
Analyzing Security Advice in

Functional Aspect-oriented

Programming Languages

Daniel S. Dantas

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

September 2007

c© Copyright by Daniel S. Dantas, 2007. All rights reserved.

iii

Abstract

This thesis extends functional programming languages with aspect-oriented fea-

tures, primarily to explore aspect-oriented enforcement of security policies.

First, this thesis examines an aspect-oriented implementation of the Java se-

curity mechanism, which requires the security advice to be triggered by functions

with diverse types. I present a new language, AspectML, that allows type-safe

polymorphic advice using pointcuts constructed from a collection of polymorphic

join points. I then compare my AspectML implementation of the Java security

mechanism against the existing Java implementation.

Second, in ordinary aspect-oriented programming, security and other advice

added after-the-fact to an existing codebase can disrupt important data invariants

and prevent local reasoning. Instead, this thesis shows that many common aspects,

including security advice, can be implemented as harmless advice. Harmless advice

uses a novel type and effect system related to information-flow type systems to

ensure that harmless advice cannot modify the behavior of mainline code. To

demonstrate the usefulness of harmless advice for security, I implement many of

the security examples used by the Naccio execution monitoring system as harmless

advice.

Finally, this thesis expands the harmless advice specification to allow program-

mers to create interference policies to define how system libraries can be used by

aspects. These policies use a combination of compile-time type checking and run-

time monitoring to enforce the desired degree of harmlessness on the aspect-oriented

program. My thesis formalizes an idealized file I/O library and proves that an

interference policy specified by our policy language can continue to enforce our

original view of harmlessness for advice that uses file I/O.

iv

Acknowledgments

I would like to thank my advisor, Prof. David Walker, for introducing me to the

world of programming languages and computer security. He was always excited to

discuss ideas, challenges, and opportunities. He is an excellent researcher, and I feel

honored to have worked with him.

I would like to thank my family, Daniel, Angela, Rebecca, and Mary Dantas,

and Luis and Rosa Martinez for their constant love and support.

I would like to thank my colleagues at University of Pennsylvania, Geoff Wash-

burn and Prof. Stephanie Weirich. It was a delight to collaborate to create a

new programming language with them, and their vast knowledge of type inference

systems proved invaluable during the AspectML project. Our trip to the conference

in Estonia will not be forgotten.

I would like to thank the members of my thesis committee. Prof. Stephanie

Weirich and Prof. Andrew Appel read and provided valuable feedback on my thesis,

and Prof. David August and Prof. Edward Felten viewed my pre-FPO presentation

and provided valuable guidance as I prepared to finish my doctoral degree.

To my colleagues at Princeton, you have provided me with endless guidance,

knowledge, encouragement, and amusement over my five years. Special thanks to

my colleagues in programming languages: Frances Perry, Limin Jia, Dr. Yitzhak

Mandelbaum, and Prof. Jay Ligatti. Dr. Chris Sadler shared an apartment and

lent me his family’s furniture for four years. Finally, the participants and leadership

of the Princeton Graduate Christian Fellowship provided invaluable spiritual and

emotional friendship during my stay at Princeton.

Finally, I’d like to thank Princeton University for providing a Gordon Wu Fellow-

ship, and to thank the United States Department of Defense and Air Force Office

v

of Strategic Research for providing a National Defense Science and Engineering

Graduate Fellowship. I was also funded in part by National Science Foundation

grants CCF-0238328 and CNS-0615213. These funding sources were invaluable

in supporting my research. Opinions, findings, conclusions, and recommendations

expressed throughout this work are not necessarily the views of Princeton University,

the US-DOD, the US-AFOSR, or the NSF, and no official enforsement should be

inferred.

Contents

Abstract . iii

1 Introduction 1

1.1 Introduction to Aspect-oriented Programming 1

1.2 Security . 5

1.3 MinAML . 6

1.4 Structure of the Thesis . 7

1.4.1 Polymorphic Advice . 8

1.4.2 Harmless Advice . 9

1.4.3 Interference Policies . 10

2 Polymorphic Aspects 12

2.1 Introduction . 12

2.1.1 Description of Collaboration 15

2.2 Programming in AspectML . 16

2.2.1 Run-time Type Analysis . 23

2.2.2 Reifying the Context . 28

2.2.3 First-class Pointcuts . 30

2.2.4 AspectML Implementation 32

vi

CONTENTS vii

2.2.5 Design Decisions . 33

2.3 Case Study of the Java Security Mechanism 35

2.3.1 Permissions . 35

2.3.2 Policy Parsing . 35

2.3.3 Permission Specification . 37

2.3.4 Stack Inspection . 38

2.3.5 Security Triggering . 40

2.3.6 Issues . 41

2.3.7 History Inspection . 44

2.4 Polymorphic Core Calculus: FA . 45

2.4.1 The semantics of explicit join points 46

2.4.2 Operational Semantics . 49

2.4.3 Stacks and Stack Analysis 58

2.4.4 Type Safety . 62

2.5 Translation from AspectML to FA 72

2.5.1 Definition of Translation . 72

2.5.2 Translation Type Safety . 81

3 Harmless Advice 88

3.1 Introduction . 88

3.2 Noninterfering Core Calculus: FHRM 93

3.2.1 Types for Enforcing Harmlessness 95

3.2.2 Typing Judgments . 97

3.2.3 Operational Semantics . 104

3.2.4 Extensions . 109

CONTENTS viii

3.2.5 Meta-theory . 115

3.3 Harmless Source Language: HarmlessAML 137

3.3.1 Syntax . 138

3.3.2 Assorted Security Examples 140

3.3.3 Naccio Security Case Study 142

3.3.4 Meta-theory . 145

4 Interference Policies 156

4.1 Introduction . 156

4.2 Policies . 159

4.2.1 Idealized File I/O Library in HarmlessAML 159

4.2.2 Interference Policies . 162

4.2.3 Resource Policies . 171

4.3 Core Calculus: Extensions to FHRM 174

4.3.1 Run-time Protection Domains 174

4.3.2 Existential Protection Domain Types 176

4.3.3 Error Handling . 179

4.4 Translation from HarmlessAML to FHRM2 Generated by Interference

Policies . 180

4.5 Case Study of File I/O . 188

4.5.1 Idealized File I/O Library in HarmlessAML 189

4.5.2 File I/O Interference Policy 190

4.5.3 Noninterfering Idealized File I/O Library in FHRM 190

4.5.4 Proving FHRM File I/O Noninterference Theorem 194

4.5.5 File I/O Translation Generated by Interference Policy 209

CONTENTS ix

4.5.6 Harmlessness of File I/O using Interference Policy 212

5 Related Work and Conclusions 214

5.1 Related Work . 214

5.1.1 Aspect-oriented programming languages 214

5.1.2 Polymorphic Aspect-oriented Programming Languages . . . 218

5.1.3 Advice for Security . 222

5.1.4 Classifying Advice . 224

5.1.5 Protection Domains and Information Flow 227

5.1.6 Aspects and Module Systems 230

5.2 Concluding Remarks . 231

Bibliography 235

List of Figures

2.1 Syntax of Idealized Aspectml . 17

2.2 Stack inspection comparison: Java and Aspectml 39

2.3 Recursive security: Java and Aspectml 42

2.4 Label Subsumption in FA . 49

2.5 Operational Semantics for FA . 51

2.6 Advice Composition for FA . 52

2.7 Well-formed types in FA . 53

2.8 Term Typing for FA: Part 1 . 54

2.9 Term Typing for FA: Part 2 . 55

2.10 Stack Operational Semantics for FA 59

2.11 Stack typing for FA . 60

2.12 Well-formed Machine Configurations in FA 63

2.13 Translation Abbreviations . 73

2.14 Type translation from Aspectml to FA 74

2.15 Context translation from Aspectml to FA 75

2.16 Program Translation from Aspectml to FA 76

2.17 Local Expression Translation from Aspectml to FA 77

2.18 Function Declaration Translation from Aspectml to FA 78

x

LIST OF FIGURES xi

2.19 Advice Declaration Translation from Aspectml to FA 79

2.20 Case-advice Declaration Translation from Aspectml to FA 80

2.21 Global Expression Translation from Aspectml to FA 82

2.22 Pattern Translation from Aspectml to FA 83

3.1 Syntax of FHRM . 96

3.2 Value Typing of FHRM . 99

3.3 Expression Typing of FHRM : Part 1 100

3.4 Expression Typing of FHRM : Part 2 101

3.5 Operational Semantics for FHRM 105

3.6 β-redex Operational Semantics for FHRM : Part 1 105

3.7 β-redex Operational Semantics for FHRM : Part 2 106

3.8 Aspect Composition for FHRM . 107

3.9 Well-formed Machine States in FHRM 108

3.10 Context Sensitive Advice Syntax of FHRM 109

3.11 Stack Typing of FHRM . 111

3.12 Stack Matching for FHRM . 112

3.13 Postulated Polymorphic Protection Domain Grammar for FHRM . . 114

3.14 Noninterference Proof Diagram for FHRM 116

3.15 Syntax of FHRM2 . 117

3.16 Expression Typing in FHRM2 . 117

3.17 Store Typing in FHRM2 . 119

3.18 Well-formed Aspect Stores in FHRM2 120

3.19 Well-formed Machine States in FHRM2 120

3.20 Projection Functions in FHRM2 . 121

LIST OF FIGURES xii

3.21 Helper Functions for FHRM2 . 123

3.22 β-redex Operational Semantics for FHRM2 124

3.23 Operational Semantics for FHRM2 124

3.24 Top Operational Semantics for FHRM2 125

3.25 Syntax of Harmlessaml . 138

3.26 File I/O Library . 140

3.27 Simple Security Aspects . 143

3.28 Value Translation from Harmlessaml to FHRM2 146

3.29 Expression Translation from Harmlessaml to FHRM2 147

3.30 Auxiliary Definitions for Translation from Harmlessaml to FHRM2 . 148

3.31 Pattern Translation from Harmlessaml to FHRM2 148

3.32 Declaration Translation from Harmlessaml to FHRM2: Part 1 . . . 149

3.33 Declaration Translation from Harmlessaml to FHRM2: Part 2 . . . 150

3.34 Program Translation from Harmlessaml to FHRM2 150

4.1 File I/O Library in Harmlessaml 159

4.2 File I/O Logging Aspect . 160

4.3 Policy File Syntax . 162

4.4 Example Interference Policies . 164

4.5 Syntax of Resource Policies . 171

4.6 Example Resource Policy for a File System 172

4.7 Run-time Protection Domains Extension to FHRM 175

4.8 Existential Protection Domain Types Extension to FHRM 177

4.9 Error Handling Extension to FHRM 179

4.10 Interference Policy Compilation Strategy 180

LIST OF FIGURES xiii

4.11 Requirements when Adding a Library to Source and Core Grammars 181

4.12 Algorithm from Interference Policy to Translation Rules 183

4.13 Helper Functions for Algorithm from Interference Policy to Transla-

tion Rules . 185

4.14 Translation Rules Generated by Interference Policy for Reference

Library . 186

4.15 Idealized File I/O Library in Harmlessaml 189

4.16 Example Interference Policy for Idealized File I/O Library 189

4.17 Noninterfering Idealized File I/O Extension to FHRM Syntax 190

4.18 Noninterfering Idealized File I/O Extensions to FHRM β-redex Op-

erational Semantics . 191

4.19 Noninterfering Idealized File I/O Extensions to FHRM Value and

Expression Typing Rules . 192

4.20 Noninterfering Idealized File I/O Extensions to FHRM Machine State

Well-formedness Rules . 193

4.21 Noninterfering Idealized File I/O Extensions to FHRM2 Grammar . 194

4.22 FHRM2 Extensions to Store Typing Rules 196

4.23 FHRM2 Extensions to Store Typing Rules 197

4.24 Idealized File I/O Extensions to FHRM2 Typing Rules 197

4.25 Idealized File I/O Extensions to FHRM2 β-redex Operational Semantics198

4.26 Translation based on File I/O Interference Policy 210

Chapter 1

Introduction

1.1 Introduction to Aspect-oriented Programming

In the design and maintenance of large, complex programs, the program code is

typically divided into distinct units of compilation. These units contain code that

represent a discrete “idea” that can be separately understood and modified. These

units of compilation are represented in the module system of Standard ML [5] and

the class mechanism of Java [25]. In both languages, the unit of compilation allows

the programmer to specify an external interface that must be used to access the unit

and to compile the unit separately from other code in the program. An example of

these units of compilation can be found in the Java network i/o library. The library

is divided into, among other things, a class that contains code for manipulating IP

addresses, a class that contains code for manipulating URLs, a class that contains

code to manipulate UDP packets, a class that contains code for operations on UDP

sockets, a class that contains code for operations on active TCP sockets, and a class

that contains code for operations on passive, server TCP sockets. Having separate

1

CHAPTER 1. INTRODUCTION 2

units of compilation enhances the comprehensibility and maintainability of the Java

network i/o library.

However, while maintaining and modifying real-world programs, programmers

have discovered that it is often useful to add a new feature to an existing program

“after the fact” in a manner that cuts across the boundaries of the existing units of

compilation. For example, the programmer may wish to add a network security

feature that checks whether a user has the proper permissions when executing

certain network operations. In a language like Java, code for the security feature

will be scattered across the existing network units of compilation. The resulting

security feature can be difficult to understand and maintain. In other situations, a

programmer may not be able to modify the design of the existing units of com-

pilation, perhaps because they do not have access to the original source code.

Aspect-oriented programming is a programming language paradigm designed to

allow programmers to easily add such new features after the fact that cut across

existing units of compilation.

Aspect-oriented programming languages allow programmers to specify what com-

putations to perform as well as when to perform them. For example, aspects make it

easy to implement an access control mechanism that checks for a “network connect”

permission upon attempting to connect through the network to another computer.

The what in this example is the check for the proper network i/o permission, and

the when is the instant of time just prior to connecting over the network. In

aspect-oriented terminology, the specification of what to do is called advice and

the specification of when to do it is called a pointcut. An event, such as a function

call, that may trigger a pointcut is called a join point. A collection of pointcut and

advice organized to perform a coherent task is called an aspect.

CHAPTER 1. INTRODUCTION 3

The security code described above could be implemented without aspects by

placing the access control checks directly into the body of all affected network

methods. Indeed, the Java security mechanism works in this very way. However, at

least four problems arise when the programmer does the insertion manually.

• First, it is no longer easy to adjust when the advice should execute, as the

programmer must explicitly extract and relocate calls to security functions.

Therefore, for applications where the “when” is in rapid flux, aspect-oriented

languages can be superior to conventional languages.

• Second, there may be a specific convention concerning how to call the security

functions. When calls to these functions are spread throughout the code

base, it may be difficult to maintain these conventions correctly. For example,

ibm [8] experimented with aspects in their middleware product line, finding

that aspects aided in the consistent application of cross-cutting features and

improved the overall reliability of the system. Aspect-oriented features added

structure and discipline to ibm’s applications.

• Third, when code is injected directly into the body of each method, the code

becomes “scattered,” in many cases making it difficult to understand. This

problem is particularly relevant to the implementation of security policies for

programs. Without centralization of security policy using aspects, security

policy implementations can become spread among many units of compilation,

making it very difficult for a security expert to audit them effectively.

• Fourth, in some situations, the source code is unavailable to be examined or

modified. For example, the source code may belong to a third party who is

not willing to provide this proprietary information to its users. Consequently,

CHAPTER 1. INTRODUCTION 4

manual insertion of function calls is not possible. In these cases, aspects can

be used as a robust form of external software patching [20].

To date there has been much success integrating aspects into object-oriented

languages. The most widely used aspect-oriented programming language is As-

pectJ [30], an aspect-oriented extension of the Java programming language. There

has been less progress on studying the interactions between aspects and typed

functional languages. The first challenge we will address in this thesis is constructing

a type system that ensures safety, yet is sufficiently flexible to fit aspect-oriented

programming idioms.

There are also disadvantages to aspect-oriented programming. Aspect-oriented

programming threatens conventional modularity principles and undermines a pro-

grammer’s ability to reason locally about the behavior of their code. Aspects

can reach inside modules, influence the behavior of local routines, and alter local

data structures. As a result, to understand the semantics of code in an aspect-

oriented language such as AspectJ, programmers will have to examine all external

aspects that might modify local data structures or control flow. As the number and

invasiveness of aspects grows, understanding and maintaining their programs may

become more and more difficult. The second challenge we will discuss in this thesis

will be how to allow programmers to add new, crosscutting features, such as security

enforcement, after the fact while also allowing them to enjoy most of the local

reasoning principles they have come to depend upon for program understanding,

development, and maintenance.

To summarize, in this thesis, we explore the interaction between functional pro-

gramming and aspect-oriented programming, primarily to explore aspect-oriented

enforcement of security policies. We wish to explore more fully what features

CHAPTER 1. INTRODUCTION 5

an aspect-oriented, functional programming language must have to support the

creation and maintenance of security advice.

1.2 Security

We have chosen to focus on security examples and case studies in this thesis because

it appears to be one of the best, most convincing applications of aspect-oriented pro-

gramming technology. Indeed, many previous researchers have argued that aspect-

oriented programming mechanisms enable more modular implementation of access

control infrastructure than standard programming languages. More specifically,

since an aspect-oriented implementation can encapsulate not only the definition

of what an access control check is supposed to do, but also the complete list of

places where that access control check should occur, aspect-oriented security policy

specifications are easier to understand. This in turn makes aspect-oriented security

policy specifications easier to audit – the security auditor need not search through

thousands of lines of library or application code to find the relatively few lines

of access control checks. In particular, analysis of the pointcut definitions used

in a policy can often tell the auditor whether or not access control checks have

been omitted. In addition, because all security code is centralized, when security

vulnerabilities are identified, security policy updates can be made more easily.

Moreover, to distribute the changed policy, a single new aspect can be deployed as

opposed to an entire new library or set of libraries. Several systems use this kind of

aspect-oriented design (occasionally without acknowledging it as such) in imperative

and object-oriented languages including Polymer [4], sasi [14], PoET/PSLang [15],

Naccio [16, 17], and Java mac [32, 35].

CHAPTER 1. INTRODUCTION 6

1.3 MinAML

This thesis builds upon the aspect-oriented framework, Minaml, proposed by Walker,

Zdancewic, and Ligatti [37]. That work distilled aspect-oriented programming

into its fundamental components, clearly separating the semantics of aspects (join

points and advice) from that of the underlying programming language. They used

the simply-typed λ-calculus as the basic model of computation. The reason that

they could develop such a minimal model is that their calculus reduced the aspect

language to the most critical components, relying on translation from their Minaml

source language to generate the full power of modern AOPLs.

Minaml contained advice that executed before, after, and in place of (around)

functions, though their around advice did not have the conventional nesting behavior

of around advice in the literature. Minaml was oblivious [19] – programmers could

add functionality to a program “after-the-fact” in the typical aspect-oriented style.

To provide support for stack-inspection-like security infrastructure, and to emulate

the CFlow feature of AspectJ, Minaml also included a general mechanism for

analyzing metadata associated with functions on the current call stack.

To specify the dynamic semantics of Minaml, Walker, Zdancewic, and Ligatti

gave a type-directed translation from the source into a type-safe, monomorphic core

calculus with its own operational semantics. Defining the operational semantics of

a complex language via a translation to a simpler one has considerable precedent.

Their translation could be seen as providing a denotational semantics for Minaml.

Harper and Stone developed an improved semantics for Standard ml by elaboration

into a simpler language [22]. More recently, Avgustinov, et al. have given the

CHAPTER 1. INTRODUCTION 7

first rigorous semantics for the AspectJ pointcut language via a translation to Safe

Datalog [3].

Their use of a translation helped to modularize the semantics for Minaml by

unraveling complex source-language objects into simple, orthogonal core calculus

objects. Indeed, they have attempted to give a clean semantics to each feature

in this language, and to separate unrelated concerns. This was instrumental in

allowing us to further explore and extend their language.

Furthermore, defining the semantics of Minaml this way makes it easier to

understand the language. It is possible to focus on comprehending the core language

and the translation separately, rather than the composition of the two. This

modular design also makes formal reasoning about the language considerably easier.

This is important if mechanically verified proofs become the norm. For example,

it is unlikely that Lee, Crary, and Harper would have been able to provide a

mechanically verified semantics for Standard ml if they had worked directly from

the The Definition of Standard ML [34, 40]. Walker, Zdancewic, and Ligatti did not

mechanically formalize the definition of Minaml, but the design of their languages

has made it possible for us to prove important and nontrivial properties of our

extensions to their language.

1.4 Structure of the Thesis

In this thesis, we will explore the interaction between functional programming

languages and aspect-oriented programming languages. We will ask what features

programmers need to implement security advice, and what tools and analyses we

can provide to help programmers better understand the implications of adding

CHAPTER 1. INTRODUCTION 8

security advice in their program. We will conclude that programmers require

polymorphically typed advice to implement useful security advice, and that they

can use a static analysis of the “harmlessness” of advice to assure them that adding

security advice after the fact to their mainline code will not change their program’s

behavior. Finally, we will allow programmers to customize the level of harmlessness

of their security advice to allow them the language flexibility and customizability

that real-world security advice programmers need.

We detail three contributions in this thesis.

1.4.1 Polymorphic Advice

In Chapter 2, we examine an aspect-oriented implementation of the Java security

mechanism, which requires the security advice to be triggered by functions with di-

verse argument and return types. We present a new language, Aspectml, that allows

a programmer to define type-safe polymorphic advice using pointcuts constructed

from a collection of polymorphic join points. In particular, we focus on the syn-

ergy between polymorphism and aspect-oriented programming – the combination is

clearly more expressive than the sum of its parts. At the simplest level, Aspectml

allows programmers to reference control-flow points that appear in polymorphic

code. However, we have show that polymorphic pointcuts are necessary even when

the underlying code base is completely monomorphic. Otherwise, there is no way

to assemble a collection of join points that appear in code with different types. In

addition, run-time type analysis allows programmers to define polymorphic advice

that behaves differently depending upon the type of its argument.

From a technical standpoint, we give Aspectml a semantics by compiling it into

a typed intermediate calculus, FA. The definition of this intermediate calculus is

CHAPTER 1. INTRODUCTION 9

also an important contribution of this work. An interesting element of FA is the

definition of our label hierarchy, which allows us to form groups of related control

flow points. Here, polymorphism is again essential: it is not possible to define these

groups in a monomorphic language. The second interesting element of FA is our

support for reification of the current call stack. In addition to being polymorphic,

our treatment of static analysis is more flexible, simpler semantically and easier for

programmers to use than the core calculus of Minaml. Moreover, it is a good fit

with standard data-driven functional programming idioms.

Finally, we compare our Aspectml implementation of the Java security mecha-

nism against the existing Java implementation using polymorphic advice. Through

this case study, Aspectml seems useful to implement security advice.

This chapter describes joint research in collaboration with Geoff Washburn and

Prof. Stephanie Weirich of the University of Pennsylvania. The details of the

collaboration will be described fully in Chapter 2. It is an expansion of research

published at the ICFP 2005 conference [11] and to be published in the TOPLAS

2007 journal [12].

1.4.2 Harmless Advice

In Chapter 3, we examine how, in ordinary aspect-oriented programming, security

and other advice added after the fact to an existing codebase can disrupt important

data invariants and prevent local reasoning. Instead, we show that many common

aspects, including security advice, can be implemented as harmless advice. Harm-

less advice has the advantage that it may be added to a program after the fact,

in the typical aspect-oriented style, without corrupting important mainline data

CHAPTER 1. INTRODUCTION 10

invariants. As a result, programmers using harmless advice retain the ability to

perform local reasoning about partial correctness of their programs.

Harmless advice uses a novel type and effect system related to information-

flow type systems to ensure that harmless advice cannot modify the behavior of

mainline code. We prove a noninterference property using a proof technique based

on simultaneous execution of programs by Simonet and Pottier [45]. We then use

this noninterference property, combined with the type safety of the translation

from the source language to the core language, to show that aspects in our source

language, Harmlessaml, are harmless.

Finally, to demonstrate the usefulness of harmless advice for security, we imple-

ment in Harmlessaml many of the security examples used by the Naccio execution

monitoring system by Evans and Twyman [16, 17] as harmless advice. We find

that many access control tasks can be performed by harmless advice. As such,

aspects to implement security tasks can be added after-the fact without modifying

the underlying behavior of the main program.

This chapter is an expansion of research published at the FOOL 2005 work-

shop [9] and the POPL 2006 conference [10].

1.4.3 Interference Policies

Finally, in Chapter 4, we expand Harmlessaml to allow programmers to create

interference policies for system libraries to define how those libraries can be used

by aspects. These policies use a selection of compile-time type checking and run-

time monitoring to enforce the desired degree of harmlessness on aspect-oriented

programs.

CHAPTER 1. INTRODUCTION 11

To test our interference policy mechanism on a system library, we perform a

file i/o case study. We demonstrate that, in addition to many other possibilities,

interference policies can certainly be used to enforce the previous chapter’s definition

of “harmlessness” on a file i/o library. We formalize an underlying noninterfering file

i/o library in the core calculus, extending the FHRM and FHRM2 syntax, operational

semantics, and type system to include a idealized file system. We prove that the

new core file system is type-safe and preserves strong noninterference properties.

We then demonstrate that we can define an interference and resource policy for

the source-level file i/o library that defines a type-safe translation to the baked-in

noninterfering core-level file i/o library. This allowed us to prove that aspects that

use the source-level file system are harmless. Therefore, we show that an interference

policy on a system library specified by our policy language can continue to enforce

our original view of harmlessness for advice that uses that system library.

Chapter 2

Polymorphic Aspects

2.1 Introduction

Many aspect-oriented programming tasks, including the security tasks mentioned

in the previous chapter, are best handled by a single piece of advice that executes

before, after, or around many different function calls. In this case, the type of

the advice is not directly connected with the type of a single function, but with

a whole collection of functions. To type check advice in such situations, one must

first determine a type for the collection and then link the type of the collection to

the type of the advice. Normally, the type of the collection (the pointcut) will be

highly polymorphic, and the type of each element will be less polymorphic than the

collection’s type.

In addition to finding polymorphic types for pointcuts and advice, it is important

for advice to be able to change its behavior depending upon the type of the advised

function. For instance, access control advice might be specialized so that on calls

to functions with file descriptor arguments, the advice tracks whether the caller

12

CHAPTER 2. POLYMORPHIC ASPECTS 13

is allowed to access that file. This and other similar examples require that the

advice can determine the type of the function argument. In AspectJ and other

object-oriented languages where subtype polymorphism is predominant, downcasts

are used to determine types. However, in ml, and other functional languages,

parametric polymorphism is predominant, and therefore run-time type analysis is

the appropriate mechanism.

In this chapter, we extend Minaml to develop Aspectml, a typed functional pro-

gramming language with first-class, polymorphic pointcuts and advice, and run-time

type analysis. Like Minaml, Aspectml contains before, after, and around advice.

However, unlike Minaml, AspectML’s around advice correctly emulates the advice-

nesting behavior of AspectJ advice. Like Minaml, Aspectml is oblivious [19]—

programmers can add functionality to a program “after-the-fact” in the typical

aspect-oriented style. Unlike Minaml, the polymorphic pointcuts in Aspectml

are first-class objects, an important feature for building effective aspect-oriented

libraries. To provide support for stack-inspection-like security infrastructure, and

to emulate AspectJ’s CFlow, Aspectml extends the Minaml general mechanism for

analyzing call stack metadata in a polymorphic fashion.

