
REASONING ABOUT SOFTWARE IN THE

PRESENCE OFTRANSIENT FAULTS

FRANCES JANE PERRY

A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: DAVID P. WALKER

SEPTEMBER 2008

c© Copyright by Frances Jane Perry, 2008. All rights reserved.

iii

Abstract

A transient fault occurs when an energetic particle strikesa chip and causes a change in

state in the processor. Although there is no permanent damage, the current computation

may become corrupt. Transient faults have been shown to be the cause of crashes at major

companies, and current technology trends will make future processors more susceptible

to them. Researchers have already developed a number of solutions using combinations

of software and hardware where the general approach is to duplicate computations and

check for consistency between the copies. Unfortunately, generating correct fault-tolerant

code is difficult, and there has been little research on proving the correctness of these

techniques. Reasoning formally about fault tolerance is challenging, because invariants

that hold at compile time, such as standard type safety, may not actually hold at runtime.

Previous work on formalizing fault tolerance has been at thehigh level, including proofs

about fault-tolerant algorithms and the definition of a fault-tolerant lambda calculus.

This dissertation presents the first set of techniques for statically proving fault-tolerance

properties of actual executable code. To address this challenge, we develop modifications

to the general methodology for typed assembly languages. Anassembly-level type sys-

tem incorporates invariants about fault tolerance that arestrong enough to prove that all

well-typed programs have the desired behaviors. All that isrequired to guarantee that

a specific piece of code is fault-tolerant is to type-check the code at the conclusion of

compilation.

More specifically, we introduce a family of three type systems. TALFT is a core

language with simple instructions that guarantees that well-typed programs implementing

a hybrid fault-tolerance scheme will always detect a singlefault before the fault can affect

the observable behavior of the program. ETALFT extends TALFT with features necessary

to support realistic compilation, including stack activation frames and dynamic memory

iv

allocation. The third language, TALCF, precisely captures the behavior of software so-

lutions for control flow faults and can provably detect any fault that causes incorrect

control transfers between basic blocks before control exits that first incorrect block.

Although each typed assembly language is designed for a specific hardware context, the

type systems and proof methods use similar designs, allowing us to demonstrate general

approaches needed for reasoning in the presence of transient faults. For example, to

statically reason about values that may be corrupted at runtime, we generalize the “color

systems” of previous work into a framework for classifying values with related reliability

properties.

As well as being the first to prove that executable code is fault-tolerant, this disserta-

tion makes three additional contributions. By including a language of static expressions

within the type system, we can verify low-level fault-tolerant code independently of the

compilation process. We show to apply fault-tolerant typedassembly languages to two

different fault models: a hybrid system to detect data faults and a software-only system

to detect control-flow faults. Finally, we investigate how to generate fault-tolerant typed

assembly language for a realistic compiler.

v

Acknowledgments

This dissertation owes the most to my advisor David Walker. He is an extremely

knowledgeable and patient teacher who taught me to be clear and rigorous in my work

and confident in myself. I clearly remember the day I first openly disagreed with him,

and he responded, “That’s it! Now you are becoming a researcher.”

The members of my thesis committee were extremely helpful inimproving the quality

of this dissertation, as well as my job talk. I am very grateful for their time and feedback.

Andrew Appel helped me develop clear explanations and pull out the high-level ideas.

David Tarditi inspired me to work that bit harder to become a better writer. Margaret

Martonosi and David August’s different backgrounds helpedme target my work to the

broader community.

Additionally, this dissertation benefited from the supportof many others. George

Reis and Neil Vachharajani were a great help with the architecture side of things. I am

grateful for the wonderful administrative help and friendship of the staff at Princeton,

especially Melissa Lawson and Donna O’Leary. This work was funded by the National

Science Foundation award CNS-0627650 and a Microsoft fellowship. Any opinions,

findings, and conclusions or recommendations expressed in this material are mine and do

not necessarily reflect the views of the NSF or Microsoft.

During internships at Microsoft, I was lucky to work with a number of amazing

people. Manuvir Das, Jason Yang, and the PAG group taught me that sometimes it’s

okay to sacrifice soundness, as long as you can find real bugs inreal code. Juan Chen

and Chris Hawblitzel showed me the joy of straddling the boundary between theory and

practice to design elegant, yet practical, systems.

My fellow students were always there to advise me, commiserate with me, and sup-

port me. (And, of course, procrastinate with me...) Limin Jia was both a fantastic

vi

colleague and a close friend, and our afternoon tea times were always a bright spot in

my day. Ananya Misra’s sarcastic emails and dry wit kept me laughing. Siggi Cherem

and Sharon Betz kept me sane through the home stretch. In addition, my survival of grad

school is due in part to Melissa Carroll, Dan Dantas, Haakon Larson, Guilherme Ottoni,

Shirley Gaw, Henning Rohde, Zach Anderson, Akash Lal, Dan Wang, Jay Liggatti, the

pizza crowd, my officemates, and many others.

My family’s continued love and support means everything to me. My father Jeff,

though he never did teach me how to throw a ball, encouraged methrough my disgruntled

phases and kept me focused on the final goal; my mother Liz reminded me to take care of

myself and was always willing to proofread my papers for punctuation, even if the words

themselves were gobbledygook. As we grew up, my sister Juliaand I realized we loved

each other after all, and our differences turned out to be quite complementary – I fix her

computer and she picks out my interview suits. Erik, Isabelle, Becky, Ben, and Hunter

have become my second family. They were always there, kept Dan and me well-fed,

and rushed to our aid during the occasional emergency. I willgreatly miss having them

so close by. My “Aunt” Marilyn is always proud of me and reminds me to be proud of

myself.

And finally, there is Dan. Although his continual jokes about“Frances the 12th year

grad student” did get a bit old, he is, and always will be, my best friend. I am thrilled

to have him by my side as we enter this next phase in our lives – moving cross country,

becoming homeowners, making new friends, and who knows whatelse!

Contents

Abstract .iii

1 Introduction and Background 1

1.1 Transient Faults .1

1.1.1 Issues Caused by Transient Faults1

1.1.2 Transient Fault Trends .3

1.2 Existing Transient Fault Solutions 4

1.2.1 An Example Solution: SWIFT5

1.2.2 Do Existing Solutions Work? .6

1.3 Proof-Carrying Code .7

1.3.1 Typed Assembly Languages .7

1.3.2 Using Typed Assembly Languages8

1.4 Thesis Scope .10

1.4.1 Modeling Transient Faults .10

1.4.2 Defining Fault Tolerance .12

1.4.3 Invariants of Fault Tolerance .13

1.4.4 Proving Fault Tolerance .13

1.4.5 Compiling for Fault Tolerance14

1.5 Thesis Organization .14

vii

CONTENTS viii

2 TALFT : Fault-tolerant Typed Assembly Language 15

2.1 The Fault-Tolerant Hardware .. 16

2.1.1 The Fault Model .18

2.1.2 Instruction Semantics .20

2.2 Typing .28

2.2.1 Static Expressions .30

2.2.2 Value Typing .33

2.2.3 Instruction Typing .35

2.2.4 Machine State Typing .44

2.3 Formal Results .47

2.3.1 Type Safety .48

2.3.2 Fault Tolerance .49

2.4 Performance .51

2.5 Summary .53

3 ETALFT : Generating fault-tolerant assembly code 54

3.1 MiniC .55

3.2 Extending TALFT to ETALFT . 57

3.2.1 Memory Layout .57

3.2.2 Stacks .59

3.2.3 Memory Allocation and Initialization 69

3.2.4 Removal of Color Tags .74

3.2.5 Other Changes .76

3.3 ETALFT Formal Results .77

3.3.1 Type Safety .77

CONTENTS ix

3.3.2 Fault Tolerance .78

3.4 Translation from MiniC to ETALFT . 82

3.4.1 Translation Introduction .82

3.4.2 Translation Details .83

3.4.3 Translation Formal Results .85

3.5 Translation Example .86

3.6 Type-preserving Optimizations 92

3.6.1 General Considerations .93

3.6.2 Removal of Redundant Moves94

3.6.3 Register Allocation .94

3.6.4 Common Subexpression Elimination94

3.6.5 Dead Code Elimination .95

3.6.6 Constant Folding and Propagation95

3.6.7 Stack Packing .95

3.6.8 Instruction Scheduling .96

3.7 Summary .97

4 TALCF : Reasoning about Control Flow 98

4.1 Informal Overview .100

4.2 The Control-Flow Machine .106

4.2.1 Dynamic Semantics .107

4.3 Typing .111

4.3.1 Value Typing .117

4.3.2 Instruction Typing .121

4.3.3 Block Typing .123

CONTENTS x

4.3.4 Machine State Typing .126

4.4 Formal Results .128

4.5 Translation .130

4.6 Summary and Future Work .131

5 Related Work and Conclusion 133

5.1 PCC and TAL .133

5.2 Research in Transient Fault Tolerance 135

5.2.1 Hardware-Based Solutions .135

5.2.2 Software-Based Solutions .136

5.2.3 Hybrid Solutions .140

5.3 Formal Reasoning about Faults .. 140

5.4 Concluding Remarks .142

A TALFT Proof Details 145

A.1 Lemmas .145

A.1.1 Properties of Static Expressions 146

A.1.2 Properties of Well-Typed Values147

A.1.3 Properties of Well-typed Memories149

A.1.4 Properties of Well-typed Queues150

A.2 Type Safety .151

A.3 Multistep Transitions .154

A.3.1 No False Positives .154

A.3.2 Multistep Split and Combine .158

A.4 Fault Tolerance .158

A.4.1 Simulation Relation .159

CONTENTS xi

A.4.2 Singlestep Fault Detection .160

A.4.3 Multistep Fault Detection .161

A.4.4 Fault Similarity .163

A.4.5 Fault Tolerance Theorem .164

B MiniC Typing Rules 166

C Complete Rules forETALFT 169

C.1 Syntax of Machine States .169

C.2 Dynamic Semantics .170

C.2.1 Fault Rules .170

C.2.2 Normal Execution Rules .170

C.3 Static Semantics .174

C.3.1 Syntax .174

C.3.2 Properties of Static Expressions 174

C.3.3 Value Typing .176

C.3.4 Subtyping .177

C.3.5 Stack Typing Judgments .178

C.3.6 Instruction Typing Rules .179

C.3.7 Machine State Typing .183

C.4 Simulation of Machine States .. 185

C.4.1 Color Extraction .185

C.4.2 Simulation .186

D ETALFT Formal Results 188

D.1 Modified Lemmas .188

CONTENTS xii

D.2 New Lemmas For Stacks .191

D.3 New Lemmas For Dynamic Memory Allocation 192

D.4 Type Safety .194

D.5 Fault Tolerance .195

E MiniC to ETALFT Translation 198

E.1 Overview .198

E.2 Translating Typing Information 200

E.2.1 Type Translation .200

E.2.2 Context Generation .200

E.3 Extending Code Memory .203

E.3.1 Invariants Between Functions204

E.3.2 Partial Code Memories .205

E.3.3 Invariants within a Function .205

E.3.4 Adding Instructions to Code Memory207

E.4 Value Translation .208

E.5 Value List Translation .210

E.6 Local Declaration Translation .. . 211

E.7 Statement Translation .215

E.8 Function Translation .216

E.8.1 Prologue and Epilogue .216

E.8.2 Function Translation Judgment217

E.9 Program Translation .219

F TALCF Formal Results 221

F.1 Type Safety .221

CONTENTS xiii

F.1.1 Typing Lemmas .221

F.1.2 Type Safety .224

F.2 Fault Tolerance Results .226

F.2.1 Machine State Simulation .226

F.2.2 Block Execution .226

F.2.3 Fault Recovery .228

F.2.4 Block Transitions .229

F.2.5 Program Execution .230

F.2.6 The Fault Tolerance Theorem231

G TALCF Translation 234

G.1 A Simple While Loop Language .234

G.2 Checking Code and Exit Code Macros235

G.3 Translating Variable ContextV .235

G.4 Partial Translations .237

G.5 Translating Statements .239

G.6 The Translation Theorem .241

Bibliography 243

List of Figures

1.1 Effects of Altitude [76] and Feature Size [11] on Transient Faults 3

1.2 Proof-Carrying Code [42] and Typed Assembly Language [39]. 8

2.1 Syntax of instructions and machine states. 18

2.2 Operational rules for basic instructions. 21

2.3 Selected operational rules for memory instructions. 23

2.4 Operational rules for control flow instructions. 27

2.5 TALFT type syntax. .29

2.6 Semantics of Static Expressions, Part 1. 31

2.7 Semantics of Static Expressions, Part 2. 32

2.8 Value Typing. .34

2.9 Subtyping. .36

2.10 Instruction Typing Rules for Basic Instructions and Memory Instructions. 39

2.11 Instruction Typing Rules for Jump Instructions. 41

2.12 Instruction Typing Rules for Branch Instructions. 42

2.13 Machine State Element Typing. .. . 45

2.14 Machine State Typing. .46

2.15 Similarity of Machine States. 50

xiv

LIST OF FIGURES xv

2.16 Performance Normalized to Unprotected Version. 51

3.1 MiniC Example Program. .55

3.2 MiniC Syntax. .56

3.3 New Instruction Syntax and Operation Semantics to Support Stacks. . . . 60

3.4 Modifications to Value Typing, Subtyping, and Well-Formed Judgments. .64

3.5 Stack Lookup and Update. .65

3.6 Typing Rules for the New Stack Instructions. 67

3.7 Stack Typing. .68

3.8 New Operation Semantics to Support Dynamic Memory Allocation. . . . 70

3.9 Additions to Subtyping to Support Reference Initialization. 71

3.10 Instruction Typing Rules to Support Dynamic Memory Allocation. 73

3.11 Changes to Memory Typing Judgments. 75

3.12 Changes to the Machine State Typing Judgment. 76

3.13 Similarity of Machine States. 80

3.14 Summary of Translation Judgments. 84

3.15 Summary of Type Translation Judgments. 85

3.16 Example Translation from MiniC to ETALFT. 87

4.1 Machine State Syntax. .106

4.2 Operational Semantics. .110

4.3 Properties of colored values and zap tags. 114

4.4 Example: Protocol Stages. .115

4.5 Typing Syntax. .116

4.6 Static Expression Judgments, Part 1. 118

4.7 Static Expression Judgments, Part 2. 119

LIST OF FIGURES xvi

4.8 Value Typing Judgment and Subtyping Judgment. 120

4.9 Instruction Typing Judgment. .. . 122

4.10 Block Typing Judgment. .124

4.11 Machine State Typing. .127

A.1 Example Cases of Theorem25 (Progress).153

A.2 Example Case from Theorem26 (Preservation) Part 1.155

A.3 Example Case from Theorem26 (Preservation) Part 1.156

A.4 Example Case of Theorem26(Preservation) Part 2.157

A.5 Similarity of Machine States. .. . 159

A.6 Example Case of Lemma30. .162

E.1 Type Translation. .201

E.2 Statement Translation - Basic Statements. 212

E.3 While Statement Translation. .. . 213

E.4 If Statement Translation. .. 213

E.5 Function Call Translation. .. 214

G.1 Translation of While Programs. .. . 240

Chapter 1

Introduction and Background

1.1 Transient Faults

A transient faultoccurs when an energetic particle strikes a transistor or wire in a pro-

cessor and causes a change in state. These particles do not permanently damage the

hardware, but they may corrupt the computation that is currently executing by depositing

a charge that alters stored values and signals.

1.1.1 Issues Caused by Transient Faults

As one might expect, transient faults can cause a host of issues. In particular, as these

anecdotes show, systems can crash due to transient faults.

• In 2000, Sun Microsystems acknowledged that transient faults interfered with cache

memories and caused crashes in server systems at major customer sites, including

AOL, eBay, and dozens of others [6].

1

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

• Cypress Semiconductor has stated “The wake-up call came in the end of 2001 with

a major customer reporting havoc at a large telephone company. Technically it was

found that a single soft fail. . . was causing an interleaved system farm to crash”

[76].

• At Los Alamos in 2003, the ASC Q supercomputer crashed regularly due to soft

errors [37].

Of course, and perhaps even worse, there is always the possibility that the result of a

program is incorrect. Such an outcome is referred to assilent data corruption. Although

these issues with crashing and correctness are bad enough, transient faults can also cause

some more surprising problems.

Researchers [24] have shown how an attacker can exploit transient faults to take over

a Java Virtual Machine. In a Java Virtual Machine, the virtual machine runs in the same

address space as the untrusted program, relying on type safety to keep the untrusted

program from touching its address space. Essentially, the attacker can craft a program

that waits until a fault results in a pointer with a runtime type that does not match its

static type and then uses this mismatch to execute arbitrarycode.

Cryptographic protocols can be broken using transient faults [7, 8, 19, 56, 4]. For

example, certain implementations of RSA based on the Chinese Remainder Theorem are

vulnerable to a single fault [9]. RSA relies on the inability to factor a large numberN into

two prime numbersp andq. A signature computed from a messagem and a private key

d has the forma∗ sp +b∗ sq wherea andb are precomputed values andsn is a function

of m, d andn. If an attacker obtains two signatures (one correct, one faulty) of the same

message, he can take the difference of the two signatures. One of the two terms cancels

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

NYC

Tucson, AZ

Denver, CO

Leadville,
CO

0

5000

10000

x 5x 10x
Cosmic Ray Flux

Cosmic Flux vs. Altitude
C

ity
 A

lti
tu

de
 (

fe
et

)

0

50

100

150

180 130 90 65 45 32 22 16
Chip Feature Size (nm)

Feature Size vs. Soft Error Rate

R
el

at
iv

e
S

of
t E

rr
or

 R
at

e

Figure 1.1: Effects of Altitude [76] and Feature Size [11] on Transient Faults

out, leaving the difference of the other. Then by factoring out the precomputed value and

calculating a greatest common divisor, the attacker can determinep andq.

1.1.2 Transient Fault Trends

It is difficult to get precise numbers on transient fault rates, but as a benchmark, in 2004,

a typical laptop with 1GB DRAM had approximately 1 soft fail per year [76].

The particles that cause transient faults are mostly high-energy neutrons in cosmic-

ray radiation [76], and so fault rates increase with altitude. The graph in Figure1.1shows

that the amount of cosmic ray flux in Denver, Colorado is aboutfour times that of New

York City. The data was gathered over three years beginning in 1986, with New York

City averaging one failure every 45 days, and Leadville averaging one failure every two

days.

These results are for transient faults that affect memory. Transient faults can also

affect the latches in the processor itself, and these faultsare much harder to detect.

Unfortunately, trends in processor manufacturing are causing these fault rates to in-

crease over time. Faster clock rates, increasing transistor density, decreasing voltages

and smaller feature sizes are resulting in processors that are more susceptible to transient

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

faults [5, 46, 63]. For example, decreasing voltages reduce the critical voltage of each

transistor, making it more likely that adding the extra charge from a fault will change a

value. On the other hand, decreasing feature size makes it less likely that a fault will affect

a given transistor. As a result, the fault rate per bit is expected to remain roughly constant

for the next few generations [26, 31]. However, the number of transistors per chip is

increasing, and so the overall result is an increase in the fault rate per processor. Figure

1.1shows how the transient fault rate increases as the feature size decreases in a processor.

Because of the combination of these factors, fault rates areincreasing approximately 8%

per processor generation [28].

So although the average computer user may not be aware of transient faults today,

transient faults are likely to become a significant problem in the near future.

1.2 Existing Transient Fault Solutions

The computer architecture and compiler communities are well aware of the issues sur-

rounding transient faults, and dealing with transient faults has been an active area of

research for many years. At the high level, all the solutionswork by adding redundancy.

Redundancy can be added in time (by computing a result and then computing it again),

in space (by storing values in two locations), or in information (using techniques such as

checksums or error-correcting codes). The many solutions can be divided into two main

categories: hardware-based solutions that duplicate hardware structures in the processor

or exploit multiple cores, and software-based solutions that insert additional instructions

to verify that values are not corrupted.

Chapter5 goes into more detail on the existing solutions, but as one would expect,

there are trade-offs to each type. It is standard to evaluatea system in terms of how it

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

performs along three axes: cost, performance, and power. Transient faults add a fourth

axis to be considered – reliability. Hardware solutions aregenerally more efficient in

terms of performance, but more expensive in terms of power and cost. In addition,

once a hardware solution is deployed, it cannot be changed. Software solutions, on

the other hand, are more flexible. Because they are controlled by a compiler, they can

be deployed when, where, and to the degree necessary. Software solutions have no

additional hardware cost, but they often have a noticeable performance overhead. The

reliability added by each solution varies, but it is safe to say that although hardware

solutions can achieve very high rates of fault detection andrecovery, software-solutions

are fundamentally limited without hardware support. More recently, researchers have

begun proposing hybrid solutions that use small amounts of additional hardware that is

controlled by the software with the hopes that such solutions can combine the best of both

worlds.

1.2.1 An Example Solution: SWIFT

As an example, let us look more closely at one specific solution. SWIFT (SoftWare

Implemented Fault Tolerance) [60] is a software-based solution to transient faults. During

compilation, the SWIFT compiler duplicates the original computation, interleaves the

two copies in some manner, and inserts comparisons before storing values to memory to

ensure that the two versions of the computation agree. Because the two computations

are completely independent, a single transient fault will likely result in a difference

between the two computations. If this corruption spreads toa value that will be written

to memory, the inserted comparison will fail, and control istransferred to a designated

location containing error handling or recovery code. If a transient fault corrupts a value

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

but does not result in a noticeable difference in the values written to memory, then it does

not need to be detected.

The researchers who developed SWIFT evaluated it by randomly injecting faults and

looking at the resulting performance and detection rate. Atfirst, the detection rates were

not nearly as good as they were expecting. After more investigation, they discovered that

the compiler, having added the redundant computation, had been doing what compilers

do best – optimizing the code to remove redundancy. Optimizations such as common

subexpression elimination were resulting in a single computation, with additional code

before store instructions that duplicated the value to be stored and then compared the

value and its duplicate. Clearly, faults affecting the computation itself were not being

detected. The solution was to turn off or reorder the optimizations that the compiler

performed until the results were more in line with what was expected.1

This leaves an interesting question. How do we know that the code that SWIFT

generates now is as reliable as intended? Any realistic optimizing compiler is extremely

complicated, and it is very difficult to understand how all the phases may interact. The

high-level intuition used in SWIFT is simple to understand,but how do we ensure that

the compiled code correctly implements this intuition?

1.2.2 Do Existing Solutions Work?

Most other transient fault solutions are evaluated in similar ways: a promising idea is

presented, a system is implemented, and experimental results show an increase in fault

detection. None of these solutions provide rigorous proofsof their correctness. In fact,

many do not even precisely define which faults they can handle.

1Personal communication with G.A. Reis, October 2006.

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

The goal of this thesis is provide an approach to formally reason about the behavior

of transient fault solutions, focusing on those approachesthat make use of software. The

initial task is to determine the correct level of abstraction and best proof methodology for

reasoning about these situations. As the example with SWIFTshowed, it is not enough

to simply reason about thealgorithm; we need to reason about theimplementationas

well. Transient faults affect the hardware, so the reasoning technique needs to model

primitive instructions, memory, registers, and any other relevant hardware structures. The

addition of software redundancy occurs as a compiler phase,just like optimizations and

register allocation. Because compiler phases may have unexpected interactions, we want

to reason about the final assembly code generated by the compiler.

1.3 Proof-Carrying Code

Proof-Carrying Code [43, 42] is a technique for verifying properties of untrusted, low-

level code. In a proof-carrying code system, the compiler isresponsible for generating

two things: the low-level code and a safety proof that the low-level code obeys a prede-

fined set of properties. Then anyone who wishes to run the codecan first verify the proof

to ensure that the code will not behave unexpectedly. Traditionally, these safety proofs

have included guarantees of memory safety and type safety.

1.3.1 Typed Assembly Languages

One standard way to represent these safety proofs is using typed assembly languages [39].

To generate a typed assembly language, the compiler begins with a type-safe source pro-

gram. Instead of type checking this program and then discarding the typing information,

the compiler preserves types through every level of intermediate representation. Each

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

Source Code

Compilation
&

Certification

Proof Validation

Native
Code

Safety
Proof

Source Code

Type -Preserving
Compiler

Typed Assembly
Language

Type Checker

Figure 1.2: Proof-Carrying Code [42] and Typed Assembly Language [39].

intermediate representation has its own associated type system, and as the representations

become closer to the machine level, the type systems become more complicated in order

to maintain information about the program.

Once the compiler generates the final assembly code, type checking the code guar-

antees that the code obeys the properties encapsulated by the type system. Nothing is

required to be known about the correctness of the compiler. If the generated code obeys

the safety proof, then that proves that it behaves accordingto the properties captured by

the type system.

1.3.2 Using Typed Assembly Languages

Typed assembly languages are an active area of research, andChapter5 gives some more

background in this area. For now, we will explain the generalmethodology for using a

typed assembly language.

1. Model machine execution. The goal of typed assembly languages is to reason

about the execution behavior of a program, so the first step isto develop a model

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

of how programs execute. One common way to do this is by defining a small-

step operational semantics. Imagine that we could pause execution and look at the

current state of an abstract processor. We could inspect thevalues in each register

and in memory, see which instruction will be executed next, and so on. The small-

step operational semantics takes a snapshot of the machine like this and shows

how the snapshot is modified by executing one single instruction. By sequencing

many of these small steps together, we can reason about the execution of an entire

program.

2. Specify the desired execution behavior.Given the model of execution, we can

define which executions have the behavior that we desire.

3. Design the type system.The type system encapsulates the desired invariants that

the program should maintain. Whereas high-level type systems track the types of

program variables, assembly-level type systems track the types of the values in the

machine state, including the register file and memory.

4. Prove Soundness.Once we have these three definitions, the next step is to prove

that the type system is sound with respect to the machine model. In other words,

any well-typed program is guaranteed to execute as desired on the machine model.

5. Show that the type system is expressive.Finally, the last step is to show that the

typed assembly language is expressive. We want to rule out the possibility that we

have designed an overly restrictive type system. If there are no interesting programs

that type-check, then it means nothing to prove properties about the behavior of all

well-typed programs. We can show that this is not the case by taking a high-level

language and showing how any well-typed source program can be compiled into a

well-typed assembly program.

CHAPTER 1. INTRODUCTION AND BACKGROUND 10

1.4 Thesis Scope

This thesis investigates the use of typed assembly languages as a method for verifying

software-based transient fault solutions.

Typed assembly languages are especially well-suited for this because of the sheer

complexity of reasoning about transient faults. Just as themany possible interleavings of

threads make it difficult to reason about concurrent programs, the many possible transient

faults make it difficult to reason about fault tolerance. Forthis reason, testing is not

sufficient. To truly test that the code a compiler generates can detect all possible faults, it

would be necessary to test all combinations of features in the compiler in conjunction with

all possible faults. The drastic explosion in the number of test cases makes this infeasible.

By using a typed assembly language, we can statically guarantee that a program will

achieve perfect fault coverage relative to the fault model.

In particular, this thesis defines two families of typed assembly languages, each de-

signed for a different type of solution. TALFT and its close cousin ETALFT are designed

for a hybrid solution that uses a mix of hardware and softwareto detect faults. TALCF

is a separate language that takes the first steps towards reasoning about software-only

solutions to control-flow faults. In order to use these typedassembly languages for

verifying the behavior of programs in the presence of transient faults, we make some

slight modifications to the usual methodology for typed assembly languages.

1.4.1 Modeling Transient Faults

The machine model needs to represent hardware that may be affected by transient faults.

We will assume that memory is protected by error-correctingcodes (ECC) [25]. Un-

like simple parity which only detects single-bit errors, ECC is capable of both correcting

CHAPTER 1. INTRODUCTION AND BACKGROUND 11

single-bit errors and detecting multi-bit errors. Each piece of data has a corresponding

ECC code. The size of the code depends on the size of the data tobe protected. Protecting

32 bits of data requires a 7 bit code, and protecting 64 bits ofdata requires an 8 bit code.

When data is written to memory, the memory controller encodes the data using a device-

specific algorithm and updates the corresponding ECC code with the result. When data

is read from memory (or during periodic consistency checks), the read value is encoded

and the result is compared to the stored code. If the two codesdo not match, the memory

controller corrects a single-bit error or reports a multi-bit error to the operating system.

ECC has been shown to be extremely effective for protecting memory [12] and has been

used since the 1950s [29, 64].

However, applying ECC to the register file is too costly in terms of both performance

[68] and power [55] because of the frequency of accesses. We assume that the register

file contents are vulnerable to transient faults and specifically model transient faults to

registers in between the execution of two instructions. As the model machine executes

its small-step semantics, it may nondeterministically insert an additional step rule that

corrupts a random register value.

Transient faults may actually affect any part of the processor datapath or control.

Many “inter-instruction” faults can be modeled as a correctinstruction execution fol-

lowed by a fault to the destination register. For example, a transient fault that strikes the

ALU during the execution of an add instruction can be modeledas a correct add and then

a register fault to the destination register. A fault that causes a multiply to be performed

instead of add can be handled in the same way. However, this isnot the case for all faults.

The model does not account for faults that affect instructions with side effects beyond

the register file, instruction decoding, the virtual memorypage table, memory buses, and

so on. (Section2.1.2gives a concrete example of a fault is not modeled.) This is not to

CHAPTER 1. INTRODUCTION AND BACKGROUND 12

say that solutions such as SWIFT would fail to detect all these unmodeled faults, in fact

many such faults would likely result in a difference betweenthe two computations and be

detected, but only that all such faults are not guaranteed tobe handled in such a system.

By specifying the machine with precise operational rules, we clearly identify which

transient faults are under consideration and what hardwarebehavior we rely on. If a fault

can modify the assumed hardware behavior and cannot be modeled as a register fault,

then this identifies a vulnerability that needs to be addressed with additional hardware or

software techniques.

As is standard in the literature [57, 61], we will work under the assumption that only

one fault occurs during the execution of a program. This doesnot mean that multiple

faults would not be caught, only that with multiple faults there is a minuscule chance

that they may occur in a way that tricks the fault detection mechanisms. For example,

the first fault may corrupt a value, while the second affects the checking code that would

have otherwise detected the error. Multiple faults might also cause both computations to

calculate the same incorrect result.

1.4.2 Defining Fault Tolerance

The goal is to prove that programs are fault-tolerant, but first we need to formally define

what this means. Abstractly, a program is fault-tolerant ifno fault can change the observ-

able behavior of a program. The definition of “observable” may change, but one example

would be to assume the system operates in the presence of a memory-mapped IO device.

In this case, the program is fault-tolerant if a fault does not cause a change the sequence

of values written to memory up until the point where a fault isdetected.

We will focus only on formalizingfault detection, and not specifyfault recovery.

There are a number of known recovery techniques applicable to this problem domain.

CHAPTER 1. INTRODUCTION AND BACKGROUND 13

The simplest way to recover from a transient error is to restart the computation. For

example, Google’s MapReduce implementation distributes work over thousands of ma-

chines. When a machine fails, its task is reassigned to another machine [18]. By running

three copies of a computation, it is possible to use majorityvoting to recover from a single

error [59, 73], though this requires consistently paying a high performance overhead to

recover from a rare event. Checkpointing and rollback recovery are commonly used to

recover from faults in databases and parallel systems [34, 67]. In our current setting, we

already assume that memory is protected, so this can easily be used as stable storage for

the checkpointing. Because transient faults are rare, it isnot unreasonable to pay a high

performance cost for rolling back to the most recent checkpoint.

1.4.3 Invariants of Fault Tolerance

The type systems are designed specifically to capture invariants about the fault-tolerance

solution. For example, when using two computations to detect data faults, there are

three main invariants that must be maintained. The copies ofthe computation need to be

independent, so that a fault to one computation cannot affect the other computation. The

computations need to be redundant, so that in the absence of faults they calculate equal

values. In addition, any action that may affect the observable behavior of the program

must be guarded by a comparison of the two computations.

1.4.4 Proving Fault Tolerance

We formalize the behavior of well-typed programs as a mathematical theorem that relates

faulty and non-faulty executions of a program. First, we define a simulation relationship

between a program snapshot and the equivalent faulty snapshot that essentially means that

CHAPTER 1. INTRODUCTION AND BACKGROUND 14

the uncorrupted computations are identical, although the corrupted computations may

differ. Then we show that continuing to execute the two snapshots will always maintain

the simulation relationship up until the point where the fault is detected. This is used to

guarantee that a well-typed program behaves equivalently whether or not it is affected by

a single fault. In addition, we show that well-typed code only claims to have detected a

fault when a fault has actually occurred.

1.4.5 Compiling for Fault Tolerance

Finally, we show how to take high-level (unduplicated) programs and translate them into

well-typed fault-tolerant assembly language programs. Weinclude realistic low-level

features such as memory management and discuss the effect optimizations may have on

our typed assembly language.

1.5 Thesis Organization

The remainder of this dissertation is organized as follows.Chapters2 and3 reason about

a hybrid transient fault solution modeled after the CRAFT system [61]. Chapter2 begins

the process with a core assembly language called TALFT and walks through the first four

stages of using typed assembly languages. In order to show expressiveness, Chapter3

defines ETALFT, an extension to TALFT, and discusses how to use ETALFT as the target

language of an optimizing compiler. Chapter4 takes the first steps toward reasoning about

software-only solutions to control-flow faults using a language called TALCF. Chapter5

goes into more detail on related work and ends with some final remarks.

Chapter 2

TALFT : Fault-tolerant Typed Assembly

Language

This chapter presents TALFT, a typed assembly language designed for reasoning

formally about a hybrid transient fault solution. Our system is abstractly modeled after

CRAFT [61], a solution similar to SWIFT. Being a software-only solution, SWIFT has

some fundamental limitations. For example, before storinga value to memory, SWIFT

performs a comparison between the two computations. However, a fault that occurs after

this comparison, but before the store instruction, will notbe caught. CRAFT introduces

a little bit of extra hardware to help close this window of vulnerability.

The rest of this chapter presents the details of the abstracted hybrid fault-tolerance

technique. Section2.1 presents the syntax and operational semantics of the machine

model. It is a RISC-based architecture with special instructions to facilitate reliable

communication with memory and to detect control-flow faults. Section2.2 presents the

Material in this chapter is joint work with Lester Mackey, George A. Reis, Jay Ligatti, David I. August,
and David Walker and has been previously published as [51] and [52].

15

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 16

key principles and formal definitions for the type system. Although the typing rules are

specific to the particular setting, the underlying principles are more general; we believe

many of these principles will apply to reasoning about related fault-tolerant systems. The

combination of a TAL-like type-theory with concepts from classical Hoare Logics is a

particularly general and important technical contribution. Section2.3 describes the key

theorems we have proven including Progress, Preservation,“No False Positives,” and

Fault Tolerance. Section2.4 provides empirical evidence that our new hybrid solution

to fault tolerance is feasible for many applications by measuring performance results on

simulated hardware. Finally, Section2.5summarizes the contributions of TALFT.

2.1 The Fault-Tolerant Hardware

The first task is to develop the machine model so that we can reason about the execution of

a program. The model hardware is based on a simple RISC architecture, extended with

features to support detection of control-flow faults and safe interaction with memory-

mapped output devices. Correct use of these features makes it possible to detect all

faults that might change a program’s observable behavior. Most practical systems also

need a fault recovery mechanism of some kind. However, because recovery is largely a

secondary issue to detection, we omit recovery for now.

The general strategy is to maintain two redundant and independent threads of com-

putation, which we name thegreen(G) computation and theblue (B) computation. The

green computation generally leads slightly, and the blue computation generally trails,

though there is a fair amount of flexibility in how the instructions in each computa-

tion may be interleaved. Prior to writing data out to a memory-mapped output device,

the results of the two computations are checked for equivalence. If the results are not

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 17

equivalent, the machine will signal that a fault has been detected. The arguments to any

control-flow transfer must also be checked for faults.

The execution of assembly programs is specified using a small-step operational se-

mantics that mapsmachine states(Σ) to other machine states. These machine states are

made up of a number of components. The first component is the machine’sregister bank

R, which is a total function that maps register names to the values contained therein. The

metavariablea ranges over all registers, and metavariabler ranges only over general-

purpose registers (r1, r2, ...). In addition to general-purpose registers, there aretwo

program counter registers (pcG andpcB), which contain the same value unless there has

been the fault. There is one additional special register, thegreen destination register, gd.

Its role in control-flow checking will be explained later.

To facilitate proofs of certain theorems, the value in each register is tagged with the

color (either green or blue) of the computation to which it belongs. However, these tags

have no effect on the run-time behavior of programs. Section3.2.4discusses how color

tags can be removed by doing more work in the proofs. In contrast, the tags on instruction

opcodes, to be introduced momentarily,do have an effect on evaluation.

In addition to a register bank, the machine state includes acode memory C, which

we model as a function mapping integer addressesn to instructions. Address 0 is not

considered a valid code address. The machine also has avalue memory M, which maps

addresses to integer values. In between the value memory andthe processor is a special

store queue, Q, which is used to detect faults before data is written to a memory-mapped

output device. The store queue is a queue of address-value pairs. We will discuss the role

of the queue in greater detail later.

Overall, an abstract machine state (Σ) may have the formfault, indicating the hard-

ware has detected a transient fault, or the ordinary state(R,C,M,Q, ir), where the first

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 18

colors c ::= G | B
integers n ::= . . . | −1 | 0 | 1 | . . .
colored values v ::= c n
general registers r ::= rn

all regs a ::= r | gd | pcc

register f ile R ::= · | R,a→ v
code memory C ::= · |C,n→ i
value memory M ::= · | M,n→ n
store queue Q ::= (n,n)
ALU ops op ::= add | sub| mul
instructions i ::= op rd, rs, rt | op rd, rs,v

| ldc rd, rs | stc rd, rs | mov rd,v
| bzc rz, rd | jmpc rd

inst register ir ::= i | ·
state Σ ::= (R,C,M,Q, ir) | f ault

Figure 2.1: Syntax of instructions and machine states.

four components are as discussed above, andir is either an instructioni to be executed,

or “·” indicating the next instruction should be fetched from code memory. Figure2.1

summarizes the syntax of machine states. We use overbar notation to indicate a sequence

of objects.

2.1.1 The Fault Model

The operational semantics is designed both to model proper execution of machine instruc-

tions and to make explicit, precise, and transparent all of the assumptions about when

and where faults may occur. The central operational judgment has the formΣ1 −→
s
k Σ2,

which expresses a single step transition from stateΣ1 to stateΣ2 while incurringk faults

and writing datas to a memory-mapped output device. We will work under the standard

assumption of a single upset event [57, 61] and hencek will always be either 0 or 1.

The datas is a (possibly empty) sequence of address-value pairs. While the operational

semantics models the internal workings of the machine, the only externally observable

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 19

behavior of the machine is the sequence of writess to the output device or the signaling

of a hardware-detected fault. If faults cause the processorto have drastically different

internal behavior, but the externally observable sequences is unchanged, we consider the

program to have executed successfully.

Different fault-tolerance techniques protect different components of machines. In the

literature, the protected areas are usually inside theSphere of Replication(SoR) [57]. In

our case, we target faults that may occur in data manipulatedwithin the processor. We

assume that both code memoryC and value memoryM are fully protected. This is often

the case since error-correcting codes can very efficiently protect memory. To make these

assumptions explicit, the following three operational rules specify exactly how faults may

occur within our system.

R(a) = c n

(R,C,M,Q, ir) −→1 (R[a 7→ c n′],C,M,Q, ir)
(reg-zap)

Q1 = (n1,n′1),(m1,m′),(n2,n′2)

Q2 = (n1,n′1),(m2,m′),(n2,n′2)

(R,C,M,Q1, ir) −→1 (R,C,M,Q2, ir)
(Q-zap1)

Q1 = (n1,n′1),(m,m′
1),(n2,n′2)

Q2 = (n1,n′1),(m,m′
2),(n2,n′2)

(R,C,M,Q1, ir) −→1 (R,C,M,Q2, ir)
(Q-zap2)

Rule reg-zapnondeterministically introduces a fault into any registerby replacing the

value in that register with some other arbitrary value. There are no restrictions on how

the underlying value might be changed. For instance, code pointers can be changed to

arbitrary integer values; references may no longer be in bounds. However, the color tag

is preserved to facilitate fault-tolerance proofs. Because the color tag is fictional (has no

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 20

effect on run-time behavior), this poses no limitation on the fault model. RulesQ1-zap

andQ2-zapalter the contents of the store queue in similar ways.

Formally, these are the only faults that can occur. However,notice that since the

program counters and targets of indirect jumps are susceptible to thereg-zaprule, we

effectively capture many forms of “control-flow faults” studied previously. Notice also

that we do not explicitly consider faults that occurduring execution of an instruction.

However, many such faults may easily be shown to be equivalent to correct execution

of an instruction composed with a fault either immediately before or afterward. For

example, consider a simple register-to-register add instruction. Any fault within the adder

hardware during execution of the add is equivalent to a correct add followed by a fault

in the destination register. On the other hand, as we will seelater, a fault during thestB

instruction cannot be modeled in our system.

An important benefit of our formal model is that there is actually a precise, concrete

specification to analyze. Moreover, if a researcher wants toreason about the conse-

quences of some fault that lives outside the formal model, this may be done by adding a

new operational rule to the system and studying its semanticeffect.

2.1.2 Instruction Semantics

The syntax of machine instructions was presented along withthe rest of the components

of our abstract machine in Figure2.1. The semantics is described formally by the infer-

ence rules in Figures2.2, 2.3, and2.4, and explained informally below. The formal rules

use several notational conventions. For instance, ifR is a register file thenR(a) is the

contents of registera andR[a 7→ v] is the updated register file with registera mapped to

v. R++ is the register file that results from incrementing bothpcG andpcB by 1. If R(a) is

the colored valuec n, we writeRval(a) to denoten andRcol(a) to denotec. The function

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 21

Instruction Fetch:

Rval(pcG) = Rval(pcB) Rval(pcG) ∈ Dom(C)

(R,C,M,Q, ·)−→0 (R,C,M,Q,C(Rval(pcG)))
(fetch)

Rval(pcG) 6= Rval(pcB)

(R,C,M,Q, ·)−→0 f ault
(fetch-fail)

Basic Instructions:

R′ = R++[rd 7→ Rcol(rt) (Rval(rs) op Rval(rt))]

(R,C,M,Q,op rd, rs, rt) −→0 (R′,C,M,Q, ·)
(op2r)

R′ = R++[rd 7→ c (Rval(rs) op n)]

(R,C,M,Q,op rd, rs,c n) −→0 (R′,C,M,Q, ·)
(op1r)

(R,C,M,Q,mov rd,v) −→0 (R++[rd 7→ v],C,M,Q, ·)
(mov)

Figure 2.2: Operational rules for basic instructions.

find(Q,n) produces the first pair(n,n′) that appears inQ, or () if no pair (n,n′) appears

in Q.

Instruction Fetch. The machine operates by fetching an instruction from code memory

and executing that instruction. The corresponding operational semantics rules are shown

in Figure2.2. When there is no current instruction to execute (i.e.ir = ·), thefetchrule

should fire. This rule tests for equality of the two program counters to check for faults

and loads the appropriate instruction from code memory. IfpcG andpcB are the same but

Rval(pcG) is not a valid address in code memory, execution “gets stuck”(no rule fires).

Well-typed programs never get stuck, even when a single fault occurs. On the other hand,

a fault can render the two program counters inequivalent. Inthis case, rulefetch-failfires

and causes a transition to the fault state. Abstractly, thistransition represents hardware

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 22

detection of a transient fault. Controlled program termination or perhaps recovery may

follow. The fault model does not allow for the instruction itself to be corrupted.

Basic Instructions. The arithmetic and move instructions (rulesop2r, op1r, andmov)

shown in Figure2.2 are completely standard. The first arithmetic operationop rd, rs, rt

performsop on the values inrs and rt , storing the result inrd. The second arithmetic

operation uses a constant operandv in addition tors andrd. All constants are annotated

with the color of the computation they belong to. Likewise, themovinstruction loads an

annotated constant into a register.

Memory Instructions. Transient faults are problematic only when they change the

results of computations and those results areobservedby an external user. In this model,

the only way a result can be observed is for a program to write it to memory, where a

memory-mapped output device may read and process it.

Without special hardware it appearsimpossibleto guarantee that storage operations

guard access to memory properly. No matter what sophisticated software checking is

performed just before a conventional store instruction, itwill be undone if a fault strikes

between the check and execution of the store instruction.

To address this vulnerability, the machine possesses a modified store buffer (the queue

Q), which is similar to the store buffer used in previous hardware [57] and hybrid [61]

fault tolerant systems. In addition, there are two special storage instructions, each tagged

with a color. The green store instructionstG rd, rs places the address-value pair

(Rval(rd),Rval(rs)) on the front of the queue (rulestG-queuein Figure2.3). The blue

store instructionstB rd, rs retrieves the pair(nl ,n′l) on the back of the queue, checks that

it equals(Rval(rd),Rval(rs)), and then stores it in memory (rulestB-mem). If the pairs

are different, the hardware signals a fault (rulestB-mem-fail). Because green stores must

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 23

Σ −→s
k Σ′

(R,C,M,Q,stG rd, rs) −→0 (R++,C,M,((Rval(rd),Rval(rs)),Q), ·)
(stG-queue)

Rval(rd) = nl Rval(rs) = n′l

(R,C,M,((n,n′),(nl ,n′l)),stB rd, rs) −→
(nl ,n′l)
0 (R++,C,M[nl 7→ n′l],(n,n′), ·)

(stB-mem)

Rval(rd) 6= nl or Rval(rs) 6= n′l
(R,C,M,((n,n′),(nl ,n′l)),stB rd, rs) −→0 f ault

(stB-mem-fail)

find(Q,Rval(rs)) = (Rval(rs),n)

(R,C,M,Q, ldG rd, rs) −→0 (R++[rd 7→ G n],C,M,Q, ·)
(ldG-queue)

find(Q,Rval(rs)) = () Rval(rs) ∈ Dom(M)

(R,C,M,Q, ldG rd, rs) −→0 (R++[rd 7→ G M(Rval(rs))],C,M,Q, ·)
(ldG-mem)

find(Q,Rval(rs)) = () Rval(rs) /∈ Dom(M)

(R,C,M,Q, ldG rd, rs) −→0 f ault
(ldG-fail)

Rval(rs) ∈ Dom(M)

(R,C,M,Q, ldB rd, rs) −→0 (R++[rd 7→ B M(Rval(rs))],C,M,Q, ·)
(ldB-mem)

Rval(rs) /∈ Dom(M)

(R,C,M,Q, ldB rd, rs) −→0 f ault
(ldB-fail)

find(Q,Rval(rs)) = () Rval(rs) /∈ Dom(M)

(R,C,M,Q, ldG rd, rs) −→0 (R++[rd 7→ G n],C,M,Q, ·)
(ldG-rand)

Rval(rs) /∈ Dom(M)

(R,C,M,Q, ldB rd, rs) −→0 (R++[rd 7→ B n],C,M,Q, ·)
(ldB-rand)

Figure 2.3: Selected operational rules for memory instructions.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 24

always come before blue stores, instruction scheduling is somewhat constrained. As we

will show later in Section2.4, we have evaluated the performance with and without this

scheduling constraint and show that its performance impactis negligible.

