs,cn = (A;T7; (Eg, Es); Em)

WA vt

(mov-
W; (AT (Eq,Es); Em) F mov 1y,v = (A;T++[rq — t]; (Eg, Es); Em)

r(rs) = (G,b ref,ES) E = sel(updEn (Eq,Es)) ES

— — ldg-t
Wi (AT (Ed, Es); Em) = ldg rg rs = (A;T++[rg — (G, b, E)]; (Eq, Es); Em) (1det)
[(rs) = (B,b ref, EL) E = sel Gy EL (Idgt)
W; (AT (Eq,Es); Em) F ldg ra rs = (A;T++[rg — (B,b,E)]; (Eg,Es); Em) °
M(rq) = (G,bref,Ey)  T(rs) =(G,b,Eg (sig-t)
— S Ste-
W, (AT (Ed,Es);Em) - Stera rs = (A;T+4; (Eé,Eé),(EdaEs>;Em>
(rq) = (B,bref,Ef) T(rs) = (B,b,ES)
A Ej=Ej AF E,=E!
- d d S 57 (StB-t)

W; (A;T; (Eqg,Es), (ES,ES);Em) F Sle rq rs = (A;T++; (Eq, Es); upd En Ej ES)

Figure 2.10: Instruction Typing Rules for Basic Instruosand Memory Instructions.
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contains green objects, both blue and green computationsimate to the actual storage
operation (in accordance with principle 3).

The load operations are somewhat simpler than the stoneigtisins since they are
not “dangerous” in our model. However, like the store instians, the operands of
blue loads must be blue and the operands of green loads mgseéée. Once again, in
accordance with principle 2, the result of a blue load iseahth a blue type and likewise
for a green load. Other than the colors, the main differemeteden two load typing rules
is the way they obtain the expression that described theetbadlue. The blue load
(rule Idg-t) simply usessel By EZ, which is the expression that describes the contents
of the address described By in the memory descriptioR,,. However, the operational

rule for ldg first checks the queue for any pending stores before loatimgdlue from

memory, and so the typing ruldg-t uses the expressiael (upd By, (Eg,Es)) EL In
other words, before taking the corresponding expressanfiy, all the pending changes

in the queue (described W¥y, Es)) are applied. This way, if the loaded value also has a

pending update, the selected expression will describeftatad value.

Typing Control-Flow Instructions.  The rules for the green jump and branch instruc-
tions are relatively simple, as they do not actually invaveontrol flow transfer.

The simplest situation involves the green jump (rjrfgpe-t). This instruction is just
a move from registery to the special destination registgd. The type of registegd is
updated to the type af; (obeying both principles 1 and 2). The rule contains comgsa
that gd must be equal to 0 in both and I’ since the hardware resets the destination
register to O after a jump.

The typing of the green conditional branch (rbizs-t) is quite similar to that of the

green jump. One difference is that tbes instruction is now a conditional move as
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W,0F ir = RT|

(gd) = (G,int,0)
[(rg) = (G,© — void,Er/)
© = (AT (Eg, By); Bpn)
(gd) = (G,int,0) .
— : (Jmpg-t)
W; (AT (Eg,Es);Em) = jmpg rg

= (8T ++[gd — (G,0 — void, Exa')]; (Eq, Es); Em)

r(gd) = (G, (&';;(E}, EL); Efy) — void, E/)
[(rq) = (B, (&;; (E}, EL); Epy) — void, Er)
A+ E =FE
JSAF S: A
S(r')(gd) = (G,int,0)
S(I)(pcg) = (G, int, Ey)
S(I')(pcg) = (B.int,Ey)

AFT < (M)

A+ (Eg,Es) = S((E},Eb)

jmpg-t
W; (A;T; (Eg,Es);Em) - jmps rq = void (imps-)

Figure 2.11: Instruction Typing Rules for Jump Instructon
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Y:0OF ir =RT

(gd) = (G,int,0)
r(rz) — <G7 |nt, Ez>
M(rqa) = (G, — void, E})
O = (&1 (Eg, Eg); En)
(gd) = (G,int,0)

— bzs-t
W; (AT (Eq,Es); Em) F bzg rz1rg ( )

N (A;r++[gd’—> E,=0= (G,@—> void, E(/j>]; (Ed7ES>; Em)

[(rz) = (B,int,E;)

[(rq) = (B, (&;T';(E}, EL); Epy) — void, Er)
M(gd) =E,=0= (G, (&;T""; (E},EY); E},) — void, E/)
At E,=E]

A+ E =FE
JSAF S: N
S()(gd) = (G, int,0)
S()(pcg) = (G, int,E/)
S()(pcs) = (B,int,Ey)

AT < 9IM)

At (Eqg,Es) = S((E}, E9))

— — (bzs-t)
W; (AT (Eg,Es);Em) F bz ryrg = (A;T++; (Eqg, Es); Em)

Figure 2.12: Instruction Typing Rules for Branch Instroos.
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opposed to an unconditional move. Hence, to represent st i the move (unknown
at compile time) the conditional typ&, = 0 = (G,© — void, E/)) is used. In addition,
since the conditional branch may fall through, the resutyping thebzs instruction is a
proper postcondition as opposedviuid, like jmpg.

The typing rules for the blue control-flow instructions done to follow the same
four principles as the other instructions. Much of the coewrji} is inherently due to
principle 1, which mandates checking all the usual consisassociated with jumps in
any typed assembly language. For comparison, a jump rul@angault-tolerant typed
assembly language requires that the target register cenégacode pointer, and that the
current register file is a subtype of that expected by thestargde. (To be consistent with
TAL e, the subtyping relationship below does not include the wgcounter register,

and the requirement for the program counter is written sephyr)

M(rq) =" — void
(pc) =int
AT <T
W; (A T)F jmprg :>void(

conventional-jmpijt

The blue jump is a true jump. According to principle 1, theitgprule jmpg-t
checks the standard typing invariants needed to ensuréy safany typed assembly
language, including (1) that both copies of the jump targeteha code type (see the
first two premises), and (2) that the current state, inclydeyister file, memory, and
gueue, matches the expected state at the jump target, mamha®substitutio® of static
expressions for universally quantified variabdeom the code type (see the final seven

premises).
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The typing of the blue conditional branch (rubes-t)is similar to the jump. The
conditional type of the destination registgd must depend on an expression that is
equivalent to the expression used in the blue branch. Anthagse instruction may

fall through, so the rule has a proper postcondition.

2.2.4 Machine State Typing

In order to prove various properties of the type system, veelhe specify the invariants of
machine states that are preserved during execution. Tlgenenits for typing a machine

state> are shown in Figure®.13and2.14and explained below.

Register File Typing. The judgment -4 R: T states that the register fiR has the

register file typd™ under heap typing¥ and a zap tag. The contents of each register
must have the type given to that register by Each program counter must have the
appropriate color, and the program counters must contaialeglues. (In the case where
one program counter is corrupted, the zapZaxy the first premise allows its actual value

to differ from the expected computed value.)

Code Typing. The judgment¥ I~ C states that code memo€y is well-formed with
respect to heap typing. The address 0 is not a valid code address. Each address must
have a code type, and the code type must contain the premonftit the instruction at

that address. If the instruction typing results in a positition @ (meaning that control

may fall through to the next instruction) then the subseguestruction must be well

typed using®’ as its precondition.

Memory Typing. The judgment’ - M : Ey, states that given heap typitgthe value

memoryM is well-formed and can be described by the static expredsjprrhe static
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Va. ;-4 R(a):T(a)
FT(pe) < (Gint,Eg) -+ T(ps) < (Bint,Bs) -~ Es=Fs
WH? R:T (RY
Y- C
0¢ Dom(C)
vne DomC). W(n)=0 —void A W;0F C(n)=RT
A (RT =0 impliesW(n+1) = @ — void) c
Wr C g
‘FEm:Kmem [Em]=M V¢ e DomM). WH/:bref AWEM(Y):b Y
WE M:En (M-
W2 Q: (Eg,Es)
Uz o (Q-emp
WE2 ()2 ()
Z+G
WYkny:bref WYkny:b ‘FEg=m FEs=mp
W () < (EG B 01
W |_Z <n17n2)7(n3_7n/2) : (Ed7ES)7(E(lj7Eé)
-+ EqiKine b Estkim  WHES (n,n): (B} EY) (O-zap4

WEC (ng,np), (N}, n}) : (Eq,Es), (E}, EL)

Figure 2.13: Machine State Element Typing.
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2 (R,C,M,Q,ir)

DomW) = Dom(C) UDom(M)
Z+#+ G = Dom(Q) C Dom(M)
WEC
ve#Zir # - = C(Ral(pg)) =ir
Ve#Z. W(Ral(pc)) = (A;T; (Eg, Es); Em) — void
dS -FS:A
WM : S(En)
W Q: §Eq,Es)
WHR: YN
-2 (R,C,M,Q,ir)

Figure 2.14: Machine State Typing.

expressiorky, must have kinkmem andM must be the denotation &,. Each location
in the domain oM must have a typé ref and the contents of that location must have

typeb.

Queue Typing. The judgment! -2 Q: (Eg, Es) means that queu® can be described

by the sequence of static expressioBg, Es) given heap typingV and zap ta@. When

the queue is empty, it is described by the empty sequencenWieezap tag is notG,

the first pair(nz, n2) must consist of an addresswith typeb ref and a value, with type

b. This pair is described by the static expression p&if, Es) whenEy evaluates tan
andEg evaluates ta,. The remainder of the queue must be described by the renrainde
of the static expression sequence. All values in the querie@rsidered to be green, so
when the zap tag i6, these values may have been arbitrarily corrupted. Acogigin

this case, the only requirements are that each static estpresiust have kind;,; and

the length of the queue must be the same as the length of tieestpression sequence.
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Machine State Typing. The judgmentZ X states that a machine statés well-typed
under zap ta@. This judgment holds wheh is a five-tuple(R,C,M, Q,ir), and these
elements are each well-typed and consistent with each. dtloée that is not well-typed
when it is the fault statéault.

The domain of the heap typingy must be the union of the domains of the code
memoryC and the value memoryl. WhenZ is not equal tdG, the queue has not been
corrupted, and so each addresgQrnis also a valid address K. The code memorg
must be well-formed with respect to the heap typiig

The zap tagZ must be either empty or colored blue or green. At least ondef t
program counters, and possibly both, will not be colore@ pgnd therefore must not be
corrupted. Ifir is an instruction, these correct program counters must pogn address
that containgr. The heap typind¥ gives this address a code ty@& I'; (Eg, Es); Em) —
void.

The contexiA contains the free variables ih) (Eg, Es), andEp,. There must be some
substitutionS that gives values to each of the variablesiin Value memoryM must
be well-formed and described by the static expresSidf,). The queueQ must be

described by5(Ey, Es). The register fild&R must have typ&(I').

2.3 Formal Results

Now that we have defined the machine model and the type systemeed to prove that
the type system is sound with respect to the machine modethbr words, if a program
is well-typed, we can guarantee certain properties abdyoskible executions of that
program. This section provides a high-level overview offtirenal results for TAlgT. A

more in-depth discussion appears in Appenlix



CHAPTER 2. TALgT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 48

In order to prove properties about program execution, wergktour single-step
transitionz; —} >» from Sectior2.1to a sequence aftransitions containing exactky

faultleLiZz, wheren is greater than or equal to zero, ais still either O or 1.

2.3.1 Type Safety

Progress states that well-typed states can take a steprticupar, a machine state that is
well-typed under the empty zap tag can take a step to anothehine state. A machine
state that is well-typed under a zap tag of caoan take a step, but the result of that step
may either be another machine state orfthet state. (Recall that? > only holds when

2 is a five-tuple(R,C, M, Q,ir) and not the fault statiult.)

Theorem 1 (Progress)

1. If FZthen —§ % and¥’ # fault.

2. If F°X thenz —3Z.

According to Preservation, if a machine state is well-typeder a zap tag, and
it takes a non-faulty step to another machine state, tharrekalting state will also be
well-typed undeiz. Additionally, if a state is well-typed under the empty zapg,tand it
takes a faulty step, then there is some calsuch that the resulting state is well-typed

underc.

Theorem 2 (Preservation)

1. If F*%ands —§ 5 ands’ # fault then-% £'.

2. If FXandx —3% thendc. F°%'.

Progress and Preservation define the usual notion of tygtysalin addition, part

one of Progress, together with part one of Preservationlghtafollowing important
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corollary: The hardware never claims to have detected avidwen no fault has occurred
during execution of a well-typed program.
Corollary 3 (No False Positives)

If 5 thenvn s—"¢5" and 5.

2.3.2 Fault Tolerance

A program is fault tolerant when all the faulty executionshadt progransimulatefault-
free executions of the program. More precisely, the seqehoutputs from the faulty
execution is required either to be identical to the faudefexecution or, in the case the
hardware detects the fault, a prefix of the fault-free exeout

In order to reason about pairs of faulty and fault-free ekeas, we define similarity
relations between values, register files, queues and nmastates. Each of these relations
is defined relative to the zap tag Intuitively, if Z is empty, the related objects must be
identical. If Z is a colorc, the objects must be identical modulo values colaredn
the latter case, values coloreanay be corrupted, and there is no hope they satisfy any
particular relation. The formal definitions of these redas are shown in Figur2.15

Using the simulation relation, we can state and prove thi falerance theorem for
well-typed programs precisely. Assume that machine aie well-typed under the
empty zap tag, and non-faulty execution>ofor n steps results in a stak and outputs
a sequence of value-address pairf somewhere during that execution a single fault is
encountered, the faulty execution will either run for 1 steps or terminate in the fault
state during that time. If the faulty execution takes 1 steps and reaches the non-faulty
stateY’, thenX’ simulatesX; and the sequence of output pairs is identical the original
execution. Alternatively, if the faulty execution reachhe fault state then the output

pairs will be a prefix of the non-faulty output pairs.
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V1 SINF v
Crnsmicrh (sim-val Cnsmecn (sim-val-zap
va. R(a)sinF R(a)
R sinf R (sim-R
Qsinf Q

Sn?. (sim-Q-empty

GmsinfFGn, GmpsinfGrn, QsinfQ
((n,n),Q) sinf ((n},n,), Q)

(sim-Q

21 SirT'F 2o

R sinf R Q sinf ¢
(R,C,M,Q,ir) sin? (R,C,M,Q,ir)

(simx)

Figure 2.15: Similarity of Machine States.
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Figure 2.16: Performance Normalized to Unprotected Versio

Theorem 4 (Fault Tolerance)
n s . (n+1)s/
If X andz—yX' then eitheE—, %)
s
or Im< (n+1) . =—" fault, and

S
1. Forall derivationiwlz’f whereX; # fault.

s =sand3c. ¥’ sinf .

o g
2. For all derivationg —"— fault wherem < (n+1).

s is a prefix ofs.

2.4 Performancé

To better understand how TAk can be applied to real world situations, Resd][sim-
ulated the TAlgt hardware in the framework of a current computer architegttine
Intel Itanium 2 ISA. The instruction set of the Itanium 2 cains many more types
of instructions than those specified in TAL. While not an exact representation of the
performance of TAkT, simulating the performance of TAk applied to this architecture

gives guidance as to the feasibility of this system in a realitecture.

1This subsection is the work of G. A. Re&1] and is included in this thesis for completeness.
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To evaluate the performance impact of the techniques, @oveos the VELOCITY
compiler 69] was modified to add the reliability techniques of TALand was used to
compile the SPEC CINT2000 and MediaBench benchmark sditesse executions were
compared against binaries generated by the original VEO¥@Qompiler, which have
no fault detection. The reliability transformation was qoled into the low-level code
immediately before register allocation and scheduling.sifoulate the new hardware
structures of TAlT, extra instructions were inserted to emulate the timing depken-
dences of the hardware structure accesses. Only optionzatinat were TAkT aware
were used on the reliable code.

Performance metrics were obtained by running the resultingries with reference
inputs on an HP workstation zx6000 with 2 900Mhz Intel Itani@ processors running
Redhat Advanced Workstation 2.1 with 4Gb of memory. Pbef non utility was used
to measure the CPU time.

Figure 2.16 presents the execution time of the fault-tolerant codetiveldo base-
line binaries with no fault detection. Naively, one migkpect the fault-tolerant code
to run twice as slowly as the fault intolerant code since thmiper of instructions is
essentially doubled. However, smart instruction scheduéind efficient allocation of
resources reduces the execution time to only 34% more tleafatitt-intolerant baseline

average. These simulations are in line with previously ishleld software-only reliability

performance experiment§(] that show the degradation due to redundant code to be less

than double.

As alluded to in Sectior2.1.2 Figure2.16 compares the performance degradation
with and without the scheduling constraint that green mgnamd control flow instruc-
tions must be executed before the corresponding blue vexsio order to perform the

second set of experiments, the compiler was modified to p@dode that had more
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flexibility in the scheduling of the green and blue versioAsnore aggressive hardware
implementation that could correlate the original and retdumt memory operations re-
gardless of the executed order was then simulated. As eegheitiis version has better
performance (in most cases) than the unconstrained cotl@wgh the colored ordering
restriction of TALeT may seem costly, removing this restriction provides onlyrelé
improvement. Comparing both to the unprotected code, trearewithout the ordering
constraint increases execution time by 30% while the vengith the ordering increases

execution time by 34%.

2.5 Summary

This chapter introduced TAly, a typed assembly language designed to verify a hybrid
fault-tolerance technique. TAd is the first technique for reasoning about fault-tolerance
properties of executable code. In addition, we identifyrfgeneral principles for verify-
ing correctness of fault tolerant systems and capture ihgke TALFT type system. The
two main formal results show that a single fault affectingetvable behavior in a well-
typed TALrT program will always be detected, and that the system wilttet to have
detected a fault when none has occurred. Despite the faciviiatyped programs es-
sentially duplicate all computation, we provide simulatresults showing a performance
overhead of 1.34x. The next chapter investigates using idasilmanguage as the target of

a realistic optimizing compiler.



Chapter 3

ETALEr : Generating fault-tolerant

assembly code

The previous chapter introduced the TAllanguage and formally proved that all well-
typed programs have certain behaviors, namely that thesctlahy single fault before

it can affect the observable behavior of the program. gAforms the core of a fault-

tolerant typed assembly language, but is only a startingtgor developing a realistic,

usable language. This chapter shows how to extendrFAlith additional features to

serve as the target of a type-directed compiler.

In addition, these changes allow us to investigate the antems between fault-
tolerant typed assembly languages and other current ckseagas in typed assembly
languages, namely typing the control stack and typing mgralbocation and initializa-
tion.

The rest of the chapter is organized as follows. Sedidrdefines a simple source-
level imperative language called MiniC. Secti8r? introduces the extended typed as-

sembly language ETAt; and summarizes its differences from TAL Section3.3

54
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int double(x:int ref) {
int v=0;
v = Ix;
V=V +y,
X 1=V,
return 0;

}

int ref y =ref 3;
int result = 0;

result = double(y);
return result;

Figure 3.1: MiniC Example Program.

updates the formal results from the previous chapter for IEFFA Section3.4 gives a
naive translation from MiniC into ETAET and sketches a proof that the result is well-
typed. Sectiord.5gives an example of the translation. SecBoBdiscusses how standard
compiler optimizations can be applied to well-typed ETFAlprograms. Finally, Section

3.7summarizes the contributions of ETAL

3.1 MiniC

MiniC is a simple imperative language with basic arithmegerations, references, and
functions. An example program is shown in Fig3&, and the complete abstract syntax
is shown in Figure3.2 The notatiorref vallocations a new heap location and initializes
it with valuev. Heap updates and accesses are notatee-tgnd ! respectively. We
will assume the existence of a garbage collector to run inbdekground and handle
deallocation. Though the syntax is extremely simplifiedrides to facilitate the proofs

later in this chapter, it is still quite expressive.
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variables xf
type T c=int|tref | X =1
typing context XF,AL = -|x:1, X
value Vv = n|x|refv
value list VS = .|V, Vs
binaryop op = +|—|x*
statement S = X=V|X=vopV
| x=Iv|vi=v
| x= f(vs)
| if vthen Selse S| whileVvdos
S'S
function declarations fds m= |1 f(X){lds; s, returnv} fds
local declarations lds t= - |tx=v; Ilds
program p = fds lds; s returny;,

Figure 3.2: MiniC Syntax.

The main typing judgments for MiniC are summarized belowd éime complete
typing rules are provided in AppendR. The typing rules are completely standard.
Essentially they enforce that variables are defined befei tise and that variables of
a given type (integers, references, and functions) are appdopriately. We use the
metavariableX to refer to a generic typing context and metavariables, andL when

referring to typing contexts for function variables, argemhvariables, and local variables

respectively.
XkFv:t Value v has type in typing context X.
XFvs: X/ Value list vs has typeXn typing context X.
F;ALFswf Statement s is well-formed given function context Furaent

context A, and local variable context L.
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F;A;LFIds:L’  Given function context F, argument context A, and currecalo
declaration L, after adding local declarations lds, the nget of
local declarations is L

FF fds:F’ Given function context F, after adding the well-formed tiores
defined in fds, the new function context is F

Fp wf Program p is well-typed.

We have defined MiniC in order to show how to compile MiniC pangs into TAL-t
programs. However, there are two things that make FAlnsuitable to be the target
language for MiniC: (1) TAleT has only a limited number of registers so it can’t handle
the unlimited number of arguments or local variables alldlwg MiniC, and (2) TAL-t

has no support for dynamic memory allocation.

3.2 ExtendingTALgtto ETALET

In order to compile MiniC into fault-tolerant assembly codes need to make a couple
of extensions to TAkt to address the issues with limited registers and lack of alyna
memory allocation. This new language is called EFALand this section focuses on
only on how it differs from TAL=t. The complete specification of ETAkL is provided as

a reference in Appendi€.

3.2.1 Memory Layout

In TAL £, memory is divided into two pieces: a code mem@rgand a value memory
M. Both of these are of a fixed size throughout the executionpsbgram. In addition,
the abstract machine is able to tell the difference betwleesettwo memories, and many
of the operational rules test to see if a location is only ohthese two. (For example,

rule fetch-failapplies when the address is noQneven if it is inM.) It is reasonable to
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assume that the abstracted hardware can make this distinati real machines are often
able to do the same using an execute bit.
In ETALgT we will conceptually further divide the value memadwyinto two pieces:

a heap and a stack. The goal is to use the stack as scratchamhcensider the heap
to be the portion of memory that is "observable”. Both theghaad stack may grow
during execution, and the stack may shrink as well. To avealidg with the possibility
of running out of memory, we will assume an infinite sized addrspace with code
memoryC in the middle, the stack in the lower addresses growing davdwand the

heap in the higher addresses growing upwards.

lower addresses higher addresses
—_—

Stack Code Memory Heap

We will continue to assume that the machine can differemti@tween code memory
and the value memory, but we do not assume it can disting@siden the locations in
M that represent the heap and those that represent the stack.

The following judgment is used to break a memory into two pg&dy using a set of
addresse4 to define the division. By using the domain®©fas the set of addresses, we

can divide the value memoi into the stack and the heap.

L
M = M1#M>

DomM) = Dom(M1) UDom(My)
Dom(M;) N Dom(M,) —
Vl1 € DomMyq). YVl € L.Vl € DOMMy). {1 < {y < {2

B (#-def)
M = M1#M>
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3.2.2 Stacks

Real machines use the stack to pass arguments and retuss,vakitemporary space
when the number of live values exceeds the number of regj$teriocal variables whose
address may be taken, and to allocate local storage witheuivterhead of the garbage
collector.

For simplicity, we will only investigate the first two of thesises. Even so, we need
to immediately think about how the stack will interact withrg@oal of fault tolerance. In
TAL kT, values are only committed to memory when both the green ledomputations
agree. However, the goal of the ETALStack is to act as temporary spill space that is not
externally visible. We do not want to require that the two pomations synchronize when
spilling values to the stack. For example, consider a pragvaich needs many registers
to perform some arithmetic computation and then storestlaérgsult to memory. In this
case, it may well make sense for the blue computation to &lpilis values to the stack,
reducing the register pressure for the green computatione @e green computation has
completed, it can spill the result and allow the blue comtiorieto use all registers for
its version of the task. Therefore the stack may contain aahgreen and blue values.
It will be up to our type system to track which is which and tdceoe the values of one
color continue to only depend on the values of the same color.

The stack grows down towards lower addresses, and we waél itef the lowest
location on the stack as the “top” of the stack and the higloesttion as the “base”

of the stack.

New Instruction Syntax and Operational Semantics

For manipulating the stack, there are two new registers andrfew instructions. Each

of these new instructions has corresponding operatiotes rahown in Figur8.3.
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generalregs a:= ... |sp
instructions i = ... |sallocn|sfreen|sld;.rqn|sstny

R'=Rt+[sps — R(sps) —nl[sps — R(sps) —n|
m= min(Dom(M))
M'=Mm—-1~0,...,m—n~— 0)
(R,C,M,Q,sallocn —, (R,C,M",Q,")

(sallog)

R =R++[spg — R(sps) +n|[sps — R(sps) + |
m= min(Dom(M))
M=M m—vVp,..(M+n-1)—wv
(R.C,M,Q,sfreen) —, (R,C,M",Q,")

(sfree

R(sp)+ne DomM)
R = R++[rg — M(R(sp) +n)]

(R7C7M7Q7S|dc la, n) ) (R7C7M7Q7')

(sld)

R(sp) +n ¢ Dom(M)
(R,C,M,Q,sld; rq, n) — fault (

sld.-fail)

R(sm) = R(sps) R(sps) +n € DomM)
(RC,M,Q,sstn ry) — SRR (Ret € MR(sps) +n— R(N)1, Q. )

(s

R(sps) # R(sps) or R(sps) +n ¢ Dom(M)
(R,C,M,Q,sstn ry) — fault

(sst-fail)

Figure 3.3: New Instruction Syntax and Operation Semaii&upport Stacks.
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Just as there is a program counter for each computatiorm, ithargreen stack pointer
Sps and a blue stack pointsips. Both stack pointers should point to the location on the
top of the single stack.

The instructionssalloc nandsfree nare used to allocate and deallocate space on
the stack. The rules fagalloc andsfreedo this by either subtracting or addimgto
both stack pointers. Our abstract semantics for theseuctgins also modify the set of
locations in memory. Stacks grow downwards, so the lowedtess inM is currently
the top of the stack. When allocatingnhew locations are added below the original top
of the stack. For convenience, we assume these locatiortaicdhe value 0, but do
consider them initialized yet. The type system will prevemrogrammer from loading
from uninitialized locations. When deallocating, the batin addresses are removed.

The instructionssld. rq n andsst n , are used to load from and store to the stack
at offsetn above the stack pointers. The rules $bd. n r, are very similar to the rules
for the basic load instructions. Instead of taking the asklges an argumerg|d; takes
an offsetn and adds that to the stack pointer colopedf that address is not iM, the
machine detects a fault, otherwise the value is loaded.elfsthck pointer colored is
corrupted, the loaded value may actually be a heap value alug wf the other color
from the stack. But since the computation is already coedito harm is done. As we
will see, stores to the stack commit immediately, so thermiseason to check the queue
for pending stores when loading from the stack.

In TAL F1, the goal was to detect a fault before allowing a store tougtivl (through
either a corrupt address or a corrupt value). In EfALthat restriction is loosened
slightly. If there has been a fault to the blue computatitwat tcorruption may affect
blue registers which are later spilled to the stack. We daweed to detect this unless it

will affect the heap portion of memory. So when the zap tag wwe will allow corrupt



CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 62

values in the locations iM corresponding to the-colored stack locations. However, we
still need to be extremely careful about the addresses nsdring to the stack. Like the

program counters, the stack pointers can be corrupted.uBedaere is only one stack
containing both green and blue values, we need to make satrevéhdo not store a blue

value at an offset off of a corrupt stack pointer, as that magfually store into a green

stack location or into the heap. The following ill-typed segce has exactly the behavior
we desire:

add rg spg n; add rg spgn, stg spg ry; Stp sSps Iy

It uses an equivalent address from each computation, sadhe sill only proceed if

both computations agree on the address. However, bothiegtractions store the same
(potentially corrupt) value,. The instructiorsst n §, can be thought of as a macro for
this sequence. Accordingly, it adds address-value pattemritoM to the sequence of

observable values, just atg does.

Typing the Stack

Typing program stacks is an active area of research in typednably languages9,
30, 50]. Since stack locations are reused during the life of a @agto hold values of
different types, the type system needs to carefully traekelchanges. If stack locations
may be aliased, tracking these changes soundly becomesuldiffLuckily, we do not
require the ability to alias stack locations in ETAL and so we can use a simple stack
typing method.

In ETALFT, a stack is conceptually an ordered list of location labetstpe triples.
We extend a number of definitions from TAtand add two mutually recursive defini-

tions for the stack type itself.
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exp kinds K = ...|Kg

base types b= ... |sptr

reg types t= ......|ns
unlabeled stack 0 ::= sbasd p|t:: ¢
labeled stack ¢ ::= E:o

static context © = A;T;(Eg,Es);Em;C

The kinds for expression variables are extended to includiedx s for the unlabeled
stack type. Stack pointers are given base typi and their static expression is used to
refer to the exact location on the stack. The nonsensertysegiven to newly allocated
stack locations. A labeled stack typeconsists of a static expressi@nthat represents
the address on the top of unlabeled stacln unlabeled stack type is either the empty
stacksbasea stack variable or a typet on top of a labeled staak Stack variables likp
have kindkg and are used to abstract parts of the caller’s stack fromatheec The stack
type needs to be tracked at each program point, so it is add=mhtext® along with the
existing register file type, queue description, and so ore Siippet below contains an

example of a stack type:

C = E:(G,)int,E) : Eg+1:(B,int,E) :: EE+2:p

M(sps) = (G,sptrE)
The stack type; says that the top location on the stackejsand that location contains a
green integer. The next location contains a blue integee. rébt of the stack starting at
locationE; + 2 is unknown and abstracted into variapldn addition, registes ps points

to the top of the stack.
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WFE n:sptr (addr-stack-}
q“';AI—Z n:t
———— (Ns-t
WA -2 n:ns( )
AF t <ns (Subtp-t-n$
Al ¢<d
A-FE=F .
A+ E:sbase< E’:sbase(Su p¢-basg
AFE=FE "
AFE p<E p (subtpe-var)
A E:(tuQ <E:(t':d) (subtpg-cong
AR ¢ wf
A E : Kint : ) A(p):KO. A+ E : Kint - -
AT E:sbase wfs WIbass AETp Wi (¢ wh-van
AFE+1=E  Artwf AF(E:0) w
: E Eo)w (¢- wf-cong

AFE:(t:(E':d) wf

Figure 3.4: Modifications to Value Typing, Subtyping, andiM@®rmed Judgments.
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A cHE:t

A+Es#E A HE @t
A Es:(td) FE:t

A-Es=E
A Es:(td) FE:t

(¢-lookup-tail)

(¢-lookup-top

A-gE—t]=¢

A-Es=E
AF (Es: (ts:Q))[E—t]=Es: (t::q)

(¢-update-top

AFEs#E  AFCE—t=C

Al (Es: (ts= Q)[E—1] =Es: (ts:: Q) (¢-update-tai)

Figure 3.5: Stack Lookup and Update.