As with Minaml, we specify the dynamic semantics of Aspectml with a type-

directed translation from the source into a type-safe core calculus with its own

operational semantics. This core calculus, though it builds on the WZL core

calculus, is itself an important contribution of our work. One of the novelties of the

WZL core calculus is its first-class, polymorphic labels, which can be used to mark

any control-flow point in a program. Unlike in the WZL core calculus, where labels

are monomorphic, polymorphism allows us to structure the labels in a tree-shaped

hierarchy. Intuitively, each internal node in the tree represents a group of control-

CHAPTER 2. POLYMORPHIC ASPECTS 14

flow points, while the leaves represent single control-flow points. Depending upon

how these labels are used, there could be groups for all points just before execution

of a function or just after, groups for all labels in a module, groups for getting or

setting references, or groups for raising or catching exceptions. Polymorphism is

crucial for defining these groups since the type of a parent label, which represents

a group, must be a polymorphic generalization of the type of each member of the

group.

We present the following contributions in this chapter.

• In Section 2.2, we introduce our surface language, idealized Aspectml, that

includes three novel features essential for aspect-oriented programming in

a strongly-typed functional language: polymorphic pointcuts, polymorphic

advice and polymorphic analysis of metadata on the current call stack. In

addition, we add run-time type analysis, which, though not a new feature, is

seamlessly integrated into the rest of the language. A full implementation of

Aspectml is also described in this section.

• We define a conservative extension of the Hindley-Milner type inference algo-

rithm for idealized Aspectml. In the absence of aspect-oriented features and

run-time type analysis, type inference works as usual; inference for aspects and

run-time type analysis is integrated into the system smoothly through a novel

form of local type inference. Additionally, we believe the general principles

behind our type inference techniques can be used in other settings. The type

inference mechanism of Aspectml was not primarily designed by the author

of this thesis, and, as such, will not be described in depth.

CHAPTER 2. POLYMORPHIC ASPECTS 15

• In Section 2.3, we have used our full implementation of Aspectml to write sev-

eral example programs to demonstrate the usefulness of Aspectml, including

a security case study. The case study examines an Aspectml implementation

of the Java stack inspection security mechanism.

• In Section 2.4, we define an explicitly-typed core calculus FA that carefully sep-

arates mechanisms for polymorphic first-class function definition, polymorphic

advice definition, and run-time type analysis. This core calculus introduces

a new primitive notion of polymorphic labeled control flow points, to specify

pointcuts in an orthogonal manner. We prove that this core calculus is type-

safe.

• In Section 2.5, we define the semantics of Aspectml by a translation into

FA. We prove that the translation is type-preserving, and therefore that the

surface language is also type safe.

2.1.1 Description of Collaboration

The research described in this chapter was performed in collaboration with Geoffrey

Washburn and Prof. Stephanie Weirich at the University of Pennsylvania. It is

an elaboration of research published at the ICFP 2005 conference [11] and to be

published in the TOPLAS 2007 journal [12]. The TOPLAS journal paper extended

the original ICFP conference paper with a fuller language implementation, a security

case study, and around advice. The collaborative details were as follows:

• The Aspectml language design in Section 2.2 was a collaborative effort with

Geoffrey Washburn and Prof. Stephanie Weirich.

CHAPTER 2. POLYMORPHIC ASPECTS 16

• The proof-of-concept conference implementation of the language was created

by the author, while the full journal implementation was designed by Geoffrey

Washburn.

• Geoffrey Washburn’s full journal implementation of Aspectml was invaluable

in the creation by the author of the journal case study of the Java security

mechanism in Section 2.3.

• The type inference mechanism for Aspectml was primarily designed by Geof-

frey Washburn and Prof. Stephanie Weirich and, as such, is not described in

detail in this thesis. However, the type inference soundness proof for around

advice in the journal version was primarily performed by the author.

• The modification and extension of Aspectml and the core calculus to allow

around advice in the journal version was primarily designed by the author.

• In Section 2.4, the type-safety proof for FA in the conference version and its

extension to around advice in the journal version was performed by the author.

• The translation type-safety proof in the conference version was performed by

Geoffrey Washburn, while the extension of the proof to around advice in the

journal version was primarily performed by the author.

2.2 Programming in AspectML

Aspectml is a polymorphic functional, aspect-oriented language based on the ml

family of languages. Figure 2.1 presents the syntax of the idealized version of the

CHAPTER 2. POLYMORPHIC ASPECTS 17

(polytypes) s ::= <a> t
(pointcut typ) pt ::= (<a> t1 ~> t2)

(monotypes) t ::= a | Unit | String | Stack | t1 -> t2 | pc pt
(trigger time) tm ::= before | after | around
(terms) e ::= x | () | c | e1e2 | let ds in e | stkcase e1 (pat=>e |_=> e2)

| typecase<t> a (t=>e |_=> e) | #x:pt# | any | e:t
(stack pats) pat ::= x | [] | f::pat
(frame pats) f ::= _ | (|e|)<a> (x:t,y)
(declarations) ds ::= fun x1 <a> (x2:t1):t2 = e

| advice tm (|e1|) <a> (x:t1,y,z):t2 = e2

| case-advice tm (|e1|) (x:t1,y,z):t2 = e2

Figure 2.1: Syntax of Idealized Aspectml

language. However, all of the examples of this section are written in full Aspectml,

which extends this syntax with many common constructs following Standard ml.1

In Figure 2.1 and elsewhere, we use over-bars to denote lists of syntactic objects:

x refers to a sequence x1 . . . xn, and xi stands for an arbitrary member of this

sequence. We assume the usual conventions for variable binding and α-equivalence

of types and terms.

As in ml, the type structure of Aspectml is divided into polytypes and mono-

types. Polytypes are normally written <a> t where a is a list of binding type variables

and t is a monotype. However, when a is empty, we abbreviate <> t as t.

In addition to type variables, a, simple base types like Unit, String and Stack,

and function types t1 -> t2, the monotypes include pc pt, the type of a pointcut,

which in turn binds a list of type variables in a pair of monotypes. We explain

pointcut types in more detail later. However, note that in Aspectml, the word

1Details about the full language are available from the documentation that accompanies the
implementation.

CHAPTER 2. POLYMORPHIC ASPECTS 18

“monotype” is a slight misnomer for the syntactic category t as some of these types

contain internal binding structure.

Aspectml expressions include variables x, unit constants (), string constants

c, function applications, and let declarations. New functions may be defined in let

expressions. These functions may be polymorphic, and they may or may not be

annotated with their argument and result types. Furthermore, if the programmer

wishes to refer to type parameters within these annotations, they must specify a

binding set of type variables <a>. When the type annotations are omitted, Aspectml

will infer them, though that mechanism will not be described in this chapter. It

is straightforward to extend idealized Aspectml with other features such as integer

constants, arithmetic operations, file and network i/o, tuples, and pattern matching,

and we will make use of such constructs in our examples.

The most interesting features of our language are pointcuts and advice. Advice

in Aspectml is second-class and includes two parts: the body, which specifies what

to do, and the pointcut designator, which specifies when to do it. In Aspectml,

a pointcut designator has two parts, a trigger time, which may either be before,

after, or around, and a pointcut proper, which is a set of function names. The set

of function names may be written out verbatim as #f#, or, to indicate all functions, a

programmer may use the keyword any. In idealized Aspectml, it is always necessary

to provide a type annotation #f:pt# on a pointcut formed from a list of functions.

In our implementation, this annotation is often not necessary.

The pointcut type, (<a> t1 ~> t2), describes the i/o behavior of a pointcut. In

Aspectml, pointcuts are sets of functions, and t1 and t2 approximate the domains

and ranges of those functions. For example, if there are functions f and g with

types String -> String and String -> Unit respectively, the pointcut #f,g# has

CHAPTER 2. POLYMORPHIC ASPECTS 19

the pointcut type pc (<a> String ~> a). Because their domains are equal, the type

String suffices. However, they have different ranges, so we use a polytype that is

more general than String and Unit, <a> a. Any approximation is a valid type, so

it would have also been fine to annotate the pointcut #f,g# with the pointcut type

pc (<a b> a ~> b). This latter type is the most general pointcut type, and can be

the type for any pointcut, including any.

The pointcut designator before (| #f# |) represents the point in time im-

mediately before executing a call to the function f. Likewise after (| #f# |)

represents the point in time immediately after execution. The pointcut designator

around (| #f# |) wraps around the execution of a call to the function f – the advice

triggered by the pointcut controls whether the function call actually executes or not.

The most basic kind of advice has the form:

advice tm (|e1|) <a> (x:t1,y,z):t2 = e2

Here, tm (|e1|) is the pointcut designator. When the pointcut designator triggers

advice, the variable x is bound either to the argument (in the case of before and

around advice) or to the result of function execution (in the case of after advice). 2

The set of binding type variables, <a>, allows the types quantified by the pointcut to

be named within the advice. However, the binding specification may be omitted if

there are no quantified types, or if they are unneeded. The variable x may optionally

be annotated with its type t1. The variable y is bound to the current call stack.

We explain stack analysis in Section 2.2.2. The variable z is bound to metadata

2After advice traditionally receives the result of the function that triggers it. If the aspect-
oriented programmer would like to create after advice that depends on a function argument, they
would use around advice, receiving the argument of the triggering function, that immediately
executes the function before executing any new advice code.

CHAPTER 2. POLYMORPHIC ASPECTS 20

describing the function that has been called. In idealized Aspectml, this metadata

is a string corresponding to the function name as written in the source text, but in

the implementation it includes not just the name of the function, but the originating

source file and line number. In the future it might also include security information,

such as a version number or the name of the code signer. Since advice exchanges

data with the designated control flow point, before and after advice must return

a value with the same type as the first argument x. For around advice, x has the

type of the argument of the triggering function, and the advice must return a value

with the result type of the triggering function.

A common use of aspect-oriented programming is to add tracing information

to functions. These statements print out information when certain functions are

called or return. These trace logs could later be used forensically to decipher security

breaches. We can advise the program below to display messages before any function

is called and after the functions f and g return. The trace of the program is shown

on the right in comments.

CHAPTER 2. POLYMORPHIC ASPECTS 21

(* code *) (* Output trace *)

fun f x = x + 1 (* entering g *)

fun g x = if x then f 1 (* entering f *)

else f 0 (* leaving f => 2 *)

fun h _ = False (* leaving g => 2 *)

(* entering h *)

(* advice *)

advice before (| any |) (arg, _, info) =

(print ("entering " ^ (getFunName info) ^ "\n"); arg)

advice after (| #f,g# |) (arg, _, info) =

(print ("leaving " ^ (getFunName info) ^

" => " ^ (int_to_string arg) ^ "\n");

arg)

val _ = h (g True)

Even though some of the functions in this example are monomorphic, polymor-

phism is essential. Because the advice can be triggered by any of these functions

and they have different types, the advice must be polymorphic. Moreover, since

the argument types of functions f and g have no type structure in common, the

argument arg of the before advice must be completely abstract. On the other

hand, the result types of f and g are identical, so we can fix the type of arg to be

Int in the after advice.

In general, the type of the after advice argument may be the most specific

type t such that the result types of all functions referenced in the pointcut are

CHAPTER 2. POLYMORPHIC ASPECTS 22

instances of t. Inferring t is not a simple unification problem; instead, it requires

anti-unification [43, 44]. Our current implementation can often use anti-unification

to compute this type.

Finally, we present an example of around advice. Again, around advice wraps

around the execution of a call to the functions in its pointcut designator. The arg

passed to the advice is the argument that would have been passed to the function

had it been called. Finally, around advice introduces into the environment the

proceed function. When applied to a value, proceed continues the execution of the

advised function with that value as the new argument. Not that proceed is not a

keyword and may be shadowed by variable binding.

In the following example, a cache is installed “around” the f function. First, a

cache (fCache) is created for the f function with the externally-defined cacheNew

command. Then, around advice is installed such that when the f function is called,

the argument to the function is used as a key in a cache lookup (using the externally-

defined cacheGet function). If a corresponding entry is found in the cache, the entry

is returned as the result of the function. If the corresponding entry is not found,

a call to proceed is used to invoke the original function. The result of this call is

placed in the cache (using the externally-defined cachePut function) and is returned

as the result of the f function.

CHAPTER 2. POLYMORPHIC ASPECTS 23

val fCache : Ref List (Int,Int) = cacheNew ()

advice around (| #f# |) (arg, _, _) =

case (cacheGet (fCache, arg))

of Some res => res

| None => let

val res = proceed arg

val _ = cachePut (fCache, arg, res)

in

res

end

We note that we can transform this example into a general-purpose cache inserter

by wrapping the cache creation and around advice code in a function that takes a

first-class pointcut as its argument as described in Section 2.2.3. This would require

a general-purpose hashing function as well. Finally, though not shown here, the

cacheGet and cachePut functions are polymorphic functions that can be called on

caches with many types of keys. As such, the key comparisons use a polymorphic

equality function that relies on the run-time type analysis described in the next

section.

2.2.1 Run-time Type Analysis

We might also want a forensic tracing routine to print not only the name of the

function that is called, but also its argument. Aspectml makes this extension easy

CHAPTER 2. POLYMORPHIC ASPECTS 24

with an alternate form of advice declaration, called case-advice, that is triggered

both by the pointcut designator and the specific type of the argument. In the code

below, the second piece of advice is only triggered when the function argument is

an integer, the third piece of advice is only triggered when the function argument

is a boolean, and the first and fourth pieces of advice are triggered by any function

call. Advice is maintained as a stack, so all advice that is applicable to a program

point is triggered in lifo order.

advice before (| any |)(arg, _, info) = (print "\n"; arg)

case-advice before (| any |)(arg : Int, _, _) =

(print (" with arg " ^ (int_to_string arg)); arg)

case-advice before (| any |)(arg : Bool, _, _) =

(print (" with arg "^(if arg then "True" else "False")); arg)

advice before (| any |)(arg, _, info) =

(print ("entering " ^ (getFunName info)); arg)

The code below and its forensic trace demonstrates the execution of the advice.

Note that even though h’s argument is polymorphic, because h is called with an

CHAPTER 2. POLYMORPHIC ASPECTS 25

Int, the third advice above triggers instead of the first.

(* code *) (* Output trace *)

fun f x = x + 1 (* *)

fun g x = if x then f 1 (* entering g with arg True *)

else f 0 (* entering f with arg 1 *)

fun h _ = False (* entering h with arg 2 *)

val _ = h (g True)

This ability to conditionally trigger advice based on the type of the argument

means that polymorphism is not parametric in Aspectml– programmers can analyze

the types of values at run-time. However, without this ability we cannot implement

this tracing aspect and other similar examples. For further flexibility, Aspectml

also includes a typecase construct to analyze type variables directly. For example,

consider the following advice:

advice before (| any |)<a b>(arg : a, _, info) =

(print ("entering " ^ (getFunName info) ^ "with arg" ^

(typecase<String> a

of Int => (int_to_string arg) ^ "\n"

| Bool => (if arg then "True\n" else "False\n")

| _ => "<unprintable>\n"));

arg)

CHAPTER 2. POLYMORPHIC ASPECTS 26

This advice is polymorphic, and the argument type a is bound by the annotation

<a b>.3 Also note that in the example above, to aid typechecking the typecase

expression, the return type is annotated with <String>.

There is a nice synergy between aspects and run-time type analysis. Converting

values to strings is an operation that is generally useful, so one might imagine

implementing it as a library function val_to_string to be called by the above

advice:

fun val_to_string <a>(v:a):String =

typecase<String> a

of Bool => bool_to_string v

| String => v

| Int => int_to_string v

| (a, b) => "(" ^ (val_to_string (fst v)) ^ ", " ^

(val_to_string (snd v)) ^ ")"

| _ => "<unprintable>"

Notice that this solution requires that val_to_string be revised every time

a new data type is defined by the user (like ml, the full Aspectml language al-

lows the creation of new algebraic data types). Instead, we switch to using an

around case-advice idiom:

3Currently this example requires the type variable b to be bound, even though it never occurs
in the code fragment. The pointcut any is of type pc (<ab> a ~> b), and if the programmer wishes
to name one of quantified variables, in this case a, she must name all of the variables. This is
because the quantified variables are unordered and the type inference algorithm cannot näıvely
choose which of the two variables to name when only given a single name.

CHAPTER 2. POLYMORPHIC ASPECTS 27

fun val_to_string <a> (v:a):String = "<unprintable>"

case-advice around (| #val_to_string# |) (v:Bool, _, _) =

bool_to_string v

case-advice around (| #val_to_string# |) (v:String, _, _) = v

case-advice around (| #val_to_string# |) (v:Int, _, _) =

int_to_string v

case-advice around (| #val_to_string# |) (v:(a,b), _, _) =

"("^(val_to_string (fst v))^", "^(val_to_string (snd v))^")"

Each piece of around case-advice overrides the default behavior of the function

when passed an argument of a particular type. Notice that there are no proceed

calls – we do not want the function to continue to execute once the correct string

conversion function has been selected.

Now, when a programmer defines a data type, they can also update the

val_to_string function to be able to convert values of their new datatype to a

string. For example, we can define a List data type and its output function in the

CHAPTER 2. POLYMORPHIC ASPECTS 28

same location4

datatype List = Cons : <a> a -> List a -> List a

| Nil : <a> List a

case-advice around (|#val_to_string#|)(v:List a,_,_):String =

case v of

Cons h t => (val_to_string h)^" :: "^(val_to_string t)

| Nil => "Nil"

2.2.2 Reifying the Context

When advice is triggered, often not only is the argument to the function important,

but also the context in which it was called. Therefore, this context information is

provided to all advice and Aspectml includes constructs for analyzing it. For exam-

ple, below we augment the tracing aspect so that it displays debugging information

for the function f when it is called directly from g and g’s argument is the boolean

True.
advice before (| #f# |)(farg, fstk, _) =

((case fstk

of _ :: (| #g# |)(garg, _) :: _ =>

if garg then

print "entering f from g(True)\n"

else ()

| _ => ());

farg)

4Note that Aspectml has a different syntax for data type definition than Standard ml. Here a
data type definition contains the name of the data type and then a list of the data type constructors,
with their types.

CHAPTER 2. POLYMORPHIC ASPECTS 29

The stack argument fstk is a list of Frames, which may be examined using case

analysis.5 Each frame in the list fstk describes a function in the context and can

be matched by a frame pattern: either a wild-card _ or the pattern (|e|)<a>(x,y).

The expression e in a frame pattern must evaluate to a pointcut – the pattern

matches if any function in the pointcut matches the function that frame describes.

Like in advice, the type variable binders are used to optionally name types quantified

by the pointcut. The variable x is the argument of that function, and y is the

metadata of the function. The head of the list contains information about the

function that triggered the advice (e.g. f in the example above).

Consider also the following example, that uses an aspect to implement a stack-

inspection-like security monitor for the program. (We will expand the technique of

using aspects to provide stack-inspection security in our case study in Section 2.3.)

If the program tries to call an operation that has not been enabled by the current

context, the security monitor terminates the program. Below, assume the function

enables:FunInfo -> FunInfo -> Bool determines whether the first argument (a

piece of function metadata) provides the capability for the second argument (another

piece of function metadata) to execute. We also assume abort:String -> Unit

terminates the program with an error message.

5Idealized Aspectml does not make lists primitive, but instead uses the primitive type Stack
and primitive analysis stkcase.

CHAPTER 2. POLYMORPHIC ASPECTS 30

fun walk (stk : List Frame, info : FunInfo) =

case stk of [] => abort "Function not enabled"

| (| any |)(_, info’) :: rest =>

if (enables info’ info) then ()

else

walk (rest, info)

advice before (|#f,g,h#|)(arg,stk,info) = (walk (stk,info); arg)

2.2.3 First-class Pointcuts

The last interesting feature of our language is the ability to use pointcuts as first-

class values. This facility is extremely useful for constructing generic libraries of

profiling, tracing or access control advice that can be instantiated with whatever

pointcuts are useful for the application. For example, recall the first example in

Section 2.2 where we constructed a forensic logger for the f and g functions. We

can instead construct an all-purpose logger that is passed the pointcut designators of

the functions we intend to log with the following code. Recall that val_to_string

CHAPTER 2. POLYMORPHIC ASPECTS 31

is a function, defined in Section 2.2.1 that converts values of any type to a string.

fun startLogger (toLog:pc (<a b> a ~> b)) =

let advice before (| toLog |)(arg, _, info) =

((print ("before " ^ (getFunName info) ^ ": " ^

(val_to_string arg) ^ "\n")); arg)

advice after (| toLog |) (res, _, info) =

((print ("after " ^ (getFunName info) ^ ":" ^

(val_to_string res) ^ "\n")); res)

in () end

Another example generalizes the “f within g” pattern presented above. This

is a very common idiom; in fact, AspectJ has a special pointcut designator for

specifying it. In Aspectml we can implement the within combinator using a

function that takes two pointcuts – the first for the callee and the second for the

caller – as arguments. Whenever we wish to use the within combinator, we supply

two pointcuts of our choice as shown below.

CHAPTER 2. POLYMORPHIC ASPECTS 32

fun within (fpc : pc (<a b> a ~> b),

gpc : pc (<c> Bool ~> c),

body : Bool -> Unit) =

let advice before (| fpc |)(farg, fstk, _) =

(case fstk

of _ :: (| gpc |)(garg, _) :: _ => body garg

| _ => ();

farg) in () end

fun entering x =

if x then print "entering f from g\n" else ()

val _ = within (#f#, #g#, entering)

Notice that we placed a typing annotation on the formal parameter of within.

When pointcuts are used as first-class objects, it is not always possible to infer

types of function arguments and results. The reason is that pointcut types have

binding structure that cannot be determined via unification without the addition

of type annotations.

2.2.4 AspectML Implementation

We have implemented an extended version of idealized Aspectml for use as a

research language. Therefore we included a number of advanced features and

libraries necessary for studying the properties and expressiveness of a modern,

functional, aspect-oriented language. Our implementation is composed of a series of

CHAPTER 2. POLYMORPHIC ASPECTS 33

several “processes” that consume a stream of data and potentially produce a stream

of output. As in the formalized language, a parsed Aspectml program is translated

in a type-safe manner into a FA calculus expression. These FA calculus expressions

are then evaluated using the reduction rules defined in this chapter. Our implemen-

tation is available at http://www.cs.princeton.edu/sip/projects/aspectml/

2.2.5 Design Decisions

Anonymous functions Anonymous functions present several design choices for

aspect-oriented languages. Because they are nameless, it is impossible to write

explicit pointcuts for them. It is possible that generic pointcuts might implicitly

advise them, such as any, or a new pointcut, anon that refers just to anonymous

functions. There are no technical difficulties to this extension, but on the other hand,

we do not yet see any compelling reasons for advising anonymous functions, either.

Therefore, in our implementation, we have decided to make anonymous functions

inadvisable until we have more experience with programming in Aspectml.

Advising first-class functions Another design choice we made is that explicit

pointcuts such as #f# may only refer to term variables that were let-bound to

functions in the current lexical scope. In other words, as illustrated by the fol-

lowing example, variables corresponding to first-class functions cannot be used in a

pointcut.
fun f x = x + 1

val ptc = #f# (* allowed *)

fun h (g : Int -> Int) = #g# (* not allowed *)

CHAPTER 2. POLYMORPHIC ASPECTS 34

We have left this feature out because it increases the complexity of the semantics

of Aspectml without a corresponding increase in usefulness – we have not found

any compelling examples that require advising first-class functions. There are no

technical obstacles to advising first-class functions in Aspectml. Furthermore,

pointcuts are first-class in Aspectml, so if the programmer needs access to g’s

pointcut, h can be rewritten to take a pointcut as an additional argument.

Tail recursion Due to the presence of advice and stack analysis, functions in

AspectML become more difficult to analyze. First, some traditional program trans-

formations, such as β-reduction are no longer valid in AspectML. Function ap-

plication can now invoke advice–the evaluation no longer depends solely on the

body of the function. Second, the compiler can no longer optimize tail-recursive

functions. Because after advice may need to be invoked and the stack may need

to be analyzed after each evaluation of a tail-recursive function, the program stack

cannot be collapsed in the traditional manner. A potential solution is to include a

new type of function declaration in our language. This declaration, perhaps called

tailfun, could indicate that after advice should not be triggered by the function

and that stack analysis should omit the function.

More pointcuts In a larger language, it might be desirable to extend the language

of pointcuts to allow advising events other than function invocation. However,

given the central importance of functions in Aspectml, not as many extensions are

necessary as might be needed an imperative language like AspectJ. For example,

a Java programmer might find it useful to advise allocating, reading, and writing

mutable state. However, all of these behaviors correspond to functions in Aspectml

that may be directly advised.

CHAPTER 2. POLYMORPHIC ASPECTS 35

2.3 Case Study of the Java Security Mechanism

To demonstrate the usefulness of Aspectml, we have implemented a dynamic secu-

rity policy manager and stack inspection framework with most of the interesting

components one finds in Java. In the following sections, we first describe the

Java security mechanism and then analyze our implementation of the algorithm

in Aspectml.

2.3.1 Permissions

The basic unit of protection is the permission. Java security defines many permis-

sions including file system permissions, network socket permissions, system property

permissions, and gui permissions. A permission consists of a permission name and

permission arguments that constitute the internal structure of the permission. For

example, the file system permission name is FilePermission, and the permission

arguments contain the access mask (read/write/delete) and the file path.

Permissions consist of granted permissions and requested permissions. Granted

permissions represent a list of actions a function is allowed to perform. A requested

permission represents a specific action that a function is attempting to perform. If

the granted permissions of a function “imply” the requested permission, then the re-

quested action can be performed. The specific mechanisms for granting, requesting,

and testing permission implication are described in the following sections.

2.3.2 Policy Parsing

To determine what permissions will be granted to the executing source code, Java

security reads from a policy file upon start-up. The policy file consists of a set of

CHAPTER 2. POLYMORPHIC ASPECTS 36

grant declarations, each of which specify a segment of source code and the list of

permissions granted to that source code. Granted permissions are specified by the

name of the permission followed by an list of arguments that describe the details of

the permission. We use this same basic format to specify Aspectml security files.

The following is the specification of Java and Aspectml policy file syntax:

grant sourceCodeSpecifier {

permission permissionName1 permissionArgs1;

permission permissionName2 permissionArgs2;

...

};

...

The sourceCodeSpecifier selects the source code to which permissions are granted.

A policy file writer is allowed to select code by specifying a codebase (where the

code is located in the file system), a signer (the key that has cryptographically

signed the code), and a principal (the entity that is executing the code). For the

purposes of this case study, we have chosen to allow only the codebase specifier in

Aspectml policy files.

The permissionName specifies the name of the permission to grant to the selected

source code, while the permissionArgs specifies the details of the permission. For

the purposes of this case study, we have studied file system and network socket

CHAPTER 2. POLYMORPHIC ASPECTS 37

permissions in Aspectml. A sample Aspectml policy file follows.

grant codebase "example/*" {

permission FilePermission "tmp/*", "read write";

permission SocketPermission "*", "listen accept";

};

This would give all code in files in the example/ directory permission to read and

write to the tmp/ directory. It also allows the code in the example/ directory to

start a network server that accepts connections from any host.

2.3.3 Permission Specification

As stated earlier, Aspectml security currently specifies file system and network per-

missions. We have also provided functions in our security implementation that allow

a user to add new permission types to the policy file and to the underlying security

mechanism. The user must specify the name of the permission (used in policy file

parsing), an addPermission function of type String -> permission that parses

the permission arguments from the policy file and returns the resulting permission,

and an impliesPermission function of type (permission,permission) -> Bool

that takes in a granted permission and a requested permission and returns whether

the first allows the second.

Accordingly, when we added a file system permission type to Aspectml secu-

rity, we specified the name FilePermission and an addFilePermission function

which parses file paths and access mask strings like “read write” to an internal

representation. Finally, we specified an impliesFilePermission function which

takes a granted file system permission such as reading and writing to the tmp/

CHAPTER 2. POLYMORPHIC ASPECTS 38

directory and a requested read, write, or delete action and then determines whether

the permission allows the action.