As an example, consider the following straight-line sequence:

1 mov r1, G 5

2 mov r2, G 256

3 stG r2, r1

4 mov r3, B 5

5 mov r4, B 256

6 stB r4, r3

These six instruction have the effect of storing 5 into memory address 256. Moreover, a

fault at any point in execution, to either blue or green values or addresses, will be caught

by the hardware when the blue store (instruction 6) comparesits operands to those in the

queue. In addition, our instruction set gives a compiler thefreedom to allocate registers

however it chooses (e.g., reusing registers 1 and 2 in instructions 4-6 instead of registers

3 and 4) and to change the instruction schedule in various ways (e.g., moving instruction

3 to a position between instructions 5 and 6).

Interestingly, however, not all conventional optimizations are sound. This is why type

checking generated code can be so helpful in detecting compiler errors. For example,

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 25

common subexpression elimination might result in the following code:

1 mov r1, G 5

2 mov r2, G 256

3 stG r2, r1

4 stB r2, r1

In this case, a fault inr1 after instruction 1, or a fault inr2 after instruction 2 will cause

both instructions 3 and 4 to manipulate the same, but incorrect, address-value pair. The

result would be to store an incorrect value at the correct location or a correct value at an

incorrect location. Fortunately, the TALFT type system catches reliability errors like this

one.

As mentioned in Section2.1.1, many “intra-instruction” faults can be modeled by

modifying the register file before or after the instruction.However, this is not the case for

a fault that occurs during the execution of thestB-memrule in between the comparisons

and the store. The hardware designer must implement structures that detect or mask any

faults that occur here. If the hardware designer cannot meetthe specification given by the

operational semantics, he acknowledges there may be a vulnerability.

The load instructions also come in pairs:ldB and ldG. As Figure2.3 shows, the

only difference in their semantics is thatldG checks for a pending store in the queue

before loading its value from memory, whereasldB goes directly to memory, ignoring the

queue. This wrinkle increases the freedom in instruction scheduling by allowing the green

computation to load a value it may have recently stored before the blue computation has

necessarily committed the store. RulesldG-queue, ldG-mem, andldB-memspecify these

behaviors.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 26

Notice that there is no mechanism for verifying the address used in loads. Hence, a

fault can result in an invalid address. In practice such a load might induce a hardware

exception such as a segmentation fault (rulesldG-fail and ldB-fail) or might result in

loading some arbitrary value (rulesldG-randandldB-rand).

Control-Flow Instructions. Any change in the control-flow of a program may cause a

different sequence of values to be stored and observed by an external user. Consequently,

the hardware contains mechanisms to detect faults in addresses that serve as jump targets.

Intuitively, these mechanisms mirror the solution to faults in stored data in that execution

of a control-flow transfer is accomplished through two instructions. Our solution uses a

combination of software and hardware control-flow protection that is similar to watchdog

processors [35], but that makes both versions of the control flow explicit asin software-

only control flow protection [47, 60]. The operational rules that implement this solution

are shown in Figure2.4.

To achieve an unconditional jump, one executes ajmpG instruction first and a related

jmpB instruction at some point in the future. AjmpG r1 moves the destination address

from r1 into the special destination registergd (rule jmpG). Like the store queue, the

destination register stores a programmer intention, initiated by the green computation.

Later, when the blue computation attempts to commit the jumpby executing ajmpB r2

instruction, the contents ofr2 are compared to the contents of the destination register

and if they are equal, control jumps to that location (rulejmpB). If the addresses are

different, the hardware detects a fault (see rulejmpB-fail). Similar to the constraint

for the store queue, forcing green control flow instructionsto be executed before the

corresponding blue version constrains the instruction schedule. Section2.4 will show

that this scheduling constraint has only a minimal performance impact.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 27

Σ −→s
k Σ′

Rval(gd) = 0

(R,C,M,Q, jmpG rd) −→0 (R++[gd 7→ R(rd)],C,M,Q, ·)
(jmpG)

Rval(gd) 6= 0

(R,C,M,Q, jmpG rd) −→0 f ault
(jmpG-fail)

Rval(gd) 6= 0 Rval(rd) = Rval(gd)
R′ = R[pcG 7→ R(gd)][pcB 7→ R(rd)][d 7→ G 0]

(R,C,M,Q, jmpB rd) −→0 (R′,C,M,Q, ·)
(jmpB)

Rval(rd) 6= Rval(gd) or Rval(gd) = 0

(R,C,M,Q, jmpB rd) −→0 f ault
(jmpB-fail)

Rval(gd) = 0 Rval(rz) 6= 0

(R,C,M,Q,bzc rz, rd) −→0 (R++,C,M,Q, ·)
(bz-untaken)

Rval(gd) 6= 0 Rval(rz) 6= 0

(R,C,M,Q,bzc rz, rd) −→0 f ault
(bz-untaken-fail)

Rval(gd) = 0 Rval(rz) = 0

(R,C,M,Q,bzG rz, rd) −→0 (R++[gd 7→ R(rd)],C,M,Q, ·)
(bzG-taken)

Rval(gd) 6= 0 Rval(rz) = 0

(R,C,M,Q,bzG rz, rd) −→0 f ault
(bzG-taken-fail)

Rval(gd) 6= 0 Rval(rz) = 0 Rval(rd) = Rval(gd)
R′ = R[pcG 7→ R(gd)][pcB 7→ R(rd)][gd 7→ G 0]

(R,C,M,Q,bzB rz, rd) −→0 (R′,C,M,Q, ·)
(bzB-taken)

Rval(rz) = 0 (Rval(rd) 6= Rval(gd) or Rval(gd) = 0)

(R,C,M,Q,bzB rz, rd) −→0 f ault
(bzB-taken-fail)

Figure 2.4: Operational rules for control flow instructions.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 28

The following code illustrates a typical control-flow transfer.

1 ldG r1, r2

2 jmpG r1

3 ldB r3, r4

4 jmpB r3

Initially, registersr2 and r4 should point to the same memory location, which contains

a code pointer to jump to. The example illustrates some of theflexibility in scheduling

jump instructions.

Conditional jumps are more complex, but follow the same principles. The green

conditionalbzG rz, rd testsrz and if it is 0, moves the contents ofrd into destination

registergd (rulesbz-untakenandbzG-taken). No control-flow transfer occurs until a blue

conditionalbzB r ′z, r′d tests the contents of itsr ′z register. Ifr ′z is 0 thenr ′d must equal the

contents ofgd, and if so, the control flow transfer occurs (rulebzB-taken). If r ′z is not 0, it

is not good enough merely to fall through — the contents ofr ′z might be faulty. To avoid

this possibility, the instruction examines the destination register. If it is 0 (and hence a

prior bzG instruction did not store an address), the fall-through occurs (rulebz-untaken).

Our metatheory will show that this mechanism suffices to detect faults either in the green

computation (registersrz andrd) or the blue computation (registersr ′z andr ′d).

2.2 Typing

The primary goal of the TALFT type system is to ensure that well-typed programs exhibit

fail-safe behavior in the presence of transient faults. In other words, well-typed programs

must guarantee that even when a single fault occurs, a memory-mapped output device

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 29

Static Expressions
exp kinds κ ::= κint | κmem

exp contexts ∆ ::= · | ∆,x : κ
exps E ::= x | n | E op E | sel Em En | emp| upd Em En1 En2

substitutions S ::= · | S,E/x

Types
zap tags Z ::= · | c
basic types b ::= int | Θ → void | b ref
reg types t ::= 〈c,b,E〉 | E′ = 0⇒ 〈c,b,E〉
reg f ile types Γ ::= · | Γ,a→ t
result types RT ::= Θ | void

Contexts
heap typing Ψ ::= · | Ψ,n : b
static context Θ ::= ∆;Γ;(Ed,Es);Em

Figure 2.5: TALFT type syntax.

will never read a corrupt value and make it visible to a user. We call this property “fault

tolerance.”

The syntax of the type system is presented in Figure2.5. In the following sections,

we explain the intuitions and principles behind the variouselements of the type system.

Throughout the discussion, the reader will notice that our typing rules are not syntax-

directed. In other words, there may be situations when more than one rule can be applied

at a given point. Of course, as with other sorts of typed assembly language or proof-

carrying code, this presents no particular difficulty in practice — during the translation,

the compiler knows the correct typing derivation. The compiler can either produce this

full derivation or, for efficiency’s sake, can produce sufficient “typing hints” to make type

reconstruction trivial.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 30

2.2.1 Static Expressions

Our “type system” is actually a combination of two theories,one being a relatively simple

type theory for assembly language, inspired by previous work on TAL [40], and the

second being a Hoare Logic, designed to enforce the more precise invariants required for

fault tolerance. The latter component requires we define a language ofstatic expressions

for reasoning about values and storage.

The static expressions are drawn from the standard theory ofarithmetic and arrays

used in many classical Hoare Logics (c.f., Necula’s thesis [45]). These static expres-

sions are classified as either integers (kindκint) or memories (kindκmem). The integer

expressions include variables, constants, simple arithmetic operations, and values from a

memory (sel Em En is the integer located at addressEn in Em). The memory expressions

include variables, the empty memory (emp), and memory updates (upd Em En1 En2 is a

memoryEm updated so that addressEn1 stores valueEn2).

The context∆ is a mapping from variables to kinds and contains the free variables

used in the static expressions at compile time. The judgment∆ ` E : κ classifies expres-

sionE as having kindκ. At runtime, these variables will have known values, so in order to

reason about program execution we use a substitutionSwhich maps expression variables

to expressions. The judgment∆ ` S : ∆′ holds when the substitutionS maps variables

in Dom(∆′) to expressions well-formed in∆ with types inRng(∆′). The judgment∆ `

E1 = E2 is valid whenE1 andE2 are equal objects in the standard model. The function

[[E]] supplies the denotation of the closed static expression E aseither an integer or a

memory, depending on its kind. The judgments are defined in Figures2.6 and2.7, and

the denotation function is defined in Figure2.7.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 31

∆ ` E : κ

x∈ Dom(∆)

∆ ` x : ∆(x)
(E-var-t)

∆ ` n : κint
(E-int-t)

∆ ` E1 : κint ∆ ` E2 : κint

∆ ` E1 op E2 : κint
(E-op-t)

∆ ` emp: κmem
(E-emp-t)

∆ ` Em : κmem ∆ ` En : κint

∆ ` sel Em En : κint
(E-sel-t)

∆ ` Em : κmem ∆ ` En1 : κint ∆ ` En2 : κint

∆ ` upd Em En1 En2 : κmem
(E-upd-t)

∆ ` S: ∆′

∆ ` · : ·
(sub-emp-t)

∆ ` S′ : ∆′′ ∆ ` E : κ x /∈ Dom(∆)∪Dom(∆′′)

∆ ` S′,E/x : ∆′′,x : κ
(sub-t)

Figure 2.6: Semantics of Static Expressions, Part 1.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 32

[[E]]

[[n]] = n
[[emp]] = ·
[[E1 op E2]] = [[E1]] op [[E2]]
[[sel Em En]] = [[Em]]([[En]])
[[upd Em E1 E2]] = [[Em]][[[E1]] 7→ [[E2]]]

∆ ` E1 = E2

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S: ∆ =⇒ [[S(E1)]] = [[S(E2)]]

∆ ` E1 = E2
(E-eq)

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S: ∆ =⇒ [[S(E1)]] 6= [[S(E2)]]

∆ ` E1 6= E2
(E-neq)

∆ ` E1 : κmem ∆ ` E2 : κmem

∀` ∈ Dom([[S(E1)]])∪Dom([[S(E2)]]). [[S(E1)]](`) = [[S(E2)]](`)

∆ ` E1 = E2
(E-mem-eq)

Figure 2.7: Semantics of Static Expressions, Part 2.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 33

2.2.2 Value Typing

Because faults strike values, corrupting their bit patterns in arbitrary ways, the subtleties

of value typing are a key concern. Informally, the type system maintains three key pieces

of information about every value:

1. A color (green or blue).The type system is organized to ensure that when a value

is known to be green, its contents can only depend on the contents of other green

values not blue ones, and likewise, blue can only depend uponblue. Hence, while

a fault in a green value can eventually corrupt arbitrarily many other green values,

it cannot corrupt any blue values, and vice versa.

2. A “basic type”. When no fault has occurred in the value’s color, the value’s basic

type describes its shape. Values with typeint may have any bit pattern. Values

with type Θ → void are pointers to code (continuations). One must satisfy the

preconditionΘ before jumping to them. Values with typeb ref are pointers to

values with typeb.

3. A static expression.When there has been no fault in a value’s color, the value

exactly equals the static expression. Static expressions are used to guarantee that in

the absence of faults, the green and blue computations produce equal values, and

hence, dynamic fault detection checks always succeed.

To summarize, every value is typed using a triple〈c,b,E〉, wherec is a color,b is a basic

type, andE is a static expression. The presence of the static expression makes this type a

sort of singleton type.

Value Typing Judgment. The value typing judgment in Figure2.8has the formΨ;∆`Z

v : t, whereΨ maps heap addresses to basic types, and∆ contains the free expression

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 34

Ψ ` n : b

Ψ ` n : int
(int-t) Ψ ` n : Ψ(n)

(base-t)

Ψ;∆ `Z v : t

Ψ ` n : b ∆ ` E = n

Ψ;∆ `Z c n : 〈c,b,E〉
(val-t)

n 6= 0 Ψ;∆ `Z c n : 〈c,b,E〉 ∆ ` E′ = 0

Ψ;∆ `Z c n : E′ = 0⇒ 〈c,b,E〉
(cond-t)

∆ ` E′ 6= 0

Ψ;∆ `Z c 0 : E′ = 0⇒ 〈c,b,E〉
(cond-t-n0)

∆ ` E : κint

Ψ;∆ `c c n : 〈c,b,E〉
(val-zap-t)

∆ ` E : κint

Ψ;∆ `c c n : E′ = 0⇒ 〈c,b,E〉
(val-zap-cond)

Figure 2.8: Value Typing.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 35

variables. In the ruleval-t, a colored valuec n is given the type〈c,b,E〉 when the static

expressionE is equal ton, andΨ ` n : b. The judgmentΨ ` n : b allowsn to be given

either the basic typeint or the type of the addressn in memory.

The two rulescond-tandcond-t-n0are used to type the conditional type(E′ = 0⇒

〈G,Θ→ void,E′
r〉). When the static expressionE′ is equal to zero, values of this type also

have type〈G,Θ → void,E′
r〉. WhenE′ is not equal to zero, values with this type must be

0.

The final two rules forΨ;∆ `Z v : t make use of thezap tag Z, which is either empty

or a colorc. If the zap tag is a colorc, then there may have been a fault affecting data

of that color. Data colored the same as the zap tag can be givenany type, as it may have

been arbitrarily corrupted. The static expression used in this type may not contain any

free expression variables.

Value Subtyping. There is also a subtyping relation∆ ` t ≤ t ′ that allows all types

〈c,b,E1〉 to be subtypes of〈c, int,E2〉 when∆ ` E1 = E2. This relation is extended to

register file subtyping∆ ` Γ1 ≤ Γ2, by requiring that the type of each general-purpose

register inΓ2 be a supertype of the corresponding register inΓ1. Note that here is no

required relationship between the special registersgd, pcG, andpcB. The rules for these

judgments appear in Figure2.9.

2.2.3 Instruction Typing

While many of the instruction typing rules are quite complex, the essential principles

guiding their construction may be summarized as follows.

1. In the absence of faults, standard type theoretic principles should be valid.In order

to guarantee basic safety properties, the type system checks standard properties in

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 36

∆ ` t ≤ t ′

∆ ` E1 = E2

∆ ` 〈c,b,E1〉 ≤ 〈c,b,E2〉
(subtp-triple)

∆ ` E1 = E2

∆ ` 〈c,b,E1〉 ≤ 〈c, int,E2〉
(subtp-int)

∆ ` t ≤ t ′ ∆ ` E = E′

∆ ` (E = 0⇒ t)≤ (E′ = 0⇒ t ′)
(subtp-cond)

∆ ` Γ1 ≤ Γ2

∀r ∈ Dom(Γ2). Γ1(r) ≤ Γ2(r)

∆ ` Γ1 ≤ Γ2
(reg-file-comp)

Figure 2.9: Subtyping.

much the same manner as previous typed assembly languages [40]. For example,

jump targets must have code types, while loads and stores must operate over values

with reference types.

2. Green values only depend on other green values, and blue values only depend on

blue values.When this invariant is maintained, a fault in a blue value cannever

corrupt a green value and vice versa.

3. Both green and blue computations have equal say in any dangerous actions.Dan-

gerous actions include storing values to memory-mapped output devices and ex-

ecuting control-flow operations. When both blue and green computations are in-

volved, a fault in just one color is insufficient to deceive the hardware fault detection

mechanisms.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 37

4. In the absence of faults, green and blue computations must compute identical

values. To be more precise, green and blue computations must store identical

values to identical storage locations and must issue ordersto transfer control to

identical addresses. If not, the hardware will claim to detect faults when there have

been none, or alternatively, might exhibit incorrect behaviors when there is a fault.

The first three principles are relatively straightforward to enforce. The fourth principle

leads to the most technical challenges as it requires we check equality constraints between

values. Moreover, since construction of these values depends on storage, the type sys-

tem must maintain a relatively accurate static representation of storage. We accomplish

this latter challenge using techniques drawn from Hoare Logics. The former challenge

(testing values for equality) is achieved through the use ofthe singleton types described

earlier.

The Instruction Typing Judgment. The judgment for typing instructions has the form

Ψ;Θ ` ir ⇒ RT. Unlike the contextΨ, which only contains invariant heap typing as-

sumptions,Θ contains fine-grained context-sensitive information about the current state

of memory and the register file. More specifically,Θ consists of the following sub-

contexts: (1)∆, which describes the free expression variables appearing in the other

context-sensitive objects, (2)Γ, which describes the mapping of register names to types

for register values, (3)(Ed,Es), which describes the values in the queue, and (4)Em,

which describes memory, as one does in Hoare Logic.

The “result” of checking an instruction is a result typeRT. A result type may either

be void, indicating control does not proceed past the instruction (it is a jump), or a

postconditionΘ′, which describes the state of memory and the register file after execution

of the instruction.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 38

The typing rules are defined using several notational abbreviations. The notation

Γ++ adds one to the static expression associated with each program counter register in

Γ. The expressionupd Em (Ed,Es) is (upd (...(upd Em Edk Esk)...) Ed1 Es1) when

(Ed,Es) = ((Ed1,Es1), ...,(Edk,Esk)). Figures2.10, 2.11, and2.12 presents the typing

rules for instructions, and the following paragraphs explain the main points of interest.

Typing Basic Instructions. Basic arithmetic operations are not “dangerous” to execute,

so the definitions of their typing rules are driven by principles 1 and 2, mentioned earlier.

Consider, for example, ruleop2r-t for an arithmetic operationop. This rule requires that

the operand registers contain integers with the same colorc in accordance with principal 2

(green depends on green, blue depends on blue). The result registerrd has a type colored

c as well. In accordance with principle 1, the result has integer type. The rule also states

that the static expression describing the result register isE′
s op E′

t and that the state of the

queue and memory are unchanged by evaluation of the instruction.

Typing Memory Instructions. Store operations are “dangerous” — they make com-

puted values observable by the outside world — so we must be particularly careful in

the formulation of their typing rules. In accordance with principle 1, both green and

blue store instructions (rulesstG-t andstB-t) require that the address register has the basic

typeb ref and the value register has the corresponding basic typeb. Intuitively, the store

queue is a green object, and in accordance with principle 2, the green store instruction

may push an address-value pair onto the front the queue as long as the address and the

value are green. In accordance with principle 4, the rule forthe blue store checks that

the address-value pair to be stored is exactly equal to the address-value pair at the end of

the queue. Since the arguments to the blue store have a blue type and the queue always

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 39

Ψ;Θ ` ir ⇒ RT

Ψ;(∆;Γ;(Ed,Es);Em) ` · ⇒ (∆;Γ;(Ed,Es);Em)
(·-t)

Γ(rs) = 〈c, int,E′
s〉 Γ(rt) = 〈c, int,E′

t 〉
Γ′ = Γ++[rd 7→ 〈c, int,E′

s op E′
t 〉]

Ψ;(∆;Γ;(Ed,Es);Em) ` op rd, rs, rt ⇒ (∆;Γ′;(Ed,Es);Em)
(op2r-t)

Γ(rs) = 〈c, int,E′
s〉

Γ′ = Γ++[rd 7→ 〈c, int,E′
s op n〉]

Ψ;(∆;Γ;(Ed,Es);Em) ` op rd, rs,c n ⇒ (∆;Γ′;(Ed,Es);Em)
(op1r-t)

Ψ;∆ ` v : t

Ψ;(∆;Γ;(Ed,Es);Em) ` mov rd,v ⇒ (∆;Γ++[rd 7→ t];(Ed,Es);Em)
(mov-t)

Γ(rs) = 〈G,b ref,E′
s〉 E = sel (updEm (Ed,Es)) E′

s

Ψ;(∆;Γ;(Ed,Es);Em) ` ldG rd rs ⇒ (∆;Γ++[rd 7→ 〈G,b,E〉];(Ed,Es);Em)
(ldG-t)

Γ(rs) = 〈B,b ref,E′
s〉 E = sel Em E′

s

Ψ;(∆;Γ;(Ed,Es);Em) ` ldB rd rs ⇒ (∆;Γ++[rd 7→ 〈B,b,E〉];(Ed,Es);Em)
(ldB-t)

Γ(rd) = 〈G,b ref,E′
d〉 Γ(rs) = 〈G,b,E′

s〉

Ψ;(∆;Γ;(Ed,Es);Em) ` stG rd rs ⇒ (∆;Γ++;(E′
d,E

′
s),(Ed,Es);Em)

(stG-t)

Γ(rd) = 〈B,b ref,E′′
d〉 Γ(rs) = 〈B,b,E′′

s 〉
∆ ` E′

d = E′′
d ∆ ` E′

s = E′′
s

Ψ;(∆;Γ;(Ed,Es),(E′
d,E

′
s);Em) ` stB rd rs ⇒ (∆;Γ++;(Ed,Es);upd Em E′

d E′
s)

(stB-t)

Figure 2.10: Instruction Typing Rules for Basic Instructions and Memory Instructions.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 40

contains green objects, both blue and green computations contribute to the actual storage

operation (in accordance with principle 3).

The load operations are somewhat simpler than the store instructions since they are

not “dangerous” in our model. However, like the store instructions, the operands of

blue loads must be blue and the operands of green loads must begreen. Once again, in

accordance with principle 2, the result of a blue load is value with a blue type and likewise

for a green load. Other than the colors, the main difference between two load typing rules

is the way they obtain the expression that described the loaded value. The blue load

(rule ldB-t) simply usessel Em E′
s, which is the expression that describes the contents

of the address described byE′
s in the memory descriptionEm. However, the operational

rule for ldG first checks the queue for any pending stores before loading the value from

memory, and so the typing ruleldG-t uses the expressionsel (upd Em (Ed,Es)) E′
s. In

other words, before taking the corresponding expression fromEm, all the pending changes

in the queue (described by(Ed,Es)) are applied. This way, if the loaded value also has a

pending update, the selected expression will describe the updated value.

Typing Control-Flow Instructions. The rules for the green jump and branch instruc-

tions are relatively simple, as they do not actually involvea control flow transfer.

The simplest situation involves the green jump (rulejmpG-t). This instruction is just

a move from registerrd to the special destination registergd. The type of registergd is

updated to the type ofrd (obeying both principles 1 and 2). The rule contains constraints

that gd must be equal to 0 in bothΓ and Γ′ since the hardware resets the destination

register to 0 after a jump.

The typing of the green conditional branch (rulebzG-t) is quite similar to that of the

green jump. One difference is that thebzG instruction is now a conditional move as

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 41

Ψ;Θ ` ir ⇒ RT

Γ(gd) = 〈G, int,0〉
Γ(rd) = 〈G,Θ → void,Erd′〉

Θ = (∆′;Γ′;(E′
d,E

′
s);E

′
m)

Γ′(gd) = 〈G, int,0〉

Ψ;(∆;Γ;(Ed,Es);Em) ` jmpG rd

⇒ (∆;Γ++[gd 7→ 〈G,Θ → void,Erd′〉];(Ed,Es);Em)

(jmpG-t)

Γ(gd) = 〈G,(∆′;Γ′;(E′
d,E

′
s);E

′
m) → void,E′

r〉

Γ(rd) = 〈B,(∆′;Γ′;(E′
d,E

′
s);E

′
m) → void,Er〉

∆ ` Er = E′
r

∃S.∆ ` S: ∆′

S(Γ′)(gd) = 〈G, int,0〉
S(Γ′)(pcG) = 〈G, int,E′

r〉
S(Γ′)(pcB) = 〈B, int,Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed,Es) = S((E′
d,E

′
s))

∆ ` Em = S(E′
m)

Ψ;(∆;Γ;(Ed,Es);Em) ` jmpB rd ⇒ void
(jmpB-t)

Figure 2.11: Instruction Typing Rules for Jump Instructions.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 42

Ψ;Θ ` ir ⇒ RT

Γ(gd) = 〈G, int,0〉
Γ(rz) = 〈G, int,Ez〉

Γ(rd) = 〈G,Θ → void,E′
d〉

Θ = (∆′;Γ′;(E′
d,E

′
s);E

′
m)

Γ′(gd) = 〈G, int,0〉

Ψ;(∆;Γ;(Ed,Es);Em) ` bzG rz rd

⇒ (∆;Γ++[gd 7→ Ez = 0⇒ 〈G,Θ → void,E′
d〉];(Ed,Es);Em)

(bzG-t)

Γ(rz) = 〈B, int,Ez〉

Γ(rd) = 〈B,(∆′;Γ′;(E′
d,E

′
s);E

′
m) → void,Er〉

Γ(gd) = E′
z = 0⇒ 〈G,(∆′;Γ′;(E′

d,E
′
s);E

′
m) → void,E′

r〉
∆ ` Ez = E′

z
∆ ` Er = E′

r
∃S.∆ ` S: ∆′

S(Γ′)(gd) = 〈G, int,0〉
S(Γ′)(pcG) = 〈G, int,E′

r〉
S(Γ′)(pcB) = 〈B, int,Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed,Es) = S((E′
d,E

′
s))

∆ ` Em = S(E′
m)

Ψ;(∆;Γ;(Ed,Es);Em) ` bzB rz rd ⇒ (∆;Γ++;(Ed,Es);Em)
(bzB-t)

Figure 2.12: Instruction Typing Rules for Branch Instructions.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 43

opposed to an unconditional move. Hence, to represent the result of the move (unknown

at compile time) the conditional type(E′
z = 0⇒ 〈G,Θ → void,E′

r〉) is used. In addition,

since the conditional branch may fall through, the result oftyping thebzG instruction is a

proper postcondition as opposed tovoid, like jmpG.

The typing rules for the blue control-flow instructions continue to follow the same

four principles as the other instructions. Much of the complexity is inherently due to

principle 1, which mandates checking all the usual constraints associated with jumps in

any typed assembly language. For comparison, a jump rule in anon-fault-tolerant typed

assembly language requires that the target register contains a code pointer, and that the

current register file is a subtype of that expected by the target code. (To be consistent with

TALFT, the subtyping relationship below does not include the program counter register,

and the requirement for the program counter is written separately.)

Γ(rd) = Γ′ → void
Γ′(pc) = int
∆ ` Γ ≤ Γ′

Ψ;(∆;Γ) ` jmp rd ⇒ void
(conventional- jmp-t)

The blue jump is a true jump. According to principle 1, the typing rule jmpB-t

checks the standard typing invariants needed to ensure safety in any typed assembly

language, including (1) that both copies of the jump target have a code type (see the

first two premises), and (2) that the current state, including register file, memory, and

queue, matches the expected state at the jump target, modulosome substitutionSof static

expressions for universally quantified variables∆ from the code type (see the final seven

premises).

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 44

The typing of the blue conditional branch (rulebzB-t)is similar to the jump. The

conditional type of the destination registergd must depend on an expression that is

equivalent to the expression used in the blue branch. And again, the instruction may

fall through, so the rule has a proper postcondition.

2.2.4 Machine State Typing

In order to prove various properties of the type system, we need to specify the invariants of

machine states that are preserved during execution. The judgments for typing a machine

stateΣ are shown in Figures2.13and2.14and explained below.

Register File Typing. The judgmentΨ `Z R : Γ states that the register fileR has the

register file typeΓ under heap typingΨ and a zap tagZ. The contents of each register

must have the type given to that register byΓ. Each program counter must have the

appropriate color, and the program counters must contain equal values. (In the case where

one program counter is corrupted, the zap tagZ in the first premise allows its actual value

to differ from the expected computed value.)

Code Typing. The judgmentΨ ` C states that code memoryC is well-formed with

respect to heap typingΨ. The address 0 is not a valid code address. Each address must

have a code type, and the code type must contain the precondition for the instruction at

that address. If the instruction typing results in a postcondition Θ′ (meaning that control

may fall through to the next instruction) then the subsequent instruction must be well

typed usingΘ′ as its precondition.

Memory Typing. The judgmentΨ ` M : Em states that given heap typingΨ the value

memoryM is well-formed and can be described by the static expressionEm. The static

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 45

Ψ `Z R : Γ

∀a. Ψ; · `Z R(a) : Γ(a)
· ` Γ(pcG) ≤ 〈G, int,EG〉 · ` Γ(pcB) ≤ 〈B, int,EB〉 · ` EG = EB

Ψ `Z R : Γ
(R-t)

Ψ ` C

0 6∈ Dom(C)
∀n∈ Dom(C). Ψ(n) = Θ → void ∧ Ψ;Θ ` C(n) ⇒ RT

∧ (RT = Θ′ impliesΨ(n+1) = Θ′ → void)

Ψ ` C
(C-t)

Ψ ` M : Em

· ` Em : κmem [[Em]] = M ∀` ∈ Dom(M). Ψ ` ` : b re f ∧ Ψ ` M(`) : b

Ψ ` M : Em
(M-t)

Ψ `Z Q : (Ed,Es)

Ψ `Z () : ()
(Q-emp-t)

Z 6= G
Ψ ` n1 : b re f Ψ ` n2 : b · ` Ed = n1 · ` Es = n2

Ψ `Z (n′1,n
′
2) : (E′

d,E
′
s)

Ψ `Z (n1,n2),(n′1,n
′
2) : (Ed,Es),(E′

d,E
′
s)

(Q-t)

· ` Ed : κint · ` Es : κint Ψ `G (n′1,n
′
2) : (E′

d,E
′
s)

Ψ `G (n1,n2),(n′1,n
′
2) : (Ed,Es),(E′

d,E
′
s)

(Q-zap-t)

Figure 2.13: Machine State Element Typing.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 46

`Z (R,C,M,Q, ir)

Dom(Ψ) = Dom(C)∪Dom(M)
Z 6= G =⇒ Dom(Q) ⊆ Dom(M)

Ψ `C
∀c 6= Z. ir 6= · =⇒ C(Rval(pcc)) = ir

∀c 6= Z. Ψ(Rval(pcc)) = (∆;Γ;(Ed,Es);Em) → void
∃S. · ` S: ∆

Ψ ` M : S(Em)

Ψ `Z Q : S(Ed,Es)
Ψ `Z R : S(Γ)

`Z (R,C,M,Q, ir)
(Σ-t)

Figure 2.14: Machine State Typing.

expressionEm must have kindκmem, andM must be the denotation ofEm. Each location

in the domain ofM must have a typeb ref and the contents of that location must have

typeb.

Queue Typing. The judgmentΨ `Z Q : (Ed,Es) means that queueQ can be described

by the sequence of static expressions(Ed,Es) given heap typingΨ and zap tagZ. When

the queue is empty, it is described by the empty sequence. When the zap tagZ is notG,

the first pair(n1,n2) must consist of an addressn1 with typeb ref and a valuen2 with type

b. This pair is described by the static expression pair(Ed,Es) whenEd evaluates ton1

andEs evaluates ton2. The remainder of the queue must be described by the remainder

of the static expression sequence. All values in the queue are considered to be green, so

when the zap tag isG, these values may have been arbitrarily corrupted. Accordingly in

this case, the only requirements are that each static expression must have kindκint and

the length of the queue must be the same as the length of the static expression sequence.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 47

Machine State Typing. The judgment̀ Z Σ states that a machine stateΣ is well-typed

under zap tagZ. This judgment holds whenΣ is a five-tuple(R,C,M,Q, ir), and these

elements are each well-typed and consistent with each other. Note thatΣ is not well-typed

when it is the fault statefault.

The domain of the heap typingΨ must be the union of the domains of the code

memoryC and the value memoryM. WhenZ is not equal toG, the queue has not been

corrupted, and so each address inQ is also a valid address inM. The code memoryC

must be well-formed with respect to the heap typingΨ.

The zap tagZ must be either empty or colored blue or green. At least one of the

program counters, and possibly both, will not be colored byZ, and therefore must not be

corrupted. Ifir is an instruction, these correct program counters must point to an address

that containsir . The heap typingΨ gives this address a code type(∆;Γ;(Ed,Es);Em) →

void.

The context∆ contains the free variables inΓ, (Ed,Es), andEm. There must be some

substitutionS that gives values to each of the variables in∆. Value memoryM must

be well-formed and described by the static expressionS(Em). The queueQ must be

described byS(Ed,Es). The register fileR must have typeS(Γ).

2.3 Formal Results

Now that we have defined the machine model and the type system,we need to prove that

the type system is sound with respect to the machine model. Inother words, if a program

is well-typed, we can guarantee certain properties about all possible executions of that

program. This section provides a high-level overview of theformal results for TALFT. A

more in-depth discussion appears in AppendixA.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 48

In order to prove properties about program execution, we extend our single-step

transitionΣ1 −→
s
k Σ2 from Section2.1to a sequence ofn transitions containing exactlyk

faultsΣ1
n

−−→
s
kΣ2, wheren is greater than or equal to zero, andk is still either 0 or 1.

2.3.1 Type Safety

Progress states that well-typed states can take a step. In particular, a machine state that is

well-typed under the empty zap tag can take a step to another machine state. A machine

state that is well-typed under a zap tag of colorc can take a step, but the result of that step

may either be another machine state or thefault state. (Recall that̀Z Σ only holds when

Σ is a five-tuple(R,C,M,Q, ir) and not the fault statefault.)

Theorem 1 (Progress)

1. If ` Σ thenΣ −→s
0 Σ′ andΣ′ 6= fault.

2. If `c Σ thenΣ −→s
0 Σ.

According to Preservation, if a machine state is well-typedunder a zap tagZ, and

it takes a non-faulty step to another machine state, then that resulting state will also be

well-typed underZ. Additionally, if a state is well-typed under the empty zap tag, and it

takes a faulty step, then there is some colorc such that the resulting state is well-typed

underc.

Theorem 2 (Preservation)

1. If `Z Σ andΣ −→s
0 Σ′ andΣ′ 6= fault then`Z Σ′.

2. If ` Σ andΣ −→s
1 Σ′ then∃ c. `c Σ′.

Progress and Preservation define the usual notion of type safety. In addition, part

one of Progress, together with part one of Preservation entail the following important

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 49

corollary: The hardware never claims to have detected a fault when no fault has occurred

during execution of a well-typed program.

Corollary 3 (No False Positives)

If ` Σ then∀ n. Σ n
−−→

s
0Σ′ and ` Σ′.

2.3.2 Fault Tolerance

A program is fault tolerant when all the faulty executions ofthat programsimulatefault-

free executions of the program. More precisely, the sequence of outputs from the faulty

execution is required either to be identical to the fault-free execution or, in the case the

hardware detects the fault, a prefix of the fault-free execution.

In order to reason about pairs of faulty and fault-free executions, we define similarity

relations between values, register files, queues and machine states. Each of these relations

is defined relative to the zap tagZ. Intuitively, if Z is empty, the related objects must be

identical. If Z is a colorc, the objects must be identical modulo values coloredc. In

the latter case, values coloredc may be corrupted, and there is no hope they satisfy any

particular relation. The formal definitions of these relations are shown in Figure2.15.

Using the simulation relation, we can state and prove the fault tolerance theorem for

well-typed programs precisely. Assume that machine stateΣ is well-typed under the

empty zap tag, and non-faulty execution ofΣ for n steps results in a stateΣ′ and outputs

a sequence of value-address pairss. If somewhere during that execution a single fault is

encountered, the faulty execution will either run forn+1 steps or terminate in the fault

state during that time. If the faulty execution takesn+1 steps and reaches the non-faulty

stateΣ′
f , thenΣ′ simulatesΣ′

f and the sequence of output pairs is identical the original

execution. Alternatively, if the faulty execution reachesthe fault state then the output

pairs will be a prefix of the non-faulty output pairs.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 50

v1 simZ v2

C n simZ C n
(sim-val)

C n simC C n′
(sim-val-zap)

R simZ R′

∀a. R(a) simZ R′(a)

R simZ R′
(sim-R)

Q simZ Q′

· simZ ·
(sim-Q-empty)

G n1 simZ G n′1 G n2 simZ G n′2 Q simZ Q′

((n1,n2),Q) simZ ((n′1,n
′
2),Q

′)
(sim-Q)

Σ1 simZ Σ2

R simZ R′ Q simZ Q′

(R,C,M,Q, ir) simZ (R′,C,M,Q′, ir)
(sim-Σ)

Figure 2.15: Similarity of Machine States.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 51

TAL-FT TAL-FT without ordering

1.00

1.25

1.50

1.75

2.00
N

or
m

al
iz

ed
E

xe
cu

tio
n

Ti
m

e

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

jpe
gd

ec

jpe
ge

nc

m
pe

g2
de

c

m
pe

g2
en

c

pg
pd

ec

pg
pe

nc

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

16
4.

gz
ip

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
6.

cr
af

ty

18
8.

am
m

p

25
6.

bz
ip2

30
0.

tw
olf

Geo
M

ea
n

Figure 2.16: Performance Normalized to Unprotected Version.

Theorem 4 (Fault Tolerance)

If ` Σ andΣ n
−→

s
0Σ′ then eitherΣ

(n+1)
−−→

s′

1 Σ′
f

or ∃m≤ (n+1) . Σ m
−−→

s′

1 fault, and

1. For all derivationsΣ
(n+1)
−−→

s′

1 Σ′
f whereΣ′

f 6= fault.

s′ = s and∃ c. Σ′ simc Σ′
f .

2. For all derivationsΣ m
−−→

s′

1 fault wherem≤ (n+1).

s′ is a prefix ofs.

2.4 Performance1

To better understand how TALFT can be applied to real world situations, Reis [51] sim-

ulated the TALFT hardware in the framework of a current computer architecture, the

Intel Itanium 2 ISA. The instruction set of the Itanium 2 contains many more types

of instructions than those specified in TALFT. While not an exact representation of the

performance of TALFT, simulating the performance of TALFT applied to this architecture

gives guidance as to the feasibility of this system in a real architecture.

1This subsection is the work of G. A. Reis [51] and is included in this thesis for completeness.

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 52

To evaluate the performance impact of the techniques, a version of the VELOCITY

compiler [69] was modified to add the reliability techniques of TALFT and was used to

compile the SPEC CINT2000 and MediaBench benchmark suites.These executions were

compared against binaries generated by the original VELOCITY compiler, which have

no fault detection. The reliability transformation was compiled into the low-level code

immediately before register allocation and scheduling. Tosimulate the new hardware

structures of TALFT, extra instructions were inserted to emulate the timing anddepen-

dences of the hardware structure accesses. Only optimizations that were TALFT aware

were used on the reliable code.

Performance metrics were obtained by running the resultingbinaries with reference

inputs on an HP workstation zx6000 with 2 900Mhz Intel Itanium 2 processors running

Redhat Advanced Workstation 2.1 with 4Gb of memory. Theperfmon utility was used

to measure the CPU time.

Figure 2.16 presents the execution time of the fault-tolerant code relative to base-

line binaries with no fault detection. Naı̈vely, one might expect the fault-tolerant code

to run twice as slowly as the fault intolerant code since the number of instructions is

essentially doubled. However, smart instruction scheduling and efficient allocation of

resources reduces the execution time to only 34% more than the fault-intolerant baseline

average. These simulations are in line with previously published software-only reliability

performance experiments [60] that show the degradation due to redundant code to be less

than double.

As alluded to in Section2.1.2, Figure2.16 compares the performance degradation

with and without the scheduling constraint that green memory and control flow instruc-

tions must be executed before the corresponding blue versions. In order to perform the

second set of experiments, the compiler was modified to produce code that had more

CHAPTER 2. TALFT : FAULT-TOLERANT TYPED ASSEMBLY LANGUAGE 53

flexibility in the scheduling of the green and blue versions.A more aggressive hardware

implementation that could correlate the original and redundant memory operations re-

gardless of the executed order was then simulated. As expected, this version has better

performance (in most cases) than the unconstrained code. Although the colored ordering

restriction of TALFT may seem costly, removing this restriction provides only a small

improvement. Comparing both to the unprotected code, the version without the ordering

constraint increases execution time by 30% while the version with the ordering increases

execution time by 34%.

2.5 Summary

This chapter introduced TALFT, a typed assembly language designed to verify a hybrid

fault-tolerance technique. TALFT is the first technique for reasoning about fault-tolerance

properties of executable code. In addition, we identify four general principles for verify-

ing correctness of fault tolerant systems and capture thesein the TALFT type system. The

two main formal results show that a single fault affecting observable behavior in a well-

typed TALFT program will always be detected, and that the system will notclaim to have

detected a fault when none has occurred. Despite the fact that well-typed programs es-

sentially duplicate all computation, we provide simulation results showing a performance

overhead of 1.34x. The next chapter investigates using a similar language as the target of

a realistic optimizing compiler.

Chapter 3

ETALFT : Generating fault-tolerant

assembly code

The previous chapter introduced the TALFT language and formally proved that all well-

typed programs have certain behaviors, namely that they detect any single fault before

it can affect the observable behavior of the program. TALFT forms the core of a fault-

tolerant typed assembly language, but is only a starting point for developing a realistic,

usable language. This chapter shows how to extend TALFT with additional features to

serve as the target of a type-directed compiler.

In addition, these changes allow us to investigate the interactions between fault-

tolerant typed assembly languages and other current research areas in typed assembly

languages, namely typing the control stack and typing memory allocation and initializa-

tion.

The rest of the chapter is organized as follows. Section3.1 defines a simple source-

level imperative language called MiniC. Section3.2 introduces the extended typed as-

sembly language ETALFT and summarizes its differences from TALFT. Section3.3

54

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 55

int double(x:int ref) {
int v = 0;
v = !x;
v = v + v;
x := v;
return 0;

}

int ref y = ref 3;
int result = 0;

result = double(y);
return result;

Figure 3.1: MiniC Example Program.

updates the formal results from the previous chapter for ETALFT. Section3.4 gives a

naive translation from MiniC into ETALFT and sketches a proof that the result is well-

typed. Section3.5gives an example of the translation. Section3.6discusses how standard

compiler optimizations can be applied to well-typed ETALFT programs. Finally, Section

3.7summarizes the contributions of ETALFT.

3.1 MiniC

MiniC is a simple imperative language with basic arithmeticoperations, references, and

functions. An example program is shown in Figure3.1, and the complete abstract syntax

is shown in Figure3.2. The notationref v allocations a new heap location and initializes

it with value v. Heap updates and accesses are notated by := and ! respectively. We

will assume the existence of a garbage collector to run in thebackground and handle

deallocation. Though the syntax is extremely simplified in order to facilitate the proofs

later in this chapter, it is still quite expressive.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 56

variables x, f
type τ ::= int | τ ref | X → τ
typing context X,F,A,L ::= · | x : τ, X
value v ::= n | x | ref v
value list vs ::= · | v, vs
binaryop op ::= + | − | ∗
statement s ::= x = v | x = v op v

| x =!v | v := v
| x = f (vs)
| if v then selse s | while v do s
| s; s

f unction declarations f ds ::= · | τ f (X) {lds; s; return v} f ds
local declarations lds ::= · | τ x = v; lds
program p ::= f ds; lds; s; return v;

Figure 3.2: MiniC Syntax.

The main typing judgments for MiniC are summarized below, and the complete

typing rules are provided in AppendixB. The typing rules are completely standard.

Essentially they enforce that variables are defined before their use and that variables of

a given type (integers, references, and functions) are usedappropriately. We use the

metavariableX to refer to a generic typing context and metavariablesF, A, andL when

referring to typing contexts for function variables, argument variables, and local variables

respectively.

X ` v : τ Value v has typeτ in typing context X.

X ` vs: X′ Value list vs has type X′ in typing context X.

F;A;L ` s wf Statement s is well-formed given function context F, argument
context A, and local variable context L.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 57

F;A;L ` lds : L′ Given function context F, argument context A, and current local
declaration L, after adding local declarations lds, the newset of
local declarations is L′

F ` f ds: F ′ Given function context F, after adding the well-formed functions
defined in f ds, the new function context is F′.

` p wf Program p is well-typed.

We have defined MiniC in order to show how to compile MiniC programs into TALFT

programs. However, there are two things that make TALFT unsuitable to be the target

language for MiniC: (1) TALFT has only a limited number of registers so it can’t handle

the unlimited number of arguments or local variables allowed by MiniC, and (2) TALFT

has no support for dynamic memory allocation.

3.2 ExtendingTALFT to ETALFT

In order to compile MiniC into fault-tolerant assembly code, we need to make a couple

of extensions to TALFT to address the issues with limited registers and lack of dynamic

memory allocation. This new language is called ETALFT, and this section focuses on

only on how it differs from TALFT. The complete specification of ETALFT is provided as

a reference in AppendixC.

3.2.1 Memory Layout

In TALFT, memory is divided into two pieces: a code memoryC and a value memory

M. Both of these are of a fixed size throughout the execution of aprogram. In addition,

the abstract machine is able to tell the difference between these two memories, and many

of the operational rules test to see if a location is only one of these two. (For example,

rule fetch-failapplies when the address is not inC, even if it is inM.) It is reasonable to

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 58

assume that the abstracted hardware can make this distinction, as real machines are often

able to do the same using an execute bit.

In ETALFT we will conceptually further divide the value memoryM into two pieces:

a heap and a stack. The goal is to use the stack as scratch spaceand consider the heap

to be the portion of memory that is ”observable”. Both the heap and stack may grow

during execution, and the stack may shrink as well. To avoid dealing with the possibility

of running out of memory, we will assume an infinite sized address space with code

memoryC in the middle, the stack in the lower addresses growing downward, and the

heap in the higher addresses growing upwards.

Stack HeapCode Memory

lower addresses higher addresses

We will continue to assume that the machine can differentiate between code memory

and the value memory, but we do not assume it can distinguish between the locations in

M that represent the heap and those that represent the stack.

The following judgment is used to break a memory into two pieces, by using a set of

addressesL to define the division. By using the domain ofC as the set of addresses, we

can divide the value memoryM into the stack and the heap.