Figure 3.4 shows the minor changes required to the value typing, suimyjpdg-
ments, and well-formed expression judgments. Any integertee given the base type
sptr. In other words, dangling pointers into the stack may exstlong as we do not
dereference them. Any integer can also given the type Since values of typ@s
have no color, neither computation can manipulate themte&as all that can be done
is to overwrite the value. The subtyping judgments are elddrso that all types are
subtypes ohsand one stack is a subtype of another if the locations arevalgmit and
corresponding locations have types which are subtypescbf@ther. In order for a stack
type to be well formed, the unabstracted portion of the stadkt describe sequential
locations.

In addition, there are two new judgments for looking up theetpf a stack location
and updating the type of a stack location shown in FiguseJudgmenh; ¢+ E : t states
that locatiorE in stack typeg has type. JudgmentA - ¢[E — t] = ¢’ Says that the result

of updating locatiorE in stack typeg to contain type is a new stack type’. All stack
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updates are strong updates. In other words, it does notmuaise type is currently in a
location when we go to update it.

The instruction typing rules for the four new stack instroigs are shown in Fig-
ure 3.6. When allocating or deallocating space on the stack, wein@djat both stack
pointers and the location on the top of the stack be deschigestjuivalent expressions.
When allocating space, new locations with the nonsensertgpee added to the top of
the stack. When deallocating, the stack must contain at &&samany locations as are
being freed. Both instructions update the types of the twokspointers to refer to the
new top of the stack.

To load from the stack at offset we must be able to look up the type of the location
at that offset. The destination register is updated to aonkeat type. When storing to
the stack, the two stack pointers must be equivalent, andtduk type is updated with
the type of the value being stored. Notice that the type olvdlee being overwritten is
irrelevant.

The rules for all the other instructions are modified to pgaia the stack type as part
of ©. The rules forjmpg andbrzg are extended to require that the current stack type is a
subtype of the target’s stack type.

In terms of top-level judgments, the major change is a newjeht¥ -2 M : ¢
shown in Figure8.7. The stack typing judgment states that a menmMryan be described
by a stack type; under a zap tag. Unlike the judgment about memory in TAE, this
judgment is parameterized by a zap tag which is used to elbténdard value typing
judgment on each location and its corresponding type.

The machine state type judgmertt (R,C,M, Q,ir) is updated to divide memoryl
into a stack portioMs and a heap portioNy,. The stack is typed with 2 Ms : ¢, and

M is typed by a new heap typing judgment described next.
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Y:0F ir =RT

M(spe) = (G,sptrEg)  T(sps) = (B,sptrEy)
AFEy=E, AFEj=FE
[ =T++[sps — (G,sptr (Eg—n))|[sps — (B,sptr (Ep—n))]
¢ =(E-n):ns:(E—(n+1)):ns:...::E:0

—— —— (salloc-t)
W; (A;T; (Eq,Es); Em; (Bt : 0)) - salloc n = (A;T; (Eg, Es); Em; )
M(sps) = (G,sptrEy)  T(sps) = (B,SptrEy)
AFEg=E, AFEj=F
¢C=E:t:...5Ef:0O AFEf =Eg+n
" =T++[sps — (G,sptt (Eg+n))|[sps — (B, Sptt (Ex+n))] (sfree-)
— sfree-
W; (A;T; (Eg,Es); Em;Q) - sfreen= (A;T; (Eq,Es); Em; Ef : 0)
I(sp) = (c,sptr,Ec) AFE.+n=E, A; ¢k En: (c,b,E)
— — (slde-t)

W; (AT (Eg,Es);EmQ) F sldcrgn = (A;T++[rq — (c,b,E)]; (Ed, Es); Em; Q)

M(sps) = (G,spttEy)  T(sps) = (B,sptrEy) AFEg=E,
AFEg+n=Es M (ry) = (c,b,Ey) A+ ¢[En— (c,b,Ey)] =¢

— — Sst-
W; (AT (Eg,Es);EmiQ) F sstn, = (A;T++; (Eq,Es); Em; () (sst

Figure 3.6: Typing Rules for the New Stack Instructions.
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WH M:¢

FE=¢  DomM)={¢}
W2 M: (E:sbase

(¢-t-base

H(E:tnd) wi FE=/

M:{E—)ﬂ}#M/
W Hnit WEEM ¢
WHM:(E:t:()

(¢-t-cong

Figure 3.7: Stack Typing.
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3.2.3 Memory Allocation and Initialization

When designing type systems for assembly languages withrdiallocation, we have
to be able to separate allocation and initialization. Oneroon approach is to use
initialization flags to track whether a location has beetathzed [39]. Newly allocated
locations are flagged with a 0, which is changed to 1 the fire# Something is written to
the location. Values can only be loaded from initializedalibans.

We will use a similar idea, but must make some modificationsHis to work in the
context of fault tolerance. The issue occurs because tleagmed blue computations may
have different views of the same location. The store quelogvala lot of flexibility in
instruction scheduling, including situations where theegr computation has initialized
a newly allocated location, but the blue computation hasThio¢ stored value is pending
in the queue, and so a green load, which always checks thedist) may load from
the location, but a blue load may not. To solve this, EfAbas three initialization flags
instead of the standard two. The added ﬁ}ageans that only the green computation has

done the initialization.

New Instruction Syntax and Operational Semantics

To allocate new locations, we add a new instructizailodb] rg rp shown in Figure3.8.
It allocates a new location in the heap portion of memory ants the address of that
location in a green registey and a blue registat,. In addition, memoryM is extended
with the new location. The instruction is also annotatechwiite basic typd that the
location will contain, but this information has no operati effect and is only used by
the type system.

The operational rule currently allocates memory sequiintiaut one can imagine

modifying this rule to implement other allocation algorth. In all likelihood,malloc
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instructions i = ... | mallodb]rqry

n=maxDomM))+1
R = Rt+[rg— n|[rp — n|

(RC.M,Q, mallodh] rg o) — (R.C.(M.nw 0),Q.7) .

malloc)

Figure 3.8: New Operation Semantics to Support Dynamic Mgrmdocation.

would actually be implemented with a sequence of instrastior a function call with
corresponding behavior.
As in MiniC, we will assume the existence of a garbage cabletd handle heap

deallocation.

Typing Memory Allocation

In order to track the initialization state of heap locatioreserence types are updated to
contain an initialization flag. As mentioned earlier, 0 meaompletely uninitialized,
and 1 means initialized, ar%imeans that only the green computation has performed its

initialization.

initialization flags ¢ = 1|30
base types b:= ...|bref®
There is a subtyping relationship between the differeniailization flags. A half ini-
tialized location containing a value of typas a subtype of an uninitialized location with
a value of typeb. Similarly, a fully initialized location is a subtype of tlw@rresponding
half initialized location. Figure8.9 shows the additional rules added to support these

relationships.
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. ¢ </
Wk n:bref c!)_¢ (addr-subtp-t
Wi n:brefd
WA n:t
W:AF n:t! AR <t (val-subtp}
val-subtp-
W:AFE n:t P
d<¢’
1
1§§§0 d<¢
o <¢’

b ref® < b ref?’ (subtp-b-ref

Figure 3.9: Additions to Subtyping to Support Referencédhzation.
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Figure 3.10 shows the modifications to the instruction typing judgmekthen a
new location is allocated to contain a value of typeit is given typeb ref®, and a
fresh expression variableis selected to represent the newly allocated address. Te tw
destination registers are updated to contain green andypedriples with the base type
b and expression. The expressiolty, that describes memory is updated to majo
0. In addition to the new rule for typinmalloc the typing rules for the existing load
and store instructions are also modified. When the green otatipn wishes to load a
value, the location must be at least half initialized. Feribfue computation, the location
must be fully initialized. The typing rules for the two stanstructions are modified to
update the initialization flags. When the green computagiones to a location, it uses
the function¢ 1 to update the flag. This function changes the uninitializad fb be
half initialized, but does not affect the other flags. Theebbemputation modifies the
initialization flag to be fully initialized. In addition, wdn one of the store instructions
changes the initialization flag on a value, it needs to upithetéype for that location used
by the corresponding computation.

Now that we have initialization flags, we can no longer typeheap portion of
memory by itself. We also need information about the queughteck for consistency
in the initialization states of each location. The new andlified rules are shown in
Figure3.11

Judgment’; M: Q+Z ¢ : b ref® holds for locatiory whenQ andM are consistent with
the initialization flagd. If the initialization flag is 1, thetM (/) needs to have type If
the initialization flag i%, and the zap tag is not green, there must be a pending stére to

in the queue. If the initialization flag is 0, nothing is reqd ofM or Q.
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o7
07 = 3 it =1 11 = 1
W,0F ir = RT|
XA
[ =T++[rg — (G,b ref®, x)][rp — (B, b ref®,x)]
E,=upd B,x0

— — (malloc-t)
W; (A;T; (Eg,Es);Em; ¢) = mallodb] rg rp = (A,X: Kint; T'’; (Eq, Es); El Q)

AFT(rg) < (G,brefz El) E = sel(upd By (Eq,Es)) EL

— — ldg-t
W, (AT (Eg, Es); Emy Q) = ldg rq rs = (A;T++[rg — (G, b,E)]; (Eq, Es); Em; G) (1det)
M(rs)=(B,brefL El) E = sel Gy EL (1da-t)
W; (AT (Bg, Es);EmyQ) = Idg rg s = (AT ++[rg — (B, b, E)]; (Eq, Es); Em; Q) °
M(ra) = (G,bref®,Ey)  T(ry)=(G,b,EY
[’ = [++ excepty r wherel (r) = (¢, b ref®,E;) andAF E, = Ej .
'(r) = (c;,bref®T E) (st
— — Sle-
W; (A;T; (Eq,Es);Em Q) F sigra rs = (A;T7; (E), ES), (Ed, Es); Em; ¢)
AT (rg) < (B,brefz, EY)  T(rs) = (B,b,EL)
A E{=E! AR Ej=E]
" =T++ excepty r wherel (r) = (¢, b ref%,Er> andA+-Er =Ej .
I(r) = (¢, b refl, E
(1) = (e bref! By ot

W; (AT (Eqg,Es), (Ey,ES) EmQ) F Stergrs = (A T7; (Eq, Es);upd En Ej ES Q)

Figure 3.10: Instruction Typing Rules to Support Dynamiaibey Allocation.
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The queue typing judgmett -2 Q : (Eq, Es) in TAL gt requires that all addresses in
the queue have typeref for someb unless the zap tag is green. In addition in ETFAL
the base type of these locations must be at least half ingal

The heap typing judgmen¥ 2 (M, Q) : (Em, (Eq,Es)) requires all locations to be
consistent withM andQ. In addition,(Eq, Es) describe®Q, andE, describesvl.

Finally, the machine state typing judgment is modified sa thdivides memoryM
into the stack portioiMs and the heap portiod, and calls the new stack typing judgment

on Mg and the new heap typing judgment bly, andQ. The final judgment is shown in

Figure3.12

3.2.4 Removal of Color Tags

In TAL T, register values are tagged with the color of the computatiowhich they
belong. The main use of this color tag is in the relatlosin? ¥’. Because each value
is tagged with a color, we can compare two machine statestljin@ithout relying on
any extra information. This simplifies the judgments quiteita However in ETALgT,
we don't have that luxury. Values on the stack are concelgtaalored, but those in the
heap are not. Adding color tags to memory doesn’t make sansallflocations, and
in any case, the colors already appear in the typing infaomatInstead we change
the simulation relationship to depend on color informatextracted from the typing
information. We go ahead and make this change throughouatigpiage, and remove
the color tags from all values. This also enforces our eacleam that the color tags in
TAL e were only for convenience.

This change requires removing the color tags from all valodake existing rules.
The dynamic semantics only propagated the tags, so theovaras no effect. In the

static semantics, the color tags are duplicated in the tyipiiormation, and so again their
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W;M;QH+2 ¢ b ref

W)=brefl  WEM(®):b (nitt) W(¢) = b ref°
INIt-
W:M; Q2 7 brefl W;M;QHZ2 ¢: b refd

(uninit-t)

W) = b ref?
Z#G = 3n. ({,n) €Q

W:M:QHZ ¢ : b ref?

(halfinit-t)

W2 Q: (Eq,Es)

Z4G
W2 () : (E), EY)
FEg=m -FEs=ny
Wknl:breff ¢<i Wkn2:b

— -t
l.|J|—Z (n17n2)7(né|_7n/2> . (Ed,ES>7(E(Ij7Eé) (Q )
L|J l_Z (M7Q) : (Em7<Ed,Es))
V¢ e DomM). 3¢. W;M;QHZ ¢: bref®
[Em]l =M  WH?Q: (Eq,Es)
(heap-}

WH (M,Q) : (Em, (E},EL)

Figure 3.11: Changes to Memory Typing Judgments.
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2 (R,C,M,Q,ir)

Dom(W) = Dom(C) UDom(Mp,)

Dom(C)
M - Ms # Mm

Yr-C

Ve#Z.ir # - = C(R(pg)) =ir

Ve#Z. . W(R(pc)) = (A;T; (Eg, Es); Em; ¢) — void
JdS. - FS:A

W Ms: S(C)

W2 (Mm, Q) : (S(Em), S((Ed; Es))

WHR: )

Z (RCM.Q.I) =

Figure 3.12: Changes to the Machine State Typing Judgment.

removal has no effect. Secti@3.2will discuss how the simulation relation and formal

results are modified.

3.2.5 Other Changes

In addition to the changes above, we added a new move instnictmove the contents
of one register into another register. This instructionas technically necessary, but is

helpful to have when generating assembly code.

instructions i = ... |movy,rs

The TALgT rule for Register File Typing required specifying a typedwery register.
Again, for simplicity of the translation, we drop this regement. A register fil&R has

typel” when all types i hold true forR.



CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 77

Yac Dom{). W;- % R(a):T(a)
-+ T (pas) < (B,int,Eg)
-+ Eg=Eg

W R:T

(reg-file-t)

The complete specification of ETAL is provided as a reference in Appendix

Next, we discuss the formal results for these modified rules.
3.3 ETALgr Formal Results

Because ETAET contains modifications to TAtr, all the formal results need to be
repeated. The results are summarized below, and Appdéhdiantains proof sketches

of the main lemmas and theorems.

3.3.1 Type Safety

The statements of Progress and Preservation do not chdtigmigh many of the cases
must be modified. A number of the lemmas used in these proefsiadified, and there
are also a number of new lemmas for reasoning about the statkymamic memory

allocation.

Theorem 5 (Progress)

1. If +3then —3 % andX’ # fault.

2. If F°Xthenz —3Z.
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Theorem 6 (Preservation)

1. If F*%ands —§ 5 ands’ + fault then-* £'.

2. If FXandx —3% thendc. F°%'.

3.3.2 Fault Tolerance

Due to the removal of color tags, there are more significaahgbks needed in the formal

Fault Tolerance results.

Similarity of Machine States

Now that values do not contain color tags, we need to extneatolor of values from the
typing information. In order to make as few changes as ptessite divide the judgments
into two phases.

First we extract the color of the value in each register anchorg location from the
typing information and to store this information in a magpk. The range oK is an
extended color kvhich can either be a cola; GB, or none Registers that do not have a
corresponding type il are mapped toone Locations in the heap are considered to be

GB, as both the green and blue computations have agreed owahess.

extended color k ::= c¢|GB|none

coloring K = -|a—k|{—Kk
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Extracting the color of a typé is simple. Type triples and conditional types clearly

specify the color, and thestype has no color.

extractk((c,b,E)) = C
extractk(E;=0= (c,b,E)) = c

extractk(ns) = none

For the register file, those registers given a typé lextract the color from that type, and

those registers with no typing information have no color.

extractK(R,N) =Vac R .ac DomI) ? a— extractk(l(a)) : a~— none

Similarly for the stack, the color for each location is egtel from the type of that

location.

extractks(Ms, Q) = V¢ € Dom(Ms). ;¢ £:t = ¢ extractk(t)

All locations in the heap have extended coBB.

extractky(Mp) = V¢ € Dom(My). £ — GB

The top-level typing judgment? ¥ is modified slightly td-% X : K, which generates
the coloring calculated using the typing information in gfremises of the judgment.

Given the coloring information, we modify the TAlr simulation relations. Figure
3.13gives the new judgments. The base judgnient sint k n, is very similar to the
simulation of colored values in TAly. The main difference is the addition of a ridien-

val-no-colorthat allows any two values with no color to simulate each otegardless
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K g simf K np
Knsinfkn OmVal g o (Sim-vak-zap
im-val-no-col

none n sird none i (sim-val-no-coloy
KR sinfR|

Va. K(a) R(a) sinf K(a)R(a) |

Sim-
K+ Rsinf R (sim-R

|K - M sim?M/|

Dom(M) = Dom(M’)
V¢ e DomM). K(£) M(£) simé K(£) M'(¢)

K - M sin? M’

(sim-M)

Q sinf ¢

ey (sim-Q-empty

GmsintFGn, GmpsinfGrn, QsinfQ
((n,n),Q) sinf ((n},n,), Q)

Y1 simt 2,

- (R,C,M,Q,ir): K
-2 (R,C,M',Q,ir) : K
K+ Rsinf R
K+ M simé M’
Q sinf ¢
(R,C,M,Q,ir) sin? (R,C,M",Q,ir)

(simX)

Figure 3.13: Similarity of Machine States.
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of the zap tag. This rule is used when a fault affects a regiséd has no associated type
inl.

The judgment for register files is now parameterized by araajowhich it uses to
determine the color for each register. In addition thereriswa rule for memories. Since
the coloring is defined differently for stack and heap lamagi two memories simulate
each other when their heap locations are identical and shek locations simulate each
other under the zap tag. The simulation relationship fougsaes unmodified.

Finally, two machine states simulate each other uédéthe first is well-typed under
the empty zap tag and the second is well-typed u@deBoth typing judgments must

generate the same colorikg and all elements must simulate each other gkien

Fault Tolerance Theorem

Using these modified similarity relations, we can state arae the fault tolerance
theorem for well-typed programs.

The main difference comes from the modified definition of ‘evable” behavior that
requires the heap to be identical, but allows different@aln the stack. We formalize this
with the new relationships’ £ sands é s that are used to relate two output sequences
of address-value pairs. Because the faulty computationstaag faulty values into the
stack portion of memory, we can no longer use simple equalitpmpare address-value
pairs. The judgmenté_ says that the addresses in the two sequences are equal,rand fo
all addresses greater thanthe values are also equal. The judgmén% sis similar,
but only requires that the locations in the first sequenca awgsequence of those in the
second sequence. In other words, when givenx(Dom(C)) as/, these judgments check
that the stores committed to the heap are identical and thhesstcommitted to the stack

are to the same locations, though the values may differ.



CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 82

Theorem 7 (Fault Tolerance)
n s . (n+1) s
If - X andX—yZ' then eitheZ—— X}
g
or Im< (n+1) . =™ fault, and
L. (n+1) s
1. For all derivationg—,%; whereX; # fault.

C
¢ "R S and3 . ' sinf 2.

o s
2. For all derivationg —"— fault wherem < (n+1).

maxDom(C))
s < S.

3.4 Translation from MiniC to ETALgt

When designing a sound type system, we need to be carefuhthegstrictions imposed

by the type system are not so stringent as to rule out allésterg programs. This section

gives an algorithm for translating all well-typed MiniC gams into ETAL:T. By doing

so, we show that the ETAly type system is expressive enough to be of interest.
Optimizing compilers generally generate code using a snm@nslation that may

produce inefficient code, and then they apply optimizationthis code. Similarly, this

section gives only a naive translation from MiniC to ETAl.and Sectior3.6 will sketch

the interactions between ETAE and some common optimizations. The rest of this

chapter gives an overview of the translation. Appergigrovides the complete rules

for the translation and a proof sketch of the Translationofém.

3.4.1 Translation Introduction

For simplicity, the translation uses the designated rems$ics, pGs, SPs, Sps, andgd

and then as many fresh temporary registens, ... as needed. Many of these temporary
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registers can be easily removed by coalescing move inginsct Sectior3.6 discusses
how to support register allocation if the number of temppragisters is greater than the
number of actual registers.

The translation uses a simplistic calling convention. ldeorto support fault toler-
ance, all function arguments and return values need to bkcedter. Arguments are
passed on the stack, with the last argument pushed on firsteWill be two assembly-
level arguments for each MiniC argument, and the green aggtiof each pair is always
below the corresponding blue argument on the stack. Belevathuments are the blue
and green copies of the return address. When a functiomegtiipops the return address
and all the arguments and pushes two copies of the reture.valu

On function entry, each function loads all the arguments tetnporary registers.
When making a function call, all temporary registers thatespond to local variables
are spilled to the stack before the arguments and returreasldgre pushed. After the
call returns, the registers for the local variables areorestand then the return values are

moved to their destinations.

3.4.2 Translation Details

At a high level, the translation works by passing around a&eodmoryC and continually
accumulating new instructions onto the end. In additionnynmdgments track the

following additional information:

n the number of temporary registers required so far.
V amapping from MiniC variables x to pairs of registérg,ry).

B a mapping from function variables to addresses in code mgmo
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[XFv:t]CnV=C'n'rr’ Given a value v, generate code to move
the translation of v into registers r and.r

[XFvs:X]CnVn=C'r/ Given a list of values vs to be passed to a
function, generate code to push them onto
the stack in reverse order.

[F;ALEFswf]fCnV B=C'n Given a statement s in function f,
generate code for the translation of s.

[F;ALF lds:L'JCnV=C'n"V' Given a list of local declarations Ids,
generate code to initialize them and
modify the variable map V to contain the
new mappings.

[F+ fds:F'JCB=C'B'n Given a list of function declarations fds,
generate code for each function and
modify the function mapping B to contain
the starting address for each function.
n is the maximum number of temporary
registers used by any one function.

pwf]=Cn iven a program p, generate code for

- f Cnl Gi de f
p, the maximum number of registers n
required by p, and the starting address |.

Figure 3.14: Summary of Translation Judgments.

The translation is defined over the typing rules for MiniQuie3.14summarizes the
program translation judgments. The eventual goal is to sthavall well-typed MiniC
programs can be translated into well-typed EFAlprograms, so the translation uses
MiniC typing information to generate the corresponding EFA typing information.

The assorted type translation judgments are shown in FRjafe
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[t]=b The translation of MiniC type is ETAL gt basic type b.
[A]l =¢ The MiniC arguments A correspond to a stack tgpe
[Agv=T Given MiniC arguments A and their translation into stacketyp

calculate the register file typE that results after loading each
argument into its corresponding register.

[X]v=T Given a variable context X and variable mapping V, genefage t
corresponding register file tyde.

[A— 1Ly =© Given a function type A- 1, local variables L, and variable
mapping V, generate the current preconditi®n

Figure 3.15: Summary of Type Translation Judgments.
3.4.3 Translation Formal Results

The Translation Theorem states that the result of trangjatiwell-typed progranp can

be used to create a well-typed ETALmMachine state. The code memory in this machine
state is just the code memory returned by the translatiomas ETAlT has no true
notion of termination, programs “complete” by jumping to estjnated addredga
which contains a short code snippet for an infinite loop. Téahis empty, and the stack
contains two pointers th,;:. The register file is built by calling the functidsuildR(n)

to generate a blank register withemporary registers. The two program counters are set
to the start address generated by the translation, andable gbinters are set to the top

of the stack.

Theorem 8 (Translation)

If [F p wf]]= Cnlsar then - (RC,M,(),-)

where Ic = min(Dom(C) — 3)
R = buildR(n), pcg — lstart, PGs — lstart, SPs — ¢, Spg+— Ic, gd— 0
M = lc— lhat, lc+1+ lhat, lc+1—0
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Again, the complete translation and corresponding proefcties are provided in Ap-

pendixE.

3.5 Translation Example

Figure 3.16 shows the result of applying the naive translation to thei®liaxample
program from the beginning of this chapter.

Clearly, this translation is not efficient. But again, thatniot yet the point. The
generated code is well-typed. Let us walk through the tediwgi of thedoubl e()
function to get an idea how this works.

We use the type translatioft] (defined in AppendixE.2.] to generate the type
for the first instruction in the translation of a function. retion doubl e() has type
x:int ref — int, and[[x: int ref — int] gives us the type below. Though it looks com-
plicated, it is just laying out the calling convention dissad earlier. When entering this
function, the stack should have two copies of the argumedttla@n two copies of the
return address. The rest of the stack is unknown. The staokgpe should point to the
top of the stack, the program counters are equal, and theéasplestination registegd
must be zero (meaning that no control flow transfers are igness). When the function
returns, it should leave things in a state satisfy@g In other words, it needs to remove

the return address and arguments from the stack and puslopiesf the return value.
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/1 original M niC program Il main()
int double(x:int ref) { 76  nov tg 3 [l int ref y =ref 3
int v =0; 77 mv tq 3
v = I'x; 78 mal loc[int] to ts
V =V + V; 79 stg to to
X = V; 80 stg t3 t1
return O; 81 nmv ty4 to
} 82 nmv tg ta
83 mv tg 0 [l int result =0
int ref vy =ref 3; 84 mov t7 0
int result = 0O; 85 mv tg tg
86 nmv tg ty
result = doubl e(y); 87 salloc 8 /'l result = double(y)
return result; 88 sst 4 ty - st local vars/args
89 sst 5 tg
/] infinite loop 90 sst 6 tg
50 nov tg 1l 91 sst 7 tg
51 nov tp 1 92 sst 2 ty - st args
52 jnmpg t1 93 sst 3 ts
53 jnps t1 94 mov tqo 50 - st ret addr
95 sst 0 tqg
/1 doubl e() 96 nov tq1 50
54 sldg 2 to Il prol ogue 97 sst 1 tq1
55 sldg 3 t1 98 mov tqo 54 - jnp to double()
56 nmov t, 0 Il int v =0 99 nov ti3 54
57 nov t3 0 100 jnpg ti2
58 nov tgto 101 jnps ti3
59 nov tgts 102 sldg 2 tg4 - reload |ocal vars
60 ldg tsto [l v =1x 103 sldg 3 ts
61 ldgtsty 104 sldg 4 tg
62 add tgtaty [/ v=v+y 105 sldg 5ty
63 add tgtgtsg 106 sldg 0 tg - set result
64 stgtota Il x :=v 107 sldg 1 tg
65 stptits 108 sfree 6 - free call space
66 mov tg O Il get ret val 109 nov t14 0 Il get ret val
67 nmov t; 0 110 nov t15 0
68 sldg 0tg Il epilogue 111 sldg 0 t1 [/ epilogue
69 sldg 1 tg 112 sldg 1 t7
70 sfree 4 113 sfree 2
71 salloc 2 114 salloc 2
72 sst 0 tg 115 sst 0 tyg
73 sst 1ty 116 sst 0 tg5
74 jnpg ts 117 jnpc tie
75 jnmpg to 118 jnpg t17

Figure 3.16: Example Translation from MiniC to ETAL
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W(54) = (A4, d; (), Am, Ga) — void
where: Aq = 0Op: Kint,Om: Kmem O¢ : Kint,0g : Kg,Or © Kint, O © Kint
Mg = pcg— (G,int,ap), pcg — (B,int, ap),
sp — (G,sptroy—4),sps— (B,sptrag—4),
gd— (G,int,0)
Q@ = 0,—4:(G,6; —void,a;) :: a,—3:(B,0; — void,ay)
oy —2:(G,intreflay) oy —1:(B,intrefl ay)
>0y

and:  © = (&, (),0m¢)
Ay = dp, Kmem Ot : Kint
' = pcg— (Gint,ar), peg — (B,int,ar),
spe — (G,sptra; —2),sps — (B,sptra, —2),

gd — (G,int,0)
G = 0,—2:(G,int,ay) = ay,—1:(B,int,a;)
Oy 0g
54 sldg 2 to

After executing the first stack load, the next instructios haimilar type except that the
type of the destination register used in the load is updatedntain the same type as the

stack slots that the value was loaded from.

W(55) = (Ag,T4[to — (G, int refl, ay)], (), 0m, Gq) — void
55 sldg 3t

Executing the second load has a similar effect.

W(56) = (&g, T alto— (G, int ref*, ay)][t1 — (B, int ref*, ox)], (), otm, Ga) — void
56 nmov ty 0
57 mov t3 0
58 mov t4 to
50 nmov tstg

This sequence of move instructions adds typing informadtmout the temporary registers

to the register file type.
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W(60) = (Ag,l 60, (),0m, Ca) — void

where: Tgo = g [to— (G,intref! ay) ]
[t1— (B,int ref! ay) |
[t2— (G,int,0) |
[t3+— (B,int,0) |
[ta— (G,int,0) |
[t5F+<BJnLO)]

60 ldg tato

61 ldgtsty

Each of these load instructions loads from some addrggsmemorya,, so the type of

the loaded values can be described by the static expressiany, ay.

W(62) = (Ag,le2, (),0m, Cq) — void

where: T'ex = Tgo [ta— (G,int, selay 0y) |
[t5 — (B,int, seloamay) |

62 add tgtgty

63 add ts tg tg

When the value is added to itself, the static expressionsiatiéfied accordingly. At this
point, we know that, andts both contain double the value in address whatever that

value may be.

W(64) = (Ag,Te4, (), 0m, C¢g) — void

where: Tes = Te2 [tar— (G,int, (selam0y) + (selamay)) |
[t5+— (B,int, (selam 0x) + (selom0y)) |

64 stgtgta

65 stgtyts

The green store typing rule will add the péiry, (selay, ay) + (selay 0y)) to the queue.
The blue store typing rule removes this pair from the quewserigtion, enforces that it

is equal to the expressions describing the operands, aratagthe type of memory.

W(66) = (Ag,T 64, (), Efy Cq) — Vvoid
where: E;, = updamoy ((selamay)+ (selamoy))
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66 nov tg O
67 mv t7; 0
68 sldg 0 tg
69 sldg 1tg

Again, these instructions add more temporary registentypiformation to the register

file type.

qJ(7O) = (Ad7 r707 ()7 EFn? Cd) — void

where: T70 = Tlga [tg+— (G,int,0) |
[t7 — (B,int,0) ]
[tg— (G,O, — void,ay) |
[tg— (B,©; — void,ay) |
70 sfree 4

71 salloc 2

Thesfreeinstruction modifies the stack type to bie: oy and updates the stack pointer
types appropriately. Then tisallocinstruction pushes two nonsense types onto the stack

type and again updates the stack pointer types.

W(72) = (04,72, (), Ely, G72) — void
where: ¢z = a;,—2:ns: 0y—1:NS:: Oy Qg
72 = T70 [sps— (G,sptroy—2) ]
[sps — (B,sptra,—2) |
72 sst 0 tg
73 sst 1ty

The two stack store instructions overwrite the nonsensestyp the stack type with the

types of registert; andty.