2.3.4 Stack Inspection

To determine whether a restricted action should be performed, the permissions

granted by the policy file to the currently executing code are examined to determine

whether they imply the requested permission required by the restricted action. This

test is not enough – if trusted code is called from untrusted code, the untrusted code

may perform malicious actions by proxy. Therefore, Java security is a stack inspec-

tion mechanism, as described by the pseudocode in Figure 2.2. The current stack

frame and all subsequent frames must all have the required permission before an

action is approved. Therefore, if the end of the stack is reached, which corresponds

to wildcard pattern branch, True will be returned indicating that the requested

action has been approved.

For example, if function f calls function g which calls function h which then

attempts to read from a file, the call stack will look like this: [fileRead, h, g, f].

The Java security mechanism will ensure that h, g, and then f all have permission

to read from the requested file.

Finally, if trusted code is certain that it can only be used in approved ways, it

can disengage any further stack checks by performing a “privileged” action. This is

useful, for example, if a trusted function carefully checks its inputs or if the restricted

action that it wishes to perform does not depend on data passed to it by its calling

function. A “privileged” action is performed by calling a special security function

doPrivileged, passing it the code to be run. When the security mechanism walks

the stack, it will stop at whatever code called the doPrivileged function.

CHAPTER 2. POLYMORPHIC ASPECTS 39

Java stack inspection pseudocode

public bool inspectStack (Stack currentStack) {

for (StackFrame sf : currentStack) {

if (stack frame sf does not allow the action) {

return false;

} else if (stack frame sf is marked as "privileged") {

\\ note that stack frame sf allows the action

return true;

}

}

return true;

}

Aspectml stack inspection code

fun checkStack (stk, requestedPerm) =

case stk of

(| #doPrivileged# |)(_,_) :: (|any|)(_,info) :: _ =>

let

val privFun = getFileName info

val grantedPerms = getPermissions (privFun, policyfile)

in

impliesPermissions (grantedPerms, requestedPerm)

end

| (|any|)(_,info) :: stktail =>

let

val currFun = getFileName info

val grantedPerms = getPermissions (currFun, policyfile)

in

impliesPermissions (grantedPerms, requestedPerm)

andalso checkStack (stktail, requestedPerm)

end

| _ => True

Figure 2.2: Stack inspection comparison: Java and Aspectml

CHAPTER 2. POLYMORPHIC ASPECTS 40

In the above example, if the function g is certain that it cannot be used inappro-

priately by code that calls it, it can perform a “privileged” call to the h function.

The stack will appear as [fileRead, h, doPrivileged, g, f]. In this case, only

h and g need to have the file read permission – f is not examined by the security

mechanism.

The Aspectml stack inspection algorithm is compared with its Java counterpart

in Figure 2.2. As with Java stack inspection, there are three cases, a privileged

stack frame, a regular stack frame, and the end of the stack.

2.3.5 Security Triggering

We now have described the policy parsing, permission implication, and stack in-

spection code. The final step is to trigger this security mechanism when a restricted

action is performed. In Java security, every read-file system call in the source code

is preceded by a call to AccessController.checkPermission(requestedAction).

In our Aspectml implementation, a pointcut is created that contains a list of

the restricted actions that should trigger the aspect. For example, all of the system

calls that will read from a file will trigger the readPC pointcut. Next, an aspect is

created that, when the pointcut is triggered (before a restricted action is performed),

creates the requested permission and checks that the stack allows this requested

permission. In the following example, when code attempts to read from a file,

the readPC pointcut is triggered, calling the checkRead function that creates the

CHAPTER 2. POLYMORPHIC ASPECTS 41

requested FilePermission and performs the security stack inspection check.

val readPC = #fileCanRead, fileExists, fileIsDirectory,

fileIsFile, fileLastModified ,fileLength, fileList,

fileOpenRead#

advice before (| readPC |) (arg, stk, _) =

if checkRead (stk, arg) then

arg

else

abort "Failed security check"

Similar checks are performed when writing files, deleting files, and making and

receiving network connections.

2.3.6 Issues

A difficulty we encountered during this stage was similar to a problem also described

in another aspect-oriented case study [49] – occasionally the crosscutting location is

not easily accessible with a pointcut. In the Java security mechanism, the security

checks on the InetAddress.getLocalHost and

InetAddress.getHostFromNameService methods were located in the middle of the

methods, not at the beginning or the end of the method. This disallowed easy

use of before or after advice to institute the security check. Instead, we were

required to split each affected function into two parts: a function which runs the

pre-security-check code, and a second function which is called by the first and runs

the post-security-check code. We trigger the security check as before advice on

this post-security-check function.

CHAPTER 2. POLYMORPHIC ASPECTS 42

Pre-security getAllByName0 Java pseudocode

static InetAddress[] getAllByName0 (String host) {...}

Post-security getAllByName0 Java pseudocode

static InetAddress[] getAllByName0 (String host, boolean check) {

if (check) { perform security check }

...

}

static InetAddress[] getAllByName0 (String host) {

return getAllByName0(host, true);

}

Aspectml getAllByName0 security

fun shouldCheck (stk) =

case st of

(|#checkListen,checkAccept,checkConnect#|)(_,_)::_ => False

| (|any|) (_,_) :: stktail => shouldCheck stktail

| _ => True

advice before (| #netGetAllByName0# |) (host, stk, _) =

if (shouldCheck stk) andalso (not (checkConnect (st,host,~1)))

then abort "Failed security check"

else host

Figure 2.3: Recursive security: Java and Aspectml

CHAPTER 2. POLYMORPHIC ASPECTS 43

Another issue emerged when we discovered that the network security code calls

network i/o code which in turn triggers the Java network security code and so on.

The Java security mechanism handles this by adding a flag to the argument list of

the affected network i/o functions, indicating whether the function is being called

from security code or not.

For example, in the top section of Figure 2.3, we display the pre-security pseu-

docode for the getAllByName0 function, which looks up the Internet address that

correspond to a given hostname string. Because this function both triggers the

network security mechanism and is called by it, in the middle section of the figure,

getAllByName0 must be converted to a new function that takes both the hostname

string and a flag marking whether the check should be performed or whether

getAllByName0 has been called from within the security mechanism. In addition,

the function is overloaded so that calls to the old getAllByName0 function (calls

that are not from within the security mechanism) call the new function with a check

flag value of true

We feel that this solution is suboptimal because it requires modifying the sig-

nature of the original network i/o code in order to add the security feature. In our

Aspectml implementation (displayed in the bottom section of the figure), there is no

need to change the argument list of the function. Instead, we add a shouldCheck

function that performs stack analysis to determine whether the getAllByName0

function has been called by the security mechanism or not. If it has, then no

security check is performed by the advice to avoid infinite recursion.

CHAPTER 2. POLYMORPHIC ASPECTS 44

2.3.7 History Inspection

As an aside, several researchers [48, 21, 1] have questioned whether stack inspection

is the correct choice for enforcing common security policies. For example, in order

to preserve the confidentiality of certain files, a user may wish to disallow making

or receiving network connections after reading from the file system. As any file

system reads will have occurred in the past and will no longer be on the stack when

a network connection is attempted, a stack inspection mechanism will not suffice

to enforce this policy. Instead, the entire execution history – the list of all the

functions that have been run – must be examined. Aspectml can enforce history-

based policies just as easily as the stack-inspection based policies of the previous

section. As an example, the following code implements the simple history-based

policy for file confidentiality described above.

val didRead = ref false

advice after (| #fileOpenRead# |) (res, _, _) =

((didRead := true); res)

advice before (|#netConnect,netServerAccept#|)(arg,_,_) =

if !didRead then

abort "No network after file read\n"

else

arg

The first piece of advice sets a flag when any file is read. The second piece of advice

disallows all network connections if the flag is set.

CHAPTER 2. POLYMORPHIC ASPECTS 45

2.4 Polymorphic Core Calculus: FA

In the previous section, we defined the syntax and static semantics for Aspectml.

One might choose to define the operational semantics for this language directly as

a step-by-step term rewriting relation, as is often done for λ-calculi. However, the

semantics of certain constructs is very complex. For example, function call, which

is normally the simplest of constructs in the λ-calculus, combines the ordinary

semantics of functions with execution of advice, the possibility of run-time type

analysis and the extraction of metadata from the call stack.

Rather than attempt to specify all of these features directly, we specify the

dynamic semantics in stages. First, we show how to compile the high-level constructs

into a core calculus, called FA. The translation breaks down complex high-level

objects into substantially simpler, orthogonal concepts. This core calculus is also

typed and the translation is type-preserving. Second, we define an operational

semantics for the core calculus. Since we have proven that the FA type system is

sound and the translation from the source is type-preserving, Aspectml is safe.

Our core calculus differs from the Aspectml in that it is not oblivious – control-

flow points that trigger advice must be explicitly annotated. Furthermore, it is

explicitly typed – type abstraction and applications must also be explicitly marked

in the program, as well as argument types for all functions. Also, we have carefully

considered the orthogonality of the core calculus – for example, case-advice in

Aspectml is represented in FA with a combination of two orthogonal constructs,

primitive advice and type analysis using typecase expressions. The primitive advice

is always triggered by the pointcut, but the subsequent type analysis determines if

the case-advice code should be executed or if the advice should simply terminate.

CHAPTER 2. POLYMORPHIC ASPECTS 46

For these reasons, one would not want to program in the core calculus. However,

in exchange, the core calculus is much more expressive than the source language.

Because FA is so expressive, we can easily experiment with the source language,

by adding new features to scale the language up or removing features to improve

reasoning power. For instance, by removing the single type analysis construct,

we recover a language with parametric polymorphism. In fact, during the process

of developing our Aspectml, we have made numerous changes. Fortunately, for

the most part, we have not had to make many changes in FA. Consequently, we

have not needed to reprove soundness of the target language, only recheck that the

translation is type-preserving, a much simpler task. Finally, in our implementation,

the type checker for the FA has caught many errors in the translation and helped

the debugging process tremendously.

In this section, we describe the semantics of FA, and in Section 2.5, we sketch

the translation from Aspectml to FA.

2.4.1 The semantics of explicit join points

The core calculus FA is an extension of the core calculus from WZL [37] with poly-

morphic labels, polymorphic advice, and run-time type analysis. It also improves

upon the semantics of context analysis.

CHAPTER 2. POLYMORPHIC ASPECTS 47

For expository purposes, we begin with a simplified version of FA, and extend

it in the following subsections. The initial syntax is summarized below.

(types) τ ::= 1 | string | τ1 → τ2 | τ1 × . . .× τn | α | ∀α.τ | (α.τ) label

| (α.τ) pc | advice

(exprs) e ::= () | c | x | λx; τ.e | e1e2 | Λα.e | e[τ] | fix x : τ.e | 〈e〉

| let 〈x〉 = e1 in e2 | new α.τ ≤ e | ` | {e} | e1 ∪ e2

| e1[τ][[e2]] | {e1[α](x : τ1, f : τ1 → τ2) � e2} | ⇑ e

| typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2)

The basis of FA is a typed λ-calculus with unit, strings and n-tuples. If e is a

sequence of expressions e1 . . . en for n ≥ 2, then 〈e〉 creates a tuple. The expression

let 〈x〉 = e1 in e2 binds the contents of a tuple to a vector of variables x in the

scope of e2. Unlike WZL, we add impredicative polymorphism to the core calculus,

including type abstraction (Λα.e) and type application (e[τ]). We write () for the

unit value and c for string constants.

Abstract labels, `, play an essential role in the calculus. Labels are used to mark

control-flow points where advice may be triggered, with the syntax `[τ][[e]]. We call

such points in the core calculus join points. Unlike the labels in WZL, which are

designed solely for before and after advice, labels in our calculus allow around

advice. The value passed to the join point represents the proceed function that

can be invoked by advice in the source language. The value returned once the join

point executes is a function that executes any advice, or, if there is no advice, is the

proceed function that was passed to the join point. For example, in the addition

expression v1 +(`[τ][[e2]] v3), after e2 has been evaluated to a function v2, evaluation

CHAPTER 2. POLYMORPHIC ASPECTS 48

of the resulting sub-term `[τ][[v2]] returns a function that, when applied to v3, causes

any advice associated with ` to be triggered.

Another difference from WZL is that the labels form a tree-shaped hierarchy.

The top label in the hierarchy is U . All other labels ` sit somewhere below U . If

`1 ≤ `2 then `1 sits below `2 in the hierarchy. The expression new α.τ ≤ e evaluates

e, obtaining a label `2, and generates a new label `1 defined such that `1 ≤ `2. This

label structure closely resembles the label hierarchy defined by Bruns et al. for their

(untyped) µABC calculus [6].

First class labels may be grouped into collections using the label set expression,

{e}. Label-sets can then be combined using the union operation, e1∪ e2. Label-sets

form the basis for specifying when a piece of advice applies.

All advice in FA is around advice and exchanges data with a particular join

point, making it similar to a function. Note that advice (written {e1[α](x : τ1, f :

τ1 → τ2) � e2}) is first-class. The type variables α and term variables x and f are

bound in the body of the advice e2. The variable f is bound to a “proceed” function

for the around advice, and the variable x is the value that the join point’s resulting

function will be called upon. The expression e1 is a label set that describes when

the advice is triggered. For example, the advice {{`}[](x : int, f : int → int) � e}

is triggered when control-flow reaches a join point marked with `1, provided `1 is a

descendant of a label in the set {`}. If this advice has been installed in the program’s

dynamic environment, v1 + (`1[][[v2]] v3) evaluates to v1 + (e[v2/f][v3/x]).

When labels are polymorphic, both types and values are exchanged between

labeled control-flow points and advice. For instance, if `1 is a polymorphic label

capable of marking a control-flow point with any type, we might write v1+(`1[int →

CHAPTER 2. POLYMORPHIC ASPECTS 49

Label Subsumption Σ ` `1 ≤ `2

`;1 α.τ ≤ `2 ∈ Σ

Σ ` `1 ≤ `1

labsb:refl
Σ ` `1 ≤ `2 Σ ` `2 ≤ `3

Σ ` `1 ≤ `3

labsb:trans

`1; α.τ ≤ `2 ∈ Σ

Σ ` `1 ≤ `2

labsb:def

Figure 2.4: Label Subsumption in FA

int][[v2]] v3). In this case, if the advice {{`1}[α](x : α, f : α → α) � e} has been

installed, then the previous expression evaluates to v1 + (e[int/α][v2/f][v3/x]).

Advice is installed into the run-time environment with the expression ⇑ e. Mul-

tiple pieces of advice may apply to the same control-flow point, so the order advice

is installed in the run-time environment is important. WZL included mechanisms

for installing advice both before or after currently installed advice, for simplicity

FA only allows advice to be installed after.

2.4.2 Operational Semantics

The operational semantics must keep track of both the labels that have been

generated and the advice that has been installed. The main operational judgment

has the form (Σ; A; e) 7→ (Σ′; A′; e′). An allocation-style semantics keeps track of

the set Σ of labels allocated so far (and their associated types) and A, an ordered

list of installed advice. The label hierarchy is determined from the label set Σ by

the relation Σ ` `1 ≤ `2 in Figure 2.4.

The main rule of the operational semantics, ev:beta in Figure 2.5, decomposes an

expression into an evaluation context and primitive reduct. The rules in Figure 2.5

CHAPTER 2. POLYMORPHIC ASPECTS 50

with the form (Σ; A; e) 7→β (Σ′; A′; e′) give the primitive β-reductions for expressions

in the calculus.

We use the following syntax for values v and evaluation contexts E:

(vals) v ::= () | λx; τ.e | 〈v〉 | Λα.e | ` | {v}

| {v[α](x : τ1, f : τ1 → τ2) � e}

(evalctxts) E ::= [] | E e | v E | E[τ] | 〈E, . . . , e〉 | 〈v, . . . , E〉 | E ∪ e | v ∪ E

| {E, . . . , e} | {v, . . . , E} | let 〈x〉 = E in e | E[τ][[e]] | v[τ][[E]]

| ⇑ E | {E[α](x : τ, f : τ1 → τ2) � e} | new α.τ ≤ E

This definition of evaluation contexts gives the core aspect calculus a call-by-

value, left-to-right evaluation order, but that choice is orthogonal to the design of

the language.

A third judgment form Σ; A; `; τ1 → τ2 ⇒ v in Figure 2.6 describes, given a

particular label ` marking a control-flow point, and type τ1 → τ2 for the object

at that point, how to pick out and compose the advice in context A that should

execute at the control-flow point. (Note that the type of the object is not used to

select the advice, it merely determines type annotations and instantiations in the

result.) The result of this advice composition process is a function v that may be

applied to a value with type (τ1 → τ2) → τ1 → τ2. The argument of the function

v is the proceed function f with type (τ1 → τ2). The result of applying v to the

proceed function is a function of type τ1 → τ2 whose argument (of type τ1) is passed

as the variable x to the advice.

The advice composition judgment is described by three rules. The first com-

position rule represents when no advice is available, and, when passed a proceed

CHAPTER 2. POLYMORPHIC ASPECTS 51

β-reduction (Σ; A; e) 7→β (Σ′; A′; e′)

(Σ; A; (λx; τ.e)v) 7→β (Σ; A; e[v/x])
evb:app

(Σ; A; (Λα.e)[τ]) 7→β (Σ; A; e[τ/α])
evb:tapp

(Σ; A;fix x; τ.e) 7→β (Σ; A; e[fix x; τ.e/x])
evb:fix

(Σ; A; let 〈x〉 = 〈v〉 in e) 7→β (Σ; A; e[v/x])
evb:let

(Σ; A; {`1} ∪ {`2}) 7→β (Σ; A; {`1`2})
evb:union

`′ 6∈ dom(Σ)

(Σ; A;new α.τ ≤ `) 7→β (Σ, `′; α.τ ≤ `; A; `′)
evb:new

(Σ; A;⇑ v) 7→β (Σ; v, A; 〈〉)
evb:adv-comp

∃Θ.Θ = mgu(τ2, τ3)

(Σ; A; typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2)) 7→β (Σ; A; Θ(e1))
evb:tcase1

¬∃Θ.Θ = mgu(τ2, τ3)

(Σ; A; typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2)) 7→β (Σ; A; e2[τ2/α])
evb:tcase2

`; α.τ1 → τ2 ≤ `′ ∈ Σ Σ; A; `; (τ1 → τ2)[τ/α] ⇒ v′

(Σ; A; `[τ][[v]]) 7→β (Σ; A; v′ v)
evb:cut

Reduction (Σ; A; e) 7→ (Σ′; A′; e′)

(Σ; A; e) 7→β (Σ′; A′; e′)

(Σ; A; E[e]) 7→ (Σ′; A′; E[e′])
ev:beta

Figure 2.5: Operational Semantics for FA

CHAPTER 2. POLYMORPHIC ASPECTS 52

Advice composition Σ; A; `; τ1 → τ2 ⇒ e

Σ; ·; `; τ1 → τ2 ⇒ λf ; τ1 → τ2.f
adv:empty

Σ; A; `; τ1 → τ2 ⇒ v
Σ ` ` ≤ `i for some i τ1 → τ2 = τ ′

1 → τ ′
2[τ/α]

Σ; A, {{`}[α](x : τ ′
1, f : τ ′

1 → τ ′
2) � e}; `; τ1 → τ2 ⇒

λf ; τ1 → τ2.v (λx; τ1.(e[τ/α]))

adv:cons1

Σ; A; `; τ1 → τ2 ⇒ v Σ ` ` 6≤ `i

Σ; A, {{`}[α](x : τ ′
1, f : τ ′

1 → τ ′
2) � e}; `; τ1 → τ2 ⇒ v

adv:cons2

Figure 2.6: Advice Composition for FA

function f and a value x, applies the proceed function f to x. The other rules

examine the advice at the head of the advice heap. If the label ` is descended from

one of the labels in the label set, then that advice is triggered. The head advice is

composed with the function produced from examining the rest of the advice in the

list. Not only does advice composition determine if ` is lower in the hierarchy than

some label in the label set, but it also determines the substitution for the abstract

types α in the body of the advice. The typing rules ensure that if the advice is

triggered, this substitution will always exist, so the execution of this rule does not

require run-time type information.

Type system

The judgments for well-formed types are straightforward and are described in Fig-

ure 2.7. In addition to the standard unit, string, etc. types, there are additional

types for labels, pointcuts, advice, and stacks. The same figure also contains the

FA instance relation, which is similar to the Aspectml instance relation.

CHAPTER 2. POLYMORPHIC ASPECTS 53

Well-formed Types ∆ ` τ

α ∈ ∆

∆ ` α
wftp:var

∆ ` 1
wftp:unit

∆ ` string
wftp:str

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

wftp:arr
∆, α ` τ

∆ ` ∀α.τ
wftp:all

∀i ∆ ` τi

∆ ` τ1 × . . .× τn

wftp:prod
∆, α ` τ

∆ ` (α.τ) label
wftp:lab

∆, α ` τ

∆ ` (α.τ) pc
wftp:pc

∆ ` advice
wftp:advice

∆ ` stack
wftp:stk

Instance ∆ ` α.τ1 � β.τ2

∆, α ` τ ′ ∆, β ` τ ′′ (∃τ ∆, β ` τi τ ′[τ/α] = τ ′′)

∆ ` α.τ ′ � β.τ ′′ inst

Figure 2.7: Well-formed types in FA

CHAPTER 2. POLYMORPHIC ASPECTS 54

Well-formed terms ∆; Γ ` e : τ

x; τ ∈ Γ

∆; Γ ` x : τ
wft:var

∆; Γ ` c : string
wft:str

∆; Γ ` () : 1
wft:unit

∆; Γ, x; τ ` e : τ ∆ ` τ

∆; Γ ` fix x; τ.e : τ
wft:fix

∆; Γ, x; τ1 ` e : τ2 ∆ ` τ1

∆; Γ ` λx; τ1.e : τ1 → τ2

wft:abs

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1e2 : τ2

wft:app
∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
wft:tabs

∆; Γ ` e : ∀α.τ ∆ ` τ ′

∆; Γ ` e[τ ′] : τ [τ ′/α]
wft:tapp

∆; Γ ` ei : τi

∆; Γ ` 〈e〉 : τ1 × . . .× τn

wft:tuple

∆; Γ ` e1 : τ1 × . . .× τn ∆; Γ, x; τ ` e2 : τ

∆; Γ ` let 〈x〉 = e1 in e2 : τ
wft:let

`; α.τ ∈ Γ

∆; Γ ` ` : (α.τ) label
wft:lab

∆; Γ ` e : advice

∆; Γ `⇑ e : 1
wft:adv-inst

Figure 2.8: Term Typing for FA: Part 1

CHAPTER 2. POLYMORPHIC ASPECTS 55

Well-formed terms ∆; Γ ` e : τ

∆; Γ ` ei : (αi.τi) label ∆ ` β.τ � αi.τi

∆; Γ ` {e} : (β.τ) pc
wft:pc

∆; Γ ` ei : (α.τi) pc ∆ ` β.τ � α.τi

∆; Γ ` e1 ∪ e2 : (β.τ) pc
wft:union

∆; Γ ` e : (β.τ2) label ∆ ` β.τ2 � α.τ1

∆; Γ ` new (α.τ1) ≤ e : (α.τ1) label
wft:new

∆; Γ ` e1 : (α.τ ′ → τ ′′) label ∆ ` τi ∆; Γ ` e2 : (τ ′ → τ ′′)[τ/α]

∆; Γ ` e1[τ][[e2]] : (τ ′ → τ ′′)[τ/α]
wft:cut

∆; Γ ` e1 : (α.τ1 → τ2) pc ∆, α; Γ, x; τ1, f ; τ1 → τ2 ` e2 : τ2

∆; Γ ` {e1[α](x : τ1, f : τ1 → τ2) � e2} : advice
wft:advice

∆, α ` τ1 ∆ ` τ2 ∆′ = FTV(τ3)−∆
(Θ = mgu(τ2, τ3) implies ∆, ∆′; Θ(Γ) ` Θ(e1) : Θ(τ1[τ3/α]))

∆, α; Γ ` e2 : τ1

∆; Γ ` typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) : τ1[τ2/α]
wft:tcase

Figure 2.9: Term Typing for FA: Part 2

CHAPTER 2. POLYMORPHIC ASPECTS 56

The primary judgment of the FA type system, ∆; Γ ` e : τ , indicates that the

term e can be given the type τ , where free type variables appear in ∆ and the types

of term variables and labels appear in Γ. The typing rules for this judgment appear

in Figures 2.8 and 2.9.

The novel aspect of the FA type system is how it maintains the proper typing

relationship between labels, label sets and advice. Because data is exchanged

between labeled control-flow points and advice, these two entities must agree about

the type of data that will be exchanged. To guarantee agreement, we must be

careful with the types of labels (Rule wft:lab), which have the form α.τ label. To

mark a control-flow point (Rule wft:cut), the label’s type τ must be a function type.

A label of type α.τ1 → τ2 label may mark control-flow points containing a proceed

function of type τ1 → τ2 and values of any type τ1, where free type variables α are

replaced by other types τ . For example, a label ` with the type α, β.α → β label

may mark any control flow point, as α and β may be instantiated with any type.

For example, below is a well-typed tuple in which ` marks two different control flow

points, one of type γ → γ and the other of type bool → int:

〈Λγ.λx; γ.(`[γ, γ][[λy; γ.y]] x), (`[bool, int][[λy; bool.if y then 1 else 0]] true)〉

Notice that marking control flow points that occur inside polymorphic functions

is no different from marking other control flow points even though `’s abstract

type variables α and β may be instantiated with different types each time the

polymorphic function is called.

Labeling control-flow points correctly is one side of the equation. Constructing

sets of labels and using them in advice safely is the other. Typing label set

CHAPTER 2. POLYMORPHIC ASPECTS 57

construction in the core calculus is quite similar to typing pointcuts in the source.

Each label in the set must be a generic instance of the type of the set. For example,

given labels `1 of type 1 → 1 label and `2 of type (1 → bool) label, a label set

containing them can be given the type (α.1 → α) pc because α.1 → α can be

instantiated to either 1 → 1 or 1 → bool. The rules for label sets and label set

union (wft:pc and wft:union) ensure these invariants.

When typing advice in the core calculus (Rule wft:advice), the advice body must

not make unwarranted assumptions about the types and values it is passed from

labeled control flow points. Consequently, if the label set e1 has type α.τ1 → τ2 pc

then advice {e1[α](f : τ ′
1 → τ ′

2, x : τ ′
1) � e2} type checks only when τ ′

1 → τ ′
2 is

τ1 → τ2. The type τ ′
1 → τ ′

2 cannot be more specific than τ1 → τ2. If advice needs

to refine the type of τ1 → τ2, it must do so explicitly with type analysis. In this

respect the core calculus obeys the principle of orthogonality: advice is completely

independent of type analysis.

The label hierarchy may be dynamically extended with new α.τ ≤ e (Rule

wft:new). The argument e becomes the parent of the new label. For soundness,

there must be a connection between the types of the child and parent labels: the

child label must have a more specific type than its parent (written ∆ ` τ1 � τ2 if τ2

is more specific than τ1). To see how label creation, labeled control flow points and

advice are all used together in the core calculus, consider the following example. It

creates a new label, installs advice for this label (that calls the proceed function

f on its argument x – essentially an identity function) and then uses this label to

mark a join point inside a polymorphic function.