M = M1
L

#M2

Dom(M) = Dom(M1)∪Dom(M2)
Dom(M1)∩Dom(M2) = /0

∀`1 ∈ Dom(M1). ∀`L ∈ L . ∀`2 ∈ Dom(M2). `1 < `L < `2

M = M1
L

#M2

(#-def)

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 59

3.2.2 Stacks

Real machines use the stack to pass arguments and return values, as temporary space

when the number of live values exceeds the number of registers, for local variables whose

address may be taken, and to allocate local storage without the overhead of the garbage

collector.

For simplicity, we will only investigate the first two of these uses. Even so, we need

to immediately think about how the stack will interact with our goal of fault tolerance. In

TALFT, values are only committed to memory when both the green and blue computations

agree. However, the goal of the ETALFT stack is to act as temporary spill space that is not

externally visible. We do not want to require that the two computations synchronize when

spilling values to the stack. For example, consider a program which needs many registers

to perform some arithmetic computation and then stores the final result to memory. In this

case, it may well make sense for the blue computation to spillall its values to the stack,

reducing the register pressure for the green computation. Once the green computation has

completed, it can spill the result and allow the blue computation to use all registers for

its version of the task. Therefore the stack may contain a mixof green and blue values.

It will be up to our type system to track which is which and to enforce the values of one

color continue to only depend on the values of the same color.

The stack grows down towards lower addresses, and we will refer to the lowest

location on the stack as the “top” of the stack and the highestlocation as the “base”

of the stack.

New Instruction Syntax and Operational Semantics

For manipulating the stack, there are two new registers and four new instructions. Each

of these new instructions has corresponding operational rules, shown in Figure3.3.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 60

general regs a ::= . . . | spc

instructions i ::= . . . | salloc n| s f ree n| sldc rd n | sst n rv

R′ = R++[spG 7→ R(spG)−n][spB 7→ R(spB)−n]
m= min(Dom(M))

M′ = (M,m−1 7→ 0, ...,m−n 7→ 0)

(R,C,M,Q,salloc n) −→0 (R′,C,M′,Q, ·)
(salloc)

R′ = R++[spG 7→ R(spG)+n][spB 7→ R(spB)+n]
m= min(Dom(M))

M = M′,m 7→ vm, ...,(m+n−1) 7→ v1

(R,C,M,Q,s f ree n) −→0 (R′,C,M′,Q, ·)
(sfree)

R(spc)+n∈ Dom(M)
R′ = R++[rd 7→ M(R(spc)+n)]

(R,C,M,Q,sldc rd, n) −→0 (R′,C,M,Q, ·)
(sldc)

R(spc)+n 6∈ Dom(M)

(R,C,M,Q,sldc rd, n) −→0 f ault
(sldc-fail)

R(spB) = R(spG) R(spG)+n∈ Dom(M)

(R,C,M,Q,sst n, rv) −→
(R(spG)+n,R(rv))
0 (R++,C,M[R(spG)+n 7→ R(rv)],Q, ·)

(sst)

R(spG) 6= R(spB) or R(spB)+n 6∈ Dom(M)

(R,C,M,Q,sst n, rv) −→0 f ault
(sst-fail)

Figure 3.3: New Instruction Syntax and Operation Semanticsto Support Stacks.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 61

Just as there is a program counter for each computation, there is a green stack pointer

spG and a blue stack pointerspB. Both stack pointers should point to the location on the

top of the single stack.

The instructionssalloc nands f ree nare used to allocate and deallocate space on

the stack. The rules forsalloc ands f reedo this by either subtracting or addingn to

both stack pointers. Our abstract semantics for these instructions also modify the set of

locations in memory. Stacks grow downwards, so the lowest address inM is currently

the top of the stack. When allocating,n new locations are added below the original top

of the stack. For convenience, we assume these locations contain the value 0, but do

consider them initialized yet. The type system will preventa programmer from loading

from uninitialized locations. When deallocating, the bottomn addresses are removed.

The instructionssldc rd n andsst n rv are used to load from and store to the stack

at offsetn above the stack pointers. The rules forsldc n rv are very similar to the rules

for the basic load instructions. Instead of taking the address as an argument,sldc takes

an offsetn and adds that to the stack pointer coloredc. If that address is not inM, the

machine detects a fault, otherwise the value is loaded. If the stack pointer coloredc is

corrupted, the loaded value may actually be a heap value or a value of the other color

from the stack. But since the computation is already corrupted, no harm is done. As we

will see, stores to the stack commit immediately, so there isno reason to check the queue

for pending stores when loading from the stack.

In TALFT, the goal was to detect a fault before allowing a store to corruptM (through

either a corrupt address or a corrupt value). In ETALFT, that restriction is loosened

slightly. If there has been a fault to the blue computation, that corruption may affect

blue registers which are later spilled to the stack. We do notneed to detect this unless it

will affect the heap portion of memory. So when the zap tag isc, we will allow corrupt

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 62

values in the locations inM corresponding to thec-colored stack locations. However, we

still need to be extremely careful about the addresses used in storing to the stack. Like the

program counters, the stack pointers can be corrupted. Because there is only one stack

containing both green and blue values, we need to make sure that we do not store a blue

value at an offset off of a corrupt stack pointer, as that might actually store into a green

stack location or into the heap. The following ill-typed sequence has exactly the behavior

we desire:

add rG spG n; add rB spB n; stG spG rv; stB spB rv

It uses an equivalent address from each computation, so the store will only proceed if

both computations agree on the address. However, both storeinstructions store the same

(potentially corrupt) valuerv. The instructionsst n rv can be thought of as a macro for

this sequence. Accordingly, it adds address-value pair written toM to the sequence of

observable values, just asstB does.

Typing the Stack

Typing program stacks is an active area of research in typed assembly languages [39,

30, 50]. Since stack locations are reused during the life of a program to hold values of

different types, the type system needs to carefully track these changes. If stack locations

may be aliased, tracking these changes soundly becomes difficult. Luckily, we do not

require the ability to alias stack locations in ETALFT, and so we can use a simple stack

typing method.

In ETALFT, a stack is conceptually an ordered list of location labels and type triples.

We extend a number of definitions from TALFT and add two mutually recursive defini-

tions for the stack type itself.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 63

exp kinds κ ::= . . . | κσ

base types b ::= . . . | sptr

reg types t ::= | ns

unlabeled stack σ ::= sbase| ρ | t :: ς

labeled stack ς ::= E : σ

static context Θ ::= ∆;Γ;(Ed,Es);Em;ς

The kinds for expression variables are extended to include akind κσ for the unlabeled

stack type. Stack pointers are given base typesptr and their static expression is used to

refer to the exact location on the stack. The nonsense typens is given to newly allocated

stack locations. A labeled stack typeς consists of a static expressionE that represents

the address on the top of unlabeled stackσ. An unlabeled stack typeσ is either the empty

stacksbase, a stack variableρ or a typet on top of a labeled stackς. Stack variables likeρ

have kindκσ and are used to abstract parts of the caller’s stack from the callee. The stack

type needs to be tracked at each program point, so it is added to contextΘ along with the

existing register file type, queue description, and so on. The snippet below contains an

example of a stack type:

ς = Et : 〈G, int,E〉 :: Et +1 : 〈B, int,E〉 :: Et +2 : ρ

Γ(spG) = 〈G,sptr,Et〉

The stack typeς says that the top location on the stack isEt and that location contains a

green integer. The next location contains a blue integer. The rest of the stack starting at

locationEt +2 is unknown and abstracted into variableρ. In addition, registerspG points

to the top of the stack.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 64

Ψ ` n : b

. . . Ψ ` n : sptr
(addr-stack-t)

Ψ;∆ `Z n : t

. . . Ψ;∆ `Z n : ns
(ns-t)

∆ ` t ≤ t ′

. . . ∆ ` t ≤ ns
(subtp-t-ns)

∆ ` ς ≤ ς′

∆ ` E = E′

∆ ` E : sbase≤ E′ : sbase
(subtp-ς-base)

∆ ` E = E′

∆ ` E : ρ ≤ E′ : ρ
(subtp-ς-var)

∆ ` E = E′ ∆ ` t ≤ t ′ ∆ ` ς ≤ ς′

∆ ` E : (t :: ς) ≤ E′ : (t ′ :: ς′)
(subtp-ς-cons)

∆ ` ς wf

∆ ` E : κint

∆ ` E : sbase wf
(ς- wf -base)

∆(ρ) = κσ ∆ ` E : κint

∆ ` E : ρ wf
(ς- wf -var)

∆ ` E +1 = E′ ∆ ` t wf ∆ ` (E′ : σ′) wf

∆ ` E : (t :: (E′ : σ′) wf
(ς- wf -cons)

Figure 3.4: Modifications to Value Typing, Subtyping, and Well-Formed Judgments.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 65

∆;ς ` E : t

∆ ` Es = E
∆; Es : (t :: ς′) ` E : t

(ς-lookup-top)
∆ ` Es 6= E ∆;ς′ ` E : t

∆; Es : (t :: ς′) ` E : t
(ς-lookup-tail)

∆ ` ς[E 7→ t] = ς′

∆ ` Es = E
∆ ` (Es : (ts :: ς))[E 7→ t] = Es : (t :: ς)

(ς-update-top)

∆ ` Es 6= E ∆ ` ς[E 7→ t] = ς′

∆ ` (Es : (ts :: ς))[E 7→ t] = Es : (ts :: ς′)
(ς-update-tail)

Figure 3.5: Stack Lookup and Update.

Figure 3.4 shows the minor changes required to the value typing, subtyping judg-

ments, and well-formed expression judgments. Any integer can be given the base type

sptr. In other words, dangling pointers into the stack may exist,as long as we do not

dereference them. Any integer can also given the typens. Since values of typens

have no color, neither computation can manipulate them. Instead, all that can be done

is to overwrite the value. The subtyping judgments are extended so that all types are

subtypes ofnsand one stack is a subtype of another if the locations are equivalent and

corresponding locations have types which are subtypes of each other. In order for a stack

type to be well formed, the unabstracted portion of the stackmust describe sequential

locations.

In addition, there are two new judgments for looking up the type of a stack location

and updating the type of a stack location shown in Figure3.5. Judgment∆;ς ` E : t states

that locationE in stack typeς has typet. Judgment∆ ` ς[E 7→ t] = ς′ Says that the result

of updating locationE in stack typeς to contain typet is a new stack typeς′. All stack

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 66

updates are strong updates. In other words, it does not matter what type is currently in a

location when we go to update it.

The instruction typing rules for the four new stack instructions are shown in Fig-

ure 3.6. When allocating or deallocating space on the stack, we require that both stack

pointers and the location on the top of the stack be describedby equivalent expressions.

When allocating space, new locations with the nonsense typensare added to the top of

the stack. When deallocating, the stack must contain at least as many locations as are

being freed. Both instructions update the types of the two stack pointers to refer to the

new top of the stack.

To load from the stack at offsetn, we must be able to look up the type of the location

at that offset. The destination register is updated to contain that type. When storing to

the stack, the two stack pointers must be equivalent, and thestack type is updated with

the type of the value being stored. Notice that the type of thevalue being overwritten is

irrelevant.

The rules for all the other instructions are modified to propagate the stack type as part

of Θ. The rules forjmpB andbrzB are extended to require that the current stack type is a

subtype of the target’s stack type.

In terms of top-level judgments, the major change is a new judgmentΨ `Z M : ς

shown in Figure3.7. The stack typing judgment states that a memoryM can be described

by a stack typeς under a zap tagZ. Unlike the judgment about memory in TALFT, this

judgment is parameterized by a zap tag which is used to call the standard value typing

judgment on each location and its corresponding type.

The machine state type judgment`Z (R,C,M,Q, ir) is updated to divide memoryM

into a stack portionMs and a heap portionMh. The stack is typed withΨ `Z Ms : ς, and

Mh is typed by a new heap typing judgment described next.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 67

Ψ;Θ ` ir ⇒ RT

. . .

Γ(spG) = 〈G,sptr,Eg〉 Γ(spB) = 〈B,sptr,Eb〉
∆ ` Eg = Eb ∆ ` Eg = Et

Γ′ = Γ++[spG 7→ 〈G,sptr,(Eg−n)〉][spB 7→ 〈B,sptr,(Eb−n)〉]
ς′ = (Et−n) : ns:: (Et−(n+1)) : ns:: . . . :: Et : σ

Ψ;(∆;Γ;(Ed,Es);Em;(Et : σ)) ` salloc n ⇒ (∆;Γ′;(Ed,Es);Em;ς′)
(salloc-t)

Γ(spG) = 〈G,sptr,Eg〉 Γ(spB) = 〈B,sptr,Eb〉
∆ ` Eg = Eb ∆ ` Eg = Et

ς = Et : t :: . . . :: Ef : σ ∆ ` Ef = Eg +n
Γ′ = Γ++[spG 7→ 〈G,sptr,(Eg+n)〉][spB 7→ 〈B,sptr,(Eb+n)〉]

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` s f ree n⇒ (∆;Γ′;(Ed,Es);Em;Ef : σ)
(sfree-t)

Γ(spc) = 〈c,sptr,Ec〉 ∆ ` Ec +n = En ∆;ς ` En : 〈c,b,E〉

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` sldc rd n ⇒ (∆;Γ++[rd 7→ 〈c,b,E〉];(Ed,Es);Em;ς)
(sldc-t)

Γ(spG) = 〈G,sptr,Eg〉 Γ(spB) = 〈B,sptr,Eb〉 ∆ ` Eg = Eb

∆ ` Eg+n = En Γ(rv) = 〈c,b,Ev〉 ∆ ` ς[En 7→ 〈c,b,Ev〉] = ς′

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` sst n rv ⇒ (∆;Γ++;(Ed,Es);Em;ς′)
(sst-t)

Figure 3.6: Typing Rules for the New Stack Instructions.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 68

Ψ `Z M : ς

· ` E = ` Dom(M) = {`}

Ψ `Z M : (E : sbase)
(ς-t-base)

· ` (E : t :: ς′) wf · ` E = `

M = {` → n}
·
#M′

Ψ; · `Z n : t Ψ `Z M′ : ς′

Ψ `Z M : (E : t :: ς′)
(ς-t-cons)

Figure 3.7: Stack Typing.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 69

3.2.3 Memory Allocation and Initialization

When designing type systems for assembly languages with dynamic allocation, we have

to be able to separate allocation and initialization. One common approach is to use

initialization flags to track whether a location has been initialized [39]. Newly allocated

locations are flagged with a 0, which is changed to 1 the first time something is written to

the location. Values can only be loaded from initialized locations.

We will use a similar idea, but must make some modifications for this to work in the

context of fault tolerance. The issue occurs because the green and blue computations may

have different views of the same location. The store queue allows a lot of flexibility in

instruction scheduling, including situations where the green computation has initialized

a newly allocated location, but the blue computation has not. The stored value is pending

in the queue, and so a green load, which always checks the queue first, may load from

the location, but a blue load may not. To solve this, ETALFT has three initialization flags

instead of the standard two. The added flag1
2 means that only the green computation has

done the initialization.

New Instruction Syntax and Operational Semantics

To allocate new locations, we add a new instructionmalloc[b] rg rb shown in Figure3.8.

It allocates a new location in the heap portion of memory and puts the address of that

location in a green registerrg and a blue registerrb. In addition, memoryM is extended

with the new location. The instruction is also annotated with the basic typeb that the

location will contain, but this information has no operational effect and is only used by

the type system.

The operational rule currently allocates memory sequentially, but one can imagine

modifying this rule to implement other allocation algorithms. In all likelihood,malloc

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 70

instructions i ::= . . . | malloc[b] rg rb

n = max(Dom(M))+1
R′ = R++[rg 7→ n][rb 7→ n]

(R,C,M,Q,malloc[b] rg rb) −→0 (R′,C,(M,n 7→ 0),Q, ·)
(malloc)

Figure 3.8: New Operation Semantics to Support Dynamic Memory Allocation.

would actually be implemented with a sequence of instructions or a function call with

corresponding behavior.

As in MiniC, we will assume the existence of a garbage collector to handle heap

deallocation.

Typing Memory Allocation

In order to track the initialization state of heap locations, reference types are updated to

contain an initialization flag. As mentioned earlier, 0 means completely uninitialized,

and 1 means initialized, and12 means that only the green computation has performed its

initialization.

initialization f lags ϕ ::= 1 | 1
2 | 0

base types b ::= . . . | b refϕ

There is a subtyping relationship between the different initialization flags. A half ini-

tialized location containing a value of typeb is a subtype of an uninitialized location with

a value of typeb. Similarly, a fully initialized location is a subtype of thecorresponding

half initialized location. Figure3.9 shows the additional rules added to support these

relationships.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 71

Ψ ` n : b

. . .

Ψ ` n : b refϕ ϕ ≤ ϕ′

Ψ ` n : b refϕ′ (addr-subtp-t)

Ψ;∆ `Z n : t

. . .

Ψ;∆ `Z n : t ′ ∆ ` t ′ ≤ t

Ψ;∆ `Z n : t
(val-subtp-t)

ϕ ≤ ϕ′

1≤
1
2
≤ 0 ϕ ≤ ϕ

b≤ b′

. . .

ϕ ≤ ϕ′

b refϕ ≤ b refϕ′ (subtp-b-ref)

Figure 3.9: Additions to Subtyping to Support Reference Initialization.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 72

Figure 3.10 shows the modifications to the instruction typing judgment.When a

new location is allocated to contain a value of typeb, it is given typeb ref0, and a

fresh expression variablex is selected to represent the newly allocated address. The two

destination registers are updated to contain green and bluetype triples with the base type

b and expressionx. The expressionEm that describes memory is updated to mapx to

0. In addition to the new rule for typingmalloc, the typing rules for the existing load

and store instructions are also modified. When the green computation wishes to load a

value, the location must be at least half initialized. For the blue computation, the location

must be fully initialized. The typing rules for the two storeinstructions are modified to

update the initialization flags. When the green computationstores to a location, it uses

the functionϕ ↑ to update the flag. This function changes the uninitialized flag to be

half initialized, but does not affect the other flags. The blue computation modifies the

initialization flag to be fully initialized. In addition, when one of the store instructions

changes the initialization flag on a value, it needs to updatethe type for that location used

by the corresponding computation.

Now that we have initialization flags, we can no longer type ofheap portion of

memory by itself. We also need information about the queue tocheck for consistency

in the initialization states of each location. The new and modified rules are shown in

Figure3.11.

JudgmentΨ;M;Q`Z ` : b refϕ holds for locatioǹ whenQ andM are consistent with

the initialization flagϕ. If the initialization flag is 1, thenM(`) needs to have typeb. If

the initialization flag is1
2, and the zap tag is not green, there must be a pending store to`

in the queue. If the initialization flag is 0, nothing is required ofM or Q.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 73

ϕ ↑

0 ↑ = 1
2

1
2 ↑ = 1

2 1 ↑ = 1

Ψ;Θ ` ir ⇒ RT
. . .

x 6∈ ∆
Γ′ = Γ++[rg 7→ 〈G,b ref0,x〉][rb 7→ 〈B,b ref0,x〉]

E′
m = upd Em x 0

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` malloc[b] rg rb ⇒ (∆,x : κint ;Γ′;(Ed,Es);E′
m;ς)

(malloc-t)

∆ ` Γ(rs) ≤ 〈G,b ref
1
2 ,E′

s〉 E = sel (upd Em (Ed,Es)) E′
s

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` ldG rd rs ⇒ (∆;Γ++[rd 7→ 〈G,b,E〉];(Ed,Es);Em;ς)
(ldG-t)

Γ(rs) = 〈B,b ref1,E′
s〉 E = sel Em E′

s

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` ldB rd rs ⇒ (∆;Γ++[rd 7→ 〈B,b,E〉];(Ed,Es);Em;ς)
(ldB-t)

Γ(rd) = 〈G,b refϕ,E′
d〉 Γ(rs) = 〈G,b,E′

s〉
Γ′ = Γ++ except∀ r whereΓ(r) = 〈cr ,b refϕ,Er〉 and∆ ` Er = E′

d .

Γ′(r) = 〈cr ,b refϕ↑,Er〉

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` stG rd rs ⇒ (∆;Γ′;(E′
d,E

′
s),(Ed,Es);Em;ς)

(stG-t)

∆ ` Γ(rd) ≤ 〈B,b ref
1
2 ,E′′

d〉 Γ(rs) = 〈B,b,E′′
s 〉

∆ ` E′
s = E′′

s ∆ ` E′
d = E′′

d

Γ′ = Γ++ except∀ r whereΓ(r) = 〈cr ,b ref
1
2 ,Er〉 and∆ ` Er = E′

d .

Γ′(r) = 〈cr ,b ref1,Er〉

Ψ;(∆;Γ;(Ed,Es),(E′
d,E

′
s);Em;ς) ` stB rd rs ⇒ (∆;Γ′;(Ed,Es);upd Em E′

d E′
s;ς)

(stB-t)

Figure 3.10: Instruction Typing Rules to Support Dynamic Memory Allocation.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 74

The queue typing judgmentΨ `Z Q : (Ed,Es) in TALFT requires that all addresses in

the queue have typeb ref for someb unless the zap tag is green. In addition in ETALFT,

the base type of these locations must be at least half initialized.

The heap typing judgmentΨ `Z (M,Q) : (Em,(Ed,Es)) requires all locations to be

consistent withM andQ. In addition,(Ed,Es) describesQ, andEm describesM.

Finally, the machine state typing judgment is modified so that it divides memoryM

into the stack portionMs and the heap portionMm and calls the new stack typing judgment

on Ms and the new heap typing judgment onMm andQ. The final judgment is shown in

Figure3.12.

3.2.4 Removal of Color Tags

In TALFT, register values are tagged with the color of the computation to which they

belong. The main use of this color tag is in the relationΣ simZ Σ′. Because each value

is tagged with a color, we can compare two machine states directly without relying on

any extra information. This simplifies the judgments quite abit. However in ETALFT,

we don’t have that luxury. Values on the stack are conceptually colored, but those in the

heap are not. Adding color tags to memory doesn’t make sense for all locations, and

in any case, the colors already appear in the typing information. Instead we change

the simulation relationship to depend on color informationextracted from the typing

information. We go ahead and make this change throughout thelanguage, and remove

the color tags from all values. This also enforces our earlier claim that the color tags in

TALFT were only for convenience.

This change requires removing the color tags from all valuesin the existing rules.

The dynamic semantics only propagated the tags, so their removal has no effect. In the

static semantics, the color tags are duplicated in the typing information, and so again their

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 75

Ψ;M;Q`Z ` : b refϕ

Ψ(`) = b ref1 Ψ ` M(`) : b

Ψ;M;Q`Z ` : b ref1
(init-t)

Ψ(`) = b ref0

Ψ;M;Q`Z ` : b ref0
(uninit-t)

Ψ(`) = b ref
1
2

Z 6= G =⇒ ∃n. (`,n) ∈ Q

Ψ;M;Q`Z ` : b ref
1
2

(halfinit-t)

Ψ `Z Q : (Ed,Es)

. . .

Z 6= G
Ψ `Z (n′1,n

′
2) : (E′

d,E
′
s)

· ` Ed = n1 · ` Es = n2

Ψ ` n1 : b refϕ ϕ ≤ 1
2 Ψ ` n2 : b

Ψ `Z (n1,n2),(n′1,n
′
2) : (Ed,Es),(E′

d,E
′
s)

(Q-t)

Ψ `Z (M,Q) : (Em,(Ed,Es))

∀` ∈ Dom(M). ∃ϕ. Ψ;M;Q`Z ` : b refϕ

[[Em]] = M Ψ `Z Q : (Ed,Es)

Ψ `Z (M,Q) : (Em,(E′
d,E

′
s))

(heap-t)

Figure 3.11: Changes to Memory Typing Judgments.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 76

`Z (R,C,M,Q, ir)

Dom(Ψ) = Dom(C)∪Dom(Mm)

M = Ms

Dom(C)

Mm

Ψ `C
∀c 6= Z. ir 6= · =⇒ C(R(pcc)) = ir
∀c 6= Z. Ψ(R(pcc)) = (∆;Γ;(Ed,Es);Em;ς) → void
∃S. · ` S: ∆
Ψ `Z Ms : S(ς)
Ψ `Z (Mm,Q) : (S(Em),S((Ed,Es))
Ψ `Z R : S(Γ)

`Z (R,C,M,Q, ir)
(Σ-t)

Figure 3.12: Changes to the Machine State Typing Judgment.

removal has no effect. Section3.3.2will discuss how the simulation relation and formal

results are modified.

3.2.5 Other Changes

In addition to the changes above, we added a new move instruction to move the contents

of one register into another register. This instruction is not technically necessary, but is

helpful to have when generating assembly code.

instructions i ::= . . . | mov rd, rs

The TALFT rule for Register File Typing required specifying a type forevery register.

Again, for simplicity of the translation, we drop this requirement. A register fileR has

typeΓ when all types inΓ hold true forR.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 77

Ψ `Z R : Γ

∀a∈ Dom(Γ). Ψ; · `Z R(a) : Γ(a)
· ` Γ(pcG) ≤ 〈G, int,EG〉
· ` Γ(pcB) ≤ 〈B, int,EB〉

· ` EG = EB

Ψ `Z R : Γ
(reg-file-t)

The complete specification of ETALFT is provided as a reference in AppendixC.

Next, we discuss the formal results for these modified rules.

3.3 ETALFT Formal Results

Because ETALFT contains modifications to TALFT, all the formal results need to be

repeated. The results are summarized below, and AppendixD contains proof sketches

of the main lemmas and theorems.

3.3.1 Type Safety

The statements of Progress and Preservation do not change, although many of the cases

must be modified. A number of the lemmas used in these proofs are modified, and there

are also a number of new lemmas for reasoning about the stack and dynamic memory

allocation.

Theorem 5 (Progress)

1. If ` Σ thenΣ −→s
0 Σ′ andΣ′ 6= fault.

2. If `c Σ thenΣ −→s
0 Σ.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 78

Theorem 6 (Preservation)

1. If `Z Σ andΣ −→s
0 Σ′ andΣ′ 6= fault then`Z Σ′.

2. If ` Σ andΣ −→s
1 Σ′ then∃ c. `c Σ′.

3.3.2 Fault Tolerance

Due to the removal of color tags, there are more significant changes needed in the formal

Fault Tolerance results.

Similarity of Machine States

Now that values do not contain color tags, we need to extract the color of values from the

typing information. In order to make as few changes as possible, we divide the judgments

into two phases.

First we extract the color of the value in each register and memory location from the

typing information and to store this information in a mapping K. The range ofK is an

extended color kwhich can either be a colorc, GB, or none. Registers that do not have a

corresponding type inΓ are mapped tonone. Locations in the heap are considered to be

GB, as both the green and blue computations have agreed on theirvalues.

extended color k ::= c | GB | none

coloring K ::= · | a 7→ k | ` 7→ k

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 79

Extracting the color of a typet is simple. Type triples and conditional types clearly

specify the color, and thens type has no color.

extractKt(〈c,b,E〉) = c

extractKt(Ez = 0⇒ 〈c,b,E〉) = c

extractKt(ns) = none

For the register file, those registers given a type byΓ extract the color from that type, and

those registers with no typing information have no color.

extractK(R,Γ) = ∀a∈ R. a∈ Dom(Γ) ? a 7→ extractKt(Γ(a)) : a 7→ none

Similarly for the stack, the color for each location is extracted from the type of that

location.

extractKs(Ms,ς) = ∀` ∈ Dom(Ms). .;ς ` ` : t ⇒ ` 7→ extractKt(t)

All locations in the heap have extended colorGB.

extractKh(Mh) = ∀` ∈ Dom(Mh). ` 7→ GB

The top-level typing judgment̀Z Σ is modified slightly tò Z Σ : K, which generates

the coloring calculated using the typing information in thepremises of the judgment.

Given the coloring information, we modify the TALFT simulation relations. Figure

3.13gives the new judgments. The base judgmentk n1 simZ k n2 is very similar to the

simulation of colored values in TALFT. The main difference is the addition of a rulesim-

val-no-colorthat allows any two values with no color to simulate each other regardless

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 80

k n1 simZ k n2

k n simZ k n
(sim-val)

c n simc c n′
(sim-val-zap)

none n simZ none n′
(sim-val-no-color)

K ` R simZ R′

∀a. K(a) R(a) simZ K(a) R′(a)

K ` R simZ R′
(sim-R)

K ` M simZM′

Dom(M) = Dom(M′)
∀` ∈ Dom(M). K(`) M(`) simZ K(`) M′(`)

K ` M simZ M′
(sim-M)

Q simZ Q′

· simZ ·
(sim-Q-empty)

G n1 simZ G n′1 G n2 simZ G n′2 Q simZ Q′

((n1,n2),Q) simZ ((n′1,n
′
2),Q

′)
(sim-Q)

Σ1 simZ Σ2

` (R,C,M,Q, ir) : K
`Z (R′,C,M′,Q′, ir) : K

K ` R simZ R′

K ` M simZ M′

Q simZ Q′

(R,C,M,Q, ir) simZ (R′,C,M′,Q′, ir)
(sim-Σ)

Figure 3.13: Similarity of Machine States.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 81

of the zap tag. This rule is used when a fault affects a register that has no associated type

in Γ.

The judgment for register files is now parameterized by a coloring which it uses to

determine the color for each register. In addition there is anew rule for memories. Since

the coloring is defined differently for stack and heap locations, two memories simulate

each other when their heap locations are identical and theirstack locations simulate each

other under the zap tag. The simulation relationship for queues is unmodified.

Finally, two machine states simulate each other underZ if the first is well-typed under

the empty zap tag and the second is well-typed underZ. Both typing judgments must

generate the same coloringK, and all elements must simulate each other givenK.

Fault Tolerance Theorem

Using these modified similarity relations, we can state and prove the fault tolerance

theorem for well-typed programs.

The main difference comes from the modified definition of “observable” behavior that

requires the heap to be identical, but allows different values in the stack. We formalize this

with the new relationshipss′
`
' s and s′

`
� s that are used to relate two output sequences

of address-value pairs. Because the faulty computation maystore faulty values into the

stack portion of memory, we can no longer use simple equalityto compare address-value

pairs. The judgment
`
' says that the addresses in the two sequences are equal, and for

all addresses greater than`, the values are also equal. The judgments′
`
� s is similar,

but only requires that the locations in the first sequence area subsequence of those in the

second sequence. In other words, when givenmax(Dom(C)) as`, these judgments check

that the stores committed to the heap are identical and the stores committed to the stack

are to the same locations, though the values may differ.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 82

Theorem 7 (Fault Tolerance)

If ` Σ andΣ n
−→

s
0Σ′ then eitherΣ

(n+1)
−−→

s′

1 Σ′
f

or ∃m≤ (n+1) . Σ m
−−→

s′

1 fault, and

1. For all derivationsΣ
(n+1)
−−→

s′

1 Σ′
f whereΣ′

f 6= fault.

s′
max(Dom(C))

' s and∃ c. Σ′ simc Σ′
f .

2. For all derivationsΣ m
−−→

s′

1 fault wherem≤ (n+1).

s′
max(Dom(C))

� s.

3.4 Translation from MiniC to ETALFT

When designing a sound type system, we need to be careful thatthe restrictions imposed

by the type system are not so stringent as to rule out all interesting programs. This section

gives an algorithm for translating all well-typed MiniC programs into ETALFT. By doing

so, we show that the ETALFT type system is expressive enough to be of interest.

Optimizing compilers generally generate code using a simple translation that may

produce inefficient code, and then they apply optimizationsto this code. Similarly, this

section gives only a naive translation from MiniC to ETALFT, and Section3.6will sketch

the interactions between ETALFT and some common optimizations. The rest of this

chapter gives an overview of the translation. AppendixE provides the complete rules

for the translation and a proof sketch of the Translation Theorem.

3.4.1 Translation Introduction

For simplicity, the translation uses the designated registers pcG, pcB, spG, spB, andgd

and then as many fresh temporary registerst1, t2, . . . as needed. Many of these temporary

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 83

registers can be easily removed by coalescing move instructions. Section3.6 discusses

how to support register allocation if the number of temporary registers is greater than the

number of actual registers.

The translation uses a simplistic calling convention. In order to support fault toler-

ance, all function arguments and return values need to be duplicated. Arguments are

passed on the stack, with the last argument pushed on first. There will be two assembly-

level arguments for each MiniC argument, and the green argument of each pair is always

below the corresponding blue argument on the stack. Below the arguments are the blue

and green copies of the return address. When a function returns, it pops the return address

and all the arguments and pushes two copies of the return value.

On function entry, each function loads all the arguments into temporary registers.

When making a function call, all temporary registers that correspond to local variables

are spilled to the stack before the arguments and return address are pushed. After the

call returns, the registers for the local variables are restored and then the return values are

moved to their destinations.

3.4.2 Translation Details

At a high level, the translation works by passing around a code memoryC and continually

accumulating new instructions onto the end. In addition, many judgments track the

following additional information:

n the number of temporary registers required so far.

V a mapping from MiniC variables x to pairs of registers(rg, rb).

B a mapping from function variables to addresses in code memory.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 84

[[X ` v : τ]] C n V = C′ n′ r r ′ Given a value v, generate code to move
the translation of v into registers r and r′.

[[X ` vs: X]] C n V np = C′ n′ Given a list of values vs to be passed to a
function, generate code to push them onto
the stack in reverse order.

[[F;A;L ` s wf]] f C n V B= C′ n′ Given a statement s in function f ,
generate code for the translation of s.

[[F;A;L ` lds : L′]] C n V = C′ n′ V ′ Given a list of local declarations lds,
generate code to initialize them and
modify the variable map V to contain the
new mappings.

[[F ` f ds: F ′]] C B = C′ B′ n Given a list of function declarations f ds,
generate code for each function and
modify the function mapping B to contain
the starting address for each function.
n is the maximum number of temporary
registers used by any one function.

[[` p wf]] = C n l Given a program p, generate code for
p, the maximum number of registers n
required by p, and the starting address l.

Figure 3.14: Summary of Translation Judgments.

The translation is defined over the typing rules for MiniC. Figure3.14summarizes the

program translation judgments. The eventual goal is to showthat all well-typed MiniC

programs can be translated into well-typed ETALFT programs, so the translation uses

MiniC typing information to generate the corresponding ETALFT typing information.

The assorted type translation judgments are shown in Figure3.15.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 85

[[τ]] = b The translation of MiniC typeτ is ETALFT basic type b.

[[A]] = ς The MiniC arguments A correspond to a stack typeς.

[[A;ς]]V = Γ Given MiniC arguments A and their translation into stack type ς,
calculate the register file typeΓ that results after loading each
argument into its corresponding register.

[[X]]V = Γ Given a variable context X and variable mapping V , generate the
corresponding register file typeΓ.

[[A→ τ;L]]V = Θ Given a function type A→ τ, local variables L, and variable
mapping V , generate the current preconditionΘ.

Figure 3.15: Summary of Type Translation Judgments.

3.4.3 Translation Formal Results

The Translation Theorem states that the result of translating a well-typed programp can

be used to create a well-typed ETALFT machine state. The code memory in this machine

state is just the code memory returned by the translation. Because ETALFT has no true

notion of termination, programs “complete” by jumping to a designated addresslhalt

which contains a short code snippet for an infinite loop. The heap is empty, and the stack

contains two pointers tolhalt. The register file is built by calling the functionbuildR(n)

to generate a blank register withn temporary registers. The two program counters are set

to the start address generated by the translation, and the stack pointers are set to the top

of the stack.

Theorem 8 (Translation)

If [[` p wf]] = C n lstart then ` (R,C,M,(), ·)

where lς = min(Dom(C)−3)

R = buildR(n), pcG 7→ lstart, pcB 7→ lstart, spG 7→ lς, spB 7→ lς, gd 7→ 0

M = lς 7→ lhalt, lς +1 7→ lhalt, lς +1 7→ 0

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 86

Again, the complete translation and corresponding proof sketches are provided in Ap-

pendixE.

3.5 Translation Example

Figure 3.16 shows the result of applying the naive translation to the MiniC example

program from the beginning of this chapter.

Clearly, this translation is not efficient. But again, that is not yet the point. The

generated code is well-typed. Let us walk through the translation of thedouble()

function to get an idea how this works.

We use the type translation[[τ]] (defined in AppendixE.2.1) to generate the type

for the first instruction in the translation of a function. Function double() has type

x : int ref → int, and[[x : int ref → int]] gives us the type below. Though it looks com-

plicated, it is just laying out the calling convention discussed earlier. When entering this

function, the stack should have two copies of the argument and then two copies of the

return address. The rest of the stack is unknown. The stack pointers should point to the

top of the stack, the program counters are equal, and the special destination registergd

must be zero (meaning that no control flow transfers are in progress). When the function

returns, it should leave things in a state satisfyingΘr . In other words, it needs to remove

the return address and arguments from the stack and push two copies of the return value.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 87

// original MiniC program
int double(x:int ref) {
int v = 0;
v = !x;
v = v + v;
x := v;
return 0;

}

int ref y = ref 3;
int result = 0;

result = double(y);
return result;

// infinite loop
50 mov t0 1
51 mov t1 1
52 jmpG t1

53 jmpB t1

// double()
54 sldG 2 t0 // prologue
55 sldB 3 t1

56 mov t2 0 // int v = 0
57 mov t3 0
58 mov t4 t2

59 mov t5 t3

60 ldG t4 t0 // v = !x
61 ldB t5 t1

62 add t4 t4 t4 // v = v + v
63 add t5 t5 t5

64 stG t0 t4 // x := v
65 stB t1 t5

66 mov t6 0 // get ret val
67 mov t7 0
68 sldG 0 t8 // epilogue
69 sldB 1 t9

70 sfree 4
71 salloc 2
72 sst 0 t6

73 sst 1 t7

74 jmpG t8

75 jmpB t9

// main()
76 mov t0 3 // int ref y = ref 3
77 mov t1 3
78 malloc[int] t2 t3

79 stG t2 t0

80 stB t3 t1

81 mov t4 t2

82 mov t5 t3

83 mov t6 0 // int result = 0
84 mov t7 0
85 mov t8 t6

86 mov t9 t7

87 salloc 8 // result = double(y)
88 sst 4 t4 - st local vars/args
89 sst 5 t5

90 sst 6 t8

91 sst 7 t9

92 sst 2 t4 - st args
93 sst 3 t5

94 mov t10 50 - st ret addr
95 sst 0 t10

96 mov t11 50
97 sst 1 t11

98 mov t12 54 - jmp to double()
99 mov t13 54
100 jmpG t12

101 jmpB t13

102 sldG 2 t4 - reload local vars
103 sldB 3 t5

104 sldG 4 t6

105 sldB 5 t7

106 sldG 0 t8 - set result
107 sldB 1 t9

108 sfree 6 - free call space
109 mov t14 0 // get ret val
110 mov t15 0
111 sldG 0 t16 // epilogue
112 sldB 1 t17

113 sfree 2
114 salloc 2
115 sst 0 t14

116 sst 0 t15

117 jmpG t16

118 jmpB t17

Figure 3.16: Example Translation from MiniC to ETALFT.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 88

Ψ(54) = (∆d,Γd,(),αm,ςd) → void
where: ∆d = αp : κint ,αm : κmem,α` : κint ,ασ : κσ,αr : κint ,αx : κint

Γd = pcG 7→ 〈G, int,αp〉, pcB 7→ 〈B, int,αp〉,
spG 7→ 〈G,sptr,α`−4〉,spB 7→ 〈B,sptr,α`−4〉,
gd 7→ 〈G, int,0〉

ςd = α`−4 : 〈G,Θr → void,αr〉 :: α`−3 : 〈B,Θr → void,αr〉

:: α`−2 : 〈G, int ref1,αx〉 :: α`−1 : 〈B, int ref1,αx〉
:: α` : ασ

and: Θr = (∆r ,Γr ,(),α′
m,ςr)

∆r = α′
m : κmem,ατ : κint

Γr = pcG 7→ 〈G, int,αr〉, pcB 7→ 〈B, int,αr〉,
spG 7→ 〈G,sptr,α`−2〉,spB 7→ 〈B,sptr,α`−2〉,
gd 7→ 〈G, int,0〉

ςd = α`−2 : 〈G, int,ατ〉 :: α`−1 : 〈B, int,ατ〉
:: α` : ασ

54 sldG 2 t0

After executing the first stack load, the next instruction has a similar type except that the

type of the destination register used in the load is updated to contain the same type as the

stack slots that the value was loaded from.

Ψ(55) = (∆d,Γd[t0 7→ 〈G, int ref1,αx〉],(),αm,ςd) → void

55 sldB 3 t1

Executing the second load has a similar effect.

Ψ(56) = (∆d,Γd[t0 7→ 〈G, int ref1,αx〉][t1 7→ 〈B, int ref1,αx〉],(),αm,ςd) → void
56 mov t2 0
57 mov t3 0
58 mov t4 t2

59 mov t5 t3

This sequence of move instructions adds typing informationabout the temporary registers

to the register file type.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 89

Ψ(60) = (∆d,Γ60,(),αm,ςd) → void
where: Γ60 = Γd [t0 7→ 〈G, int ref1,αx〉]

[t1 7→ 〈B, int ref1,αx〉]
[t2 7→ 〈G, int,0〉]
[t3 7→ 〈B, int,0〉]
[t4 7→ 〈G, int,0〉]
[t5 7→ 〈B, int,0〉]

60 ldG t4 t0

61 ldB t5 t1

Each of these load instructions loads from some addressαx in memoryαm, so the type of

the loaded values can be described by the static expressionselαm αx.

Ψ(62) = (∆d,Γ62,(),αm,ςd) → void
where: Γ62 = Γ60 [t4 7→ 〈G, int, selαm αx〉]

[t5 7→ 〈B, int, selαm αx〉]

62 add t4 t4 t4

63 add t5 t5 t5

When the value is added to itself, the static expressions aremodified accordingly. At this

point, we know thatt4 andt5 both contain double the value in addressαx, whatever that

value may be.

Ψ(64) = (∆d,Γ64,(),αm,ςd) → void
where: Γ64 = Γ62 [t4 7→ 〈G, int, (selαm αx)+(selαm αx)〉]

[t5 7→ 〈B, int, (selαm αx)+(selαm αx)〉]

64 stG t0 t4

65 stB t1 t5

The green store typing rule will add the pair(αx,(selαm αx)+(selαm αx)) to the queue.

The blue store typing rule removes this pair from the queue description, enforces that it

is equal to the expressions describing the operands, and updates the type of memory.

Ψ(66) = (∆d,Γ64,(),E′
m,ςd) → void

where: E′
m = upd αm αx ((selαm αx)+(selαm αx))

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 90

66 mov t6 0
67 mov t7 0
68 sldG 0 t8

69 sldB 1 t9

Again, these instructions add more temporary register typing information to the register

file type.

Ψ(70) = (∆d,Γ70,(),E′
m,ςd) → void

where: Γ70 = Γ64 [t6 7→ 〈G, int,0〉]
[t7 7→ 〈B, int,0〉]
[t8 7→ 〈G,Θr → void,αr〉]
[t9 7→ 〈B,Θr → void,αr〉]

70 sfree 4
71 salloc 2

Thes f reeinstruction modifies the stack type to beα` : ασ and updates the stack pointer

types appropriately. Then thesallocinstruction pushes two nonsense types onto the stack

type and again updates the stack pointer types.

Ψ(72) = (∆d,Γ72,(),E′
m,ς72) → void

where: ς72 = α`−2 : ns :: α`−1 : ns :: α` : ασ
Γ72 = Γ70 [spG 7→ 〈G,sptr,α`−2〉]

[spB 7→ 〈B,sptr,α`−2〉]

72 sst 0 t6
73 sst 1 t7

The two stack store instructions overwrite the nonsense types in the stack type with the

types of registerst6 andt7.

Ψ(74) = (∆d,Γ70,(),E′
m,ς74) → void

where: ς74 = α`−2 : 〈G, int,0〉 :: α`−1 : 〈B, int,0〉 :: α` : ασ

74 jmpG t8

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 91

The green jump instruction updates the type of the destination registergd. For clarity,

the type of location 75 is fully expanded. The subscriptc appears on the current contexts,

and the subscriptr appears on those describing the type of the return address.

Ψ(75) = (∆c,Γc,(),Emc,ςc) → void
where: ∆c = αp : κint ,αm : κmem,α` : κint ,ασ : κσ,αr : κint ,αx : κint

Γc = pcG 7→ 〈G, int,αp〉, pcB 7→ 〈B, int,αp〉,
spG 7→ 〈G,sptr,α`−2〉, spB 7→ 〈B,sptr,α`−2〉,
gd 7→ 〈G,Θr → void,αr〉,

t0 7→ 〈G, int ref1,αx〉, t1 7→ 〈B, int ref1,αx〉,
t2 7→ 〈G, int,0〉, t3 7→ 〈B, int,0〉,
t4 7→ 〈G, int,(selαm αx)+(selαm αx)〉,
t5 7→ 〈B, int,(selαm αx)+(selαm αx)〉,
t6 7→ 〈G, int,0〉, t7 7→ 〈B, int,0〉,
t8 7→ 〈G,Θr → void,αr〉, t9 7→ 〈B,Θr → void,αr〉,

ςc = α`−2 : 〈G, int,0〉 :: α`−1 : 〈B, int,0〉 :: α` : ασ
Emc = upd αm αx ((selαm αx)+(selαm αx))

and: Θr = (∆r ,Γr ,(),α′
m,ςr)

∆r = α′
m : κmem,ατ : κint

Γr = pcG 7→ 〈G, int,αr〉, pcB 7→ 〈B, int,αr〉,
spG 7→ 〈G,sptr,α`−2〉,spB 7→ 〈B,sptr,α`−2〉,
gd 7→ 〈G, int,0〉

ςd = α`−2 : 〈G, int,ατ〉 :: α`−1 : 〈B, int,ατ〉
:: α` : ασ

75 jmpB t9

Type checking the blue jump instruction is more involved. There are 11 premises which

must be satisfied. The first three require that the destination register and the jump target

both have the same code type and are described by equivalent expressions.

1. Γc(gd) = 〈G,(∆r ;Γr ;();α′
m,ςr) → void,αr〉

2. Γc(rd) = 〈B,(∆r ;Γr ;();α′
m,ςr) → void,αr〉

3. ∆c ` αr = αr

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 92

There exists a substitutionS that gives expressions to substitute in for the expression

variables in∆r . These expressions may contain free variables from∆c. We can construct

such a substitution by inspecting the current typing information and the typing informa-

tion required by the return address.

4. ∃S. ∆c ` S: ∆r (let S= Emc/α′
m, 0/ατ)

The return address has appropriate requirements for the designated registersgd, pcG and

pcB.

5. S(Γr)(gd) = 〈G, int,0〉
6. S(Γr)(pcG) = 〈G, int,αr〉
7. S(Γr)(pcB) = 〈B, int,αr〉

And finally, the current register file type, queue description, memory description, and

stack type are subtypes of the substituted equivalents for the return address.

8. ∆c ` Γc ≤ S(Γr)
9. ∆c ` () = S(())
10. ∆c ` Emc = S(α′

m)
11. ∆c ` ςc ≤ S(ςr)

At this point, we have shown that each instruction in the translation of thedouble()

function results in a type that can be used to type check the next instruction. In other

words, this sequence of instructions can be added to a well-typed code memory, and the

resulting code memory will also be well-typed.