W(74) = (A4, T70, (), Ely, G74) — void
where: ¢za = oy—2:(G,int,0) = a,—1:(B,int,0) :: 0y :0g

74 jnmpg tg
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The green jump instruction updates the type of the destinaggistergd. For clarity,
the type of location 75 is fully expanded. The subsatipppears on the current contexts,

and the subscriptappears on those describing the type of the return address.

W(75) = (Ac,Tc, (), Emc Gc) — void
where: Ac = 0Op: Kint,Om: Kmem 0/ : Kint, Og : Kg,Or : Kint, Ox © Kint
e = pc— (G,int,ap), pcg— (B,int,ap),
sSpe — (G,sptra,—2), sp+— (B,sptra,—2),
gd — (G, — void,ay),
to — (G,intrefl, ay), ty — (B,int ref! ay),
to — (G,int,0), t3 — (B,int,0),
ty— (G,int, (selom 0x) + (selom 0x)),
ts — (B, int, (selam 0x) + (selam 0y)),
tg — <G,int,0), t7+— <B,int,0),
tg — (G, ©; — void,a;), tg— (B,0; — void, ay),

¢ = a;,—2:(G,int,0) :: a,—1:(B,int,0) :: 0/:0g
Emc = updanmoy ((selam ax)+ (seloam o))
and: ©, = (A, 0),000G)
Ay = O Kmem Ot : Kint
N = pc— (G,int,a;), pcg — (B,int,ay),
spe — (G,sptray;—2),sps — (B,sptra,—2),
gd— (G,int,0)
Q@ = oa;,—2:(G,int,a¢) :: a;—1:(B,int,a¢)
Oy idg
75 jnpg tg

Type checking the blue jump instruction is more involvedefihare 11 premises which
must be satisfied. The first three require that the destimagigister and the jump target

both have the same code type and are described by equivatgessions.

c(gd) = (G, (Ar;T+; (); oy, &) — void, ay)
c(rd) = (B, (&r;Tr; (); am, &) — void, ay)
AC l_ ar = Gr

1. T
2. T
3.
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There exists a substitutiof that gives expressions to substitute in for the expression
variables ind,;. These expressions may contain free variables fhigmVe can construct
such a substitution by inspecting the current typing infation and the typing informa-

tion required by the return address.

4. EIS. AC|_ S: Ar ( Iet S: Emc/dfn, O/a'[ )

The return address has appropriate requirements for thgna@g¢sd registergd, pcg and
PCs.

5. S(y)(gd) = (G,int,0)
6. S(I'r)(pcs) = (G,int,ay)
7. S(Ir)(pcg) = (B,int,ay)

And finally, the current register file type, queue descriptimemory description, and

stack type are subtypes of the substituted equivalenttéoreturn address.

8. AckFTc< STy)

9. Ak ()=S(())
10. Ack Eme= Sal)

1L Ack ¢ <S4)

At this point, we have shown that each instruction in the dtaion of thedoubl e()
function results in a type that can be used to type check tReinstruction. In other
words, this sequence of instructions can be added to a ywedidtcode memory, and the

resulting code memory will also be well-typed.

3.6 Type-preserving Optimizations

In this section, we discuss the effects of the type systemaniows common optimiza-

tions. These are the sorts of optimizations a compiler mayyap a low-level interme-
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diate representation, which is very close to executable.cdb by discussing how to
support these optimizations, we are arguing that EFAtan be used for the final result
of compilation.

Previous work 6, 62, 14] has demonstrated how to implement many common op-
timizations for a non-fault-tolerant typed assembly laager Below, we will sketch
the effects of the additional typing infrastructure for paging fault tolerance on some
common optimizations. However, a full analysis of the intpaicthe type system on

various optimizations is beyond the scope of this thesis.

3.6.1 General Considerations

Unfortunately for optimizations, ETAty works with actual code addresses instead of
symbolic labels. Therefore inserting or removing instiats requires incrementing or
decrementing all uses of subsequent code addresses. Tooonjersome, it is possible
to deal with this. Alternatively, one could make minor mochfions to ETAlgT in order
to use a different code representation more similar to arcbidw graph.

One important invariant that must be maintained is the edeince of related static
expressions. This equivalence is abstracted in the typileg by the judgemett- E; =
E,. In the translation in SectioB.4, the two computations are exactly the same, and
SO syntactic equality is all that is required. Using a moregrdul theorem prover to
compare expressions allows flexibility in how an optimiaatis applied. For example,
assume we have code to multiply a value by two. It is posstbdgtimize this code to use
addition instead of costly multiplication. If this optination is only applied to the green
computation, the end result will be two values with ty@int, E + E) and(B,int, 2« E).
The type checker will allow this as long as the theorem prasad can determine that

E+E=2«E.
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3.6.2 Removal of Redundant Moves

If a move exists between two registers in well-typed codentive know the registers
must belong to the same computation. Therefore redundaveswaill only occur within
a single computation, and so removing them will continue &intain the separation

between colored computations.

3.6.3 Register Allocation

The most obvious issue with the ETAL translation is that it is constantly generating
fresh temporary registers. Removing redundant moves wiliehse the number of tem-
porary registers, but for some programs the number of livptgary registers will exceed
the number of actual registers.

We have already shown how to add a stack into EFALONce other optimizations
have been completed, and compiler can determine a graphrgpbind modify the code
to spill the selected values to the stack.

In the overly simplistic translation, the stack is only a&s®d upon entering and
exiting functions and before and after function calls. Heerethere is nothing in the
typing rules to prevent stack operations at any point in theeec so the implementation

of register allocation should be able to proceed in the nbwag.

3.6.4 Common Subexpression Elimination

Common subexpressions elimination is one of the optimomatithat caused issues in
the initial implementation of the SWIFT compiler. Naivelgngiorming CSE on ETAET
code would likely cause dependencies between the two catguos, resulting in code

that would fail to type check. However, it is simple to soltiestby modifying CSE to be
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aware of the color tags. As long as the optimization only iggphithin a computation of

a single color, there appear to be no additional issues.

3.6.5 Dead Code Elimination

In general, dead code elimination is not affected by thetamdof fault tolerance to the
type system.

However, if dead stores are removed, it is imperative thesersame modifications
are made to each computation. Otherwise, the queue willdmmgistent, and so the code
will fail to type check. (The same holds for the removal oésiistores, which are stores

that overwrite a value with the same value.)

3.6.6 Constant Folding and Propagation

In constant folding and propagation, the constant has time $gpe as the expression it
is replacing, and so these optimizations do not cause angsss ETAL-t as long as
the theorem prover can prove the equivalence. It is wortingdhat a number of the
instructions only take registers as operands (for examgter, r» r3), but adding other

addressing modes for instructions would only require segblanges.

3.6.7 Stack Packing

In a stack packing optimization, the compiler reuses theesstack slot for two values
with disjoint lifetimes. Because ETAly uses strong updates when storing to the stack,
this can be supported. The information about where a starkgrqooints is separate

from the information about what each stack location costafo even if one register is
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used to perform a strong update on a stack pointer, any atgesters that also point to

this location will be aware of the change.

3.6.8 Instruction Scheduling

As with TALgT, ETALET allows a lot of flexibility in the instruction scheduling. Yiin
a computation, all the usual reorderings are allowed, dgikerstandard constraints about
instruction dependencies.

There is a great deal of flexibility between the green and baraputations as well.
Essentially, computations are synchronized at the bloai.ldn other words, the green
computation may not execute past a control flow transfet theiblue computation has
also executed the transfer. Within a block, the main rdgtrnds that each green store
instruction comes before the corresponding blue storeucisbn. Though our machine
model assumes an infinite length store queue, in realitywbisld be implemented as
a fixed-length buffer. This will require the compiler to linthe number of green store
instructions that can come before the first of the corresimgniolue instructions.

The new instructions in ETALr such asnallocandsstwould likely be implemented
with sequences of instructions, which may cause unanteigjiateractions with schedul-
ing. For example, ifsstis implemented usingis andstg, then it cannot occur while
there is a green store pending in the queue. Previous workTdh [16] develops a
standard typed assembly language without macros to avieidenence with scheduling.

Investigating the interaction of equivalent ideas withféalerance is left as future work.
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3.7 Summary

This chapter has presented ETAl.a version of TAl-t extended with support for stacks
and dynamic memory allocation. We show how to compile a stniplperative source
language into fault-tolerant assembly code. This dematestrthat the restrictions im-
posed by the type system do not affect our ability to expretsesting programs. In
addition, we discuss how ETA4 can support common low-level optimizations, thereby

showing that it can be used as the final language in a reatstipiler.



Chapter 4

TAL cr : Reasoning about Control Flow

The previous two chapters focused ohydorid transient fault solution that included
specialized hardware to help detect faults. Although tpe of the solution is extremely
promising, there are many cases in which additional hareisanot available. Fortu-
nately, techniques based only on software can detect atangéer of faults on off-the-
shelf processors.

Chapter5 covers related work on existing software-only techniqles the general
methodology is similar to what we have already seen, thobhglcomparisons are per-
formed by additional instructions in software. Doing so etimes leaves window of
vulnerabilityin which faults may not be detected before affecting the ntagee behavior
of the program.

In particular, this chapter focuses on reasoning abouttevacé solution for detecting

control flow faults, which occur when a transient fault causentrol to jump to an

Material in this chapter is joint work with David Walker anéé been previously published &4]
and [53].

98
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unexpected code address. TAlavoids the issue by using a hardware comparison in
the fetch stage and control-flow instructions to detect $auhts.

Researchersdfr, 60, 10] have developed techniques for detecting many, but not all,
classes of control-flow errors entirely in software. Thotgkse techniques are promis-
ing, they have not been proven sound and many theoreticatiqne remain. In par-
ticular, is it possible to characterize the effectivendsthese techniqueanalytically as
opposed to empirically? In other words, can we prove thakh sachniques are sound
with respect to an interesting and nontrivial, though inptete, fault model? One of the
key benefits of such an analysis is that it would guaranteeathanportant fragment of
the problem has been thoroughly solved and thereby allogarekers to study auxiliary
instrumentation techniques that address the remainingmpteteness. Perhaps more
importantly, a formal fault model and proof of soundness Malefine an important
hardware/software interface: The software has been prtovesndle faults that lie within
the model; future hardware designers need only provide areésims to catch those faults
that lie outside the model. Such results would show how t&i ahsubstantial portion
of the control-flow checking burden from the hardware towafe. This may lead to
simpler hardware designs as well as the opportunity to tpeaformance for reliability
atcompile timeas opposed thardware design time

This chapter presents TAJr, a type system for reasoning about a software-only
technique for detecting a specific class of control-flowt&uT he technique instruments
each basic block with a certain instructions that implenseifdult tolerance protocol.
From a technical perspective, the type system introducesel may of classifying the
reliability properties of program values and entire maelstates, generalizing the earlier
“color systems” used b¥zap [73] and TALrr. The type system is also of interest for

the way it uses a collection of abstract types to track tht&e stathe fault tolerance
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protocol. The key technical challenge in reasoning abocit susolution is the fact that
after a control-flow fault has occurred, it is impossible tmt on almostany standard
program invariant. So, how can one carry out a proof of tyms@rvation under such
circumstances?

The rest of the chapter is organized as follows. First, Sedtil gives additional intu-
ition about the problem and solution by explaining a simpigeanbly-language protocol
for detecting control-flow errors. This protocol is a sinfiglil version of the protocols
used by Oh47] and Reis $0]. Section4.2 begins the more formal work by defining
the syntax and operational semantics of an idealized adgdariguage that includes
rules to model transient faults. Sectidr8 defines the type system that guarantees that
assembly code follows the simple protocol outlined eailieSection4.1 This type
system, particularly the special value and machine staiagyrules, codifies the major
invariants needed to prove the subsequent type safety esrthsteliability properties.
Section4.4 sketches the major components of the type safety and faleltaince proofs.
Sectiord.5shows that our typed assembly language is sufficiently esjpre to translate
basic “while” programs into well-typed, fault-tolerantam Finally, Sectiod.6 summa-

rizes.

4.1 Informal Overview

When a transient fault causes the actual sequence of cdlawoblocks visited by a

program to deviate from the expected sequence, we say atfiow error has occurred.
In our model, control-flow errors arise in three differentyaa(1) there may be a fault
to the target address of a jump instruction; (2) there may taeilato the target address

of a conditional jump instruction; or (3) there may be a faoltthe boolean used to
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decide whether to jump or fall through a conditional. Sualitfamay occur immediately
prior to attempting the control-flow transfer or at any ottiere during the computation.
However, whenever a control-flow operation is executed, sgii@me execution is either
transferred to the beginning of some valid block, or to somalid block or illegal
instruction. In the latter case, we assume the hardware diatedy catches an attempt
to execute the illegal instruction. We do not consider thesgulity that a fault causes a
control flow transfer to a legal instruction in the middle ofrge valid block. We discuss
this limitation in Sectiord.6.

As in previous chapters, we adhere to ®iagle Event Upsanodel, which states
that only one fault may occur during an execution. Howewegneghough just one fault
occurs, faulty values may be copied, propagated and usedyivay an ordinary value
may be used. Hence, a single fault can lead to arbitrarilyyncanrupted values if not
caught soon after it occurs.

The goal of this work is to develop and prove correct a sofewabtocol that guar-
antees such control-flow errors can never go undetected.cditieal challenge in this
endeavor is to overcome the problem thatsingle value can ever be trusted to be correct
— a transient fault may strike any value in any register. @guently, as is usual in fault
tolerance, the solution is to avoid relying on any singleuedby replicating the critical
state and checking replicas against one another. In thés tteescritical state is the value
of the program counter. Checking the correctness of a ceftdwe transfer involves
creating a replica of the intended control-flow destinaaod then checking the replica
against the real program counter to detect any difference.

To be more specific, compiled code creates the replica poicanty control-flow
transfer by moving the intended destination into a deseghatgister. We refer to this

register as thantention register i . This intention register is part of the global “calling
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convention” for fault-tolerant control flow transfers. We the register so that all jump
targets know where to find the intended destination, evemuliinere has been a control-
flow fault.

As an example, to jump to addrels3, one might use the following code sequence.
In this code, we leave ellipsis in between instructions tglkasize our system allows
flexible scheduling of instructions — ordinary instructsomay be interleaved with the

instructions used to guarantee fault tolerance.

L1: ...; movi ri, L2; ...; novi r2, L2; ...; jnp r2;

Because the intention registar plays a special role in the protocol for detecting control-
flow errors, we will need to type-check the move instructibattoads this register in a
special way. To designate the move as special, we hencefoitiit i nt end L2 rather

thanmovi ri, L2 asin the following example code.

L1: ...; intend L2; ...; novi r2, L2; ...; jnp r2

If the intention register has been set properly prior towthp instructions, the jump
targets are able to catch control flow errors. To be specifigurap targets should be

instrumented with the following code.

Lk: movi r2, Lk; ...; subr2, r2, ri; ...; brnz r2, lrecover;

Here, the current block addrelsk is loaded into some registeR. That register is then
compared with the contents of and if there is any difference, control is transferred
tol recover, an address containing recovery code. Once again, sindegdheh to the
recovery code plays a special role in the fault-tolerancegool, we give it the special

syntaxr ecovernz r2. Thus, our detection code will henceforth be written asoiws.

L2: nmovi r2, L2; ...; subr2, r2, ri; ...; recovernz r2;
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As an example of how a transient fault might be caught usingpoatocol, suppose
registerr 2 is corrupted just prior to attempting to execute the jump2adn block L1.
Upon arrival at some erroneous control flow block, £8ythe intended destinatidr
remains safely untouched in register, though, unnervingly, all other program invariants
may be disrupted. The target code compares the contents(at.,L2) with L3, which
it loaded intor 2 after arriving at the current block. It detects a differeaoel jumps to
the recovery code.

One must also consider what happens if faults strike atréiffictimes or in different
places. For instance, the jump target might have been dedupuch earlier than we
suggested above, perhaps just after being initially loanted 2, instead of just prior to
the jump. Will that make a difference? In this case, no. Lilsey i might be corrupted,
either before or after jumping. In this case, we reach theecbdestination, but it appears
as though there was a fault becausdliffers from the current block label (assuming the
fault occurs prior to the subtraction). Unable to tell thiedtence between a fault in the
intention register and a fault in the control-flow transteelf, we jump to recovery code.
A number of other scenarios must also be analyzed — in ordeavte confidence in the
solution, one must do so in a principled, disciplined fagahio

It is important to observe that similar, but subtly differerode sequences do not
adequately protect against faults. In particular, optatians like copy propagation, com-
mon subexpression elimination and some code motion tremstons are not always
semantics-preserving in the context of transient faulbs.iistance, the following simple

change to the way blodkl was written above leads to a vulnerability.

L1: movi r2, L2(*); ...; nmovi ri, r2(**); ...; jompr2
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Here, a single transient fault t@ anywhere between execution of instructigri$ and
(**) results in an uncaught control-flow fault as both the jumpetaand the intention
register will simultaneously be incorrect.

Likewise, the code motion transformation illustrated kekhifts the move from a

target block into the jumping block and creates a vulneitgbil

L1: movi r2, L2; intend L2; movi r3, L2; jnp r2;
Lk: sub r3, r3, ri(***); recovernz r3;

Above, a fault tor 2 causes a control-flow error, but testing againstri at instruction
(***) will not help detect the fault. The conclusions to draw frérage examples are that
the correctness properties of this code are indeed suldtlthahverifying fault tolerance
propertiesafter the compiler has completed its suite of performance opttions may

help detect errors in code generation.

Conditional Branches. The protocol for handling conditional branches is sligintigre
involved than the case for jumps, but follows a similar patt&Ve begin by assuming that
the condition for the jump is held in registeré andr 4’ . These two registers must be
independent replicasf one another. In other words, in the absence of faults, sheyld
contain the same boolean value, and moreover, a fault tolwmddshave no impact on
the value of the other. Given this assumption (which will eefied by our type system),
the following code sequence sets up a conditional branclghwrhay fall through td.2

or may jump toL3. The code uses a conditional brartotz r4, r3, which jumps to

r3if r4is zero and otherwise falls throughltd. It also uses a conditional moeeovz
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r4' ., ri, r3', which moves the contents o8 intori if r4’ is zero, and otherwise

does nothing?

L1: ...; nmovi r3, L3; novi r3, L3; ...; intend L2;
cnovz r4d', ri, r3; brz r4, r3;

L2:

L3:

Again, to indicate the special role off and simplify the presentation, we will henceforth
write the conditional movenovz r4’, ri, r3 asintendz r4’, r3 . Intuitively,
thei nt end instruction unconditionally sets the intention registenereas thent endz
instruction conditionally sets the intention register. eTérror-detection code in blocks
labeledL2 andL3 is identical to the error-detection code discussed eddigiumps, as

it must be.

Summary With just a few, well-thought-through instructions, it iegsible to create a
redundant copy of the intended destination of any contral flansfer prior to initiating
the transfer itself. Moreover, at any control-flow targeis possible to use that redundant
copy to check that control has actually arrived at the prg@ace. However, as our
examples illustrated, it is also easy to make slight errorthe process. In addition,
because transient faults can occur at so many differenépliache protocol and influence
so many different bits of state, one needs a proof to beliaehd & protocol will work.
Hence, in the following sections, we make the machine’safpmral semantics and fault
model precise and develop a sound type system strong enowghify that the “good”

instruction sequences we have discussed in this sectiondged fault tolerant.

IMany architectures including the IA-32 following the Pemti Pro, the Sparc V-9 and the IA-64 have
conditional moves. If the architecture does not have a aitiondl move, a conditional branch and a move
instruction can be used instead, but this branch will notriogegted against faults.
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colors c =
integers n .=
colored values v =

code memory C ;=

registers r.=
register file R =

history h =
instructions [

blocks b =
State DIES
final states F o=
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G|B|O
.| -1]0]1]...
cn

-|C,l—b

rilri|...|rn
JRr—v

l1,...,0n
movirgV|subrqrsfls

| intend rt | intendz r; I
| recovernz r;

i;b| jmp ry | brz ryr

(C,h,R,b)

> | recover(h) | hwerror(h)

Figure 4.1: Machine State Syntax.

4.2 The Control-Flow Machine

Figure4.1summarizes the syntax of the assembly language and macthias.g-or clar-

ity and elegance, we will work with a minimal assembly instron set involving move

(novi ), subtractiongub), jump § np) and conditional branch if zerdi(z) instructions

as well as the special macrost end, i nt endz andrecovernz. Instruction operands

include constant valuesand registers. Similar to TAL7, we annotate every value with

acolor, although TALcr has three colors: greds, blue B and orange). Again, these

colors have no operational significance, but will be usedieysimulation relation. The

only kind of value is an integer. In general, meta-variatianges over integers, but when

we wish to emphasize that an integer will be used as an adavessse the meta-variable

l.
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Instructions are grouped together in code blobks'hese blocks are always termi-
nated by either a jump or a conditional branch instructiond€memonC is a partial
map from addresses to valid code blodks Addresses are ordered, and we use the
notation? + 1 to refer to the address of the block following the block atif a block
at/ ends with a conditional branch, we assufrel inhabits the domain & — in other
words, conditional branches always have a block to fallugtoto.

As before, the register filR is a mapping from registers to the colored values they
contain. The registers include the intention registemd a number of general-purpose
registers; throughr,. We use the notatioR(r) to denote the contents ofin R. We use
the notatiorR[r — V] to denote a new register filf created by updating so it maps
to v. When we wish to refer to the unannotated integas opposed to the colored value
c nin a register in R, we use the notatioR(r). Similarly, Reo(r) refers to the color
annotating the value in

An ordinary abstract machine sta&ias a tuple containing codg, historyh, register
file Rand code block to be executed The historyh is a sequence of labels. It records
the code blocks visited during the current execution. As dAbas no concept of
memory, we will define “observable behavior” and the seqaevfcblocks visited. In
addition to ordinary abstract machine states, there aresperial “final states.” The
staterecover(h) represents a state in which a transient fault has occurredhas been
caught. The labels in histoftywere visited during the execution. The staterror(h)

represents a state in which a transient fault causes ti@mgitan invalid address.

4.2.1 Dynamic Semantics

We model the dynamic semantics of the assembly languageg asimall-step operational

semantics. In general, the single-step operational juddégrieave the fornk — F
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wherek, which is either zero or one, records the number of faultsdbaur during the

step.

The Fault Model. The most interesting rules in the system are the rules mugleli
faults. The primary rulezap-req is familiar and again states that the value in any register
may be corrupted arbitrarily, though its color tag (whicls n@ operational significance)
remains unchanged.

R(r)=cn
(C,h,Rb) —1 (C,h,R[r — c nf

b (zap-reg

The rule above may fire at any time. In particular, it may first jorior to execution of
a jump (jmp rt) or a branchirz r, ry), corrupting the jump target in registar Such a
fault models a control-flow error. Of course, it is equallyspible that any other register
is corrupted.

For uniformity in our fault model, we also consider errorstl®e execution of the
recovernz I, instruction. Recall, this instruction is merely a macro ttoe conditional
branchbrz r; frecover HOWeVer, sinceecoveriS a constant, it is unaffected by faults in
registers modeled by theap-regrule (our other branching instructions take arguments
in registers). To simulate a fault that causes control togwommewhere other than the
lrecoverlabel when the, register contains a non-zero value, we add the followingsul

Rval(rz) # 0
(C,h,R,recovernz r;b) —1 (C,h,R,C(¥))

(zap-recovernzi

Ryai(rz) #0

(C,h,R recovernz r,;b) —1 hwerror(h)

(zap-recovernzp
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Thezap-recovernziule expresses the possibility that a fault causes exattdipump to
some random block labelegdrather than the recovery code block. Tiep-recovernz2
rule expresses the possibility that a fault causes corrglrp to an illegal address.
Attempted execution of code at this address results in inetedransition to the final
statehwerror(h), whereh represents the sequence of blocks visited not including the

illegal address.

Other Operational Rules. All other operational rules are presented in Figdt2 The
majority of these rules are quite unsurprising. For insgatitemovirule implements the
move by updating the register file. Notice that the index @nairow is “0” indicating no
fault occurs during this transition. Naturally, theendrule is similar tomoviasi nt end
is just a macro for a move intg.

Skipping to the bottom of the figure, it is important to nottbere are two rules for
expressing the semantics of ap r; instruction. The first rulgmp fires whenever;
contains the address of a valid block. Of course, due to & éaulier in execution, the
address imy may not be the intended destination for this jump. In additetransferring
control to the new block, this instruction does some boogkeg In particular, it extends
the current history with the destination address and it gharhe color of; to be orange.
The latter effect facilitates the proof of correctness anlll e explained in detail in
Section4.3. The second rulgnp-hw-errorfires whenever; doesnotcontain the address
of a valid block. In this case, there is an attempt to transéertrol to an illegal address,
which is caught by the hardware. The rules for conditionahbhes follow a similar

pattern to those for the unconditional jumps.
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(C,h,Rmovi rq v;b) —¢ (C,h,Rrq — V], b) (movi)

V' =Reoi(ra) (Rvai(ra) — Rvai(rp))
(C,h,R;subrq rarp;b) —o (C,h,Rrq — V],b)

(sub

(C.hR intend 1) o (C,h. R — R(r)].b) (e

Rial(rz) =0
(C,h,R,intendz r; ri;b) —o (C,h,R]r;i — R(rt)],b)

(intendz-set

Rval(rz> #0
(C,h,R,intendz r; ri;b) — (C,h,R,b)

(intendz-unset

Rial(rz) =0
(C,h,R recovernz r;b) —¢ (C,h,R b)

(recovernz-ok

Rual(rz) #0

(C,h,R recovernz r;;b) — recover(h)

(recovernz-halt

Rial(rz) =0 Rval(rt) € Dom(C)
(C,h,Rbrzrzri) —o (C, (h,Ryal(rt)),Rri — O Rial(ri)],C(Ral(rt)))

(brz-taken

Rual(rz) #0  ¢+1€ Dom(C)
(C,h,Rbrzrzri) —o (C, (h,/+1),R[ri — O Rya(ri)],C({+1))

(brz-untakei

Rval(rz) =0 Ral(rt) ¢ Dom(C)
(C,h,Rbrzr; r;) —o hwerror(h)

(brz-hw-error

Rai(rt) € Dom(C)
(C7h7 R,jmp rt) —0 (Cv (hv Rval(rt>)7 R[ri — O R/al(ri)]7C(Rval(rt>)>

(jmp)

(C,h,R, jmp ry) —o hwerror(h)

(jmp-hw-errop

Figure 4.2: Operational Semantics.
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4.3 Typing
The design of the type system is based on three main concepts:

¢ Classifying the reliability properties of values.

e Using abstract types to make sure that the fault tolerano#qol proceeds in the

correct order, with no steps omitted or inappropriate stegparted.

e Equivalence checking to ensure that redundant values gebasr backups to the

original.

The following paragraphs explain the main intuitions behgach concept. Later subsec-

tions will give precise details.

Classifying the Reliability Properties of Values. Because faults occur completely
unpredictably and at run time, it is not possible for the tgpstem to know which values
have incurred faults or to track the propagation of presufaatly values precisely. It
is not possible to know exactly values may or may not be tdustde type system will
have to approximate these properties somehow. It does sssiyning each value to one
of several compile-time “groups” and ensuring that each temof a group has related
reliability properties. As a mnemonic, each group has ana@ated colorc, which may
be eithergreen blueor orange This is a generalized version of the color scheme used
by TALET.

As we saw in Sectiort.1, the protocol for detecting faults in software involves
keeping redundant copies of the values used in control flawsters and using these
to check for correct control flow. We will refer to the main cpatation as thereen

computation, and the redundant copies aslthe (or “backup”) computation. Most
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values either belong to the green group or to the blue groupinATALET, these two
groups have the property that they aeelundantand independent In other words, a
fault in a green value can never percolate to a blue value medversa. Consequently,
when corresponding green and blue values are comparedsatlea of them must be
correct, even when a fault has occurred. This mutual inddgece property is ensured
by a series of simple checks in the type system that guardmigreen values are not
used to construct blue values and vice versa.

But what if a control-flow faulhasoccurred? In that case, almost all program invari-
ants are invalidated, including any properties of eitheeldr green values. Fortunately,
though, the defining characteristic @fangevalues is preservation of their properties in
just this situation.

There are two general mechanisms by which one can guararsiegeovalues main-
tain their expected properties in the face of a control-flaultt The first mechanism is
to ensure that the orange value in question is not live ad¢h@ssontrol-flow transfer: If
the value has been constructed in the current block and duegepend upon values in
previous blocks, a control-flow error will not influence itooperties. This first mecha-
nism is used in the checking code at the beginning of eachramo@lock. In particular,
the operation that moves a label into a register at the bewirof a block may label its

results orange:

Lk: novi r2, Lk; Il r2 is orange
sub r2, r2, ri;

recovernz r2;
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The second mechanism involves ensuring that every possobkeol-flow transfer main-
tains the invariant in question. If the invariant is trueaaseverycontrol-flow transfer,
then it is true no matter where control winds up. This secomadhanism is used to
classify the contents af as orange across every control-flow transfer. Just as tlee typ
system isolates green values from blue and blue from greange is also isolated from
the other two. Again, the purpose is to avoid having a fauline color influence the
others.

Although values are classified using colors, we again useadi of zap tagsto
classify machine states. Intuitively, each zap tag spaoifigich colors may no longer be
trusted. For example, if zap tafjis empty (written *”), then there have been no faults
during the computation, and all values, no matter what tbelior, satisfy the standard
invariants associated with their compile-time type. Ondteer hand, ifZ is a colorc,
then there has been a fault to a value colareshd, moreover, the corruption may have
spread to any other value coloredConsequently, values coloredvill not necessarily
satisfy any particular properties associated with theingibe-time type.

The final zap tagCF classifies machine states after a control-flow error hasroegu
In this case, control may have transferred somewhereyataéxpected, and so we know
nothing about greeor blue values. Fortunately, though, the properties of oraradiges
remain valid.

Figure4.3 summarizes the properties that hold under each zap tag imHaleck ¢.
We say a value isrustedif it satisfies standard canonical forms propertieg (a value
with code type is actually a pointer to valid code). We saylae/& untrustedwhen we
cannot guarantee standard canonical forms properties hold

We say a zap tag is a subtype of anothet’, written Z < Z’, when the values in

machine states classified Byare more trusted than the values in machine states classified
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Zap Tag | Gvalues | Bvalues | Ovalues | ¢ correct
. trusted | trusted | trusted yes
G untrusted| trusted | trusted yes
B trusted | untrusted| trusted yes
@] trusted | trusted | untrusted| vyes
CF untrusted| untrusted| trusted no

Figure 4.3: Properties of colored values and zap tags.
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by Z'. Hence the empty zap tag is a subtype of all other zap tagh@hdd andG zap

tags are a supertype GF. We use this relationship in the Preservation Theorem. -Well

typed states will remain well-typed, although the zap tag ewscalate to a subtype. For

example, a program may start out well-typed under the engpyay. After a fault affects

a green value, the program is well-typed under @eap tag. If a corrupt green value

is eventually used in a control flow transfer, then the progbecomes well-typed under

the CF zap tag. Each time the zap tag changes, more values becorastadt

Typing Protocol Stages. The instructions in each block can be thought of as being

divided into three distinct stages — thieecking codetheblock body and theexit code

Each of these stages has its own distinct invariants. The dfgntention register;

encodes the current stage and ensures that the stagesmticarcorrect order. It also

guarantees no part of the protocol can be omitted or any no@piate instruction added.