CHAPTER 2. POLYMORPHIC ASPECTS 58

let l = new α.α → α ≤ U in

let = ⇑ {l[β](x : β, f : β → β) � f x} in

Λγ.l[γ][[λz; γ.z]]

The typecase expression is slightly more general in the core calculus than

in the source language. To support the preservation theorem, we must allow

arbitrary types, not just type variables, to be the object of scrutiny. In each

branch of typecase, we know that the scrutinee is the same as the pattern. In

the source language, we substituted the pattern for the scrutinized type variable

when typechecking the branches. In the core calculus, however, we must compute

the appropriate substitution, using the most general unifier (mgu). If no unifier

exists, the branch can never be executed. In that case, the branch need not be

checked.

The typing rules for the other constructs in the language including strings, unit,

functions and tuples are fairly standard.

2.4.3 Stacks and Stack Analysis

Languages such as AspectJ include pointcut operators such as CFlow to enable

advice to be triggered in a context-sensitive fashion. In FA, we not only provide the

ability to reify and pattern match against stacks, as in Aspectml, but also allow

manual construction of stack frames. In fact, managing the structure of the stack

is entirely up to the program itself. Stacks are just one possible extension enabled

by FA’s orthogonality.

CHAPTER 2. POLYMORPHIC ASPECTS 59

Stack reification data(E)

data([]) = •
data(store `[τ][[v]] in E) = data(E) :: `[τ][[v]]

data(E[E ′]) = data(E ′) otherwise

β-reduction (Σ; A; e) 7→β (Σ′; A′; e′)

(Σ; A; store `[τ][[v1]] in v2) 7→β (Σ; A; v2)
evb:store

Σ ` v ' ϕ � Θ

(Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2)) 7→β (Σ; A; Θ(e1))
evb:scase1

Σ ` v 6' ϕ � Θ

(Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2)) 7→β (Σ; A; e2[v/x])
evb:scase2

Reduction (Σ; A; e) 7→ (Σ′; A′; e′)

data(E) = v

(Σ; A; E[stack]) 7→ (Σ; A; E[v])
ev:stk

(Σ; A; e) 7→β (Σ′; A′; e′)

(Σ; A; E[e]) 7→ (Σ′; A′; E[e′])
ev:beta

Stack-matching Σ ` v ' ϕ � Θ

Σ ` • ' •� ·
sm:nil

Σ ` v2 ' ϕ � Θ

`; β.τ2 ≤ `′ ∈ Σ Σ ` ` ≤ `i for some i ∃σ.τ2[τ/β] = τ1[σ/α]

Σ ` `[τ][[v1]]::v2 ' {`}[α][[x]]; τ1::ϕ � Θ, σ/α, v1/x
sm:cons

Σ ` v′ ' ϕ � Θ

Σ ` `[τ][[v]]::v′ ' ::ϕ � Θ
sm:wild

Σ ` v ' x � ·, v/x
sm:var

Figure 2.10: Stack Operational Semantics for FA

CHAPTER 2. POLYMORPHIC ASPECTS 60

Well-formed terms ∆; Γ ` e : τ

∆; Γ ` e1 : (α.τ) label ∆ ` τi ∆; Γ ` e2 : τ [τ/α] ∆; Γ ` e3 : τ ′

∆; Γ ` store e1[τ][[e2]] in e3 : τ ′ wft:store

∆; Γ ` stack : stack
wft:stk

∆; Γ ` • : stack
wft:stk-nil

`; α.τ ∈ Γ ∆ ` τi ∆; Γ ` v1 : τ [τ/α] ∆; Γ ` v2 : stack

∆; Γ ` `[τ][[v1]]::v2 : stack
wft:stk-cons

∆; Γ ` e1 : stack
∆; Γ ` ρ a ∆′; Γ′ ∆, ∆′; Γ, Γ′ ` e2 : τ ∆; Γ, x; stack ` e3 : τ

∆; Γ ` stkcase e1 (ρ ⇒ e2, x ⇒ e3) : τ
wft:scase

Well-formed patterns ∆; Γ ` ρ a ∆′; Γ′

∆; Γ ` • a ·; ·
wfpt:nil

∆; Γ ` x a ·; ·, x; stack
wfpt:var

∆; Γ ` ρ a ∆′; Γ′

∆; Γ ` ::ρ a ∆′; Γ′ wfpt:wild

∆; Γ ` e : (α.τ) pc ∆; Γ ` ρ a ∆′; Γ′

∆; Γ ` e[α][[x]]; τ ::ρ a ∆′, α; Γ′, x : τ
wfpt:store

Figure 2.11: Stack typing for FA

CHAPTER 2. POLYMORPHIC ASPECTS 61

WZL’s monomorphic core calculus also contained the ability to query the stack,

but the stack was not first-class and queries had to be formulated as regular ex-

pressions. Our pattern matching facilities are simpler and more general. Moreover,

they fit perfectly within the functional programming idiom.

Below are the necessary new additions to the syntax of FA for storing type and

value information on the stack, capturing and representing the current stack as a

data structure, and analyzing a reified stack. The operational rules for execution of

stack commands may be found in Figure 2.10 and the typing rules in Figure 2.11.

τ ::= . . . | stack

e ::= . . . | stack | • | `[τ][[v1]]; ; v2 | store e1[τ][[e2]] in e3

| stkcase e1 (ρ ⇒ e2, x ⇒ e3)

E ::= . . . | store v[τ][[E]] in e | store v1[τ][[v2]] in E

| stkcase E (ρ ⇒ e1, x ⇒ e2)

| stkcase v (P ⇒ e1, x ⇒ e2)

ρ ::= • | e[α][[y]]; τ ; ; ρ | x | ; ; ρ

ϕ ::= • | v[α][[y]]; ; ϕ | x | ; ; ϕ

P ::= E[α][[y]]; ; ϕ | e[α][[y]]; ; P | ; ; P

Data is explicitly allocated on the stack using the command store e1[τ][[e2]] in e3,

where e1 is a label. Because this label may be polymorphic, it must be instantiated

with type arguments τ . e2 represents a value associated with the label and is

typically used to store the value passed into the control flow point marked by the

label. The store command evaluates e1 to a label l and e2 to a value v2, places

`[τ][[v1]] on the stack, evaluates e3 to a value v3 and finally removes `[τ][[v1]] from

the stack and returns v3. The term stack captures the data stored in its execution

context E as a first-class data structure. This context is converted into a data

CHAPTER 2. POLYMORPHIC ASPECTS 62

structure, using the auxiliary function data(E). We represent a stack using the list

with terms • for the empty list and ; ; (cons) to prefix an element onto the front

of the list. A list of stored stack information may be analyzed with the pattern

matching term stkcase e1 (ρ ⇒ e2, x ⇒ e3). This term attempts to match the

pattern ρ against e1, a reified stack. Note that stack patterns, ρ, include first-class

pointcuts so they must be evaluated to pattern values, ϕ, to resolve these pointcuts

before matching.

If, after evaluation, the pattern value successfully matches the stack, then the

expression e2 evaluates, with its pattern variables replaced with the corresponding

part of the stack. Otherwise execution continues with e3. These rules rely on the

stack matching relation Σ ` v ' ϕ � Θ that compares a stack pattern value ϕ with

a reified stack v to produce a substitution Θ.

2.4.4 Type Safety

We have shown that FA is type sound through the usual Progress and Preservation

theorems. Figure 2.12 describes the typing rules for the term variable and label

context Γ, the label heap Σ, and the advice heap A. It should be noted that Γ

and Σ always contain the top label U . We use the judgment ` (Σ; A; e) ok in Rule

(wfcfg) to denote a well-formed abstract machine state.

Lemma 2.4.1 (Inversion) The rules in the following judgments are invertible:

well-formed types, generalization, variable contexts, label heaps, advice heaps, term

typing, patterns, machine configurations, stack data, β -reductions, context reduc-

tions, and stack matching. The rules in the judgments for the label subsumption

and advice composition rules are not invertible.

Proof: By inspection of the rules for each judgment. 2

CHAPTER 2. POLYMORPHIC ASPECTS 63

Well-formed Term Variable and Label Context ∆ ` Γ

∆ ` U ; α.α
wfc:base

∆ ` τ ∆ ` Γ

∆ ` Γ, x; τ
wfc:var

∆, α ` τ ∆ ` Γ

∆ ` Γ, `; α.τ
wfc:lab

Well-formed Label Heaps ` Σ : Γ

` (U ; α.α ≤ U) : (U ; α.α)
wflh:base

`2; β.τ2 ≤ `3 ∈ Σ · ` β.τ2 � α.τ1 ` Σ : Γ

` (Σ, `1; α.τ1 ≤ `2) : (Γ, `1; α.τ1)
wflh:cons

Well-formed Advice Heaps Γ ` A ok

Γ ` · ok
wfah:base

·; Γ ` v : advice Γ ` A ok

Γ ` A, v ok
wfah:cons

Well-formed Machine Configurations `(Σ; A; e) ok

` Σ : Γ Γ ` A ok ·; Γ ` e : τ

`(Σ; A; e) ok
wfcfg

Figure 2.12: Well-formed Machine Configurations in FA

CHAPTER 2. POLYMORPHIC ASPECTS 64

Progress. In this section, we present the lemmas used to prove Progress Theo-

rem 2.4.11.

The following lemma says that if a hierarchy relation between two labels is well-

typed with regards to the label store, both labels exist in the store.

Lemma 2.4.2 (Label subsumption) If ` Σ : Γ and Σ ` `1 ≤ `2

then `1 : α.τ1 ≤ `′1 ∈ Σ and `2 : β.τ2 ≤ `′2 ∈ Σ.

Proof: Straightforward induction on the structure of Σ ` `1 ≤ `2. 2

The following lemma states that if a label is lower in the hierarchy than another,

the type of the higher label is more general (more polymorphic) than the lower.

Lemma 2.4.3 (Label generalization) If ` Σ : Γ and Σ ` `1 ≤ `2 and `1 : α.τ1 ≤

`′1 ∈ Σ and `2 : β.τ2 ≤ `′2 ∈ Σ then · ` β.τ2 � α.τ1.

Proof: By induction on the structure of Σ ` `1 ≤ `2, with use of the Inversion

Lemma 2.4.1 and the Label Subsumption Lemma 2.4.2. 2

The following lemma states that if one type is more general (more polymorphic)

than a second, and the second more general (more polymorphic) than a third, that

the first type is more general (more polymorphic) than the third.

Lemma 2.4.4 (Instance transitivity) If ∆ ` α.τ1 � β.τ2 and ∆ ` β.τ2 � γ.τ3

then ∆ ` α.τ1 � γ.τ3.

Proof: Straightforward, with uses of the Inversion Lemma 2.4.1. 2

The following lemma states that if a label is lower in the label hierarchy than

a label in a pointcut, the pointcut type is more general (more polymorphic) than

than the label type.

CHAPTER 2. POLYMORPHIC ASPECTS 65

Lemma 2.4.5 (Pointcut match progress) If ` Σ : Γ and (· ` τi)
1≤i≤n and

`; a.τ ≤ `′ ∈ Σ and ·; Γ ` {`} : (β.τ ′) pc and Σ ` ` ≤ `j and (· ` τ ′
i)

1≤i≤n

then τ [τ/a] = τ ′[τ ′/β].

Proof: Straightforward, with uses of the Inversion Lemma 2.4.1, the Label

Generalization Lemma 2.4.3 and the Instance Transitivity Lemma 2.4.4. 2

The following lemma states that the advice triggering mechanism cannot get

“stuck.” If a label in a joinpoint triggers a pointcut in a piece of advice, then

the pointcut type is more general (more polymorphic) than the label type. It is a

straightforward use of the previous lemma.

Lemma 2.4.6 (Cut progress) If ` Σ : Γ and Γ ` A, {{`}.βx; τ ′ → e} ok and

·; Γ ` `[τ][[v]] : τ [τ/α] and Σ ` ` ≤ `j and (· ` τ ′
i)

1≤i≤n

then τ [τ/a] = τ ′[τ ′/β].

Proof: Straightforward use of the Pointcut Match Progress Lemma 2.4.5, with

uses of the Inversion Lemma 2.4.1. 2

The following lemma states that the stack pattern matching mechanism cannot

get stuck. If a label in a stack matches a stack pattern, then the stack pattern type

is more general (more polymorphic) than the label type. Like the previous lemma,

it is a straightforward use of the Pointcut Match Progress Lemma 2.4.5.

Lemma 2.4.7 (Stack-case progress) If ` Σ : Γ and

c ·; Γ ` stkcase `[τ][[v1]]; ; v2 ({`}[β][[x]]; τ ′; ; ρ ⇒ e2, x ⇒ e3) : τ and Σ ` ` ≤ `j and

(· ` τ ′
i)

1≤i≤n

then τ [τ/a] = τ ′[τ ′/β].

CHAPTER 2. POLYMORPHIC ASPECTS 66

Proof: Straightforward use of the Pointcut Match Progress Lemma 2.4.5, with

uses of the Inversion Lemma 2.4.1. 2

The following lemma states that if a value can be given a particular type, it has

a particular form.

Lemma 2.4.8 (Canonical forms) Suppose that v : τ is a closed, well-formed

value and τ is a closed, well-formed type.

• If τ = 1, then v = ().

• If τ = string, then v = s.

• If τ = τ1 → τ2, then v = λx; τ1.e.

• If τ = ∀α.τ ′, then v = Λα.e.

• If τ = (α.τ ′) label, then v = `.

• If τ = (α.τ ′) pc, then v = {v}.

• If τ = advice, then v = {v′.αx; τ ′ → e}.

• If τ = stack, then either v = • or `[τ ′][[v′]]; ; v′′.

• If τ = τ1 × . . .× τn, then v = 〈v〉.

Proof: By induction on the structure of ∆; Γ ` v : τ , using the fact that v is a

value. 2

The following lemma states that if a label store and an expression is well-typed,

then the expression is either a value, or is an evaluation context with an inner

expression that can take a step.

CHAPTER 2. POLYMORPHIC ASPECTS 67

Lemma 2.4.9 (Context decomposition) If ` Σ : Γ and ·; Γ ` e : t

then e is a value or E[e′] where e′ is either stack or the left-hand side of one of the

β-reduction rules.

Proof: By induction on on the structure of ·; Γ ` e : t 2

The following lemma states that if a label store, an aspect store, and an expres-

sion are well-formed, then the expression is a value or the machine state can take a

step.

Lemma 2.4.10 (Progress lemma) If ` Σ : Γ and Γ ` A ok and ·; Γ ` e : τ

then either e is a value, or there exists another configuration (Σ′; A′; e′) such that

(Σ; A; e) 7→ (Σ′; A′; e′).

Proof: By induction on the structure of ∆; Γ ` e : τ , with uses of the Inversion

Lemma 2.4.1 and the Canonical Forms Lemma 2.4.8, and the Context Decomposi-

tion Lemma 2.4.9.

• Case wft:cut uses the Cut Progress Lemma 2.4.6 to show that the advice

triggering mechanism cannot get “suck.”

• Case wft:scase uses the Stack-case Progress Lemma 2.4.7 to show that the

stack pattern matching mechanism cannot get “stuck.”

2

The Progress Theorem states that if a machine configuration is well-formed,

then either the expression in it is a value, or the machine configuration can take a

step. It is a straightforward use of the previous lemma.

CHAPTER 2. POLYMORPHIC ASPECTS 68

Theorem 2.4.11 (Progress) If `(Σ; A; e) ok

then either e is a value, or there exists another configuration (Σ′; A′; e′) such that

(Σ; A; e) 7→ (Σ′; A′; e′).

Proof: Straightforward use of the Progress Lemma 2.4.10, with uses of the

Inversion Lemma 2.4.1. 2

Preservation. In this section, we present the lemmas used to prove Preservation

Theorem 2.4.23.

The following definitions state what it means for one environment or store to

“extend” another environment or store. The extended environment is a superset of

the original environment.

Definition 2.4.12 (Γ′ extends Γ) If dom(Γ) ⊆ dom(Γ′) and ∀x ∈ dom(Γ), Γ(x) =

Γ′(x), and ∀l ∈ dom(Γ), Γ(l) = Γ′(l),

then Γ′ extends Γ.

Definition 2.4.13 (Σ′ extends Σ) If dom(Σ) ⊆ dom(Σ′) and ∀l ∈ dom(Σ), Σ(l) =

Σ′(l),

then Σ′ extends Σ.

Definition 2.4.14 (A′ extends A) If ∀v ∈ A, v ∈ A′,

then A′ extends A.

The following lemma states that if an evaluation context is well-typed, then the

expression inside the evaluation context is also well-typed.

Lemma 2.4.15 (Evaluation context inversion) If ∆; Γ ` E[e] : τ

then ∆; Γ ` e : τ ′.

CHAPTER 2. POLYMORPHIC ASPECTS 69

Proof: By induction on the structure of E, with uses of the Inversion Lemma 2.4.1.

2

The following lemma states that if an evaluation context is well-typed, and

the expression inside the evaluation context is also well-typed, then substituting a

different inner expression with the same type, preserves the type of the evaluation

context.

Lemma 2.4.16 (Evaluation context substitution) If ∆; Γ ` E[e] : τ and

∆; Γ ` e : τ ′ and ∆; Γ′ ` e′ : τ ′ and Γ′ extends Γ

then ∆; Γ′ ` E[e′] : τ .

Proof: By induction on the structure of E, with uses of the Inversion Lemma 2.4.1.

2

The following lemma states that if an evaluation context is well-typed, then

running the data function on the evaluation context returns a value with type stack.

Lemma 2.4.17 (Data function typing) If ·; Γ ` E[e] : τ and data(E) = v

then ·; Γ ` v : stack.

Proof: By induction on the structure of the data(E) function, with uses of the

Inversion Lemma 2.4.1 and the Evaluation Context Inversion Lemma 2.4.15. 2

The following lemma states if a stack is matched to a stack pattern to produce

a substitution, then the substitution preserves typing.

Lemma 2.4.18 (Pattern matching) If ` Σ : Γ′′ and Γ extends Γ′′ and ∆ ` Γ

and ∆; Γ ` v : stack and ∆; Γ ` ρ a ∆′; Γ′ and ∆, ∆′; Γ, Γ′ ` e : τ and Σ ` v ' ρ�Θ

then ∆; Γ ` Θ(e) : τ .

CHAPTER 2. POLYMORPHIC ASPECTS 70

Proof: By induction on the structure of Σ ` v ' ρ�Θ, with uses of the Inversion

Lemma 2.4.1. 2

The following lemma states that when the advice composition function returns

an “around” function when triggered by a joinpoint, the “around” function has the

proper type to replace the joinpoint.

Lemma 2.4.19 (Advice composition) If ` Σ : Γ and Γ ` A ok and ·; Γ ` ` :

(α.τ) label and Σ; A; `; τ [τ/α] ⇒ v and (· ` τi)
1≤i≤n

then ·; Γ ` v : τ [τ/α] → τ [τ/α].

Proof: By induction on the structure of Σ; A; `; τ [τ/α] ⇒ v, with uses of the

Inversion Lemma 2.4.1. 2

The following lemma states that when type variables are replaced by well-formed

types in an expression typing judgment, the expression typing judgment still holds.

Lemma 2.4.20 (Type Substitution) If ∆, α; Γ ` e : τ and ∆ ` τ ′

then ∆; Γ[τ ′/α] ` e[τ ′/α] : τ [τ ′/α]

Proof: By induction on the structure of ∆; Γ ` e : τ . 2

The following lemma states that if a label store, advice store, and expression of

a machine configuration are well-typed and take a step using the β-redex rules, the

resulting machine configuration is also well-typed.

Lemma 2.4.21 (β-redex preservation) If ` Σ : Γ and Γ ` A ok and ·; Γ ` e : τ

and (Σ; A; e) 7→β (Σ′; A′; e′)

then ` Σ′ : Γ′ and Γ′ ` A′ ok and ·; Γ′ ` e′ : τ and Γ′ extends Γ.

CHAPTER 2. POLYMORPHIC ASPECTS 71

Proof: By induction on the structure of (Σ; A; e) 7→β (Σ′; A′; e′), with uses of

the Inversion Lemma 2.4.1, the Instance Transitivity Lemma 2.4.4, and the Type

Substitution Lemma 2.4.20.

• Case evb:scase1 uses the Pattern Matching Lemma 2.4.18 to show that the

stack pattern machine algorithm preserves typing.

• Case evb:cut uses the Advice Composition Lemma 2.4.19 to show that the

advice composition algorithm preserves typing.

2

The following lemma states that if a label store, advice store, and expression of

a machine configuration are well-typed and take a step using the reduction rules,

the resulting machine configuration is also well-typed.

Lemma 2.4.22 (Preservation lemma) If ` Σ : Γ and Γ ` A ok and ·; Γ ` e : τ

and (Σ; A; e) 7→ (Σ′; A′; e′)

then ` Σ′ : Γ′ and Γ′ ` A′ ok and ·; Γ′ ` e′ : τ .

Proof: By induction on the structure of (Σ; A; e) 7→ (Σ′; A′; e′), with uses of the

Inversion Lemma 2.4.1.

• Case ev:beta uses the Evaluation Context Inversion Lemma 2.4.15, the Eval-

uation Context Substitution Lemma 2.4.16, and the β-redex Preservation

Lemma 2.4.21 to show that using the β-redex rules on an expression inside an

evaluation context preserves typing.

• Case ev:stk uses the Data Typing Lemma 2.4.17 to show that running the data

function on an evaluation context returns a value that preserves typing.

CHAPTER 2. POLYMORPHIC ASPECTS 72

2

The following lemma states that if a machine configuration is well-formed and

takes a step, then the resulting machine configuration is also well-formed. It is a

straightforward use of the previous lemma.

Theorem 2.4.23 (Preservation) If `(Σ; A; e) ok and (Σ; A; e) 7→ (Σ′; A′; e′),

then Σ′ and A′ extend Σ and A such that `(Σ′; A′; e′) ok.

Proof: Straightforward use of the Preservation Lemma 2.4.22, with uses of the

Inversion Lemma 2.4.1. 2

The end result is that well-typed programs do not go wrong.

2.5 Translation from AspectML to FA

2.5.1 Definition of Translation

We give a semantics to well-typed Aspectml programs by defining a type-preserving

translation into the FA language. This translation is defined by the following

mutually recursive judgments for over terms, types, patterns, declarations and

pointcut designators.

Throughout the translation we assume that there exists an implicit injection

from Aspectml type and term variables (a, b, . . . and x, y, . . .) and FA type and

term variables (α, β, . . . and x, y, . . .).

We begin by defining several translation abbreviations in Figure 2.13. These

allow us to specify function abstraction and application translation rules, type

abstraction and application rules, stkcase and typecase rules, and other rules

more succinctly.

CHAPTER 2. POLYMORPHIC ASPECTS 73

Simple abbreviations

let x : τ = e1 in e2 , (λx; τ.e2)e1

∀a.τ , ∀α1 . . . ∀αn.τ

Λa.e , Λα1 . . . ∀αn.e

e[τ] , e[τ1] . . . [τn]

, x
(where x fresh)

Multi-arm stkcase abbreviation stkcase e′1 (ρ ⇒ e, ⇒ e′2)

stkcase e1 (ρ ⇒ e, ⇒ e2) ,
let y : stack = e1 in stkcase′ y (ρ ⇒ e, ⇒ e2)

stkcase′ e1 (ρ ⇒ e2, x ⇒ e3) , stkcase e1 (ρ ⇒ e2, ⇒ e3)

stkcase′ e1 (ρ ⇒ e2, ρ ⇒ e, x ⇒ e2) ,
stkcase e1 (ρ ⇒ e2, ⇒ stkcase′ e1 (ρ ⇒ e, ⇒ e2))

(where y fresh)

Multi-arm typecase abbreviation typecase[α.τ ′
1] α (τ ⇒ e, α ⇒ e′)

typecase[α.τ ′] α (τ ⇒ e1, α ⇒ e2) , typecase[α.τ ′] α (τ ⇒ e1, α ⇒ e2)

typecase[α.τ ′] α (τ ⇒ e1, τ ⇒ e, α ⇒ e2) ,
typecase[α.τ ′] α (τ ⇒ e1, α ⇒ typecase[α.τ ′] α (τ ⇒ e, α ⇒ e2))

Pointcut splitting helper π(tm, e)

π(around, e) = let 〈x, 〉 = e in x
π(stk, e) = let 〈 , x〉 = e in x

(where x fresh)

Figure 2.13: Translation Abbreviations

CHAPTER 2. POLYMORPHIC ASPECTS 74

Polytype translation ∆ ` s
type
==⇒ τ

∆, a ` t
type
==⇒ τ ′

∆ ` <a> t
type
==⇒ ∀α.τ ′

tpy:all

Monotype translation ∆ ` t
type
==⇒ τ

a ∈ ∆

∆ ` a
type
==⇒ α

ttp:var
∆ ` X

type
==⇒ 1

ttp:unif
∆ ` Unit

type
==⇒ 1

ttp:unit

∆ ` String
type
==⇒ string

ttp:str
∆ ` Stack

type
==⇒ stack

ttp:stk

∆ ` t1
type
==⇒ τ ′

1 ∆ ` t2
type
==⇒ τ ′

1

∆ ` t1 -> t2
type
==⇒ τ ′

1 → τ ′
2

ttp:fun

∆, a ` t1
type
==⇒ τ ′

1 ∆, a ` t2
type
==⇒ τ ′

2

∆ ` pc (<a> t1 ~> t2)
type
==⇒

(α.(τ ′
1 × stack× string) → (τ ′

2 × stack× string)) pc× (α.τ ′
1 × string) pc

ttp:pc

Figure 2.14: Type translation from Aspectml to FA

CHAPTER 2. POLYMORPHIC ASPECTS 75

Type variable context translation ∆ =⇒ ∆′

∆ =⇒ ∆′ iff for all a ∈ ∆, α ∈ ∆′.

Term variable context translation ∆; Φ ` Γ =⇒ Γ′

∆; Φ ` · =⇒
Uaround; (αβ.(α× stack× string) → (β × stack× string)) label,
Ustk; (α.α× string) label

tctx:empty

∆; Φ ` Γ =⇒ Γ′ ∆ ` s
type
==⇒ τ

∆; Φ ` Γ, x :: s =⇒ Γ′, x; τ
tctx:lc

∆; Φ ` Γ =⇒ Γ′ ∆ ` s
type
==⇒ τ

∆; Φ ` Γ, x : s =⇒ Γ′, x; τ
tctx:gc

∆; Φ ` Γ =⇒ Γ′ f ∈ Φ ∆ ` s
type
==⇒ ∀α.τ1 → τ2

∆; Φ ` Γ, f :: s =⇒
Γ′, faround; (α.(τ1 × stack× string) → (τ2 × stack× string)) label,

fstk; (α.τ1 × string) label,
f ;∀α.τ1 → τ2

tctx:lc-fun

∆; Φ ` Γ =⇒ Γ′ f ∈ Φ ∆ ` s
type
==⇒ ∀α.τ1 → τ2

∆; Φ ` Γ, f : s =⇒
Γ′, faround; (α.(τ1 × stack× string) → (τ2 × stack× string)) label,

fstk; (α.τ1 × string) label,
f ;∀α.τ1 → τ2

tctx:gc-fun

Figure 2.15: Context translation from Aspectml to FA

CHAPTER 2. POLYMORPHIC ASPECTS 76

Programs e : t
prog
==⇒ e′

·; ·; · ` e : t
term
===⇒ e′

e : t
prog
==⇒

let Uaround : (αβ.(α× stack× string) → (β × stack× string)) label =
new (αβ.(α× stack× string) → (β × stack× string)) ≤ U in

let Ustk : (α.α× string) label =
new (α.α× string) ≤ U in e′

tprog

Figure 2.16: Program Translation from Aspectml to FA

The essence of the translation is that join points must be made explicit in FA.