3.6 Type-preserving Optimizations

In this section, we discuss the effects of the type system on various common optimiza-

tions. These are the sorts of optimizations a compiler may apply to a low-level interme-

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 93

diate representation, which is very close to executable code. So by discussing how to

support these optimizations, we are arguing that ETALFT can be used for the final result

of compilation.

Previous work [66, 62, 14] has demonstrated how to implement many common op-

timizations for a non-fault-tolerant typed assembly language. Below, we will sketch

the effects of the additional typing infrastructure for supporting fault tolerance on some

common optimizations. However, a full analysis of the impact of the type system on

various optimizations is beyond the scope of this thesis.

3.6.1 General Considerations

Unfortunately for optimizations, ETALFT works with actual code addresses instead of

symbolic labels. Therefore inserting or removing instructions requires incrementing or

decrementing all uses of subsequent code addresses. Thoughcumbersome, it is possible

to deal with this. Alternatively, one could make minor modifications to ETALFT in order

to use a different code representation more similar to a control flow graph.

One important invariant that must be maintained is the equivalence of related static

expressions. This equivalence is abstracted in the typing rules by the judgement∆ ` E1 =

E2. In the translation in Section3.4, the two computations are exactly the same, and

so syntactic equality is all that is required. Using a more powerful theorem prover to

compare expressions allows flexibility in how an optimization is applied. For example,

assume we have code to multiply a value by two. It is possible to optimize this code to use

addition instead of costly multiplication. If this optimization is only applied to the green

computation, the end result will be two values with type〈G, int,E+E〉 and〈B, int,2∗E〉.

The type checker will allow this as long as the theorem proverused can determine that

E +E = 2∗E.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 94

3.6.2 Removal of Redundant Moves

If a move exists between two registers in well-typed code, then we know the registers

must belong to the same computation. Therefore redundant moves will only occur within

a single computation, and so removing them will continue to maintain the separation

between colored computations.

3.6.3 Register Allocation

The most obvious issue with the ETALFT translation is that it is constantly generating

fresh temporary registers. Removing redundant moves will decrease the number of tem-

porary registers, but for some programs the number of live temporary registers will exceed

the number of actual registers.

We have already shown how to add a stack into ETALFT. Once other optimizations

have been completed, and compiler can determine a graph coloring and modify the code

to spill the selected values to the stack.

In the overly simplistic translation, the stack is only accessed upon entering and

exiting functions and before and after function calls. However, there is nothing in the

typing rules to prevent stack operations at any point in the code, so the implementation

of register allocation should be able to proceed in the normal way.

3.6.4 Common Subexpression Elimination

Common subexpressions elimination is one of the optimizations that caused issues in

the initial implementation of the SWIFT compiler. Naively performing CSE on ETALFT

code would likely cause dependencies between the two computations, resulting in code

that would fail to type check. However, it is simple to solve this by modifying CSE to be

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 95

aware of the color tags. As long as the optimization only applies within a computation of

a single color, there appear to be no additional issues.

3.6.5 Dead Code Elimination

In general, dead code elimination is not affected by the addition of fault tolerance to the

type system.

However, if dead stores are removed, it is imperative that these same modifications

are made to each computation. Otherwise, the queue will be inconsistent, and so the code

will fail to type check. (The same holds for the removal of silent stores, which are stores

that overwrite a value with the same value.)

3.6.6 Constant Folding and Propagation

In constant folding and propagation, the constant has the same type as the expression it

is replacing, and so these optimizations do not cause any issues in ETALFT as long as

the theorem prover can prove the equivalence. It is worth noting that a number of the

instructions only take registers as operands (for exampleadd r1 r2 r3), but adding other

addressing modes for instructions would only require simple changes.

3.6.7 Stack Packing

In a stack packing optimization, the compiler reuses the same stack slot for two values

with disjoint lifetimes. Because ETALFT uses strong updates when storing to the stack,

this can be supported. The information about where a stack pointer points is separate

from the information about what each stack location contains. So even if one register is

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 96

used to perform a strong update on a stack pointer, any other registers that also point to

this location will be aware of the change.

3.6.8 Instruction Scheduling

As with TALFT, ETALFT allows a lot of flexibility in the instruction scheduling. Within

a computation, all the usual reorderings are allowed, giventhe standard constraints about

instruction dependencies.

There is a great deal of flexibility between the green and bluecomputations as well.

Essentially, computations are synchronized at the block level. In other words, the green

computation may not execute past a control flow transfer until the blue computation has

also executed the transfer. Within a block, the main restriction is that each green store

instruction comes before the corresponding blue store instruction. Though our machine

model assumes an infinite length store queue, in reality thiswould be implemented as

a fixed-length buffer. This will require the compiler to limit the number of green store

instructions that can come before the first of the corresponding blue instructions.

The new instructions in ETALFT such asmallocandsstwould likely be implemented

with sequences of instructions, which may cause unanticipated interactions with schedul-

ing. For example, ifsst is implemented usingstG andstB, then it cannot occur while

there is a green store pending in the queue. Previous work on LTAL [16] develops a

standard typed assembly language without macros to avoid interference with scheduling.

Investigating the interaction of equivalent ideas with fault tolerance is left as future work.

CHAPTER 3. ETALFT : GENERATING FAULT-TOLERANT ASSEMBLY CODE 97

3.7 Summary

This chapter has presented ETALFT, a version of TALFT extended with support for stacks

and dynamic memory allocation. We show how to compile a simple imperative source

language into fault-tolerant assembly code. This demonstrates that the restrictions im-

posed by the type system do not affect our ability to express interesting programs. In

addition, we discuss how ETALFT can support common low-level optimizations, thereby

showing that it can be used as the final language in a realisticcompiler.

Chapter 4

TALCF : Reasoning about Control Flow

The previous two chapters focused on ahybrid transient fault solution that included

specialized hardware to help detect faults. Although this type of the solution is extremely

promising, there are many cases in which additional hardware is not available. Fortu-

nately, techniques based only on software can detect a largenumber of faults on off-the-

shelf processors.

Chapter5 covers related work on existing software-only techniques,but the general

methodology is similar to what we have already seen, though the comparisons are per-

formed by additional instructions in software. Doing so sometimes leaves awindow of

vulnerabilityin which faults may not be detected before affecting the observable behavior

of the program.

In particular, this chapter focuses on reasoning about a software solution for detecting

control flow faults, which occur when a transient fault causes control to jump to an

Material in this chapter is joint work with David Walker and has been previously published as [54]
and [53].

98

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 99

unexpected code address. TALFT avoids the issue by using a hardware comparison in

the fetch stage and control-flow instructions to detect suchfaults.

Researchers [47, 60, 10] have developed techniques for detecting many, but not all,

classes of control-flow errors entirely in software. Thoughthese techniques are promis-

ing, they have not been proven sound and many theoretical questions remain. In par-

ticular, is it possible to characterize the effectiveness of these techniquesanalyticallyas

opposed to empirically? In other words, can we prove that such techniques are sound

with respect to an interesting and nontrivial, though incomplete, fault model? One of the

key benefits of such an analysis is that it would guarantee that an important fragment of

the problem has been thoroughly solved and thereby allow researchers to study auxiliary

instrumentation techniques that address the remaining incompleteness. Perhaps more

importantly, a formal fault model and proof of soundness would define an important

hardware/software interface: The software has been provento handle faults that lie within

the model; future hardware designers need only provide mechanisms to catch those faults

that lie outside the model. Such results would show how to shift a substantial portion

of the control-flow checking burden from the hardware to software. This may lead to

simpler hardware designs as well as the opportunity to tradeperformance for reliability

at compile timeas opposed tohardware design time.

This chapter presents TALCF, a type system for reasoning about a software-only

technique for detecting a specific class of control-flow faults. The technique instruments

each basic block with a certain instructions that implementa fault tolerance protocol.

From a technical perspective, the type system introduces a novel way of classifying the

reliability properties of program values and entire machine states, generalizing the earlier

“color systems” used byλzap [73] and TALFT. The type system is also of interest for

the way it uses a collection of abstract types to track the state of the fault tolerance

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 100

protocol. The key technical challenge in reasoning about such a solution is the fact that

after a control-flow fault has occurred, it is impossible to count on almostanystandard

program invariant. So, how can one carry out a proof of type preservation under such

circumstances?

The rest of the chapter is organized as follows. First, Section4.1gives additional intu-

ition about the problem and solution by explaining a simple assembly-language protocol

for detecting control-flow errors. This protocol is a simplified version of the protocols

used by Oh [47] and Reis [60]. Section4.2 begins the more formal work by defining

the syntax and operational semantics of an idealized assembly language that includes

rules to model transient faults. Section4.3 defines the type system that guarantees that

assembly code follows the simple protocol outlined earlierin Section4.1. This type

system, particularly the special value and machine state typing rules, codifies the major

invariants needed to prove the subsequent type safety and strong reliability properties.

Section4.4sketches the major components of the type safety and fault-tolerance proofs.

Section4.5shows that our typed assembly language is sufficiently expressive to translate

basic “while” programs into well-typed, fault-tolerant code. Finally, Section4.6summa-

rizes.

4.1 Informal Overview

When a transient fault causes the actual sequence of controlflow blocks visited by a

program to deviate from the expected sequence, we say a control-flow error has occurred.

In our model, control-flow errors arise in three different ways: (1) there may be a fault

to the target address of a jump instruction; (2) there may be afault to the target address

of a conditional jump instruction; or (3) there may be a faultto the boolean used to

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 101

decide whether to jump or fall through a conditional. Such faults may occur immediately

prior to attempting the control-flow transfer or at any othertime during the computation.

However, whenever a control-flow operation is executed, we assume execution is either

transferred to the beginning of some valid block, or to some invalid block or illegal

instruction. In the latter case, we assume the hardware immediately catches an attempt

to execute the illegal instruction. We do not consider the possibility that a fault causes a

control flow transfer to a legal instruction in the middle of some valid block. We discuss

this limitation in Section4.6.

As in previous chapters, we adhere to theSingle Event Upsetmodel, which states

that only one fault may occur during an execution. However, even though just one fault

occurs, faulty values may be copied, propagated and used in any way an ordinary value

may be used. Hence, a single fault can lead to arbitrarily many corrupted values if not

caught soon after it occurs.

The goal of this work is to develop and prove correct a software protocol that guar-

antees such control-flow errors can never go undetected. Thecentral challenge in this

endeavor is to overcome the problem thatno single value can ever be trusted to be correct

— a transient fault may strike any value in any register. Consequently, as is usual in fault

tolerance, the solution is to avoid relying on any single value by replicating the critical

state and checking replicas against one another. In this case, the critical state is the value

of the program counter. Checking the correctness of a control-flow transfer involves

creating a replica of the intended control-flow destinationand then checking the replica

against the real program counter to detect any difference.

To be more specific, compiled code creates the replica prior to any control-flow

transfer by moving the intended destination into a designated register. We refer to this

register as theintention registerri. This intention register is part of the global “calling

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 102

convention” for fault-tolerant control flow transfers. We fix the register so that all jump

targets know where to find the intended destination, even when there has been a control-

flow fault.

As an example, to jump to addressL2, one might use the following code sequence.

In this code, we leave ellipsis in between instructions to emphasize our system allows

flexible scheduling of instructions — ordinary instructions may be interleaved with the

instructions used to guarantee fault tolerance.

L1: ...; movi ri, L2; ...; movi r2, L2; ...; jmp r2;

Because the intention registerri plays a special role in the protocol for detecting control-

flow errors, we will need to type-check the move instruction that loads this register in a

special way. To designate the move as special, we henceforthwrite it intend L2 rather

thanmovi ri, L2 as in the following example code.

L1: ...; intend L2; ...; movi r2, L2; ...; jmp r2

If the intention register has been set properly prior to all jump instructions, the jump

targets are able to catch control flow errors. To be specific, all jump targets should be

instrumented with the following code.

Lk: movi r2, Lk; ...; sub r2, r2, ri; ...; brnz r2, lrecover; ...

Here, the current block addressLk is loaded into some registerr2. That register is then

compared with the contents ofri and if there is any difference, control is transferred

to lrecover, an address containing recovery code. Once again, since thebranch to the

recovery code plays a special role in the fault-tolerance protocol, we give it the special

syntaxrecovernz r2. Thus, our detection code will henceforth be written as follows.

L2: movi r2, L2; ...; sub r2, r2, ri; ...; recovernz r2; ...

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 103

As an example of how a transient fault might be caught using our protocol, suppose

registerr2 is corrupted just prior to attempting to execute the jump toL2 in block L1.

Upon arrival at some erroneous control flow block, sayL3, the intended destinationL2

remains safely untouched in registerri, though, unnervingly, all other program invariants

may be disrupted. The target code compares the contents ofri (i.e.,L2) with L3, which

it loaded intor2 after arriving at the current block. It detects a differenceand jumps to

the recovery code.

One must also consider what happens if faults strike at different times or in different

places. For instance, the jump target might have been corrupted much earlier than we

suggested above, perhaps just after being initially loadedinto r2, instead of just prior to

the jump. Will that make a difference? In this case, no. Likewise,ri might be corrupted,

either before or after jumping. In this case, we reach the correct destination, but it appears

as though there was a fault becauseri differs from the current block label (assuming the

fault occurs prior to the subtraction). Unable to tell the difference between a fault in the

intention register and a fault in the control-flow transfer itself, we jump to recovery code.

A number of other scenarios must also be analyzed — in order tohave confidence in the

solution, one must do so in a principled, disciplined fashion.

It is important to observe that similar, but subtly different code sequences do not

adequately protect against faults. In particular, optimizations like copy propagation, com-

mon subexpression elimination and some code motion transformations are not always

semantics-preserving in the context of transient faults. For instance, the following simple

change to the way blockL1 was written above leads to a vulnerability.

L1: movi r2, L2(*); ...; movi ri, r2(**); ...; jmp r2

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 104

Here, a single transient fault tor2 anywhere between execution of instructions(*) and

(**) results in an uncaught control-flow fault as both the jump target and the intention

register will simultaneously be incorrect.

Likewise, the code motion transformation illustrated below shifts the move from a

target block into the jumping block and creates a vulnerability.

L1: movi r2, L2; intend L2; movi r3, L2; jmp r2;
Lk: sub r3, r3, ri(***); recovernz r3; ...

Above, a fault tor2 causes a control-flow error, but testingr3 againstri at instruction

(***)will not help detect the fault. The conclusions to draw from these examples are that

the correctness properties of this code are indeed subtle and that verifying fault tolerance

propertiesafter the compiler has completed its suite of performance optimizations may

help detect errors in code generation.

Conditional Branches. The protocol for handling conditional branches is slightlymore

involved than the case for jumps, but follows a similar pattern. We begin by assuming that

the condition for the jump is held in registersr4 andr4’. These two registers must be

independent replicasof one another. In other words, in the absence of faults, theyshould

contain the same boolean value, and moreover, a fault to one should have no impact on

the value of the other. Given this assumption (which will be verified by our type system),

the following code sequence sets up a conditional branch, which may fall through toL2

or may jump toL3. The code uses a conditional branchbrz r4, r3, which jumps to

r3 if r4 is zero and otherwise falls through toL2. It also uses a conditional movecmovz

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 105

r4’, ri, r3’, which moves the contents ofr3’ into ri if r4’ is zero, and otherwise

does nothing.1

L1: ...; movi r3, L3; movi r3’, L3; ...; intend L2;
cmovz r4’, ri, r3’; brz r4, r3;

L2: ...
L3: ...

Again, to indicate the special role ofri and simplify the presentation, we will henceforth

write the conditional movecmovz r4’, ri, r3’ asintendz r4’, r3’. Intuitively,

theintend instruction unconditionally sets the intention register,whereas theintendz

instruction conditionally sets the intention register. The error-detection code in blocks

labeledL2 andL3 is identical to the error-detection code discussed earlierfor jumps, as

it must be.

Summary With just a few, well-thought-through instructions, it is possible to create a

redundant copy of the intended destination of any control flow transfer prior to initiating

the transfer itself. Moreover, at any control-flow target, it is possible to use that redundant

copy to check that control has actually arrived at the properplace. However, as our

examples illustrated, it is also easy to make slight errors in the process. In addition,

because transient faults can occur at so many different places in the protocol and influence

so many different bits of state, one needs a proof to believe such a protocol will work.

Hence, in the following sections, we make the machine’s operational semantics and fault

model precise and develop a sound type system strong enough to verify that the “good”

instruction sequences we have discussed in this section areindeed fault tolerant.

1Many architectures including the IA-32 following the Pentium Pro, the Sparc V-9 and the IA-64 have
conditional moves. If the architecture does not have a a conditional move, a conditional branch and a move
instruction can be used instead, but this branch will not be protected against faults.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 106

colors c ::= G | B | O
integers n ::= . . . | −1 | 0 | 1 | . . .
colored values v ::= c n

code memory C ::= · |C, ` → b

registers r ::= r i | r1 | . . . | rn

register f ile R ::= · | R, r → v

history h ::= `1, . . . , `n

instructions i ::= movi rd v | sub rd rs rs

| intend rt | intendz rz rt

| recovernz rz

blocks b ::= i;b | jmp rt | brz rz rt

state Σ ::= (C,h,R,b)
f inal states F ::= Σ | recover(h) | hwerror(h)

Figure 4.1: Machine State Syntax.

4.2 The Control-Flow Machine

Figure4.1summarizes the syntax of the assembly language and machine states. For clar-

ity and elegance, we will work with a minimal assembly instruction set involving move

(movi), subtraction (sub), jump (jmp) and conditional branch if zero (brz) instructions

as well as the special macrosintend, intendz andrecovernz. Instruction operands

include constant valuesv and registersr. Similar to TALFT, we annotate every value with

a color, although TALCF has three colors: greenG, blueB and orangeO. Again, these

colors have no operational significance, but will be used by the simulation relation. The

only kind of value is an integer. In general, meta-variablen ranges over integers, but when

we wish to emphasize that an integer will be used as an address, we use the meta-variable

`.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 107

Instructions are grouped together in code blocksb. These blocks are always termi-

nated by either a jump or a conditional branch instruction. Code memoryC is a partial

map from addresses to valid code blocksb. Addresses are ordered, and we use the

notation` + 1 to refer to the address of the block following the block at`. If a block

at` ends with a conditional branch, we assume`+1 inhabits the domain ofC — in other

words, conditional branches always have a block to fall through to.

As before, the register fileR is a mapping from registers to the colored values they

contain. The registers include the intention registerr i and a number of general-purpose

registersr1 throughrn. We use the notationR(r) to denote the contents ofr in R. We use

the notationR[r 7→ v] to denote a new register fileR′ created by updatingR so it mapsr

to v. When we wish to refer to the unannotated integern as opposed to the colored value

c n in a registerr in R, we use the notationRval(r). Similarly, Rcol(r) refers to the color

annotating the value inr.

An ordinary abstract machine stateΣ is a tuple containing codeC, historyh, register

file R and code block to be executedb. The historyh is a sequence of labels. It records

the code blocks visited during the current execution. As TALCF has no concept of

memory, we will define “observable behavior” and the sequence of blocks visited. In

addition to ordinary abstract machine states, there are twospecial “final states.” The

staterecover(h) represents a state in which a transient fault has occurred and has been

caught. The labels in historyh were visited during the execution. The statehwerror(h)

represents a state in which a transient fault causes transition to an invalid address.

4.2.1 Dynamic Semantics

We model the dynamic semantics of the assembly language using a small-step operational

semantics. In general, the single-step operational judgments have the formΣ −→k F

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 108

wherek, which is either zero or one, records the number of faults that occur during the

step.

The Fault Model. The most interesting rules in the system are the rules modeling

faults. The primary rule (zap-reg) is familiar and again states that the value in any register

may be corrupted arbitrarily, though its color tag (which has no operational significance)

remains unchanged.

R(r) = c n

(C,h,R,b) −→1 (C,h,R[r 7→ c n′],b
(zap-reg)

The rule above may fire at any time. In particular, it may fire just prior to execution of

a jump (jmp rt) or a branch (brz rz rt), corrupting the jump target in registerrt . Such a

fault models a control-flow error. Of course, it is equally possible that any other register

is corrupted.

For uniformity in our fault model, we also consider errors inthe execution of the

recovernz rz instruction. Recall, this instruction is merely a macro forthe conditional

branchbrz rz `recover. However, sincè recover is a constant, it is unaffected by faults in

registers modeled by thezap-regrule (our other branching instructions take arguments

in registers). To simulate a fault that causes control to jump somewhere other than the

`recoverlabel when therz register contains a non-zero value, we add the following rules.

Rval(rz) 6= 0
(C,h,R,recovernz rz;b) −→1 (C,h,R,C(`))

(zap-recovernz1)

Rval(rz) 6= 0
(C,h,R,recovernz rz;b) −→1 hwerror(h)

(zap-recovernz2)

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 109

Thezap-recovernz1rule expresses the possibility that a fault causes execution to jump to

some random block labeled̀rather than the recovery code block. Thezap-recovernz2

rule expresses the possibility that a fault causes control to jump to an illegal address.

Attempted execution of code at this address results in immediate transition to the final

statehwerror(h), whereh represents the sequence of blocks visited not including the

illegal address.

Other Operational Rules. All other operational rules are presented in Figure4.2. The

majority of these rules are quite unsurprising. For instance, themovirule implements the

move by updating the register file. Notice that the index on the arrow is “0” indicating no

fault occurs during this transition. Naturally, theintendrule is similar tomoviasintend

is just a macro for a move intor i.

Skipping to the bottom of the figure, it is important to noticethere are two rules for

expressing the semantics of ajmp rt instruction. The first rulejmp fires wheneverrt

contains the address of a valid block. Of course, due to a fault earlier in execution, the

address inrt may not be the intended destination for this jump. In addition to transferring

control to the new block, this instruction does some bookkeeping. In particular, it extends

the current history with the destination address and it changes the color ofr i to be orange.

The latter effect facilitates the proof of correctness and will be explained in detail in

Section4.3. The second rulejmp-hw-errorfires wheneverrt doesnotcontain the address

of a valid block. In this case, there is an attempt to transfercontrol to an illegal address,

which is caught by the hardware. The rules for conditional branches follow a similar

pattern to those for the unconditional jumps.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 110

(C,h,R,movi rd v;b) −→0 (C,h,R[rd 7→ v],b)
(movi)

v′ = Rcol(ra) (Rval(ra)−Rval(rb))

(C,h,R,sub rd ra rb;b) −→0 (C,h,R[rd 7→ v′],b)
(sub)

(C,h,R,intend rt ;b) −→0 (C,h,R[r i 7→ R(rt)],b)
(intend)

Rval(rz) = 0
(C,h,R,intendz rz rt ;b) −→0 (C,h,R[r i 7→ R(rt)],b)

(intendz-set)

Rval(rz) 6= 0
(C,h,R,intendz rz rt ;b) −→0 (C,h,R,b)

(intendz-unset)

Rval(rz) = 0
(C,h,R,recovernz rz;b) −→0 (C,h,R,b)

(recovernz-ok)

Rval(rz) 6= 0
(C,h,R,recovernz rz;b) −→0 recover(h)

(recovernz-halt)

Rval(rz) = 0 Rval(rt) ∈ Dom(C)

(C,h,R,brz rz rt) −→0 (C,(h,Rval(rt)),R[r i 7→ O Rval(r i)],C(Rval(rt)))
(brz-taken)

Rval(rz) 6= 0 `+1∈ Dom(C)

(C,h,R,brz rz rt) −→0 (C,(h, `+1),R[r i 7→ O Rval(r i)],C(`+1))
(brz-untaken)

Rval(rz) = 0 Rval(rt) 6∈ Dom(C)

(C,h,R,brz rz rt) −→0 hwerror(h)
(brz-hw-error)

Rval(rt) ∈ Dom(C)

(C,h,R,jmp rt) −→0 (C,(h,Rval(rt)),R[r i 7→ O Rval(r i)],C(Rval(rt)))
(jmp)

Rval(rt) 6∈ Dom(C)

(C,h,R,jmp rt) −→0 hwerror(h)
(jmp-hw-error)

Figure 4.2: Operational Semantics.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 111

4.3 Typing

The design of the type system is based on three main concepts:

• Classifying the reliability properties of values.

• Using abstract types to make sure that the fault tolerance protocol proceeds in the

correct order, with no steps omitted or inappropriate stepsinserted.

• Equivalence checking to ensure that redundant values act asproper backups to the

original.

The following paragraphs explain the main intuitions behind each concept. Later subsec-

tions will give precise details.

Classifying the Reliability Properties of Values. Because faults occur completely

unpredictably and at run time, it is not possible for the typesystem to know which values

have incurred faults or to track the propagation of presumedfaulty values precisely. It

is not possible to know exactly values may or may not be trusted. The type system will

have to approximate these properties somehow. It does so by assigning each value to one

of several compile-time “groups” and ensuring that each member of a group has related

reliability properties. As a mnemonic, each group has an associated colorc, which may

be eithergreen, blueor orange. This is a generalized version of the color scheme used

by TALFT.

As we saw in Section4.1, the protocol for detecting faults in software involves

keeping redundant copies of the values used in control flow transfers and using these

to check for correct control flow. We will refer to the main computation as thegreen

computation, and the redundant copies as theblue (or “backup”) computation. Most

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 112

values either belong to the green group or to the blue group. As in TALFT, these two

groups have the property that they areredundantand independent. In other words, a

fault in a green value can never percolate to a blue value and vice versa. Consequently,

when corresponding green and blue values are compared at least one of them must be

correct, even when a fault has occurred. This mutual independence property is ensured

by a series of simple checks in the type system that guaranteethat green values are not

used to construct blue values and vice versa.

But what if a control-flow faulthasoccurred? In that case, almost all program invari-

ants are invalidated, including any properties of either blue or green values. Fortunately,

though, the defining characteristic oforangevalues is preservation of their properties in

just this situation.

There are two general mechanisms by which one can guarantee orange values main-

tain their expected properties in the face of a control-flow fault. The first mechanism is

to ensure that the orange value in question is not live acrossthe control-flow transfer: If

the value has been constructed in the current block and does not depend upon values in

previous blocks, a control-flow error will not influence its properties. This first mecha-

nism is used in the checking code at the beginning of each program block. In particular,

the operation that moves a label into a register at the beginning of a block may label its

results orange:

Lk: movi r2, Lk; // r2 is orange

...;

sub r2, r2, ri;

...;

recovernz r2;

...

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 113

The second mechanism involves ensuring that every possiblecontrol-flow transfer main-

tains the invariant in question. If the invariant is true acrosseverycontrol-flow transfer,

then it is true no matter where control winds up. This second mechanism is used to

classify the contents ofr i as orange across every control-flow transfer. Just as the type

system isolates green values from blue and blue from green, orange is also isolated from

the other two. Again, the purpose is to avoid having a fault inone color influence the

others.

Although values are classified using colors, we again use theidea of zap tagsto

classify machine states. Intuitively, each zap tag specifies which colors may no longer be

trusted. For example, if zap tagZ is empty (written “·”), then there have been no faults

during the computation, and all values, no matter what theircolor, satisfy the standard

invariants associated with their compile-time type. On theother hand, ifZ is a colorc,

then there has been a fault to a value coloredc and, moreover, the corruption may have

spread to any other value coloredc. Consequently, values coloredc will not necessarily

satisfy any particular properties associated with their compile-time type.

The final zap tagCF classifies machine states after a control-flow error has occurred.

In this case, control may have transferred somewhere totally unexpected, and so we know

nothing about greenor blue values. Fortunately, though, the properties of orangevalues

remain valid.

Figure4.3 summarizes the properties that hold under each zap tag whilein block `.

We say a value istrustedif it satisfies standard canonical forms properties (e.g.,a value

with code type is actually a pointer to valid code). We say a value isuntrustedwhen we

cannot guarantee standard canonical forms properties hold.

We say a zap tagZ is a subtype of anotherZ′, written Z ≤ Z′, when the values in

machine states classified byZ are more trusted than the values in machine states classified

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 114

Zap Tag G values B values O values ` correct
· trusted trusted trusted yes
G untrusted trusted trusted yes
B trusted untrusted trusted yes
O trusted trusted untrusted yes

CF untrusted untrusted trusted no

Figure 4.3: Properties of colored values and zap tags.

by Z′. Hence the empty zap tag is a subtype of all other zap tags, andbothB andG zap

tags are a supertype ofCF. We use this relationship in the Preservation Theorem. Well-

typed states will remain well-typed, although the zap tag may escalate to a subtype. For

example, a program may start out well-typed under the empty zap tag. After a fault affects

a green value, the program is well-typed under theG zap tag. If a corrupt green value

is eventually used in a control flow transfer, then the program becomes well-typed under

theCF zap tag. Each time the zap tag changes, more values become untrusted.

Typing Protocol Stages. The instructions in each block can be thought of as being

divided into three distinct stages – thechecking code, theblock body, and theexit code.

Each of these stages has its own distinct invariants. The type of intention registerr i

encodes the current stage and ensures that the stages occur in the correct order. It also

guarantees no part of the protocol can be omitted or any inappropriate instruction added.

These stages may be summarized as follows.

1. The checking code compares the intended target with the current location to deter-

mine if there has been a control flow fault. In this region,r i must be colored orange

and have basic typecheck.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 115

L1: movi r1, L1;
...
sub r1, r1, ri;
...
recovernz r1;























checking code

.

.

.







block body

intend L2;
...
movi r2, L2;
...
jmp r2;























exit code

Figure 4.4: Example: Protocol Stages.

2. In the block body, we already know the control flow correctly transferred to this

block. At the end of this sequence, there is some green register that holds the

target label for the next control flow transfer and some blue register that holds the

duplicate copy of this label. In the absence of faults, thesetwo values are equal. In

this region,r i must have basic typeok.

3. The exit code sequence sets the intended target and transfers control to the new

block. In the exit code sequence,r i is colored blue and has typego when an

intention has been set, and typegozwhen a conditional intention has been set. As

we saw in Section4.2.1, r i is recolored orange during the execution of the control

flow transfer.

For example, consider the example code sequences from Section 4.1 shown in Fig-

ure 4.4. On entry, each block first checks that control has reached this block correctly,

and sets its intention before transferring control to another block.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 116

Static Expressions
exp kinds κ ::= κint | κhist

exp contexts ∆ ::= · | ∆,x : κ
exps E ::= x | n | E−E | E?E : E
substitutions S ::= · | S,E/x

Types
stage description ρ ::= check| ok | go | goz
basic types τ ::= int | ρ | ∀[∆](Γ,σ)
value types t ::= 〈c,τ,E〉
type option τ opt ::= τ | undef

Context Typing
heap typing Ψ ::= · | Ψ, ` → τ
reg f ile types Γ ::= · | Γ, r → t
history typing σ ::= ε | x | σ◦E

zap tags Z ::= · | c | CF

Figure 4.5: Typing Syntax.

Testing Value Equivalence. There are many places in the fault tolerance protocol where

we require a blue value to be an independent and redundant copy of a green value. To

ensure that blue and green values are equal in the absence of faults, we use the same

technique using static expressions as in previous chapters, though the language of static

expressions is different.

Now that we have given the intuition behind the type system design, we will move on

to the technical details. The syntax for the type system is presented in Figure4.5, and the

next few subsections explain the elements and the corresponding judgments in detail.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 117

4.3.1 Value Typing

The type of a value is a triple〈c,τ,E〉. The colorc is assigned according to the intuitions

expressed in the previous subsection. A basic typeτ is either an integer, a code type, or a

special type that indicates the state of the fault toleranceprotocol.

The third componentE is a static expression that describes the value in more detail.

These expressions are used to require that blue and green computations compute identical

results in the absence of faults. In TALCF, expressions include variablesx, integersn,

subtractionE1−E2 and conditional expressionsE1?E2 : E3 which equalE2 whenE1 is

non-zero andE3 whenE1 is zero.

Expression judgments are shown in Figures4.6 and4.7. The kinding judgment∆ `

E : κ holds when all the free variables inE are contained in∆. ExpressionE has kindκint

when it describes an integer and kindκhist when it describes a history typing. Expression

variablesx are the only expressions that can have typeκhist. Judgments∆ ` σ wf, ∆ `

Γ wf, and∆ ` τ wf hold when all expressions used in these constructs are well-kinded.

The judgment∆ ` S : ∆′ holds whenSprovides substitutions for all variables in∆′, and

the substituted expressions are well-formed in∆.

The function[[E]] supplies the denotation of the closed static expressionE as an

integer. The judgments∆ ` E1 = E2 and∆ ` E1 6= E2 hold when the relation holds for

all substitutions of the variables in∆. ∆ ` σ1 = σ2 simply extends this relationship to all

expressions in the two sequences.

Value Typing Judgment. The value typing judgment has the form∆;Ψ `Z v : t and is

shown in Figure4.8. The context∆ contains free expression variables, and the heap type

Ψ maps integer addresses to basic types. The zap tagZ characterizes the current state of

the machine as explained earlier.Z is always the empty tag when a user checks a program

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 118

∆ ` E : κ

x∈ Dom(∆)

∆ ` x : ∆(x)
(wf-var)

∆ ` E1 : κint ∆ ` E2 : κint

∆ ` E1−E2 : κint
(wf-sub)

∆ ` n : κint
(wf-int)

∆ ` E1 : κint ∆ ` E2 : κ ∆ ` E3 : κ
∆ ` E1 ?E2 : E3 : κ (wf-ifexp)

∆ ` σ wf

∆ ` ε wf
(wf-σ-ε) ∆ ` x : κhist

∆ ` x wf
(wf-σ-var)

∆ ` σ wf ∆ ` E : κint

∆ ` σ◦E wf
(wf-σ)

∆ ` Γ wf
∀r. Γ(r) = 〈c,τ,E〉 ∧ ∆ ` τ wf ∧ ∆ ` E : κint

∆ ` Γ wf
(wf-R)

∆ ` τ wf

∆ ` int wf
(wf-int) ∆ ` ρ wf

(wf-ρ)

(∆∪∆′) ` Γ′ wf (∆∪∆′) ` σ′ wf

∆ ` ∀[∆′](Γ′,σ′) wf
(wf-∀[∆′](Γ′,σ′))

∆ ` S: ∆′

∆ ` · : ·
(subst-emp-t)

∆ ` S′ : ∆′′ ∆ ` E : κ x /∈ (∆∪∆′′)

∆ ` S′,E/x : (∆′′,x : κ)
(subst-t)

Figure 4.6: Static Expression Judgments, Part 1.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 119

[[E]]

[[n]] = n
[[E1−E2]] = [[E1]]− [[E2]]
[[Eb ?Et : Ef]] = i f [[Eb]] then[[Et]] else[[Ef]]

∆ ` E = E

∆ ` E1 : κint ∆ ` E2 : κint ∀S. · ` S: ∆ =⇒ [[S(E1)]] = [[S(E2)]]

∆ ` E1 = E2
(E-eq)

∆ ` E1 : κint ∆ ` E2 : κint ∀S. · ` S: ∆ =⇒ [[S(E1)]] 6= [[S(E2)]]

∆ ` E1 6= E2
(E-neq)

∆ ` σ = σ

∆ ` ε = ε (ε-eq) ∆ ` x = x
(σ-var)

∆ ` E1 = E2 ∆ ` σ1 = σ2

∆ ` σ1◦E1 = σ2◦E2
(σ-eq)

Figure 4.7: Static Expression Judgments, Part 2.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 120

Ψ ` n : τ

Ψ ` n : int
(int-t) Ψ ` n : Ψ(n)

(address-t)
Ψ ` n : ρ (ρ-t)

∆;Ψ `Z v : t

Ψ ` n : τ ∆ ` E = n
∆;Ψ `Z c n : 〈c,τ,E〉

(val-t)

∆ ` E : κint

∆;Ψ `c c n : 〈c,τ,E〉
(val-zap-c-t)

∆ ` E : κint c′ = B or c′ = G

∆;Ψ `CF c n : 〈c′,τ,E〉
(val-zap-CF-t)

∆ ` t ≤ t ′

∆ ` E1 = E2

∆ ` 〈c,τ,E1〉 ≤ 〈c,τ,E2〉
(subtp-reflex)

∆ ` E1 = E2

∆ ` 〈c,τ,E1〉 ≤ 〈c, int,E2〉
(subtp-int)

∆ ` Γ ≤ Γ′

∀r. Γ1(r) ≤ Γ2(r)
∆ ` Γ1 ≤ Γ2

(Γ-subtp)

Figure 4.8: Value Typing Judgment and Subtyping Judgment.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 121

at compile time. It only takes on other values at run time for the purposes of the proof of

type preservation.

The main value typing judgment depends upon an auxiliary judgment with the form

Ψ ` n : τ. This auxiliary judgment allows integern to be given either a basicint type,

a stage description typeρ, or a code typeΨ(n). If E is equal ton andΨ ` n : τ, then

c n can always be given the type〈c,τ,E〉. However, if the zap tagZ is a colorc, then

all valuesc n can also be typed using any basic type and any well-formed expression —

such a general rule reflects the fact that we can make no guarantees about such values.

When the zap tag isCF, thenanygreen and blue value can be givenany type, including

giving green values blue types and vice versa. In other words, as mentioned earlier, when

there has been a control-flow fault, we can make no assumptions about either green or

blue values.

Value Subtyping. There is also a subtyping relationship∆ ` t ≤ t ′ shown in Figure

4.8. This judgment allows type〈c,τ,E〉 to be subtype of〈c, int,E′〉 whenever∆ `E = E′.

Register File subtyping is a basic extension of value subtyping that requires every register

in the first register file type to be a subtype of the corresponding register in the second.

The subtyping judgment is used to type check control flow transfers.

4.3.2 Instruction Typing

Figure4.9 presents the instruction typing judgment, which has the form ∆;Ψ;Γ ` i : Γ′.

As before,∆ contains free expression variables andΨ types heap addresses.Γ acts as

the precondition for the instruction, mapping registers totheir corresponding types prior

to execution of the instruction.Γ′ acts as the postcondition for the instruction, mapping

registers to types guaranteed after execution of the instruction.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 122

∆;Ψ;Γ ` i : Γ′

rd 6= r i

∆;Ψ;Γ ` movi rd c n : Γ[rd 7→ 〈c, int,n〉]
(movi-t)

rd 6= r i Γ(ra) = 〈c, int,Ea〉 Γ(rb) = 〈c, int,Eb〉

∆;Ψ;Γ ` sub rd ra rb : Γ[rd 7→ 〈c, int,Ea−Eb〉]
(sub-t)

Γ(r i) = 〈ci ,ok,Ei〉 Γ(rt) = 〈B,∀[∆t](Γt ,σt),Et〉

∆;Ψ;Γ ` intend rt : Γ[r i 7→ 〈B,go,Et〉]
(intend-t)

Γ(r i) = 〈B,go,Ei〉 Γ(rt) = 〈B,∀[∆t](Γt,σt),Et〉
Γ(rz) = 〈B, int,Ez〉 t ′ = 〈B,goz,Ez?Ei : Et〉

∆;Ψ;Γ;` intendz rz rt : Γ[r i 7→ t ′]
(intendz-t)

Figure 4.9: Instruction Typing Judgment.

The simplest instruction to type check is themovi rd c n instruction. It merely updates

the type ofrd to be〈c, int,n〉. The subtraction instructionsub rd ra rb requires that the

values being subtracted are integers. Notice it also requires the integer arguments have

the same color as the result – this restriction prevents faults in values with one color from

influencing another. These two instructions place no restrictions on the type ofr i, so they

can occur during any stage of a block.

The unconditional intention instructionintend rt requires thatr i has basic typeok.

This restriction guarantees any new intend will occur afterthe checking code has been

completed. Intentions are part of the blue computation, so the register that is used to set

the intention must contain a blue value with code type. The type ofr i is updated to reflect

the new static expression and the new stagego.

The conditional intention instructionintendz rz rt is similar, although it must occur

after an unconditional intention. In other words, to set theintention for a conditional

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 123

branch, first useintend to setr i to contain the address of the fall through block, and

then conditionally set it to contain the branch target. The resulting type ofr i has basic

type goz and a conditional expression guarded by the expressionEz describingrz. If

Ez is nonzero, thenr i will be described byEi, which describes the fall through branch.

Otherwise, it is described byEt , which describes the branch target.

Despite the fact thatrecovernz is syntactically an instruction, it is type-checked

using the block typing judgment because it affects the set offree expression variables.

4.3.3 Block Typing

Figure4.10presents the block typing judgment, which has the form∆;Ψ;Γ;σ;Ei;τ opt`

b. In addition to∆, Ψ, andΓ, the block typing judgment is parameterized by a sequence

σ, an expressionEi , and a type optionτ opt.

The sequenceσ contains a list of expressions that describe the locations in the current

history h. While typing a block at locatioǹ, σ has the formxh ◦ ` meaning that the

program has already visited some unknown sequence of locations (xh) leading up to

this point and that the label of the current block is`. The expressionEi describes the

intended target when the transfer occurred to the current label `. If control flow correctly

transferred tò, then∆ ` Ei = `. The option typeτ opt contains the type of the label`+1

if such a label exists. It is used when a branch falls through to the subsequent block to

determine the type of that block.

The first rule,sequence-t, is used when the first instruction in a block is one of the

basic instructions described previously. Descriptions ofthe other rules follow.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 124

∆;Ψ;Γ;σ;Ei;τ opt` b

∆;Ψ;Γ ` i : Γ′ ∆;Ψ;Γ′;σ;Ei;τ opt` b
∆;Ψ;Γ;σ;Ei;τ opt` i;b

(sequence-t)

Γ(r i) = 〈O,check,xi〉
Γ(rz) = 〈O, int,Ez〉
∆,x : κint ` Ez = E`−xi

∆ ` Γ/r i/rz wf ∆ ` σ wf ∆ ` E` : κint

Γ′ = Γ[rz 7→ 〈O, int,0〉][r i 7→ 〈B,ok,E`〉]
∆;Ψ;Γ′;σ◦E`;E`;τ opt` b

(∆,x : κint);Ψ;Γ;σ◦E`;xi ;τ opt` recovernz rz; b
(recovernz-t)

Γ(rz) = 〈O, int,Ez〉 · ` Ez = Ei −E`

Γ(r i) = 〈O,check,Ei〉 · ` Ei = E`

·;Ψ;Γ[r i 7→ 〈O,ok,Ei〉];σ◦E`;Ei ;τ opt` b

.;Ψ;Γ;σ◦E`;Ei;τ opt` recovernz rz; b
(recovernz-eq-t)

Γ(rz) = 〈O, int,Ez〉 · ` Ez = Ei −E`

Γ(r i) = 〈O,check,Ei〉 · ` Ei 6= E`

.;Ψ;Γ;σ◦E`;Ei ;τ opt` recovernz rz; b
(recovernz-neq-t)

Γ(r i) = 〈B,goz,E′
z?E′

f : E′
t 〉 ∆ ` E′

f = E` +1
Γ(rz) = 〈G, int,Ez〉 ∆ ` Ez = E′

z
Γ(rt) = 〈G,∀[∆t](Γt,σt),Et〉 ∆ ` Et = E′

t
∆ ` Γ[r i 7→ 〈O,check,E′

t 〉] ≤ St(Γt) ∃St . ∆ ` St : ∆t

∆ ` Γ[r i 7→ 〈O,check,E′
f 〉] ≤ Sf (Γ f) ∃Sf . ∆ ` Sf : ∆ f

∆ ` σ◦E` ◦E′
t = St(σt) ∆ ` σ◦E` ◦E′

f = Sf (σ f)

∆;Ψ;Γ;σ◦E`;Ei;∀[∆ f](Γ f ,σ f) ` brz rz rt
(brz-t)

Γ(r i) = 〈B,go,E′
t 〉 Γ(rt) = 〈G,∀[∆t](Γt,σt),Et〉

∆ ` Et = E′
t ∃St . ∆ ` St : ∆t

∆ ` Γ[r i 7→ 〈O,check,E′
t 〉] ≤ St(Γt) ∆ ` σ◦E` ◦Et = St(σt)

∆;Ψ;Γ;σ◦E`;Ei; t ` jmp rt
(jmp-t)

Figure 4.10: Block Typing Judgment.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 125

Recovery. There are three distinct rules for checkingrecovernz rz. All of them require

the instruction to occur in the first stage of the block whenr i contains an orange value

with basic typecheck. The operand registerrz compares this value to the current label.

The first rulerecovernz-tapplies whenr i is described by variablexi . This is the rule

used by a programmer to check correctness of their program atcompile time. Control

only proceeds past this point in the block ifxi is equal to the expressionE`, which

describes the current location, so the remainder of the block is typed by substitutingE` for

xi . The types ofr i andrz are updated to reflect the deletion ofxi . Judgment∆ ` Γ/r i/rz wf

and∆ ` σ wf hold when all variables used in registers other thanr i andrz as well as the

expressions inσ are all contained in∆. Because none of these pieces of state containxi ,

they do not need to be modified.

The other two rulesrecovernz-eq-tand recovernz-neq-tare needed to carry out the

proof of type preservation (particularly the substitutionlemma), but would never be

used to type check programs prior to execution. In these situations,xi has already been

replaced with a closed expressionEi that describes the intention register at block entry.

Here, it is evident that either· ` Ei = E` or not, so there is one typing rule for each

situation. The rulerecovernz-neq-tdoes not place any requirements on the remainder of

the block since control does not proceed past this point.

Control Flow Transfers. In order to verify unexpected transfers from the end of one

block to the beginning of any other, code blocks must have thesame basic precondition.

To be specific, each block must expect that the intention register r i contains an orange

value with basic typecheckthat is described by a variablexi . This variable does not

occur anywhere else in the function precondition. This condition entails every target

block can accept any orange value inr i.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 126

The rulejmp-t requires thatr i has type〈B,go,E′
t 〉 specifying that the intention must

already have been set before the jump. Also, the current jumptarget has a code type and

is described by an expressionEt that is equal toE′
t . This enforces that in the absence of

faults, the duplicate target is equal to the target.

The target label precondition contains a set of expression variables∆t and requires a

register file described byΓt and a history described byσt . There is some substitutionSt

for the variables in∆t so that the current register file type and sequence are subtypes of

those required by the target.

Thejmp rt andbrz rz rt instructions recolor the blue intention register to be orange

when control is transferred to a new block. At first, this seems to contradict the rule

that faults to a value of one color should never corrupt values of other colors. However,

because the target block does not place any restrictions on the expression describingr i ,

the variablexi that describes the value can be instantiated with the value itself. Because

of this, a blue value that is not trusted can become a trusted orange value during a control

flow transfer, continuing to leave only the blue values untrusted.

The rulebrz-t is similar, but adds in the conditional registerrz and specifies both the

fall through and the branch cases.

4.3.4 Machine State Typing

Code Memory Typing. The judgment̀ C : Ψ describes the invariants for code mem-

ory. As described previously, all blocks must have the same basic precondition. The

registerr i is described by the type〈O,check,xi〉. The other registers are colored either

blue or green, and their static expressions do not contain the variablexi . If a label` has

type∀[∆](Γ,xh◦ `), then code at that label must be well-typed givenΨ, ∆, Γ, xh ◦ `, the

intention expressionxi , and the fall-through label typeΨ(`+1).