These stages may be summarized as follows.

1. The checking code compares the intended target with tiierddocation to deter-

mine if there has been a control flow fault. In this regigmmust be colored orange

and have basic typeheck
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L1: nrmovi rl, LI1;
sub rl, rl, ri; checking code

recovernz rl;

block body
int end L2;
ITDVI r2, L2z exit code
Jer re;

Figure 4.4: Example: Protocol Stages.

2. In the block body, we already know the control flow corngtthnsferred to this
block. At the end of this sequence, there is some green eegisat holds the
target label for the next control flow transfer and some baggster that holds the
duplicate copy of this label. In the absence of faults, thesevalues are equal. In

this regionr; must have basic typek.

3. The exit code sequence sets the intended target andarssintrol to the new
block. In the exit code sequenchn,is colored blue and has typgo when an
intention has been set, and tygezwhen a conditional intention has been set. As
we saw in Sectiod.2.] r; is recolored orange during the execution of the control

flow transfer.

For example, consider the example code sequences frono®dctishown in Fig-
ure4.4. On entry, each block first checks that control has reachistbtbck correctly,

and sets its intention before transferring control to aeobiock.
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Static Expressions
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exp kinds K = Kint | Khnist

exp contexts A = |AX:IK

exps E = X|n|E-E|E?E:E
substitutions S:i= -|SE/x
Types

stage description  p := check| ok|go|goz
basic types T = int|p|V[A|T,0)
value types t:= (cT1,E)

type option Topt = T|undef

Context Typing

heap typing Y = Wit

reg file types r o= -|rhr—t

history typing o = g|x|ooE
zaptags Z:= -|c|CF

Figure 4.5: Typing Syntax.

Testing Value Equivalence. There are many places in the fault tolerance protocol where
we require a blue value to be an independent and redundantoé@green value. To
ensure that blue and green values are equal in the absenaaltsf fve use the same
technique using static expressions as in previous chapiensgh the language of static

expressions is different.

Now that we have given the intuition behind the type systegigie we will move on
to the technical details. The syntax for the type systemaseqmted in Figurd.5, and the

next few subsections explain the elements and the corrdsmpjudgments in detalil.
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4.3.1 Value Typing

The type of a value is a triplge, T, E). The colorc is assigned according to the intuitions
expressed in the previous subsection. A basic tyigeeither an integer, a code type, or a
special type that indicates the state of the fault tolergmotocol.

The third componeriE is a static expression that describes the value in moreldetai
These expressions are used to require that blue and gregrutatinns compute identical
results in the absence of faults. In TAt, expressions include variabl&sintegersn,
subtractionE; — E> and conditional expressiots ?E, : E3 which equalE; whenkE; is
non-zero andes whenE; is zero.

Expression judgments are shown in FigudeBand4.7. The kinding judgmenf -

E : kK holds when all the free variableskhare contained ih. ExpressiorkE has kindKin
when it describes an integer and kikgs; when it describes a history typing. Expression
variablesx are the only expressions that can have type. Judgmentd - o wf, A+

I wf, andA = t wf hold when all expressions used in these constructs arekineled.
The judgmentA - S: A" holds whenS provides substitutions for all variables &, and
the substituted expressions are well-formed.n

The function[[E]] supplies the denotation of the closed static expresEias an
integer. The judgment& - E; = Ep andA + E; # E» hold when the relation holds for
all substitutions of the variables lh A+ 07 = 02 simply extends this relationship to all

expressions in the two sequences.

Value Typing Judgment. The value typing judgment has the folmW 4 v : t and is
shown in Figured.8. The contextA contains free expression variables, and the heap type
Y maps integer addresses to basic types. The zap thgracterizes the current state of

the machine as explained earligris always the empty tag when a user checks a program
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x € Dom(A) (wh-van) AFE;:Kint  AF Ep:Kint (wh-sub
A x:A(X) A By — B2 Kint
Y A E1: Kint A Es: K A+ E3:K X
Ay (WY AFE,7E; B3 K (wi-ifexp
> AF X Knist > A+ o wf AFE :Kint 3
A g wf (wi-g-¢) A+ xwf (wh-g-var) At ooE wf (wi-a)
AT wf
vr. T(r)=(c,t,E) A AFtwf A AFE:Kint
AFT wi (WE-R)
Arintw WD Ao (W)
(AUL) =T wi (AUL) F o' wf P
Al_\v/[A/](r/,o./) Wf (Wf V[A](r 70 ))
AFS: N
A-S:A" AFE:K X ¢ (AUA")
- t-
Al (subst-empit A+ S E/x : (A", x:K) (substy

Figure 4.6: Static Expression Judgments, Part 1.
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[[E]]
[n] =n
[E1—E] = [Ea]] - [E2]
[Ep ?Ei:Ef]] = if [Ep] then[[E] else[[Et]
AFEi:Kint AFEy:ikKin VS -FS:A=[[S(E1)]] = [[S(E)]]
1 2 e 1 2 (E-eq

AFEr:Kinn AFEx:kie VS -FS:A=[[S(E1)]] # [[S(E)]]
AT E;1 £E;

(E-neg

AFe=e¢ &9 Fry=x OV

AFEL=E> AFo1=0>
Al—O']_OE]_:O'zoEz

(0-eq)

Figure 4.7: Static Expression Judgments, Part 2.



CHAPTER 4. TALcr : REASONING ABOUT CONTROL FLOW 120

wrnint MY G (@ddresst g (0
AWVt
WYhEn:t AFE=n
val-t
AWHZ cn: (c,T,E) (va-9
A E :Kint (val-zap-c) A E :Kint d=Bord=0G (val-zap-CF}

AWHS cn: (cT,E) AWHCF cn: (¢, 1,E)

A-E1=E>
AF (c,1,E1) < (c,T,Ep)

A-E1=E>
AF {(c,T,E1) < (c,int,Ep)

(subtp-reflex (subtp-iny

Vr. Ta(r) <To(r)
AFT1<TI>

(C-subtp

Figure 4.8: Value Typing Judgment and Subtyping Judgment.
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at compile time. It only takes on other values at run time li@r purposes of the proof of
type preservation.

The main value typing judgment depends upon an auxiliargnueht with the form
Y+ n: 1. This auxiliary judgment allows integerto be given either a basiat type,
a stage description type or a code typéd(n). If E is equal ton andW + n: 1, then
c ncan always be given the type, 1,E). However, if the zap tad is a colorc, then
all valuesc ncan also be typed using any basic type and any well-formerksgmn —
such a general rule reflects the fact that we can make no geasaabout such values.
When the zap tag i€F, thenanygreen and blue value can be givamytype, including
giving green values blue types and vice versa. In other wasimentioned earlier, when
there has been a control-flow fault, we can make no assungpdibout either green or

blue values.

Value Subtyping. There is also a subtyping relationshig-t < t’ shown in Figure
4.8 This judgment allows typéc, T, E) to be subtype ofc,int,E’) whenevedA+ E = E'.
Register File subtyping is a basic extension of value subtyhat requires every register
in the first register file type to be a subtype of the correspanckgister in the second.

The subtyping judgment is used to type check control flowstiens.

4.3.2 Instruction Typing

Figure4.9 presents the instruction typing judgment, which has thenfarw;r =i : .

As before,A contains free expression variables aHdypes heap addresseE.acts as
the precondition for the instruction, mapping registerthr corresponding types prior
to execution of the instructior.’ acts as the postcondition for the instruction, mapping

registers to types guaranteed after execution of the ictsbru
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AW THi:T’

g # i

A;W;T Fmovi rgen:Mrg— (c,int,n)]

(movi-t)

ra#ri  T(ra)=(cint,Ea)  T(rp) = (c,int,Ep) (sub-
A W;T Fsubrgrary: Frg— (c,int,Ea— Ep)]

r(ri) = (ci, ok Ej) F(re) = (B, V[A] (e, 01), Er)

A;W;T I intend I : T[1; — (B, g0, Er)] (intend-9
r(ri)=(B,go,E)  I(r))=(B,V[A](l,01),E)
[(r;) = (B,int,E;)  t'=(B,gozE % E) .
(intendz-}

A;W;T;F intendz ryr i [[rj — t]
Figure 4.9: Instruction Typing Judgment.

The simplestinstruction to type check is tiweri rq ¢ ninstruction. It merely updates
the type ofry to be(c,int,n). The subtraction instructiogub rq ra r, requires that the
values being subtracted are integers. Notice it also regire integer arguments have
the same color as the result — this restriction preventssfaul/alues with one color from
influencing another. These two instructions place no &@girns on the type of;, so they
can occur during any stage of a block.

The unconditional intention instructiaimtend r; requires that; has basic typek
This restriction guarantees any new intend will occur atiter checking code has been
completed. Intentions are part of the blue computationhsaegister that is used to set
the intention must contain a blue value with code type. The tfr; is updated to reflect
the new static expression and the new sigge

The conditional intention instructiottendz r, ry is similar, although it must occur

after an unconditional intention. In other words, to set ititention for a conditional
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branch, first usentend to setr; to contain the address of the fall through block, and
then conditionally set it to contain the branch target. Témulting type ofrj has basic
type gozand a conditional expression guarded by the expredsjamhescribingr,. If
E; is nonzero, them; will be described byE;, which describes the fall through branch.
Otherwise, it is described B, which describes the branch target.

Despite the fact thatecovernz is syntactically an instruction, it is type-checked

using the block typing judgment because it affects the s&tefexpression variables.

4.3.3 Block Typing

Figure4.10presents the block typing judgment, which has the far#; I"; o; E;; T opthH
b. In addition toA, W, andl’, the block typing judgment is parameterized by a sequence
0, an expressiok;, and a type optiom opt.

The sequence contains a list of expressions that describe the locatiotisa current
history h. While typing a block at locatiod, o has the formx, o / meaning that the
program has already visited some unknown sequence of dosafy,) leading up to
this point and that the label of the current block/isThe expressiofk; describes the
intended target when the transfer occurred to the curreet {aIf control flow correctly
transferred td, thenA+ E; = /. The option typa opt contains the type of the labéh- 1
if such a label exists. It is used when a branch falls throwgtiné¢ subsequent block to
determine the type of that block.

The first rule,sequence;tis used when the first instruction in a block is one of the

basic instructions described previously. Descriptionthefother rules follow.
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A X Kint F Ez =Ep— X

AET/ri/rywf A o wf A Ep: Kint
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Figure 4.10: Block Typing Judgment.
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Recovery. There are three distinct rules for checkirgrovernz r,. All of them require
the instruction to occur in the first stage of the block wieoontains an orange value
with basic typecheck The operand registey compares this value to the current label.

The first rulerecovernz-tapplies wherr; is described by variablg. This is the rule
used by a programmer to check correctness of their progrararapile time. Control
only proceeds past this point in the blockxfis equal to the expressiof,, which
describes the current location, so the remainder of theklidatgped by substituting, for
;. The types of; andr, are updated to reflect the deletiormafJudgmenfA T /r; /r, wf
andA + o wf hold when all variables used in registers other thaandr, as well as the
expressions i are all contained iA. Because none of these pieces of state contain
they do not need to be modified.

The other two rulesecovernz-eg-andrecovernz-neg-are needed to carry out the
proof of type preservation (particularly the substitutiemma), but would never be
used to type check programs prior to execution. In thesatsitos,x; has already been
replaced with a closed expressiBnthat describes the intention register at block entry.
Here, it is evident that either- E; = E;, or not, so there is one typing rule for each
situation. The rulegecovernz-neg-tloes not place any requirements on the remainder of

the block since control does not proceed past this point.

Control Flow Transfers. In order to verify unexpected transfers from the end of one
block to the beginning of any other, code blocks must havesémee basic precondition.
To be specific, each block must expect that the intentiorstegi; contains an orange
value with basic typeheckthat is described by a variable. This variable does not
occur anywhere else in the function precondition. This d@bor entails every target

block can accept any orange valuein
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The rulejmp-trequires that; has type(B, go, E{) specifying that the intention must
already have been set before the jump. Also, the current janget has a code type and
is described by an expressi&hnthat is equal td&/. This enforces that in the absence of
faults, the duplicate target is equal to the target.

The target label precondition contains a set of expressaiaimes?; and requires a
register file described bly; and a history described hyt. There is some substitutich
for the variables irl\; so that the current register file type and sequence are segbtfp
those required by the target.

The jmp ry andbrz r; ry instructions recolor the blue intention register to be gean
when control is transferred to a new block. At first, this sedém contradict the rule
that faults to a value of one color should never corrupt \v@hfeother colors. However,
because the target block does not place any restrictionseoaexpression describing
the variablex; that describes the value can be instantiated with the vide#.i Because
of this, a blue value that is not trusted can become a trustethe value during a control
flow transfer, continuing to leave only the blue values usttd.

The rulebrz-tis similar, but adds in the conditional registerand specifies both the

fall through and the branch cases.

4.3.4 Machine State Typing

Code Memory Typing. The judgment- C : W describes the invariants for code mem-
ory. As described previously, all blocks must have the saasclprecondition. The
registerr; is described by the typ&O,checkx;). The other registers are colored either
blue or green, and their static expressions do not containdhiablex;. If a label/ has
type V[A| (I, X0 £), then code at that label must be well-typed gi¥nA, I, Xy o ¢, the

intention expressior;, and the fall-through label typ&(¢ +1).
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Figure 4.11: Machine State Typing.
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Register File Typing. The judgment’ - R: T states that register fiR has typd™ un-
der zap tag given heap typindp. It holds when each register Rhas the corresponding
type inl" underZ. Again, values with colors that are affectedbwre not trusted to have

their given types.

History Typing. A historyhis described by sequencevhen each location is equal to

the corresponding expression.

Machine State Typing. A machine state is well-typed under zap tag when each

of its elements is well-typed, and two additional invargahold. (1) IfZ is CF then the
current locatior? is not equal to the intended locati@n Otherwise, ifZ is notCF, then
these two are equal. (2) If the current blackas proceeded past the checking stage,
then it must be the case thais equal toE;. These two invariants together imply it is not
possible for code past the checking stage of a block to betwa#id under theCF zap
tag. Consequently, a proof of type preservation will implgttany control-flow error will

be caught in the checking stage of the next block.

4.4 Formal Results

We have proven a number of properties of our type system dinojuvariants of the
standard Progress, Preservation and Type Safety theofémstatement of the Progress
Theorem is standard. The statement of the Preservation laereiies on the subtyping
relationship between zap tags. As the program executesnains well-typed, although
the zap tag used to type machine states may elevate to ayqgeht other words, the
program may start out well-typed under the empty zap tagorinecwell-typed under a

colored zap tag after a fault, and then become well typed@Bef a control-flow fault
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occurs. Our most important result is a Fault Tolerance #rapihich we sketch briefly
below. More detailed proof sketches appear in Apperdix

In order to explain the theorem, we require a couple of aoiditi concepts which
should be familiar. First, we say a machine state well-formed (writter4 ) when all
code and state are well-typed relative to the zapAa§econd, we say a faulty machine
stateZ; simulates a fault-free state under colorc (written s sinf ) whenever the
two states are identical except for values colarebh other words, values coloredmay
be completely different from one another, but otherwisetWestates are identical.

The judgment :>E F states that machine stafeexecutes through a sequence of
blocksh to reach state&f while incurringk faulty transitions. So ik = (C, hy, R, b), then
F is either(C, (hy,h),R,b'), hwerror(hy, h), orrecover(hy,h).

We say a program is fault-tolerant if any execution of thegpam with a single fault
behaves in one of four possible ways with regards to thermlgnon-faulty computation:
(1) The faulty computation visits the same sequence of sl@the original, and the
final faulty state simulates the original result state urstene colorc. (2) The faulty
computation attempts to transfer control to an invalid addioutside the domain of code
memory and triggers a hardware fault. Prior to the occugesfcthe hardware fault,
the faulty computation visited the same blocks as the calgiomputation. (3) A fault
affecting the intention register or checking code causdahky computation to detect a
fault in software and jump to recovery code. (4) The faultynpaitation veers off course
to a block that does not match the corresponding block in tiggnal computation. In
this case, the checking code in the invalid block catchegtige and transfers control to

the recovery code.
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Theorem 9 (Fault Tolerance)
If +Zandz :>8 >/ then at least one of the following cases applies and all dtoins

z :>2f F wherelength(hs) < length(h) fit one of these cases:

1. 5 =%} and3c. 2 sinf &’
2.3 :>2f hwerror (N, ht) andhs is a prefix oh
3z :>2f recover (N, hy) andhs is a prefix om

4.5 =" recover(,h¢) andhy = (hy,I") andh = (hy,1,hy)

4.5 Translation

In order to show that TAEr is sufficiently expressive to be of interest, we define a sampl
language of while loops and show how to compile statemerttsisianguage into well-
typed TALcg programs. We only sketch the results here, but more detala\ailable
in AppendixG.

The while loop language statements consist of simple assgh subtraction, if
statements, while loops, and sequences of statements.tAs gariables in this language
contain integers, the well-formedness judgméhts simply enforces that all variables

in s exist in the variable context.

S = Vi=N|Vqgi=Va—VWp
| ifO V; then §) else Sp |whileV, #0do S

| 15,5
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To translate a statementas a stand-alone program, it is translated with 1 as the
starting label. The result of the translation is a code mgriprthe instructions from
the body of the final block of the program, and the labeff that last block. Because
there is no halt instruction in TAtg, code is added to the last block in the translation
to create an infinite loop at labé},. The function InitRegFil@/) creates an initial
register file that maps each register used to tranMate 0. The assembly language
program corresponding &is the TALcr state consisting of the generated code memory,
a history with only the first location, an initial registerefjiland code to jump to the first
label in code memory. If the original statement is well-fech then the translation is
well-typed.
Theorem 10 (Translation)
If VF9](.,.,.,1)=(.,C,i,¢) then
F(C/, 0, InitRegFilgV), intendjmp 1)

whereC' = [( — check?; T intendjmplhait| [¢hait — checklnait;intendjmplhai]

4.6 Summary and Future Work

This chapter presents TAJ, a typed assembly language design for reasoning about
software-only transient fault solutions. Well-typed TAtLprograms will always detect
a single transient fault that causes control to incorreitinsfer between basic blocks
before control has reached more than one incorrect blockadslation from a simple
language of while programs into TAJ gives evidence that it is sufficiently expressive
to serve as a target of compilation.

We acknowledge that the fault model used in this chaptemglsstic. By assuming

hardware support to catch control transfers into the midéllelocks, we avoid dealing
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with many interesting and likely situations. This assummpiis required because stating
intentions involves resetting, so an incorrect transfer into a block before il end r;
instruction may not be caught.

A sequence of existing work discussed in Sectto?.2 handles increasing classes
of erroneous transfers. By ensuring that the intentionstegis a function of the entire
control-flow path, not just the current block, they can deteost jumps into the mid-
dle of blocks. The classification scheme of values and réityalproperties from this
chapter does not transfer directly to these more complaxisol, but we believe we
can develop a similar classification to capture the necgsseariants. In doing so, the
Fault Tolerance Theorem becomes more difficult to state aoveplue to the increase of
possible scenarios a single fault may cause. (For exampéelltamay cause control to
transfer from the middle of one block to the middle of a sedoledk. This second block
may transfer control to a third block before the error is findetected.) In essence, the
current work and proof strategy are an important buildirgghklfor reasoning about more

complex solutions.



Chapter 5

Related Work and Conclusion

This dissertation applies techniques for reasoning aloeutével software to the problem
of verifying fault tolerance techniques. As such, the edaivork draws from diverse

topics in programming languages and computer architecture

5.1 PCCandTAL

Proof-carrying Code (PCCY, 43, 3] is a method for guaranteeing properties of low-
level code. In PCC, the compiler generates a safety proafjaloth the code binary, and
the end user can automatically verify the safety proof eeéxecuting the binary.

The most popular way of implementing PCC is usingype-preservingcompiler.
Like ordinary compilers, type-preserving compilers argamized as a series of trans-
lations between intermediate languages. Unlike in orgircampilers, each of these
intermediate languages has a corresponding type systemmawndbe type checked. In
the final compilation phase, a fully type-preserving compilill output an assembly or

native code binary as well as sufficient type informationgaype checker to reconstruct

133
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a typing derivation for the assembly code. The first such uage was called TAL
(Typed Assembly Languaged()]. Over the years, many variants have been developed
[66, 62, 17, 16, 14].

Working at such a low level leads to a number of technicallehgkes not seen in high-
level type systems. For example, creating a new object lransists of allocating the
memory and then initializing the contents. TALJ handled this by usingnitialization
flagsto track which locations had been initialized. In additioepresenting class and
object encodings requires new technolo@jy, [L3]. The stack is a concept that is not part
of most high-level languages, and it turns out to be quit&yriUnlike memory allocated
in the heap, the type of the value stored in a given stack Bemges during the execution
of the program. As the stack grows and shrinks, a locationmoéa code pointer in one
stack frame and an integer in some later stack frame. AsseleN®| type systems need
to track these changing types carefully to avoid unsafe\behaThings get even more
complicated when allocating program data on the stack Isecsiack locations may be
aliased. At this point, it becomes very difficult to developype system that remains
sound and yet is expressive enough to handle advanced dkac&tian optimizations
with. A sequence of existing worldB, 30, 50] has investigated this issue. Other current
areas of interest include handling interrug][ interfacing with the garbage collector
[27, 33], and dealing with concurrenc2{].

Recently, the Bartok CompilefLff] was modified to be fully type-preserving. Bartok
is an optimizing, object-oriented compiler of approxinka@00,000 lines. Not only does
the type-preserving version generate well-typed asseatalg and support almost all the

original compiler’s optimizations, the additional congtibn overhead is only 42¥%and

IPersonal communication with J. Chen. August 2008. Conipilatverhead published in June 2008
[14] was 83% but has since been reduced by performance tuning.
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the generated code is only 2.3% slower. In other words, prpserving compilers are
reaching the point of being practical for use in real-wortdations.

However, one assumption made by all of these languagestishimdnardware will
faithfully execute programs. No guarantees are providediiine behavior of programs

in the presence of transient faults.

5.2 Research in Transient Fault Tolerance

Researchers in the computer architecture and compiler comties have been working
on solutions to transient faults for a long time. This setti® not meant to be a full
summary of the research in this area. Instead, it will prevachigh-level overview of
some of the differing types of solutions and focus on thoseriEjues most similar to the

ideas used in this dissertation.

5.2.1 Hardware-Based Solutions

Hardware-based techniques add hardware to the proceskeietd transient faults. These
include fine-grained techniques such as error-correctgs and parity bits, as well as
more course-grained solutions that duplicate entire &tras within the processor.

For example, the 777 primary flight computer triplicateshaltdware resourceg9|.
The Compaq Nonstop Himalay@4] has two identical processors that run in lockstep
executing their own copies of the same program. The extguinal of the processors
are compared on every cycle to detect faults, but recovelgftigo the software. The
IBM S/390 [65] duplicates units within the processor and compares thepuis on each
cycle, invoking hardware recovery if necessary. It alssyseity and ECC to protect the

L1 and L2 caches.
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One of the main drawbacks of executing in lockstep is thatay meduce perfor-
mance because processor resources are partitionedItaoaultaneous Multithread-
ing (SMT) [70Q] is a technique that allows two independent threads to ruheasame
time while issuing instructions to different functionalitsn Researchers exploited SMT
to develop fault detection techniques that allow two copiethe same program to run
simultaneously while still allowing dynamic schedulingtbé hardware resourcesT).
Others have extended this idea to handle recovéfy. [ Similarly, two copies of a
program can be run independently on separate cores of agsarcgl], and also deal
with recovery R3].

Watchdog coprocessor8d] involve a second simple processor which monitors the
inputs and outputs of the main processor in order to detetdtsfa Despite requiring
less hardware than full replication, this technique caedtet large number of faults by

looking only at control flow and memory access behavior.

5.2.2 Software-Based Solutions

Just as the hardware-based solutions work by adding haedwdundancy, the software-
based solutions add redundant instructions. The techsicarebe divided into two main

camps: protecting data and protecting control flow.

Protecting Data

An very general method for protecting data is to duplicagedhtire computation and in-
sert extra instructions to compare the two copies and chwatoisistency48]. SWIFT
[60] is one solution that uses this technique. Comparisonsnaested before each store
instruction to ensure that the two copies of the address landnto copies of the value

agree. Once the comparison succeeds, a single store tmtraommits the change to
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memory. However, there isveindow of vulnerabilitypetween the comparison and single
store instruction where faults may go undetected and caeseony corruption. It ap-
pears impossible to address this vulnerability withowtirg] on additional, nonstandard

hardware support.

Protecting Control Flow

One patrticular challenge for software-based solutionsluas the detection of control-
flow faults. Our language TA&r in Chapterd keeps arapproximate program counter
and use anntentions registeracross control flow transfers to ensure that the location
reached was the same as the intended location. Of course diseussed, this solution
has the immediate drawback of being unable to detect fanttisar out of the middle of
code blocks.

A sequence of existing workdB, 60, 10] uses a more sophisticated version of this
idea to handle increasing classes of erroneous transfgreng&uring that the intentions
register is a function of the entire control-flow path, ndtjthe current block, they can
detect most jumps into the middle of blocks.

CFCSS #8] uses an approximate program counter and assigns each dlstkic
signature. After a control flow transfer, the approximateigpapdated to contain the
xor of its old value and a precalculated value containingxibreof the current signature
and the predecessors’ signature. (A correct transfer fimeklA to block B will result
in a new approximate program counterA® (A® B), which is equal tdB.) Because
the predecessor is clearly defined, there is no need forebimtque to duplicate both
computations. However, since the true block and the falsekbbf a branch have the
same predecessor block, this technique cannot detecttatatiicauses control to take

the incorrect arm of a branch. The authors present expetahesults for CFCSS show
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that only 3.1% of the injected faults were undetected andltes$ in incorrect outputs.
The authors include high-level arguments about the alititgatch certain classes of
faults but do not clearly specify what classes of faults whresulting in that undetected
3.1%.

SWIFT [60] uses a slightly different technique that addsamsition registerto spec-
ify the intended transition. Before each control-flow tf@nsthe current block and the
intended target block are xored together and the resulttisnpa designated transition
register. At the beginning of each block, the transitiongey is xored with the approxi-
mate program counter to give the new approximation. Agaithout faults, this should
result inA® (A® B) = B However, sinceA® B is computed at run time, this is more
precise than the static method used by CFCSS. Because ¢émeléat targets cannot be
determined statically, SWIFT must duplicate all the valugsd in control flow, but this is
already being done to protect data. Again, the authors pres@erimental results show
an impressive reduction in uncaught errors, and though thr& imcludes itemized lists
of classes of faults that are believed to be caught and ngthtathere is no attempt to
prove their fault tolerance scheme is correct.

One class of faults that SWIFT cannot always detect is fduits) the end of a
block to an instruction within the body of that same block.riBaet al. [LO] introduce
two additional techniques to handle this. The first techaigeros out the approximate
program counter within the middle of block to detect sitaati where the program has
incorrectly entered the middle of the block. The secondrigpre, RCF (Region Based
Control Flow) Checking, protects the branches that mustdsal uo set the transition
register. TAlcr assumed the existence of a conditional move instructiordaainpro-
tected branches for setting the intentions register. Thigiadal branch is given its own

signature, allowing faults there to be detected. The astgive a clear diagram-based
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explanation of the types of faults handled by each solutioaddition, they give a strong
argument that the high-level algorithm they provide is eotr However, that does not
guarantee that the generated code correctly implementdgbathm.

Despite the improvements made in this area, there areisidit®ons (such as jumping

back two instructions within a block) that cannot be handled

Dealing with Performance

Even though many software-based solutions more than dtubleumber of instructions,
the performance overhead is generally around 469510]. Superscaler processors are
rarely able to make full use of their resources, so by addmgdditional independent
computation, the processor is able to achieve higher ttmowty

Even so, 40% overhead is still substantial. There may bestinteen this overhead
is acceptable, and times when it is not. But luckily, beinfjvgare-based, these kinds of
solutions can be appliesklectively Reis b8] shows that often protecting only a small
number of functions can obtain nearly as much benefit as ¢iotethe entire program,

while incurring a much smaller overhead.

Adding Recovery

The software techniques discussed so far have focusedardetection but being able
to recoverfrom errors is also extremely important.

Two copies of the program are enough to detect errors, beg ttopies can be used
detectandrecover by using majority voting. SWIFT-B9) is a version of SWIFT extend
to triple redundancy. Though it can recover from faults, peeformance overhead is
higher, and there are still windows of vulnerability. Thetaars also introduce a different

recovery technique that only requires two copies of a coatput. The difference is that
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in the second copy, all values are multiplied by three. Sirigt errors can be detected
by checking that the original value multiplied by three is #ame as the duplicate. If an
error is detected, the program can determine which one rsigbby using the modulo
operation on the duplicate value. Because a single-bit ritbmanifest as a difference
of 2" for somen, the duplicate is only evenly divisible by three when it has been

corrupted.

5.2.3 Hybrid Solutions

There are clear trade-offs between hardware-based swuéiod software-based solu-
tions. Hybrid solutions use additional hardware and additional softwaiey to exploit
the best of each type.

CRAFT [61], the system TAkT is modeled after, is a hybrid version of SWIFT. It
duplicates the computation in software, but uses an additioardware buffer to close

the window of vulnerability around store instructions.

5.3 Formal Reasoning about Faults

There are a number of efforts that look at formalizing altjonis for fault tolerance,
both for systems affected by transient faults and conctisgstems. A couple of the
software-based systems for control flow that we have alreé@abussed]0, 48] include
formal reasoning about the high-level algorithms involved

Di Vito and Bulter verify the system design for a fault-taat system for flight
control [72] that votes using results from replicated processors. Vhtem is specified
at a high-level using an abstract model of real-time contmrtaand the proofs are

completed using algebraic techniques and verified by amsatexd proof assistant.
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Lamport and Merz 32] give a proof of correctness for a solution to the Byzantine
generals problem in which the states and behaviors of theucent system are specified
using logic, and the desired properties are checked usitogreated tools. However, as
they themselves admit, this is very far from being able tgsoeat the level of executable
code.