Therefore, we translate functions so that that they include an explicitly labeled join

point surrounding the function body and another that stores information on the

stack as the function executes. More specifically, for each function we create two

labels faround, and fstk for these join points. So that Aspectml programs can refer

to the pointcut designators of any function using the any keyword , all labels faround

are derived from a distinguished label Uaround. Likewise, Ustk is the parent of all

fstk. These constructions can be seen in Figure 2.16, where in Rule tctx:empty, the

Uaround and Ustk labels are created in the FA context. Similarly, in Rules tctx:lc-fun

and tctx:gc-fun, faround and fstk labels are created in the FA term variable context

for each f in the Aspectml context. Finally, the actual Uaround and Ustk labels are

created in Rule tprog directly underneath U in the FA label hierarchy.

Pointcuts are translated into a tuple of two FA pointcuts in Figure 2.17. The

pointcut any becomes a tuple containing the Uaround and Ustk pointcuts, which, as

explained previously, contain the parents of all around and stk labels respectively.

Sets of functions are translated into tuples of pointcuts containing their associated

before, after, and stk labels. We then use a pointcut splitting helper function to

CHAPTER 2. POLYMORPHIC ASPECTS 77

Local term translation ∆; Φ; Γ `loc e : t
term
===⇒ e′

∆ ` t ∆; Φ; Γ ` e : t
term
===⇒ e′

∆; Φ; Γ `loc
e:t : t

term
===⇒ e′

lttm:cnv
x :: t ∈ Γ

∆; Φ; Γ `loc
x : t

term
===⇒ x

lttm:var

∆; Φ; Γ `loc
c : String

term
===⇒ c

lttm:string

∆; Φ; Γ `loc
() : Unit

term
===⇒ ()

lttm:unit

∀i fi ∈ Φ

Γ(fi) = <a> t1,i -> t2,i ∆ ` t1 -> t2 � <a> t1,i -> t2,i

∆; Φ; Γ `loc
#f:(t1 ~> t2)# : pc (t1 ~> t2)

term
===⇒

〈{faround}, {fstk}〉

lttm:set-ann

∆; Φ; Γ `loc
any : pc (<ab> a ~> b)

term
===⇒ 〈{Uaround}, {Ustk}〉

lttm:any

∆; Φ; Γ ` ds ; e : t
decs
===⇒ e′

∆; Φ; Γ `loc
let ds in e : t

term
===⇒ e′

lttm:let

Figure 2.17: Local Expression Translation from Aspectml to FA

CHAPTER 2. POLYMORPHIC ASPECTS 78

Declarations ∆; Φ; Γ ` d ; e : t
decs
===⇒ e′

∆, a ` t1 -> t2
type
==⇒ τ ′

1 → τ ′
2

∆, a; Φ; Γ, f :: t1 -> t2, x :: t1 ` e1 : t2
term
===⇒ e′1

∆; Φ, f; Γ, f :: <a> t1 -> t2 ` e2 : t
term
===⇒ e′2

∆; Φ ; Γ ` fun f <a> (x:t1):t2 = e1; e2 : t
decs
===⇒

let faround : (α.(τ ′
1 × stack× string) → (τ ′

2 × stack× string)) label =
new (α.(τ ′

1 × stack× string) → (τ ′
2 × stack× string)) ≤ Uaround in

let fstk : (α.τ ′
1 × string) label = new (α.τ ′

1 × string) ≤ Ustk in
let f : ∀α.τ ′

1 → τ ′
2 = Λα.fix f : τ ′

1 → τ ′
2.λx; τ ′

1.
store fstk[α][[〈x, “f”〉]] in
(let 〈x′′, , 〉 = faround[α][[λw : (τ ′

1 × stack× string).
let 〈x, y, z〉 = w in 〈e′1, y, z〉]] (x′, stack, “f”) in x′′)

e′2

tds:fun-ann

∆, a ` t1

∆, a ` t2 ∆; Φ; Γ ` fun f <a> (x:t1):t2 = e1 ; e2 : t
decs
===⇒ e′

∆; Φ; Γ ` fun f x = e1 ; e2 : t
decs
===⇒ e′

tds:fun

Figure 2.18: Function Declaration Translation from Aspectml to FA

pick either the first or second element of the pointcut tuple depending on whether

we attempting to use the pointcut in advice or in a stack pattern.

The translation of functions (Rule tds:fun-ann) in Figure 2.18 begins by creating

the labels, faround and fstk for the function’s join points. Inside the body of the

translated function, a store statement marks the function’s stack frame with the

fstk label. The function’s body is η-expanded and passed to the join point to be

used as the proceed function f by any advice triggered by the faround label. Because

Aspectml advice expects the current stack and a string of the function name, we

also insert stacks and string constants into the join points.

CHAPTER 2. POLYMORPHIC ASPECTS 79

Declarations ∆; Φ; Γ ` d ; e : t
decs
===⇒ e′

tm ∈ {before, after} ∆, a ` t1

∆; Φ; Γ ` advice tm (|e1|) <a> (x:t1,y,z) = e2 ; e3 : t2
decs
===⇒ e′

∆; Φ; Γ ` advice tm (|e1|) (x,y,z) = e2 ; e3 : t2
decs
===⇒ e′

tds:adv

∆, a ` t2 ∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 =

proceed e2 ; e3 : t3
decs
===⇒ e′

∆; Φ; Γ ` advice before (|e1|) <a> (x:t1,y,z) =

e2 ; e3 : t3
decs
===⇒ e′

tds:adv-bef

∆, a ` t2 ∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 =

(let x : t2 = (proceed x) in e2) ; e3 : t3
decs
===⇒ e′

∆; Φ; Γ ` advice after (|e1|) <a> (x:t2,y,z) = e2 ; e3 : t3
decs
===⇒ e′

tds:adv-aft

∆, a ` t1

∆, a ` t2 ∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 =

e2 ; e3 : t3
decs
===⇒ e′

∆; Φ; Γ ` advice around (|e1|) (x,y,z) =

e2 ; e3 : t3
decs
===⇒ e′

tds:adv-aro

∆; Φ; Γ `loc
e1 : pc pt

term
===⇒ e′1 π(around, pt) = <a> t1 → t2

π(around, e′1) = e′′1 ∆, a ` t1 → t2
type
==⇒ τ ′

1 → τ ′
2

∆, a; Φ; Γ, x; t1, y; Stack, z; String, proceed; t1 → t2 `
e2 : t2

term
===⇒ e′2

∆; Φ; Γ ` e3 : t3
term
===⇒ e′3

∆; Φ ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 = e2; e3 : t3
decs
===⇒

let : 1 =⇑ {e′′1.α(x; (τ ′
1 × stack× string),

f ; (τ ′
1 × stack× string) → (τ ′

2 × stack× string)) →
let 〈x, y, z〉 = x in
〈e′2[λx : τ ′

1.let 〈x, , 〉 = f 〈x, y, z〉 in x/proceed], y, z〉}
in e′3

tds:adv-ann

Figure 2.19: Advice Declaration Translation from Aspectml to FA

CHAPTER 2. POLYMORPHIC ASPECTS 80

Declarations ∆; Φ; Γ ` d ; e : t
decs
===⇒ e′

∆; Φ; Γ ` case-advice around (|e1|) (x:t1,y,z):a =

proceed e2 ; e3 : t2
decs
===⇒ e′

∆; Φ; Γ ` case-advice before (|e1|) (x:t1,y,z) = e2 ;

e3 : t2
decs
===⇒ e′

tds:cadv-bef

∆; Φ; Γ ` case-advice around (|e1|) (x:a,y,z):t1 =

(let x : t1 = (proceed x) in e2) ; e3 : t2
decs
===⇒ e′

∆; Φ; Γ ` case-advice after (|e1|) (x:t1,y,z) = e2 ;

e3 : t2
decs
===⇒ e′

tds:cadv-aft

∆; Φ; Γ `loc
e1 : pc pt

term
===⇒ e′1 π(around, pt) = <a> t1 → t2

π(around, e′1) = e′′1 b = FTV(t3) ∪ FTV(t4)−∆

∆, a ` t1 → t2
type
==⇒ τ ′

1 → τ ′
2 ∆, b ` t3 → t4

type
==⇒ τ ′

3 → τ ′
4

∆, b; Φ; Γ, x; t3, y; Stack, z; String, proceed; t3 → t4 ` e2 : t4
term
===⇒ e′2

∆; Φ; Γ ` e3 : t
term
===⇒ e′3

∆; Φ ; Γ ` case-advice around (|e1|) (x:t3,y,z):t4 = e2;

e3 : t
decs
===⇒

let : 1 =⇑ {e′′1.αx; (τ ′
1 × stack× string),

f ; (τ ′
1 × stack× string) → (τ ′

2 × stack× string) →
let 〈x, y, z〉 = x in
〈typecase[α.α] τ ′

1 → τ ′
2

(τ ′
3 → τ ′

4 ⇒
e′2[λx : τ ′

1.let 〈x, , 〉 = f 〈x, y, z〉 in x/proceed],
α ⇒ x), y, z〉}

in e′3

tds:cadv-aro

Figure 2.20: Case-advice Declaration Translation from Aspectml to FA

CHAPTER 2. POLYMORPHIC ASPECTS 81

Advice and case-advice translation is defined in Figures 2.19 and 2.20. The most

significant difference between advice in Aspectml and FA is that FA has no notion

of a trigger time. Because the pointcut argument of the advice will translate into a

tuple of two FA pointcuts, tm is used to determine which component is used. The

translation also splits the input of the advice into the two arguments that Aspectml

expects and immediately installs the advice.

To simplify the translation, only the rules for around advice (tds:adv-ann and

tds:cadv-aro) are directly defined – before advice (Rules tds:adv-bef and tds:cadv-

bef) becomes around advice such that the before advice is executed, then proceed

is called on the result. Similarly, after advice (Rules tds:adv-aft and tds:cadv-aft)

becomes around advice such that the proceed function executes the function body,

and then the after advice is run on the result. Finally, the around case-advice

declaration (Rule tds:cadv-aro) uses a typecase expression to perform the necessary

type analysis.

Finally, we include the global expression translation rules (Figure 2.21) and the

pattern translation rules (Figure 2.22). In Rule tpat:cons-ann, the second, stack

element of the pointcut tuple is selected by the π function as the pointcut to be

used by the stkcase expression.

2.5.2 Translation Type Safety

We prove that the translation is type-preserving, and therefore that Aspectml is

also type safe.

CHAPTER 2. POLYMORPHIC ASPECTS 82

Pattern splitting helper split(Ξ, e)

split(·, e) = e
split(Ξ, x 7→ (y, z), e) = split(Ξ, let 〈y, z〉 = x in e)

Global term translation ∆; Φ; Γ ` e : t
term
===⇒ e′

∆; Φ; Γ `loc
e : t

term
===⇒ e′

∆; Φ; Γ ` e : t
term
===⇒ e′

gttm:cnv
Γ(x) = <a> t ∆ ` ti

type
==⇒ τ ′

i

∆; Φ; Γ ` x : t[t/a]
term
===⇒ x[τ ′]

gttm:var

∆; Φ; Γ ` e1 : t1 -> t2
term
===⇒ e′1 ∆; Φ; Γ ` e2 : t1

term
===⇒ e′2

∆; Φ; Γ ` e1e2 : t2
term
===⇒ e′1e

′
2

gttm:app

∆; Φ; Γ ` e : Stack
term
===⇒ et ∀i ∆; Φ; Γ ` pati

pat
==⇒ ρ′

i a ∆i; Γi; Ξi

∆, ∆i; Φ; Γ, Γi ` ei : t
term
===⇒ e′i

∆; Φ; Γ ` e′ : t
term
===⇒ e′t


∆; Φ; Γ ` stkcase e (pat=>e |_=> e′) : t

term
===⇒

stkcase et (ρ′ ⇒ split(Ξ, e′), x ⇒ e′t)

gttm:scase

∆, a ` t
type
==⇒ τ ′ ∆; Φ; Γ ` e : t

term
===⇒ e′(

∀i ∆i = FTV(ti)−∆ ∆, ∆i ` ti
type
==⇒ τ ′

i a 6∈ FTV(ti)

∆, ∆i; Φ; Γ〈ti/a〉 ` ei[ti/a] : t[ti/a]
term
===⇒ e′i

)
∆; Φ; Γ ` typecase<t> a (t=>e |_=> e) : t

term
===⇒

typecase[α.τ ′] α (τ ′ ⇒ e′, α ⇒ e′)

gttm:tcase

∆; Φ; Γ ` ds ; e : t
decs
===⇒ e′

∆; Φ; Γ ` let ds in e : t
term
===⇒ e′

gttm:let

Figure 2.21: Global Expression Translation from Aspectml to FA

CHAPTER 2. POLYMORPHIC ASPECTS 83

Splitting context translation ∆; Γ ` Ξ =⇒ Γ′

∆; · ` · =⇒ ·
tsctx:empty

∆; Γ ` Ξ =⇒ Γ′

∆; Γ, x; Stack ` Ξ =⇒ Γ′, x; stack
tsctx:cons1

∆; Γ ` · =⇒ Γ′

∆; Γ, x; t ` · =⇒ Γ′ tsctx:cons2

∆; Γ ` Ξ =⇒ Γ′ ∆ ` t
type
==⇒ τ

∆; Γ, y; t, z; String ` Ξ, x 7→ (y, z) =⇒ Γ′, x; τ × string,
tsctx:cons3

Patterns ∆; Φ; Γ ` pat
pat
==⇒ ρ a ∆′; Γ′; Ξ

∆; Φ; Γ ` []
pat
==⇒ • a ·; ·; ·

tpat:nil
∆; Φ; Γ ` x

pat
==⇒ x a ·; ·, x; Stack; ·

tpat:var

∆; Φ; Γ ` pat
pat
==⇒ ρ′ a ∆′; Γ′; Ξ

∆; Φ; Γ ` _::pat
pat
==⇒ ::ρ′ a ∆′; Γ′; Ξ

tpat:wild

∆, a ` t ∆; Φ; Γ ` (|e|)<a>(x:t,z)::pat
pat
==⇒

ρ′ a ∆′; Γ′; Ξ

∆; Φ; Γ ` (|e|)(x,z)::pat
pat
==⇒ ρ′ a ∆′; Γ′; Ξ

tpat:cons

∆; Φ; Γ `loc
e : pc (<a> t1 ~> t2)

term
===⇒ e′

π(stk, e′) = e′′ ∆; Φ; Γ ` pat
pat
==⇒ ρ′ a ∆′; Γ′; Ξ y fresh

∆; Φ; Γ ` (|e|)<a>(x:t1,z)::pat
pat
==⇒

e′′[α][[y]]::ρ′ a ∆′, a; Γ′, x; t1, z; String; Ξ, y 7→ (x, z)

tpat:cons-ann

Figure 2.22: Pattern Translation from Aspectml to FA

CHAPTER 2. POLYMORPHIC ASPECTS 84

Lemma 2.5.1 (Translation commutes with type substitution) Given ∆ =⇒

∆′ and ∆ ` t′
type
==⇒ τ ′

then

1. If ∆, a ` s
type
==⇒ τ then ∆ ` s[t′/a]

type
==⇒ τ [τ ′/α].

2. If ∆, a ` t
type
==⇒ τ then ∆ ` t[t′/a]

type
==⇒ τ [τ ′/α].

3. If ∆, a; Φ; Γ ` e : t
term
===⇒ e′ and e[t′/a] is defined then ∆; Φ; Γ[t′/a] ` e[t′/a] :

t
term
===⇒ e′[τ ′/α].

4. If ∆, a; Φ; Γ `loc e : t
term
===⇒ e′ and e[t′/a] is defined then ∆; Φ; Γ[t′/a] `loc e[t′/a] :

t[t′/a]
term
===⇒ e′[τ ′/α].

5. If ∆, a; Φ; Γ ` ds ; e : t
decs
===⇒ e′ and both ds[t′/a] and e[t′/a] are defined then

∆; Φ; Γ[t′/a] ` ds[t′/a] ; e[t′/a] : t[t′/a]
decs
===⇒ e′[τ ′/α].

6. If ∆, a; Φ; Γ ` pat
pat
==⇒ ρ a ∆′′; Γ′′; Ξ and pat[t′/a] is defined then ∆; Φ; Γ[t′/a] `

pat[t′/a]
pat
==⇒ ρ[τ ′/α] a ∆′′; Γ′′[τ ′/α]; Ξ

Proof: By induction on derivations. 2

Lemma 2.5.2 (Pointcut splitting commutes with type substitution)

1. π(tm, pt[τ/α]) = (π(tm, pt))[τ/α].

2. π(tm, e[τ/α]) = (π(tm, e))[τ/α].

Proof: Trivial case analysis. 2

Lemma 2.5.3 (Split commutes with type substitution)

split(Ξ, e[τ/α]) = (split(Ξ, e))[τ/α].

CHAPTER 2. POLYMORPHIC ASPECTS 85

Proof: Trivial induction. 2

Lemma 2.5.4 (Binding type variables preserved under substitution)

If ∆ ` t′ and ∆′ =
⋃

FTV(t)− (∆, a)

then ∆′ =
⋃

FTV(t[t′/a])−∆.

Proof: Trivial. 2

Lemma 2.5.5 (Instance equivalence) ∆′ ` α.τ1 � β.τ2 iff ∆′ ` α.(τ1 ⊗ τ3) �

β.(τ2 ⊗ τ3) for any type constructor ⊗ and ∆′ ` τ3

Proof: Straightforward. 2

Lemma 2.5.6 (Splitting lemma) If ∆ =⇒ ∆′ and ∆; Φ ` Γ1 =⇒ Γ′
1 and ∆; Φ `

Γ2 =⇒ Γ′
2 and ∆; Γ2 ` Ξ =⇒ Γ′

3 and ∆′; Γ′
1, Γ

′
2 ` e : τ

then ∆′; Γ′
1, Γ

′
3 ` split(Ξ, e) : τ .

Proof: Straightforward induction over the structure of ∆; Γ2 ` Ξ =⇒ Γ′
3. 2

Lemma 2.5.7 (Context substitution lemma) If ∆; Φ ` Γ =⇒ Γ′ and ∆ `

t
type
==⇒ τ

then ∆; Φ ` Γ〈t/a〉 =⇒ Γ′′ and Γ′′[τ/α] = Γ′[τ/α].

Proof: By induction on the context translation. 2

Lemma 2.5.8 (Type translation uniqueness)

1. If ∆ ` s
type
==⇒ τ and ∆ ` s

type
==⇒ τ ′ then τ = τ ′.

2. If ∆ ` t
type
==⇒ τ and ∆ ` t

type
==⇒ τ ′ then τ = τ ′.

CHAPTER 2. POLYMORPHIC ASPECTS 86

Proof: By induction over the structure of the type. 2

Lemma 2.5.9 (Translation soundness) Given ∆ =⇒ ∆′ and ∆; Φ ` Γ =⇒ Γ′

then

1. if ∆ ` s
type
==⇒ τ then ∆′ ` τ .

2. if ∆ ` t
type
==⇒ τ then ∆′ ` τ .

3. If ∆; Φ; Γ ` e : t
term
===⇒ e′ then ∆′; Γ′ ` e′ : τ where ∆ ` t

type
==⇒ τ .

4. If ∆; Φ; Γ `loc e : t
term
===⇒ e′ then ∆′; Γ′ ` e′ : τ where ∆ ` t

type
==⇒ τ .

5. If ∆; Φ; Γ ` ds ; e : t
decs
===⇒ e′ then ∆′; Γ′ ` e′ : τ where ∆ ` t

type
==⇒ τ .

6. ∆; Φ; Γ ` pat
pat
==⇒ ρ a ∆i; Γi; Ξ then ∆′; Γ′ ` ρ a ∆′

i; Γ
∗ where ∆i =⇒ ∆′

i and

∆, ∆i; ΦΓi =⇒ Γ′
i and ∆, ∆i; Γi ` Ξ =⇒ Γ∗.

Proof: By induction on derivations.

• Case gttm:scase uses the Splitting Lemma 2.5.6.

2

Theorem 2.5.10 (Program translation safety) If e : t
prog
===⇒ e′

then ·; · ` e′ : τ where · ` t
type
==⇒ τ .

Proof: Straightforward use of the Translation Soundness for Declarations

Lemma 2.5.9: Part 5. 2

CHAPTER 2. POLYMORPHIC ASPECTS 87

Theorem 2.5.11 (AspectML safety) Suppose e : t
prog
===⇒ e′ then either e′ loops

safely but infinitely or there exists a sequence of reductions (·; ·; e′) 7→∗ (Σ; A; e′′) to

a finished configuration.

Proof: Composition of the Program Translation Safety Theorem 2.5.10 with the

FA Progress Theorem 2.4.11 and Preservation Theorem 2.4.23. 2 2

Chapter 3

Harmless Advice

3.1 Introduction

Many within the aspect-oriented programming community adhere to the tenet that

aspects are most effective when the code they advise is oblivious to their pres-

ence [18]. In other words, aspects are effective when a programmer is not required

to annotate the advised code (henceforth, the mainline code) in any particular way.

When aspect-oriented languages are oblivious, all control over when advice is applied

rests with the aspect programmer as opposed to the mainline programmer. This

design choice simplifies after-the-fact customization or analysis of programs using

aspects. For example, obliviousness makes it trivial to implement and update an

extremely flexible access control infrastructure. To adjust the places where security

checks occur, which may be scattered across the code base, one need only make

local changes to a single aspect. Obliviousness might be one of the reasons that

aspect-oriented programming has caught on with such enthusiasm in recent years,

88

CHAPTER 3. HARMLESS ADVICE 89

causing major companies such as IBM and Microsoft to endorse the new paradigm

and inspiring academics to create conferences and workshops to study the idea.

On the other hand, obliviousness threatens conventional modularity principles

and undermines a programmer’s ability to reason locally about the behavior of their

code. Consequently, many traditional programming language researchers believe

that aspect-oriented programs are ticking time bombs, which, if widely deployed,

are bound to cause the software industry irreparable harm. One central problem

is that while mainline code may be syntactically oblivious to aspects, it is not

semantically oblivious to aspects. Aspects can reach inside modules, influence the

behavior of local routines, and alter local data structures. As a result, to understand

the semantics of code in an aspect-oriented language such as AspectJ, programmers

will have to examine all external aspects that might modify local data structures or

control flow. As the number and invasiveness of aspects grows, understanding and

maintaining their programs may become more and more difficult.

In this work, we define a new form of harmless aspect-oriented advice that

programmers can use to accomplish nontrivial programming tasks yet also allows

them to enjoy most of the local reasoning principles they have come to depend

upon for program understanding, development, and maintenance. Like ordinary

aspect-oriented advice, harmless advice is a computation that executes whenever

mainline control reaches a designated control-flow point. Unlike ordinary aspect-

oriented advice, harmless advice is constrained to prevent it from interfering with

the underlying computation. Therefore, harmless advice can be added to a program

at any point in the development cycle without fear that important program invari-

ants will be disrupted. In addition, programmers who develop, debug, or enhance

mainline code can safely ignore harmless advice, if there is any present.

CHAPTER 3. HARMLESS ADVICE 90

In principle, one could devise many variants of harmless advice depending upon

exactly what it means to interfere with the underlying computation. At the most

extreme end, changing the timing behavior of a program constitutes interference

and consequently, only trivial advice is harmless. A slightly less extreme viewpoint

is one taken by secure programming languages such as Jif [41] and Flow Caml [45].

These languages ignore some kinds of interference such as changes to the timing

and termination behavior of programs, arguing that these kinds of interference will

have a minimal impact on security. However, overall, they continue to place very

restrictive constraints on programs, prohibiting i/o in high security contexts, for

instance. Allowing unchecked i/o would make it possible to leak too much secret

information.

In our case, an appropriate balance point between usability and interference

prevention is slightly more relaxed than in secure information-flow systems. We

allow aspects to perform simple output i/o (more complex i/o will be discussed in

the next chapter) and to alter the termination behavior of the program. We say that

computation A does not interfere with computation B if A does not influence the

final value produced by B. Computation A may change the timing and termination

behavior of B (influencing whether or not B does indeed return a value) and it may

perform simple output i/o.

Now suppose that A is advice and B is the main program. If we can establish

that A does not interfere with B as defined above, programmers working on B can

reason completely locally about partial correctness properties of their code. For

these properties, they do not need to know anything about advice A or whether

or not it has been applied to their code. For example, if we are working in a

functional language like ML and enjoy equational reasoning, all our favorite (partial

CHAPTER 3. HARMLESS ADVICE 91

correctness) equations continue to hold. If we are working in an imperative language

and reason (perhaps informally) using Hoare logic-style pre- and post-conditions,

the standard, commonly-used partial-correctness interpretation of these pre- and

post-conditions continues to be valid. In other words, many of our most important

local reasoning principles remain intact in the presence of harmless advice.

Every time a programmer writes new advice and can guarantee that advice

is harmless, he or she will maintain the local reasoning principles so critical to

reliable software development. Hence there is great incentive to write harmless

advice whenever possible. Fortunately, our notion of harmless, non-interfering

advice continues to support many common aspect-oriented applications, including

the following broad application classes.

• Security. Harmless advice can check invariants at run-time, maintain access

control tables, perform resource accounting, and terminate programs that

disobey dynamic security policies. We will later demonstrate a case study in

security, rewriting the security policies from Evans’ thesis [16] in our system,

and finding that all but one were harmless.

• Profiling. Harmless advice can maintain its own state separate from the

mainline computation to gather statistics concerning the number of times

different procedures are called. When the program terminates, the harmless

advice can print out the profiling statistics.

• Program tracing and monitoring. Harmless advice can print out a variety of

debugging information including when procedures are called and what data

they are passed.

CHAPTER 3. HARMLESS ADVICE 92

• Logging and backups. Harmless advice can back up data onto persistent

secondary storage or make logs of events that occur during program execution

for performance analysis, fault recovery, or postmortem security audits.

We have also accumulated anecdotal evidence indicating that several important

applications appear to fall into this category, making it a useful abstraction. For

example, IBM experimented with aspects in their middle-ware product line [8],

finding them useful for such “harmless” tasks as enforcing consistency in tracing

and logging concerns and for encapsulating monitoring and statistics components.

We also observed a sequence of emails on the AspectJ users list [24] cataloging

uses of aspects with Java projects. Many respondents specified that, in addition to

some uncommon uses that they wished to highlight, they certainly used AspectJ

for the common aspect-oriented concerns such as security, profiling, and monitoring

mentioned above. Finally, we will present the aforementioned security case study

on the Naccio execution monitoring system.

In the rest of this chapter, we develop a theory of harmless advice. Section 3.2,

we define the core calculus, FHRM . As in the previous chapter, the calculus contains

primitive notions of pointcuts and advice. We add a collection of static protection

domains, arranged in a partial order. The main contribution of this chapter is to

define a type system to guarantee that code, including advice, in a low-protection

domain cannot influence execution of code in a high-protection domain. Though our

type system is directly inspired by information-flow type systems for security [41,

45, 47], we take advantage of the syntactic separation between advice and code in

Harmlessaml to simplify the type system of FHRM . The key technical result for

FHRM is a proof that the core calculus satisfies a noninterference property. The proof

CHAPTER 3. HARMLESS ADVICE 93

adapts the technique used by Simonet and Pottier in their proof of noninterference

for Flow Caml [45] to our aspect-oriented language.

Section 3.3 develops a surface language, Harmlessaml, that is more amenable

to programming. Harmlessaml allows programmers to define aspects that are

collections of state, objects, and advice. Each aspect operates in a separate static

protection domain and does not interfere with the mainline computation or the

other aspects. This section defines the syntax of Harmlessaml and establishes its

semantics through a translation from source into core. We prove that Harmlessaml

aspects are harmless by exploiting properties of the core calculus. In addition,

we present example code implemented in our system and a case study in security,

rewriting the security policies from Evans’ thesis [16] in our system, and finding

that all but one were harmless.