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 127

`C : Ψ

∀` ∈ Dom(C)∪Dom(Ψ) .
Ψ(`) = ∀[∆](Γ,xh◦ `)
∆ = ∆′, xi : κint , xh : κhist

Γ = Γ′, r i 7→ 〈O,check,xi〉
∀r ′ ∈ Dom(Γ′) . Γ′(r ′) 6= 〈O,b′,E′〉
∆′ ` Ψ(`+1) wf ∆′ ` Γ′ wf
∆;Ψ;Γ;xh◦ `;xi;Ψ(`+1) `C(`)

`C : Ψ (C-t)

Ψ ` R : Γ

∀r. ·;Ψ `Z R(r) : Γ(r)

Ψ `Z R : Γ
(R-t)

` h : σ

` () : ε
(h-empty-t) ` h : σ · ` E = n

` (h,n) : σ◦E
(h-app-t)

`Z (C,h,R,b)

`C : Ψ
Ψ `Z R : Γ
` (h, `) : σ
(Z = CF) ? (· ` Ei 6= `) : (· ` Ei = `)
Γ(r i) 6= 〈O,check,Ei〉 =⇒ . ` Ei = `
·;Ψ;Γ;σ;Ei;Ψ(`+1) ` b

`Z (C,(h, `),R,b)
(Σ-t)

Figure 4.11: Machine State Typing.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 128

Register File Typing. The judgmentΨ `Z R: Γ states that register fileRhas typeΓ un-

der zap tagZ given heap typingΨ. It holds when each register inRhas the corresponding

type inΓ underZ. Again, values with colors that are affected byZ are not trusted to have

their given types.

History Typing. A historyh is described by sequenceσ when each location is equal to

the corresponding expression.

Machine State Typing. A machine stateΣ is well-typed under zap tagZ when each

of its elements is well-typed, and two additional invariants hold. (1) IfZ is CF then the

current locatioǹ is not equal to the intended locationEi . Otherwise, ifZ is notCF, then

these two are equal. (2) If the current blockb has proceeded past the checking stage,

then it must be the case that` is equal toEi. These two invariants together imply it is not

possible for code past the checking stage of a block to be well-typed under theCF zap

tag. Consequently, a proof of type preservation will imply that any control-flow error will

be caught in the checking stage of the next block.

4.4 Formal Results

We have proven a number of properties of our type system including variants of the

standard Progress, Preservation and Type Safety theorems.The statement of the Progress

Theorem is standard. The statement of the Preservation Lemma relies on the subtyping

relationship between zap tags. As the program executes, it remains well-typed, although

the zap tag used to type machine states may elevate to a supertype. In other words, the

program may start out well-typed under the empty zap tag, become well-typed under a

colored zap tag after a fault, and then become well typed under CF if a control-flow fault

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 129

occurs. Our most important result is a Fault Tolerance theorem, which we sketch briefly

below. More detailed proof sketches appear in AppendixF.

In order to explain the theorem, we require a couple of additional concepts which

should be familiar. First, we say a machine stateΣ is well-formed (writteǹ Z Σ) when all

code and state are well-typed relative to the zap tagZ. Second, we say a faulty machine

stateΣ f simulates a fault-free stateΣ under colorc (written Σ f simc Σ) whenever the

two states are identical except for values coloredc. In other words, values coloredc may

be completely different from one another, but otherwise thetwo states are identical.

The judgmentΣ =⇒h
k F states that machine stateΣ executes through a sequence of

blocksh to reach stateF while incurringk faulty transitions. So ifΣ = (C,h1,R,b), then

F is either(C,(h1,h),R′,b′), hwerror(h1,h), or recover(h1,h).

We say a program is fault-tolerant if any execution of the program with a single fault

behaves in one of four possible ways with regards to the original, non-faulty computation:

(1) The faulty computation visits the same sequence of blocks as the original, and the

final faulty state simulates the original result state undersome colorc. (2) The faulty

computation attempts to transfer control to an invalid address outside the domain of code

memory and triggers a hardware fault. Prior to the occurrence of the hardware fault,

the faulty computation visited the same blocks as the original computation. (3) A fault

affecting the intention register or checking code cause thefaulty computation to detect a

fault in software and jump to recovery code. (4) The faulty computation veers off course

to a block that does not match the corresponding block in the original computation. In

this case, the checking code in the invalid block catches theerror and transfers control to

the recovery code.

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 130

Theorem 9 (Fault Tolerance)

If ` Σ andΣ =⇒h
0 Σ′ then at least one of the following cases applies and all derivations

Σ =⇒
hf
1 F wherelength(hf) ≤ length(h) fit one of these cases:

1. Σ =⇒h
1 Σ′

f and∃c . Σ′
f simc Σ′

2. Σ =⇒
hf
1 hwerror(h′,hf) andhf is a prefix ofh

3. Σ =⇒
hf
1 recover(h′,hf) andhf is a prefix ofh

4. Σ =⇒
hf
1 recover(h′,hf) andhf = (h1, l ′) andh = (h1, l ,h2)

4.5 Translation

In order to show that TALCF is sufficiently expressive to be of interest, we define a simple

language of while loops and show how to compile statements inthis language into well-

typed TALCF programs. We only sketch the results here, but more details are available

in AppendixG.

The while loop language statements consist of simple assignment, subtraction, if

statements, while loops, and sequences of statements. As all the variables in this language

contain integers, the well-formedness judgmentV ` ssimply enforces that all variablesv

in s exist in the variable contextV.

s ::= v := n | vd := va−vb

| if0 vz then s1 else s2 | while vz 6= 0 do s

| s1;s2

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 131

To translate a statements as a stand-alone program, it is translated with 1 as the

starting label. The result of the translation is a code memory C, the instructions~i from

the body of the final block of the program, and the label` of that last block. Because

there is no halt instruction in TALCF, code is added to the last block in the translation

to create an infinite loop at label`halt. The function InitRegFile(V) creates an initial

register file that maps each register used to translateV to 0. The assembly language

program corresponding tos is the TALCF state consisting of the generated code memory,

a history with only the first location, an initial register file, and code to jump to the first

label in code memory. If the original statement is well-formed, then the translation is

well-typed.

Theorem 10 (Translation)

If [[V ` s]](., ., .,1) = (.,C,~i, `) then

` (C′, 0, InitRegFile(V), intendjmp 1)

whereC′ = [` 7→ check`;~i; intendjmp`halt][`halt 7→ check`halt; intendjmp`halt]

4.6 Summary and Future Work

This chapter presents TALCF, a typed assembly language design for reasoning about

software-only transient fault solutions. Well-typed TALCF programs will always detect

a single transient fault that causes control to incorrectlytransfer between basic blocks

before control has reached more than one incorrect block. A translation from a simple

language of while programs into TALCF gives evidence that it is sufficiently expressive

to serve as a target of compilation.

We acknowledge that the fault model used in this chapter is simplistic. By assuming

hardware support to catch control transfers into the middleof blocks, we avoid dealing

CHAPTER 4. TALCF : REASONING ABOUT CONTROL FLOW 132

with many interesting and likely situations. This assumption is required because stating

intentions involves resettingr i, so an incorrect transfer into a block before theintend rt

instruction may not be caught.

A sequence of existing work discussed in Section5.2.2 handles increasing classes

of erroneous transfers. By ensuring that the intention register is a function of the entire

control-flow path, not just the current block, they can detect most jumps into the mid-

dle of blocks. The classification scheme of values and reliability properties from this

chapter does not transfer directly to these more complex solutions, but we believe we

can develop a similar classification to capture the necessary invariants. In doing so, the

Fault Tolerance Theorem becomes more difficult to state and prove due to the increase of

possible scenarios a single fault may cause. (For example, afault may cause control to

transfer from the middle of one block to the middle of a secondblock. This second block

may transfer control to a third block before the error is finally detected.) In essence, the

current work and proof strategy are an important building block for reasoning about more

complex solutions.

Chapter 5

Related Work and Conclusion

This dissertation applies techniques for reasoning about low-level software to the problem

of verifying fault tolerance techniques. As such, the related work draws from diverse

topics in programming languages and computer architecture.

5.1 PCC and TAL

Proof-carrying Code (PCC) [44, 43, 3] is a method for guaranteeing properties of low-

level code. In PCC, the compiler generates a safety proof along with the code binary, and

the end user can automatically verify the safety proof before executing the binary.

The most popular way of implementing PCC is using atype-preservingcompiler.

Like ordinary compilers, type-preserving compilers are organized as a series of trans-

lations between intermediate languages. Unlike in ordinary compilers, each of these

intermediate languages has a corresponding type system andmay be type checked. In

the final compilation phase, a fully type-preserving compiler will output an assembly or

native code binary as well as sufficient type information fora type checker to reconstruct

133

CHAPTER 5. RELATED WORK AND CONCLUSION 134

a typing derivation for the assembly code. The first such language was called TAL

(Typed Assembly Language) [40]. Over the years, many variants have been developed

[66, 62, 17, 16, 14].

Working at such a low level leads to a number of technical challenges not seen in high-

level type systems. For example, creating a new object actually consists of allocating the

memory and then initializing the contents. TAL [40] handled this by usinginitialization

flags to track which locations had been initialized. In addition,representing class and

object encodings requires new technology [15, 13]. The stack is a concept that is not part

of most high-level languages, and it turns out to be quite tricky. Unlike memory allocated

in the heap, the type of the value stored in a given stack slot changes during the execution

of the program. As the stack grows and shrinks, a location mayhold a code pointer in one

stack frame and an integer in some later stack frame. Assembly-level type systems need

to track these changing types carefully to avoid unsafe behavior. Things get even more

complicated when allocating program data on the stack because stack locations may be

aliased. At this point, it becomes very difficult to develop atype system that remains

sound and yet is expressive enough to handle advanced stack allocation optimizations

with. A sequence of existing work [38, 30, 50] has investigated this issue. Other current

areas of interest include handling interrupts [22], interfacing with the garbage collector

[27, 33], and dealing with concurrency [21].

Recently, the Bartok Compiler [14] was modified to be fully type-preserving. Bartok

is an optimizing, object-oriented compiler of approximately 200,000 lines. Not only does

the type-preserving version generate well-typed assemblycode and support almost all the

original compiler’s optimizations, the additional compilation overhead is only 42%1 and

1Personal communication with J. Chen. August 2008. Compilation overhead published in June 2008
[14] was 83% but has since been reduced by performance tuning.

CHAPTER 5. RELATED WORK AND CONCLUSION 135

the generated code is only 2.3% slower. In other words, type-preserving compilers are

reaching the point of being practical for use in real-world situations.

However, one assumption made by all of these languages is that the hardware will

faithfully execute programs. No guarantees are provided about the behavior of programs

in the presence of transient faults.

5.2 Research in Transient Fault Tolerance

Researchers in the computer architecture and compiler communities have been working

on solutions to transient faults for a long time. This section is not meant to be a full

summary of the research in this area. Instead, it will provide a high-level overview of

some of the differing types of solutions and focus on those techniques most similar to the

ideas used in this dissertation.

5.2.1 Hardware-Based Solutions

Hardware-based techniques add hardware to the processor todetect transient faults. These

include fine-grained techniques such as error-correcting codes and parity bits, as well as

more course-grained solutions that duplicate entire structures within the processor.

For example, the 777 primary flight computer triplicates allhardware resources [75].

The Compaq Nonstop Himalaya [74] has two identical processors that run in lockstep

executing their own copies of the same program. The externalpins of the processors

are compared on every cycle to detect faults, but recovery isleft to the software. The

IBM S/390 [65] duplicates units within the processor and compares their outputs on each

cycle, invoking hardware recovery if necessary. It also uses parity and ECC to protect the

L1 and L2 caches.

CHAPTER 5. RELATED WORK AND CONCLUSION 136

One of the main drawbacks of executing in lockstep is that it may reduce perfor-

mance because processor resources are partitioned statically. Simultaneous Multithread-

ing (SMT) [70] is a technique that allows two independent threads to run atthe same

time while issuing instructions to different functional units. Researchers exploited SMT

to develop fault detection techniques that allow two copiesof the same program to run

simultaneously while still allowing dynamic scheduling ofthe hardware resources [57].

Others have extended this idea to handle recovery [71]. Similarly, two copies of a

program can be run independently on separate cores of a processor [41], and also deal

with recovery [23].

Watchdog coprocessors [35] involve a second simple processor which monitors the

inputs and outputs of the main processor in order to detect faults. Despite requiring

less hardware than full replication, this technique can detect a large number of faults by

looking only at control flow and memory access behavior.

5.2.2 Software-Based Solutions

Just as the hardware-based solutions work by adding hardware redundancy, the software-

based solutions add redundant instructions. The techniques can be divided into two main

camps: protecting data and protecting control flow.

Protecting Data

An very general method for protecting data is to duplicate the entire computation and in-

sert extra instructions to compare the two copies and check for consistency [48]. SWIFT

[60] is one solution that uses this technique. Comparisons are inserted before each store

instruction to ensure that the two copies of the address and the two copies of the value

agree. Once the comparison succeeds, a single store instruction commits the change to

CHAPTER 5. RELATED WORK AND CONCLUSION 137

memory. However, there is awindow of vulnerabilitybetween the comparison and single

store instruction where faults may go undetected and cause memory corruption. It ap-

pears impossible to address this vulnerability without relying on additional, nonstandard

hardware support.

Protecting Control Flow

One particular challenge for software-based solutions involves the detection of control-

flow faults. Our language TALCF in Chapter4 keeps anapproximate program counter

and use anintentions registeracross control flow transfers to ensure that the location

reached was the same as the intended location. Of course, as we discussed, this solution

has the immediate drawback of being unable to detect faults into or out of the middle of

code blocks.

A sequence of existing work [48, 60, 10] uses a more sophisticated version of this

idea to handle increasing classes of erroneous transfers. By ensuring that the intentions

register is a function of the entire control-flow path, not just the current block, they can

detect most jumps into the middle of blocks.

CFCSS [48] uses an approximate program counter and assigns each blocka static

signature. After a control flow transfer, the approximate pcis updated to contain the

xor of its old value and a precalculated value containing thexor of the current signature

and the predecessors’ signature. (A correct transfer from block A to blockB will result

in a new approximate program counter ofA⊗ (A⊗B), which is equal toB.) Because

the predecessor is clearly defined, there is no need for this technique to duplicate both

computations. However, since the true block and the false block of a branch have the

same predecessor block, this technique cannot detect a fault that causes control to take

the incorrect arm of a branch. The authors present experimental results for CFCSS show

CHAPTER 5. RELATED WORK AND CONCLUSION 138

that only 3.1% of the injected faults were undetected and resulted in incorrect outputs.

The authors include high-level arguments about the abilityto catch certain classes of

faults but do not clearly specify what classes of faults where resulting in that undetected

3.1%.

SWIFT [60] uses a slightly different technique that adds atransition registerto spec-

ify the intended transition. Before each control-flow transfer, the current block and the

intended target block are xored together and the result is put in a designated transition

register. At the beginning of each block, the transition register is xored with the approxi-

mate program counter to give the new approximation. Again, without faults, this should

result inA⊗ (A⊗B) = B However, sinceA⊗B is computed at run time, this is more

precise than the static method used by CFCSS. Because the intended targets cannot be

determined statically, SWIFT must duplicate all the valuesused in control flow, but this is

already being done to protect data. Again, the authors present experimental results show

an impressive reduction in uncaught errors, and though the work includes itemized lists

of classes of faults that are believed to be caught and not caught, there is no attempt to

prove their fault tolerance scheme is correct.

One class of faults that SWIFT cannot always detect is faultsfrom the end of a

block to an instruction within the body of that same block. Borin et al. [10] introduce

two additional techniques to handle this. The first technique zeros out the approximate

program counter within the middle of block to detect situations where the program has

incorrectly entered the middle of the block. The second technique, RCF (Region Based

Control Flow) Checking, protects the branches that must be used to set the transition

register. TALCF assumed the existence of a conditional move instruction to avoid unpro-

tected branches for setting the intentions register. The additional branch is given its own

signature, allowing faults there to be detected. The authors give a clear diagram-based

CHAPTER 5. RELATED WORK AND CONCLUSION 139

explanation of the types of faults handled by each solution.In addition, they give a strong

argument that the high-level algorithm they provide is correct. However, that does not

guarantee that the generated code correctly implements thealgorithm.

Despite the improvements made in this area, there are still situations (such as jumping

back two instructions within a block) that cannot be handled.

Dealing with Performance

Even though many software-based solutions more than doublethe number of instructions,

the performance overhead is generally around 40% [60, 10]. Superscaler processors are

rarely able to make full use of their resources, so by adding an additional independent

computation, the processor is able to achieve higher throughput.

Even so, 40% overhead is still substantial. There may be times when this overhead

is acceptable, and times when it is not. But luckily, being software-based, these kinds of

solutions can be appliedselectively. Reis [58] shows that often protecting only a small

number of functions can obtain nearly as much benefit as protecting the entire program,

while incurring a much smaller overhead.

Adding Recovery

The software techniques discussed so far have focused on error detection, but being able

to recoverfrom errors is also extremely important.

Two copies of the program are enough to detect errors, but three copies can be used

detectandrecover by using majority voting. SWIFT-R [59] is a version of SWIFT extend

to triple redundancy. Though it can recover from faults, theperformance overhead is

higher, and there are still windows of vulnerability. The authors also introduce a different

recovery technique that only requires two copies of a computation. The difference is that

CHAPTER 5. RELATED WORK AND CONCLUSION 140

in the second copy, all values are multiplied by three. Single-bit errors can be detected

by checking that the original value multiplied by three is the same as the duplicate. If an

error is detected, the program can determine which one is corrupt by using the modulo

operation on the duplicate value. Because a single-bit error will manifest as a difference

of 2n for somen, the duplicate is only evenly divisible by three when it has not been

corrupted.

5.2.3 Hybrid Solutions

There are clear trade-offs between hardware-based solutions and software-based solu-

tions. Hybrid solutions use additional hardware and additional softwareto try to exploit

the best of each type.

CRAFT [61], the system TALFT is modeled after, is a hybrid version of SWIFT. It

duplicates the computation in software, but uses an additional hardware buffer to close

the window of vulnerability around store instructions.

5.3 Formal Reasoning about Faults

There are a number of efforts that look at formalizing algorithms for fault tolerance,

both for systems affected by transient faults and concurrent systems. A couple of the

software-based systems for control flow that we have alreadydiscussed [10, 48] include

formal reasoning about the high-level algorithms involved.

Di Vito and Bulter verify the system design for a fault-tolerant system for flight

control [72] that votes using results from replicated processors. The system is specified

at a high-level using an abstract model of real-time computation, and the proofs are

completed using algebraic techniques and verified by an automated proof assistant.

CHAPTER 5. RELATED WORK AND CONCLUSION 141

Lamport and Merz [32] give a proof of correctness for a solution to the Byzantine

generals problem in which the states and behaviors of the concurrent system are specified

using logic, and the desired properties are checked using automated tools. However, as

they themselves admit, this is very far from being able to reason at the level of executable

code.

Argus [36] is a hardware-based solution with the goal of providing low-cost, low-

power reliability using simple cores. It dynamically checks four invariants about control

flow, computations, dataflow, and memory correctness. The authors model the system

as an abstract von Neumann processor, similar to the operational semantics used in this

dissertation. They prove that all executions that satisfy the four invariants will output

the same values as a correct execution by using induction on the length of the execution.

However, the actual algorithms for checking the invariantsrequire hardware support and

are specified at a high level.

Walker et al. [73] were the first to use a type system to reason about fault-tolerant

code. They defined a typedλ-calculus calledλzap in which computation are triplicated

and compared at control flow transfers and before output instructions using a special

atomicvoteoperation. Later work by Elsman [20] showed how to break thevoteoperation

down into a sequence of conditional statements while still being able to prove correctness.

There are two fundamental differences between these results and the research presented

here. First, by working at such a high level of abstraction, they are able to avoid dealing

with the low-level hardware structures. Second, their typesystems are much weaker than

those we have presented in previous chapters. For example, types inλzap consist of a

color and a base type, but there are no static expressions. This means that all the formal

results depend on the correctness of the translation intoλzap which adds the duplication.

As we have discussed, trusting the compiler can be dangerous.

CHAPTER 5. RELATED WORK AND CONCLUSION 142

Closely related to our work on TALCF is work by Abadi et al. [1, 2] on secure control

flow. Their system CFI (Control Flow Integrity) prevents attackers from manipulating the

control flow of a program. The goal is to guarantee that an executing program will always

follow a path through a statically determined control flow graph. However, an essential

difference is the fault model. CFI assumes that an attacker can make arbitrary changes

to data memory and most registers, but that three designatedregisters are protected. So

while CFI must worry about arbitrary amounts of data corruption but can rely on three

values to be correct, TALCF only has to worry about a single fault, but can never trust

a single value. In addition, the formal results for CFI statethat the attacked program

will follow somepath through the existing control graph, while TALCF guarantees that a

faulty program will follow thesamepath as the original program.

5.4 Concluding Remarks

Transient faults are caused when energetic particles strike a processor and deposit charge.

They may corrupt executing programs and have caused crashesat major companies.

Processor technology trends, including decreasing feature size, decreasing voltages, and

increasing clock rates, will result in future processors that are even more susceptible.

Existing solutions that involve additional software oftenhave a simple intuition but are

implemented as just one of the many phases in a large, optimizing compiler. At the same

time, recent work has shown that full-scale, type-preserving compilers are a practical way

for reasoning about the behavior of low-level code.

This dissertation develops the first set of techniques for verifying fault-tolerant ex-

ecutable code and gives solid evidence that typed assembly languages are a promising

direction for continued research. Specifically, we introduce three new typed assembly

CHAPTER 5. RELATED WORK AND CONCLUSION 143

languages. TALFT is used to reason about a hybrid fault detection scheme. Well-typed

programs are guaranteed to detect a single fault before thatfault causes a change in

observable behavior. ETALFT, an extended version of TALFT, is expressive enough to be

used as the target language in a compiler and also allows us toinvestigate the interactions

between fault tolerance and other current research areas intyped assembly languages. In

a slightly different direction, TALCF takes a first step towards formalizing the guarantees

that can be provided by a purely software-based solution.

The general approach used by all three languages includes some modifications to the

standard typed assembly language methodology and can be thought of in five stages.

First, in order to reason about machine execution, we define an operational semantics

that includes specific rules to model faults. One example is the rulereg-zapthat can

occur at any point during execution and corrupt the contentsof a random register in the

register file. Second, it is necessary to formally define what“fault tolerance” means in

each specific situation. For TALFT and ETALFT, we assume that memory is externally

visible and so faults may never corrupt memory writes. SinceTALFT focuses only on

control flow, it only allows faulty programs to visit one incorrect block before detecting

the error. Next, the type system is designed to combine standard type safety invariants

with invariants about the fault tolerance solution, particularly specifying the relationship

between different copies of a computation. Once we have these definitions, we show

that the type system is sound – well-typed programs will always be fault-tolerant when

executed. The main theorem for each language relates an execution and a faulty version

of the same execution and shows that they will be indistinguishable to an observer. The

final step is to show a language can be used as the target language of a compiler.

In addition to being the first to verify low-level code, theselanguages make three im-

portant contributions. The type systems combine basic typing information, computation

CHAPTER 5. RELATED WORK AND CONCLUSION 144

colors, and a language of static expressions to enforce thatthe two different computations

perform equivalent tasks. This allows us to verify low-level code without relying on how

it was created. By capturing different fault models, we showthat our methodology is

generally applicable. TALFT and ETALFT focus on a hybrid solution, where additional

hardware is used to address the vulnerability between comparing two values and acting on

the result of the comparison. TALFT is purely software-based, which leads to a number

of challenges, including the need to reason about situations where control ends up in

an unexpected location. Finally, the translations into typed assembly, particular that of

ETALFT, show that these languages can be used as the final result of a realistic, optimizing

compiler.

Appendix A

TALFT Proof Details

This appendix gives expanded details on the formal results in Section2.3, including

sketches of the corresponding lemmas and proofs. Working notes for the complete proofs

appear in the companion technical report [49].

SectionA.1 discusses useful lemmas used throughout the proofs. Section A.2 proves

the standard notions of type safety. SectionA.3 defines a multistep operation semantics

and some associated lemmas, including the No False Positives Corollary. SectionA.4

contains the Fault Tolerance Theorem and its associated lemmas. Each lemma and

theorem is preceeded by a brief English explanation of its role in the proof, and followed

by details on how the proof was constructed.

A.1 Lemmas

The proofs of the theorems in the remainder of this section rely on the lemmas discussed

below.

145

APPENDIX A. TALFT PROOF DETAILS 146

A.1.1 Properties of Static Expressions

When an expression is closed, applying substitutions to that expression results in a syn-

tactically equivalent expression.

Lemma 11 (Substituting Closed Expressions)

1. If · ` E : κ then∀S. S(E) = E

Proof By induction on the structure of· ` E : κ. �

Even though[[E]] is a partial function, it is always defined over well-kinded closed ex-

pressions.

Lemma 12 (Expression Denotation)

1. If · ` E : κint then∃ n. [[E]] = n.

2. If · ` E : κmemthen∃ M. [[E]] = M.

Proof By induction on the structure of· ` E : κ. �

The equality of expressions is transitive.

Lemma 13 (Expression Equality Transitivity)

If ∆ ` E1 = E2 and∆ ` E2 = E3 then∆ ` E1 = E3.

Proof By inspection of the definition of∆ ` E1 = E2. �

Substituting an expression of kindκ for a free variable of typeκ preserves typing.

Lemma 14 (Substitution Lemma)

1. If ∆,x : κ ` E′ : κ′ and∆ ` E : κ then∆ ` E′[E/x] : κ′.

2. If ∆,x : κ ` E1 = E2 and∆ ` E : κ then∆ ` E1[E/x] = E2[E/x].

APPENDIX A. TALFT PROOF DETAILS 147

3. If ∆,x : κ ` E1 6= E2 and∆ ` E : κ then∆ ` E1[E/x] 6= E2[E/x].

4. If Ψ;∆,x : κ `Z v : t and∆ ` E : κ thenΨ;∆ `Z v : t[E/x].

5. If Ψ;(∆,x : κ;Γ;(Ed,Es);Em) `Z ir ⇒ RT and∆ ` E : κ

thenΨ;(∆;Γ[E/x];(Ed,Es)[E/x];Em[E/x]) `Z ir ⇒ RT[E/x].

6. If · ` S: ∆ andΨ;∆ `Z v : t thenΨ; · `Z v : S(t).

7. If · ` S: ∆ andΨ;(∆;Γ;(Ed,Es);Em) `Z ir ⇒ (∆;Γ′;(E′
d,E

′
s);E

′
m)

thenΨ;(·;S(Γ);S((Ed,Es));S(Em)) `Z ir ⇒ (·;S(Γ′);S((E′
d,E

′
s));S(E′

m)).

Proof Parts 1, 4, and 5 – by induction on the respective typing derivation. Parts 2 and 3

– by inspection of the equality judgment definition. Parts 6 and 7 – by induction on the

size of∆, using parts 4 and 5 respectively. �

A.1.2 Properties of Well-Typed Values

Well-typed values are described by static expressions denoting integers and not memo-

ries.

Lemma 15 (Value Kinding)

1. If Ψ;∆ `Z v : 〈c,b,E〉 then∆ ` E : κint .

2. If Ψ;∆ `Z v : (E′ = 0) ⇒ 〈c,b,E〉 then∆ ` E : κint .

Proof By case analysis on the value typing judgment. �

The type of a value gives us information about the shape of thevalue.

Lemma 16 (Canonical Forms)

If Ψ; · `Z c n : t andDom(Ψ) = Dom(C)∪Dom(M) andΨ ` M : Em andΨ `C, then

APPENDIX A. TALFT PROOF DETAILS 148

1. If t = 〈c,b,E〉 or t = (E′ = 0) ⇒ 〈c,b,E〉 andc = Z then no particular properties

of n are known.

2. If t = 〈c, int,E〉 andc 6= Z then· ` E = n.

3. If t = 〈c,Θ → void,E〉 andc 6= Z then Ψ(n) = Θ → void andn ∈ Dom(C) and

· ` E = n andn 6= 0.

4. If t = 〈c,b ref,E〉 andc 6= Z thenΨ(n) = b ref andn∈ Dom(M) and· ` E = n.

5. If t = (E′ = 0) ⇒ t ′ andc 6= Z and· ` E′ = 0 thenn 6= 0.

6. If t = (E′ = 0) ⇒ t ′ andc 6= Z and· ` E′ 6= 0 thenn = 0.

Proof By induction on the structure ofΨ; · `Z c n : t. �

If a value has a type, and this type has a supertype, then the value also has the supertype.

Lemma 17 (Subtyping)

If Ψ;∆ `Z v : t and∆ ` t ≤ t ′thenΨ;∆ `Z v : t ′.

Proof By induction on the derivation ofΨ;∆ `Z v : t. �

If a value is well-typed under the empty zap tag, then that value is well-typed under all

colors.

Lemma 18 (Color Weakening)

If Ψ; · ` v : t then∀c. Ψ; · `c v : t.

Proof By induction on the value typing judgment. �

APPENDIX A. TALFT PROOF DETAILS 149

Color weakening extends to register files.

Lemma 19 (Register File Color Weakening)

If Ψ ` R : Γ then∀c. Ψ `c R : Γ.

Proof By inversion of the register file typing ruleR-tand the Color Weakening Lemma.

�

A.1.3 Properties of Well-typed Memories

Well-typed programs with no faults only load values from valid locations.

Lemma 20 (Well-typed Domain)

If ` (R,C,M,Q, ldG rd, rs) thenRval(rd) ∈ Dom(M).

Proof By inversion of ` (R,C,M,Q, ir), inversion of theldG-t typing rule, and the

Canonical Forms lemma. �

When looking up a value in a memory with an update, if the updated location is not

the requested location, then this is equivalent to looking up the location in the memory

without the update.

Lemma 21 (Irrelevant Update)

If E = sel (upd Em Ed Es) En and· ` Ed 6= En thenE = sel Em En.

Proof By inspection of the denotation ofselandupd. �

APPENDIX A. TALFT PROOF DETAILS 150

A.1.4 Properties of Well-typed Queues

The length of the queue is the same as the length of the sequence that describes it. When

the zap tag is not green, then each item in the queue is described by the corresponding

expression. In addition, the first element of each pair has typeb ref and its value has type

b.

Lemma 22 (Queue)

1. If Ψ `Z Q : (Ed,Es) thenlength(Q) = length((Ed,Es)).

2. If Ψ `Z (n1,n2) : (Ed,Es) and Z 6= G then for all k from 1 tolength((n1,n2)),

· `Edk = n1k and· `Esk= n2k and there is some base typeb such thatΨ` n1k : b ref

andΨ ` n2k : b.

Proof By induction on the structure ofΨ `Z Q : (Ed,Es). �

If the f ind function returns no match on an addressn1, and the queue is described by the

sequence of address-value pairs(Ed,Es), then none of the address expressions are equal

to n1.

Lemma 23 (Find)

If f ind(Q,n1) = () andΨ ` Q : (Ed,Es) then for k from 1 tolength(Q), · ` Edk 6= n1.

Proof By definition of thef ind function and the queue typing judgment. �

If a queue is well-typed under the empty zap tag, then it is also well-typed under any

colored zap tag.

Lemma 24 (Queue Color Weakening)

If Ψ ` Q : (Ed,Es) then∀c. Ψ `c Q : (Ed,Es).

APPENDIX A. TALFT PROOF DETAILS 151

Proof By induction on the queue typing judgment. �

A.2 Type Safety

Progress states that well-typed states can take a step. In particular, a machine state that is

well-typed under the empty zap tag can take a non-faulty stepto another ordinary, non-

faulty machine state. A machine state that is well-typed under a zap tag of colorc can

take a step, but the result of that step may either be another ordinary machine state or the

fault state.

Theorem 25 (Progress)

1. If ` Σ thenΣ −→s
0 Σ′ andΣ′ 6= fault.

2. If `c Σ thenΣ −→s
0 Σ.

Proof By case analysis on the instructionir in stateΣ.

Part 1 uses inversion on the typing rules to determine that the preconditions hold for

the appropriate operational rule. For example, FigureA.1 shows the case forstB. By

inverting various typing rules, we gather enough information to conclude that the last

pair in the queue is equal to the contents of the two registers. Notice that step 9 inverts

the val-t rule. This can only be done because we know thatZ = ·, and so theval-zap-t

rule cannot apply instead. (And similarly, step 12 inverts rule Q-t.) Once we have these

equalities, we can apply the operational rulestB-mem. Other cases are similar, although

the cases forldG andbzB subdivide further based on the result of thefind function and the

value in the branch register.

Part 2 is simpler than part 1. Instead of using typing rules togather as much in-

formation, we just further subdivided based on properties needed to apply the rules.

APPENDIX A. TALFT PROOF DETAILS 152

These subcases take either the normal operation rule, or thecorresponding failure rule

as necessary. Some inversion may be done on the typing rules to show that the case does

not get stuck. Again, FigureA.1 shows the case forstB. From the typing information,

we know that the Q is not empty. Then either the last pair in thequeue is equal to the

registers (rulestB applies) or it is not (rulestB-fail applies). �

According to Preservation, if a machine state is well-typedunder a zap tagZ, and

it takes a non-faulty step to another machine state, then that resulting state will also be

well-typed underZ. Additionally, if a state is well-typed under the empty zap tag, and it

takes a faulty step, then there is some colorc such that the resulting state is well-typed

underc.

Theorem 26 (Preservation)

1. If `Z Σ andΣ −→s
0 Σ′ andΣ′ 6= fault then`Z Σ′.

2. If ` Σ andΣ −→s
1 Σ′ then∃ c. `c Σ′.

Proof By case analysis of the structure of the derivationΣ −→s
k Σ′.

Part 1 only applies to cases whereΣ′ is not fault. We use inversion to take apart the

judgment for`Z Σ, modify it as necessary, and build the judgment`Z Σ′. Each case is

subdivided based on the actual value of the zap tag. In subcases where the zap tag is not

the same as the color of a value, we can invert ruleval-t on the typing of a value and use

that information to construct a typing derivation forΣ′. In cases where the zap tag has the

same color as the value, modified values inΣ′ can be trivially typed using rulesval-zap-t

andQ-zap-t. FiguresA.2 and A.3 show an example case for rulestB-mem.

Part 2 choosesc to be the color of the zapped value. It uses rulesval-zap-t, val-

zap-condor Q-zap-tto show that the zapped value can be typed under zap tagc. The

remainder of the state can be typed as before using the Color Weakening Lemmas18, 19,

APPENDIX A. TALFT PROOF DETAILS 153

Part 1 Example Case: stB

a1. ` (R,C,M,Q, stB rd,rs) [assumption]

1. Ψ `C [Inversion ofΣ-t, a1]
2. ∀c. C(Rval(pcc)) = stB rd,rs [Inversion ofΣ-t, a1]
3. Ψ;(∆;Γ;(Ed,Es),(E′

d,E′
s);Em) ` stB rd rs [Inversion ofC-t, 1, 2, inspection ofstB-t]

⇒ (∆;Γ++;(Ed,Es);upd Em E′
d E′

s)
4. ∃S. · ` S: ∆ [Inversion ofΣ-t, a1]
5. Ψ;(·;S(Γ);S((Ed,Es),(E′

d,E′
s));S(Em)) ` stB rd rs [Lemma14 (Substitution), 4, 3]

⇒ (·;S(S(Γ)++;S((Ed,Es));upd S(Em E′
d E′

s))

6. Ψ ` R : S(Γ) [Inversion ofΣ-t, a1]
7. S(Γ)(rd) = 〈B,b ref,E′′

d 〉 [Inversion ofstB-t, 5]
S(Γ)(rs) = 〈B,b,E′′

s 〉
8. Ψ; · ` R(rd) : 〈B,b ref,E′′

d 〉 [Inversion ofR-t, 6, 7]
Ψ; · ` R(rs) : 〈B,b,E′′

s 〉
9. · ` Rval(rd) = E′′

d [Inversion ofval-t, 8]
· ` Rval(rs) = E′′

s

10. · ` S(E′
d) = E′′

d [Inversion ofstB-t, 5]
· ` S(E′

s) = E′′
s

11. Ψ ` Q : S((Ed,Es),(E′
d,E′

s)) [Inversion ofΣ-t, a1]
12. Q = ((n,n′),(nl ,n′l)) [Lemma22 (Queue), 11]

· ` S(E′
d) = nl and· ` S(E′

s) = n′l

13. Rval(rd) = nl andRval(rs) = n′l [Lemma13 (Exp Eq Transitivity), 9, 10, 12]

14. (R,C,M,((n,n′),(nl ,n′l)),stB rd,rs) −→
(nl ,n

′
l)

0 [stB-mem, 14]
(R++,C,M[nl 7→ n′l],(n,n′), ·)

Case complete.

Part 2 Example Case: stB

a1. `c (R,C,M,Q, stB rd,rs) [assumption]

1. Ψ `c Q : S((Ed,Es),(E′
d,E

′
s)) [Inversion ofΣ-t, a1]

2. Q = ((n,n′),(nl ,n′l)) [Lemma22 (Queue), 1]

Case on whetherRval(rd)
?
= nl andRval(rs)

?
= n′l

subcase a:rd andrs are the same as the last pair in the queue
a4a. Rval(rd) = nl andRval(rs) = n′l [subcase assumption]

3a. (R,C,M,Q,stB rd,rs) −→
(nl ,n

′
l)

0 (R++,C,M[nl 7→ n′l],(n,n′), ·) [stB-mem, a4a]
Subcase complete.

subcase b:eitherrs or rd or the last pair in the queue has been corrupted
a4b. Rval(rd) 6= nl or Rval(rs) 6= n′l [subcase assumption]
3b. (R,C,M,Q,stB rd,rs) −→0 fault [stB-mem-fail, a4b]
Subcase complete.

Case complete.

Figure A.1: Example Cases of Theorem25(Progress).

APPENDIX A. TALFT PROOF DETAILS 154

and 24. FigureA.4 shows an example case for rulereg-zap. �

The Progress and Preservation Theorems define the usual notion of type safety.

A.3 Multistep Transitions

In order to prove properties of our type system, we extend oursingle-step transition

Σ1 −→s
k Σ2 from Section2.1 to a sequence ofn transitions containing exactlyk faults

Σ1
n

−−→
s
kΣ2, wheren is greater than or equal to zero, andk is still either 0 or 1.

Σ 0
−−→

()

0 Σ
(multi-base)

Σ −→s1
k1

Σ′′ Σ′′ (n−1)
−−→

s2

k2
Σ′

Σ n
−−→

(s1,s2)

k1+k2
Σ′

(multi-compose)

A.3.1 No False Positives

By combining part one of Progress with part one of Preservation, we get the following

important corollary: The hardware never claims to have detected a fault when no fault

has occurred during execution of a well-typed program.

Corollary 27 (No False Positives)

If ` Σ then∀ n. Σ n
−−→

s
0Σ′ and ` Σ′.

Proof By Progress Part 1, Preservation Part 1, and induction on thederivation ofΣ n
−−→

s
0Σ′.

�

APPENDIX A. TALFT PROOF DETAILS 155

Example Case: stB-mem

Rval(rd) = nl Rval(rs) = n′l

(R,C,M,((n,n′),(nl ,n′l)),stB rd,rs) −→
(nl ,n

′
l)

0 (R++,C,M[nl 7→ n′l],(n,n′), ·)
(stB-mem)

a1. `Z (R,C,M,Q, stB rd,rs) [assumption]
p1. Rval(rd) = nl [premise]
p2. Rval(rs) = n′l [premise]

1. Dom(Ψ) = Dom(C)∪Dom(M) [Inversion ofΣ-t, a1]
2. Z 6= G =⇒ Dom((n,n′),(nl ,n′l)) ⊆ Dom(M) [Inversion ofΣ-t, a1]
3. Ψ `C [Inversion ofΣ-t, a1]
4. ∀c 6= Z. C(Rval(pcc)) = stB rd,rs [Inversion ofΣ-t, a1]
5. ∀c 6= Z. Ψ(Rval(pcc)) = (∆;Γ;(Ed,Es);Em) → void [Inversion ofΣ-t, a1]
6. ∃S. · ` S: ∆ [Inversion ofΣ-t, a1]
7. Ψ ` M : S(Em) [Inversion ofΣ-t, a1]
8. Ψ `Z ((n,n′),(nl ,n′l)) : S((Ed,Es),(E′

d,E′
s)) [Inversion ofΣ-t, a1]

9. Ψ `Z R : S(Γ) [Inversion ofΣ-t, a1]

10. Ψ;(∆;Γ;(Ed,Es),(E′
d,E′

s);Em) ` stB rd rs ⇒ Θ′ [Inversion ofC-t, 3, 4]
11. Θ′ = (∆;Γ++;(Ed,Es);upd Em E′

d E′
s) [10, inspection ofstB-t]

12. ∀c 6= Z. C(Rval(pcc)+1) = Θ′ 7→ void [Inversion ofC-t, 3, 4, 10, 11]
5’. ∀c 6= Z. C(R++val(pcc)) = Θ′ 7→ void [12, def ofR++]

9’. Ψ `Z R++ : S(Γ)++ [9, def ofR++ andΓ++]

13. Ψ;(·;S(Γ);S((Ed,Es),(E′
d,E′

s));S(Em)) ` stB rd rs [Lemma14 (Substitution), 10, 11, 6]
⇒ (·;S(S(Γ)++;S((Ed,Es));upd S(Em E′

d E′
s))

14. S(Γ)(rd) = 〈B,b ref,E′′
d 〉 [Inversion ofstB-t, 5]

15. S(Γ)(rs) = 〈B,b,E′′
s 〉 [Inversion ofstB-t, 5]

16. · ` S(E′
d) = E′′

d [Inversion ofstB-t, 5]
17. · ` S(E′

s) = E′′
s [Inversion ofstB-t, 5]

Case onZ

Subcase a1:Z = G
a2a. Z = G [subcase assumption]
18a. Ψ `Z (n,n′) : S((Ed,Es)) [Repeated Inversion ofQ-zap-t, a2a, 8,Q-zap-t]

Subcase b1:Z = · or Z = B
a2b. Z = · or Z = B [subcase assumption]
18b. Ψ `Z (n,n′) : S((Ed,Es)) [Repeated Inversion ofQ-t, a2a, 8,Q-t]

Merge subcases a1 and b1:
8’. Ψ `Z (n,n′) : S((Ed,Es)) [18a/18b]

2’. Z 6= G =⇒ Dom((n,n′)) ⊆ Dom(M) [2]

Continued in FigureA.3...

Figure A.2: Example Case from Theorem26(Preservation) Part 1.

APPENDIX A. TALFT PROOF DETAILS 156

Example Case: stB-mem (...continued from FigureA.2)

Case onZ

Subcase a2:Z = B (the queue is correct)
a3a. Z = B [subcase assumption]

19a. · ` S(E′
d) = nl [Inversion ofQ-t, a3a, 8]

20a. Ψ ` nl : b ref [Inversion ofQ-t, a3a, 8]
21a. Ψ; · `B n′l : 〈B,b ref,E′′

d 〉 [val-t, 19a, 20a]
22a. nl ∈ Dom(M) [Lemma16 (Canonical Forms), 7, 3, 21a

23a. · ` S(E′
s) = n′l [Inversion ofQ-t, a3a, 8]

24a. Ψ ` n′l : b [Inversion ofQ-t, a3a, 8]

25a. [[S(E′
d)]] = nl and[[S(E′

s)]] = n′l [Inversion ofE-eq, 19a, 23a]

Subcase b2:Z = · or Z = G (rd andrs are correct)
a3b. Z = · or Z = G [subcase assumption]

19b. Ψ; · `Z Rval(rd) : 〈B,b ref,E′′
d 〉 [Inversion ofR-t, 9, 14]

20b. Ψ; · `Z nl : 〈B,b ref,S(E′
d)〉 [19b, p1, Lemma13 (Exp Eq Transitivity), 16]

21b. nl ∈ Dom(M) [Lemma16 (Canonical Forms), 7, 3, 20b
22b. Ψ ` nl : b ref [Inversion ofval-t, a3b, 20b]

23b. Ψ; · `Z Rval(rs) : 〈B,b,E′′
s 〉 [Inversion ofR-t, 9, 15]

24b. Ψ; · `Z n′l : 〈B,b,S(E′
s)〉 [23b, p2, Lemma13 (Exp Eq Transitivity), 17]

25b. Ψ ` n′l : b [Inversion ofval-t, a3b, 24b]

26b. · ` S(E′
d) = nl and· ` S(E′

s) = n′l [Inversion ofval-t, a3b, 20b, 24b]
27b. [[S(E′

d)]] = nl and[[S(E′
s)]] = n′l [Inversion ofE-eq, 26b]

Merge subcases a2 and b2:
30. ∀` ∈ Dom(M). Ψ ` ` : b ref∧Ψ ` M(`) : b [Inversion ofM-t, 7]
31. ∀` ∈ Dom(M[nl 7→ n′l]). Ψ ` ` : b ref∧Ψ ` M(`) : b [30, 20a/22b, 24a/25b]

32. [[S(Em)]] = M [Inversion ofM-t, 7]
33. [[upd S(Em) S(E′

d) S(E′
s)]] = [[S(Em)]][[[S(E′

d)]] 7→ [[S(E′
s)]]] [def of [[E]]]

34. [[upd S(Em) S(E′
d) S(E′

s)]] = M[nl 7→ n′l] [33, 32, 25a/27b]

35. · ` S(Em) : κmem [Inversion ofM-t, 7]
36. · ` S(E′

d) : κint and· ` S(E′
s) : κint [Lemma15 (Value Kinding), Inversion ofR-t, 9, 14, 15]

37. · ` upd S(Em) S(E′
d) S(E′

s) : κmem [E-upd-t, 35, 36]

7’. Ψ ` M[nl 7→ n′l] : S(Em E′
d E′

s) [M-t, 31, 34, 37]

1’. Dom(Ψ) = Dom(C)∪Dom(M[nl 7→ n′l]) [1, 22a/21b]

38. `Z (R++,C,M[nl 7→ n′l],(n,n′), ·) [Σ-t, 1’, 2’, 3, ir = ., 5’, 6, 7’, 8’, 9’

Figure A.3: Example Case from Theorem26(Preservation) Part 1.