Argus [3€] is a hardware-based solution with the goal of providingHowst, low-
power reliability using simple cores. It dynamically chedkur invariants about control
flow, computations, dataflow, and memory correctness. Thigoasimodel the system
as an abstract von Neumann processor, similar to the opeahsemantics used in this
dissertation. They prove that all executions that satisg/ four invariants will output
the same values as a correct execution by using inductioheolength of the execution.
However, the actual algorithms for checking the invariaatpiire hardware support and
are specified at a high level.

Walker et al. 73] were the first to use a type system to reason about faultaiole
code. They defined a typedcalculus called\,5p in which computation are triplicated
and compared at control flow transfers and before outputucsbns using a special
atomicvoteoperation. Later work by Elsmag(] showed how to break theoteoperation
down into a sequence of conditional statements while sitipable to prove correctness.
There are two fundamental differences between these sesmudk the research presented
here. First, by working at such a high level of abstractibeytare able to avoid dealing
with the low-level hardware structures. Second, their ymtems are much weaker than
those we have presented in previous chapters. For examgpkes inA,4p consist of a
color and a base type, but there are no static expressioismeans that all the formal
results depend on the correctness of the translatiomigtowhich adds the duplication.

As we have discussed, trusting the compiler can be dangerous
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Closely related to our work on TAdr is work by Abadi et al. 1, 2] on secure control
flow. Their system CFI (Control Flow Integrity) preventsaatters from manipulating the
control flow of a program. The goal is to guarantee that anwgxsgprogram will always
follow a path through a statically determined control flovagjn. However, an essential
difference is the fault model. CFl assumes that an attackemtake arbitrary changes
to data memory and most registers, but that three designedgsters are protected. So
while CFI must worry about arbitrary amounts of data coriapbut can rely on three
values to be correct, TA4r only has to worry about a single fault, but can never trust
a single value. In addition, the formal results for CFl stétat the attacked program
will follow somepath through the existing control graph, while TALguarantees that a

faulty program will follow thesamepath as the original program.

5.4 Concluding Remarks

Transient faults are caused when energetic particleesinitocessor and deposit charge.
They may corrupt executing programs and have caused crashegjor companies.
Processor technology trends, including decreasing feaiae, decreasing voltages, and
increasing clock rates, will result in future processorat tre even more susceptible.
Existing solutions that involve additional software oftesve a simple intuition but are
implemented as just one of the many phases in a large, optigeompiler. At the same
time, recent work has shown that full-scale, type-presgreompilers are a practical way
for reasoning about the behavior of low-level code.

This dissertation develops the first set of techniques foifyweg fault-tolerant ex-
ecutable code and gives solid evidence that typed assemnijypdges are a promising

direction for continued research. Specifically, we introelthree new typed assembly
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languages. TAEr is used to reason about a hybrid fault detection scheme.-tyyedd
programs are guaranteed to detect a single fault beforefdhtitcauses a change in
observable behavior. ETAL, an extended version of TAdL, is expressive enough to be
used as the target language in a compiler and also allowsinestigate the interactions
between fault tolerance and other current research arégsdd assembly languages. In
a slightly different direction, TAkr takes a first step towards formalizing the guarantees
that can be provided by a purely software-based solution.

The general approach used by all three languages includes modifications to the
standard typed assembly language methodology and can bghthof in five stages.
First, in order to reason about machine execution, we defineparational semantics
that includes specific rules to model faults. One exampléesrtilereg-zapthat can
occur at any point during execution and corrupt the contehésrandom register in the
register file. Second, it is necessary to formally define Wfaatlt tolerance” means in
each specific situation. For TAk and ETAL-t, we assume that memory is externally
visible and so faults may never corrupt memory writes. Sifgk gt focuses only on
control flow, it only allows faulty programs to visit one incect block before detecting
the error. Next, the type system is designed to combine atdrgipe safety invariants
with invariants about the fault tolerance solution, pauiacly specifying the relationship
between different copies of a computation. Once we havestdefinitions, we show
that the type system is sound — well-typed programs will giae fault-tolerant when
executed. The main theorem for each language relates antexeand a faulty version
of the same execution and shows that they will be indistisiggible to an observer. The
final step is to show a language can be used as the target gangtia compiler.

In addition to being the first to verify low-level code, théarguages make three im-

portant contributions. The type systems combine basiatypiformation, computation
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colors, and a language of static expressions to enforcét@aivo different computations
perform equivalent tasks. This allows us to verify low-llesede without relying on how

it was created. By capturing different fault models, we shbat our methodology is
generally applicable. TAtr and ETALrT focus on a hybrid solution, where additional
hardware is used to address the vulnerability between congpavo values and acting on
the result of the comparison. TAl is purely software-based, which leads to a number
of challenges, including the need to reason about situstidmere control ends up in
an unexpected location. Finally, the translations intetypssembly, particular that of
ETALET, show that these languages can be used as the final resudtadistic, optimizing

compiler.



Appendix A

TAL 7 Proof Detalls

This appendix gives expanded details on the formal resnliSection2.3, including
sketches of the corresponding lemmas and proofs. Workitesrior the complete proofs
appear in the companion technical repdd][

SectionA.1 discusses useful lemmas used throughout the proofs. 8écqroves
the standard notions of type safety. Sectfa3 defines a multistep operation semantics
and some associated lemmas, including the No False Pas@iomollary. SectiorA.4
contains the Fault Tolerance Theorem and its associatethésm Each lemma and
theorem is preceeded by a brief English explanation of I&sirothe proof, and followed

by details on how the proof was constructed.

A.1 Lemmas

The proofs of the theorems in the remainder of this sectiynore the lemmas discussed

below.
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A.1.1 Properties of Static Expressions

When an expression is closed, applying substitutions toekression results in a syn-
tactically equivalent expression.
Lemma 11 (Substituting Closed Expressions)

1. If-+E:k thenvS S(E) =E

Proof By induction on the structure of- E : K. |

Even thoughlE] is a partial function, it is always defined over well-kindddsed ex-
pressions.
Lemma 12 (Expression Denotation)

1. If -+ E :Kint thend n. [E]] =n.

Proof By induction on the structure of- E : K. [ |

The equality of expressions is transitive.
Lemma 13 (Expression Equality Transitivity)

If A+ Ei=E andA + E; = E3 thenA E, = Es.

Proof By inspection of the definition di - E; = Eo. [ |

Substituting an expression of kimdfor a free variable of typ& preserves typing.
Lemma 14 (Substitution Lemma)

1. IfAx:kFE:k andA+ E: k thenA+ E'[E/X : K.

2. IfAx:k+FEyp=Ez;andA+ E : k thenAt E1[E/X| = E2[E/X].
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3. IfAX:KFE1#ExandAF E : K thenAt+ Eq[E/X] # Ez[E/X].
4. IfW;Ax: k2 v:tandAF E : k thenW; A2 v t[E/X].

5. IfW; (A, x:K;T; (Eq,Es);Em) F# ir = RT andAFE :k
thenW; (A;T[E/X]; (Eq, Es)[E/X|;Em[E/X]) F% ir = RT[E/X].

6. If-+S:AandW;A-% v:t thenW; 4 v: S(t).
7. If -+ S: A and¥; (AT (Eg, Es); Em) FZ ir = (&T;(EL,EL); Eny)
thenW; (-;S(I"); S((Eq, Es)); S(Em)) H2 ir = (- S(I"); S((E§, EY); S(ER))-
Proof Parts 1, 4, and 5 — by induction on the respective typing dgax. Parts 2 and 3

— by inspection of the equality judgment definition. Partsn@ & — by induction on the

size ofA, using parts 4 and 5 respectively. [ |

A.1.2 Properties of Well-Typed Values

Well-typed values are described by static expressionstohgnmtegers and not memo-

ries.
Lemma 15 (Value Kinding)

1. IfW;AF?v:(c,b,E) thenAF E : Kin.
2. IfW;AF*v: (E' =0) = (c,b,E) thenAF E : Kint.

Proof By case analysis on the value typing judgment. [ |

The type of a value gives us information about the shape ofdhee.

Lemma 16 (Canonical Forms)

If W;. % ¢ n:t andDom(W) = Dom(C) UDom(M) and¥ - M : Ep, andW I C, then



APPENDIX A. TALFT PROOF DETAILS 148

1. Ift =(c,b,E) ort = (E' = 0) = (c,b,E) andc = Z then no particular properties

of n are known.
2. Ift = {(c,int,E) andc # Z then-+ E =n.

3. Ift = (¢,® — void,E) andc # Z thenW(n) = ® — void andn € Dom(C) and
-FE=nandn#0.

4. Ift = (c,bref,E) andc # Z then¥(n) = b ref andn € DomM) and- + E =n.
5. Ift=(E'=0) =t andc# Z and- + E' = 0 thenn # 0.
6. Ift=(E'=0)=t"andc+# Z and-+ E’' # 0 thenn = 0.

Proof By induction on the structure &;- 4 cn:t. [ |

If a value has a type, and this type has a supertype, then lihe a0 has the supertype.
Lemma 17 (Subtyping)
If W;AF?v:t andAFt <t'thenW;AF*v:t'.

Proof By induction on the derivation d¥;AF2 v : t. [ |

If a value is well-typed under the empty zap tag, then thatevéd well-typed under all

colors.

Lemma 18 (Color Weakening)

If W;.~v:t thenve W;-FCv:t.

Proof By induction on the value typing judgment. [ |
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Color weakening extends to register files.

Lemma 19 (Register File Color Weakening)

IfYFR:T thenve. WHCR:T.

Proof By inversion of the register file typing ruR-tand the Color Weakening Lemma.

A.1.3 Properties of Well-typed Memories

Well-typed programs with no faults only load values fromidddbcations.
Lemma 20 (Well-typed Domain)
If(RC,M,Q, ldg rq, I's) thenR 4 (rqg) € DomM).

Proof By inversion of - (R,C,M,Q,ir), inversion of theldgs-t typing rule, and the

Canonical Forms lemma. [ |

When looking up a value in a memory with an update, if the updidbdcation is not
the requested location, then this is equivalent to lookipghe location in the memory
without the update.

Lemma 21 (Irrelevant Update)

If E =sel (upd By Eq Es) E and- + Eg # E, thenE = sel By, Ep.

Proof By inspection of the denotation selandupd. [ |
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A.1.4 Properties of Well-typed Queues

The length of the queue is the same as the length of the segjtieatalescribes it. When
the zap tag is not green, then each item in the queue is deddnypthe corresponding
expression. In addition, the first element of each pair hpshyef and its value has type

b.

Lemma 22 (Queue)

1. IfWH* Q: (Eg, Es) thenlength( Q) =length((Eq,Es)).

2. If W2 (n,ny) : (Eq,Es) andZ # G then for all k from 1 tolength((ng,ny)),
-+ Eqk = ik and- - Esx= nyk and there is some base typsuch that’ - ny : b ref

andW¥ F ny : b.

Proof By induction on the structure &P % Q: (Eg, Es). [ |

If the find function returns no match on an addressand the queue is described by the

sequence of address-value pdieg, Es), then none of the address expressions are equal
ton;.
Lemma 23 (Find)

If find(Q,n1) = () and¥W+ Q: (Eq, Es) then for k from 1 tdength(Q), - - Eqk # ny.

Proof By definition of thefind function and the queue typing judgment. [ |

If a queue is well-typed under the empty zap tag, then it is alsll-typed under any
colored zap tag.
Lemma 24 (Queue Color Weakening)

If WE Q: (Eqg,Es) thenve. W€ Q: (Eg, Es).
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Proof By induction on the queue typing judgment. |

A.2 Type Safety

Progress states that well-typed states can take a steprticuper, a machine state that is
well-typed under the empty zap tag can take a non-faulty tstgmother ordinary, non-
faulty machine state. A machine state that is well-typedenradzap tag of coloc can

take a step, but the result of that step may either be anotgrany machine state or the

fault state.
Theorem 25 (Progress)

1. If X then —§ % and¥’ # fault.

2. If F¢XZ thenz —3X%.

Proof By case analysis on the instructionn stateZ.

Part 1 uses inversion on the typing rules to determine tleaptbconditions hold for
the appropriate operational rule. For example, Fighrke shows the case fastz. By
inverting various typing rules, we gather enough informatio conclude that the last
pair in the queue is equal to the contents of the two registéogice that step 9 inverts
theval-t rule. This can only be done because we know that -, and so theval-zap-t
rule cannot apply instead. (And similarly, step 12 inveule Q-t.) Once we have these
equalities, we can apply the operational rekg-mem Other cases are similar, although
the cases foldg andbzs subdivide further based on the result of fimel function and the
value in the branch register.

Part 2 is simpler than part 1. Instead of using typing rulegather as much in-

formation, we just further subdivided based on propertiesded to apply the rules.
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These subcases take either the normal operation rule, aotinesponding failure rule
as necessary. Some inversion may be done on the typing ouse®tv that the case does
not get stuck. Again, FigurA.1 shows the case fatz. From the typing information,
we know that the Q is not empty. Then either the last pair incihheue is equal to the

registers (rulestg applies) or it is not (rulets-fail applies). [ |

According to Preservation, if a machine state is well-typeder a zap tag, and
it takes a non-faulty step to another machine state, thamrakalting state will also be
well-typed undeiZ. Additionally, if a state is well-typed under the empty zag,tand it
takes a faulty step, then there is some calsuch that the resulting state is well-typed

underc.
Theorem 26 (Preservation)

1. If F# % andz —$ 3 and¥’ +# fault then-4 5.

2. If FXand> —3% thendc. F¢%'.

Proof By case analysis of the structure of the derivafion—} ¥'.

Part 1 only applies to cases wheteis notfault. We use inversion to take apart the
judgment for—4 =, modify it as necessary, and build the judgmeft=’. Each case is
subdivided based on the actual value of the zap tag. In sebedsere the zap tag is not
the same as the color of a value, we can invert valet on the typing of a value and use
that information to construct a typing derivation fdr In cases where the zap tag has the
same color as the value, modified value&ircan be trivially typed using rulegl-zap-t
andQ-zap-t FiguresA.2 and A.3 show an example case for rudig-mem

Part 2 chooses to be the color of the zapped value. It uses rulakzap-t val-
zap-condor Q-zap-tto show that the zapped value can be typed under zap. tadne

remainder of the state can be typed as before using the Caak&ing Lemmass, 19,
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Part 1 Example Case: st

al.

1.
2.
3.

10.

11.
12.

13.
14.

F(RC.M,Q, stg rq,rs)

YiE-C
ve. C(Ryal(PG)) = Sts rd,Ts

W; (A;T; (Eq,Es), (B, ES);Em) - Stgrg s

= (BT ++;(Eq, Es);upd By Ej EY)
3S . FS:A

Wi (S(M); S((Bq, Es), (Bg, E¢)); S(Em)) F st ra Ts
= (- S(S(M)++;S((Eq, Es));upd $Em Ey Eg))

YER:ST)

S(I)(rg) = (B,bref,EY)
S(r)(rs) = <B7b7 Eé/>
W;-FR(rg) : (B, b ref,E})
Y- FR(rs) : (B,b,EY)
-FRval(rg) = EJ

- Rval(rs) = E{

-+ S(Ey) = E
- SE) =&

Wi Q: S(Ea.Es), (E}.EL)

Q: ((n7 n’)ﬂ(m 7n|,))
-FS(E}) =n and- - S(E{) =n|

Rai(rd) = ni andRyq (rs) = nj

(R7C7M7((nvn/)7(n|7n|,))7StB rd7rS) -0

(R++,C.M[n; — ], (n,r),-)

Case complete.

Part 2 Example Case: st

al.

1.
2.

F(R,C,M,Q, stg rg,rs)

LP FC Q : S((EdvES)v(Eé’Eé))

Q= ((n.n),(m,m))

(ny,n))

Case on whetheRya/(f) = ny andRya(r's) = 1

[ assumption ]

[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]

[ Inversion ofC-t, 1, 2, inspection o$fz-t ]

[ Inversion ofZ-t, al]
[ Lemmal4 (Substitution), 4, 3]

[ Inversion ofZ-t, al]
[ Inversion ofstg-t, 5]

[ Inversion ofR-t, 6, 7 ]

[ Inversion ofval-t, 8]

[ Inversion ofstg-t, 5]

[ Inversion ofZ-t, al]
[ Lemma22 (Queue), 11 ]

[ Lemmal3 (Exp Eq Transitivity), 9, 10, 12 ]

[ sts-mem 14 ]

subcase arg andrg are the same as the last pair in the queue

ada.
3a.

Rval(rda) = n andRyq (rs) = 0y

/
(RC,M,Q,st fa,rs) —g"" (Re+,C, My 1 1y],

Subcase complete.

(nvnl)v')

[ assumption ]

[ Inversion ofZ-t, al]
[Lemma22 (Queue), 1]

[ subcase assumption ]
[ sts-mem ada ]

subcase b:eitherrs or rq or the last pair in the queue has been corrupted

adb.
3b.

Rvai(rd) # i or Ryai(rs) # |
(RC,M,Q,stp rq,rs) — fault

Subcase complete.

Case complete.

[ subcase assumption ]
[ sts-mem-fail adb ]

Figure A.1: Example Cases of Theor@®(Progress).
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and 24. FigureA.4 shows an example case for ruég-zap [ |

The Progress and Preservation Theorems define the usuah wbtype safety.

A.3 Multistep Transitions

In order to prove properties of our type system, we extendsingle-step transition
Y1 —y 22 from Section2.1to a sequence af transitions containing exactly faults

ZlLiZz, wheren is greater than or equal to zero, anib still either O or 1.

_1 2
sy oz s

—— (multi-base
0 ( ) (s1,%2)

(multi-compose)
ZLo 2 ZL>k1+k2 2

A.3.1 No False Positives

By combining part one of Progress with part one of Presesmative get the following
important corollary: The hardware never claims to haveaetka fault when no fault
has occurred during execution of a well-typed program.

Corollary 27 (No False Positives)

If 3 thenvn.z—" 35" and I %'.

Proof By Progress Part 1, Preservation Part 1, and induction aihetieation onLSZ’ .
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Example Case: sg-mem

Rual(ra) =n

Rual(rs) = nf

(RﬂcvMﬂ((nan/)a(m ,nf)),stB rdvrs) I

al.  F*(RCM,Q, stg rq,rs)

pl.  Rual(ra)=n

p2. Rval(rs) =ny

1. Dom(W) = Dom(C) UDom(M)

2. Z#G = Dom((n,n’),(n;,n))) € Dom(M)

3. Y-C

4. Ve # Z. C(Ryal(pc;)) = Sts ra,ls

5. Ve#Z. Y(Ral(pc)) = (A;T; (Eq, Es); Em) — void

6. S -FS:A

7. WEM : S(Enp)

8. WEZ((n).(n.n)): S(Eq,Es). (E}.EL)

9. WH2R: ST

10. W; (A;T; (Eq,Es), (E,ES;Em) b sierqrs= 6

11. @ = (A;T++;(Eq,Es);upd By E} EY)

12.  Ve#Z.C(Rual(pc)+1) =© — void

5. Ve # Z. C(Rt+yq(pg)) = © +— void

9. WHZ R+ (M) ++

13, Wi (;S(M);S((By,Es), (E§,ES));S(Em)) - Stera Is
= (S(S(M)++;S((Eq, Es));upd SEm E} EL))

14.  g(M)(rq) = (B,bref,E])

15. S(r)(rs) = <B7b7 Eé/>

6. -FSE)=E]

17.  -+FSE)=E/

Case orZ

Subcase alZ=G
a2a. Z2=G
18a. WH2 (nn):S((Eq.Es))

SubcaseblZ=-0orZ=B
a2b. Z=-o0orZ=B
18b. W2 (n,): S((Eg,Es))

Merge subcases al and b1:
8. WHZ (n,1) : S((Eg, Es))

2 Z#G = Dom((n,n’)) C Dom(M)

Continued in Figuré\.3...

(ste-mem)

W (Ret,C My — ], (0 7). )

[ assumption ]
[ premise ]
[ premise ]

[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]
[ Inversion ofZ-t, al]

[ Inversion ofC-t, 3,4 ]
[ 10, inspection obts-t ]
[ Inversion ofC-t, 3, 4, 10, 11]
[12, def of R++ ]
[ 9, def of R++ andl++ ]
[ Lemmal4 (Substitution), 10, 11, 6]
[ Inversion ofstg-t, 5]
[ Inversion ofstg-t, 5]
]
]

[ Inversion ofstg-t, 5
[ Inversion ofstg-t, 5

[ subcase assumption ]
[ Repeated Inversion @-zap-t a2a, 8Q-zap-t]

[ subcase assumption ]
[ Repeated Inversion d@®-t, a2a, 8Q-t]

[ 18a/18b |

[2]

Figure A.2: Example Case from Theor@® (Preservation) Part 1.
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Example Case: sg-mem (...continued from FigureA.2)
Case orZ

Subcase a2Z = B (the queue is correct)

a3a. Z=B [ subcase assumption ]

19a. -+FSE))=n [ Inversion ofQ-t, a3a, 8]

20a. Whkn :bref [ Inversion ofQ-t, a3a, 8]

2la.  W;-HBnf:(B,bref,E) [ val-t, 19a, 20a]

22a. n € DomM) [ Lemmal6 (Canonical Forms), 7, 3, 21a
23a. -+FSEY)=n [ Inversion ofQ-t, a3a, 8]

24a. Wkn:b [ Inversion ofQ-t, a3a, 8]

25a.  [[S(Ey)] =n and[S(EH)] = n| [ Inversion ofE-eq 19a, 23a ]

Subcase b2Z = - or Z = G (rq andrs are correct)

a3b. Z=-0rZ=G [ subcase assumption ]

19b.  W;-F Ryal(ra) @ (B,bref,E}) [ Inversion ofR-t, 9, 14 ]

20b.  W; -2y (B,bref, S(E})) [19b, p1, Lemmad3 (Exp Eq Transitivity), 16 ]
21b. n € DomM) [ Lemmal6 (Canonical Forms), 7, 3, 20b
22b. Wkn :bref [ Inversion ofval-t, a3b, 20b ]

23b.  W;- 2 Ryal(rs) : (B,b,E) [ Inversion ofR-t, 9, 15 ]

24b.  W;--2nf 1 (B,b,S(EL)) [23b, p2, Lemmad.3 (Exp Eq Transitivity), 17 ]
25b. Wkn:b [ Inversion ofval-t, a3b, 24b ]

26b. -+ S(Ej) =n and-+ S(EY) =n| [ Inversion ofval-t, a3b, 20b, 24b ]

27b.  [S(Ey)] =n and[S(EH)] = n| [ Inversion ofE-eq 26b ]

Merge subcases a2 and b2:

30. VleDomM). Wk :brefAWEM(Y):b [ Inversion ofM-t, 7 ]

31, VleDomM[m —n]). WEL:brefAWEM(():b [ 30, 20a/22b, 24a/25b ]

32. [S(Em)] =M [ Inversion ofM-t, 7]

33, [upd SEm) S(E}) S(EL)] = [S(Em)] [ [S(EQ)] — [SEL)]]  [defof [E] ]

34.  [upd SEm) S(E}) S(EL)] = M[ny — 1] [33, 32, 25a/27b |

35. -+ S(Em) : Kmem [ Inversion ofM-t, 7]

36. - S(E)) : Kint and- - S(EY) : Kint [ Lemmal5 (Value Kinding), Inversion oR-t, 9, 14, 15]
37.  -Fupd §Em) S(E}) S(ES) : Kmem [ E-upd-t 35, 36 ]

7. WEM[n ] S(EmE, EL [ M-t, 31, 34, 37]

1. Dom(¥) = Dom(C) UDom(M[n; — n/]) [1,22a/21b]

38. HZ (R++,C,M[n — nl’],(n, n),-) [t 1,2,3,ir=.,5,6,7,8,9

Figure A.3: Example Case from Theor@® (Preservation) Part 1.
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Example Case: reg-zap

R(@) =cn

reg-za

RCM.Qir) —, (Ra—cl.cM.Qir) 972
al. = (R,C,M,Q,ir) [ assumption ]
1. Dom(W) = Dom(C) UDom(M) [ Inversion ofz-t, al]
2. Dom(Q) € Dom(M) [ Inversion ofZ-t, al]
3. YiC [ Inversion ofZ-t, al]
4. ve.ir # - = C(Rial(pc)) =ir [ Inversion ofz-t, al]
5. ve. W(Rval(pe)) = (A;T; (Eq, Es); Em) — void [ Inversion ofZ-t, al]
6. S -FS:A [ Inversion ofZ-t, al]
7. WEM: SEn) [ Inversion ofZ-t, al]
8. WEQ: S(Ey,Es) [ Inversion of2-t, al]
9. WER:SIN) [ Inversion ofZ-t, al]
Case on the shape 8f)(a)
Subcase a:S(I")(a) is a triple(c,b,E)
a2a. Let(c,b,E) =S)(a) [ subcase assumption ]
10a. -FE:Kint [ Lemmals5 (Value Kinding), Inversion oR-t, 9, a2a ]
1la. W;-+cn':(c,bE) [ val-zap-t 10a]
12a. W;-F°Rla—cn](a):SM)(a) [11a, a2a, def of R[] ]
Subcase b:S(I")(a) is a conditional typ&’ = 0= (c,b,E)
a2b. Let(E'=0=(c,b,E)) =9()(a) [ subcase assumption ]
10b. -FE:Kjnt [ Lemmals, Inversion ofR-t, 9, a2b ]
11b. W;-+fcn:E' =0= (c,b,E) [ val-zap-cond10b ]
12b. W;-FCRla—cn](a):S(M)(a) [11b, a2b, def of R[] ]
Merge subcases a and b:
9. WHCRja—cn]:9I) [ R-t 9, Lemmal9 (Reg File Color Weakening), 12a/12b |
8. W Q: S(Eqy,Es) [ Lemma24 (Queue Color Weakening), 8]
2. Z#G — Dom(Q) C Dom(M) [2]
4. Ye£Zir# = C(Ral(pc)) =ir (4]
5. Ve#Z W(Ra(pc)) = (AT (Eqg,Es);Em) — void  [5]
13. ¢ (Rla~ cn],C,M,Q,ir) [%t1,2,3,4,5,6,7,8,9]

Case complete.

Figure A.4: Example Case of Theored6 (Preservation) Part 2.
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A.3.2 Multistep Split and Combine

The following two lemmas about the multistep relation letale apart and put together

different sequences of steps.

If a machine state evaluates in a sequence of steps with fte faw final state, then this
computation can be divided into a sequence of non-faulfyssteaching an intermediate
state, and a sequence of non-faulty steps from this intaateestate to the final state.
Lemma 28 (Multistep Split)

If ZLZZ’ then there exists, ny, ¥, s1, ands, such thah = n; +np ands= (s1,S)

n S n %2
and>——, 2" ands" -3’

Proof By induction on the structure deSZ’. [

If a machine state evaluates in a sequenca;afion-faulty steps to another state, that
state faults to a third state, and the third state evaluatas non-faulty steps to a final
state, then the original state can reach the faulty statesegaence ofi; + 1+ ny steps
including exactly one fault step.

Lemma 29 (Multistep Combine)

if 55 ands! —. 5 andy’,—2 25" thenZL(SLsz)Z” wheren’ =n;+1
0 124 f 0 1 =M+ d+ne.

Proof By induction on the structure cinglZ’. u

A.4 Fault Tolerance

A program is fault tolerant when all the faulty executionghadt progransimulatefault-

free executions of the program. More precisely, the seqiehoutputs from the faulty
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vy Sinf v

(sim-val) (sim-val-zap

CnsinfCn CnsinffCnr

Va. R(a) sin? R(a)

R sinf R (sim-R
Qsinf Q
onZ. (sim-Q-empty
GmsinfGn, G n2 sinfGn, QsinfQ (sim-0
((n1,n2),Q) sinf ((ny,n5), Q)
>1 sin? 3

R sinf R Q sinf ¢
(R,C,M,Q,ir) sin? (R,C,M,Q,ir)

(simx)

Figure A.5: Similarity of Machine States.

executions are required either to be identical to the faial-execution or, in the case the

hardware detects the fault, a prefix of the fault-free exeaut

A.4.1 Simulation Relation

In order to reason about pairs of faulty and fault-free ekeas, we define similarity
relations between values, register files, queues and mastates. Each of these relations
is defined relative to the zap tag Intuitively, if Z is empty, the related objects must be
identical. If Z is a colorc, the objects must be identical modulo values colaredn

the latter case, values colorednay be corrupted, and there is no hope they satisfy any

particular relation. The formal definitions of these radas are shown in Figura.5.



APPENDIX A. TALFT PROOF DETAILS 160

A.4.2 Singlestep Fault Detection

We begin by defining fault detection for a single step in thecetion of a program.
It essentially says that if we have two similar computatjomse with a fault and one
without, then either the faulty computation can take a stelgstinguishable from that of
the non-faulty version, or the faulty computation reaclmesfault state.

Lemma 30 (Singlestep Fault Detection)

If - £ ands sinf 3¢ andz —3 ¥ thens¢ —¢ = and either
1. ¥ sinf X} ands=s¢, or
2. Y = fault andss = ().
Proof By case analysis &f —§ %'. Each case is handled in one of three ways.

Failure Cases. Rules wherex steps tdfault are not applicable becaueis well

typed under the empty zap tag, and so Progress 1 tells uE'tisatotfault.

Random Cases. Rulesldg-rand andldg-rand only apply when loading from an
invalid address that is not in the domain of memory. Accaydio Lemma20
(Well-typed Domain), states that are well-typed under tngty zap tag only load

from valid addresses, so these cases can be ruled out.

Standard Cases. The remaining rules are all handled in approximately theesam

way.

Each rule has a handful of premises. These relationship®nmagy not hold in the
faulty computation. It will depend on what exactly has beemupted. The proof
divides into subcases based on these relationships. Sdocasgs may further

divide based on whetheris G or B.
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Figure A.6 shows the case fatz-mem There are two premises relating the two
registers to the last pair in the queue. If one of these pesrises not hold in the

faulty computation, then it will step tfault using thestg-fail rule with no output.

However, if both equalities hold then the proof further sulatés based on the color
c. If cis B, then we know that the faulty and non-faulty queues are eogeduse
they contain green values and simulate each other under Bolerom there, we
can determine that the faulty computation also steps i ghe resulting state is

similar toY’, and the outputs are equal.

If cis G, then we use the fact thatis well-typed to show that the registaxsand

rs are colored blue, and so both the faulty and non-faulty teggsare correct and
equal to each other. And since the registers are assumeceguia¢to the ends of
the queues, we also know that the ends of the queues are dqoah. there, we

continue as in the previous subcase.

A.4.3 Multistep Fault Detection

The Multistep Fault Detection Lemma extends the SingleStept Detection Lemma for
n steps. If a fault has occurred and the non-faulty computdtikesn steps to a stat¥/,
then the faulty computation with either takesteps to a state that simulaf€s or it will
terminate in the fault statault during this time.