This chapter is an expansion of research published at the FOOL 2005 work-

shop [9] and the POPL 2006 conference [10].

3.2 Noninterfering Core Calculus: FHRM

As in the previous chapter, we extend and modify the WZL core calculus [37] to

create the new “harmless” core calculus, FHRM . Research on the harmless FHRM

calculus and the polymorphic FA core calculus from the previous chapter proceeded

concurrently, so several features from each are not present in the other. Most

importantly, the FHRM calculus is not polymorphically-typed and the labels are not

hierarchical. However, the FHRM calculus contains mutable references, lacking in

FA, to show that the noninterference result persists in the presence of program state.

Because much of the common core calculus features were explored thoroughly in

CHAPTER 3. HARMLESS ADVICE 94

the previous chapter, here we will only detail features that are new in this chapter.

The two main features we will examine are labeled control-flow points and advice,

both of which are variants of related constructs introduced by WZL.

Labels l, which are drawn from some countably infinite set, mark points in a

computation at which advice may be triggered. We had discovered in the examples

of Section 2.2 and the security case study of Section 2.3 that the any pointcut turned

out in practice to be less useful than expected – as a result, we have eliminated the

hierarchical nature of labels here for simplicity. Execution of a joinpoint l[[e1]]; e2

proceeds by first evaluating e1 until it reduces to a value v and at this point, any

advice associated with the label l executes with v as an input. Once all advice

associated with l has completed execution, control returns to the marked point and

evaluation continues with e2. Notably, a marked point l[[e1]] has type unit, and no

data are returned from the triggered advice. The advice triggering mechanism is

much simpler than that of the previous chapter, in which labels marked control-flow

points where data exchange could occur.

Harmless advice {pcd(x) � e} is a computation that is triggered whenever exe-

cution reaches the control-flow point described by the pointcut designator pcd. As

before, pcds are simply sets of labels {l1, . . . , lk}. When advice is triggered, the value

at the control-flow point is bound to x, which may be used within the body of the

advice e. The advice body may have “harmless” effects (such as i/o), but it does

not return any data to the mainline computation and consequently e is expected to

have type unit.

The following example shows how harmless advice activation works (assuming

that there is no other advice associated with label l in the environment). The code

CHAPTER 3. HARMLESS ADVICE 95

prints 3: hello world.

⇑ {{l}(x) � printint x; print ′′ : hello ′′};

⇑ {{l}(y) � print ′′world′′};

l[[3]]

The expression new τ allows programs to generate a fresh label with type τ .

Labels are considered first class values, so they may be passed to functions or stored

in data structures before being used to mark control-flow points. For example, we

might write the following code to allocate a new label and use it in two pieces of

advice.

let pt = new int in

⇑ {{pt}(x) � print ′′hello ′′};

⇑ {{pt}(y) � print ′′world′′};

pt[[3]]

3.2.1 Types for Enforcing Harmlessness

In order to protect the mainline computation from interference from advice, we have

devised a type and effect system for the calculus we informally introduced in the

previous section. The type system operates by ascribing a protection domain p to

each expression in the language. These protection domains are organized in a lattice

L = (Protections ,≤) where Protections is the set of possible protection domains

and P ≤ Q specifies that P should not interfere with Q. Alternatively, one might

say that data in Q have higher integrity than data in P. In our examples, we often

assume there are HIGH and LOW protection levels with LOW < HIGH.

CHAPTER 3. HARMLESS ADVICE 96

P ∈ Protections s ∈ Strings x ∈ Identifiers
l ∈ Labels r ∈ Reference Locations

(prot doms) p ::= P
(types) τ ::= 1 | string | bool | τ1 × ...× τn | τ →p τ

| advicep | τ labelp | τ refp | τ pcp

(values) v ::= () | s | true | false | (v) | {l}p | λpx : τ.e
| {v(x) �p e} | l | r

(expressions) e ::= v | x | e1; e2 | print e | if e1 then e2 else e3

| (e) | split (x) = e in e | e e | {e(x) �p e}
| ⇑ e | newp τ | e[[e]] | refp e | !e | e := e
| {e}p | e ∪p e | p<e>

(stores) S ::= . | S, r → (v,P) | S, l → (τ,P)
(aspect stores) A ::= . | A, v
(machine states) M ::= (S; A;P; e)
(environments) Γ ::= . | Γ, x : τ | Γ, r : τ refp | Γ, l : τ labelp

Figure 3.1: Syntax of FHRM

Syntax of FHRM In order to allow programmers to specify protection require-

ments we have augmented the syntax of the core language described in the previous

section with a collection of protection annotations. The formal syntax appears in

Figure 3.1.

The values include unit values and string and boolean constants. Programmers

may also use n-ary tuples. Functions are annotated with the protection domain p

in which they execute. This protection domain also shows up in the type of the

function. Advice values {v(x) �p e} are annotated with their protection domain as

well. Labels l and reference locations r do not appear in initial programs; they only

appear as programs execute and generate new labels and new references.

Most of the expression forms are fairly standard. For instance, in addition to

values and variables, we allow ordinary expression forms for sequencing, printing

strings, conditionals, tuples, function calls, and method invocations. Expressions

CHAPTER 3. HARMLESS ADVICE 97

for introducing and eliminating advice were explained in the previous section. The

expressions newp τ and refp e allocate labels that can be placed in protection

domain p and references associated with protection domain p respectively. The last

command p<e> is a typing coercion that changes the current protection domain to

the lower protection domain p.

3.2.2 Typing Judgments

The main typing judgment in our system has the form Γ; p ` e : τ . It states that in

the context Γ, expression e has type τ and may influence computations occurring

in protection domains p or lower. A related judgment Γ ` v : τ checks that value

v has type τ . Since values by themselves do not have effects that influence the

computations, this latter judgment is not indexed by a protection domain. The

context Γ maps variables, labels and reference locations to their types. We use the

notation Γ, x : τ to extend Γ so that it maps x to τ . Whenever we extend Γ in

this way, we assume that x does not already appear in the domain of Γ. Since we

also treat all terms as equivalent up to alpha-renaming of bound variables, it will

always be possible to find a variable x that does not appear in Γ when we need

to. Figures 3.2, 3.3, and 3.4 contain the rules for typing expressions and values

respectively.

The main goal of the typing relation is to guarantee that no values other than

values with unit type (which have no information content) flow from a low protection

domain to a high protection domain, although arbitrary data can flow in the other

direction. This goal is very similar to, but not exactly the same as in, standard

information flow systems such as Jif and Flow Caml. The latter systems actually do

allow the flow of values from low contexts to high contexts, but mark all such values

CHAPTER 3. HARMLESS ADVICE 98

with a low-protection type. Jif and Flow Caml typing rules make it impossible to

use these low-protection objects in the high-protection context (without raising the

protection of the object). In our system, we simply cut off the flow of low-protection

values to high-protection contexts completely (aside from the unit value). We are

able to do this in our setting, as there is a greater syntactic separation between

high-integrity code (the mainline computation) and low-integrity code (the advice,

written elsewhere) than there might be in a standard secure information-flow setting.

We believe this is the right design choice for us because it simplifies the type system,

as we do not have to annotate basic data such as booleans, strings, or tuples with

information flow labels. A value is considered to be in the protection of the code in

which the value exists.

Most of the value typing rules in Figure 3.2 are straightforward. For instance,

the rule for functions λpx : τ.e, states that the body of the function must be checked

under the assumption that the code operates in protection domain p. The resulting

type has the shape τ →p τ ′. Checking our simple objects is similar: the type checker

must verify that each method operates correctly in the declared protection domain.

Labels and references are given types by the context. In the current calculus, point-

cut designators are sets of labels. Unlike the other values, the rules for typing advice

are fairly subtle. We will discuss these rules, along with the rules for typing labeled

control-flow points, in a moment.

The first few expression typing rules in Figure 3.3 are standard rules for type

systems that track information flow. The rule for if statements, Rule cet:if deviates

slightly from the usual rule for tracking information flow. Normally, types for

booleans will contain a security level and the branches of the if will be checked

at a level equal to the join of the current security level and the level of the boolean.

CHAPTER 3. HARMLESS ADVICE 99

Well-formed Values Γ ` v : τ

Γ ` () : 1
cvt:unit

Γ ` s : string
cvt:string

Γ ` true : bool
cvt:true

Γ ` false : bool
cvt:false

(Γ ` vi : τi)
1≤i≤n

Γ ` (v) : τ1 × ...× τn

cvt:tup

Γ, x : τ ; p ` e : τ ′

Γ ` λpx : τ.e : τ →p τ ′ cvt:fun

Γ ` v : τ pcp Γ, x : τ ; p′ ` e : 1 ` p′ ≤ p

Γ ` {v(x) �p′ e} : advicep′
cvt:adv

Γ(l) = τ labelp

Γ ` l : τ labelp
cvt:lab

Γ(r) = τ refp

Γ ` r : τ refp

cvt:ref

(Γ ` vi : τ labelpi
)(1≤i≤n) (` p ≤ pi)

(1≤i≤n)

Γ ` {l}p : τ pcp

cvt:pc

Figure 3.2: Value Typing of FHRM

CHAPTER 3. HARMLESS ADVICE 100

Well-formed Expressions Γ; p ` e : τ

Γ ` v : τ

Γ; p ` v : τ
cet:val

Γ(x) = τ

Γ; p ` x : τ
cet:var

Γ; p ` e1 : 1 Γ; p ` e2 : τ

Γ; p ` e1; e2 : τ
cet:seq

Γ; p ` e : string

Γ; p ` print e : 1
cet:print

Γ; p ` e1 : bool Γ; p ` e2 : τ Γ; p ` e3 : τ

Γ; p ` if e1 then e2 else e3 : τ
cet:if

(Γ; p ` ei : τi)
1≤i≤n

Γ; p ` (e) : τ1 × ...× τn

cet:tup

Γ; p ` e1 : τ1 × ...× τn Γ, (x : t); p ` e2 : τ

Γ; p ` split (x) = e1 in e2 : τ
cet:split

Γ; p ` e1 : τ1 →p τ2 Γ; p ` e2 : τ1

Γ; p ` e1 e2 : τ2

cet:app

Γ; p ` e1 : τ pcp′ Γ, x : τ ; p′′ ` e2 : 1 ` p′′ ≤ p′

Γ; p ` {e1(x) �p′′ e2} : advicep′′
cet:adv

Figure 3.3: Expression Typing of FHRM : Part 1

CHAPTER 3. HARMLESS ADVICE 101

Well-typed Expressions Γ; p ` e : τ

Γ; p ` e : advicep′ ` p′ ≤ p

Γ; p `⇑ e : 1
cet:advinst

` p′ ≤ p

Γ; p ` newp′ τ : τ labelp′
cet:lab

Γ; p ` e1 : τ labelp Γ; p ` e2 : τ

Γ; p ` e1[[e2]] : 1
cet:jp

Γ; p ` e : τ ` p′ ≤ p

Γ; p ` refp′ e : τ refp′
cet:ref

Γ; p ` e : τ refp′ ` p ≤ p′

Γ; p `!e : τ
cet:asgn

Γ; p ` e1 : τ refp′ Γ; p ` e2 : τ ` p′ ≤ p

Γ; p ` e1 := e2 : τ
cet:deref

(Γ; p ` ei : τ labelpi
)(1≤i≤n) (` p′ ≤ pi)

(1≤i≤n)

Γ; p ` {e}p′ : τ pcp′
cet:pc

Γ; p ` e1 : τ pcp1
` p′ ≤ p1 Γ; p ` e2 : τ pcp2

` p′ ≤ p2

Γ; p ` e1 ∪p′ e2 : τ pcp′
cet:union

Γ; p′ ` e : 1 ` p′ ≤ p

Γ; p ` p′<e> : 1
cet:low

Figure 3.4: Expression Typing of FHRM : Part 2

CHAPTER 3. HARMLESS ADVICE 102

However, in our system, any data, including booleans, manufactured by code at

level p contains level p information. Consequently, the branches of the if statement

may be safely checked at level p. The typing rules for function calls, Rule cet:app,

require that the function in question be safe to run at the current protection level

p.

The typing rules for references in Figure 3.4 enforce the usual integrity constraint

found in information-flow systems. In Rule cet:deref, when in protection domain p,

we are allowed to dereference references in protection domain p′ when p is less than

or equal to p′. In Rule cet:ref and cet:asgn, we are allowed to create and store to

references in protection domain p′ only if our current domain p is greater than or

equal to p′.

Rule cet:low in Figure 3.4 is a typing coercion that changes the protection level.

It is legal for the protection level to be lowered from p to p′ when no information

flows back from the computation e to be executed. We prevent this information

flow by constraining the result type of e to be 1. One might wonder whether the

following dual rule, which allows one to raise the protection level, is sound in our

system:

·; p′ ` e : τ ` p ≤ p′

Γ; p ` p′ >e< : τ

cet:high

This rule raises the protection domain for the expression e and allows information

to flow out of the expression, but does not allow any information to flow in. In the

context of the features we have looked at so far, this rule appears sound, but in

combination with the context-sensitive advice we will introduce in Section 3.2.4, it

CHAPTER 3. HARMLESS ADVICE 103

is not. Fortunately, the rule does not appear useful in our application and we have

omitted it.1

The last component of our type system involves the rules for typing advice and

marking control-flow points. If we want to ensure that low-protection code cannot

interfere with high-protection code by manipulating advice and control-flow labels,

we must be sure that low-protection code cannot do either of the following:

1. Declare and activate high-protection advice. For instance, assume r is a high-

protection reference with type int refhigh and l is a label that has been placed

in high-protection code. If we allow the expression

⇑ {l(x) �high r := 3 + x}; e

to appear in low-protection code, then this low privilege code can indirectly

cause writes to the reference r.

2. Mark a control-flow point with a label that triggers high-protection advice.

For instance, assume that

{l(x) �high r := 3 + x}

is an active piece of high-protection advice which writes to the high-protection

reference r. Placing the label l in low-protection code allows low-protection

code to determine via its control-flow, when the high-protection advice will

run and write to r.
1There may well be some strategy that allows us to add this rule together with the context-

sensitive advice of Section 3.2.4. However, the naive approach does not appear to work. Rather
then complicating the type structure or operational semantics for something we do not need, we
leave it out.

CHAPTER 3. HARMLESS ADVICE 104

In order to properly protect high-protection code in the face of these potential

errors, we do the following.

1. Add protection levels to advice types (e.g., advicehigh), which will allow us to

prevent advice from being activated in the illegal contexts. (eg. low-protection

contexts)

2. Add protection levels to label types (e.g., string labelhigh) which will allow us

to prevent labels being placed in illegal spots. (eg. low-protection contexts)

One might hope that it would be possible to simplify the system and add protection

levels to only one of the two constructs, but doing so leads to unsoundness.

Several typing rules in the middle of Figures 3.3 and 3.4 give the well-formedness

conditions for advice and labels. Notice that in Rule cet:adv, the rule for typing

advice introduction ({e1(x)�p e2}), the protection level of the advice, and therefore

the protection level the body of the advice must operate under, is connected to the

protection level of the label that triggers it. Second, given a high-protection piece of

advice in Rule cet:advinst, this advice cannot be installed (⇑ e) from low-protection

code. Finally, notice that when marking a control-flow point with a label (e1[[e2]])

in Rule cet:jp, the protection level of the label is connected to the protection level

of the expression at that point. The result of these constraints is that when in a

low-protection zone, there is no way to cause execution of high-protection advice.

3.2.3 Operational Semantics

The definition of the operational semantics for FHRM is very similar those of the

previous chapter. In particular, we use a context-based semantics where contexts E

specify a left-to-right, call-by-value evaluation relation. The top-level operational

CHAPTER 3. HARMLESS ADVICE 105

Reduction (Σ; A; p; e) 7−→ (Σ′; A′; p; e′)

(Σ; A; p; e) 7−→β (Σ′; A′; p; e′)

(Σ; A; p; e) 7−→ (Σ′; A′; p; e′)
ce:beta

(Σ; A; p; e) 7−→ (Σ′; A′; p; e)

(Σ; A; p; E[e]) 7−→ (Σ′; A′; p; E[e′])
ce:eval

(Σ; A; p′; e) 7−→ (Σ′; A′; p′; e′)

(Σ; A; p; p′<e>) 7−→ (Σ′; A′; p; p′<e′>)
ce:low

Figure 3.5: Operational Semantics for FHRM

β-reduction (Σ; A; p; e) 7−→β (Σ′; A′; p; e′)

(Σ; A; p; (); e) 7−→β (Σ; A; p; e)
ceb:seq

(Σ; A; p;print s) 7−→β (Σ; A; p; ())
ceb:print

(Σ; A; p; if true then e1 else e2) 7−→β (Σ; A; p; e1)
ceb:ifthen

(Σ; A; p; if false then e1 else e2) 7−→β (Σ; A; p; e2)
ceb:ifelse

(Σ; A; p; split (x) = (v) in e) 7−→β (Σ; A; p; e[v/x])
ceb:split

(Σ; A; p; λpx : t.e v) 7−→β (Σ; A; p; e[v/x])
ceb:app

(Σ; A; p;⇑ {v(x) �p′ e1}) 7−→β (Σ; (A, {v(x) �p′ e1}); p; ())
ceb:advinst

Figure 3.6: β-redex Operational Semantics for FHRM : Part 1

CHAPTER 3. HARMLESS ADVICE 106

β-reduction (Σ; A; p; e) 7−→β (Σ′; A′; p; e′)

l /∈ Σ

(Σ; A; p;newp′ τ) 7−→β ((Σ, l); A; p; l)
ceb:newlab

l ∈ Σ A[[A]]l[[v]] = e

(Σ; A; p; l[[v]]) 7−→β (Σ; A; p; e)
ceb:jp

r /∈ Σ

(Σ; A; p; refp′ v) 7−→β ((Σ, r = v); A; p; r)
ceb:newref

(Σ; A; p; !r) 7−→β (Σ; A; p; Σ(r))
ceb:deref

(Σ; A; p; r := v) 7−→β ((Σ, r = v); A; p; v)
ceb:assign

(Σ; A; p; {l1}p1 ∪p′ {l2}p2) 7−→β (Σ; A; p; {l1 l2}p′)
ceb:union

(Σ; A; p; p′<()>) 7−→β (Σ; A; p; ())
ceb:low

Figure 3.7: β-redex Operational Semantics for FHRM : Part 2

CHAPTER 3. HARMLESS ADVICE 107

Advice Composition A[[A]]l[[v]] = e

A[[·]]l[[v]] = ()
cac:end

l ∈ {l}p′ A[[A]]l[[v]] = e

A[[{{l}p′(x) �p e′}, A]]l[[v]] = p<e′[v/x]>; e
cac:match

l /∈ {l}p′ A[[A]]l[[v]] = e

A[[{{l}p′(x) �p e′}, A]]l[[v]] = e
cac:nomatch

Figure 3.8: Aspect Composition for FHRM

judgment has the form (Σ; A; p; e) 7−→ (Σ′; A′; p; e′) where Σ collects the labels l

that may be used to mark control-flow points and also maps reference locations

r to values. The meta-variable A represents an advice store, which is a list of

advice. The current protection level of the code is p. The protection level does not

influence execution of the code, and could be omitted, but is useful to consider in

our noninterference proof. Most of the real work is done by the auxiliary relation

(Σ, A, p, e) 7−→β (Σ′; A′; p; e′). The syntax of stores and advice stores is given below.

(stores) Σ ::= · | Σ, r = e | Σ, l

(asp stores) A ::= · | A, {v(x) �p e}

The definitions of these relations can be found in Figures 3.6 and 3.7. Notice

that Rule ceb:jp for marked control-flow points depends upon an auxiliary function

A[[A]]l[[v]] = e. This advice composition function, defined in Figure 3.8, selects all

advice in A that is triggered by the label l and combines their bodies to form the

expression e. Finally, an abstract machine configuration (Σ; A; p; e) is well-typed if

it satisfies the judgment ` (Σ; XSA; p; e) ok specified in Figure 3.9.

CHAPTER 3. HARMLESS ADVICE 108

Well-formed Stores ` Σ : Γ

dom(Σ) = dom(Γ)
∀r ∈ dom(Σ). Γ(r) = τ refp Γ ` Σ(r) : τ for some p, τ

∀l ∈ dom(Σ). Γ(l) = τ labelp for some p, τ

` Σ : Γ
camt:labrefstore

Well-formed Advice Stores Γ ` A ok

Γ ` · ok
camt:advstoreend

Γ ` a : advicep for some p Γ ` A ok

Γ ` A, a ok
camt:advstorenext

Well-formed Machine States ` (Σ; A; p; e) ok

` Σ : Γ Γ ` A ok Γ; p ` e : τ for some τ

` (Σ; A; p; e) ok
camt:ms

Figure 3.9: Well-formed Machine States in FHRM

CHAPTER 3. HARMLESS ADVICE 109

(types) τ ::= ... | stack
(values) v ::= ... | · | l[[v]] :: v
(expressions) e ::= ... | stack() | store e[[e]] in e

| stkcase e (pat ⇒ e, ⇒ e)
(stack patterns) pat ::= [] | e[[x]] :: pat | :: pat | x

(stack val pats) vpat ::= [] | {l}p[[x]] :: vpat | :: vpat | x
(eval contexts) E ::= ... | store E[[e]] in e | store l[[E]] in e

| store l[[v]] in E | stkcase E (pat ⇒ e, ⇒ e)
| stkcase v (Epat ⇒ e, ⇒ e)

(pat eval ctxts) Epat ::= E[[x]] :: pat | {l}p[[x]] :: Epat | :: Epat
(top eval ctxts) F ::= ... | [[]] | store l[[v]] in F | p〈F 〉

| E[[F]] where E 6= store l[[v]] in F

Figure 3.10: Context Sensitive Advice Syntax of FHRM

3.2.4 Extensions

Context-sensitive Advice The advice defined in previous sections could not

analyze the call stack from which it was activated. Programming languages such as

AspectJ allow this flexibility via special pointcut designators such as cflow. As in

the previous chapter, we describe a fully general facility for analysis of information

on the current call stack. Figure 3.10 outlines the syntactic extensions to FHRM .

In order to program with context-sensitive advice, programmers grab the current

stack using the stack() command. Data is explicitly allocated on the stack using

the command store e1[[e2]] in e3, where e1 is a label and e2 represents a value

associated with the label. e2 is typically used to store the value passed into the

control flow point marked by the label. The store command evaluates e1 to a label

l and e2 to a value v2, places l[[v2]] on the stack, evaluates e3 to a value v3 and finally

removes l[[v2]] from the stack and returns v3. The programmer may examine a stack

data structure using the stkcase e (pat ⇒ e, ⇒ e) command, which matches the

stack e against the pattern pat. If there is a match, the first branch is executed;

CHAPTER 3. HARMLESS ADVICE 110

otherwise, the second branch is executed. There are patterns that match the empty

stack (·), patterns that match a stack starting with any label in a particular set

({l}p[[x]] :: pat) where x is bound to the value associated with the label on the top of

the stack if it is in the label set, patterns that match a stack starting with anything

at all (:: pat), and patterns involving stack variables (x).

The typing rules for these extensions appear in Figure 3.11. There are three sets

of rules in this figure. The first two sets extend the value typing and expression

typing relations respectively. The last set of rules gives types to patterns where

the type of a pattern is a context Γ that describes the types of the variables bound

within the pattern.

The rules for evaluating these new expressions appear in Figure 3.12. Again,

there are three sets of rules. The first set defines a new set of top-level evaluation

rules, and the second set adds additional β-evaluation rules. Notice that the top-

level rule for evaluating the stack primitive uses an auxiliary function S(F) that

extracts the current stack of values from F contexts, which contains evaluation

context E’s, and p<F> contexts. Here, we use the notation st@X to append the

object X to the bottom of the stack st. Also, notice that there are three levels of

operational semantics (β, normal, and top) as opposed to the two of the previous

chapter. This is an artifact of the concurrent development of harmless core calculus

and the polymorphic FA—the context-sensitive advice should behave similarly in

both systems. The last set of rules conclude in judgments with the form st |=

vpat ⇒ sub. These rules describe the circumstances under which a stack st matches

an (evaluated) pattern vpat and generates a substitution of values for variables sub.

For the most part, it is relatively straightforward to reassure oneself that these

extensions will not disrupt the noninterference properties that our language pos-

CHAPTER 3. HARMLESS ADVICE 111

Well-formed Values Γ ` v : τ

Γ ` · : stack
cvt:stackend

Γ ` l : τ labelp Γ ` v1 : τ Γ ` v2 : stack

Γ ` l[[v1]] :: v2 : stack
cvt:stacknext

Well-formed Expressions Γ; p ` e : τ

Γ; p ` stack() : stack
cet:stack

Γ; p ` e1 : τ ′ labelp′ Γ; p ` e2 : τ ′ Γ; p ` e3 : τ

Γ; p ` store e1[[e2]] in e3 : τ
cet:store

Γ; p ` e1 : stack Γ; p ` pat ⇒ Γ′ Γ, Γ′; p ` e2 : τ Γ; p ` e3 : τ

Γ; p ` stkcase e1 (pat ⇒ e2, ⇒ e3) : τ
cet:scase

Well-formed Patterns Γ; p ` pat ⇒ Γ

Γ; p ` []⇒ ·
cpt:nil

Γ; p ` e : τ pcp′ Γ; p ` pat ⇒ Γ′

Γ; p ` e[[x]] :: pat ⇒ Γ′, x : τ
cpt:jp

Γ; p ` pat ⇒ Γ′

Γ; p ` :: pat ⇒ Γ′ cpt:any
Γ; p ` x ⇒ ·, x : stack

cpt:var

Figure 3.11: Stack Typing of FHRM

CHAPTER 3. HARMLESS ADVICE 112

Stack Reification S(e)

S([[]]) = · S(store l[[v]] in F) = S(F) @ (l[[v]]) S(p〈F 〉) = S(F)

S(E[F]) = S(F) when E 6= store l[[v]] in F

Top Reduction (S; A; p; e) 7−→top (S ′; A′; p; e′)

(Σ; A; p; e) 7−→ (Σ′; A′; p; e′)

(Σ; A; p; e) 7−→top (Σ′; A′; p; e′)
cevt:ce

(Σ; A; p; F [stack()]) 7−→top (Σ; A; p; F [S(F)])
cevt:stack

β-reduction (S; A; p; e) 7−→β (S; A; p; e)

(Σ; A; p; store v1[[v2]] in v3) 7−→β (Σ; A; p; v3)
ceb:store

v |= vpat ⇒ sub

(Σ; A; p; stkcase v (vpat ⇒ e1, ⇒ e2)) 7−→β (Σ; A; p; sub(e1))
ceb:scaseyes

v 6|= vpat ⇒ sub

(Σ; A; p; stkcase v (vpat ⇒ e1, ⇒ e2)) 7−→β (Σ; A; p; e2)
ceb:scaseno

Stack Pattern Matching v |= vpat ⇒ sub

· |= []⇒ ·
csm:nil

l ∈ {l}p v2 |= vpat ⇒ sub

l[[v1]] :: v2 |= {l}p[[x]] :: vpat ⇒ sub; [v1/x]
csm:jp

v2 |= vpat ⇒ sub

l[[v1]] :: v2 |= :: vpat ⇒ sub
csm:any

v |= x ⇒ [v/x]
csm:var

Figure 3.12: Stack Matching for FHRM

CHAPTER 3. HARMLESS ADVICE 113

sesses. However, there is one major subtlety to consider: the stack() primitive. In

order for this primitive to be safe, it must be the case that whenever it is activated

in a high-level context, there is no low-level data on the stack, which could influence

execution in that high-level context. Fortunately, this is indeed the case. The only

way to switch protection levels from one evaluation context to the next is via the

context p<E>, which lowers the protection level. Consequently, any use of the

stack() command is done in the context that looks like p1<E1[p2<E2[p3<E3>]>]>

where p3 ≤ p2 ≤ p1. So while a low-level expression can read high-level data via the

stack() command and subsequent case expressions, the opposite is not possible.