APPENDIX A. TALFT PROOF DETAILS 157

Example Case: reg-zap

R(a) = c n

(R,C,M,Q, ir) −→1 (R[a 7→ c n′],C,M,Q, ir)
(reg-zap)

a1. ` (R,C,M,Q, ir) [assumption]

1. Dom(Ψ) = Dom(C)∪Dom(M) [Inversion ofΣ-t, a1]
2. Dom(Q) ⊆ Dom(M) [Inversion ofΣ-t, a1]
3. Ψ `C [Inversion ofΣ-t, a1]
4. ∀c. ir 6= · =⇒ C(Rval(pcc)) = ir [Inversion ofΣ-t, a1]
5. ∀c. Ψ(Rval(pcc)) = (∆;Γ;(Ed,Es);Em) → void [Inversion ofΣ-t, a1]
6. ∃S. · ` S: ∆ [Inversion ofΣ-t, a1]
7. Ψ ` M : S(Em) [Inversion ofΣ-t, a1]
8. Ψ ` Q : S(Ed,Es) [Inversion ofΣ-t, a1]
9. Ψ ` R : S(Γ) [Inversion ofΣ-t, a1]

Case on the shape ofS(Γ)(a)

Subcase a:S(Γ)(a) is a triple〈c,b,E〉
a2a. Let〈c,b,E〉 = S(Γ)(a) [subcase assumption]

10a. · ` E : κint [Lemma15 (Value Kinding), Inversion ofR-t, 9, a2a]
11a. Ψ; · `c c n′ : 〈c,b,E〉 [val-zap-t, 10a]
12a. Ψ; · `c R[a 7→ c n′](a) : S(Γ)(a) [11a, a2a, def of R[]]

Subcase b:S(Γ)(a) is a conditional typeE′ = 0⇒ 〈c,b,E〉
a2b. Let(E′ = 0⇒ 〈c,b,E〉) = S(Γ)(a) [subcase assumption]

10b. · ` E : κint [Lemma15, Inversion ofR-t, 9, a2b]
11b. Ψ; · `c c n′ : E′ = 0⇒ 〈c,b,E〉 [val-zap-cond, 10b]
12b. Ψ; · `c R[a 7→ c n′](a) : S(Γ)(a) [11b, a2b, def of R[]]

Merge subcases a and b:
9’. Ψ `c R[a 7→ c n′] : S(Γ) [R-t, 9, Lemma19 (Reg File Color Weakening), 12a/12b]

8’. Ψ `c Q : S(Ed,Es) [Lemma24 (Queue Color Weakening), 8]

2’. Z 6= G =⇒ Dom(Q) ⊆ Dom(M) [2]

4’. ∀c 6= Z. ir 6= · =⇒ C(Rval(pcc)) = ir [4]

5’. ∀c 6= Z. Ψ(Rval(pcc)) = (∆;Γ;(Ed,Es);Em) → void [5]

13. `c (R[a 7→ c n′],C,M,Q, ir) [Σ-t, 1, 2’, 3, 4’, 5’, 6, 7, 8’, 9’]

Case complete.

Figure A.4: Example Case of Theorem26(Preservation) Part 2.

APPENDIX A. TALFT PROOF DETAILS 158

A.3.2 Multistep Split and Combine

The following two lemmas about the multistep relation let ustake apart and put together

different sequences of steps.

If a machine state evaluates in a sequence of steps with no faults to a final state, then this

computation can be divided into a sequence of non-faulty steps reaching an intermediate

state, and a sequence of non-faulty steps from this intermediate state to the final state.

Lemma 28 (Multistep Split)

If Σ n
−−→

s
0Σ′ then there existsn1, n2, Σ′′, s1, ands2 such thatn = n1 +n2 ands= (s1,s2)

andΣ n1−−→
s1

0 Σ′′ andΣ′′ n2−−→
s2

0 Σ′.

Proof By induction on the structure ofΣ n
−−→

s
0Σ′. �

If a machine state evaluates in a sequence ofn1 non-faulty steps to another state, that

state faults to a third state, and the third state evaluates in n2 non-faulty steps to a final

state, then the original state can reach the faulty state in asequence ofn1 +1+n2 steps

including exactly one fault step.

Lemma 29 (Multistep Combine)

If Σ n1−−→
s1

0 Σ′ andΣ′−→1 Σ′
f andΣ′

f
n2−−→

s2

0 Σ′′ thenΣ n′
−−→

(s1,s2)

1 Σ′′ wheren′ = n1+1+n2.

Proof By induction on the structure ofΣ n1−−→
s1

0 Σ′. �

A.4 Fault Tolerance

A program is fault tolerant when all the faulty executions ofthat programsimulatefault-

free executions of the program. More precisely, the sequence of outputs from the faulty

APPENDIX A. TALFT PROOF DETAILS 159

v1 simZ v2

C n simZ C n
(sim-val)

C n simC C n′
(sim-val-zap)

R simZ R′

∀a. R(a) simZ R′(a)

R simZ R′
(sim-R)

Q simZ Q′

· simZ ·
(sim-Q-empty)

G n1 simZ G n′1 G n2 simZ G n′2 Q simZ Q′

((n1,n2),Q) simZ ((n′1,n
′
2),Q

′)
(sim-Q)

Σ1 simZ Σ2

R simZ R′ Q simZ Q′

(R,C,M,Q, ir) simZ (R′,C,M,Q′, ir)
(sim-Σ)

Figure A.5: Similarity of Machine States.

executions are required either to be identical to the fault-free execution or, in the case the

hardware detects the fault, a prefix of the fault-free execution.

A.4.1 Simulation Relation

In order to reason about pairs of faulty and fault-free executions, we define similarity

relations between values, register files, queues and machine states. Each of these relations

is defined relative to the zap tagZ. Intuitively, if Z is empty, the related objects must be

identical. If Z is a colorc, the objects must be identical modulo values coloredc. In

the latter case, values coloredc may be corrupted, and there is no hope they satisfy any

particular relation. The formal definitions of these relations are shown in FigureA.5.

APPENDIX A. TALFT PROOF DETAILS 160

A.4.2 Singlestep Fault Detection

We begin by defining fault detection for a single step in the execution of a program.

It essentially says that if we have two similar computations, one with a fault and one

without, then either the faulty computation can take a step indistinguishable from that of

the non-faulty version, or the faulty computation reaches the fault state.

Lemma 30 (Singlestep Fault Detection)

If ` Σ andΣ simc Σ f andΣ −→s
0 Σ′ thenΣ f −→

sf
0 Σ′

f and either

1. Σ′ simc Σ′
f ands= sf , or

2. Σ′
f = f ault andsf = ().

Proof By case analysis ofΣ −→s
0 Σ′. Each case is handled in one of three ways.

Failure Cases. Rules whereΣ steps tofault are not applicable becauseΣ is well

typed under the empty zap tag, and so Progress 1 tells us thatΣ′ is notfault.

Random Cases. RulesldB-rand and ldG-rand only apply when loading from an

invalid address that is not in the domain of memory. According to Lemma20

(Well-typed Domain), states that are well-typed under the empty zap tag only load

from valid addresses, so these cases can be ruled out.

Standard Cases. The remaining rules are all handled in approximately the same

way.

Each rule has a handful of premises. These relationships mayor may not hold in the

faulty computation. It will depend on what exactly has been corrupted. The proof

divides into subcases based on these relationships. Some subcases may further

divide based on whetherc is G or B.

APPENDIX A. TALFT PROOF DETAILS 161

FigureA.6 shows the case forstB-mem. There are two premises relating the two

registers to the last pair in the queue. If one of these premises does not hold in the

faulty computation, then it will step tofault using thestB-fail rule with no output.

However, if both equalities hold then the proof further subdivides based on the color

c. If c is B, then we know that the faulty and non-faulty queues are equalbecause

they contain green values and simulate each other under color B. From there, we

can determine that the faulty computation also steps usingstB, the resulting state is

similar toΣ′, and the outputs are equal.

If c is G, then we use the fact thatΣ is well-typed to show that the registersrd and

rs are colored blue, and so both the faulty and non-faulty registers are correct and

equal to each other. And since the registers are assumed to beequal to the ends of

the queues, we also know that the ends of the queues are equal.From there, we

continue as in the previous subcase.

�

A.4.3 Multistep Fault Detection

The Multistep Fault Detection Lemma extends the SinglestepFault Detection Lemma for

n steps. If a fault has occurred and the non-faulty computation takesn steps to a stateΣ′,

then the faulty computation with either taken steps to a state that simulatesΣ′, or it will

terminate in the fault statefault during this time.

Lemma 31 (Multistep Fault Detection)

If ` Σ andΣ simc Σ f andΣ n
−−→

s
0Σ′ then either

1. Σ f
n

−−→
sf

0 Σ′
f andΣ′ simc Σ′

f andsf = s, or

APPENDIX A. TALFT PROOF DETAILS 162

Example Case: stB-mem
Rval(rd) = nl Rval(rs) = n′l

(R,C,M, ((n,n′), (nl ,n
′
l)),stB rd , rs) −→

(nl ,n
′
l)

0 (R++,C,M[nl 7→ n′l], (n,n′), ·)

(stB-mem)

a1. ` (R,C,M, ((n,n′), (nl ,n
′
l)), stB rd, rs) [assumption]

a2. (R,C,M, ((n,n′), (nl ,n
′
l)), stB rd, rs) simc Σ f [assumption]

a3. (R,C,M, ((n,n′), (nl ,n
′
l)), stB rd, rs) −→

(nl ,n
′
l)

0 (R++,C,M[nl 7→ n′l], (n,n′), ·) [assumption]
p1. Rval(rd) = nl [premise]
p2. Rval(rs) = n′l [premise]

1. Σ f = (Rf ,C,M,Qf , ir) [a2, definition ofsim-Σ]
2. R simc Rf [a2, 1, inversion ofsim-Σ]
3. ((n,n′), (nl ,n

′
l)) simc Qf [a2, 1, inversion ofsim-Σ]

4. Qf = (nf ,n′f), (nl f ,n
′
l f) [3, definition ofsim-Q]

Case on whetherRf val(rd)
?
= nl f andRf val(rs)

?
= n′l f and the colorc

subcase a:eitherrs or rd or the last pair in the queue has been corrupted
a4a. Rf val(rd) 6= nl f or Rf val(rs) 6= n′l f [subcase assumption]
6a. (Rf ,C,M,Qf ,stB rd, rs) −→0 fault [stB-fail, 4, a4a]

7a. Σ f −→
sf
0 fault andsf = () [6a]

subcase complete.

subcase b:blue values are corrupted, but notrs or rd
a4b. Rf val(rd) = nl f andRf val(rs) = n′l f [subcase assumption]
a5b. c = B [subcase assumption]
6b. G nl simB G nl f [3, inversion ofsim-Q]
7b. nl = nl f [6b, inversion ofsim-val, a5b]
8b. G n′l simB G n′l f [3, inversion ofsim-Q]
9b. n′l = n′l f [8b, inversion ofsim-val, a5b]
10b. M[nl 7→ n′l] = M[nl f 7→ n′l f] [7b, 9b, a5b]

11b. R++ simB Rf ++ [2, definition of R++, sim-val, sim-R, a5b]
12b. (n,n′) simB (nf ,n′f) [3, 4, inversion ofsim-Q, a5b]

13b. (R++,C,M[nl 7→ n′l], (n,n′), ·) simB (Rf ++,C,M[nl f 7→ n′l f], (nf ,n
′
f), ·) [10b, 11b, 12b]

14b. Σ f −→
(nl f ,n′l f)

0 (Rf ++,C,M[nl f 7→ n′l f], (nf ,n
′
f), ·) [stB-mem, a4b, 1, 4]

15b. (nl f ,n
′
l f) = (nl ,n

′
l) [7b, 9b]

16b. Σ f −→
sf
0 Σ′f andΣ′ simc Σ′f andsf = s [14b, 13b, 15b]

subcase complete.

subcase c:green values are corrupted, but not the last pair in the queue
a4c. Rf val(rd) = nl f andRf val(rs) = n′l f [subcase assumption]
a5c. c = G [subcase assumption]
6c. Rcol(rd) = Rcol(rs) = B [a1, inversion ofΣ-t, inversion ofstB-t]
7c. R(rd) simG Rf (rd) [2, inversion ofsim-R, a5c]
8c. R(rs) simG Rf (rs) [2, inversion ofsim-R, a5c]
9c. Rval(rd) = Rf val(rd) [7c, 6c, inversion ofsim-val]
10c. Rval(rs) = Rf val(rs) [8c, 6c, inversion ofsim-val]
11c. nl = nl f [9c, a4c, p1]
12c. n′l = n′l f [10c, a4c, p2]
13c. M[nl 7→ n′l] = M[nl f 7→ n′l f] [11c, 12c]

14c. R++ simG Rf ++ [2, definition of R++, sim-val, sim-R, a5c]

15c. (n,n′) simG (nf ,n
′
f) [3, 4, inversion ofsim-Q, a5c]

16c. (R++,C,M[nl 7→ n′l], (n,n′), ·) simG (Rf ++,C,M[nl f 7→ n′l f], (nf ,n
′
f), ·) [13c, 14c, 15c]

17c. Σ f −→
(nl f ,n′l f)

0 (Rf ++,C,M[nl f 7→ n′l f], (nf ,n
′
f), ·) [stB-mem, a4c]

18c. (nl f ,n
′
l f) = (nl ,n

′
l) [11c, 12c]

19c. Σ f −→
sf
0 Σ′f andΣ′ simc Σ′f andsf = s [17c, 16c, 18c]

subcase complete.

case complete.

Figure A.6: Example Case of Lemma30.

APPENDIX A. TALFT PROOF DETAILS 163

2. Existsm≤ n. Σ f
m

−−→
sf

0 f ault andsf is a prefix ofs.

Proof By induction on the structure ofΣ n
−−→

s
0Σ′. The base case formulti-baseis

immediate.

In the case formulti-compose, we know from the premises thatΣ takes a single step to

someΣ′′. Using this and the Singlestep Fault Detection Lemma, we know thatΣ f either

takes a single step with no output to fault or takes a single step to some stateΣ′′
f that

simulatesΣ′′ while generating equal output.

In the former case, we can immediately prove the second possibility with m= 1 and

() as a prefix ofs.

In the latter case, we call the Induction Hypothesis, which tells us that eitherΣ′′
f takes

n−1 steps to a state that simulatesΣ′ generating equal output, or it reachesfault in no

more thann−1 steps with a prefix of the output. In the first case, wherefault is never

reached, we usemulti-composeto conclude thatΣ f takesn steps toΣ′
f and the total

output is equal. In the second case, where afault is reached later in execution, we use

multi-composeto show thatΣ f reachesfault in no more thann steps, and its output is a

prefix of the non-faulty output. �

A.4.4 Fault Similarity

The Fault Similarity Lemma states that if a non-faulty machine state takes a single faulty

step, then the resulting machine state is similar to the original state under some colorc.

Lemma 32 (Fault Similarity)

If Σ −→1 Σ f , then∃ c. Σ simc Σ′.

APPENDIX A. TALFT PROOF DETAILS 164

Proof By case analysis on the definition ofΣ −→1 Σ′. In each case,c is assigned the

color of the value that is zapped. The zapped value is similarto the original value by

sim-val-zap. The remainder of the state is equal, and is similar usingsim-val. �

A.4.5 Fault Tolerance Theorem

By using the three previous lemmas, we can state and prove thefault tolerance theorem

for well-typed programs. Assume that machine stateΣ is well-typed under the empty zap

tag, and non-faulty execution ofΣ for n steps results in a stateΣ′ and outputs a sequence

of value-address pairss. If somewhere during that execution a single fault is encountered,

the faulty execution will either run forn+ 1 steps or terminate in the fault state during

that time. If the faulty execution takesn+ 1 steps and reaches the non-faulty stateΣ′
f ,

thenΣ′ simulatesΣ′
f and the sequence of output pairs is identical the original execution.

Alternatively, if the faulty execution reaches the fault state then the output pairs will be a

prefix of the non-faulty output pairs.

Theorem 33 (Fault Tolerance)

If ` Σ andΣ n
−−→

s
0Σ′ then eitherΣ

(n+1)
−−→

s′

1 Σ′
f or ∃m≤ (n+1) . Σ m

−−→
s′

1 fault, and

1. For all derivationsΣ
(n+1)
−−→

s′

1 Σ′
f whereΣ′

f 6= fault. s′ = sand∃ c. Σ′ simc Σ′
f .

2. For all derivationsΣ m
−−→

s′

1 fault wherem≤ (n+1). s′ is a prefix ofs.

Proof By case analysis on the definition ofΣ n
−−→

s
0Σ′.

In the base case formulti-base, we can easily prove result 1 by havingΣ take a faulty

step toΣ f and using the Fault Similarity Lemma to show that∃ c. Σ simc Σ f .

In the recursive casemulti-compose, we use the Multistep Split Lemma to divide the

computation into two pieces with an intermediate stateΣ′′. Σ′′ can take a faulty step

APPENDIX A. TALFT PROOF DETAILS 165

to Σ f , and we can again use the Fault Similarity Lemma to show that they are similar.

We then call the Multistep Fault Detection Lemma with the execution fromΣ′′ to Σ′ and

the similarity betweenΣ′′ and Σ f . This tells us thatΣ f can either step to a stateΣ′
f

that is similar toΣ′ or reaches a fault before that point. Finally, we use the Multistep

Combine Lemma to combine the first part of the non faulty execution, the fault step, and

the resulting execution from the Multistep Fault DetectionLemma, to show that either

Σ
(n+1)
−−→

s′

1 Σ′
f or Σ m

−−→
s′

1 fault. The length of the faulty computation is at mostn+1 because

of the addition of the single fault step. Since the MultistepSplit Lemma chooses some

unspecified division of the original computation, the result hold regardless of exactly

where the fault is injected. �

Appendix B

MiniC Typing Rules

This appendix contains the typing rules for the MiniC Language defined in Section3.1.

type τ ::= int | τ ref | X → τ
variable context X ::= · | x : τ, X
value v ::= n | x | ref v
value list vs ::= · | v, vs
binaryop op ::= + | − | ∗
statement s ::= x = v | x = v op v

| x =!v | v := v
| x = f (vs)
| if v then selse s | while v do s
| s; s

f unction declarations f ds::= · | τ f (X) {lds; s; return v} f ds
local declarations lds ::= · | τ x = v; lds
program p ::= f ds; lds; s; return v;

X ` v : τ

X ` n : int
(n-t)

X ` x : X(x)
(var-t)

X ` ref v : τ ref
(ref-t)

166

APPENDIX B. MINIC TYPING RULES 167

X ` vs: X

X ` · : ·
(vs-·-t) X ` v : τ X ` vs: X

X ` (v, vs) : (x : τ, X)
(vs-t)

F;A;L ` s wf

L ` x : τ (A∪L) ` v : τ
F ;A;L ` x = v wf

(s-assign-wf)

L ` x : int (A∪L) ` v1 : int (A∪L) ` v2 : int
F;A;L ` x = v1 op v2 wf

(s-op-wf)

L ` x : τ (A∪L) ` v : τ ref
F;A;L ` x =!v wf

(s-deref-wf)

(A∪L) ` v1 : τ ref (A∪L) ` v2 : τ
F;A;L ` v1 := v2 wf

(s-update-wf)

(A∪L) ` v : int F;A;L ` s1 wf F;A;L ` s2 wf
F ;A;L ` if v then s1 else s2 wf

(s-if-wf)

(A∪L) ` v : int F ;A;L ` s wf
F;A;L ` while v do s wf

(s-while-wf)

L ` x : τ F ` f : A′ → τ (A∪L) ` vs: A′

F ;A;L ` x = f (vs) wf
(s-call-wf)

F;A;L ` s1 wf F;A;L ` s2 wf
F;A;L ` s1;s2 wf

(s-seq-wf)

APPENDIX B. MINIC TYPING RULES 168

F;A;L ` lds : L′

F;A;L ` · : L
(lds-·-t)

x 6∈ Dom(F ∪A∪L)
(A∪L) ` v : τ F;A;L[x : τ] ` lds : L′

F;A;L ` τ x = v; lds : L′ (lds-t)

F ` f ds: F ′

F ` · : F
(f ds-·-t)

f 6∈ Dom(F)
F [f : (A→ τ)];A; · ` lds : L
F[f : (A→ τ)];A;L ` s wf

(A∪L) ` v : τ
F[f : (A→ τ)] ` f ds: F ′

F ` τ f (A) {lds; s; return v} f ds : F ′ (f ds-t)

` p wf

· ` f ds: F
F; · ` lds : L
F; ·;L ` s wf

L ` v : int

` f ds; lds; s; return v wf
(p-wf)

Appendix C

Complete Rules forETALFT

This appendix contains the complete dynamic and static semantics for ETALFT. Section

3.2discusses the main differences between ETALFT and TALFT.

C.1 Syntax of Machine States

colors c ::= G | B
colored values v ::= n
registers r ::= rn

general regs a ::= r | gd | pcc | spc

register f ile R ::= · | R,a→ n
code memory C ::= · |C,n→ i
value memory M ::= · | M,n→ n
store queue Q ::= (n,n)
ALU ops op ::= add | sub| mul

instructions i ::= op rd, rs, rt | op rd, rs,n | mov rd,n | mov rd, rs

| ldc rd, rs | sldc rd n | stc rd, rs | sst n rv
| bzc rz, rd | jmpc rd

| malloc[b] rg, rb | salloc n| s f ree n
inst register ir ::= i | ·
state Σ ::= (R,C,M,Q, ir) | f ault

169

APPENDIX C. COMPLETE RULES FORETALFT 170

C.2 Dynamic Semantics

C.2.1 Fault Rules

Σ −→s
1 Σ′

R(a) = n

(R,C,M,Q, ir) −→1 (R[a 7→ n′],C,M,Q, ir)
(reg-zap)

Q1 = (n1,n′1),(m1,m′),(n2,n′2)
Q2 = (n1,n′1),(m2,m′),(n2,n′2)

(R,C,M,Q1, ir) −→1 (R,C,M,Q2, ir)
(Q1-zap)

Q1 = (n1,n′1),(m,m′
1),(n2,n′2)

Q2 = (n1,n′1),(m,m′
2),(n2,n′2)

(R,C,M,Q1, ir) −→1 (R,C,M,Q2, ir)
(Q2-zap)

C.2.2 Normal Execution Rules

Σ −→s
0 Σ′

R(pcG) = R(pcB) R(pcG) ∈ Dom(C)

(R,C,M,Q, ·)−→0 (R,C,M,Q,C(R(pcG)))
(fetch)

R(pcG) 6= R(pcB)

(R,C,M,Q, ·)−→0 f ault
(fetch-fail)

R′ = R++[rd 7→ R(rs) op R(rt))]

(R,C,M,Q,op rd, rs, rt) −→0 (R′,C,M,Q, ·)
(op2r)

R′ = R++[rd 7→ R(rs) op n]

(R,C,M,Q,op rd, rs,n) −→0 (R′,C,M,Q, ·)
(op1r)

R′ = R++[rd 7→ n]

(R,C,M,Q,mov rd n) −→0 (R′,C,M′,Q, ·)
(mov-n)

APPENDIX C. COMPLETE RULES FORETALFT 171

R′ = R++[rd 7→ R(rs)]

(R,C,M,Q,mov rd rs) −→0 (R′,C,M′,Q, ·)
(mov-reg)

n = max(Dom(M))+1
R′ = R++[rg 7→ n][rb 7→ n]

(R,C,M,Q,malloc[b] rg rb) −→0 (R′,C,(M,n 7→ 0),Q, ·)
(malloc)

R′ = R++[spG 7→ R(spG)−n][spB 7→ R(spB)−n]
m= min(Dom(M))

M′ = (M,m−1 7→ 0, ...,m−n 7→ 0)

(R,C,M,Q,salloc n) −→0 (R′,C,M′,Q, ·)
(salloc)

R′ = R++[spG 7→ R(spG)+n][spB 7→ R(spB)+n]
m= min(Dom(M))

M = M′,m 7→ vm, ...,(m+n−1) 7→ v1

(R,C,M,Q,s f ree n) −→0 (R′,C,M′,Q, ·)
(sfree)

Q′ = ((R(rd),R(rs)),Q)

(R,C,M,Q,stG rd, rs) −→0 (R++,C,M,Q′, ·)
(stG-queue)

R(rd) = n1 R(rs) = n′1

(R,C,M,((n,n′),(nl ,n′l)),stB rd, rs) −→
(nl ,n′l)
0 (R++,C,M[nl 7→ n′l],(n,n′), ·)

(stB-mem)

Q = ((n,n′),(nl ,n′l)) R(rd) 6= nl or R(rs) 6= n′l
(R,C,M,Q,stB rd, rs) −→0 f ault

(stB-mem-fail)

R(spB) = R(spG) R(spG)+n∈ Dom(M)

(R,C,M,Q,sst n, rv) −→
(R(spG)+n,R(rv))
0 (R++,C,M[R(spG)+n 7→ R(rv)],Q, ·)

(sst)

R(spG) 6= R(spB) or R(spB)+n 6∈ Dom(M)

(R,C,M,Q,sst n, rv) −→0 f ault
(sst-fail)

APPENDIX C. COMPLETE RULES FORETALFT 172

f ind(Q,R(rs)) = (R(rs),n)
R′ = R++[rd 7→ n]

(R,C,M,Q, ldG rd, rs) −→0 (R′,C,M,Q, ·)
(ldG-queue)

f ind(Q,R(rs)) = ()
R(rs) ∈ Dom(M)

R′ = R++[rd 7→ M(R(rs))]

(R,C,M,Q, ldG rd, rs) −→0 (R′,C,M,Q, ·)
(ldG-mem)

R(rs) ∈ Dom(M)
R′ = R++[rd 7→ M(R(rs))]

(R,C,M,Q, ldB rd, rs) −→0 (R′,C,M,Q, ·)
(ldB-mem)

f ind(Q,R(rs)) = ()
R(rs) /∈ Dom(M)

(R,C,M,Q, ldG rd, rs) −→0 f ault
(ldG-fail)

R(rs) /∈ Dom(M)

(R,C,M,Q, ldB rd, rs) −→0 f ault
(ldB-fail)

f ind(Q,R(rs)) = ()
R(rs) /∈ Dom(M)
R′ = R++[rd 7→ n]

(R,C,M,Q, ldG rd, rs) −→0 (R′,C,M,Q, ·)
(ldG-rand)

R(rs) /∈ Dom(M)
R′ = R++[rd 7→ n]

(R,C,M,Q, ldB rd, rs) −→0 (R′,C,M,Q, ·)
(ldB-rand)

R(spc)+n∈ Dom(M)
R′ = R++[rd 7→ M(R(spc)+n)]

(R,C,M,Q,sldc rd, n) −→0 (R′,C,M,Q, ·)
(sldc)

R(spc)+n 6∈ Dom(M)

(R,C,M,Q,sldc rd, n) −→0 f ault
(sldc-fail)

APPENDIX C. COMPLETE RULES FORETALFT 173

R(gd) = 0 R′ = R++[gd 7→ R(rd)]

(R,C,M,Q, jmpG rd) −→0 (R′,C,M,Q, ·)
(jmpG)

R(gd) 6= 0

(R,C,M,Q, jmpG rd) −→0 f ault
(jmpG-fail)

R(gd) 6= 0 R(rd) = R(gd)
R′ = R[pcG 7→ R(gd)][pcB 7→ R(rd)][d 7→ 0]

(R,C,M,Q, jmpB rd) −→0 (R′,C,M,Q, ·)
(jmpB)

R(rd) 6= R(gd) or R(gd) = 0

(R,C,M,Q, jmpB rd) −→0 f ault
(jmpB-fail)

R(gd) = 0 R(rz) 6= 0

(R,C,M,Q,bzc rz, rd) −→0 (R++,C,M,Q, ·)
(bz-untaken)

R(rz) 6= 0
R(gd) 6= 0

(R,C,M,Q,bzc rz, rd) −→0 f ault
(bz-untaken-fail)

R(gd) = 0 R(rz) = 0
R′ = R++[gd 7→ R(rd)]

(R,C,M,Q,bzG rz, rd) −→0 (R′,C,M,Q, ·)
(bzG-taken)

R(rz) = 0
R(gd) 6= 0

(R,C,M,Q,bzG rz, rd) −→0 f ault
(bzG-taken-fail)

R(gd) 6= 0 R(rz) = 0
R(rd) = R(gd)

R′ = R[pcG 7→ R(gd)][pcB 7→ R(rd)][gd 7→ 0]

(R,C,M,Q,bzB rz, rd) −→0 (R′,C,M,Q, ·)
(bzB-taken)

R(rz) = 0
R(rd) 6= R(gd) or R(gd) = 0

(R,C,M,Q,bzB rz, rd) −→0 f ault
(bzB-taken-fail)

APPENDIX C. COMPLETE RULES FORETALFT 174

C.3 Static Semantics

C.3.1 Syntax

Static Expressions
exp kinds κ ::= κint | κmem| κσ
exp contexts ∆ ::= · | ∆,x : κ
exps E ::= x | n | E op E | sel Em En

| emp| upd Em En1 En2

substitutions S ::= · | S,E/x

Types
zap tags Z ::= · | c
initialization f lags ϕ ::= 1 | 1

2 | 0
base types b ::= int | Θ → void | b refϕ | sptr
reg types t ::= 〈c,b,E〉 | E′ = 0⇒ 〈c,b,E〉 | ns
reg f ile types Γ ::= · | Γ,a→ t
unlabeled stack σ ::= sbase| ρ | t :: ς
labeled stack ς ::= E : σ
result types RT ::= Θ | void

Contexts
heap typing Ψ ::= · | Ψ,n : b
static context Θ ::= ∆;Γ;(Ed,Es);Em;ς

C.3.2 Properties of Static Expressions

∆ ` E : κ

x∈ Dom(∆)

∆ ` x : ∆(x)
(E-var-t)

∆ ` n : κint
(E-int-t)

∆ ` E1 : κint

∆ ` E2 : κint

∆ ` E1 op E2 : κint
(E-op-t)

APPENDIX C. COMPLETE RULES FORETALFT 175

∆ ` Em : κmem

∆ ` En : κint

∆ ` sel Em En : κint
(E-sel-t)

∆ ` Em : κmem

∆ ` En1 : κint

∆ ` En2 : κint

∆ ` upd Em En1 En2 : κmem
(E-upd-t)

∆ ` emp: κmem
(E-emp-t)

∆ ` S: ∆′

∆ ` · : ·
(sub-emp-t)

∆ ` S: ∆′

∆ ` E : κ
x /∈ Dom(∆)∪Dom(∆′)

∆ ` S,E/x : ∆′,x : κ
(sub-t)

[[E]]

[[n]] = n
[[emp]] = ·
[[E1 op E2]] = [[E1]] op [[E2]]
[[sel Em En]] = [[Em]]([[En]])
[[upd Em E1 E2]] = [[Em]][[[E1]] 7→ [[E2]]]

∆ ` E1 op E2

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S: ∆ =⇒ [[S(E1)]] = [[S(E2)]]

∆ ` E1 = E2
(E-eq)

APPENDIX C. COMPLETE RULES FORETALFT 176

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S: ∆ =⇒ [[S(E1)]] 6= [[S(E2)]]

∆ ` E1 6= E2
(E-neq)

∆ ` E1 : κmem ∆ ` E2 : κmem

∀` ∈ Dom([[S(E1)]])∪Dom([[S(E2)]]). [[S(E1)]](`) = [[S(E2)]](`)

∆ ` E1 = E2
(E-mem-eq)

C.3.3 Value Typing

Ψ ` n : b

Ψ ` n : int
(int-t) Ψ ` n : Ψ(n)

(addr-heap-t)

Ψ ` n : sptr
(addr-stack-t)

Ψ ` n : b refϕ ϕ ≤ ϕ′

Ψ ` n : b refϕ′ (addr-subtp-t)

Ψ;∆ `Z n : t

Ψ ` n : b ∆ ` E = n

Ψ;∆ `Z n : 〈c,b,E〉
(val-t)

Ψ;∆ `Z n : t ′ ∆ ` t ′ ≤ t

Ψ;∆ `Z n : t
(val-subtp-t)

n 6= 0 Ψ;∆ `Z n : 〈c,b,E〉 ∆ ` E′ = 0

Ψ;∆ `Z n : E′ = 0⇒ 〈c,b,E〉
(cond-t)

∆ ` E′ 6= 0

Ψ;∆ `Z 0 : E′ = 0⇒ 〈c,b,E〉
(cond-n0-t)

APPENDIX C. COMPLETE RULES FORETALFT 177

∆ ` E : κint

Ψ;∆ `c n : 〈c,b,E〉
(val-zap-t)

∆ ` E′ : κint ∆ ` E : κint

Ψ;∆ `c n : E′ = 0⇒ 〈c,b,E〉
(val-zap-cond-t)

Ψ;∆ `Z n : ns
(ns-t)

C.3.4 Subtyping

ϕ ↑

0 ↑ = 1
2

1
2 ↑ = 1

2
1 ↑ = 1

ϕ ≤ ϕ′

1≤
1
2
≤ 0 ϕ ≤ ϕ

b≤ b′

b≤ b
(subtp-b-reflex)

ϕ ≤ ϕ′

b refϕ ≤ b refϕ′ (subtp-b-ref)
b≤ int

(subtp-b-int)

∆ ` t ≤ t ′

∆ ` E1 = E2 b1 ≤ b2

∆ ` 〈c,b1,E1〉 ≤ 〈c,b2,E2〉
(subtp-t-triple)

APPENDIX C. COMPLETE RULES FORETALFT 178

∆ ` t ≤ t ′ ∆ ` E = E′

∆ ` (E = 0⇒ t) ≤ (E′ = 0⇒ t ′)
(subtp-t-cond)

∆ ` t ≤ ns
(subtp-t-ns)

∆ ` Γ1 ≤ Γ2

∀r ∈ Dom(Γ2). Γ1(r) ≤ Γ2(r)

∆ ` Γ1 ≤ Γ2
(reg-file-comp)

∆ ` ς ≤ ς′

∆ ` E = E′

∆ ` E : sbase≤ E′ : sbase
(subtp-ς-base)

∆ ` E = E′

∆ ` E : ρ ≤ E′ : ρ
(subtp-ς-var)

∆ ` E = E′ ∆ ` t ≤ t ′ ∆ ` ς ≤ ς′

∆ ` E : (t :: ς) ≤ E′ : (t ′ :: ς′)
(subtp-ς-cons)

C.3.5 Stack Typing Judgments

∆ ` ς wf

∆ ` E : κint

∆ ` E : sbase wf
(ς- wf -base)

∆(ρ) = κσ ∆ ` E : κint

∆ ` E : ρ wf
(ς- wf -var)

∆ ` E +1 = E′ ∆ ` (E′ : σ′) wf

∆ ` E : (t :: (E′ : σ′) wf
(ς- wf -cons)

APPENDIX C. COMPLETE RULES FORETALFT 179

∆;ς ` E : t

∆ ` Es = E
∆; Es : (t :: ς′) ` E : t

(ς-lookup-top)
∆ ` Es 6= E ∆;ς′ ` E : t

∆; Es : (t :: ς′) ` E : t
(ς-lookup-tail)

∆ ` ς[E 7→ t] = ς′

∆ ` Es = E
∆ ` (Es : (ts :: ς))[E 7→ t] = Es : (t :: ς)

(ς-update-top)

∆ ` Es 6= E ∆ ` ς[E 7→ t] = ς′

∆ ` (Es : (ts :: ς))[E 7→ t] = Es : (ts :: ς′)
(ς-update-tail)

C.3.6 Instruction Typing Rules

Ψ;Θ ` ir ⇒ RT

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` · ⇒ (∆;Γ;(Ed,Es);Em;ς)
(·-t)

Γ(rs) = 〈c, int,E′
s〉 Γ(rt) = 〈c, int,E′

t 〉
Γ′ = Γ++[rd 7→ 〈c, int,E′

s op E′
t 〉]

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` op rd, rs, rt ⇒ (∆;Γ′;(Ed,Es);Em;ς)
(op2r-t)

Γ(rs) = 〈c, int,E′
s〉 Γ′ = Γ++[rd 7→ 〈c, int,E′

s op n〉]

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` op rd, rs,n ⇒ (∆;Γ′;(Ed,Es);Em;ς)
(op1r-t)

Ψ;∆ ` n : t

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` mov rd,n ⇒ (∆;Γ++[rd 7→ t];(Ed,Es);Em;ς)
(mov-n-t)

APPENDIX C. COMPLETE RULES FORETALFT 180

Γ(rs) = t

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` mov rd, rs ⇒ (∆;Γ++[rd 7→ t];(Ed,Es);Em;ς)
(mov-reg-t)

x 6∈ ∆
Γ′ = Γ++[rg 7→ 〈G,b ref0,x〉][rb 7→ 〈B,b ref0,x〉]

E′
m = upd Em x 0

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` malloc[b] rg rb ⇒ (∆,x : κint ;Γ′;(Ed,Es);E′
m;ς)

(malloc-t)

Γ(spG) = 〈G,sptr,Eg〉 Γ(spB) = 〈B,sptr,Eb〉
∆ ` Eg = Eb ∆ ` Eg = Et

Γ′ = Γ++[spG 7→ 〈G,sptr,(Eg−n)〉][spB 7→ 〈B,sptr,(Eb−n)〉]
ς′ = (Et−n) : ns:: (Et−(n+1)) : ns:: . . . :: Et : σ

Ψ;(∆;Γ;(Ed,Es);Em;(Et : σ)) ` salloc n ⇒ (∆;Γ′;(Ed,Es);Em;ς′)
(salloc-t)

Γ(spG) = 〈G,sptr,Eg〉 Γ(spB) = 〈B,sptr,Eb〉
∆ ` Eg = Eb ∆ ` Eg = Et

ς = Et : t :: . . . :: Ef : σ ∆ ` Ef = Eg +n
Γ′ = Γ++[spG 7→ 〈G,sptr,(Eg+n)〉][spB 7→ 〈B,sptr,(Eb+n)〉]

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` s f ree n⇒ (∆;Γ′;(Ed,Es);Em;Ef : σ)
(sfree-t)

∆ ` Γ(rs) ≤ 〈G,b ref
1
2 ,E′

s〉 E = sel (updEm (Ed,Es)) E′
s

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` ldG rd rs ⇒ (∆;Γ++[rd 7→ 〈G,b,E〉];(Ed,Es);Em;ς)
(ldG-t)

Γ(rs) = 〈B,b ref1,E′
s〉 E = sel Em E′

s

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` ldB rd rs ⇒ (∆;Γ++[rd 7→ 〈B,b,E〉];(Ed,Es);Em;ς)
(ldB-t)

Γ(spc) = 〈c,sptr,Ec〉 ∆ ` Ec +n = En ∆;ς ` En : 〈c,b,E〉

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` sldc rd n ⇒ (∆;Γ++[rd 7→ 〈c,b,E〉];(Ed,Es);Em;ς)
(sldc-t)

APPENDIX C. COMPLETE RULES FORETALFT 181

Γ(rd) = 〈G,b refϕ,E′
d〉 Γ(rs) = 〈G,b,E′

s〉
Γ′ = Γ++ except∀ r whereΓ(r) = 〈cr ,b refϕ,Er〉 and∆ ` Er = E′

d .

Γ′(r) = 〈cr ,b refϕ↑,Er〉

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` stG rd rs ⇒ (∆;Γ′;(E′
d,E

′
s),(Ed,Es);Em;ς)

(stG-t)

∆ ` Γ(rd) ≤ 〈B,b ref
1
2 ,E′′

d〉 Γ(rs) = 〈B,b,E′′
s 〉

∆ ` E′
s = E′′

s ∆ ` E′
d = E′′

d

Γ′ = Γ++ except∀ r whereΓ(r) = 〈cr ,b ref
1
2 ,Er〉 and∆ ` Er = E′

d .

Γ′(r) = 〈cr ,b ref1,Er〉

Ψ;(∆;Γ;(Ed,Es),(E′
d,E

′
s);Em;ς) ` stB rd rs ⇒ (∆;Γ′;(Ed,Es);upd Em E′

d E′
s;ς)

(stB-t)

Γ(spG) = 〈G,sptr,Eg〉 Γ(spB) = 〈B,sptr,Eb〉 ∆ ` Eg = Eb

∆ ` Eg+n = En Γ(rv) = 〈c,b,Ev〉 ∆ ` ς[En 7→ 〈c,b,Ev〉] = ς′

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` sst n rv ⇒ (∆;Γ++;(Ed,Es);Em;ς′)
(sst-t)

Γ(gd) = 〈G, int,0〉 Γ(rz) = 〈G, int,Ez〉

Θ = (∆′;Γ′;(E′
d,E

′
s);E

′
m) Γ(rd) = 〈G,Θ → void,E′

d〉
Γ′(gd) = 〈G, int,0〉 Γ′′ = Γ++[gd 7→ Ez = 0⇒ 〈G,Θ → void,E′

d〉]

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` bzG rz rd ⇒ (∆;Γ′′;(Ed,Es);Em;ς)
(bzG-t)

Γ(rd) = 〈G,Θ → void,Erd′〉 Θ = (∆′;Γ′;(E′
d,E

′
s);E

′
m)

Γ(gd) = 〈G, int,0〉 Γ′(gd) = 〈G, int,0〉
Γ′′ = Γ++[gd 7→ 〈G,Θ → void,Erd′〉]

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` jmpG rd ⇒ (∆;Γ′′;(Ed,Es);Em;ς)
(jmpG-t)

APPENDIX C. COMPLETE RULES FORETALFT 182

Γ(rz) = 〈B, int,Ez〉

Γ(rd) = 〈B,(∆′;Γ′;(E′
d,E

′
s);E

′
m;ς′) → void,Er〉

Γ(gd) = E′
z = 0⇒ 〈G,(∆′;Γ′;(E′

d,E
′
s);E

′
m;ς′) → void,E′

r〉
∆ ` Ez = E′

z
∆ ` Er = E′

r
∃S.∆ ` S: ∆′

S(Γ′)(gd) = 〈G, int,0〉
S(Γ′)(pcG) = 〈G, int,E′

r〉
S(Γ′)(pcB) = 〈B, int,Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed,Es) = S((E′
d,E

′
s))

∆ ` Em = S(E′
m)

∆ ` ς ≤ S(ς′)

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` bzB rz rd ⇒

(∆;Γ++;(Ed,Es);Em;ς)

(bzB-t)

Γ(gd) = 〈G,(∆′;Γ′;(E′
d,E

′
s);E

′
m;ς′) → void,E′

r〉

Γ(rd) = 〈B,(∆′;Γ′;(E′
d,E

′
s);E

′
m;ς′) → void,Er〉

∆ ` Er = E′
r

∃S.∆ ` S: ∆′

S(Γ′)(gd) = 〈G, int,0〉
S(Γ′)(pcG) = 〈G, int,E′

r〉
S(Γ′)(pcB) = 〈B, int,Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed,Es) = S((E′
d,E

′
s))

∆ ` Em = S(E′
m)

∆ ` ς ≤ S(ς′)

Ψ;(∆;Γ;(Ed,Es);Em;ς) ` jmpB rd ⇒ void
(jmpB-t)

APPENDIX C. COMPLETE RULES FORETALFT 183

C.3.7 Machine State Typing

Ψ `Z R : Γ
∀a∈ Dom(Γ). Ψ; · `Z R(a) : Γ(a)

· ` Γ(pcG) ≤ 〈G, int,EG〉
· ` Γ(pcB) ≤ 〈B, int,EB〉

· ` EG = EB

Ψ `Z R : Γ
(reg-file-t)

Ψ ` C

0 6∈ Dom(C)
∀n∈ Dom(C). Ψ(n) = Θ → void ∧ Ψ;Θ ` C(n) ⇒ RT ∧

(RT = Θ′ impliesΨ(n+1) = Θ′ → void)

Ψ ` C
(C-t)

M = Ms
L

#Mm

Dom(M) = Dom(M1)∪Dom(M2)
Dom(M1)∩Dom(M2) = /0

∀`1 ∈ Dom(M1). ∀`L ∈ L . ∀`2 ∈ Dom(M2). `1 < `L < `2

M = M1
L

#M2

(#-def)

Ψ;M;Q`Z ` : b refϕ

Ψ(`) = b ref1 Ψ ` M(`) : b

Ψ;M;Q`Z ` : b ref1
(init-t)

Ψ(`) = b ref0

Ψ;M;Q`Z ` : b ref0
(uninit-t)

APPENDIX C. COMPLETE RULES FORETALFT 184

Ψ(`) = b ref
1
2

Z 6= G =⇒ ∃n. (`,n) ∈ Q

Ψ;M;Q`Z ` : b ref
1
2

(halfinit-t)

Ψ `Z Q : (Ed,Es)

Ψ `Z () : ()
(Q-emp-t)

Ψ `G (n′1,n
′
2) : (E′

d,E
′
s)

· ` Ed : κint · ` Es : κint

Ψ `G (n1,n2),(n′1,n
′
2) : (Ed,Es),(E′

d,E
′
s)

(Q-zap-t)

Z 6= G
Ψ `Z (n′1,n

′
2) : (E′

d,E
′
s)

· ` Ed = n1 · ` Es = n2

Ψ ` n1 : b refϕ ϕ ≤ 1
2 Ψ ` n2 : b

Ψ `Z (n1,n2),(n′1,n
′
2) : (Ed,Es),(E′

d,E
′
s)

(Q-t)

Ψ `Z (M,Q) : (Em,(Ed,Es))

∀` ∈ Dom(M). ∃ϕ. Ψ;M;Q`Z ` : b refϕ

[[Em]] = M Ψ `Z Q : (Ed,Es)

Ψ `Z (M,Q) : (Em,(E′
d,E

′
s))

(heap-t)

Ψ `Z M : ς

· ` E = ` Dom(M) = {`}

Ψ `Z M : (E : sbase)
(ς-t-base)

· ` (E : t :: ς′) wf · ` E = `

M = {` → n}
·
#M′

Ψ; · `Z n : t Ψ `Z M′ : ς′

Ψ `Z M : (E : t :: ς′)
(ς-t-cons)

APPENDIX C. COMPLETE RULES FORETALFT 185

`Z (R,C,M,Q, ir)

`Z (R,C,M,Q, ir) : Ψ,Γ,ς

Dom(Ψ) = Dom(C)∪Dom(Mm)

M = Ms

Dom(C)

Mm

Ψ `C
∀c 6= Z. ir 6= · =⇒ C(R(pcc)) = ir
∀c 6= Z. Ψ(R(pcc)) = (∆;Γ;(Ed,Es);Em;ς) → void
∃S. · ` S: ∆
Ψ `Z Ms : S(ς)
Ψ `Z (Mm,Q) : (S(Em),S((Ed,Es))
Ψ `Z R : S(Γ)
K = extractK(R,Γ), extractK(Mh), extractK(Ms,ς)

`Z (R,C,M,Q, ir) : K
(Σ-t)

C.4 Simulation of Machine States

C.4.1 Color Extraction

extended color k ::= c | GB | none
coloring K ::= · | a 7→ k | ` 7→ k

extractKt(〈c,b,E〉) = c
extractKt(Ez = 0⇒ 〈c,b,E〉) = c
extractKt(ns) = none

extractK(R,Γ) = ∀a∈ R. a∈ Dom(Γ) ?
a 7→ extractKt(Γ(a)) : a 7→ none

extractK(Ms,ς) = ∀` ∈ Dom(Ms). .;ς ` ` : t ⇒ ` 7→ extractKt(t)

extractK(Mh) = ∀` ∈ Dom(Mh). ` 7→ GB

APPENDIX C. COMPLETE RULES FORETALFT 186

C.4.2 Simulation

k n1 simZ k n2

k n simZ k n
(sim-val)

c n simc c n′
(sim-val-zap)

none n simZ none n′
(sim-val-no-color)

K ` R simZ R′

∀a. K(a) R(a) simZ K(a) R′(a)

K ` R simZ R′
(sim-R)

K ` M simZM′

Dom(M) = Dom(M′)
∀` ∈ Dom(M). K(`) M(`) simZ K(`) M′(`)

K ` M simZ M′
(sim-M)

Q simZ Q′

· simZ ·
(sim-Q-empty)

G n1 simZ G n′1 G n2 simZ G n′2 Q simZ Q′

((n1,n2),Q) simZ ((n′1,n
′
2),Q

′)
(sim-Q)

Σ1 simZ Σ2

APPENDIX C. COMPLETE RULES FORETALFT 187

` (R,C,M,Q, ir) : K
`Z (R′,C,M′,Q′, ir) : K

K ` R simZ R′

K ` M simZ M′

Q simZ Q′

(R,C,M,Q, ir) simZ (R′,C,M′,Q′, ir)
(sim-Σ)

Appendix D

ETALFT Formal Results

This appendix gives expanded details on the formal results for ETALFT that are summa-

rized in Section3.3. All lemmas and theorems are included, along with proof sketches.