Lemma 31 (Multistep Fault Detection)

If - X andZ sinf Z¢ andZLSZ’ then either

1. ZfL?f Y and’ sinf X andst =s, or



APPENDIX A. TALFT PROOF DETAILS

Example Case: sg-mem

Ral(rg) =n

162

Ryal(rs) =n|

(RCM.((n.1),(n,n)),sta rq,rs) —

al. F(RC,M, ((n,1), (n,n))), stg rg,rs)
a2. (RC.M, ((n,1), (n,n)), stg rg,rs) sinf Z¢

7 v (n ‘nll)
a3. (RC,M. ((n.1), (n;,ny)), stg rg,rs) —
pl. Ryal(rg) =n
p2. Ryal(rs) = nf

%t = (Rf,C,M,Qs,ir)
R sinf R¢
(1), (g, m))) sinf Q¢
Qf = (n,nf). (g, mjy)

Eal A

Case on whetheRy (rq) 2 n andRy, . (rs) 2 nff and the coloc

subcase aeitherrs orrg or the last pair in the queue has been corrupted
ada.  Rr, (rg) # s or Ry (rs) #nj
6a. (Rf,C,M,Qf,stg rg.rs) — fault
S
7a. Zf ~>0f faultandss = ()
subcase complete.

subcase b:blue values are corrupted, but mgtor rgq
adb.  Re,(rg) =nis andRy  (rs) =i

ash. c=B

6b. Gn sinP Gny

7b. n =nj

8b. G sinfP G

9b. n=n¢

10b.  M[n —n{]=Mns — n¢]

11b. R+ sinP Ry++

12b.  (n.0)sinP (ng.n})

13b.  (Re+,C,M[ny —nf], (1Y), ) simP (R ++,C,M[ny¢ — (], (ng,nf).-)

(M .rfy) L
14b. It —y (R ++,C,M[mys = ], (ng,n),-)

15b. (g, n¢) = (ng,n)

S;
16b. I —»J %% ands’ sinf £} andsf =s
subcase complete.

subcase cigreen values are corrupted, but not the last pair in the queue
adc. Ry, (ra) =nip andRy . (rs) = nj;

aSc. c=G

6c. Reol(rd) = Reol (r's) =B

7c. R(rq) sim® R¢ (rq)

8c. R(rs) sinf Ry (rs)

9c. Ryal(rd) = Ry (rd)

10c.  Ryal(rs) =Ry, (rs)

1lc. n =nj

12c.  nm=n;

13c.  M[n —n{]=Mns — nj¢]

14c. R+ sinf® Rf++

15c. (') sin® (ng,n)

16c.  (Re+,CM[n —n],(n,1),) sinC (R¢++,C,M[ns — ¢l (ng,nt),-)

(¢ "nl/f ) ;T
17c. It —p (Rf++,C,M[njf — ”|f]a(nfa”f)»')

18c. (ﬂ|f,ﬂffs):(ﬂ|»"|’)
19c. 3 ~>0f 2 and’ sinf 2} andsf =s
subcase complete.

case complete.

(Re+,C,M[ny = nf], (n,r), )

(stg-mem)

) (Re+,C,M[ny = nf], (n, 1), )

[ assumption ]
[ assumption ]

[ assumption ]
[ premise ]
[ premise ]

[ a2, definition ofsim-=% ]
[a2, 1, inversion oimX |
[a2, 1, inversion o6im= ]
[ 3, definition ofsim-Q]

[ subcase assumption ]
[ stg-fail, 4, ada ]
[6a]

[ subcase assumption ]

[ subcase assumption ]

[ 3, inversion ofsim-Q]

[ 6b, inversion ofsim-val a5b ]

[ 3, inversion ofsim-Q]

[ 8b, inversion ofsim-val a5b ]

[ 7b, 9b, a5b]

[ 2, definition of Rr+, sim-val sim-R a5b ]
[ 3, 4, inversion ofsim-Q a5b ]

[10b, 11b, 12b]

[ sts-memadb, 1,4 ]
[7b,9b]
[14b, 13b, 15b ]

[ subcase assumption ]

[ subcase assumption ]

[ a1, inversion of-t, inversion ofstg-t |
[ 2, inversion ofsim-R a5c ]

[ 2, inversion ofsim-R a5c ]

[ 7c, 6c, inversion obim-val]

[ 8c, 6c, inversion obim-val]

[9c, a4c, pl]

[10c, a4c, p2]

[11c, 12c]

[ 2, definition of R+, sim-val sim-R a5c ]
[ 3, 4, inversion ofsim-Q a5c ]

[13c, 14c, 15¢]

[ stg-mem a4c]
[11c, 12c]

[17c, 16¢c, 18c]

Figure A.6: Example Case of Lemn3a.
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2. Existsm<n. X¢ Lgf fault andss is a prefix ofs.

Proof By induction on the structure CEL%Z/. The base case fanulti-baseis
immediate.

In the case fomulti-composgwe know from the premises thattakes a single step to
someX”. Using this and the Singlestep Fault Detection Lemma, wevkihat ; either
takes a single step with no output to fault or takes a singlp & some stat&/ that
simulates” while generating equal output.

In the former case, we can immediately prove the second lmbtigswith m= 1 and
() as a prefix ok.

In the latter case, we call the Induction Hypothesis, whétls us that eitheE? takes
n— 1 steps to a state that simulafésgenerating equal output, or it reacHaslt in no
more tham — 1 steps with a prefix of the output. In the first case, whartdt is never
reached, we usenulti-composeo conclude thats takesn steps toX; and the total
output is equal. In the second case, whefault is reached later in execution, we use
multi-composéo show tha% ; reachedault in no more tham steps, and its output is a

prefix of the non-faulty output. [ |

A.4.4 Fault Similarity

The Fault Similarity Lemma states that if a non-faulty maehstate takes a single faulty
step, then the resulting machine state is similar to tharalgtate under some color
Lemma 32 (Fault Similarity)

If ¥ —, Z¢, thend c. X sinf %
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Proof By case analysis on the definition Bf—; ¥'. In each caseg is assigned the
color of the value that is zapped. The zapped value is sirtoldéine original value by

sim-val-zap The remainder of the state is equal, and is similar usingval [ |

A.4.5 Fault Tolerance Theorem

By using the three previous lemmas, we can state and proviaudhli¢olerance theorem
for well-typed programs. Assume that machine skaitewell-typed under the empty zap
tag, and non-faulty execution affor n steps results in a stak and outputs a sequence
of value-address paiss If somewhere during that execution a single fault is entenaal,
the faulty execution will either run fon+ 1 steps or terminate in the fault state during
that time. If the faulty execution takes+ 1 steps and reaches the non-faulty stite
then’ simulates; and the sequence of output pairs is identical the originetetion.
Alternatively, if the faulty execution reaches the fauéitstthen the output pairs will be a

prefix of the non-faulty output pairs.

Theorem 33 (Fault Tolerance)

s g
If % ands— "%’ then either ", 5 or Im< (n+1) . =™} fault, and

S
1. Forall derivationiml > whereX; #fault. s =sand3 c. ¥’ sinf X.

L s . .
2. For all derivationg —"— fault wherem < (n+1). s is a prefix ofs.

Proof By case analysis on the definition i)ngZ’ :

In the base case fonulti-base we can easily prove result 1 by havikdake a faulty
step toZs and using the Fault Similarity Lemma to show tBat. ~ sinf >¢.

In the recursive caseulti-composgwe use the Multistep Split Lemma to divide the

computation into two pieces with an intermediate sfite =" can take a faulty step
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to 2, and we can again use the Fault Similarity Lemma to show tiet are similar.
We then call the Multistep Fault Detection Lemma with theaaston fromZ” to X’ and
the similarity betweert” andZ¢. This tells us tha& can either step to a stak
that is similar toX’ or reaches a fault before that point. Finally, we use the isheip
Combine Lemma to combine the first part of the non faulty etienuthe fault step, and
the resulting execution from the Multistep Fault Detecti@mmma, to show that either
ZM?Z} or ZLifault. The length of the faulty computation is at mast 1 because
of the addition of the single fault step. Since the Multis8glit Lemma chooses some

unspecified division of the original computation, the réswdld regardless of exactly

where the fault is injected. [ |



Appendix B
MiniC Typing Rules

This appendix contains the typing rules for the MiniC Langgidefined in Sectio8.1

type T c=int|tref | X =1
variable context X = |x:i1, X
value v = n|x|refv
value list Vs = -|Vv, Vs
binaryop op = +|—|x
statement S = X=V|X=vopV
| x=Iv|vi=v
| x= f(v9)
| if Vthen Selse S| whileVvdo S
|s; s
function declarations fds:= |1 f(X) {lds; s, returnv} fds
local declarations lds = -|tx=vV, Ids
program p == fdslds; s returny;

xr oo MY X X (x) (var-t)

X Fref v:tref (ref-t

166
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Xkv:it XFvs: X )
X (Vs XF(v,vs @ (x:1, X) (vs-)
F;A L swf

LEX:t (AUL)Fv:T .
FIALF x=v wf _ (oassignwf

LEx:int (AUL) Fvq int (AUL) vz rint 00w
F;ALE x=viopw wf (s-0p-wj

LEXx:T (AUL) Fv:Tref
F;ALE x=!v wf

(s-deref-wf

(AUL) F vy :Tref (AUL)Fwa:T
F:ALE vii=vo wf (s-update-wi

(AUL) Fv:int F:ALF s wf F:A;LF s, wf
F;AjLF if vthen Sj else S Wf

(s-if-wf)

(AUL) Fv:int F;A L swf
F:A;LF whilevdos wf

(s-while-wj

LEX:T FEf:A—>T (AUL) Fvs: A (s-call-w
F;ALEx= f(vs) wf

F;A L s wf F,A LE s wf
F:ALF si;sp wf (s-seq-wf

167
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F:ALFIds: L’

FALF L 195

x ¢ Dom(F UAUL)
(AUL)FvV:T F;AL[x:T]FIds: L’
F;ALF Tx=vV; Ilds : L

(Ids-t

F I fds:F’

Frof (fds-y

f ¢ Dom(F)
FIf:(A—=T1);A-Flds:L
FIf:(A—=1);A;LFswf

(AUL)FVv:T
FIf:(A—1)]F fds: F’

FF 1 f(A) {lds s returnv} fds : F’

(fds-t)

F p wf

-+ fds: F
F:-+Ilds: L
F::LFswf
LFv:int

F fds Ids; s; returnv wf

(p-wf)



Appendix C

Complete Rules forETAL gt

This appendix contains the complete dynamic and static secsgor ETALgT. Section

3.2discusses the main differences between EFAANd TALFT.

C.1 Syntax of Machine States

colors c = G|B

colored values v = n

registers r = rp
generalregs a = r|gd|pc|sSp
register file R = -|Ra—n
codememory C = -|Cn—i
value memory M = -|M,n—n
storequeue  Q u= (n,n)

ALU ops op = add|sub| mul

instructions i = o0prg,rslt|OpPry,rs,N| MOV Ig,N | MOV Iy,rs
| Idcrg,rs|sldergn|strg,rs|sstng
| bz rarg | jmp;
|  mallodb] rg, ry | sallocn| sfreen
inst register ir = |-
state > = (RC,M,Q,ir) | fault

169
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C.2 Dynamic Semantics

C.2.1 Fault Rules

> —3%

Q1 = (ng,n), (m,my), (n27n2)
Q2 = (N1, 1)), (M,m,), (nz,nj)
(R7C7M7Q17Ir) (R7C7M7Q 7Ir)

(Qz-zap

C.2.2 Normal Execution Rules

2 —32

R(pcs) = R(pc) R(pcg) € Dom(C)
(RC.M,Q,:) — (RC,M,Q,C(R(pcgs)))

(fetch)

R(pcg) # R(pcs)
(R,C,M,Q,-) — fault

(fetch-fail)

R = Rt+[rg — R(rs) op R(rt))]
(R7C7M7Q70p ld,Is, rt) -0 (H7C7M7Q7'>

(op2r)

R = R++[rg— R(rs) op n
(R7C7M7Q70p fa,Is, n) -0 (H7C7M7Q7'>

(op1r)

R = R++[rq —n|
(R7C7M7Q7mov Iy n) -0 (R,7C7M/7Q7‘)

(mov-n
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R = R++[rqg — R(rg)]

(RC,M,Q,mov iy rs) —, (R,C,M",Q,") (mov-reg
n=maxDom(M)) +1
R = Re+[rg— n][rp — N
(mallog)

(R,C,M,Q,mallodb] rg rp) —¢ (R,C,(M,n+— 0),Q,")

R = R++[sps — R(sps) — n|[sps — R(sps) — n|
m= min(Dom(M))
M'=(Mm—1—0,..,m—n~— 0)

(RC,M,Q,sallocn — (R,C,M",Q,") (sallog)
R =Rt+[spg — R(sps) +n|[sps — R(sps) +N|
m= min(Dom(M))
M=M me Vp,..,(M+n-1) — v f
(RC,M,Q,sfree) —, (R,C,M.Q,") (sfreg
Q = ((R(rq),R(rs)),Q) A

(R7C7M7Q7StG rd7r5> -0 (R++7C7M7QI7'>

R(rd) =m R(rs) = (stg-men)

T (n,nf)

(RC,M,((n,n),(n;,n})),ste rq,rs) —¢ " (R++,C,M[n; — nj], (n,n'), )

Q= ((n,n'),(n,n)))  R(rq) # m or R(rs) # nf
(R,C,M,Q,StB rd7rs) -0 fault

(stg-mem-fai)

R(sm) = R(sps) R(sps) +n € DomM)

(sst
(RC,M,Q,sst n r,) — IR (Rt € MR(sps) +n— R()],Q,)

R(sps) # R(sps) or R(sps) +n ¢ Dom(M)
(R,C,M,Q,sstn ry) —, fault

(sst-fail)
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find(Q,R(rs)) = (R(rs),n)
R = R++[rq— n|

(RC,M,Q,ldg rq,rs) —¢ (R,C,M.Q,") (lde-queug
find(Q,R(rs)) = ()
R(rs) € Dom(M)

e ) (Idg-mem)

R(rs) € DomM)
R = Rt+[rq — M(R(rs))]

(R7C7M7Q7IdB rd,rs) ) (R7C7M7Q7‘)

(Idg-men)

find(Q,R(rs)) = ()
R(rs) ¢ DomM)
(RC,M,Q,ldg rq,rs) — faul

. (Ide-fail)

R(rs) ¢ Dom(M)

(R,.C,M,Q,Idg rq,rs) —, fault (Idg-fail)
find(Q,R(rs)) = ()
R(rs) ¢ DomM)
R = R+[rq — n
(ldg-rand)

(R7C7M7Q7IdG rdyrS) ) (R7C7M7Q7‘)

R(rs) ¢ Dom(M)

R = Rt+[rq —n|
(R7C7M7Q7IdB rdarS) -0 (R,7C7M7Q7')

(Idg-rand)

R(sp)+ne DomM)
R'=Rt+[rg — M(R(sp) + )]

(R7C7M7Q7S|dc rd, n) ) (R7C7M7Q7')

(slde)

R(sp) +n ¢ Dom(M)
(R7C7M7Q7S|dcrd, n) —0 faul

: (sld-fail)
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R(gd)=0 R =R#+[gd— R(rq)]

(RC.M,0,mpo Ta) —, (R.C.M,Q, UMPe)
Rigd) # 0 (jmpg-fail)
(R7C7M7Q7jmp(3 rd) ") faU|t J pG
Rgd)# 0  R(rq) = R(gd)

R = R[pcg — R(gd)][pcg — R(rq)][d — 0] (impe)
(R7C7M7Q7jmpB rd) ) (R,C,M,Q,~) Jmps
R(rq) # R(gd) or R(gd) =0 o il
(RCM.Q.jmps ra) —, fauit | mPefal

Rigd)=0  R(r) #0
(RC,M,Q,b% r7rd) g (RF,C,M,Q, ) (bz-untakeh
R(rz) # 0
R(gd) # 0

(RC,M,Q,bz r,rg) —, fault (bz-untaken-fajl

R(gd) =0 R(r;) =0
R = R++[gd — R(rq)]
(R7C7 M7Q7 bzG rZ7rd) -0 <R7C7M7Q7 )

(bzs-taken

R(gd) # 0 (
(R7C7 M7Q7 bZG Iz, rd) -0 fault

bzs-taken-fail

R(gd) #0  R(r;) =0
R(rq) = R(gd)
R = R[pcg — R(gd)][pGs — R(rq)][gd — O]
(R,C,M,Q,bzs rzrg) —0 (R’,C,M,Q,-)

(bzs-taken

R(r;) =0
R(rq) # R(gd) or R(gd) =0
(RC.M.Q.bzs rzrg) g fault |

bzz-taken-fail
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C.3 Static Semantics

C.3.1 Syntax

Static Expressions
exp kinds
exp contexts
exps

substitutions

Types
zap tags
initialization flags
base types
reg types
reg file types
unlabeled stack
labeled stack
result types

Contexts
heap typing
static context

~

= Kint | Kmen] Ko

S| AX:K

= X|n|EopE|sel ByEj

| emp| upd By En, En,

= | SE/x

= -|c

110

int | © — void | b ref® | sptr
(¢,b,E) |[E' =0= (c,b,E) | ns
| Fa—t

shasd p|t::q

E:o

= O] void

= - |¥,n:b
= A;T;(Eq,Es); Em; G

C.3.2 Properties of Static Expressions

x € Dom(A)
AF x:A(X) (E-var-)

m (E‘|nt't)

A Ej1: Kint
A+ Es: Kint
AF E10p B Kint

(E-op-9
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At Em: Kmem
Al_ En:Kint
A+ sel By En: Kint (

E-sel-}

At Em: Kmem
AF En, :Kint
AF En, : Kint
AF upd By En, En, : Kmem

(E-upd-9

At emp: Kmem (E-emp-

N (sub-emp-t
A+ S: N
A E:K
x ¢ Dom(A) UDom(4)
A+ SE/x: N x:K (sub-g
[E]
(n[] =n
[emp -
[E1 0p E2] = [[Ed] op[Ez]
[sel Bn En] = [Em]([En])
[upd BnEx E2] = [Em][ [Ea] — [E2] ]
A+ E;0pB|

At Eq: Kint A+ Ep: Kint
VS -+ S:A = [S(Ey)] = [S(E2)]

AF Ei—E, (E-eq)

175
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AF E1: Kint AF B2 Kint
YS ESA = [SENAISEN
A+ E1#E

At E1 Kmem AFE2 Kmem
vl e Dom([S(Ey1)])) UDom([[S(E2)])). [S(E1)](4) = [S(E2)]J(€)

A+ E1=E (E-mem-egq
C.3.3 \Value Typing
O nrne (MY G g (@ddrheapy
Wk n:breft <’
Wk n:sptr i B T addr-subtp-
wkn:sptr(addrstack) R— ( o
W AR n:t
Wk n:b AF E=n walt
val-
W;A R4 n:(c,b,E)
W:AFE n:t! AR <t eub
val-subtp-
WAF n:t ( P
n#o LIJ;AFZn:<C7b7E> A+ E/:O
(cond-y

W:A+2 n:E'=0= (c,b,E)

A+ E'#0
W;A+4 0:E'=0= (c,b,E)

(cond-n0-}
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A+ E :Kint
W;ARC n:{(c,b,E) (

val-zap-)

A+ E':Kint A+ E: Kint
W;AFC n:E'=0= (c,b,E)

(val-zap-cond-t

(ns-Y

W AR n:ins
C.3.4 Subtyping
o1
07 = 3
11 = |
11 = 1
¢ <¢’
1
1<2<0  ¢<¢
2
b<b
¢ <¢’ .
p=p (Subtp-b-reflex =y oy (subtp-b-ref 5 <int (Subtp-b-in}

ARt <t

A+ E1=E> b1 <bp
A+ <C, b1,E1> < <C, bg,E2>

(subtp-t-triple
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AFt<t AF E=F
AF (E=0=1)<(E'=0=t

(subtp-t-condl

m (SUbtp't'n$

AFT1<I>
Vr e Dom(I2). M1(r) < To(r) fi
AFT{<T, (reg-file-comp
A ¢<d
AFE=F

Al- E:sbase<E': sbase(SUbtpc'base

AFE=F
A E:p<FE':p

(subtpg-var)

AFE=F ARt <t AFcg<C{
A E:(tzqQ <E:(t':d)

(subtpg-cong

C.3.5 Stack Typing Judgments

AR ¢ wf
AFE :Kint o Alp)=Ks  AFE:Kint
A+ E : shase Wf(C wi-basg A-E:p wf
AFE+1=F AF (E':0') wf
i (E':0) (¢- wf-cong

AFE:(t:(E':d) wf

(¢- wf-var)
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A cHE:t

A-Es=E
A Es:(td) FE:t

AFEs#E AdHE::t
A Es:(td) FE:t

(¢-lookup-top (¢-lookup-tail)

AFcE—t]=¢

A-Es=E
AF (Es: (ts:Q))[E—t]=Es: (t:: Q)

(¢-update-top

AFEs#E  AFCE—t]=¢
At (Es: (ts::Q))[E—t]=Es: (ts:: ¢)

(¢-update-tai)

C.3.6 Instruction Typing Rules

|W;0F ir = RT]

W; (AT (Ed, Es);EmQ) - - = (45T (Ed, Es); Emi Q) ()
F(rs) = (c,int,Ey) T (rt) = (c,int, E)
" =T++[rq— (c,int,E{ op B)]
— — (op2r-t)

W; (A;T; (Eg,Es);Em; Q) = op rq,rs,1t = (A;T7; (Eq, Es); Em; Q)

[(rs) = (c,int,EL) [ =T++[rqg— (c,int,E{ 0p N (op1r-
S —— oplr-
Wi (85T (Ed, Es);Em; Q) - 0p fa,Ts,n = (AT (Ed, Es); Emi Q)

WA n:t
— — (mov-n-}
W; (A;T; (Eg, Es); Em Q) F mov 1g,n = (A;T++[rq — t]; (Eq, Es); Em; Q)
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[(rg) =t
- (rs) _ (mov-reg-j
W; (AT (Eg, Es); Em Q) - MoV g, s = (A;T++[rq — t]; (Eq, Es); Emi ©)
X& A
M =T ++[rg— (G,b ref®, x)][r — (B,b ref®, )]
E,=upd B,x0
. _ (malloc-t)

W; (A;T; (Eqg, Es); Em;¢) F mallodb] rg ry = (A,X: Kint; T’; (Eq, Es); Elni ©)

M(spe) = (G,sptrEg)  T(sps) = (B,sptrEp)
A+Eg=E, AFE=FE
[ =T++[sps — (G,sptr (Eg—n))][sps — (B,sptr (Ep—n))]
¢ =(E-n):ns:(E—(n+1)):ns:...:E:0

— — (salloc-1)
W; (A;T; (Eq,Es); Em; (Bt : 0)) - salloc n = (A;T; (Eg, Es); Em; )
F(sps) = (G,spttEg)  T(sps) = (B,sptrEp)
A+Eg=E, AFEj=F
¢C=E:t:...5Ef:0O AFEf =Eg+n
M =T++[sps — (G,sptr, (Eg+n))][sps — (B,sptr, (Ep+n))] (sfree
S — sfree-
W; (A;T; (Eg,Es); Em;Q) - sfreen= (A;T'; (Eq,Es); Em; Ef : 0)
AT (rs) <(G,b ref%,Eg) E = sel(updEn, (Eg,Es)) Eg (Id-1
—— P— G-

Wi (AT (Ed, Es)i EmiQ) F Idg ra rs = (A;T++[rq — (G, b, E)]; (Eq, Es); Emi Q)

M(rs)=(B,brefL El) E = sel ByEL (1da-t)
W; (8; 1 (Ea,E9)i Emi Q) - Idg Tqts = (8T ++[rg — (B,b,E)}; (Ea.Es)iEmQ)

M(sp)=(c,;SpttE;)  AFE;+n=E,  A;¢-Eq:(c,bE)
(slde-t)
W; (AT (Eg, Es);EmiQ) = sldcrg n = (A;F++[rg — (c,b,E)]; (Eq, Es); Em; Q)
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M(ra) = (G,bref®,E))  T(rs) = (G,b,E)
[ = I++ excepty r wherel (r) = (c,b ref® E;) andA+ E, = EJ .
r'(r)=(c,b r9f¢T,Er>

——— —— (ste-t)
Wi (AT (Ed, Es); Em Q) = stg ra rs = (4T (Eg, E), (Ed, Es); Em; Q)
AT (rg) < (B,brefz, EY)  T(rs) = (B,b,EL)
A- EL=E! AF Ej=Ej
" =T++ excepty r wherel (r) = (¢, b ref%,Er> andA-E =E.
I(r) = (c;,b refl, E
(1) = (e bref! By ot

W; (AT (Eqg,Es), (Ey,ES) EmQ) F Stergrs = (A T; (Eq, Es);upd En Ej ES Q)

M(sps) = (G,spttEy)  T(sps) = (B,sptrEy) AFEg=E,
A-Eg+n=E;, M(ry) = (c,b,E) A+ ¢[En— (c,b,E))] =(

—— e sst-
Wi (AT (Bd, Bs) Emi Q) = sstnk = (A;T++; (Eq, Es); Em; Q) (S5t
M(gd) = (G,int,0)  T'(rz) = (G,int,E;)
©= (AT (Ey,E)iEn)  T(ra) =(G,© — void, Eg)
r'(gd) = (G,int,0) ~ I'"=T++[gd— E,=0=(G,0 — void E)] (bzs)
— — G-
Wi (85T (Ed, Es) Emi Q) - bZg 121 = (AT (Ed, Es); Emi )
M(rg) = (G,© — void, E/g/) © = (AT (Bl EL; En)
M(gd) = (G,int,0)  T'(gd) = (G,int,0)
" =T++[gd— (G,0 — void, Eqq/)] .
— — (Imps-t)

Wi (85T (Ed, Es);Emi Q) - Impe ra = (AT (Ed, Es); Emi Q)
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r(rz) — <B,|nt, Ez>
M(ra) = (B, (&;T"; (E}, EL); Ely ¢) — void, Er)
M(gd) =E,=0= (G,(&;T"; (E},E); El; ¢) — void, E/)

A+ E,=E}
Ab E =E
3SAF S: o

S(r')(gd) = (G,int,0)
S()(pcg) = (G, int, Ey)
S(r)(pcg) = (B,int,Er)
AFT < S(F’)
A+ (Eg,Es) = S((E}, EL))
At Em=S(E})
At ¢< S(d)
= (bzs-t)
W; (AT (Eg,Es);EmQ F bzsrarg =
(A;T+4+; (Eq,Es); Em; Q)

r(gd) = (G, (&';T"; (E}, EL); Efy ) — void, E/)
(rq) = (B, (A;T; (E}, EL); El ¢) — void, E;)
At E =E/

JSAEF S: N
S(I')(gd) = (G,int,0)

S(r/)(p%> = <Gvint7 E|{>
S(I)(pcg) = (B,int,Er)

AFT < ST
At (Eq,Es) = S((Ej, E9))

At ¢<S(d)

A TE e ; —— (jmpg-t)
W; (A;T; (Eg,Es); Em;Q) = jmps rq = void

182



APPENDIX C. COMPLETE RULES FORTALEt 183

C.3.7 Machine State Typing

VYac Dom(l). W;-+4 R(a):T(a)

=T (pcs) < (G,int,Eg)

-+ T(pes) < (B,int,Eg)
" Fe=Fs file-t
reg-tile-
W2 R:T (reg-file-S

YE C
0¢ Dom(C)

vne DomC). W(n)=0 —void A W;0F C(n)=RT A
(RT =0 implies¥W(n+1) = © — void)

WFC (C-)
L
M — Ms#Mm
Dom(M) = Dom(M1) UDom(M>)
Dom(M;) "Dom(M3) =0
Vi1 € Dom(M1). Vi, € L.Vl € DomMy). {1 < Uy < o (t-de
-de

L
M = M1#M>

W:M; Q2 ¢ b ref?

W)=brefl!  WEM(@):b
W;M; QHZ2 ¢ : b ref?

(init-t)

W(¢) =b refo
W;M;QHZ ¢: b refd

(uninit-t)
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W(¢) = b ref?
Z#G = In.(4,n)eQ

W:M;QHZ ¢ : b ref

(halfinit-t)

W2 Q: (Eyg,Es)

WS (np,m) : (E4,EY
-+ Eq: Kint -+ EsKint

) ) ot —— (Q-zap-
(MR S (g o), (W) © (B o), (B D e

Z4G
WHZ (n),n) : (E},EL
‘FEg=m FEs=np
Wknl:bref® ¢<i  Wkn2:b

e — -t
W2 (ng,nz), (M, M) : (Ea. Es), (Eg, EY) o
W2 (M,Q) : (Em, (Eq,Es))
V¢ e DomM). 3¢. W;M;QFZ ¢: bref®
[Em]l =M  WH?Q: (Eq,Es)
(heap-}

W2 (M,Q): (Em, (E},EY)

WH M:¢

FE=¢  DomM)={¢}
W2 M: (E :sbase (¢tbasy

H(Etnd) wi FE=/¢

M:{E—)ﬂ}#M/
WY Henit WEEM ¢
WHM:(E:t:()

(¢-t-cons
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-2 (R,C,M,Q,ir)
2 (R,C,M,Q,ir): W,I ¢

Dom(¥W) = Dom(C) UDom(My,)
Dom(C)
M=Ms # Mn
WEC
Ve#Z.ir # - = C(R(pg)) =1ir
Ve#Z. W(R(pg)) = (A;T; (Eg, Es); Em; ) — void
IS -FS:A
WH Ms: S(C)
W2 (Mm, Q) : (S(Em), S((Eqg, Es))
W2 R:S(T)
K = extractK(R,I"), extractK(Mp), extractK(Ms, g)

2 (R,C,M,Q,ir): K ()

C.4 Simulation of Machine States

C.4.1 Color Extraction

extended color k ::= c|GB]|none
coloring K = -|a—k|{—Kk
extractik((c,b,E)) = cC
extractk(E;=0= (c,b,E)) = ¢
extractk(ns) = none
extractK(R,I") = VacR aeDomI) ?

a— extractk(l(a)) : a~— none
extractK(Ms, q) = VYl eDomMs). .;¢-2:t = ¢+ extracti(t)

extractK(Mp) = VYl eDomMy). ¢— GB
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C.4.2 Simulation

K ny simf k np
Knsnkn Smva) o (sim-val-zap

none n sirf none 1 (sim-val-no-coloy
K- Rsinf R

Va. K(a) R(a) sinf K(a) R(a) .

m-
K+ Rsinf R (sim-R

K M simZM’|

Dom(M) = Dom(M’)
V¢ € DomM). K(¢) M(¢) simf K(£) M’(¢)

K =M sin? M’

(sim-M)

Q sinf ¢

SnZ. (sim-Q-empty

GmsimFGr, GmnsinFGn, QsinfQ
((nl7n2)7Q) Sll'nz ((ngj n/2)7Q/)

(sim-Q

21 SirT'F p)

186
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- (R,C,M,Q,ir): K
-2 (R,C,M’,Q,ir) : K
K+ Rsinf R
K - M siné M’
Q sinf ¢
(R,C,M,Q,ir) sin? (R,C,M",Q,ir)

(simx)



Appendix D

ETALgr Formal Results

This appendix gives expanded details on the formal resotE TALF7 that are summa-
rized in Sectior3.3. All lemmas and theorems are included, along with proofcket.