We are safe.

Polymorphic Protection Domains In FHRM , functions, labels, pointcuts, and

advice exist in a particular protection domain. As a result, libraries cannot be built

whose functions can be used by both the main program and aspects. The library

must be redeclared in the main program and each aspect.

We have explored adding polymorphic protection domains to our system. The

most obvious method adds a polymorphic protection domain type ∀ρ.τ to FHRM .

We would also add the protection domain function abstraction value Λρ.v and the

protection domain function application e[p].

In addition, as in the previous chapter, labels that are embedded in polymorphic

functions, pointcuts that are triggered by those labels, and advice that contain those

pointcuts must also indicate that they are valid for any protection domain ρ. As

such, polymorphism would need to be added to the protection domain annotations

on the types and syntax of labels, pointcuts, and advice. Figure 3.2.4 presents

CHAPTER 3. HARMLESS ADVICE 114

P ∈ Protections x, ρ ∈ Identifiers l ∈ Labels
(protdoms) p ::= ρ | P
(types) τ ::= ... | ∀ρ.p | adviceρ.p | τ labelρ.p | τ pcρ.p

(values) v ::= ... | {l}ρ.p | Λρ.v | {v(x) �ρ.p e}
(expressions) e ::= ... | e[e] | {e(x) �ρ.p e} | newρ.p τ

| e[[ρ]][[e]] | {e}ρ.p | e ∪ρ.p e
(protdomenvs) R ::= · | R, ρ
(environments) Γ ::= ... | Γ, l : τ labelρ.p

Figure 3.13: Postulated Polymorphic Protection Domain Grammar for FHRM

a polymorphic protection domain extension to FHRM in a manner similar to the

addition of polymorphic types to advice in Chapter 2.

However, we have discovered that due to complexities in the Harmlessaml

noninterference proof that will not be fully explored until Section 3.3, there are

several difficulties with adding such polymorphic protection domains to the lan-

guage. The design and properties of Harmlessaml depends on a particular division

of mainline code from aspect code, where all aspect code exists in a strictly lower

protection domain than top-protection, mainline code. This particular structuring

of protection domains by the translation from source to core will allow us to use

properties of the core language to prove a harmlessness theorem about the source

language.

As we will see in Section 3.3, the translation of Harmlessaml function dec-

larations explicitly declares before and after labels that can be used to trigger

primitive FHRM advice. Because of the protection domain ordering that is required

by Rule cet:lab, such label creation expressions could only be used by top-protection,

mainline code. Therefore, polymorphic library functions could only be defined in

the main program. As such, aspects added after the fact could not add harmless

libraries to the system.

CHAPTER 3. HARMLESS ADVICE 115

More importantly, due to the way advice stores are implemented in FHRM and

due to Rule cet:advinst for advice installation typing, advice with a polymorphic

protection domain annotation could only be installed into the advice store from the

top protection domain in the lattice. Due again to the particular structuring of pro-

tection domains by the translation from source to core, adding polymorphic advice

that must be installed from the mainline code protection domain would disallow

such a translation, violating the careful syntactic separation we have maintained

between advice code and mainline program code.

As such, the restrictions that would be added by polymorphic system libraries

seem as prohibitive as the current requirements that libraries must be duplicated.

We will continue our exploration of how to use system libraries with advice in

Chapter 4.

3.2.5 Meta-theory

To prove noninterference, we use the technique developed by Simonet and Pot-

tier [45]. In order to do so, we initially assume the collection of protection domains

has been divided into two groups, the high protection domains (H) and the low

protection domains (L). The low-protection group is a downward-closed subset

of protection domains and the high-protection group contains all other protection

domains. The goal is to prove that low-protection code cannot interfere with the

behavior of high-protection code, no matter how aspects, references or labels are

used. Overall, our proof may be broken down into four main steps (See also

Figure 3.14):

CHAPTER 3. HARMLESS ADVICE 116

Figure 3.14: Noninterference Proof Diagram for FHRM

• Define a new language FHRM2 whose programs simulate execution of two

FHRM programs.

• Show FHRM2 is a correct simulation of FHRM programs via Soundness and

Completeness theorems.

• Prove FHRM2 is a safe language and preserves the noninterference invariants

via the standard Progress and Preservation theorems.

• Put the theorems above together to prove the noninterference result for FHRM

Defining FHRM2

We begin by defining a new calculus FHRM2 that simulates the simultaneous execu-

tion of two of FHRM expressions. The FHRM2 grammar is described in Figure 3.15.

The main syntactic difference between FHRM expressions and FHRM2 expressions

CHAPTER 3. HARMLESS ADVICE 117

(simult exprs) e ::= ... | p<e|e>
(simult values) v2 ::= v | <v|v> | <v|void> | <void|v>
(simult types) τ 2 ::= τ | <τ|void> | <void|τ>
(simult aspects) a2 ::= v | <v|void> | <void|v>
(stores) Σ ::= · | Σ, r = v2 | Σ, l → τ 2

(aspect stores) A ::= · | A, a2

(top eval ctxts) F ::= [] | store E[[e]] in e | p<F> | p<F|e>
| p<e|F> | E[F] where E 6= store l[[v]] in F

Figure 3.15: Syntax of FHRM2

Γ; p `2 e : 1

Γ; p′ `2 e1 : 1 Γ; p′ `2 e2 : 1 p ∈ H p′ ∈ L `2 p′ ≤ p

Γ; p `2 p′<e1|e2> : 1
c2et:highlow

Figure 3.16: Expression Typing in FHRM2

is the “brackets expression”, p<e1|e2>. Here p is a low-protection label and the

ei are FHRM expressions. These brackets expressions encapsulate all differences

between the two FHRM expressions that are being simulated. For instance, the

FHRM2 expression

p<print ‘‘hi’’ | print ‘‘bi’’>;x+3

represents the two FHRM programs

p<print ‘‘hi’’>;x+3

p<print ‘‘bi’’>;x+3

The typing rule for the brackets expression in Figure 3.16 requires that the two

subexpressions have low protection and release no information into the surrounding

high-protection context.

CHAPTER 3. HARMLESS ADVICE 118

To express the operational semantics of FHRM2 we need to add similar bracket

constructs to the FHRM2 grammar in Figure 3.15 for the contents of the refer-

ence/label store S and the aspect store A. Simultaneous values stored in references

are signified by v2. In these bracket constructions, the void marker indicates that the

appropriate element is not present in that half of the program. For example, if advice

a is activated in only the left instance but not the right instance of simultaneously

executing FHRM programs, the aspect store of the FHRM2 program that simulates

them will contain <a|void>.

Simultaneous values stored in references are signified by v2. Labels may only

have been created by one of the simultaneously executing expressions, so they are

given the type τ 2 in the label store. Finally, advice may only have been instantiated

in one of the simultaneously executing expressions, so simultaneous advice a2 are

placed in the aspect store of FHRM2 expressions.

The typing judgments for the modified stores is described in Figure 3.17. Of

crucial importance to our noninterference proof is that if a reference, label, or

advice has been created or modified by only one of the FHRM expressions, then

the protection domain annotation on that reference, label, or advice must be in the

set of low protection domains.

To relate FHRM to FHRM2, we define the projection function | |i where i ∈

{1, 2} in Figure 3.20. |p<e1|e2>|i is p<ei> and | |i is a homomorphism on all other

expressions. Since p<e1|e2> in FHRM2 simulates the simultaneous execution of two

low-protection original FHRM expressions, the projection function extracts one of

these two executions.

The FHRM2 machine state (Σ; A; p; e) symbolizes the current state of the two

simultaneously executing FHRM programs where the i-th projection is the state of

CHAPTER 3. HARMLESS ADVICE 119

Γ `2 v ⇒ τ refp

Γ `2 v : τ

Γ `2 v ⇒ τ refp

c2rst:v
(Γ `2 vi : τ)1≤i≤2 p ∈ L

Γ `2 <v1|v2>⇒ τ refp

c2rst:vv

Γ `2 v : τ p ∈ L

Γ `2 <v|void>⇒ τ refp

c2rst:vvoid
Γ `2 v : τ p ∈ L

Γ `2 <void|v>⇒ τ refp

c2rst:voidv

`2 τ ⇒ τ labelp

`2 τ ⇒ τ labelp
c2lst:t

p ∈ L

`2 <τ |void>⇒ τ labelp
c2lst:tvoid

p ∈ L

`2 <void|τ>⇒ τ labelp
c2lst:voidt

`2 Σ : Γ

dom(Σ) = dom(Γ) ∀r ∈ dom(Σ). Γ `2 Σ(r) ⇒ Γ(r)
∀l ∈ dom(Σ). `2 Σ(l) ⇒ Γ(l)

`2 Σ : Γ
c2amt:labrefstore

Figure 3.17: Store Typing in FHRM2

CHAPTER 3. HARMLESS ADVICE 120

Γ `2 a ⇒ advicep

Γ `2 a : advicep

Γ `2 a ⇒ advicep

c2at:a
Γ `2 a : advicep p ∈ L

Γ `2 <a|void>⇒ advicep

c2at:avoid

Γ `2 a : advicep p ∈ L

Γ `2 <void|a>⇒ advicep

c2at:voida

Γ `2 A ok

Γ `2 · ok
c2amt:aspstoreend

Γ `2 A ok Γ `2 a2 ⇒ advicep

Γ `2 A, a2 ok
c2amt:aspstorenext

Figure 3.18: Well-formed Aspect Stores in FHRM2

`2 (Σ; A; p; e)i ok

`2 Σ : Γ Γ `2 A ok
Γ; p `2 e : τ for some τ i ∈ {0} ⇒ p ∈ H i ∈ {1, 2} ⇒ p ∈ L

`2 (Σ; A; p; e)i ok
c2amt:ms

Figure 3.19: Well-formed Machine States in FHRM2

CHAPTER 3. HARMLESS ADVICE 121

|e|i

|p<e1|e2>|i = p<ei> |e|i is a homomorphism on all other expressions

|S|i

| · |i = ·

|Σ, r = v|i = |Σ|i, r = |v|i |Σ, r = <v1|v2>|i = |Σ|i, r = vi

|Σ, r = <v|void>|1 = |Σ|1, r = v |Σ, r = <v|void>|2 = |Σ|2

|Σ, r = <void|v>|1 = |Σ|1 |Σ, r = <void|v>|2 = |Σ|2, r = v

|Σ, l → τ |i = |Σ|i, l → τ |Σ, l → <τ|void>|1 = |Σ|1, l → τ

|Σ, l → <τ|void>|2 = |Σ|2 |Σ, l → <void|τ>|1 = |Σ|1

|Σ, l → <void|τ>|2 = |Σ|2, l → τ

|A|i

| · |i = · |A, v|i = |A|i, |v|i |A, <v|void>|1 = |A|1, v |A, <v|void>|2 = |A|2

|A, <void|v>|1 = |A|1 |A, <void|v>|2 = |A|2, v

Figure 3.20: Projection Functions in FHRM2

CHAPTER 3. HARMLESS ADVICE 122

the i-th FHRM program:

|(Σ; A; p; e)|i = (|Σ|i; |A|i; p; |e|i)

The projection function for the reference/label store and the aspect store, also

defined in Figure 3.20, is similar to the one for expressions.

Intuitively, the main ideas of the operational semantics of FHRM2 are as follows:

• Ordinary FHRM expressions embedded within FHRM2 expressions operate as

FHRM expressions normally do. However, the label/reference store and aspect

store are accessed through helper functions, defined in Figure 3.21. The

newi function is used to create items in the label/reference store and aspect

store. The i annotation is o if the FHRM expression is on the top level, 1 if

the embedded FHRM is the “left” expression of the simultaneously executing

expressions, and 2 if the “right” expression. The readi and updatei work

similarly to access and change, respectively, the label/reference store and

aspect store. Finally, Figure 3.22 displays how the helper functions are used

by the FHRM2 evaluation rules.

• To evaluate inside the brackets expression p<e1|e2> in Figure 3.23, the se-

mantics nondeterministically chooses one of e1 or e2 to execute. Operations

on references or advice executed in e1 use the “left-hand” component of the

reference store or aspect store; operations on references or aspects executed in

e2 use the “right-hand” component of the reference store or aspect store. Fi-

nally, to evaluate the expression p<()|()>, we simply throw away the brackets,

returning the unit value (). Since () carries no information, no information

is transmitted between low- and high-protection contexts. Whenever values

CHAPTER 3. HARMLESS ADVICE 123

newi

newo v = v new1 v = <v|void> new2 v = <void|v>

updatei

updateo v v′ = v′ update1 v v′ = <v′||v|2> update2 v v′ = <|v|1|v′>

readi

reado v = v read1 v = |v|1 read2 v = |v|2

A[[A]]l[[v]] = e

A[[·]]l[[v]] = ()
c2ac:end

l ∈ {l}p′ A[[A]]l[[v]] = e

A[[{{l}p′(x) �p e′}, A]]l[[v]] = p<e′>[v/x]; e
c2ac:match

l ∈ {l}p′ A[[A]]l[[v]] = e

A[[<{{l}p′(x) �p e′}|void>, A]]l[[v]] = p<e′|()>[v/x]; e
c2ac:match1

l ∈ {l}p′ A[[A]]l[[v]] = e

A[[<void|{{l}p′(x) �p e′}>, A]]l[[v]] = p<()|e′>[v/x]; e
c2ac:match2

l /∈ {l}p′ A[[A]]l[[v]] = e

A[[{{l}p′(x) �p e′}, A]]l[[v]] = e
c2ac:nomatch

l /∈ {l}p′ A[[A]]l[[v]] = e

A[[<{{l}p′(x) �p e′}|void>, A]]l[[v]] = e
c2ac:nomatch1

l /∈ {l}p′ A[[A]]l[[v]] = e

A[[<void|{{l}p′(x) �p e′}>, A]]l[[v]] = e
c2ac:nomatch2

Figure 3.21: Helper Functions for FHRM2

CHAPTER 3. HARMLESS ADVICE 124

(Σ; A; p; e)i 7−→2,β (Σ′; A′; p; e′)i

`2 p′ ≤ p

(Σ; A; p;⇑ {v(x) �p′ e1})i 7−→2,β (Σ; (A, newi {v(x) �p′ e1}); p; ())i

c2eb:advinst

l /∈ Σ `2 p′ ≤ p

(Σ; A; p;newp′ τ)i 7−→2,β ((Σ, l = (newi τ, p′)); A; p; l)i

c2eb:new

readi Σ(l) 6= void A[[|A|i]]l[[v]] = e

(Σ; A; p; l[[v]])i 7−→β (Σ; A; p; e)i

c2eb:jp

r /∈ Σ `2 p′ ≤ p

(Σ; A; p; refp′ v)i 7−→2,β ((Σ, r = (newi v, p′)); A; p; r)i

c2eb:ref

v′ = readi Σ(r) v′ 6= void

(Σ; A; p; !r)i 7−→2,β (Σ; A; p; v′)i

c2eb:deref

Σ(r) = (v2, p′) `2 p′ ≤ p

(Σ; A; p; r := v)i 7−→2,β ((Σ, r = (updatei v2 v, p′)); A; p; v)i

c2eb:assign

`2 p′ ≤ p

(Σ; A; p; p′<()|()>)i 7−→2,β (Σ; A; p; ())i

c2eb:highlow

Figure 3.22: β-redex Operational Semantics for FHRM2

(Σ; A; p; e) 7−→2 (Σ′; A′; p; e′)

(Σ; A; P ′; e)i 7−→2 (Σ′; A′; P ′; e′)i `2 P ′ ≤ P P ∈ H ≡ P ′ ∈ H

(Σ; A; P ; P ′<e>)i 7−→2 (Σ′; A′; P ; P ′<e′>)i

c2e:low

(Σ; A; P ′; ei)i 7−→2 (Σ′; A′; P ′; e′i)i ej = e′j {i, j} = {1, 2}
(Σ; A; P ; P ′<e1|e2>) 7−→2 (Σ′; A′; P ; P ′<e′1|e

′
2>)

c2e:brack

P ∈ H P ′ ∈ L

(Σ; A; P ; P ′<e>) 7−→2 (Σ; A; P ; P ′<|e|1||e|2>)
c2e:highlow

Figure 3.23: Operational Semantics for FHRM2

CHAPTER 3. HARMLESS ADVICE 125

S(F)

... S(p<F|e>) = S(F) S(p<e|F>) = S(F)

(Σ; A; p; e) 7−→top2 (Σ′; A′; p; e′)

(Σ; A; p; e) 7−→ (Σ′; A′; p; e′)

(Σ; A; p; e) 7−→top,2 (Σ′; A′; p; e′)
c2evt:ce

(Σ; A; p; F [stack()]) 7−→top,2 (Σ; A; p; F [S(F)])
c2evt:stack

Figure 3.24: Top Operational Semantics for FHRM2

v1 and v2 are not both (), the expression p<v1|v2> is stuck. Fortunately, such

an expression is ill-typed and never arises from evaluation of a well-typed

program.

• The judgment form for execution of top-level FHRM2 expressions in Figure 3.24

has the same shape as the judgment form for FHRM expressions. The stack

function S(F) behaves similarly for the brackets expression, p<e1|e2>, as it

does for p<e>.

Relating FHRM and FHRM2

Once FHRM2 has been defined, it is necessary to show that it accurately simulates

two FHRM programs. Two theorems, one concerning the soundness of FHRM2

execution relative to FHRM and the other concerning the completeness of FHRM2

relative to FHRM help to establish the proper correspondence.

The soundness theorem states that if a FHRM2 expression takes a step, then the

two corresponding FHRM programs (the projections of the FHRM2 expression) must

CHAPTER 3. HARMLESS ADVICE 126

each take the same respective steps. The proof of this theorem requires, among

other things, an auxiliary lemma that establishes a soundness result for aspect

composition.

Lemma 3.2.1 (Expression Soundness Lemma) For i ∈ {1, 2},

if (Σ; A; p; e)i 7−→2,top (Σ′; A′; p; e′)i,

then (|Σ|i; |A|i; p; e) 7−→top (|Σ′|i; |A′|i; p; e′).

Proof: By induction on the structure of (Σ; A; p′; e)i 7−→2,top (Σ′; A′; p; e′)i. 2

Lemma 3.2.2 (Stack Soundness Lemma) For i ∈ {1, 2}, S(|F |i) = |S(F)|i.

Proof: By induction on the structure of S(F). 2

Lemma 3.2.3 (Aspect Composition Soundness Lemma) For i ∈ {1, 2}, if

A[[A]]l[[v]] = e,

then A[[|A|i]]l[[|v|i]] = |e|i.

Proof: By induction on the structure of the definition of A[[A]]l[[v]] = e. 2

Theorem 3.2.4 (Soundness) For i ∈ {1, 2}, if (Σ; A; p; e) 7−→∗
2,top (Σ′; A′; p; e′)

then |(Σ; A; p; e)|i 7−→∗
top |(Σ′; A′; p; e′)|i

Proof: By induction on the structure of the operational judgment

(Σ; A; p; e) 7−→∗
2,top (Σ′; A′; p; e′), with use of the Soundness Lemma 3.2.1.

• Case c2evt:stack uses the Stack Soundness Lemma 3.2.2.

• Case c2eb:jp uses the Aspect Composition Soundness Lemma 3.2.3.

CHAPTER 3. HARMLESS ADVICE 127

2

The completeness theorem states that if two FHRM programs step to values,

then the representation in FHRM2 that simulates them simultaneously must step

to a value. The completeness theorem requires an auxiliary lemma stating that a

FHRM2 program is only stuck when one of its corresponding FHRM programs are

stuck.

Lemma 3.2.5 (Completeness Stuck Lemma) Assume (Σ; A; p; e) is stuck.

Then |(Σ; A; p; e)|i is stuck for some i ∈ {1, 2}.

Proof: Proof by induction on the structure of e. 2

Theorem 3.2.6 (Completeness) Assume |(Σ; A; p; e)|i 7−→∗
top (Σ′

i; A
′
i; p; vi) for

all i ∈ 1, 2 then there exists (Σ′; A′; p; v) such that (Σ; A; p; e) 7−→∗
2,top (Σ′; A′; p; v)

Proof: If (Σ, A, p, e) yields an infinite reduction sequence, then |(Σ, A, p, e)|i

yields an infinite reduction sequence by the Soundness Theorem 3.2.4.

If (Σ; A; p; e) is stuck, then |(Σ; A; p; e)|i is stuck by the Completeness Stuck

Lemma 3.2.5.

Therefore, (Σ; A; p; e) reduces to a successful configuration. 2

Safety of FHRM2

To continue we prove that the type system of FHRM2 is sound with respect to

our operational semantics using Progress and Preservation theorems. This strategy

requires that we extend the typing relation to cover all of the run-time terms in the

language as well as the other elements of the abstract machine (i.e., the code store

CHAPTER 3. HARMLESS ADVICE 128

and aspect store). A FHRM2 configuration (Σ; A; p; e) is well-typed if it satisfies the

judgment `2 (Σ; A; p; e) ok in Figure 3.19. If the stores and the expression contain

brackets, the protection domains associated with the brackets must be low.

Part of the proof of Progress involves defining the canonical forms of each type.

It is important to note that the brackets expression is not a value and therefore the

only values with type bool, for instance, are true and false. This fact comes into

play later in the noninterference proof.

The following lemma gives the rest of canonical forms.

Lemma 3.2.7 (Canonical Forms) Suppose · `2 v : τ is a closed, well-formed

value.

• If τ = 1, then v = ().

• If τ = string, then v = σ.

• If τ = bool, then v = true or false.

• If τ = τ1 × ...× τn, then v = (v).

• If τ = τ1 →p τ2, then v = λpx : τ1.e.

• If τ = advicep, then v = {v(x) �p e}.

• If τ = τ labelp, then v = l.

• If τ = τ refp, then v = r.

• If τ = τ pcp, then v = {l}p.

• If τ = stack, then v = · or l[[v1]] :: v2.

CHAPTER 3. HARMLESS ADVICE 129

Proof: By induction on the structure of Γ `2 v : τ , using the fact that v is a

value. 2

We now state the standard Progress and Preservation lemmas.

Lemma 3.2.8 (Γ to Σ) • If `2 Σ : Γ and Γ(l) = τ labelp, then Σ(l) = τ 2.

• If `2 Σ : Γ and Γ(r) = τ refp, then Σ(r) = v2 for some v2.

Proof: Trivial using Rule c2amt:labrefstore. 2

Lemma 3.2.9 (Reverse Evaluation Contexts) If Γ; p `2 E[e] : τ ,

then Γ; p `2 e : τ ′ for some τ ′.

Proof: By induction on the structure of evaluation contexts E. 2

Lemma 3.2.10 (Total Aspect Store) If `2 Σ : Γ and Γ `2 A ok,

then A[[A]]l[[v]] = e is a total function.

Proof: By induction on the structure of the judgment A[[A]]l[[v]] = e. 2

Lemma 3.2.11 (Progress Lemma) If `2 Σ : Γ and Γ `2 A ok and Γ; p `2 e : τ

and

• If i ∈ {o}, then p ∈ H.

• If i ∈ {1, 2}, then p ∈ L.

then either e is a value or (Σ′; A′; p; e′) such that (Σ; A; p; e) 7−→2,top (Σ′; A′; p; e′).

CHAPTER 3. HARMLESS ADVICE 130

Proof: By induction on the structure of the typing judgment Γ; p `2 e : τ with the

Canonical Forms Lemma 3.2.7 and the Reverse Evaluation Context Lemma 3.2.9.

• Cases cet:jp, cet:asgn, and cet:deref use the Γ to Σ Lemma 3.2.8.

• Case cet:jp uses the Total Aspect Store Lemma 3.2.10.

2

Theorem 3.2.12 (Progress) If `2 (Σ; A; p; e) ok

then either e is a value, or there exists (Σ′; A′; p; e′) such that (Σ; A; p; e) 7−→2,top

(Σ′; A′; p; e′).

Proof: Straightforward use of the Progress Lemma 3.2.11. 2

Lemma 3.2.13 (Value Substitution) If Γ, x : τ2 `2 v1 : τ1 and Γ `2 v2 : τ2,

then Γ `2 v1[v2/x] : τ1.

Proof: By induction on the structure of typing rule Γ `2 v : τ with the Expression

Substitution Lemma 3.2.14. 2

Lemma 3.2.14 (Expression Substitution) If Γ, x : τ2; p `2 e : τ1 and Γ `2 v :

τ2,

then Γ; p `2 e[v/x] : τ1.

Proof: By induction on the structure of typing rule Γ; p `2 e : τ with the Value

Substitution Lemma 3.2.13. 2

Lemma 3.2.15 (Aspect Store Weakening) If Γ `2 A ok, then

CHAPTER 3. HARMLESS ADVICE 131

• Γ, l : τ labelp `2 A ok for some l, τ, p

• Γ, r : τ refp `2 A ok for some r, τ, p

Proof: By induction on the structure of typing rule Γ `2 Aok. 2

Lemma 3.2.16 (New Advice Preservation) If Γ ` {v.x ⇒p′ e} : advicep and

(if i ∈ {1, 2} then p ∈ L) and ` p′ ≤ p

then Γ ` newi{v.x ⇒p′ e} ⇒ advicep′.

Proof: Straightforward using the typing for the judgment Γ ` newi{v.x ⇒p′

e} ⇒ advicep′ . 2

Lemma 3.2.17 (New Label Preservation) If ` p′ ≤ p and (if i ∈ {1, 2}

then p ∈ L) then ` (newiτ, p
′) ⇒ τ labelp′.

Proof: Straightforward using the typing rules for the judgment ` (newiτ, p
′) ⇒

τ labelp′ . 2

Lemma 3.2.18 (New Reference Preservation) If Γ ` v : τ and ` p′ ≤ p and

(if i ∈ {1, 2} then p ∈ L)

then ` (newiv, p′) ⇒ τ refp′.

Proof: Straightforward using the typing rules for the judgment ` (v2, p′) ⇒

τ refp′ . 2

Lemma 3.2.19 (Read Reference Preservation) If ` (v2, p′) ⇒ τ refp′ and `

p ≤ p′ and (if i ∈ {1, 2} then p ∈ L),

then Γ ` readiv
2 : τ .

CHAPTER 3. HARMLESS ADVICE 132

Proof: Straightforward use of the typing rules for the judgment ` (v2, p′) ⇒

τ refp′ . 2

Lemma 3.2.20 (Assign Reference Preservation) If Γ ` v : τ and ` p′ ≤ p

and (if i ∈ {1, 2} then p ∈ L) and ` (v2, p′) ⇒ τ refp′

then Γ ` (updateiv
2v, p′) ⇒ τ refp′.

Proof: Straightforward using the typing rules for the judgment ` (v2, p′) ⇒

τ refp′ . 2

Lemma 3.2.21 (Stack Case Pattern Preservation Lemma)

If Γ; p ` v : stack and Γ a pat ` Γ′ and G, G′; p ` e1 : τ and v ` pat ⇒ sub

then Γ; p ` sub(e1) : τ .

Proof: By induction on the typing rule Γ a pat ` Γ′. 2

Lemma 3.2.22 (Stack Case Preservation) If Γ; p ` v : stack and v ` pat ⇒ Γ′

and G, G′; p ` e1 : τ and v ` pat ⇒ sub

then Γ; p ` sub(e1) : τ .