The complete proofs in note form appear in the companion technical report [49].

D.1 Modified Lemmas

Many of the lemmas used in AppendixA to prove properties of TALFT must be modified

for use with ETALFT. A selection of the modified lemmas is provided below to illustrate

the types of changes that are necessary.

Substituting an expression of kindκ for a free variable of typeκ preserves typing.(Modi-

fications: Parts 5 and 7 contain the stack type and also to substitute in to the instruction as

well (since malloc contains a base type). Parts 6 and 7 hold for incomplete substitutions

as∆ is extended while type checking malloc.)

188

APPENDIX D. ETALFT FORMAL RESULTS 189

Lemma 34 (Substitution Lemma)

1. If ∆,x : κ ` E′ : κ′ and∆ ` E : κ then∆ ` E′[E/x] : κ′.

2. If ∆,x : κ ` E1 = E2 and∆ ` E : κ then∆ ` E1[E/x] = E2[E/x].

3. If ∆,x : κ ` E1 6= E2 and∆ ` E : κ then∆ ` E1[E/x] 6= E2[E/x].

4. If Ψ;∆,x : κ `Z v : t and∆ ` E : κ thenΨ;∆ `Z v : t[E/x].

5. If Ψ;(∆,x : κ;Γ;(Ed,Es);Em;ς) `Z ir ⇒ RT and∆ ` E : κ

thenΨ;(∆;Γ[E/x];(Ed,Es)[E/x];Em[E/x];ς[E/x]) `Z ir [E/x] ⇒ RT[E/x].

6. If ∆′ ` S: ∆ andΨ;∆ `Z v : t thenΨ;∆′ `Z v : S(t).

7. If ∆′ ` S: ∆ andΨ;(∆;Γ;(Ed,Es);Em;ς) `Z ir ⇒ (∆;Γ′;(E′
d,E

′
s);E

′
m;ς′)

thenΨ;(∆′;S(Γ);S((Ed,Es));S(Em))`ZS(ir)⇒ (·;S(Γ′);S((E′
d,E

′
s));S(E′

m);S(ς′)).

Proof Parts 1, 4, and 5 – by induction on the respective typing derivation. Parts 2 and 3

– by inspection of the equality judgment definition. Parts 6 and 7 – by induction on the

size of∆, using parts 4 and 5 respectively. �

The type of a value gives us information about the shape of thevalue. (Modifications:

The value’s color tag is removed. The new memory typing judgment including the queue

is used instead of the old judgment. Case 4 handles the initialization flag. Cases 7 and 8

are new. Note that the existence of a stack pointer tells nothing about the contents of the

location it refers to.)

Lemma 35 (Canonical Forms)

If Ψ; · `Z n : t andDom(Ψ) = Dom(C)∪Dom(M) andΨ `Z (M,Q) : (Em,(Ed,Es)) and

Ψ `C, then

APPENDIX D. ETALFT FORMAL RESULTS 190

1. If t = 〈c,b,E〉 or t = (E′ = 0) ⇒ 〈c,b,E〉 andc = Z then no particular properties

of n are known.

2. If t = 〈c, int,E〉 andc 6= Z then· ` E = n.

3. If t = 〈c,Θ → void,E〉 andc 6= Z then Ψ(n) = Θ → void andn ∈ Dom(C) and

· ` E = n andn 6= 0.

4. If t = 〈c,b refϕ,E〉 andc 6= Z then

(a) Ψ(n) = b refϕ′
andϕ′ ≤ ϕ, and

(b) n∈ Dom(M), and

(c) · ` E = n, and

(d) ϕ′ = ref
1
2 ∧Z 6= G =⇒ (∃ (n,v) ∈ Q) ∧ (∀ (n,v) ∈ Q. Ψ ` v : b)

(e) ϕ′ = ref1 =⇒ Ψ ` M(`) : b ∧ (Z 6= G =⇒ ∀ (n,v) ∈ Q. Ψ ` v : b)

5. If t = (E′ = 0) ⇒ t ′ andc 6= Z and· ` E′ = 0 thenn 6= 0.

6. If t = (E′ = 0) ⇒ t ′ andc 6= Z and· ` E′ 6= 0 thenn = 0.

7. If t = nsthen no particular properties ofn are known.

8. If t = 〈c,sptr,E〉 andc 6= Z then· ` E = n

Proof By induction on the structure ofΨ; · `Z n : t. �

If a value has a type, and this type has a supertype, then the value also has the supertype.

(Modifications: Part 3 is new.)

Lemma 36 (Subtyping)

1. If Ψ;∆ `Z v : t and∆ ` t ≤ t ′ thenΨ;∆ `Z v : t ′.

APPENDIX D. ETALFT FORMAL RESULTS 191

2. If Ψ `Z R : Γ and∆ ` Γ ≤ Γ′ thenΨ `Z R : Γ′.

3. If Ψ `Z M : ς and∆ ` ς ≤ ς′ thenΨ `Z M : ς′.

Proof Part 1 is by induction on the derivation ofΨ;∆ `Z v : t. Parts 2 and 3 are by

inversion and reconstruction of the appropriate typing rules and using Part 1. �

If a judgment holds under the empty zap tag, then that judgment holds for a colored zap

tag as well.(Modifications: Part 3 is new.)

Lemma 37 (Color Weakening)

1. If Ψ; · ` v : t then∀ c. Ψ; · `c v : t.

2. If Ψ ` R : Γ then∀ c. Ψ `c R : Γ.

3. If Ψ ` M : ς then∀ c. Ψ `c M : ς.

Proof Part 1 by induction on the value typing judgment. The remaining parts are by

inversion and reconstruction of the judgment using Part 1 asnecessary. �

D.2 New Lemmas For Stacks

If an expression in a stack type is referred to explicitly andmemoryM has that stack type,

then there is some locatioǹequal to that expression that exists in the domain ofM.

Lemma 38 (Valid Stack Location)

1. If Ψ `Z M : ς and·;ς ` E′ : t then∃`. · ` E′ = ` and` ∈ Dom(M).

2. If Ψ `Z M : ς and· ` ς[E′ 7→ t] = ς′ then∃`. · ` E′ = ` and` ∈ Dom(M).

3. If Ψ `Z M : ς andς = E1 : t1 :: . . .En : tn :: ς′ then∃`. · ` Ei = `i and`i ∈ Dom(M).

APPENDIX D. ETALFT FORMAL RESULTS 192

Proof By repeated inversion ofς-t-consandς-t-base, all expressionsE on the spine ofς

are equal to a locatioǹin the domain ofM. By ς-updateandς-lookup, E′ is equal to an

expression on the spine ofς. �

In addition, if an expression is looked up on the stack and is equal to a location, then the

contents of that location have the type given by the stack type.

Lemma 39 (Stack Lookup)

If Ψ `Z M : ς and·;ς ` E : t and· ` E = ` thenΨ; · `Z M(`) : t.

Proof By induction on the structure of·;ς ` E : t. �

If a memory has a stack type and we update that stack type, thenthe memory updated

with a value of the same type has the new stack type.

Lemma 40 (Stack Update)

If Ψ `Z M : ς and· ` ς[E′ 7→ t] = ς′ and· `E = ` andΨ; · `Z n : t thenΨ `Z M[` 7→ n] : ς′.

Proof By induction on the structure of· ` ς[E′ 7→ t] = ς′. �

D.3 New Lemmas For Dynamic Memory Allocation

Judgments that hold withΨ continue to hold after adding extra information toΨ.

Lemma 41 (Heap Extension Lemma)

1. If Ψ; · `Z v : t andn 6∈ Dom(Ψ) thenΨ,n 7→ b; · `Z v : t

2. If Ψ `Z M : ς andn 6∈ Dom(Ψ) thenΨ,n 7→ b`Z M : ς

3. If Ψ;M;Q`Z ` : b refϕ andn 6∈ Dom(Ψ) thenΨ,n 7→ b;M;Q`Z ` : b refϕ

APPENDIX D. ETALFT FORMAL RESULTS 193

4. If Ψ;Θ ` ir ⇒ RT andn 6∈ Dom(Ψ) thenΨ,n 7→ b;Θ ` ir ⇒ RT

Proof By induction on the appropriate derivations. �

Judgments that hold withΨ continue to hold after updating an entry inΨ to contain a

subtype of the original value.

Lemma 42 (Ψ Subtyping Lemma)

1. If Ψ; · `Z v : t andb′ ≤ Ψ(n) thenΨ[n 7→ b′]; · `Z v : t

2. If Ψ;M;Q`Z ` : b refϕ andb′ ≤ Ψ(n) thenΨ[n 7→ b′];M;Q`Z ` : b refϕ

3. If Ψ;Θ ` ir ⇒ RT andb′ ≤ Ψ(n) thenΨ[n 7→ b′];Θ ` ir ⇒ RT

Proof By case analysis of the appropriate derivations. Insertaddr-subtp-twhere the

derivation usesΨ(n). �

Judgments that hold with a substitutionScontinue to hold after adding extra information

to S.

Lemma 43 (Substitution Extension Lemma)

1. If Ψ; · `Z v : S(t) and· ` S: ∆ andx 6∈ ∆ then Ψ; · `Z v : (S,E/x)(t)

2. If Ψ `Z M : S(ς) and· ` S: ∆ andx 6∈ ∆ then Ψ `Z M : (S,E/x)(ς)

3. If Ψ `Z Q : S((Ed,Es)) and· ` S: ∆ andx 6∈ ∆ then Ψ `Z Q : (S,E/x)((Ed,Es))

4. if Ψ `Z R : S(Γ) and· ` S: ∆ andx 6∈ ∆ then Ψ `Z R : (S,E/x)(Γ)

5. if M = [[S(Em)]] and· ` S: ∆ andx 6∈ ∆ then M = [[(S,E/x)(Em)]]

Proof By induction on the appropriate derivations. �

APPENDIX D. ETALFT FORMAL RESULTS 194

D.4 Type Safety

The statements of Progress and Preservation do not change, but the proofs are modified

significantly.

Theorem 44 (Progress)

1. If ` Σ thenΣ −→s
0 Σ′ andΣ′ 6= fault.

2. If `c Σ thenΣ −→s
0 Σ.

Proof By case analysis on the instructionir in stateΣ. (Modifications: The existing

cases require minor modifications to remove the color tags and use the modified typing

judgments. Cases are added for the new instructions.) �

Theorem 45 (Preservation)

1. If `Z Σ andΣ −→s
0 Σ′ andΣ′ 6= fault then`Z Σ′.

2. If ` Σ andΣ −→s
1 Σ′ then∃ c. `c Σ′.

Proof By case analysis of the structure of the derivationΣ−→s
k Σ′. (Part 1 Modifications:

The new structure of the top level typing rules requires moresignificant changes to the

existing cases. The new cases for stack load and store use Lemmas38 (Valid Stack

Location), 39 (Stack Update), and40 (Stack Lookup). The rules for stack allocation

and deallocation require proof that the affected locationsare part of the stack and not the

heap. The rule for memory allocation adds new information toΨ, and heap stores modify

entries inΨ to contain subtypes. These rules use Lemmas41 (Heap Extension),42 (Ψ

Subtyping), and43 (Substitution Extension). Part 2 Modifications: The main change is

handling faults to registers with no corresponding colors information. In this case, the

resulting state can be typed using any zap tag.) �

APPENDIX D. ETALFT FORMAL RESULTS 195

D.5 Fault Tolerance

The main change affecting the fault tolerance results comesfrom the reorganization of

the simulation relation explained in Section3.3.2. This change affects the statements of

the lemmas and theorems since the meaning of thesimZ relation now includes typing

information, but actually has little significant impact on the structure of the proofs.

The separation of the value of memory into a heap and a stack changes the definition

of ”observable” memory. The new relationshipss′
`
' s and s′

`
� s are used to relate two

output sequences of address-value pairs. Because the faulty computation may store faulty

values into the stack portion of memory, we can no longer use simple equality to compare

address-value pairs. The judgment
`
' say that the addresses in the two sequences are

equal, and for all addresses greater than`, the values are also equal. The judgments′
`
� s is

similar, but only requires that the locations in the first sequence are a subsequence of those

in the second sequence. In other words, when givenmax(Dom(C)) as`, these judgments

check that the stores committed to the heap are identical andthe stores committed to the

stack are to the same locations, though the values may differ.

The lemmas and theorems are restated with these modifications.

Lemma 46 (Singlestep Fault Detection)

If Σ simc Σ f andΣ −→s
0 Σ′ thenΣ f −→

sf
0 Σ′

f and either

1. Σ′ simc Σ′
f and s′

max(Dom(Σ.C)
' s, or

2. Σ′
f = f ault andsf = ().

APPENDIX D. ETALFT FORMAL RESULTS 196

Proof By case analysis ofΣ−→s
0 Σ′. (Modifications: Other than the slight restructurings

to access the color information, the existing cases are essentially unmodified. New cases

are added for each of the new singlestep rules.) �

Lemma 47 (Multistep Fault Detection)

If Σ simc Σ f andΣ n
−−→

s
0Σ′ then either

1. Σ f
n

−−→
sf

0 Σ′
f andΣ′ simc Σ′

f andsf
max(Dom(Σ.C)

' s, or

2. Existsm≤ n. Σ f
m

−−→
sf

0 f ault andsf

max(Dom(Σ.C)
� s.

Proof By induction on the structure ofΣ n
−−→

s
0Σ′. (Modifications: Minor changes to

support the new output comparisons.) �

Lemma 48 (Fault Similarity)

If Σ −→1 Σ f , then∃ c. Σ simc Σ′.

Proof By case analysis on the definition ofΣ −→1 Σ′. (Modifications: Minor changes

to support the changes to the simulation relation.) �

Theorem 49 (Fault Tolerance)

If ` Σ andΣ n
−→

s
0Σ′ then eitherΣ

(n+1)
−−→

s′

1 Σ′
f

or ∃m≤ (n+1) . Σ m
−−→

s′

1 fault, and

1. For all derivationsΣ
(n+1)
−−→

s′

1 Σ′
f whereΣ′

f 6= fault.

s′
max(Dom(C))

' s and∃ c. Σ′ simc Σ′
f .

2. For all derivationsΣ m
−−→

s′

1 fault wherem≤ (n+1).

s′
max(Dom(C))

� s.

APPENDIX D. ETALFT FORMAL RESULTS 197

Proof By case analysis on the definition ofΣ n
−−→

s
0Σ′. (Modifications: Minor changes

to support the new output comparisons.) �

Appendix E

MiniC to ETALFT Translation

This appendix provides the complete rules for the translation from MiniC to ETALFT and

proof sketches of the formal results. A condensed version isgiven in Section3.4, and the

full proofs are available in [49].

E.1 Overview

In order to simplify the translation, it uses the designatedregisterspcG, pcB, spG, spB,

andgd and then as many fresh temporary registerst1, t2, . . . as needed. Many of these

temporary registers can be easily removed by coalescing move instructions. Section3.6

discusses how to support register allocation if the number of temporary registers is greater

than the number of actual registers.

The translation uses a simplistic calling convention. In order to support fault toler-

ance, all function arguments and return values need to be duplicated. Arguments are

passed on the stack, with the last argument pushed on first. There will be two assembly-

level arguments for each MiniC argument, and the green argument of each pair is always

198

APPENDIX E. MINIC TOETALFT TRANSLATION 199

below the corresponding blue argument on the stack. Below the arguments are the blue

and green copies of the return address. When a function returns, it pops the return address

and all the arguments and pushes two copies of the return value.

On function entry, each function loads all the arguments into temporary registers.

When making a function call, all temporary registers that correspond to local variables

are spilled to the stack before the arguments and return address are pushed. After the

call returns, the registers for the local variables are restored and then the return values are

moved to their destinations.

At a high level, the translation works by passing around a code memoryC and

continually accumulating new instructions onto the end. The notationC@i is used to

append instructioni onto the end of code memoryC. In addition, many judgments track

the following additional information:

n the number of temporary registers required so far. freshReg(n)
generates two fresh temporary registers and increments n
appropriately.

V a mapping from MiniC variables x to pairs of registers(rg, rb).
Vg(x) refers to the first component of the pair and Vb(x) refers to
the second.

B a mapping from function variables to addresses in code memory.

Because ETALFT has no notion of termination, the program ”completes” by jumping

to a designated labellhalt which contains four instructions that create an infinite loop.

APPENDIX E. MINIC TOETALFT TRANSLATION 200

E.2 Translating Typing Information

E.2.1 Type Translation

The type translation[[τ]] = b in FigureE.1translates a MiniC typeτ into a ETALFT base

typeb. The translation of integers and references is straightforward. The only thing to

note is that the translation of a MiniC reference is a fully initialized ETALFT reference.

The translation of the function types into code types is quite a bit more complicated.

First, the two components of the function type are used to generate the type of the stack

on entry to the function (defined in a moment) and the base typebτ of the return value.

Next, we choose a number of fresh expression variables. At function entry, the

memory is described byαm, the program counters byαp, and the return addresses by

αr . α′
m andατ will be used to describe the return memory and return values.

The contexts with a subscriptr describe the return state of the function. When the

function returns, the two program counters will contain thereturn address. The arguments

and return address will have been removed from the stack and the return values pushed

on in their place.

On function entry, the top of the stack contains two copies ofthe return address,

followed by the stack type constructed using the function arguments. The stack pointers

point to the top of the stack, the program counters are equal,and the destination register

is zero.

E.2.2 Context Generation

The typing information can be used to generate a number of different ETALFT contexts.

APPENDIX E. MINIC TOETALFT TRANSLATION 201

[[τ]] = b

[[int]] = int
(trans-int)

[[b ref]] = b ref1
(trans-ref)

[[A]] = α`−2∗n : 〈G,b1,α1〉 :: α`−2∗n−1 : 〈B,b1,α1〉
:: . . .
:: α`−2 : 〈G,bn,αn〉 :: α`−1 : 〈B,bn,αn〉
:: α` : ασ

[[τ]] = bτ

αm,αp,αr ,ατ,α′
m f resh

∆r = α′
m : κmem,ατ : κint

Γr = pcG → 〈G, int,αr〉,spG → 〈G,sptr,(α`−2)〉,
pcB → 〈B, int,αr〉,spB → 〈B,sptr,(α`−2)〉,
gd→ 〈G, int,0〉

ςr = (α`−2) : 〈G,bτ,ατ〉 :: (α`−1) : 〈B,bτ,ατ〉 :: α` : ασ
Θr = (∆r ,Γr ,(),α′

m,ςr)

∆ = αm : κmem,αp : κint ,αr : κint ,α` : κint ,ασ : κσ,
α1 : κint , . . . ,αn : κint

Γ = pcG → 〈G, int,αp〉,spG → 〈G,sptr,α`−2∗n−2〉,
pcB → 〈B, int,αp〉,spB → 〈B,sptr,α`−2∗n−2〉,
gd→ 〈G, int,0〉

ς = (α`−2∗n−2) : 〈G,Θr → void,αr〉
:: (α`−2∗n−1) : 〈B,Θr → void,αr〉 :: [[A]]

[[A→ τ]] = (Γ,∆,(),αm,ς) → void
(trans-(X → τ))

Figure E.1: Type Translation.

APPENDIX E. MINIC TOETALFT TRANSLATION 202

The type of the stack on function entry is generated from the function argumentsA.

The arguments appear in reverse order. There are two copies of each argument, one green

and one blue. The base type for each of these two copies is given by the type translation.

[[A]] = ς

α`,ασ f resh
[[·]] = α` : ασ

(gen-ς-base)

[[τ]] = bτ [[A]] = Es : σ ατ f resh

[[x : τ, A]] = (Es−2) : 〈G,bτ,ατ〉 :: (Es−1) : 〈B,bτ,ατ〉 :: Es : σ
(gen-ς)

Using the function argumentsA and the corresponding stack typeς, we can generate

the register file type that results after loading each of these arguments into the register

specified byV.

[[A;ς]]V = Γ

[[·; α` : ασ]]V = ·
(gen-Γ-args-emp)

[[A; Es : σ]]V = Γ
Γ′ = Γ,Vg(x) → tG,Vb(x) → tB

[[x : τ,A; (Es−2) : tG :: (Es−1) : tB :: Es : σ]] = Γ′ (gen-Γ-args)

Given a variable contextX and a mappingV from each variable inX to a pair of

registers,[[X]]V is the register file type that contains typing information for each of these

registers. Each pair of registers is described by a different expression variable.

[[X]]V = Γ

APPENDIX E. MINIC TOETALFT TRANSLATION 203

[[·]]V = ·
(gen-Γ-X-·)

[[X]]V = Γ [[τ]] = bτ ατ fresh

[[x : τ,X]] = Γ,Vg(x) → 〈G,bτ,ατ〉,Vb(x) → 〈B,bτ,ατ〉
(gen-Γ-X)

Finally, the judgment[[A→ τ;L]]V = Θ can be used to generate the static context

used within the body of a function. It includes the information about function entry

generated by[[A→ τ]], plus the additional registers corresponding to the arguments and

local definitions inL.

[[A→ τ;L]]V = Θ

[[A→ τ]] = (∆,Γ,(),Em,ς)
Γ′ = Γ, [[L]]V, [[A;ς]]V

[[A→ τ;L]]V = (∆,Γ′,(),Em,ς)
(gen-Θ)

E.3 Extending Code Memory

As the translation progresses, it continually adds new codeto the code memoryC. We

define a series of judgments below that can be used to state that the in-progress code

memory has the properties we desire.

As a reminder, the original code typing judgment is shown below. It requires that

for all addresses in the code memory, if code typeΘ → void is assigned to that address,

then Θ can be used to type check the instruction in the address. In addition, if type

checking the instruction gives a modified static contextΘ′, then the type assigned to the

APPENDIX E. MINIC TOETALFT TRANSLATION 204

next location isΘ′ → void. In other words, the only time two adjacent instructions do not

need to agree on the intermediate type, is when the first instruction is a blue jump.

Ψ ` C

0 6∈ Dom(C)
∀n∈ Dom(C). Ψ(n) = Θ → void ∧ Ψ;Θ ` C(n) ⇒ RT ∧

(RT = Θ′ impliesΨ(n+1) = Θ′ → void)

Ψ ` C
(C-t)

E.3.1 Invariants Between Functions

The judgmentB;F ` C : P describes a code memory that contains the translations

of the functions inF. The code memory should be well-typed usingC-t. In addition,

the mappingB should map each function inF to an address that has the ETALFT type

corresponding to the function type. The only items in the type Ψ are those for the actual

addresses inC. And finally, the designated labellhalt that contains the code for an infinite

loop, should have the type provided.

B;F ` C : P

Ψ ` C
∀ f ∈ F. Ψ(B(f)) = [[F(f)]]
dom(Ψ) = dom(C)
Ψ(lhalt) = ((ap : κint , αm : κmem, α` : κint , ασ : κσ) ,

(pcG →< G, int, lhalt >, pcB →< B, int, lhalt >
spG →< G,sptr,α` > spB →< B,sptr,α` >
gd→< G, int,0 >),

(), αm, α` : ασ)

B;F ` C : Ψ wf-F

APPENDIX E. MINIC TOETALFT TRANSLATION 205

E.3.2 Partial Code Memories

While we are in the process of generating code, we are often inthe situation where the

last instruction added is in the middle of a code block. Sincethe remaining instructions

have not yet been added, the code memory is not well-typed according toC-t.

Instead, we define the judgment below.Ψ ` C : Θ states that all the addresses in code

memoryC are well-typed in the usual manner, but that the last instruction results in static

contextΘ. Ψ already contains the typing information for the next instruction that will be

added.

Ψ ` C : Θ

0 /∈ dom(C)
lm = max(dom(C))
dom(Ψ) = dom(C)∪ (lm+1)
∀l ∈ dom(C).

Ψ(l) = Θ → void∧
Ψ;Θ `C(l) ⇒ RT ∧
RT = Θ′ =⇒ Ψ(l +1) = Θ′ → void

Ψ(lm+1) = Θ → void

Ψ ` C : Θ C-partial-Θ

E.3.3 Invariants within a Function

In addition, there are some extra invariants which should hold within the body of a

function. Before defining these, we need to define two sub-judgments.

A static contextΘ is a subtype of another static contextΘ′ when all the corresponding

elements have a subtyping relationship.

APPENDIX E. MINIC TOETALFT TRANSLATION 206

Θ ≤ Θ′

∃S. ∆ ` S: ∆′

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed,Es) = S((E′
d,E

′
s))

∆ ` Em = S(E′
m)

∆ ` ς ≤ S(ς′)

(∆,Γ,(Ed,Es),Em,ς) ≤ (∆′,Γ′,(E′
d,E

′
s),E

′
m,ς′)

Θ-subtp

The judgmentX;V ` Θ wf states that the static contextΘ is consistent with program

variables inX and the mappingV. In other words, for every variable inX : τ, the two

registers inV(x) have base type[[τ]], the first is green and the second is blue, and they are

described by equivalent expressions.

X;V ` Θ wf

Θ = (∆,Γ,seq,Em,ς)
∀x : τ ∈ X.

V(x) = (r, r ′) ∧
Γ(r) =< G, [[τ]],E >
Γ(r ′) =< B, [[τ]],E′ >
∆ ` E = E′

X;V ` Θ wf
Θ-V-wf

The judgmentf ;V;B;F;A;L ` C : Ψ should hold for any code memoryC used in the

process of translating functionf . There are five components to this judgment

• The code memory is well formed and ends with some contextΘ.

• Θ is consistent with the arguments and local variables.

APPENDIX E. MINIC TOETALFT TRANSLATION 207

• Θ is a subtype of the type obtained by translating the functiontype and the local

declarations. (In other words, all the information from thefunction entry still holds,

though there may be additional information about temporaryregisters.)

• All functions in the function context have correctly typed start addresses.

• The halt labellhalt has the appropriate type.

f ;V;B;F;A;L ` C : Ψ

Ψ ` C : Θ
(A∪L);V ` Θ wf
Θ ≤ [[F(f);L]]V
∀ f ′ ∈ F. Ψ(B(f)) = [[F(f ′)]]
Ψ(lhalt) = (ap : κint , αm : κmem, α` : κint , ασ : κσ) ,

(pcG →< G, int, lhalt >, pcB →< B, int, lhalt >
spG →< G,sptr,α` > spB →< B,sptr,α` >
gd→< G, int,0 >),

(), αm, α` : ασ)

f ;V;B;F;A;L ` C : Ψ wf-fun-body

E.3.4 Adding Instructions to Code Memory

The Code Addition Lemma states that if we have a code memory that is well-typed ending

in Θ and a sequence of instructions, the first of which is well-typed givenΘ and who agree

on the interleaving static contexts, then the sequence of instructions can be appended to

the code memory, and the result will be the static context generated by the last instruction.

APPENDIX E. MINIC TOETALFT TRANSLATION 208

Lemma 50 (Code Addition)

If Ψ ` C : Θ1 and Ψ;Θ1 ` i1 : Θ2 and Ψ;Θ2 ` i2 : Θ3 and . . . andΨ;Θn ` in : Θ′

then Ψ′ ` C@i1@· · ·@in : Θ′ wherelm = max(dom(Ψ)) andΨ′ = Ψ′, lm+1→ (Θ2 →

void), lm+3→ (Θ3 → void), . . . , lm+n→ (Θ′ → void)

Proof By inversion and reconstruction ofC-partial-t. �

The Block Extension Lemma is similar except the added sequence of instructions

begins a new block instead of appending on to a block in progress.

Lemma 51 (Block Extension)

If Ψ ` C andΨ;Θ1 ` i1 : Θ2 andΨ;Θ2 ` i2 : Θ3 and . . . andΨ;Θn ` in : Θ′ then

Ψ′ ` C@i1@· · ·@in : Θ′ where lm = max(dom(Ψ)) and Ψ′ = Ψ′, lm + 1 → (Θ1 →

void), . . . , lm+n→ (Θn → void), lm+n+1→ (Θ′ → void)

Proof Similar to Lemma50; deconstructC-t to build firstC-partial-t. �

E.4 Value Translation

The value translation appends code to the existing code memory that moves the value

into the two registersr andr ′. For a constant valuen, n is moved into two fresh registers.

For variables, it simply returns the existing register pair, and does not add any new

instructions. References are created by allocating a new memory location, initializing

that location, and then returning the two registers containthe new address.

[[X ` v : τ]] C n V = C′ n′ r r ′

APPENDIX E. MINIC TOETALFT TRANSLATION 209

(n′, r, r ′) = freshReg(n)
C′ = C @ mov r n@ mov r′ n

[[X ` n : int]] C n V = C′ n′ r r ′
(trans-v-n)

[[X ` x : X(x)]] C n V = C n Vg(x) Vb(x)
(trans-v-x)

[[X ` v : τ]] C n V = Cv nv rv r ′v
[[τ]] = bτ
(n′, r, r ′) = freshReg(nv)
C′ = C @ malloc[bτ] r r ′ @ stG r r v @ stB r ′ r ′v

[[X ` ref v : b ref]] C n V = C′ n′ r r ′
(trans-v-ref)

The Value Translation Lemma states that after adding the instructions to translate the

value, the types of the two destination registers are based on the type of the value. The

resulting register file type is a subtype of the starting register file type because additional

temporaries may be added in ruletrans-v-ref.

Lemma 52 (Value Translation)

If [[X ` v : τ]] C n V = C′n′ r r ′ andΨ ` C : (∆,Γ,seq,Em,ς) andX;V ` Θ wf then

∃E′
m,Ψ′. Ψ′ ` C′ : (∆,Γ′,seq,Em,ς) andΓ′ ≤ Γ andΓ′(r) = 〈G, [[τ]],E〉 andΓ′(r ′) =

〈B, [[τ]],E′〉 and∆ ` E = E′

Proof By case analysis on[[X ` v : τ]] C n V = C′ n′ r r ′. �

APPENDIX E. MINIC TOETALFT TRANSLATION 210

E.5 Value List Translation

The value list translation[[X ` vs: X]] C n V np = C′ n′ is used to push the arguments to

a call onto the stack. It assumes that the stack space has already been allocated.

[[X ` vs: X]] C n V np = C′ n′

[[X ` · : ·]] C n V np = C n
(trans-vs-·)

[[X ` v : τ]] C n V = Cv nv rv r ′v
C′

v = Cv @ sst(2∗np) rv @ sst(2∗np+1) r ′v
[[X ` v,vs : x : τ,X]] C′

v nv V (np+1) = C′ n′

[[X ` v,vs : x : τ,X]] C n V np = C′ n′
(trans-vs)

The Value List Translation Lemma states that after the translation, the resulting stack

type contains the types of the arguments in the appropriate slots. The translation may

generate additional temporary registers while getting thevalues to be stored, and so the

resulting register file type may contain extra information.

Lemma 53 (Value List Translation)

If [[X ` vs: ps]] C n V Pnum = C′ n′ and vs= x1 : τ1, · · · ,xn : τn and Ψ ` C :

(∆,Γ,seq,Em,ς) and ς = El : t :: · · · :: El +2Pnum: t1 :: · · · :: El +2(Pnum+n−1) : tn :: ς′′

thenΨ ` C′ : (∆,Γ′,seq,E′
m,ς′) whereς′ = El : t :: · · · :: El + 2Pnum :< G, [[τ1]],E1 >::

· · · :: El +2(Pnum+n−1) :< B, [[τn]],En >:: ς′′ andΓ′ ≤ Γ.

Proof By induction on the structure of[[X ` vs: ps]] C n V Pnum = C′ n′. The recursive

case uses Lemma52 and then calls the Induction Hypothesis.

�

APPENDIX E. MINIC TOETALFT TRANSLATION 211

E.6 Local Declaration Translation

The local declaration translation is a recursive judgment.For each declaration, the value

is obtained and then moved into two fresh registers. The value mappingV is extended to

map the variables to these registers.

[[F;A;L ` lds : L′]] C n V = C′ n′ V ′

[[F;A;L ` · : L]] C n V = C n V
(trans-lds-empty)

[[(A∪L) ` v : τ]] C n V = Cv nv rv r ′v
(nld, r, r ′) = freshReg(nv)
Vld = V[x 7→ (r, r ′)]
Cld = Cv@mov r rv @mov r′ r ′v
[[F;A;L[x : τ] ` lds : L′]] Cld nld Vld = C′ n′ V ′

[[F;A;L ` τ x = v; lds : L′]] C n V = C′ n′ V ′ (trans-lds)

The Local Declaration Translation Lemma states that the code for the translation of

local variablesldsconsistently adds the types of those declarations.

Lemma 54 (Local Decl. Translation)

If [[F;A;L ` lds : L′]] C n V = C′ n′ V ′

f ;V;B;F;A;L ` C : Ψ
then ∃Ψ′. f ;V ′;B;F;A;L′ ` C′ : Ψ′

Proof By induction on the structure of[[F;A;L ` lds : L′]] C n V = C′ n′ V. The

recursive case uses Lemma52 and then calls the Induction Hypothesis. �

APPENDIX E. MINIC TOETALFT TRANSLATION 212

[[F;A;L ` s wf]] f C n V B= C′ n′

[[F;A;L ` s1 wf]] f C n V B = C1 n1

[[F;A;L ` s2 wf]] f C1 n1 V B = C2 n2

[[F;A;L ` s1;s2 wf]] f C n V B = C2 n2
(trans-s-seq)

[[(A∪L) ` v : τ]] C n V = Cv nv rv r ′v
C′ = Cv @ mov VG(x) rv @ mov VB(x) r ′v
[[F;A;L ` x = v wf]] f C n V B = C′ nv

(trans-s-assign)

[[(A∪L) ` v1 : int]] C n V = C1 n1 r1 r ′1
[[(A∪L) ` v2 : int]] C1 n1 V = C2 n2 r2 r ′2
C′ = C2 @ op VG(x) r1 r2 @ op VB(x) r ′1 r ′2

[[F;A;L ` x = v1 op v2 wf]] f C n V B = C′ n2
(trans-s-op)

[[(A∪L) ` v : τ ref]] C n V = Cv nv r r ′

C′ = Cv @ ldG VG(x) r @ ldB VB(x) r ′

[[F;A;L ` x = !v wf]] f C n V B = C′ nv
(trans-s-deref)

[[(A∪L) ` v1 : τ ref]] C n V = C1 n1 r1 r ′1
[[(A∪L) ` v2 : τ]] C1 n1 V = C2 n2 r2 r ′2
C′ = Cv @ stG r1 r2 @ stB r ′1 r ′2
[[F;A;L ` v1 := v2 wf]] f C n V B = C′ n2

(trans-s-update)

Figure E.2: Statement Translation - Basic Statements.

APPENDIX E. MINIC TOETALFT TRANSLATION 213

lstart = max(dom(C))+1
[[(A∪L) ` v : int]] C n V = Cv nv rv r ′v
(nc, re, re′, rs, rs′) = freshReg(nv)
l f ixend= max(dom(Cv))+1
Cc = Cv @ mov re lhalt @ mov re′ lhalt

@ bzG rv re @ bzB r ′v re′

[[F;A;L ` s wf]] f Cc nc V = Cs ns

C′
s = Cs @ mov rs lstart @ mov rs′@lstart

@ jmpG rs @ jmpB rs′

lend = max(dom(C′
s))+1

C′ = C′
s [l f ixend 7→ mov re lend]

[l f ixend+1 7→ mov re′ lend]
n′ = ns

[[F;A;L ` while v do s wf]] C n V B = C′ n′
(trans-s-while)

Figure E.3: While Statement Translation.

lc = max(dom(C))+1
[[(A∪L) ` v : int]] C n v= Cv nv rv r ′v
(nc, rt , r f , rjt , rjf , rt ′, r f ′, rjt ′, rjf ′, re, re′) = freshReg(nv)
l f ixtrue = max(dom(Cv))+1
Cc = Cv @ mov rt lhalt @ mov rt′ lhalt

@ bzG rv rt @ bzB r ′v rt ′

[[F;A;L ` s2 wf]] f Cc nc V = Cf nf

l f ix join = max(dom(Cf))+1
C′

f = Cf @ mov rjf lhalt @ mov rjf′ lhalt

@jmpG rjf @ jmpB rjf ′

ltrue = max(dom(C′
f))+1

[[F;A;L ` s1 wf]] f C′
f nf V = Ct nt

l join = max(dom(Ct))+1
C′

t = Ct @ mov re ljoin @ mov re′ l join

@ jmpG re @ jmpB re′

C′ = C′
t [l f ix join 7→ mov rjf l join]

[l f ix join +1 7→ mov rjf′ l join]
[l f ixtrue 7→ mov rt ltrue]
[l f ixtrue+1 7→ mov rt′ ltrue]

n′ = nt

[[F;A;L ` if v then s1 else s2 wf]] f C n V B = C′ n′
(trans-s-if)

Figure E.4: If Statement Translation.

APPENDIX E. MINIC TOETALFT TRANSLATION 214

argspace= (size(vs)∗2)+2
vspace= size(dom(V))∗2
spillspace= vspace+argspace
Ctemps= @ salloc argspace

@ sst(argspace+0) Vg(x1)
@ sst(argspace+1) Vgb(x1)
@ · · ·@ sst(argspace+vspace−2) Vg(xn)

@ sst(argspace+vspace−1) Vb(xn)
[[(A∪L) ` vs: ps]] Ctempsn V 1 = Cvs nvs

(ncall, r f , r f ′, ra, ra′) = freshReg(nvs)
retaddr= max(dom(Cvs))+9
Ccall = Cvs @ mov ra retaddr @sst0 ra

@ mov ra′ retaddr @sst1 ra′

@ mov r f B(g) @mov r f′ B(f)
@ jmpG r f @jmpB r f ′

@ sldG 2 Vg(x1)
@ sldG 3) Vb(x1)
@ · · ·
@ sldB (vspace)Vg(xn)
@ sldB (vspace+1)Vb(xn)
@ sldG Vg(x) 0 @sldB Vb(x) 1
@ s f ree(vspace+2)

[[F;A;L ` x = g(vs) wf]] f C n V B = Ccall ncall
(trans-s-call)

Figure E.5: Function Call Translation.

APPENDIX E. MINIC TOETALFT TRANSLATION 215

E.7 Statement Translation

The statement translations are shown in FiguresE.2, E.3, E.4, andE.5. The rules that do

not involve control flow transfers are very straightforward.

The rules forwhile andif are quite a bit more involved. The main complication

comes from the backpatching required to fill in the correct addresses for jump targets.

Because the code is generated sequentially, those instructions that jump forward do not

know the correct address to use at the point they are generated. Instead, they temporarily

jump to lhalt and are later patched to jump to the correct address. The callinstruction

generates a lot of code, but this code just implements the calling convention discussed

earlier.

The Statement Translation Lemma says that translating a statements has no effect

on the main typing information. Again, there may be changes to additional temporary

registers and the description of memory, but the final type isstill consistent with the

function arguments and local declarations.

Lemma 55 (Statement Translation)

If [[F;A;L ` s wf]] f C n V B = C′ n′ and f ;V;B;F;A;L `C : Ψ

then∃Ψ′. f ;V;B;F;A;L ` C′ : Ψ′.

Proof By induction on the structure of[[F;A;L ` s wf]] f C n V B = C′ n and Lemma

52. �

APPENDIX E. MINIC TOETALFT TRANSLATION 216

E.8 Function Translation

The function translation depends on two auxiliary judgments to generate the function

entry and exit sequences.

E.8.1 Prologue and Epilogue

The prologue generates code that loads the arguments from the stack into fresh registers

and updates the variable mapping appropriately.

genPrologue(C,n,V,np,A) = (C′,n′,V ′)

genPrologue(C,n,V,np, ·) = (C′,n′,V ′)
(gen-prologue-emp)

(nx, r, r ′) = freshReg(n)
Cx = C @ sldG (2∗np+2) r @ sldB (2∗np+3) r ′

genPrologue(Cx, nx, V[x 7→ (r, r ′)], (np+1), A) = (C′, n′, V ′)

genPrologue(C, n, V, np, (x : τ,A)) = (C′, n′, V ′)
(gen-prologue)

Before the prologue code,C is well-typed with regard to the set of functions defined.

Afterwards,C′ is well-typed with regard to the body of functionf (though there are no

local declarations yet).

Lemma 56 (Prologue Generation)

If genPrologue(ps) C n V Pnum = C′ n′ V ′ andF ;B` C

then∃Ψ′. f ;V ′;B;F[f : ps→ τ]; ps; · ` C′ : Ψ′.

Proof By induction on the structure ofgenPrologue(ps) C n V Pnum = C′ n′ V ′. �

APPENDIX E. MINIC TOETALFT TRANSLATION 217

The epilogue generates code to free the function arguments and return addresses and

push the return values.

genEpilogue(X ` v : τ, C,n, V, A) = (C′,n′)

[[X ` v : τ]] C n V = Cv nv rv r ′v
(n′, r, r ′) = freshReg(nv)
C′ = C @ sldG 0 r @ sldB 1 r ′

@ s f ree2∗size(A)+2 @salloc2
@ sst0 rv @ sst1 r ′v
@ jmpG r @ jmpB r ′

genPrologue(X ` v : τ, C,n, V, A) = (C′,n′)
(gen-epilogue)

Before the epilogue,C is well-typed with regard to the body of functionf . After-

wards,C′ is well-typed with regard to the set of functions.

Lemma 57 (Epilogue Generation)

If genEpilogue((A∪L) ` v : τ,C,n,A) = (C′,n′) and f ;V;B;F;A;L ` C : Ψ

then∃Ψ′. B;F ` C : Ψ′.

Proof By deconstruction of(wf-fun-body) and the appropriate instruction typing rules.

�

E.8.2 Function Translation Judgment

The function translation judgment generates the function prologue, translates the local

declaration, translates the function body, and generates the epilogue for each function.

The maximum number of registers required by the set of functions is the maximum

required by any single function.

APPENDIX E. MINIC TOETALFT TRANSLATION 218

[[F ` f ds: F ′]] C B = C′ B′ n

[[F ` · : F]] C B = C B
(trans-fds-empty)

faddr = max(dom(C))+1
genPrologue(C,0,V,0,A) = Cp np Vp

[[F[f : A→ τ];A; · ` lds : L]] Cp np Vp = Clds nlds Vlds

[[F[f : A→ τ];A;L ` s wf]] f Clds nlds B[f 7→ faddr] = Cs ns

genEpilogue((A∪L) ` v : τ, Cs,ns, Vlds, A) = (C′,nr)
[[F[f : A→ τ] ` f ds: F ′]] C B[f 7→ faddr] = C′ B′ nf ds

n = max(nr ,nf ds)

[[F ` τ f (A) {lds;s;return v} f ds: F ′]] C B = C′ B′ n′
(trans-fds)

The Function Translation Lemma states that the code memory before and after trans-

lating a set of functions is well-typed with regards to thosefunctions which are defined.

Lemma 58 (Function Translation)

If [[F ` f ds: F ′]] C B = C′ B′ n andB;F `C : Ψ

then ∃Ψ′. B′;F ′ `C′ : Ψ′

Proof By induction on the structure of[[F ` lds : F ′]] C B = C′ B′ n. The recursive case

uses Lemmas56 (Prologue Generation),54 (Local Declaration Translation),55 (State-

ment Translation), and57(Epilogue Generation) and then calls the induction hypothesis.

�

APPENDIX E. MINIC TOETALFT TRANSLATION 219

E.9 Program Translation

The final judgment[[` p wf]] = C n l takes a MiniC programp and generates a code

memoryC, a maximum number of registersn, and a start addressl . It initializes the code

memory to contain four instructions that create an infinite loop

[[` p wf]] = C n l

Cstart = lstart 7→ mov t0 lhalt, lstart +1 7→ mov t1 lhalt

lstart +2 7→ jmpG t0, lstart +3 7→ jmpB t1
[[· ` f ds: F]] Cstart 0 · = Cf ds Bf ds nf ds

lmain = max(dom(Cf ds))+1
[[F; ·; · ` lds : L]] Cf ds 0 · = Clds nlds Vlds

[[F; ·;L ` s wf]] f Clds nl ds Vlds Bf ds = Cs ns

genEpilogue(L ` v : τ, Cs,ns, Vlds, ()) = C′ nr

n′ = max(nr ,nf ds)

[[` f ds; lds;s;return v wf]] = C′ n′ lmain
(trans-p)

Finally, the Translation Theorem states that the result of translating a well-formed

programp can be used to create a well-typed ETALFT machine state. The code memory

is just the code memory returned by the translation. The contents of the heap is empty, and

the stack contains two pointers to the designated label containing the termination code.

The register file is built by calling the functionbuildR(n) to generate a blank register with

n temporary registers. The two program counters are set to thestart address generated by

the translation, and the stack pointers are set to the top of the stack.

APPENDIX E. MINIC TOETALFT TRANSLATION 220

Theorem 59 (Translation)

If [[` f ds; lds;ς wf]] = C n lstart

then ` (R,C,M,(), ·)

where st = min(dom(C))−3

R= buildR(n), pcG 7→ lstart, pcB 7→ lstart, spG 7→ st, spB 7→ st, gd 7→ 0

M = st+2 7→ 0,st+1 7→ lhalt,st 7→ lhalt

Proof By Lemmas58 (Function Translation),54 (Local Declaration Translation),55

(Statement Translation), and57(Epilogue Generation). �

Appendix F

TALCF Formal Results

This appendix expands on the formal results for TALCF presented in Section4.4. We

provide proof sketches for all lemmas and theorems. The complete proofs appear in the

companion technical report [49].

F.1 Type Safety

F.1.1 Typing Lemmas

First, we briefly explain the main lemmas used to prove type safety.

Expression equality is transitive. Conditional expression Ez?Ef : Et is equal to eitherEt

or Ef depending on the value ofEz.

Lemma 60 (Expression Equality)

1. If ∆ ` E1 = E2 and∆ ` E2 = E3 then∆ ` E1 = E3

2. If ∆ ` σ1 = σ2 and∆ ` σ2 = σ3 then∆ ` σ1 = σ3

221

APPENDIX F. TALCF FORMAL RESULTS 222

3. If ∆ ` Ez = 0 then∆ ` Ez?Ef : Et = Et .

4. If ∆ ` Ez 6= 0 then∆ ` Ez?Ef : Et = Ef .

Proof: By the definition of∆ ` E = E and∆ ` σ = σ and the definition of[[E]].