The complete proofs in note form appear in the companiomieahreport f9].

D.1 Modified Lemmas

Many of the lemmas used in Appendixto prove properties of TAEr must be modified
for use with ETAL-T. A selection of the modified lemmas is provided below to illate

the types of changes that are necessary.

Substituting an expression of kirdor a free variable of type preserves typingModi-
fications: Parts 5 and 7 contain the stack type and also tot#uibsin to the instruction as
well (since malloc contains a base type). Parts 6 and 7 haléhimomplete substitutions

asA is extended while type checking malloc.)

188
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Lemma 34 (Substitution Lemma)

1. IfAx:kHE' k" andA+ E : Kk thenA+ E'[E/X] : K .

2. IfAX:K-E;r=ExandAF E : Kk thenAt+ Eq[E/X] = E2[E/X].
3. IfAX:KFE1 #EyandAF E : Kk thenAt Eq[E/X] # Ez[E/X].
4. IfW;A,x: k2 v:t andA - E : k thenW; A2 v t[E/X].

5. IfW; (A x:K;T; (Eq,Es);Em;Q) H* ir = RT andAFE :k
thenW; (A;T'[E/X]; (Eq, Es)[E/X); Em[E/X|;¢[E/X]) % ir[E/X] = RT[E/X.

6. If N FS:AandW; A% v:t thenW; N F v: S(t).

7. If A = S: A andW; (AT ; (Eq, Es); Emy Q) F2 ir = (AT; (B}, EL); Efyi @)
thenW; (A'; S(T); S((Eq, Es)); S(Em)) F2S(ir) = (- S(M); S((EL, EL)); S(Ef); S(Q)-

Proof Parts 1, 4, and 5 — by induction on the respective typing dean. Parts 2 and 3
— by inspection of the equality judgment definition. Part@ @ — by induction on the

size ofA, using parts 4 and 5 respectively. [ |

The type of a value gives us information about the shape o¥ahee. (Modifications:
The value’s color tag is removed. The new memory typing jetgmcluding the queue
is used instead of the old judgment. Case 4 handles thelinétaon flag. Cases 7 and 8
are new. Note that the existence of a stack pointer tellsingtabout the contents of the
location it refers to.)

Lemma 35 (Canonical Forms)

If ¥;- -2 n:t andDom(¥) = Dom(C) UDom(M) and¥ -4 (M, Q) : (Em, (Eq,Es)) and
Wt C, then
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1. Ift =(c,b,E) ort = (E' = 0) = (c,b,E) andc = Z then no particular properties

of n are known.
2. Ift={(c,int,E) andc # Z then-+ E =n.

3. Ift = (c,® — void,E) andc # Z thenW(n) = ©® — void andn € Dom(C) and
-FE=nandn#0.

4. Ift = (c,bref® E) andc # Z then
(a) W(n) =b ref® and¢’ < ¢, and
(b) ne bom(M), and
(c) -FE=n,and
(d) ¢' = ref%/\Z;«éG — (F(N,v)eQ) A (V(nv)eQ. WEvV:b)
(e) ¢’ =refl —= WEM(#):bA(Z#G = V(nv)€Q WFV:b)
5. Ift=(E'=0) =t andc# Z and- + E' = 0 thenn # 0.
6. Ift=(E'=0)=1t"andc+# Z and-+ E’' # 0 thenn = 0.
7. Ift = nsthen no particular properties nfare known.
8. Ift = (c,sptr,E) andc # Z then--E =n

Proof By induction on the structure &p;- -4 n:t. |

If a value has a type, and this type has a supertype, then e ago has the supertype.
(Modifications: Part 3 is new.)
Lemma 36 (Subtyping)

1. If W;AF2v:t andA -t <t thenW;A4v:t'.
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2. If WH2R: T andA-T <T’ thenWHR: T,
3. If WM candAFc<d thenWHEM : ¢.

Proof Part 1 is by induction on the derivation &8f;A 4 v :t. Parts 2 and 3 are by

inversion and reconstruction of the appropriate typingsw@nd using Part 1. [ |

If a judgment holds under the empty zap tag, then that judgimalds for a colored zap
tag as well(Modifications: Part 3 is new.)
Lemma 37 (Color Weakening)

1. If Y;-Fv:tthenvc. W; - FCv:t.
2. If WFR:T thenVc. WHCR:T.

3. If WEM:qthenvec. WHCM : ¢

Proof Part 1 by induction on the value typing judgment. The renmgjrparts are by

inversion and reconstruction of the judgment using Partrieagssary. [ |

D.2 New Lemmas For Stacks

If an expression in a stack type is referred to explicitly am&moryM has that stack type,
then there is some locatidrequal to that expression that exists in the domaill of
Lemma 38 (Valid Stack Location)

1. If WM :gand-;q+E’ :t then3t. -+E' = ¢ andl € Dom(M).

2. If W4 M:gand-+ ¢[E' —t] = then3l. - E' = ¢ andl € Dom(M).

3. If WHM:candg=E;:ty::...En:ty:: ¢ thendl. -+ E = ¢ andl; € Dom(M).
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Proof By repeated inversion @ft-consandc-t-base all expression& on the spine of
are equal to a locatiofin the domain oM. By ¢-updateandc-lookup E’ is equal to an

expression on the spine qf [ |

In addition, if an expression is looked up on the stack andjiskto a location, then the
contents of that location have the type given by the stac&.typ

Lemma 39 (Stack Lookup)

If W4 M:gand-;¢E:tand-+-E=/thenW; - -~ M(Y) :t.

Proof By induction on the structure of¢H E : t. [ |

If a memory has a stack type and we update that stack type tieememory updated
with a value of the same type has the new stack type.

Lemma 40 (Stack Update)

If W2 M:qand -+ ¢[E' +—t]=¢ and-FE =/ and¥;- -4 n:t thenW -~ M[{+n] : ¢.

Proof By induction on the structure of- ¢E' —t] =¢. |

D.3 New Lemmas For Dynamic Memory Allocation

Judgments that hold wit# continue to hold after adding extra informationo
Lemma 41 (Heap Extension Lemma)

1. If W;-F4v:t andn¢ Dom(W) thenW,n— b;- 4 v:t
2. If WH* M :¢andn¢ Dom(W) thenW,n— b M: g

3. If W;M;QHFZ¢:bref® andn¢ DomW) thenW,n— b;M; Q2 ¢ : b ref®
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4. If ;0 ir = RT andn ¢ DomW¥) thenW,n— b;OF ir = RT

Proof By induction on the appropriate derivations. [ |

Judgments that hold witl continue to hold after updating an entry#to contain a
subtype of the original value.
Lemma 42 WY Subtyping Lemma)

1. If W;- -2 v:t andb’ <W(n) thenWni—b'];-F4v:t

2. If W;M;QFH2¢:bref® andb’ < W(n) thenW[n— b'];M;QHZ ¢ : b ref®
3. If ¥;0Fir = RT andb/ < W¥(n) thenW[n— b];0Fir = RT

Proof By case analysis of the appropriate derivations. Inaddr-subtp-twhere the

derivation use&(n). [

Judgments that hold with a substitutiSigontinue to hold after adding extra information

toS

Lemma 43 (Substitution Extension Lemma)

1. If W;-F4v:S(t) and-+S: A andx & A then W;- 2 v: (S E/X)(t)

2. If WHM:S() and-+S: A andx & A then W M : (S E/X)(¢)

3. If WH Q:S((Eq,Es)) and-+S: A andx & A then W Q: (S E/x)((Eg, Es))
4. if WH2R: (M) and - S: A andx ¢ A then W R: (S E/x)(I")

5. if M = [S(Em)] and- - S: A andx ¢ A then M = [[(S,E /X) (Em)]

Proof By induction on the appropriate derivations. |
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D.4 Type Safety

The statements of Progress and Preservation do not chamngéglproofs are modified
significantly.
Theorem 44 (Progress)

1. If FXthenz —3 Y andy’ # fault.

2. If F¢X thenz —3X%.

Proof By case analysis on the instructionin state>. (Modifications: The existing
cases require minor modifications to remove the color tags @se the modified typing

judgments. Cases are added for the new instructions.) [ |

Theorem 45 (Preservation)

1. If F*%ands —§ 5 ands’ +# fault then-% ¥'.
2. If FXand> —3% thendc. F¢%'.

Proof By case analysis of the structure of the derivalion—} >'. (Part 1 Modifications:
The new structure of the top level typing rules requires nsigaificant changes to the
existing cases. The new cases for stack load and store usma®88 (Valid Stack
Location), 39 (Stack Update), and0 (Stack Lookup). The rules for stack allocation
and deallocation require proof that the affected locatianes part of the stack and not the
heap. The rule for memory allocation adds new informatio#t@and heap stores modify
entries inW to contain subtypes. These rules use Lem#da@ieap Extension}2 (W
Subtyping), andl3 (Substitution Extension). Part 2 Modifications: The maiarafe is
handling faults to registers with no corresponding colarfrmation. In this case, the

resulting state can be typed using any zap tag.) [ |
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D.5 Fault Tolerance

The main change affecting the fault tolerance results cdnoas the reorganization of
the simulation relation explained in Secti8rB.2 This change affects the statements of
the lemmas and theorems since the meaning okiimé relation now includes typing
information, but actually has little significant impact dretstructure of the proofs.

The separation of the value of memory into a heap and a staoigels the definition
of "observable” memory. The new relationshis(sé sands é s are used to relate two
output sequences of address-value pairs. Because thedaoiputation may store faulty
values into the stack portion of memory, we can no longer imsple equality to compare
address-value pairs. The judgme’ﬁtsay that the addresses in the two sequences are
equal, and for all addresses greater thahe values are also equal. The judgméétsis
similar, but only requires that the locations in the firstisatce are a subsequence of those
in the second sequence. In other words, when gmagDom(C)) as/, these judgments
check that the stores committed to the heap are identicahenstores committed to the

stack are to the same locations, though the values may.differ

The lemmas and theorems are restated with these modifisation

Lemma 46 (Singlestep Fault Detection)

If = sinf $¢ ands —§ 3’ thens — = and either

Dom(=.C
1. ¥ sinf ¥} and § MO )s, or

2. Y = fault andss = ().
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Proof By case analysis & —§'. (Modifications: Other than the slight restructurings
to access the color information, the existing cases arengisgly unmodified. New cases

are added for each of the new singlestep rules.) [ |

Lemma 47 (Multistep Fault Detection)

If 5 sinf $¢ and=—" %’ then either

Dom(z.C
1. 31— 34 ands’ sinf X andsy MO S or

] m St maxDom(Z.C)
2. Existsm<n. Zi——( fault ands; < S.

Proof By induction on the structure CELZZ’. (Modifications: Minor changes to

support the new output comparisons.) [ |

Lemma 48 (Fault Similarity)
If ¥ —, 3¢, thendc. Zsinf ',

Proof By case analysis on the definition bf—, . (Modifications: Minor changes

to support the changes to the simulation relation.) |

Theorem 49 (Fault Tolerance)
n s . (n+1) s
If H Z andXz— Y’ then eitheZ——, %}

¢
or Im< (n+1) . =— fault, and

g
1. Forall derivationiqu’f whereX; # fault.

C
¢ "R s anda ¢ = sinf 2.

o s
2. For all derivationg—"— fault wherem < (n+1).

maxDom(C))
s = S.
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Proof By case analysis on the definition EfL%Z’. (Modifications: Minor changes

to support the new output comparisons.) [ |



Appendix E

MiniC to ETALgT Translation

This appendix provides the complete rules for the trarsidtiom MiniC to ETALgT and
proof sketches of the formal results. A condensed versigiven in SectiorB.4, and the

full proofs are available in49].

E.1 Overview

In order to simplify the translation, it uses the designatgisterspcg, pcs, SPe, SPs,
andgd and then as many fresh temporary registers, ... as needed. Many of these
temporary registers can be easily removed by coalescing fimgtructions. Sectio.6
discusses how to support register allocation if the numbiemoporary registers is greater
than the number of actual registers.

The translation uses a simplistic calling convention. ldeorto support fault toler-
ance, all function arguments and return values need to bicdtgd. Arguments are
passed on the stack, with the last argument pushed on firsteWill be two assembly-

level arguments for each MiniC argument, and the green aggtiof each pair is always

198
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below the corresponding blue argument on the stack. Belevathuments are the blue
and green copies of the return address. When a functiomeetiipops the return address
and all the arguments and pushes two copies of the reture.valu

On function entry, each function loads all the arguments tetmporary registers.
When making a function call, all temporary registers thatespond to local variables
are spilled to the stack before the arguments and returreasliégre pushed. After the
call returns, the registers for the local variables areorestand then the return values are
moved to their destinations.

At a high level, the translation works by passing around aecogtmoryC and
continually accumulating new instructions onto the end.e TiotationC@i is used to
append instructiononto the end of code memo@; In addition, many judgments track

the following additional information:

n the number of temporary registers required so far. fregfiRe
generates two fresh temporary registers and increments n
appropriately.

V a mapping from MiniC variables x to pairs of registeirg, rp).
Vy(x) refers to the first component of the pair ang(¥) refers to
the second.

B a mapping from function variables to addresses in code mgmo

Because ETAET has no notion of termination, the program "completes” by pimg

to a designated labégly; which contains four instructions that create an infiniteploo
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E.2 Translating Typing Information

E.2.1 Type Translation

The type translatiofit ]| = b in FigureE.1translates a MiniC typeinto a ETALgT base
type b. The translation of integers and references is straightiod. The only thing to
note is that the translation of a MiniC reference is a fullyiatized ETALgT reference.

The translation of the function types into code types isajaibit more complicated.
First, the two components of the function type are used tegda the type of the stack
on entry to the function (defined in a moment) and the baseliypéthe return value.

Next, we choose a number of fresh expression variables. ®@dtiion entry, the
memory is described bym, the program counters lyp, and the return addresses by
ar. o, anda; will be used to describe the return memory and return values.

The contexts with a subscriptdescribe the return state of the function. When the
function returns, the two program counters will containrigtern address. The arguments
and return address will have been removed from the stackhenceturn values pushed
on in their place.

On function entry, the top of the stack contains two copieshef return address,
followed by the stack type constructed using the functigquarents. The stack pointers
point to the top of the stack, the program counters are equdlthe destination register

is zero.

E.2.2 Context Generation

The typing information can be used to generate a number fefrdift ETAL-T contexts.
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[t]=b
- | trans-re
[int] =g (rans-ing [bref] —brefl | !
[A] = ay—2xn:(G,by,a1) :1ay,—2«n—1:(B,by, 1)
tap—2:(G,bp,an) oy—1:(B,bnan)
[t] = b
Om, O p, O, g, Oy, fresh
A% = G§n : Kmem Ot : Kijnt
M = pcg — (G,int,a;),sps — (G,sptr, (0,—2)),
pcg — (B,int,ay),sps — (B,sptr, (a,—2)),
gd — (G,int,0)
G = (0y—2):(G,br,a¢) :(ay—1):(B,by,a:) 0y:0g
Ol’ - (Al’7rl’7()7a|/"n7cr)
A = Om:KmemOp : Kint, dr : Kint, ¢ . Kint, 0o : Kg,
01 Kint,---,0n * Kint
r = pcg — (G,int,ap),sps — (G, sptra,—2«n—2),
pcg — (B,int,ap),sps — (B,sptro,—2«n—2),
gd — (G,int,0)
C = (ay—2xn-2):(G,O; — void,a;)
(ap—2xn—1) : (B,O; — void, o) :: [A]
(trans{X — 1))

[A— 1] =(T,A(),0mg) — void

Figure E.1: Type Translation.
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The type of the stack on function entry is generated from timetion arguments.
The arguments appear in reverse order. There are two cd@asloargument, one green

and one blue. The base type for each of these two copies is gwthe type translation.

[Al=¢

oy,ag fresh

T1=a, 0o (geng-base

[t]=b [A]l=Es:c o fresh
[x:1, Al = (Es—2) : (G,by,ar) : (Es—1) 1 (B,br,ar) 1 Es: 0 (gen<)

Using the function argumensand the corresponding stack typeve can generate
the register file type that results after loading each ofdleguments into the register

specified by .

[Ac]v=T

[ oapagfv="- (gen{ -args-emp

[A Es:o]y=T
M =T,Vg(X) = te,Vb(X) — ta
[Xx:T,A; (Es—2):tg: (Es—1):tgEs: 0] =T

(gen{-args)

Given a variable contexX and a mappiny from each variable irX to a pair of
registers| X Jlv is the register file type that contains typing informationdach of these

registers. Each pair of registers is described by a diftezepression variable.

[XJv =T
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[-Iv=- (genf-X-)

[X]v =T [t]=b: oy fresh

[x:T,X] =T, Vg(X) — (G,br,ar),Vp(X) — (B, by, o) (genT-X)

Finally, the judgmenf{A — 1;L]ly = © can be used to generate the static context
used within the body of a function. It includes the informatiabout function entry
generated by A — 1]], plus the additional registers corresponding to the argusend

local definitions inL.

[A-TLv=0
[[A_>T]] = (A7r7()7Em7C)
=D AT
[A=TLlv = AT, 0),Enq ©

E.3 Extending Code Memory

As the translation progresses, it continually adds new ¢odbe code memor¢. We
define a series of judgments below that can be used to stdtéhthan-progress code
memory has the properties we desire.

As a reminder, the original code typing judgment is showrowel It requires that
for all addresses in the code memory, if code t#pe- void is assigned to that address,
then ® can be used to type check the instruction in the address. diti@u if type

checking the instruction gives a modified static cont@xtthen the type assigned to the
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next location i®Y’ — void. In other words, the only time two adjacent instructions db no

need to agree on the intermediate type, is when the firsuictsdn is a blue jump.

0¢ Dom(C)
vne DomC). W(n)=0 —void A W;0F C(n)=RT A
(RT =0 implies¥W(n+1) = © — void)

WFC (C-1)

E.3.1 Invariants Between Functions

The judgmentB;F - C : P describes a code memory that contains the translations
of the functions inF. The code memory should be well-typed usidg. In addition,

the mappingB should map each function i to an address that has the ETALtype
corresponding to the function type. The only items in theetyare those for the actual
addresses i€. And finally, the designated labkly; that contains the code for an infinite

loop, should have the type provided.

B;FI-C : P|

Y C

VEeF. WB(f))=[F(f)]

domW¥) =dom(C)

W(lhat) = ( (@p:Kint; Om: Kmem O¢ : Kint, Og : Kg ) :
( pcg —< G,int, lpait >, pcg —< B,int, lnat >
Sps —< G,sptra, > spg—< B,sptra, >
gd —< G,int,0> ),
(), Om, O¢:0G )

BFFC: : WY
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E.3.2 Partial Code Memories

While we are in the process of generating code, we are oftémeisituation where the
last instruction added is in the middle of a code block. Sitheeremaining instructions
have not yet been added, the code memory is not well-typeat@iog toC-t.

Instead, we define the judgment beldit C: O states that all the addresses in code
memoryC are well-typed in the usual manner, but that the last instyneesults in static
context®. WY already contains the typing information for the next instion that will be

added.

0¢ dom(C)
Im = maxdom(C))
domW) =domC)U (Im+1)
VI € dom(C).
W) =0 — void A
Y, 0FC(l)=RTA
RT=0 = W¥(+1)=06"— void
Y(In+1) =06 — void
Y-C:0

C-partial-©

E.3.3 Invariants within a Function

In addition, there are some extra invariants which should kathin the body of a
function. Before defining these, we need to define two submuehts.
A static contexD is a subtype of another static cont&when all the corresponding

elements have a subtyping relationship.
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IS AR S: A
AFT <S()
At (Eq,Es) = S((E}, EY))
AF Em=S(EL)
A+ ¢<S(Q)
(AT, (Ed,Es),Em, Q) < (&, T, (E§, EY), B, Q)

©-subtp

The judgmenk;V I © wf states that the static conte®tis consistent with program
variables inX and the mappiny. In other words, for every variable i : T, the two
registers irV (x) have base typt ||, the first is green and the second is blue, and they are

described by equivalent expressions.

X:VF O wf

O =(AT,seqEm,¢)
VX:TeX.
V(X) = (r,r') A
r(r)=<G,[t],E>
=<

r(r') B,[t],E' >
A- E=F Ovew
X:VFE O wf e

The judgment;V;B;F;A;L+ C: W should hold for any code memo8/used in the

process of translating functioin There are five components to this judgment

e The code memory is well formed and ends with some cor@ext

e O is consistent with the arguments and local variables.
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e O is a subtype of the type obtained by translating the fundiype and the local
declarations. (In other words, all the information from tlaection entry still holds,

though there may be additional information about temporegysters.)
e All functions in the function context have correctly typedrs addresses.

e The halt label4; has the appropriate type.

(f,V;BF;ALE C: W

YEC:0

(AUL);V O wf

© <[F(f);L]v

Vi e F.WB(f)) =[F(f)]

W(lhat) = ( ap:Kint, Om: Kmem 07 : Kint, Og : Kg ) :
( pcg —< G,int, lpai >, pcg —< B,int, lnat >
Spg —< G,sptra, > sps—<B,sptra, >
gd —< G,int,0>),
(), Om, O :0g )

f;V;B;F;AL- C:¥ wi-fun-body

E.3.4 Adding Instructions to Code Memory

The Code Addition Lemma states that if we have a code mematyswell-typed ending
in © and a sequence of instructions, the first of which is welktygiven® and who agree
on the interleaving static contexts, then the sequencestiuictions can be appended to

the code memory, and the result will be the static contexégerd by the last instruction.
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Lemma 50 (Code Addition)
If W C:01 andW;01F i1:02 andW;0,F i,:0z3 and ...and¥;0,F in: @
thenW' I C@i1@- - @in : © wherelp, = maxXdomW)) and¥' =W Ip+1— (02 —

void),Im+ 3 — (@3 — void),...,In+n— (@ — void)

Proof By inversion and reconstruction &fpartial-t. |

The Block Extension Lemma is similar except the added sempuen instructions
begins a new block instead of appending on to a block in pesgre
Lemma 51 (Block Extension)
If Y- CandW;01F i1:0, and¥W;0,F ix: 03 and...and¥;0,F iy: @ then
VI C@i1@ - @iy : @ wherelp = maxXdomW)) and¥V =W ln+1— (01 —

void),...,Im+n— (O — void),In+n+1— (& — void)

Proof Similar to Lemmab0; deconstrucC-t to build firstC-partial-t. [ |

E.4 Value Translation

The value translation appends code to the existing code myethat moves the value
into the two registers andr’. For a constant value n is moved into two fresh registers.
For variables, it simply returns the existing register pamd does not add any new
instructions. References are created by allocating a nemanglocation, initializing

that location, and then returning the two registers cortteemew address.

[XFv:t]CnV=Cn'rr’
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(n',r,r") = freshRegn)
C'=C@movrn@movrn
[XEn:intfCnV =C'n'rr

> (trans-v-n

[XF X:X(]CnV = Cnvhx) Vo) Tansv

(n',r,r") = freshRegny)
C'=C@mallodb{|rr' @stgrry@stgr'r|
[XF refv:breffCnV =C'n'rr’

(trans-v-rej

The Value Translation Lemma states that after adding theuictsons to translate the
value, the types of the two destination registers are basdbeotype of the value. The
resulting register file type is a subtype of the startingstgifile type because additional
temporaries may be added in ratans-v-ref
Lemma 52 (Value Translation)

If[XFv:t]CnV =Cnrr’and¥W+ C: (A T,seqEm,Q) andX;V+ © wf then
Jg,,,W. WE C:(AT,seqEmn ) andl <T andl(r) = (G,[[1],E) andl''(r') =
(B,[[t],E"Y andA+ E=F'

Proof By case analysis ofX+ v:1][CnV = C'n'rr’. [ ]
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E.5 Value List Translation

The value list translatiofiX - vs: X]] C nV n, =C’ n’ is used to push the arguments to

a call onto the stack. It assumes that the stack space hadylveen allocated.

[Xtvs:X]CnVn=C'r/

[XF - JCnVmp=Cn (trans-vs-)

[XEv:T]CnV =Cynyryr{

C,=Cy @sst(2xnp) ry @sst(2xnp+1) 1y,

[XF vvs: x:T,X][C,nyV (np+1) = C'r/
[XF vvs: x:T,X]][CnVn =Cnf

(trans-vg

The Value List Translation Lemma states that after the tadios, the resulting stack
type contains the types of the arguments in the appropriats. sThe translation may
generate additional temporary registers while gettingvtilees to be stored, and so the
resulting register file type may contain extra information.

Lemma 53 (Value List Translation)

If [XEvs:psJCnV Rum = C'n and vs=x;:11,---,%:Ty and Y+ C:
(A, T,seqEm,Q) and¢=FE :t:-- B +2PRym:t1:i- B +2(Pum+n—1):th:: ¢’
thenW C': (A,I",seqEL,c) whered =E it - E + 2Pwum:< G, [11],E1 >
B 4 2(Pumtn—1) :<B,[tn],En > ¢" andl <T.

Proof By induction on the structure gfX - vs: ps] C nV Rym = C' . The recursive

case uses Lemn&®? and then calls the Induction Hypothesis.
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E.6 Local Declaration Translation

The local declaration translation is a recursive judgmEat.each declaration, the value
is obtained and then moved into two fresh registers. Thesvalapping/ is extended to

map the variables to these registers.

[F;ALE lds:L'JCnV=CnV

(trans-lds-empty

[F;ALF -:L]CnV =CnV

[(AUL)F v:T]CnV = Cynyryr|
(nig,r,r") = freshRegny)

Vig =V [x— (r,1")]

Cig =Cy@mov r r, @mov I r),

[F;ALx:T]F lds:L'] Cg ngVig = C' ' V'

[F;ALF 1x=v;lds:L'JCnV =C'nV (trans-ldg

The Local Declaration Translation Lemma states that the dodthe translation of

local variabledds consistently adds the types of those declarations.

Lemma 54 (Local Decl. Translation)

If [F;ALEIds:L']JCnV =CnV
f:V:B:F;A;L- C:W
then 3¥'. f:V:B:F;AL'+ C : ¢/

Proof By induction on the structure dfF;A;L+ Ids:L'J CnV = C' n' V. The

recursive case uses Lemrbaand then calls the Induction Hypothesis. [ |
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[F;ALEswf]CnV B=C'n

[[F;A;LF S1 Wf]]fCﬂV B=Cm
[F;ALE s W[ CimVB=Com

[F;ALE sy WifCnVB=Con

(trans-s-seq

[(AUL)Fv:t]]CnV = Cynyryr|
C'=C, @mov\&(x) ry @ mov\4(x) ry,
[F;ALEF x=vwf]{CnVB=Cn,

(trans-s-assigh

[(AUL)Fvy:int]CnV = Cyingryr)
[(AUL)Fw:int] CimV = Conarars
C'=C, @op\W(X)rir @op\Wk(x)rir)
[F;ALE x=viopw wf[fCnV B= C'n2

(trans-s-op

[(AUL)Fv:tref[CnV = Cynyrr’
C/:C\/ @IdGVG(x)r @|dBVB(X> r’
[F;ALE x=Ivwf]fCnVB=Cny

(trans-s-deref

[(AUL)Fvi:tref]CnV = Cingryr}
[(AUL)Fvo:T]CimV = Conmara I’/2
C'=C, @stgrir, @slgryr,

[F;ALE vii=v2 wf]fCnV B=C'n2 (

trans-s-updatg

Figure E.2: Statement Translation - Basic Statements.

212
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|start = maxdom(C)) +1

[(AUL)EF v:iintCnV = Cynyryr{

(ng,re,re/;rs,rs’) = freshRegny)

| fixend = maxdom(C,)) +1

Cc=Cy @movre hat @ mov ré lpay
@bz ryre @bz re

[F;ALF s wflfCcncV =Csns

Ci=Cs @movrskiart @ mov rs@lstart
@ jmpg rs @ jmpg rs’

lend= max(dom(Cg)) +1

C' =C¢ [lfixend MOV re bnd|
(lfixena+1 +— MmOV réleng

n =ng

[F;A;LF whilevdos wf|]CnV B=Cn

(trans-s-whilg

Figure E.3: While Statement Translation.

lc = maxdom(C)) +1

[(AUL)F v:intfCnv= Cynyryr,

(ng,rt, rf rjt, rjf ,rt’ . rf/ rjt’ rjf ' re,re) = freshRegn,)

I fixtrue = max(dom(C,)) + 1

Ce=Cy @movrthar @movrt Inat
@bzgryrt @bz rt’

[F;ALE s Wi]js CencV = Cs g

|fixj0in =maxdomCs))+1

t =Ct @movrif lhar @ mov rjf’ Ipay

@jmpg rjf @ jmpg rjf’

ltrue = max(dom(Cs)) + 1

[F;ALE sp wi]sCingV = Gy

ljoin = max(domG)) + 1

C=C @mov relgn @ mov réljsin
@ jmpsre @ jmpgre/

C'=C [lixjoin — moV Ijf ljoin]
[l fixjoin +1 +— mov rif’ Ijoin]
[l fixtrue = mov rt krue]
lixtrue+1 — mov rt liryel
n=n

(trans-s-if

[F;A;LF if vthensielses; wffCnVB=Cn

Figure E.4: If Statement Translation.

213
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argspace= (sizgvs) x2) +2
vspace= sizgldom(V)) x 2
spillspace= vspacet argspace
Ciemps= @ salloc argspace
@ sst(argspacer 0) Vy(x1)
@ sst(argspacet 1) Vgh(x1)
@ --- @ sst(argspacet vspace- 2) Vg(%n)

@ sst(argspacet vspace- 1) Vp(Xn)
[(AUL)F vs: ps] CiempsnV 1= Cyshys
(Ncanl, rf,rf’ ra,ra’) = freshRegnys)
retaddr= maxdomCys)) +9

Ceall = Cys @ mov ra retaddr @sstOra
@ mov rd retaddr @sstlra
@ mov rf B(g) @mov rf B(f)
@ jmpg rf @jmpg rf’
@ sldg 2 Vy(x1)
@slds 3) Vp(xa)
@ -

@ sldg (vspacgVy(Xn)
@ sldg (vspacet 1)Vy(Xn)
@ sldg Vy(x) O @slds Vp(X) 1
@ sfredvspacet 2)
[F;ALE x=g(vs) wi]CnV B= Ceal Ncall

(trans-s-cal)

Figure E.5: Function Call Translation.
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E.7 Statement Translation

The statement translations are shown in FigleesE. 3, E.4, andE.5. The rules that do
not involve control flow transfers are very straightforward

The rules forwhi | e andi f are quite a bit more involved. The main complication
comes from the backpatching required to fill in the correatradses for jump targets.
Because the code is generated sequentially, those instrsi¢hat jump forward do not
know the correct address to use at the point they are gedetastead, they temporarily
jump tolhgt and are later patched to jump to the correct address. Thens#iliction
generates a lot of code, but this code just implements tHegalonvention discussed
earlier.

The Statement Translation Lemma says that translatingtensésats has no effect
on the main typing information. Again, there may be changesdditional temporary
registers and the description of memory, but the final typstils consistent with the
function arguments and local declarations.

Lemma 55 (Statement Translation)
If [F;ALF swf[fCnVB=Cn andf;V;BF;ALFC:W¥
thendV'. f;V;B;F;A;L+- C': V.

Proof By induction on the structure ¢ffF;A;L+ s wf][f CnV B = C' nand Lemma
52 |
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E.8 Function Translation

The function translation depends on two auxiliary judgrseot generate the function

entry and exit sequences.

E.8.1 Prologue and Epilogue

The prologue generates code that loads the arguments fstabk into fresh registers

and updates the variable mapping appropriately.

genProloguéC,n,V,np, A) = (C',n/,V’)

-prol _
genProloguéC,n,V,np,-) = (C,n,V') (gen-prologue-emp

(ny,r,r") = freshRegn)
genProloguéCy, ny, V[x+— (r,r")], (np+1), A)=(C, n', V')
genProloguéC, n, V, np, (x:T,A) ) = (C', n', V')

(gen-prologug

Before the prologue cod€, is well-typed with regard to the set of functions defined.
Afterwards,C’ is well-typed with regard to the body of functidn(though there are no
local declarations yet).

Lemma 56 (Prologue Generation)
If genProloguéps) CnV Rym = C'n' V' andF;BF C
thend¥'. f;V/;B;F[f : ps—1];ps-+ C': ¥.

Proof By induction on the structure gfenProloguéps) C nV Rym = C'n' V', [



APPENDIX E. MINIC TOETALFT TRANSLATION 217

The epilogue generates code to free the function argumadteeturn addresses and

push the return values.

genEpiloguéX +v:1,C/n,V, A) = (C',r)

[XEFv:T]CnV =Cynyryr|
(n',r,r") = freshRegny)

C'=C @sldgOr @sldg 1’
@ sfree2xsizdA)+2 @salloc2
@ sstOry @sstlr]
@ jmps r @ jmps 1’

genProloguéX -v: T, C,n, V, A) = (C,n) (gen-epilogug

Before the epilogueC is well-typed with regard to the body of functidn After-
wards,C’ is well-typed with regard to the set of functions.
Lemma 57 (Epilogue Generation)
If genEpilogu¢(AUL) - v:1,C,n,A) = (C',n') andf;V;B;F;A,LF C: ¥
thendW'.B;F+ C: W,

Proof By deconstruction ofwf-fun-body) and the appropriate instruction typing rules

E.8.2 Function Translation Judgment

The function translation judgment generates the functiaiogue, translates the local
declaration, translates the function body, and generategpilogue for each function.
The maximum number of registers required by the set of fonstiis the maximum

required by any single function.
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[FF fds:F'JCB=CBn

trans-fds-empty

[FFFjce=cB|

fadar = max(dom(C)) +1

genPrologu€éC,0,V,0,A) =Cp np Vp

[FIf:A—=1;A-F lds: L] ConpVp = Cids Nids Vids
[F[f:A—=T1];ALF s wf]t Cigs Nids B[f — faddar] = Csns
genEpilogué(AUL) - v: T, Cs,ns, Vigs, A) = (C',ny)
[F[f:A—T1]F fds:F'] CB[f — fagdar] =C' B nsgs

n = maxny,N¢qs)

[FFE 1T f(A) {lds;s;returnv} fds:F'JCB =C' B n/ (trans-fds

The Function Translation Lemma states that the code menedoydand after trans-

lating a set of functions is well-typed with regards to thagections which are defined.

Lemma 58 (Function Translation)
If [FF fds:F'JCB=CBnandB,F-C:W¥
then3W.B;F'-C' : W

Proof By induction on the structure §fF - Ids: F’]] C B = C’' B'n. The recursive case
uses Lemmas6 (Prologue Generationh4 (Local Declaration Translation}5 (State-

ment Translation), an8l7 (Epilogue Generation) and then calls the induction hypsithe
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E.9 Program Translation

The final judgmenfl p wf]] = C n | takes a MiniC progranp and generates a code
memoryC, a maximum number of registensand a start addresslt initializes the code

memory to contain four instructions that create an infirotgol

[F pwf]=Cnl

Cstart = Istart — MOV § lnait, Istart+1+— MoV g lpait
Istart +2+— Jmpc to, lstart+3+— jmpgty

[-F fds:FJ] Cstart O - = CtdsBtdsNtds

Imain= max(dom(Csgs)) + 1

[F;--F lds: L] CtgsO - = Cigs Nigs Vids

[F;LE s wf] Cigs ids Mgs Bras = Cs s

genEpiloguéL - v: T, Cs,ns, Vigs, ()) = C' n,

n’ = max(ny, N¢gs)

[F fdslds;s;returnv wf]|= C' 1 Imain

(trans-p

Finally, the Translation Theorem states that the resultaridlating a well-formed
programp can be used to create a well-typed EFALmachine state. The code memory
is just the code memory returned by the translation. Thestisbf the heap is empty, and
the stack contains two pointers to the designated labebhaung the termination code.
The register file is built by calling the functidwildR(n) to generate a blank register with
ntemporary registers. The two program counters are set tsténeaddress generated by

the translation, and the stack pointers are set to the tdpedastack.
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Theorem 59 (Translation)
If [F fdslds ¢ wf]] = C nlstart
then + (RC,M,(),-)
where st=min(domC)) —3
R = buildR(n), pcg — lstart, PCg — lstart, SPs — St, Sps — St, gd — 0
M = st+2+— 0,st+ 1 — lpalt, St— lhart
Proof By Lemmas58 (Function Translation)54 (Local Declaration Translationy5

(Statement Translation), and (Epilogue Generation). [ |



Appendix F

TAL cg Formal Results

This appendix expands on the formal results for gAlpresented in Sectiod.4. We
provide proof sketches for all lemmas and theorems. The tEmproofs appear in the

companion technical repo4 9.

F.1 Type Safety

F.1.1 Typing Lemmas

First, we briefly explain the main lemmas used to prove typetga

Expression equality is transitive. Conditional expresstg?E; : E; is equal to eitheE;
or E¢ depending on the value &,.
Lemma 60 (Expression Equality)

1. IfA+E;=EyandA+ Ep; = Ez thenA- E; = E3

2. If A\ 01 =02 andA+ o, = 03 thenAt+ 01 = O3

221
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3. IfAFE;=0thenAr E;%Es : B = E;.

4. If A+ E;# 0thenAt E;?E+ : E; = Ey.
Proof: By the definition oA+ E = E andA - 0 = o and the definition ofE]).

Substituting an expression of kind for a free variable of kinck preserves typing.
Applying a substitutiors that provides substitutions for a number of free variablss a
preserves typing.

Lemma 61 (Substitution)

1. IfAx:kFE:k andA+ E: k thenA+ E'[E/X] : K
2. IfAX:KFE1=ExandA+ E : K thenAt+ Eq[E/X] = E2[E/X]
3 If (A X:K);WH2 vt andAF E : k thenh; W - v t[E/X]

4. If (A x:K);W;T;0;E;topt-bandAFE :k
thenA; W; T [E/X];0[E/X];E[E/X;TOopt[E/X b

5. If (A1,A0) - E' i k" andA; + S: Ay thenAp = S(E') : K/
6. If (A1,02) - E1 = Ep andAg - S: A, theng - S(Ep) = S(E»)
7. If (A1, 0); WHZ vt andDg - S: Ay thenhy; W H v: S(t)

8. If (A1,47);W;T;0;E;;Topt-bandA FS: A
thenA1; W; S(IN); S(0); S(Ei); S(topt) - b

Proof:
1. By induction on the structure &fx: kK +E’: K’

2. By case analysis on the structurd\ok : K - E; = E, using Part 1.
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3. By case analysis on the structurg&fx: k); W4 v:t using Parts 1 and 2.

4. By induction on the structure @A, x: K); W;I";0; Ej; T optt b using Parts 1-3. The
case for rulergcovernz-t divides into two subcases depending oftjf= 0 and

uses rulergcovernz-eqgjtor rule fecovernz-neqjtas appropriate.

5-8. By induction on the size @, using Parts 1-4 respectively.

If a value has a typeand this type is a subtype tf then the value can also be given type
t'.

Lemma 62 (Subtyping)

If At <t andA; W2 v:t thenA;W vt/

Proof: By induction on the derivation df; W 4 v : t. Each case uses inversion of the

subtyping rules and Lemn&0 (Expression Equality).

If a valuec n has type(c’,1’,E’) under zap tag, then our knowledge aboutdepends
both on the base type and also the relationship betweZrandc'. If Z = CF and the
color in the type isG or B, then the judgment may be been derived using rué-£ap-
CF-t), so we know nothing about. However, we do know that the expression has kind
Kint. If Z is ¢/, then the judgment may have been derived by ruéd-gap-c-}, so again
we only know that the expressidfl has kindkir;. The remaining case applies whgn

is not equal to the color in the tyméand when eitheZ # CF or the color in the type is
neitherG nor B. In this case the judgment must have been derived usingvalé)( so

we know the color tag on the value is equal to the color tagertybe and the expression
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E’ is equal to the valua. In addition, ift’ is a code type, we also know thais a valid

code address.

Lemma 63 (Canonical Forms)

If ;WK cn:(c,T,E") and - C: W then
1. IfZ=CFand ¢ =Borc =G), then- - E’ : Kin.
2. IfZ=c thenc=c and- - E’: Kint.
3. IfZ+c and g # CF or (c # B andc’ # G)) then

ec="C
e - FE'=n

e U =V[A](l',0) = neDom(C)

Proof: By inspection of; W+4cn: (c,T,E).

If a value has a typeunder zap tag, then that value also has typender any zap tag
Z' that is a supertype .

Lemma 64 (Color Weakening)

If A;WHZv:t andZ < Z' thend; W 2 v : t

Proof: By case analysis df; W -4 v: t and the definition oZ < Z'.

F.1.2 Type Safety

We have proven that the TAJr type system is sound using the standard notion of Progress

and Preservation. Progress asserts that machine statagpesl under the empty zap tag
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can take a step to another ordinary machine state. Statearthavell-typed under any
zap can also take a step, but this step may reach any staledimgrecover(h) or
hwerror(h).

Theorem 65 (Progress)

1. If FXZtheny —q?%'.

2. If F£ 3 thenz — F.

Proof: The proof for each part is by case analysis on the currenktioof > using

Lemma60 (Expression Equality) and Lemn@&3 (Canonical Forms).

Preservation states that execution preserves typingesSiadll-typed under the empty
zap tag continue to be so after taking a non-faulty step.eStgped under any zap also
remain well-typed after a non-faulty step, but the zap tag ewscalate to a supertype.
This elevation might occur at control flow transfers. A zag ¢4 B or G become<F
whenever the corruption has spread to the operands beidgrusiee transfer. This way
the block that results from the transfer can be well-typedeu€F even when control
has transferred to a totally unexpected block. The intentégister is always the only
orange value that is live across control flow transfers, aadhawve already seen that it is
well-typed even when a control fault has occurred. Finallstate is well-typed under the
empty zap tag and takes a faulty step, then the resulting statell-typed under some

colorec.

Theorem 66 (Preservation)

1. If 3 ands —q3' then %/
2. If F23 ands —o 3 thendZ' . 2 5’ andz < Z'.

3. If FXand%X — % thendc. F¢ ¥
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Proof: The proof for each part is by case analysis on the correspgrgingle step
judgment using Lemma&0 (Expression Equality), Lemm@&3 (Canonical Forms), and
Lemma64 (Color Weakening). Cases for the jump and branch rules aled. ammab1

(Substitution) and Lemm@&2 (Subtyping).

F.2 Fault Tolerance Results

We first present a handful of definitions and lemmas relatimghine states to other

states, and then use these to formally state and prove tliele&rance Theorem.

F.2.1 Machine State Simulation

We say that a faulty value simulates a fault-free value undkr c if the values are equal

when they are not colored lay

(sim-val) (sim-val-zap

cdnsinfdn cnsinfcr

A faulty machine stat&; simulates a fault-free state under colorc if Z; is well-
typed under, Z is well-typed under the empty zap tag, and the two statedardical
modulo the values in registers colored

- (C,h,R b) F¢(C,h,Rs,b) Vr.Rs (r) sinf R(r)
(C,h,Rs,b) sinf (C,h,R,b)

(simx)

F.2.2 Block Execution

The Block Step Lemma states that given a non-faulty comjoutand a corresponding

faulty versionZ¢, if the non-faulty computation can take a non-faulty stepdme other
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statein the same blogkhen the faulty computation will either also take a stefhimithe
current block or will take a single step to the recover state.

Lemma 67 (Block Step)

If ¢ sinf (C,h,R b) and(C,h,R b) —¢ (C,h,R,b’) then either

1. Xt —o 2} andx sinf (C,h,R,b’), or
2. 2 — g recover(h)

Proof: By case analysis d,h,R b) — (C,h,R,b") and Theoren6 (Preservation).

In order to reason about block execution, we extend theesistgp relatio — 2’
from Section4.2 to create the judgmer ~, F which states thaff is the result of
executing theurrent blockof Z while incurringk faulty transitions. Execution proceeds
up to the control-flow transfer statement at the end of theectiblock or the recover state
if the block terminates prematurely by transitioning tooeery code. For example, ¥=
(C,h,R)i1;...;in; jmp 1), then eitherf = (C,h,R,recover(h)) or F = (C,h,R, jmp ry).

2~ F
(C,h,R,b) —¢ recover(h)
(C,h,R,b) ~»grecover(h)

(blk-eval-recovey

blk-eval-jm
(C,h,R, jmp ry) ~»0 (C,h,R, jmp r¢) ( imp

(C.hRbrz ;1) ~o (ChRbrzr 1) (DKevalbr

(C,h,Rb) —, (C,h,R,D) (C.h,R,B) ~, F
(C7 h7 R7 b) /\")(kl-l-kz) —‘7:

(blk-eval-sequenge

The Block Execution Lemma states that given a faulty contpria ¢+ that simulates

a non-faulty computation, the result of executing the fabliock will either simulate
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the result of executing the non-faulty block, or executing taulty block will result in
recover(h).
Lemma 68 (Block Execution)

If Z¢ sinf (C,h,R b) and(C,h,R,b) ~q ¥’ then either
1. 3¢ ~o2} and 3} sinf ¥/, or
2. X5 ~grecover(h)

Proof: By induction on the structure ¢€,h,R,b) ~»o X’ and Lemmab7 (Block Step).

F.2.3 Fault Recovery

The CF Fault Step Lemma states that once a control flow fault hasroegtuexecution
will either step within the same block or will step to recovende.

Lemma 69 (CF Fault Step)

If FCF (C,h,R b) then either

1. (C,h,Rb) —¢ (C,h,R,b') and-CF (C,h,R,b)
2. (C,h,R/b) —q recover(h).

Proof: By case analysis on the structurebafising Theoren66 (Preservation).

The Fault Recovery Lemma states that once a control flowfi@sloccurred, control will

always reach recovery code before exiting the current block
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Lemma 70 (CF Fault Block Execution)
If FCF (C,h,R b) then(C,h,R b) ~sgrecover(h).
Proof: By induction on the length df and Lemma9 (CF Fault Step).

F.2.4 Block Transitions

In order to reason about transitiobstweerblocks, we define the judgment = 3’
whenever(C,h,R,b) —¢ (C,(h,¢),R,b'). In other words, control transfers from the

end of one block to the beginning of another bldak a single step.

(C,h,R.b) — (C, (h,0),R, 1)
(C,h,R.b) = (C,(h,¢),R,b

(trans-eva)

The Block Transition Lemma states that whenever a nonyfaimputation transitions
to a new block, the corresponding faulty computation wither (1) transition to the same
block and continue to be indistinguishable from the noritfacomputation, (2) trigger

a hardware error, or (3) transition to an incorrect block rehtee error will be detected

before control leaves the incorrect block.

Lemma 71 (Block Transition)

If ¢ sinf (C,h,R b) and(C,h,R,b) = %' then either
1. 3¢ ="'%} ands) sinf ¥/
2. ¥ — ¢ hwerror(h)

3.3y = 3} and3; ~»grecover(h, /)
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Proof: By case analysis of the structure(@;h,R b) =3’ and Lemmar0(CF Fault

Block Execution).

F.2.5 Program Execution

The judgment= :>E F states that machine stakeexecutes through a sequence of
blocksh to reach statef while incurringk faulty transitions. In other words, & =
(C,h1,R b), then ¥ is either the regular stateC, (h1,h),R’, jmp r¢), the regular state
(C,(h1,h),R ,brz r; rt), the hardware error statarerror(hy,h), or the recovery state

recover(hy, h).

S =05

2~ F

Z:>,(<)7

(prog-exec-blk

> =07 Y’ —p hwerror (N, h)

rog-exec-seq-hwerrgr
> == hwerror(l,h) (prog : >
T=p Y ¥ =Y Yo T

(h,0)
(ki +k2) ¥

(prog-exec-seq-trans-blk
1 =
The Faulty Execution Lemma states that if a faulty execubiersimulates a non-
faulty executior2 under some colae, thenZ; behaves in one of four possible ways with
regards tax. (1) ExecutingZs results in the same sequence of blobkss executing
and the resulting faulty state simulates the corresponaamgfaulty state under the same
colorc. (2) ExecutingZs results in an attempt to transfer control to an invalid adslre
outside the domain of code memory and triggers a hardwalte Rxior to the occurrence

of the hardware fault, the execution bf visits the same blocks as the executior®of
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(3) While executingz ¢, a fault is detected and control is transferred to recovedec
even though no incorrect blocks have been visited. Thiasdn can be caused by a fault
affecting the intention register or the checking code. (4)il&/executingZ¢, control
veers off course to a block that is not visited in the exeecutdZ. In this case, the
checking code in the invalid block catches the error andsteas control to the recovery

code.

Lemma 72 (Faulty Execution)

If £t sinf = ands =0 5’ then either:

1. 3¢ =03} ands) sinf ¥’

2. 3¢ :Qf hwerror (I, h¢) andh; is a prefix ot

3. 3 :Qf recover(N, hy) andhs is a prefix oh

4.5 =g recover(N,hy) andh; = (hy,1’) andh = (hy,1,h,)

Proof: By induction on the structure af :>8 >', Lemma68 (Block Execution) and

Lemma71 (Block Transition).

F.2.6 The Fault Tolerance Theorem

A program is fault-tolerant if any execution of the programthaa single fault behaves in
one of four possible ways with regards to the original, nankfy computation. (1) The
faulty computation visits the same sequence of blocks agtiigenal and the resulting

faulty state simulates the corresponding original statleusome coloc. (2) The faulty
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computation attempts to transfer control to an invalid addroutside the domain of
code memory and triggers a hardware fault. Prior to the oenge of the hardware
fault, the faulty computation visits the same blocks as thgirmal computation. (3) The
faulty computation detects a fault in software and jumpgtmvery code even though no
incorrect blocks have been visited. This situation can hesed by a fault affecting the
intention register or the checking code. (4) The faulty catapon veers off course to a
block that does not match the corresponding block in theiralgcomputation. In this
case, the checking code in the invalid block catches the armd transfers control to the
recovery code.

Theorem 73 (Fault Tolerance)

If =% andz :>8 Y/ then at least one of the following cases applies and all deéoins

> :>2f F wherelength(hs) < length(h) fit one of these cases:

1. = =03} and3c. 5} sinf &/

2. % :>2f hwerror (I, h¢) andhg is a prefix ot

3z :>2f recover (I, h¢) andhs is a prefix oh

4.5 =" recover(,hr) andhy = (hy,I") andh = (hy,l,hy)
Proof. By case analysis on the structurez)f:>8 >'. In essence, arbitrarily divide
the computatiolt ={ %' into two pieces with somg" as the intermediate state. Use
one of the fault rules to step’ to Z{. If c is the color of the value that faults, then

X sinf ¥’. Then use Lemmda2 (Faulty Execution) witt2; sinf X" and the remainder

of the computation fronz” to ¥’ to determine what happens after the fault. Use these
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results and the first half of the computation to show that drteefour cases applies to

the entire computation containing a single fault.



Appendix G

TAL cg Translation

This appendix gives additional details for the translaticom while loops to TALcr
presented in Sectiof.5. We provide proof sketches for all lemmas and theorems. The

complete proofs appear in the companion technical regétt

G.1 A Simple While Loop Language

The while loop language statements consist of simple asggt subtraction, if state-
ments, while loops, and sequences of statements. As allatables in this language
contain integers, the well-formedness judgméhts simply enforces that all variables

in sexist in the variable context.

S = Vi=N|Vqgi=Va—Vp
| ifO V; then § else S |while V; #0do S

| s1;5

234
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G.2 Checking Code and Exit Code Macros

The translation rules and lemmas make use of the followingrasathat implement the
protocol from Sectiod.1 These macros make use of two temporary registgemndt,.
Macro “check?¢” generates the checking code at the entry of blodk check that
control has correctly transferred to this block. Macro émdjmp¢;” sets the intention
and then executes the jump to target bléckFinally, macro “intendzbrz;, ¢; /" uses
registen’, to conditionally set the intention to fall through to bloékor branch to block

4, and then uses registerto execute the conditional branch.

check! = movitg O/;subtgtyri;
recovernz {y

intendjmp/; = movi ty B 4;intend ty;
movi ty G /; jmp tg

intendzbrzr; 4t ¥+ = movity B/¢;intend tp;
movi ty B 4;; intendz 1} tp;
movi tyg G ft;brz 1, ty

G.3 Translating Variable ContextV

Since all variables are considered live at all program gomtery assembly-level instruc-
tion block will have essentially the same signature. If tbatextV contains variable
V1,...Vn, then each block in the translation requires{23 registers: a green copy
and a blue copy, for each variabley, the intention register;, and two temporary
registerdq andt,. (We have made no effort to optimize this translation, it eheserves

to demonstrate the theoretical expressiveness of the fargguage.)



APPENDIX G. TALcr TRANSLATION 236

The function[[V]], generates the code type of the code at labellhe generated
A contains all the expression variables that are neddando. Each label will have a
slightly different history typingp, since the sequence ends with the current label. Register
file typing ™ gives types to each of then2- 3 registers. Register is green and, is blue.
Both registers have basic tyjpg and are described by the same expression varible
which enforces that they are equal on entry to the block. eqi is orange, has basic
typecheck and is described by expression variabléAgain, since we have not optimized
the translation, we will assume that during block transiity always contains a green
value andyp always contains a green value. They may hold values of otilerscduring

the body of a block.

IV, =VIAIT,0)

choose fresh variables Xi, ..., Xn, Xh, Xr;, Xg, Xb, Xo
A=X1:Kint, ---, %0 > Kint, Xh  Khist: Xr; - Kint, Xg - Kint, Xb : Kint
0O =Xpo/
[={ r1:(G,int,xq), ry: (B,int,x1),..., rn: (G,int,xn), rf,: (B,int,Xa),
ri : (O,checkx;,),
ty: (G,int,Xg), tp: (B,int,xy) }
Vi,...,Vnll, = V][A|(T,0)

(trans-V)

The functionGenW(V,L) computes the heap typing that maps each label in to its

corresponding type

GenW(V,L)

GenW(V,-) =-
GenW(V, (L,0)) = GenW(V,L), £ +— [V],
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G.4 Partial Translations

A 4-tuple of objectiL,C,T, ¢) is used to track the code generated during the translation.
is the code memory that contains all blocks generated sh tamtains labels that may be
referred to by blocks i€ but whose corresponding blocks have not yet been generated.
is the label that will be assigned to the block that is cutyeinéing generated.contains
the list of instructions for this block that have been geteztao far. The instructions for
checking the checking code and exit code are not includedvélhbe added when the
block is added t&.

The judgmenV; W, C: W, is used to type code memogyas it is being generated.
There are two disjoint heaping typing#; contains labels that may be referenceddy
but whose corresponding code blocks may not have been gedeet, andV, contains
the types for the blocks that have already been generateth BpandW, map each
label ¢ to [V],. In addition, each label i> has a type that can be used to type check

corresponding block.

V;W1-C Wy

Dom(W1) NDom(W,) =0
Ve e Dom(Wy) . W1(¢) = V],
Dom(C) = Dom(¥;)
Vil e Dom(Lng) .
Wi(t) = V], = VIA( (T, (O,checkx)), o)
A A; (W1UW,); (T, — (O,checkx)); (xpof); Xi; (W1UW2)(£+1)
= C(¢)

VW1 -C: W, (C-wh
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JudgmenV + i wf states thaf is a sequence of pairs of instructions that perform
duplicate moves and subtractions. For example, the fatigvis a well-formed list of

instructions.

movi r3 G 3; movi r5B3; subrarsrg; subryrgrg;...

Using these definitions, we say a partial translatibrC,i,¢) is well-formed when
the code memor€ is well-formed using the heap typings calculated from ttheld and
the labels irL and the labels already in the domain®fln addition, the instruction list

is well-formed.

VI (L,C,i,0) wi

Wi =GenW(V, (L,?))
Wy = GenW(V,Dom(C))
VY1 EC: Y,
V T wf

V + (L,C,T,¢) wi

(partial-trans-wf)

The Block Construction Lemma says that the instructior lisim a well-formed partial
translation can be used to construct a block by adding chgadde to the beginning and
exit code to the end. The exit code can refer to any existibgllél as the jump target.
The exit code can be a conditional branch only if the falbtigh block/ + 1 exists. The
new code memory formed by adding this new block is also wetkied.

Lemma 74 (Block Construction)

IfV I (L,C,T,¢) wf thenv¢’ € ((L,#) UDom(C)) .

1. GenW(V,L) F C[ ¢+ checks; T; intendjmp?’ ] : GenW(V, (Dom(C), ?))
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2. If I+1€ ((L,/)uDomC))
thenGenW(V,L) - C[¢ — checks; i; intendzbra, ¢/ 41 : GenW(V, (Dom(C), ¢))

Proof: Using the macro definitions, the definition\of- (L,C,T,ﬁ) wf, and instruction

typing rules from Sectiod.3.2

G.5 Translating Statements

The main translation judgmeri - s|(L,C,i,¢) = (L’,C',",¢') extends the existing
partial translatior(L,C,T,K) with the translation of statemest

The statement translation rules are shown in Figbire Translating simple assign-
ment and subtraction statements simply adds pairs of asg@mstructions to the end of
the current instruction sequence. Sequencing two statsmens the partial translation
from the first statement to translate the second.

Translatingi fO statements requires the addition of new blodkscontains the fall-
through branché; contains the true branch, afg is where the two branches merge. The
functionNumBlocks) calculates the number of blocks generated by the translafie.
The current block, contains checking code, the cotlgenerated for the block so far,
and ends with a conditional branch#o(and an automatic fall-through #q). The new
labelt; is the starting point for the code generated for the truediran The ending label
of this code/; finishes by merging back to the common blockat The translation of
the false branch is similar. The final code memory containsatks generated by either
branch as well as the blocks ending each branch by jumpingetonerge blocky,. The
label in the resulting partial translationdg.

Translatingwhile statements also requires the addition of new blocks. Thecur

block at/ is terminated with an unconditional jump to a beginning klat/y, that tests
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-

[V Fs](L,C,i,¢)=(L',C.T¢)

- -
= Al
=1,

movi r G Ny movir, Bn

IVFv:i=n](L,C,i,¢) = (L,C,T,0) (t-assign

i =1, sub rc rarp; subrf ryrf
[V F Vg :=Va—Ww](L,C,i,¢) = (L,C,T",¢)

(t-sub

[V s (L,C.T. ) = (L,Cy, T, £a)
[V F 2] (L1,Ca,i1,41) = (L2, Cp, 02, £2)
vV E Sl;Sz]](L,C,T,ﬁ) = (Lz,Cz,Tz,Ez)

(t-seq

li=0+1
¢y = ¢t +NumBlockés,)
m =4 +NumBlockés)

by = checks; T: intendzbrzr, ¢+ ¢

-

[VFE sl]](<L7£f_27C[£ = byl ) = (L, & i, 4)

b{ = checké;; if; intendjmplm

[V =2l (L. &), Cl¢ = byl -, £r) = (L5, C, T, £F)
. = checkt%; i%; intendjmplp

C'= (QUCH)[f — B[t} — bf]

- t-if
[V if0 v; then 1 else ||(L,C,i,¢) = (L,C/,-, ¢m) (t11)
h=0+1
le = ls+ NumBIlocksés)
C’ = C[¢— checks; i; intendjmp/p)]
[0 — checkly; intendzbrzr, (e (4]
[[V + S]](('-?ge)?C//? '7€S) = (LIS7Cé7T757 gls)
C' = CL[¢L— checks; T intendjmp/p)] _
(t-while)

[V I while v, # 0do S| (L,C,T,¢) = (LL,C', -, 4e)

Figure G.1: Translation of While Programs.
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the condition and branches to an ending lalget the condition fails. Otherwise it falls
through to the block ats which contains the translation efand terminates with a jump
back to the beginning block. The label in the resulting pattanslation ide.

The Statement Translation Lemma says that given a wellddrpartial translation
(L,C,T,ﬁ), translating a statemesstresults in another well-formed partial translation.
In addition, the new set of undefined labélsis equal to that in the original partial

translation.

Lemma 75 (Statement Translation)

If [V F9)(L,C,i,0) = (L',C,1",¢") anaV I (L,C,T,£) wf

thenV + (L',C,i", ¢') wf andL = L
Proof: Using the definition o¥/ + (L,C,i,¢) wf and Lemmar4 (Block Construction).

G.6 The Translation Theorem

To translate a statementas a stand-alone program, it is translated as in the previous
section with 1 as the starting label. Because there is narstuction in TALcr, code
is added to the last block in the translation to create aniiafloop at labellhg:. The
function InitRegFil€V) creates an initial register file that maps each register trsed
translate/ to 0.

The assembly language program correspondirgisdhe TALcr state consisting of
the generated code memory, a history with only the first looatn initial register file,
and code to jump to the first label in code memory. If the oagistatement is well-

formed, then the translation is well-typed.
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Theorem 76 (Translation)

If VE9](.,.,.,1)=(.,C,i,¢) then

F(C/, 0, InitRegFilgV), intendjmp 1)

whereC' = [( — check; T intendjmplhait| [hait — checklnat; intendjmplhai]

Proof: Using Lemmar5 (Statement Translation), Lemn7d (Block Construction), the

block typing rules from Sectiod.3.3 and the machine state typing rules from Sec-

tion4.3.4
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