Substituting an expression of kindκ for a free variable of kindκ preserves typing.

Applying a substitutionS that provides substitutions for a number of free variables also

preserves typing.

Lemma 61 (Substitution)

1. If ∆,x : κ ` E′ : κ′ and∆ ` E : κ then∆ ` E′[E/x] : κ′

2. If ∆,x : κ ` E1 = E2 and∆ ` E : κ then∆ ` E1[E/x] = E2[E/x]

3. If (∆,x : κ);Ψ `Z v : t and∆ ` E : κ then∆;Ψ `Z v : t[E/x]

4. If (∆,x : κ);Ψ;Γ;σ;Ei;τ opt` b and∆ ` E : κ

then∆;Ψ;Γ[E/x];σ[E/x];Ei[E/x];τ opt[E/x] ` b

5. If (∆1,∆2) ` E′ : κ′ and∆1 ` S: ∆2 then∆1 ` S(E′) : κ′

6. If (∆1,∆2) ` E1 = E2 and∆1 ` S: ∆2 then∆1 ` S(E1) = S(E2)

7. If (∆1,∆2);Ψ `Z v : t and∆1 ` S: ∆2 then∆1;Ψ `Z v : S(t)

8. If (∆1,∆2);Ψ;Γ;σ;Ei;τ opt` b and∆1 ` S: ∆2

then∆1;Ψ;S(Γ);S(σ);S(Ei);S(τ opt) ` b

Proof:

1. By induction on the structure of∆,x : κ ` E′ : κ′

2. By case analysis on the structure of∆,x : κ ` E1 = E2 using Part 1.

APPENDIX F. TALCF FORMAL RESULTS 223

3. By case analysis on the structure of(∆,x : κ);Ψ `Z v : t using Parts 1 and 2.

4. By induction on the structure of(∆,x : κ);Ψ;Γ;σ;Ei;τ opt` b using Parts 1-3. The

case for rule (recovernz-t) divides into two subcases depending on ifEz = 0 and

uses rule (recovernz-eq-t) or rule (recovernz-neq-t) as appropriate.

5-8. By induction on the size of∆2, using Parts 1-4 respectively.

If a value has a typet and this type is a subtype oft ′, then the value can also be given type

t ′.

Lemma 62 (Subtyping)

If ∆ ` t ≤ t ′ and∆;Ψ `Z v : t then∆;Ψ `Z v : t ′

Proof: By induction on the derivation of∆;Ψ `Z v : t. Each case uses inversion of the

subtyping rules and Lemma60(Expression Equality).

If a valuec n has type〈c′,τ′,E′〉 under zap tagZ, then our knowledge aboutn depends

both on the base typeτ′ and also the relationship betweenZ andc′. If Z = CF and the

color in the type isG or B, then the judgment may be been derived using rule (val-zap-

CF-t), so we know nothing aboutn. However, we do know that the expression has kind

κint . If Z is c′, then the judgment may have been derived by rule (val-zap-c-t), so again

we only know that the expressionE′ has kindκint . The remaining case applies whenZ

is not equal to the color in the typec′ and when eitherZ 6= CF or the color in the type is

neitherG nor B. In this case the judgment must have been derived using rule (val-t), so

we know the color tag on the value is equal to the color tag in the type and the expression

APPENDIX F. TALCF FORMAL RESULTS 224

E′ is equal to the valuen. In addition, ifτ′ is a code type, we also know thatn is a valid

code address.

Lemma 63 (Canonical Forms)

If · ;Ψ `Z c n : 〈c′,τ′,E′〉 and `C : Ψ then

1. If Z = CF and (c′ = B or c′ = G), then· ` E′ : κint .

2. If Z = c′ thenc = c′ and· ` E′ : κint .

3. If Z 6= c′ and (Z 6= CF or (c′ 6= B andc′ 6= G)) then

• c = c′

• · ` E′ = n

• τ′ = ∀[∆](Γ,σ) =⇒ n∈ Dom(C)

Proof: By inspection of·;Ψ `Z c n : 〈c′,τ′,E′〉.

If a value has a typet under zap tagZ, then that value also has typet under any zap tag

Z′ that is a supertype ofZ.

Lemma 64 (Color Weakening)

If ∆;Ψ `Z v : t andZ ≤ Z′ then∆;Ψ `Z′
v : t

Proof: By case analysis of∆;Ψ `Z v : t and the definition ofZ ≤ Z′.

F.1.2 Type Safety

We have proven that the TALCF type system is sound using the standard notion of Progress

and Preservation. Progress asserts that machine states well-typed under the empty zap tag

APPENDIX F. TALCF FORMAL RESULTS 225

can take a step to another ordinary machine state. States that are well-typed under any

zap can also take a step, but this step may reach any state, including recover(h) or

hwerror(h).

Theorem 65 (Progress)

1. If ` Σ thenΣ −→0 Σ′.

2. If `Z Σ thenΣ −→0 F .

Proof: The proof for each part is by case analysis on the current block b of Σ using

Lemma60 (Expression Equality) and Lemma63 (Canonical Forms).

Preservation states that execution preserves typing. States well-typed under the empty

zap tag continue to be so after taking a non-faulty step. States typed under any zap also

remain well-typed after a non-faulty step, but the zap tag may escalate to a supertype.

This elevation might occur at control flow transfers. A zap tag of B or G becomesCF

whenever the corruption has spread to the operands being used in the transfer. This way

the block that results from the transfer can be well-typed under CF even when control

has transferred to a totally unexpected block. The intention register is always the only

orange value that is live across control flow transfers, and we have already seen that it is

well-typed even when a control fault has occurred. Finally,a state is well-typed under the

empty zap tag and takes a faulty step, then the resulting state is well-typed under some

colorc.

Theorem 66 (Preservation)

1. If ` Σ andΣ −→0 Σ′ then ` Σ′

2. If `Z Σ andΣ −→0 Σ′ then∃Z′ . `Z′ Σ′ andZ ≤ Z′.

3. If ` Σ andΣ −→1 Σ′ then∃c . `c Σ′

APPENDIX F. TALCF FORMAL RESULTS 226

Proof: The proof for each part is by case analysis on the corresponding single step

judgment using Lemma60 (Expression Equality), Lemma63 (Canonical Forms), and

Lemma64 (Color Weakening). Cases for the jump and branch rules also use Lemma61

(Substitution) and Lemma62 (Subtyping).

F.2 Fault Tolerance Results

We first present a handful of definitions and lemmas relating machine states to other

states, and then use these to formally state and prove the Fault Tolerance Theorem.

F.2.1 Machine State Simulation

We say that a faulty value simulates a fault-free value undercolorc if the values are equal

when they are not colored byc.

c′ n simc c′ n
(sim-val)

c n simc c n′
(sim-val-zap)

A faulty machine stateΣ f simulates a fault-free stateΣ under colorc if Σ f is well-

typed underc, Σ is well-typed under the empty zap tag, and the two states are identical

modulo the values in registers coloredc.

` (C,h,R,b) `c (C,h,Rf ,b) ∀r.Rf (r) simc R(r)

(C,h,Rf ,b) simc (C,h,R,b)
(sim-Σ)

F.2.2 Block Execution

The Block Step Lemma states that given a non-faulty computation and a corresponding

faulty versionΣ f , if the non-faulty computation can take a non-faulty step tosome other

APPENDIX F. TALCF FORMAL RESULTS 227

statein the same block, then the faulty computation will either also take a step within the

current block or will take a single step to the recover state.

Lemma 67 (Block Step)

If Σ f simc (C,h,R,b) and(C,h,R,b) −→0 (C,h,R′,b′) then either

1. Σ f −→0 Σ′
f andΣ′

f simc (C,h,R′,b′), or

2. Σ f −→0 recover(h)

Proof: By case analysis of(C,h,R,b)−→0 (C,h,R′,b′) and Theorem66(Preservation).

In order to reason about block execution, we extend the single step relationΣ −→k Σ′

from Section4.2 to create the judgmentΣ ;k F which states thatF is the result of

executing thecurrent blockof Σ while incurringk faulty transitions. Execution proceeds

up to the control-flow transfer statement at the end of the current block or the recover state

if the block terminates prematurely by transitioning to recovery code. For example, ifΣ =

(C,h,R, i1; ...; in;jmp rt), then eitherF = (C,h,R′,recover(h)) or F = (C,h,R′,jmp rt).

Σ ;k F

(C,h,R,b) −→0 recover(h)

(C,h,R,b) ;0 recover(h)
(blk-eval-recover)

(C,h,R,jmp rt) ;0 (C,h,R,jmp rt)
(blk-eval-jmp)

(C,h,R,brz rz rt) ;0 (C,h,R,brz rz rt)
(blk-eval-brz)

(C,h,R,b) −→k1 (C,h,R′,b′) (C,h,R′,b′) ;k2 F

(C,h,R,b) ;(k1+k2) F
(blk-eval-sequence)

The Block Execution Lemma states that given a faulty computation Σ f that simulates

a non-faulty computation, the result of executing the faulty block will either simulate

APPENDIX F. TALCF FORMAL RESULTS 228

the result of executing the non-faulty block, or executing the faulty block will result in

recover(h).

Lemma 68 (Block Execution)

If Σ f simc (C,h,R,b) and(C,h,R,b) ;0 Σ′ then either

1. Σ f ;0 Σ′
f and Σ′

f simc Σ′, or

2. Σ f ;0 recover(h)

Proof: By induction on the structure of(C,h,R,b) ;0 Σ′ and Lemma67 (Block Step).

F.2.3 Fault Recovery

TheCF Fault Step Lemma states that once a control flow fault has occurred, execution

will either step within the same block or will step to recovery code.

Lemma 69 (CF Fault Step)

If `CF (C,h,R,b) then either

1. (C,h,R,b) −→0 (C,h,R′,b′) and`CF (C,h,R′,b′)

2. (C,h,R,b) −→0 recover(h).

Proof: By case analysis on the structure ofb using Theorem66 (Preservation).

The Fault Recovery Lemma states that once a control flow faulthas occurred, control will

always reach recovery code before exiting the current block.

APPENDIX F. TALCF FORMAL RESULTS 229

Lemma 70 (CF Fault Block Execution)

If `CF (C,h,R,b) then(C,h,R,b) ;0 recover(h).

Proof: By induction on the length ofb and Lemma69 (CF Fault Step).

F.2.4 Block Transitions

In order to reason about transitionsbetweenblocks, we define the judgmentΣ =⇒` Σ′

whenever(C,h,R,b) −→0 (C,(h, `),R′,b′). In other words, control transfers from the

end of one block to the beginning of another block` in a single step.

Σ =⇒` Σ′

(C,h,R,b) −→0 (C,(h, `),R′,b′)

(C,h,R,b) =⇒` (C,(h, `),R′,b′)
(trans-eval)

The Block Transition Lemma states that whenever a non-faulty computation transitions

to a new block, the corresponding faulty computation will either (1) transition to the same

block and continue to be indistinguishable from the non-faulty computation, (2) trigger

a hardware error, or (3) transition to an incorrect block where the error will be detected

before control leaves the incorrect block.

Lemma 71 (Block Transition)

If Σ f simc (C,h,R,b) and(C,h,R,b) =⇒` Σ′ then either

1. Σ f =⇒` Σ′
f andΣ′

f simc Σ′

2. Σ f −→0 hwerror(h)

3. Σ f =⇒`′ Σ′
f andΣ′

f ;0 recover(h, `′)

APPENDIX F. TALCF FORMAL RESULTS 230

Proof: By case analysis of the structure of(C,h,R,b) =⇒` Σ′ and Lemma70(CF Fault

Block Execution).

F.2.5 Program Execution

The judgmentΣ =⇒h
k F states that machine stateΣ executes through a sequence of

blocksh to reach stateF while incurringk faulty transitions. In other words, ifΣ =

(C,h1,R,b), then F is either the regular state(C,(h1,h),R′,jmp rt), the regular state

(C,(h1,h),R′,brz rz rt), the hardware error statehwerror(h1,h), or the recovery state

recover(h1,h).

Σ =⇒h
k Σ′

Σ ;k F

Σ =⇒
()
k F

(prog-exec-blk)

Σ =⇒h
k Σ′ Σ′ −→0 hwerror(h′,h)

Σ =⇒h
k hwerror(h

′,h)
(prog-exec-seq-hwerror)

Σ =⇒h
k1

Σ′ Σ′ =⇒` Σ′′ Σ′′
;k2 F

Σ =⇒
(h,`)
(k1+k2)

F
(prog-exec-seq-trans-blk)

The Faulty Execution Lemma states that if a faulty executionΣ f simulates a non-

faulty executionΣ under some colorc, thenΣ f behaves in one of four possible ways with

regards toΣ. (1) ExecutingΣ f results in the same sequence of blocksh as executingΣ

and the resulting faulty state simulates the correspondingnon-faulty state under the same

color c. (2) ExecutingΣ f results in an attempt to transfer control to an invalid address

outside the domain of code memory and triggers a hardware fault. Prior to the occurrence

of the hardware fault, the execution ofΣ f visits the same blocks as the execution ofΣ.

APPENDIX F. TALCF FORMAL RESULTS 231

(3) While executingΣ f , a fault is detected and control is transferred to recovery code

even though no incorrect blocks have been visited. This situation can be caused by a fault

affecting the intention register or the checking code. (4) While executingΣ f , control

veers off course to a block that is not visited in the execution of Σ. In this case, the

checking code in the invalid block catches the error and transfers control to the recovery

code.

Lemma 72 (Faulty Execution)

If Σ f simc Σ andΣ =⇒h
0 Σ′ then either:

1. Σ f =⇒h
0 Σ′

f andΣ′
f simc Σ′

2. Σ f =⇒
hf
0 hwerror(h′,hf) andhf is a prefix ofh

3. Σ f =⇒
hf
0 recover(h′,hf) andhf is a prefix ofh

4. Σ f =⇒
hf
0 recover(h′,hf) andhf = (h1, l ′) andh = (h1, l ,h2)

Proof: By induction on the structure ofΣ =⇒h
0 Σ′, Lemma68 (Block Execution) and

Lemma71 (Block Transition).

F.2.6 The Fault Tolerance Theorem

A program is fault-tolerant if any execution of the program with a single fault behaves in

one of four possible ways with regards to the original, non-faulty computation. (1) The

faulty computation visits the same sequence of blocks as theoriginal and the resulting

faulty state simulates the corresponding original state under some colorc. (2) The faulty

APPENDIX F. TALCF FORMAL RESULTS 232

computation attempts to transfer control to an invalid address outside the domain of

code memory and triggers a hardware fault. Prior to the occurrence of the hardware

fault, the faulty computation visits the same blocks as the original computation. (3) The

faulty computation detects a fault in software and jumps to recovery code even though no

incorrect blocks have been visited. This situation can be caused by a fault affecting the

intention register or the checking code. (4) The faulty computation veers off course to a

block that does not match the corresponding block in the original computation. In this

case, the checking code in the invalid block catches the error and transfers control to the

recovery code.

Theorem 73 (Fault Tolerance)

If ` Σ andΣ =⇒h
0 Σ′ then at least one of the following cases applies and all derivations

Σ =⇒
hf
1 F wherelength(hf) ≤ length(h) fit one of these cases:

1. Σ =⇒h
1 Σ′

f and∃c . Σ′
f simc Σ′

2. Σ =⇒
hf
1 hwerror(h′,hf) andhf is a prefix ofh

3. Σ =⇒
hf
1 recover(h′,hf) andhf is a prefix ofh

4. Σ =⇒
hf
1 recover(h′,hf) andhf = (h1, l ′) andh = (h1, l ,h2)

Proof: By case analysis on the structure ofΣ =⇒h
0 Σ′. In essence, arbitrarily divide

the computationΣ =⇒h
0 Σ′ into two pieces with someΣ′′ as the intermediate state. Use

one of the fault rules to stepΣ′′ to Σ′′
f . If c is the color of the value that faults, then

Σ′′
f simc Σ′′. Then use Lemma72 (Faulty Execution) withΣ′′

f simc Σ′′ and the remainder

of the computation fromΣ′′ to Σ′ to determine what happens after the fault. Use these

APPENDIX F. TALCF FORMAL RESULTS 233

results and the first half of the computation to show that one of the four cases applies to

the entire computation containing a single fault.

Appendix G

TALCF Translation

This appendix gives additional details for the translationfrom while loops to TALCF

presented in Section4.5. We provide proof sketches for all lemmas and theorems. The

complete proofs appear in the companion technical report [49].

G.1 A Simple While Loop Language

The while loop language statements consist of simple assignment, subtraction, if state-

ments, while loops, and sequences of statements. As all the variables in this language

contain integers, the well-formedness judgmentV ` ssimply enforces that all variablesv

in s exist in the variable contextV.

s ::= v := n | vd := va−vb

| if0 vz then s1 else s2 | while vz 6= 0 do s

| s1;s2

234

APPENDIX G. TALCF TRANSLATION 235

G.2 Checking Code and Exit Code Macros

The translation rules and lemmas make use of the following macros that implement the

protocol from Section4.1. These macros make use of two temporary registers:tg andtb.

Macro “check`” generates the checking code at the entry of block` to check that

control has correctly transferred to this block. Macro “intendjmp`t” sets the intention

and then executes the jump to target block`t. Finally, macro “intendzbrzrz `t ` f ” uses

registerr ′z to conditionally set the intention to fall through to block` f or branch to block

`t , and then uses registerrz to execute the conditional branch.

check` ≡ movi tg O `;sub tg tg r i;
recovernz tg

intendjmp`t ≡ movi tb B `t ;intend tb;
movi tg G `t ;jmp tg

intendzbrzrz `t ` f ≡ movi tb B ` f ;intend tb;
movi tb B `t ;intendz r ′z tb;
movi tg G `t ;brz rz tg

G.3 Translating Variable Context V

Since all variables are considered live at all program points, every assembly-level instruc-

tion block will have essentially the same signature. If the contextV contains variable

v1,. . . ,vn, then each block in the translation requires 2n+ 3 registers: a green copyrk

and a blue copyr ′k for each variablevk, the intention registerr i , and two temporary

registerstg andtb. (We have made no effort to optimize this translation, it merely serves

to demonstrate the theoretical expressiveness of the target language.)

APPENDIX G. TALCF TRANSLATION 236

The function[[V]]` generates the code type of the code at label`. The generated

∆ contains all the expression variables that are need inΓ andσ. Each label will have a

slightly different history typingσ, since the sequence ends with the current label. Register

file typingΓ gives types to each of the 2n+3 registers. Registerrk is green andr ′k is blue.

Both registers have basic typeint and are described by the same expression variablexk,

which enforces that they are equal on entry to the block. Registerr i is orange, has basic

typecheck, and is described by expression variablexi . Again, since we have not optimized

the translation, we will assume that during block transitions tg always contains a green

value andtb always contains a green value. They may hold values of other colors during

the body of a block.

[[V]]` = ∀[∆](Γ,σ)

choose fresh variables x1, ..., xn, xh, xr i , xg, xb, xo

∆ = x1 : κint , . . . , xn : κint , xh : κhist, xr i : κint, xg : κint , xb : κint

σ = xh◦ `
Γ = { r1 : 〈G, int,x1〉, r ′1 : 〈B, int,x1〉, . . . , rn : 〈G, int,xn〉, r ′n : 〈B, int,xn〉,

r i : 〈O,check,xr i〉,
tg : 〈G, int,xg〉, tb : 〈B, int,xb〉 }

[[v1, . . . ,vn]]` = ∀[∆](Γ,σ)
(trans-V)

The functionGenΨ(V,L) computes the heap typingΨ that maps each label inL to its

corresponding type

GenΨ(V,L)

GenΨ(V, ·) = ·
GenΨ(V,(L, `)) = GenΨ(V,L), ` 7→ [[V]]`

APPENDIX G. TALCF TRANSLATION 237

G.4 Partial Translations

A 4-tuple of objects(L,C,~i, `) is used to track the code generated during the translation.C

is the code memory that contains all blocks generated so far.L contains labels that may be

referred to by blocks inC but whose corresponding blocks have not yet been generated.`

is the label that will be assigned to the block that is currently being generated.~i contains

the list of instructions for this block that have been generated so far. The instructions for

checking the checking code and exit code are not included andwill be added when the

block is added toC.

The judgmentV;Ψ1 `C : Ψ2 is used to type code memoryC as it is being generated.

There are two disjoint heaping typings:Ψ1 contains labels that may be referenced byC

but whose corresponding code blocks may not have been generated yet, andΨ2 contains

the types for the blocks that have already been generated. Both Ψ1 andΨ2 map each

label ` to [[V]]`. In addition, each label inΨ2 has a type that can be used to type check

corresponding block.

V;Ψ1 `C : Ψ2

Dom(Ψ1)∩Dom(Ψ2) = /0
∀` ∈ Dom(Ψ1) . Ψ1(`) = [[V]]`
Dom(C) = Dom(Ψ2)
∀` ∈ Dom(Ψ2) .

Ψ2(`) = [[V]]` = ∀[∆]((Γ, r i 7→ 〈O,check,xi〉), xh◦ `)
∧ ∆; (Ψ1∪Ψ2); (Γ, r i 7→ 〈O,check,xi〉); (xh◦ `); xi ; (Ψ1∪Ψ2)(`+1)

` C(`)

V;Ψ1 `C : Ψ2
(C-wf)

APPENDIX G. TALCF TRANSLATION 238

JudgmentV `~i wf states that~i is a sequence of pairs of instructions that perform

duplicate moves and subtractions. For example, the following is a well-formed list of

instructions.

movi r3 G 3; movi r ′3 B 3; sub r4 r5 r6; sub r ′4 r ′5 r ′6; . . .

Using these definitions, we say a partial translation(L,C,~i, `) is well-formed when

the code memoryC is well-formed using the heap typings calculated from the label` and

the labels inL and the labels already in the domain ofC. In addition, the instruction list~i

is well-formed.

V ` (L,C,~i, `) wf

Ψ1 = GenΨ(V,(L, `))
Ψ2 = GenΨ(V,Dom(C))
V;Ψ1 `C : Ψ2

V `~i wf

V ` (L,C,~i, `) wf
(partial-trans-wf)

The Block Construction Lemma says that the instruction list~i from a well-formed partial

translation can be used to construct a block by adding checking code to the beginning and

exit code to the end. The exit code can refer to any existing label `′ as the jump target.

The exit code can be a conditional branch only if the fall-through block̀ +1 exists. The

new code memory formed by adding this new block is also well-formed.

Lemma 74 (Block Construction)

If V ` (L,C,~i, `) wf then∀`′ ∈ ((L, `)∪Dom(C)) .

1. GenΨ(V,L) ` C[` 7→ check`;~i; intendjmp`′] : GenΨ(V,(Dom(C), `))

APPENDIX G. TALCF TRANSLATION 239

2. If l +1∈ ((L, `)∪Dom(C))

then GenΨ(V,L) ` C[̀ 7→ check̀ ;~i; intendzbrzrz `′ `+1] : GenΨ(V,(Dom(C), `))

Proof: Using the macro definitions, the definition ofV ` (L,C,~i, `) wf, and instruction

typing rules from Section4.3.2.

G.5 Translating Statements

The main translation judgment[[V ` s]](L,C,~i, `) = (L′,C′,~i′, `′) extends the existing

partial translation(L,C,~i, `) with the translation of statements.

The statement translation rules are shown in FigureG.1. Translating simple assign-

ment and subtraction statements simply adds pairs of assembly instructions to the end of

the current instruction sequence. Sequencing two statements uses the partial translation

from the first statement to translate the second.

Translatingif0 statements requires the addition of new blocks:` f contains the fall-

through branch,̀t contains the true branch, and`m is where the two branches merge. The

functionNumBlock(s) calculates the number of blocks generated by the translation of s.

The current blockb` contains checking code, the code~i generated for the block so far,

and ends with a conditional branch to`t (and an automatic fall-through tòf). The new

label`t is the starting point for the code generated for the true branchs1. The ending label

of this codè ′
t finishes by merging back to the common block at`m. The translation of

the false branch is similar. The final code memory contains all blocks generated by either

branch as well as the blocks ending each branch by jumping to the merge block̀m. The

label in the resulting partial translation is`m.

Translatingwhile statements also requires the addition of new blocks. The current

block at` is terminated with an unconditional jump to a beginning block at `b that tests

APPENDIX G. TALCF TRANSLATION 240

[[V ` s]](L,C,~i, `) = (L′,C′,~i′, `′)

~i′ =~i; movi rk G n; movi r ′k B n

[[V ` v := n]](L,C,~i, `) = (L,C,~i′, `)
(t-assign)

~i′ =~i; sub rk ra rb; sub r ′k r ′a r ′b
[[V ` vd := va−vb]](L,C,~i, `) = (L,C,~i′, `)

(t-sub)

[[V ` s1]](L,C,~i, `) = (L1,C1,~i1, `1)

[[V ` s2]](L1,C1,~i1, `1) = (L2,C2,~i2, `2)

[[V ` s1;s2]](L,C,~i, `) = (L2,C2,~i2, `2)
(t-seq)

` f = `+1
`t = ` f +NumBlocks(s1)
`m = `t +NumBlocks(s2)

b` = check`;~i; intendzbrzrz ` f `t

[[V ` s1]]((L, ` f),C[` 7→ b`], ·, `t) = (L′
t ,C

′
t ,~i

′
t , `

′
t)

b′t = check`′t ;~i
′
t ; intendjmp`m

[[V ` s2]]((L, `t),C[` 7→ b`], ·, ` f) = (L′
f ,C

′
f ,
~i′f , `

′
f)

b′f = check`′f ; ~i
′
f ; intendjmp`m

C′ = (C′
t ∪C′

f)[`
′
t 7→ b′t][`

′
f 7→ b′f]

[[V ` if0 vz then s1 else s2]](L,C,~i, `) = (L,C′, ·, `m)
(t-if)

`b = `+1
`s = `b+1
`e = `s+NumBlocks(s)

C′′ = C[` 7→ check`;~i; intendjmp`b]
[`b 7→ check`b; intendzbrzrz `e `s]

[[V ` s]]((L, `e),C′′, ·, `s) = (L′
s,C

′
s,~i

′
s, `

′
s)

C′ = C′
s[`

′
s 7→ check`′s;~i

′
s; intendjmp`b]

[[V ` while vz 6= 0 do s]](L,C,~i, `) = (L′
s,C

′, ·, `e)
(t-while)

Figure G.1: Translation of While Programs.

APPENDIX G. TALCF TRANSLATION 241

the condition and branches to an ending label`e if the condition fails. Otherwise it falls

through to the block at̀s which contains the translation ofs and terminates with a jump

back to the beginning block. The label in the resulting partial translation is̀ e.

The Statement Translation Lemma says that given a well-formed partial translation

(L,C,~i, `), translating a statements results in another well-formed partial translation.

In addition, the new set of undefined labelsL′ is equal to that in the original partial

translation.

Lemma 75 (Statement Translation)

If [[V ` s]](L,C,~i, `) = (L′,C′,~i′, `′) andV ` (L,C,~i, `) wf

thenV ` (L′,C′,~i′, `′) wf andL = L′

Proof: Using the definition ofV ` (L,C,~i, `) wf and Lemma74(Block Construction).

G.6 The Translation Theorem

To translate a statements as a stand-alone program, it is translated as in the previous

section with 1 as the starting label. Because there is no haltinstruction in TALCF, code

is added to the last block in the translation to create an infinite loop at label̀ halt. The

function InitRegFile(V) creates an initial register file that maps each register usedto

translateV to 0.

The assembly language program corresponding tos is the TALCF state consisting of

the generated code memory, a history with only the first location, an initial register file,

and code to jump to the first label in code memory. If the original statement is well-

formed, then the translation is well-typed.

APPENDIX G. TALCF TRANSLATION 242

Theorem 76 (Translation)

If [[V ` s]](., ., .,1) = (.,C,~i, `) then

` (C′, 0, InitRegFile(V), intendjmp 1)

whereC′ = [` 7→ check`;~i; intendjmp`halt][`halt 7→ check`halt; intendjmp`halt]

Proof: Using Lemma75 (Statement Translation), Lemma74 (Block Construction), the

block typing rules from Section4.3.3, and the machine state typing rules from Sec-

tion 4.3.4.

Bibliography

[1] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti. Control-flow integrity:

Principles, implementations, and applications. InACM Conference on Computer

and Communications Security, Nov. 2005.

[2] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti. A theory of secure control

flow. In International Conference on Formal Engineering Methods, Nov. 2005.

[3] A. W. Appel. Foundational proof-carrying code. InSixteenth Annual IEEE

Symposium on Logic in Computer Science, pages 247–258. IEEE, 2001.

[4] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s

apprentice guide to fault attacks. InProceedings of the IEEE, volume 94, February

2006.

[5] R. C. Baumann. Soft errors in advanced semiconductor devices-part I: the three

radiation sources.IEEE Transactions on Device and Materials Reliability, 1(1):17–

22, March 2001.

[6] R. C. Baumann. Soft errors in commercial semiconductor technology: Overview

and scaling trends. InIEEE 2002 Reliability Physics Tutorial Notes, Reliability

Fundamentals, pages 12101.1 – 12101.14, April 2002.

243

BIBLIOGRAPHY 244

[7] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.

pages 513–525, 1997.

[8] J. Blömer, M. Otto, and J.-P. Seifert. A new crt-rsa algorithm secure against bellcore

attacks. InCCS ’03: Proceedings of the 10th ACM conference on Computer and

communications security, pages 311–320, New York, NY, USA, 2003. ACM.

[9] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking crypto-

graphic protocols for faults.Lecture Notes in Computer Science, 1233:37–51, 1997.

[10] E. Borin, C. Wang, Y. Wu, and G. Araujo. Software-based transparent and

comprehensive control-flow error detection. InCGO ’06: Proceedings of the

International Symposium on Code Generation and Optimization, pages 333–345,

Washington, DC, USA, 2006. IEEE Computer Society.

[11] S. Borkar. Designing reliable systems from unreliablecomponents: the challenges

of transistor variability and degradation. InIEEE Micro, volume 25, pages 10–16,

December 2005.

[12] C.-L. Chen and M. Y. B. Hsiao. Error-correcting codes for semiconductor memory

applications: A state-of-the-art review.IBM Journal of Research and Development,

28(2):124–134, 1984.

[13] J. Chen. A typed intermediate language for compiling multiple inheritance. In

POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-SIGACTsymposium on

Principles of programming languages, pages 25–30, New York, NY, USA, 2007.

ACM.

[14] J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and P. Pratikaki.

Type-preserving compilation for large-scale optimizing object-oriented compilers.

BIBLIOGRAPHY 245

In ACM Conference on Programming Language Design and Implementation, June

2008.

[15] J. Chen and D. Tarditi. A simple typed intermediate language for object-oriented

languages. InPOPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 38–49, New York, NY,

USA, 2005. ACM.

[16] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL for back-end

optimization. InPLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference

on Programming language design and implementation, pages 208–219, New York,

NY, USA, 2003. ACM.

[17] K. Crary. Toward a foundational typed assembly language. In POPL ’03:

Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 198–212, New York, NY, USA, 2003. ACM.

[18] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

In USENIX Symposium on Operating Systems Design and Implementation (OSDI),

pages 137–150, 2004.

[19] P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on A.E.S, 2003.

[20] M. Elsman. Fault-tolerant voting in a simply-typed lambda calculus. Technical

Report ITU-TR-2007-99, IT University of Copenhagen, June 2007.

[21] X. Feng and Z. Shao. Modular verification of concurrent assembly code with

dynamic thread creation and termination. InICFP ’05: Proceedings of the tenth

ACM SIGPLAN international conference on Functional programming, pages 254–

267, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 246

[22] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs with

hardware interrupts and preemptive threads. InPLDI ’08: Proceedings of the 2008

ACM SIGPLAN conference on Programming language design and implementation,

pages 170–182, New York, NY, USA, 2008. ACM.

[23] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. Transient-fault

recovery for chip multiprocessors. InProceedings of the 30th annual international

symposium on Computer architecture, pages 98–109. ACM Press, 2003.

[24] S. Govindavajhala and A. Appel. Using memory errors to attack a virtual machine.

In Proceedings of the 2003 Symposium on Security and Privacy, pages 153–165,

May 2003.

[25] R. Hamming. Error-detecting and error-correcting codes. InBell System Technical

Journal, volume 29(2), pages 147–160, 1950.

[26] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, andC. Dai. Impact of CMOS

process scaling and SOI on the soft error rates of logic processes. InProceedings of

the Symposium on VLSI Technology, pages 73–74, 2001.

[27] C. Hawblitzel, H. Huang, L. Wittie, and J. Chen. A garbage-collecting typed

assembly language. InTLDI ’07: Proceedings of the 2007 ACM SIGPLAN

international workshop on Types in languages design and implementation, pages

41–52, New York, NY, USA, 2007. ACM.

[28] P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel,J. Tschanz, G. Dermer,

S. Hareland, P. Armstrong, and S. Borkar. Neutron soft errorrate measurements

in a 90-nm cmos process and scaling trends in sram from 0.25-/spl mu/m to 90-nm

BIBLIOGRAPHY 247

generation. InProceedings of the 2003 Electron Devices Meeting, pages 21.5.1–

21.5.4, Dec 2003.

[29] M. Y. B. Hsiao, W. C. Carter, J. W. Thomas, and W. R. Stringfellow. Reliability,

availability, and serviceability of IBM computer systems:A quarter century of

progress.IBM Journal of Research and Development, 25(5):453–465, 1981.

[30] L. Jia, F. Spalding, D. Walker, and N. Glew. Certifying compilation for a language

with stack allocation. InIEEE Symposium on Logic in Computer Science, pages

407–416, June 2005.

[31] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar. Scaling trends of

cosmic ray induced soft errors in static latches beyond 0.18. In Proceedings of the

Symposium on VLSI Technology, pages 61–62, 2001.

[32] L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. In

ProCoS: Proceedings of the Third International Symposium Organized Jointly with

the Working Group Provably Correct Systems on Formal Techniques in Real-Time

and Fault-Tolerant Systems, pages 41–76, London, UK, 1994. Springer-Verlag.

[33] C. Lin, A. McCreight, Z. Shao, Y. Chen, and Y. Guo. Foundational typed assembly

language with certified garbage collection. InTASE ’07: Proceedings of the First

Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering, pages

326–338, Washington, DC, USA, 2007. IEEE Computer Society.

[34] J.-L. Lin, M. H. Dunham, and M. A. Nascimento. A survey ofdistributed database

checkpointing.Distributed and Parallel Databases, 5(3):289–319, 1997.

[35] A. Mahmood and E. J. McCluskey. Concurrent error detection using watchdog

processors-a survey.IEEE Transactions on Computers, 37(2):160–174, 1988.

BIBLIOGRAPHY 248

[36] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-cost, comprehensive

error detection in simple cores. InMICRO ’07: Proceedings of the 40th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 210–222,

Washington, DC, USA, 2007. IEEE Computer Society.

[37] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A. Wender.

Predicting the number of fatal soft errors in Los Alamos National Labratory’s ASC

Q computer.IEEE Transactions on Device and Materials Reliability, 5(3):329–335,

September 2005.

[38] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based Typed Assembly

Language.Journal of Functional Programming, 12(1):43–88, Jan. 2002.

[39] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly

Language. InTwenty-Fifth ACM Symposium on Principles of Programming

Languages, pages 85–97, San Diego, Jan. 1998.

[40] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed

Assembly Language.ACM Transactions on Programming Languages and Systems,

3(21):528–569, May 1999.

[41] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detaileddesign and evaluation

of redundant multithreading alternatives. InProceedings of the 29th Annual

International Symposium on Computer Architecture, pages 99–110. IEEE Computer

Society, 2002.

[42] G. Necula. Proof-carrying code. InTwenty-Fourth ACM Symposium on Principles

of Programming Languages, pages 106–119, Paris, 1997.

BIBLIOGRAPHY 249

[43] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In

Proceedings of Operating System Design and Implementation, pages 229–243,

Seattle, Oct. 1996.

[44] G. C. Necula. Proof-carrying code. InProceedings of the 24th ACM Symposium on

Principles of Programming Langauges, pages 106–119, Paris, Jan. 1997.

[45] G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,

1998.

[46] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld, I. C. J.

Montrose, H. W. Curtis, and J. L. Walsh. Field testing for cosmic ray soft errors

in semiconductor memories. InIBM Journal of Research and Development, pages

41–49, January 1996.

[47] N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-flow checking by software

signatures. InIEEE Transactions on Reliability, volume 51, pages 111–122, March

2002.

[48] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by duplicated

instructions in super-scalar processors. InIEEE Transactions on Reliability,

volume 51, pages 63–75, March 2002.

[49] F. Perry. Reasoning about software in the presence of transient faults – complete

proofs. Technical Report TR-831-08, Princeton University, 2008.

[50] F. Perry, C. Hawblitzel, and J. Chen. Simple and flexiblestack types. In

International Workshop on Aliasing, Confinement, and Ownership, July 2007.

BIBLIOGRAPHY 250

[51] F. Perry, L. Mackey, G. A. Reis, J. Ligatti, D. I. August,and D. Walker. Fault-

tolerant typed assembly language. InInternational Symposium on Programming

Language Design and Implementation (PLDI), June 2007.

[52] F. Perry, L. Mackey, G. A. Reis, J. Ligatti, D. I. August,and D. Walker.

Fault-tolerant typed assembly language. Technical ReportTR-776-07, Princeton

University, 2007.

[53] F. Perry and D. Walker. Reasoning about control flow in the presence of transient

faults. Technical Report TR-799-07, Princeton University, 2007.

[54] F. Perry and D. Walker. Reasoning about control flow in the presence of transient

faults. InInternational Static Analysis Symposium, July 2008.

[55] R. Phelan. Addressing soft errors in ARM core-based SoC. ARM White Paper,

December 2003.

[56] G. Piret and J.-J. Quisquater. A differential fault attack technique against spn

structures, with application to the AES and KHAZAD. InCHES, pages 77–88,

2003.

[57] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via simultaneous

multithreading. InProceedings of the 27th Annual International Symposium on

Computer Architecture, pages 25–36. ACM Press, 2000.

[58] G. A. Reis. Software Modulated Fault Tolerance. PhD thesis, Department of

Electrical Engineering, Princeton University, Princeton, NJ, 2008.

[59] G. A. Reis, J. Chang, and D. I. August. Automatic instruction-level software-only

recovery methods. InIEEE Micro Top Picks, volume 27, January 2007.

BIBLIOGRAPHY 251

[60] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. SWIFT:

Software implemented fault tolerance. InProceedings of the 3rd International

Symposium on Code Generation and Optimization, March 2005.

[61] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.

Mukherjee. Design and evaluation of hybrid fault-detection systems. InProceedings

of the 32th Annual International Symposium on Computer Architecture, pages 148–

159, June 2005.

[62] Z. Shao. An overview of the FLINT/ML compiler. InWorkshop on Types in

Compilation, Amsterdam, June 1997. ACM.

[63] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, andL. Alvisi. Modeling

the effect of technology trends on the soft error rate of combinational logic. In

Proceedings of the 2002 International Conference on Dependable Systems and

Networks, pages 389–399, June 2002.

[64] D. P. Siewiorek. Fault tolerance in commercial computers. Computer, 23(7):26–37,

1990.

[65] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei,B. W. Krumm, C. A.

Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A. Navarro,

E. M. Schwarz, K. Shum, and C. F. Webb. IBM’s S/390 G5 Microprocessor design.

In IEEE Micro, volume 19, pages 12–23, March 1999.

[66] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper,and P. Lee. TIL: A

type-directed optimizing compiler for ML. InACM Conference on Programming

Language Design and Implementation, pages 181–192, Philadelphia, May 1996.

BIBLIOGRAPHY 252

[67] M. Treaster. A survey of fault-tolerance and fault-recovery techniques in parallel

systems, 2005.

[68] M. Tremblay and Y. Tamir. Support for fault tolerance inVLSI processors.

In Proceedings of the IEEE International Symposium on Circuits and Systems,

volume 1, pages 388–392, May 1989.

[69] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and D. I. August. A framework

for unrestricted whole-program optimization. InACM SIGPLAN 2006 Conference

on Programming Language Design and Implementation, pages 61–71, June 2006.

[70] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: Maximizing on-

chip parallelism. InProceedings of the 22nd International Symposium on Computer

Architecture, June 1995.

[71] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault recovery using

simultaneous multithreading. InProceedings of the 29th Annual International

Symposium on Computer Architecture, pages 87–98. IEEE Computer Society, 2002.

[72] B. D. Vito and R. Butler. Provable transient recovery for frame-based, fault-tolerant

computing systems, 1992.

[73] D. Walker, L. Mackey, J. Ligatti, G. A. Reis, and D. I. August. Static typing

for a faulty lambda calculus. InACM International Conference on Functional

Programming, Portland, Oregon, Sept. 2006.

[74] A. Wood. Data integrity concepts, features, and technology. White Paper, Tandem

Division, Compaq Computer Corporation, 1999.

BIBLIOGRAPHY 253

[75] Y. Yeh. Triple-triple redundant 777 primary flight computer. In Proceedings of

the 1996 IEEE Aerospace Applications Conference, volume 1, pages 293–307,

February 1996.

[76] J. F. Ziegler and H. Puchner.SER - History, Trends, and Challenges: A Guide for

Designing with Memory ICs. 2004.

	Abstract
	1 Introduction and Background
	1.1 Transient Faults
	1.1.1 Issues Caused by Transient Faults
	1.1.2 Transient Fault Trends

	1.2 Existing Transient Fault Solutions
	1.2.1 An Example Solution: SWIFT
	1.2.2 Do Existing Solutions Work?

	1.3 Proof-Carrying Code
	1.3.1 Typed Assembly Languages
	1.3.2 Using Typed Assembly Languages

	1.4 Thesis Scope
	1.4.1 Modeling Transient Faults
	1.4.2 Defining Fault Tolerance
	1.4.3 Invariants of Fault Tolerance
	1.4.4 Proving Fault Tolerance
	1.4.5 Compiling for Fault Tolerance

	1.5 Thesis Organization

	2 TALFT : Fault-tolerant Typed Assembly Language
	2.1 The Fault-Tolerant Hardware
	2.1.1 The Fault Model
	2.1.2 Instruction Semantics

	2.2 Typing
	2.2.1 Static Expressions
	2.2.2 Value Typing
	2.2.3 Instruction Typing
	2.2.4 Machine State Typing

	2.3 Formal Results
	2.3.1 Type Safety
	2.3.2 Fault Tolerance

	2.4 Performance
	2.5 Summary

	3 ETALFT : Generating fault-tolerant assembly code
	3.1 MiniC
	3.2 Extending TALFT to ETALFT
	3.2.1 Memory Layout
	3.2.2 Stacks
	3.2.3 Memory Allocation and Initialization
	3.2.4 Removal of Color Tags
	3.2.5 Other Changes

	3.3 ETALFT Formal Results
	3.3.1 Type Safety
	3.3.2 Fault Tolerance

	3.4 Translation from MiniC to ETALFT
	3.4.1 Translation Introduction
	3.4.2 Translation Details
	3.4.3 Translation Formal Results

	3.5 Translation Example
	3.6 Type-preserving Optimizations
	3.6.1 General Considerations
	3.6.2 Removal of Redundant Moves
	3.6.3 Register Allocation
	3.6.4 Common Subexpression Elimination
	3.6.5 Dead Code Elimination
	3.6.6 Constant Folding and Propagation
	3.6.7 Stack Packing
	3.6.8 Instruction Scheduling

	3.7 Summary

	4 TALCF : Reasoning about Control Flow
	4.1 Informal Overview
	4.2 The Control-Flow Machine
	4.2.1 Dynamic Semantics

	4.3 Typing
	4.3.1 Value Typing
	4.3.2 Instruction Typing
	4.3.3 Block Typing
	4.3.4 Machine State Typing

	4.4 Formal Results
	4.5 Translation
	4.6 Summary and Future Work

	5 Related Work and Conclusion
	5.1 PCC and TAL
	5.2 Research in Transient Fault Tolerance
	5.2.1 Hardware-Based Solutions
	5.2.2 Software-Based Solutions
	5.2.3 Hybrid Solutions

	5.3 Formal Reasoning about Faults
	5.4 Concluding Remarks

	A TALFT Proof Details
	A.1 Lemmas
	A.1.1 Properties of Static Expressions
	A.1.2 Properties of Well-Typed Values
	A.1.3 Properties of Well-typed Memories
	A.1.4 Properties of Well-typed Queues

	A.2 Type Safety
	A.3 Multistep Transitions
	A.3.1 No False Positives
	A.3.2 Multistep Split and Combine

	A.4 Fault Tolerance
	A.4.1 Simulation Relation
	A.4.2 Singlestep Fault Detection
	A.4.3 Multistep Fault Detection
	A.4.4 Fault Similarity
	A.4.5 Fault Tolerance Theorem

	B MiniC Typing Rules
	C Complete Rules for ETALFT
	C.1 Syntax of Machine States
	C.2 Dynamic Semantics
	C.2.1 Fault Rules
	C.2.2 Normal Execution Rules

	C.3 Static Semantics
	C.3.1 Syntax
	C.3.2 Properties of Static Expressions
	C.3.3 Value Typing
	C.3.4 Subtyping
	C.3.5 Stack Typing Judgments
	C.3.6 Instruction Typing Rules
	C.3.7 Machine State Typing

	C.4 Simulation of Machine States
	C.4.1 Color Extraction
	C.4.2 Simulation

	D ETALFT Formal Results
	D.1 Modified Lemmas
	D.2 New Lemmas For Stacks
	D.3 New Lemmas For Dynamic Memory Allocation
	D.4 Type Safety
	D.5 Fault Tolerance

	E MiniC to ETALFT Translation
	E.1 Overview
	E.2 Translating Typing Information
	E.2.1 Type Translation
	E.2.2 Context Generation

	E.3 Extending Code Memory
	E.3.1 Invariants Between Functions
	E.3.2 Partial Code Memories
	E.3.3 Invariants within a Function
	E.3.4 Adding Instructions to Code Memory

	E.4 Value Translation
	E.5 Value List Translation
	E.6 Local Declaration Translation
	E.7 Statement Translation
	E.8 Function Translation
	E.8.1 Prologue and Epilogue
	E.8.2 Function Translation Judgment

	E.9 Program Translation

	F TALCF Formal Results
	F.1 Type Safety
	F.1.1 Typing Lemmas
	F.1.2 Type Safety

	F.2 Fault Tolerance Results
	F.2.1 Machine State Simulation
	F.2.2 Block Execution
	F.2.3 Fault Recovery
	F.2.4 Block Transitions
	F.2.5 Program Execution
	F.2.6 The Fault Tolerance Theorem

	G TALCF Translation
	G.1 A Simple While Loop Language
	G.2 Checking Code and Exit Code Macros
	G.3 Translating Variable Context V
	G.4 Partial Translations
	G.5 Translating Statements
	G.6 The Translation Theorem

	Bibliography