Proof: Straightforward use of the Stack Case Pattern Preservation Lemma 3.2.21.

2

Lemma 3.2.23 (Advice Composition Preservation) For i ∈ {o, 1, 2}, if `2

Σ : Γ and Γ `2 A ok and A[[|A|i]]l[[v]] = e and Γ `2 l : τ labelp′ and Γ `2 v : τ and

p′ ≤ p,

then Γ; p `2 e : τ .

CHAPTER 3. HARMLESS ADVICE 133

Proof: By induction on the structure of the typing judgment A[[|A|i]]l[[v]] = e.

2

Lemma 3.2.24 (β-redex Preservation) If `2 Σ : Γ and Γ `2 A ok and Γ; p `2

e : τ and (Σ; A; p; e) 7−→2,β (Σ′; A′; p; e′),

then

• `2 Σ′ : Γ′

• Γ′ `2 A′ok

• Γ′; p `2 e′ : τ .

Proof: By induction on the structure of the operational rules (Σ; A; p; e) 7−→2,β

(Σ′; A′; p; e′) with the Value Substitution Lemma 3.2.13, the Expression Substitution

Lemma 3.2.14, the Aspect Store Weakening Lemma 3.2.15.

• Case c2eb:advinst uses the New Advice Preservation Lemma 3.2.16.

• Case c2eb:new uses the New Label Preservation Lemma 3.2.17.

• Case c2eb:ref uses New Reference Preservation Lemma 3.2.18.

• Case c2eb:deref uses the Read Reference Preservation Lemma 3.2.19.

• Case c2eb:assign uses the Assign Reference Preservation Lemma 3.2.20.

• Case c2eb:jp uses the Advice Composition Preservation Lemma 3.2.23.

• Case ceb:scaseyes uses the Stack Case Preservation Lemma 3.2.22.

2

CHAPTER 3. HARMLESS ADVICE 134

Lemma 3.2.25 (Evaluation Context Preservation) If Γ; p `2 E[e] : τ and

Γ; p `2 e : τ ′ and Γ; p `2 e′ : τ ′,

then Γ; p `2 E[e′] : τ

Proof: By induction on the structure of evaluation contexts E. 2

Lemma 3.2.26 (Projection Typing) If Γ; p `2 e : τ ,

then Γ; p `2 |e|i : τ for all i ∈ {1, 2}

Proof: By induction on the structure of the typing rules Γ; p `2 e : τ . 2

Lemma 3.2.27 (Preservation Lemma) If `2 Σ : Γ and Γ `2 A ok and Γ; p `2

e : τ and (Σ; A; p; e) 7−→2 (Σ′; A′; p; e′), then

• `2 Σ′ : Γ′

• Γ′ `2 A′ok

• Γ′; p `2 e′ : τ .

Proof: By induction on the structure of the operational rules (Σ; A; p; e) 7−→2

(Σ′; A′; p; e′).

• Case ce:beta uses the β-redex Preservation Lemma 3.2.24.

• Case ce:eval uses the Reverse Evaluation Context Lemma 3.2.9 and the Eval-

uation Context Preservation 3.2.25.

• Case c2e:highlow uses Projection Typing Lemma 3.2.26.

2

CHAPTER 3. HARMLESS ADVICE 135

Lemma 3.2.28 (Top Preservation Lemma) If `2 Σ : Γ and Γ `2 A ok and

Γ; p `2 e : τ and (Σ; A; p; e) 7−→2,top (Σ′; A′; p; e′), then

• F ′ `2 Σ′ : Γ′

• Γ′ `2 A′ok

• Γ′; p `2 e′ : τ .

Proof: By induction on the structure of the operational rule (Σ; A; p; e) 7−→2,top

(Σ′; A′; p; e′).

• Case cevt:ce uses the Preservation Lemma 3.2.27.

2

Theorem 3.2.29 (Preservation) If `2 (Σ; A; p; e) ok and (Σ; A; p; e) 7−→2,top

(Σ′; A′; p; e′)

then `2 (Σ′; A′; p; e′) ok.

Proof: Straightforward use of the Top Preservation Lemma 3.2.27. 2

Well-typed FHRM2 programs produce indistinguishable FHRM results

Most of the difficult work has now been done. We merely need to apply lemmas

and theorems we have already proven to get our first powerful result: If a high-

protection FHRM2 expression steps to a boolean value, then the corresponding FHRM

projections (which differ only in low protection code) step to equal values. In other

words, no low-production code (be it aspect-oriented features or otherwise) has

influenced execution of high-protection expressions.

CHAPTER 3. HARMLESS ADVICE 136

Lemma 3.2.30 (Equivalent Execution in FHRM2)

If HIGH ∈ H and ·;HIGH `2 e : bool and

(·; ·;HIGH; e) 7−→∗
2,top (Σ; A;HIGH; v)

then |v|1 = |v|2.

Proof: By the Preservation Theorem 3.2.29, `2 Σ : Γ and Γ `2 v : bool.

By the Canonical Forms Lemma 3.2.7, v is either true or false.

|true|1 = |true|2 and |false|1 = |false|2. 2

Putting it all together: Noninterference

Finally, for the noninterference proof, we start with a high-protection FHRM expres-

sion e that has a free variable x. We add a low-protection expression LOW<e′>

where LOW ∈ L so that e with the low-protection code and e alone are executed si-

multaneously and their resulting values compared. This is achieved by constructing

the FHRM2 expression e[LOW<e′|()>/x] where the right projection steps to e with

() substituted for x and the left projection is the low-protection code e′ substituted

for x in e. Using the soundness, completeness, and preservation theorems, we show

that both e alone and e with the added low-protection code step to the same value.

Therefore the low-protection code, even if it introduced advice, did not interfere

with execution.

Theorem 3.2.31 (Noninterference) If HIGH ∈ H and LOW ∈ L and `

LOW ≤ HIGH and e is a core language expression where x;HIGH ` e : bool

and ·;LOW ` e′ : 1 and (·; ·;HIGH; e[LOW<e′>/x]) 7−→∗
top (Σ1; A1;HIGH; v1)

and (·; ·;HIGH; e[LOW<()>/x]) 7−→∗
top (Σ2; A2;HIGH; v2)

then v1 = v2.

CHAPTER 3. HARMLESS ADVICE 137

Proof: Construct the FHRM2 expression LOW<e′|()>; e, such that

|LOW<e′|()>; e|1 = LOW<e′>; e and |LOW<e′|()>; e|2 = LOW<()>; e.

Therefore, |(·; ·;HIGH;LOW<e′|()>; e)|1 7−→∗
2,top (Σ1; A1;HIGH; v1) and

|(·; ·;HIGH;LOW<e′|()>; e)|2 7−→∗
2,top (Σ2; A2;HIGH; v2).

By the Completeness Theorem 3.2.6, (·; ·;HIGH;LOW<e′|()>; e) 7−→∗
2,top

(Σ; A;HIGH; v) for some Σ, A, and v.

By the Soundness Theorem 3.2.4, for i ∈ {1, 2}, |(·; ·;HIGH;LOW<e′|()>; e)|i

7−→∗
2,top |(Σ; A;HIGH; v)|i.

Therefore, |v|1 = v1 and |v|2 = v2.

By the Equivalent Execution Lemma 3.2.30, |v|1 = |v|2.

Therefore, v1 = v2. 2

3.3 Harmless Source Language: HarmlessAML

Our core calculus will not serve as an effective source-level aspect-oriented program-

ming language – it is far too low level for convenient programming. However, the

intended purpose of the core calculus is not to serve as a user-friendly programming

language itself, but rather to serve as a semantic intermediate language to which

we compile a more practical source language.

As we have already shown, it is possible to prove deep properties of the core,

including our powerful noninterference result. The primary reason for this is that

FHRM consists of a relatively simple, orthogonal collection of primitive operators.

In a more convenient source language, these simple operators are combined together

to form complex, higher-level primitives. To obtain properties of a source language,

we give a type-preserving translation into the core and then exploit properties of

CHAPTER 3. HARMLESS ADVICE 138

(types) t ::= 1 | string | bool | t →p t | t refp | stack
(values) v ::= () | s | true | false

(expressions) e ::= v | x | e; e | print e | if e then e else e
| let ds in e | e e | !e | e:=e
| stkcase e (pat => e | => e)

(frame patterns) fpat ::= | (|#f#|) (x, n)
(stack patterns) pat ::= [] | fpat :: pat | x
(main decl) d ::= string x = e | bool x = e | ref x = e

| fun f (x:t1) : t2 = e
(main decls) ds ::= . | d ds
(time) tm ::= before | after

(advice decl) a ::= advice tm (|#f#|) (x, s, n) = e
(advice decls) as ::= . | d as | a as
(aspects) asps ::= . | p : {as} asps
(programs) prog ::= ds asps e

Figure 3.25: Syntax of Harmlessaml

type-correct core calculus terms. This strategy effectively modularizes proofs of

properties about the source and greatly simplifies the overall proof.

Hence, in this section, we proceed to define an aspect-oriented source language,

Harmlessaml, with harmless advice. We have implemented the language in Stan-

dard ML and explored the extent to which we can use harmless aspects to implement

dynamic security policies.

3.3.1 Syntax

Figure 3.25 presents the formal syntax of the source language, Harmlessaml.

Most of Harmlessaml expressions and values mimic FHRM expressions and

values, although there are a few differences. For instance, none of the run-time-

only values such as labels, reference locations, or stack values need appear in the

collection of source values, as Harmlessaml is not executed directly. Also, for

CHAPTER 3. HARMLESS ADVICE 139

convenience, we allow a local let declaration in expressions, which programmers can

use to allocate values with basic types, reference type, or function type. Note that

we use the meta-variable f to stand for program variables bound to functions. We

use the meta-variable x to stand for any kind of program variable.

Harmlessaml stkcase expressions analyze stack values in a similar way to the

target, only the patterns are slightly different, reflecting a particular compilation

strategy. More specifically, when compiling a function, we will automatically allo-

cate the following items on the stack: a label corresponding to the function and a

tuple containing a pointer to the function argument and a string corresponding to

the name of the function that was called. Consequently, the patterns that match

stack frames have the form (|#f#|) (x, n), where f is checked against the label, and x

and n are bound to the argument and the function name respectively. The function

name can be used when printing out debugging information, profiling information,

etc.

Advice in Harmlessaml (advice tm (|#f#|) (x, s, n) = e) is either before advice

that runs before a function call or after advice that runs after a function call.

Around advice, which replaces the function body, is not harmless, and as such

is not represented in Harmlessaml. Similar to the Harmlessaml stack patterns,

when the advice is triggered, x is bound to the function argument, and n is bound

to a string corresponding to the function name. The variable s is bound to the

stack at the point the advice is triggered. In the source language, programmers do

not explicitly allocate their own data on the stack, nor do they explicitly grab the

current stack. Code for performing these actions is emitted at specific points during

the translation from Harmlessaml into FHRM2.

CHAPTER 3. HARMLESS ADVICE 140

fun openA (x : string) : file = ...

fun openR (x : string) : file = ...

fun openO (x : string) : file = ...

fun openC (x : string) : file = ...

fun exists (x : string) : bool = ...

fun openW (x:string):file =

if exists x

then openO x

else openC x

fun read (x : file * int) : string = ...

fun write (x : file * string) : int = ...

...

Figure 3.26: File I/O Library

The main syntactic difference between Harmlessaml and Aspectml is that Harm-

lessaml programs (ds asps e) preserve a distinct syntactic separation between main

program declarations ds, aspect declarations asps, and the main program expression

e. In Section 3.3.4, we will show how this syntactic separation, combined with the

noninterference properties of FHRM , can be used to prove that programs written in

the Harmlessaml are harmless.

3.3.2 Assorted Security Examples

Figure 3.26 and 3.27 display Harmlessaml example code.2 Figure 3.26 presents

the (partial) definition of a file I/O library, which implements a number of file

operations. We have shown some of the file operations here.

2The examples in this section use a number of additional standard operations, such as string
and integer manipulations, and file and network i/o operations, that we have not formalized, but
we have implemented in our system.

CHAPTER 3. HARMLESS ADVICE 141

Figure 3.27 presents three simple security policies we have implemented to

exhibit the basic language features. Programmers would use these aspects to

sandbox untrusted code [4, 15, 17, 32].

The first policy, limitdirectories, disallows programs from opening files in

directories other than the tests directory. This is achieved using before advice

that is triggered by execution of any of the open-file calls in the file I/O library. The

before advice checks the method call argument to determine the file to be opened.

If the file is not in the right directory the advice prints out a message and aborts,

terminating the program. This advice calls a number of pure string functions as

well as the print and abort functions, which have I/O and termination effects.

Our type system correctly verifies it is harmless.

The second example, limitcreate, limits the number of new files a program

can create. To do so, it allocates a local reference filescreated to keep track of

the number of files created so far. By default, such references take on the protection

level of the aspect that creates them, in this case limitcreate. Once again, the type

system verifies that the aspect is harmless. Notice that even though limitcreate

and limitdirectories can be invoked at some of the same control flow points

(e.g., openC), they are guaranteed not to interfere. Hence, these two policies could

have being created by independent programmers and they would still work properly

when composed.

The last example, opencheck, shows how to use stack patterns to implement

a highly simplified stack-inspection-like policy. In this example, we have assumed

that openC and openO are “helper functions” that should only be called by openW,

which checks to see whether or not the file in question exists before determining

which method to call. In this aspect, before advice analyzes the control stack

CHAPTER 3. HARMLESS ADVICE 142

(advice argument s) and only allows execution to proceed if the immediate caller

was openW. Real stack inspection policies examine the whole control stack, not just

the immediate caller. Such policies may be implemented in our system using a

recursive method that runs down the stack.

3.3.3 Naccio Security Case Study

To study the usefulness of harmless advice somewhat more broadly in the security

domain, we examined the suite of security policies that Evans implemented as part

of the Naccio system for his thesis [16]. At the time, Evans thought of Naccio

as a domain specific language for implementing security policies, and he argued

effectively (as did Erlingsson and Schneider in concurrent research [15]) that his

language, which completely separates security code from mainline program, was an

effective means of developing reliable security policies. It is now clear that Naccio

is form of aspect-oriented programming language, though at the time Naccio was

developed, aspects had not yet gained much attention.

We lifted the security policies Evans wrote for Java from his thesis and rewrote

them in Harmlessaml, testing them for harmlessness. We omitted those elements

of the policies that were particularly Java-specific. For example, in our system, we

implemented SML-style file and network i/o system calls, rather than emulating

the Java API. Of the group, there was one policy that was not harmless. It was

a networking policy called SoftSendLimit that divided up the data to be sent on

the network into small chunks and limited the sending rate to some preset limit. A

straightforward implementation of the policy would require “harmful” around advice

that calls the proceed function several times with the smaller segments of data to

be sent. This policy is not a typical “permit or deny” access-control security policy,

CHAPTER 3. HARMLESS ADVICE 143

limitdirectories:{

string alloweddirectory = "tests/"

advice before (| #openR,openW,openA,openC,openO# |) (arg,_,_) =

let

string directory = substring(arg,0,(lastindexof(arg,"/")+1))

in

if directory == alloweddirectory

then ()

else ((print "Forbidden directory.\n");

(abort ()))

}

limitcreate:{

ref filescreated : int = 0

int createlimit = 10

advice before (| #openC# |) (_,_,_) =

if (!filescreated + 1) > createlimit

then ((print "Too many files created.\n");

(abort ()))

else ()

advice after (| #openC# |) (_,_,_) =

((filescreated := (!filescreated) + 1); ())

}

opencheck:{

advice before (| #openC,openO# |) (_,stk,_) =

case stk

(_ :: (| #openW# |)(_,_) :: tail => ()

| _ => (print ("Invalid openW call.\n");

abort ()))

}

Figure 3.27: Simple Security Aspects

CHAPTER 3. HARMLESS ADVICE 144

but modifies the behavior of the network i/o implementation. As such, it is harmful

by our definition. We would expect (and indeed do find in the rest of the policies)

that most security policies would not require such a modification to the behavior of

the system.

Some of the other policies we investigated include the following:

• NoBashingExceptTmp allows modification of files in the “tmp” directory

but no others.

• LimitWrite prevents the modification of existing files and limits the number

of characters that can be written to the file system.

• NetLimit restricts the network send rate to a designated limit. When the

rate is being exceeded, our implementation uses sleep system calls to slow

the send process. This is allowed in our definition of harmlessness.

• JavaApplet only allows access to a specified file and only allows connections

to a specified host. Our harmless implementation contains aspects on the

relevant read, write, observe file system calls and on the relevant connect and

accept network system calls. We did not implement the Java-specific stack-

inspection security model that the corresponding Naccio policy also enforces.

Recall that we had performed such a case study in Section 2.3.

• Paranoid implements file read, write, create and observe limits, directory

restrictions, and network usage prevention.

• TarCustom is a modified NoBashingFiles policy except “.tar” files can be

overwritten. It only allows read access to specified files, does not allow more

bytes written than read, and prohibits all network use.

CHAPTER 3. HARMLESS ADVICE 145

3.3.4 Meta-theory

To gives a semantics to Harmlessaml, we define a type-preserving transformation

into the core language. However, unlike AspectML in the previous chapter, we

define a type-preserving transformation into FHRM2, not FHRM . This gives us

not one, but two semantics for the source. The first semantics is the reference

semantics in which every source language aspect is translated into the unit value.

In this semantics, aspects cannot possibly be anything but harmless. The second

semantics is the implementation semantics. In this latter case, every Harmlessaml

aspect is implemented as the appropriate core calculus state, objects and advice.

Clearly, one implements the second (implementation) semantics not the reference

semantics. However, using the key properties of the core — soundness, completeness

and preservation — we prove that if the two semantics both terminate and produce

results, then the results they produce are equal. Consequently, we obtain our central

result: the implementation semantics of Harmlessaml aspects is harmless.

The translation from Harmlessaml to FHRM2 places the state and code for the

mainline program and for each aspect into their own protection domains. Recall that

the main program and the aspects are syntactically separate due to the structure of

the grammar. During translation, FHRM2 expressions generated by translating the

mainline program code are assigned the protection domain MAIN. The FHRM2

expressions generate by translating an aspect named ASPECT are given the pro-

tection domain ASPECT.

We then assume that the translation operates in the presence of a security lattice

in which ASPECT < MAIN for all aspects ASPECT defined by the program.

Consequently, the translation specifies the noninterference policy that we wish to

CHAPTER 3. HARMLESS ADVICE 146

Value Translation Φ; Γ ` v : τ
val
=⇒ v′

Φ; Γ ` () : 1
val
=⇒ ()

svt:unit
Φ; Γ ` s : string

val
=⇒ s

svt:string

Φ; Γ ` true : bool
val
=⇒ true

svt:true
Φ; Γ ` false : bool

val
=⇒ false

svt:false

Figure 3.28: Value Translation from Harmlessaml to FHRM2

enforce, namely that no aspect interferes with any other aspect and that no aspect

interferes with the mainline computation.

The translation from Harmlessaml into the core calculus is defined by a series

of five mutually recursive judgments. The translation judgments are generally

parameterized by a typing context involving a pointcut context (Φ), which con-

tains a collection of declarations that can be used in source-level pointcuts, a

standard type context (Γ), which maps source variables to types, and a protection

level/aspect name (p). The point-cut context Φ contains declarations of the form

f : (τarg, τres, p). These declarations say that an function named f has been declared

and may be advised. The function takes an argument with type τarg and returns a

result with type τres. The function inhabits protection domain p.

The form of the translation judgments are as follows.

• The judgment Φ; Γ ` v : τ
val
=⇒ v′ in Figure 3.28 describes the translation from

Harmlessaml values v with type t to FHRM2 values v′ with type t.

• The judgment Φ; Γ; p ` e : τ
exp
=⇒ e′ in Figure 3.29 describes the translation

from Harmlessaml expressions e with type t to FHRM2 expressions e′ with

type t.

CHAPTER 3. HARMLESS ADVICE 147

Expression Translation Φ; Γ; p ` e : τ
exp
=⇒ e′

Φ; Γ ` v : τ
val
=⇒ v′

Φ; Γ; p ` v : τ
exp
=⇒ v′

set:val
Γ(x) = τ

Φ; Γ; p ` x : τ
exp
=⇒ x

set:var

Φ; Γ; p ` e1 : 1
exp
=⇒ e′1 Φ; Γ; p ` e2 : τ

exp
=⇒ e′2

Φ; Γ; p ` e1; e2 : τ
exp
=⇒ e′1; e

′
2

set:seq

Φ; Γ; p ` e : string
exp
=⇒ e′

Φ; Γ; p ` print e : 1
exp
=⇒ print e′

set:print

Φ; Γ; p ` e1 : bool
exp
=⇒ e′1 Φ; Γ; p ` e2 : τ

exp
=⇒ e′2 Φ; Γ; p ` e3 : τ

exp
=⇒ e′3

Φ; Γ; p ` if e1 then e2 else e3 : τ
exp
=⇒ if e′1 then e′2 else e′3

set:if

Φ; Γ; p ` ds; .; e : τ
dec
=⇒ e′

Φ; Γ; p ` let ds in e : τ
exp
=⇒ e′

set:let

Φ; Γ; p ` e1 : τ1 →p′ τ2
exp
=⇒ e′1 Φ; Γ; p ` e2 : τ1

exp
=⇒ e′2 ` p = p′

Φ; Γ; p ` e1 e2 : τ2
exp
=⇒ e′1 e′2

set:app

Φ; Γ; p ` e : τ refp′
exp
=⇒ e′ ` p ≤ p′

Φ; Γ; p ` !e : τ
exp
=⇒!e′

set:deref

Φ; Γ; p ` e1 : τ refp′
exp
=⇒ e′1 Φ; Γ; p ` e2 : τ

exp
=⇒ e′2 ` p′ ≤ p

Φ; Γ; p ` e1:=e2 : 1
exp
=⇒ e′1 := e′2

set:asgn

Φ; Γ; p ` e1 : stack
exp
=⇒ e′1 Φ; Γ; p ` pat

pat
=⇒ pat′ a Γ′; Θ

P ; Γ, Γ′; p ` e2 : τ
exp
=⇒ e′2 Φ; Γ; p ` e3 : τ

exp
=⇒ e′3

Φ; Γ; p ` stkcase e1 (pat => e2 | => e3) : τ
exp
=⇒

stkcase e′1 (pat′ ⇒ split(Θ, e′2), ⇒ e′3)

set:scase

Figure 3.29: Expression Translation from Harmlessaml to FHRM2

CHAPTER 3. HARMLESS ADVICE 148

Stack-case Splitting Function split(Θ)

split(·, e) = e split(z → (x, y), Θ) = split(Θ, split (x, y) = z in e)

Stack-case Context Translation Γ a Θ ⇒ Γ′

Γ a · ⇒ Γ
stt:end

Γ a Θ ⇒ Γ′

Γ, x : τ, y : τ ′ a Θ, z → (x, y) ⇒ Γ′, z : (τ × τ ′)
stt:next

Pointcut Context Translation T (Phi)

T (()·) = ·

T (Φ, f : (τarg, τres, p)) = fbef : (τarg × string) labelp, faft : (τres × string) labelp

Figure 3.30: Auxiliary Definitions for Translation from Harmlessaml to FHRM2

Pattern Translation Φ; Γ; p ` pat
pat
=⇒ pat′ a Γ′; Θ

(fi ∈ Φ)(1≤i≤n)

(Γ(fi) = τarg ->pi τres)
(1≤i≤n) Φ; Γ; p ` pat

pat
=⇒ pat′ a Γ′; Θ

Φ; Γ; p ` (|#f#|) (x,n) :: pat
pat
=⇒ {fbef}p[[y]] :: pat′ :

(Γ′, x : τarg, n : string; Θ, y → (x, n))

spt:pc

Φ; Γ; p ` []
pat
=⇒ nil a ·; ·

spt:nil
Φ; Γ; p ` pat

pat
=⇒ pat′ a Γ′; Θ

Φ; Γ; p ` :: pat
pat
=⇒ :: pat′ a Γ′; Θ

spt:any

Φ; Γ; p ` x
pat
=⇒ x a (x : stack); ·

spt:var

Figure 3.31: Pattern Translation from Harmlessaml to FHRM2

CHAPTER 3. HARMLESS ADVICE 149

Declaration Translation Φ; Γ; p ` as; asps; e : τ
dec
=⇒ e′

P ; Γ; P ′ ` as; .; () : 1
as

=⇒ e′

P ; Γ;MAIN ` .; asps; e : τ
dec
=⇒ e′′ ` P ′〈MAIN

P ; Γ;MAIN ` .; P ′:{as} asps; e : τ
dec
=⇒ P ′<()|e′>; e′′

sdt:asp

Φ; Γ; p ` e : τ
exp
=⇒ e′

Φ; Γ; p ` .; .; e : τ
dec
=⇒ e′

sdt:end

Φ; Γ; p ` e1 : string
exp
=⇒ e′1 P ; Γ, x : string; p ` as; asps; e2 : τ

dec
=⇒ e′2

Φ; Γ; p ` string x = e1 as; asps; e2 : τ
dec
=⇒ let x = e′1 in e′2

sdt:string

Φ; Γ; p ` e1 : bool
exp
=⇒ e′1 P ; Γ, x : bool; p ` as; asps; e2 : τ

dec
=⇒ e′2

Φ; Γ; p ` bool x = e1 as; asps; e2 : τ
dec
=⇒ let x = e′1 in e′2

sdt:bool

Φ; Γ, x : τ1; p ` e1 : τ2
exp
=⇒ e′1

Φ, f ; Γ, f : τ1 →p τ2; p ` as; asps; e2 : τ
dec
=⇒ e′2

Φ; Γ; p ` fun f (x:t1) : t2 = e1 as; asps; e2 : t2
dec
=⇒

let fbef = newp (τ1, string) in let faft = newp (τ2, string) in
let f = λpx : τ1.(store fbef[[(x, “f ′′)]] in fbef[[(x, “f ′′)]];

let res = e′1 in faft[[(res, “f
′′)]]; res) in e′2

sdts:fun

Φ; Γ; p ` e1 : τ
exp
=⇒ e′1 P ; Γ, x : τ refp; p ` as; asps; e2 : τ ′ dec

=⇒ e′2

Φ; Γ; p ` ref x = e1 as; asps; e2 : τ ′ dec
=⇒ let x = refp e′1 in e′2

sdt:ref

Figure 3.32: Declaration Translation from Harmlessaml to FHRM2: Part 1

CHAPTER 3. HARMLESS ADVICE 150

Declaration Translation Φ; Γ; p ` as; asps; e : τ
dec
=⇒ e′

Φ; Γ, x : τ1; p ` e1 : τ2
exp
=⇒ e′1

Φ, f ; Γ, f : τ1 →p τ2; p ` as; asps; e2 : τ
dec
=⇒ e′2

Φ; Γ; p ` fun f (x:t1) : t2 = e1 as; asps; e2 : t2
dec
=⇒

let fbef = newp (τ1, string) in let faft = newp (τ2, string) in
let f = λpx : τ1.(store fbef[[(x, “f ′′)]] in fbef[[(x, “f ′′)]];

let res = e′1 in faft[[(res, “f
′′)]]; res) in e′2

sdts:fun

(fi ∈ Φ)(1≤i≤n) (Γ(fi) = τarg →pi
τres)

(1≤i≤n)

Φ; (Γ, x : τarg, s : stack, n : string); p ` e1 : 1
exp
=⇒ e′1

` p ≤ pi Φ; Γ; p ` as; asps; e2 : τ
dec
=⇒ e′2

Φ; Γ; p ` advice before (|#f#|) (x,s,n) = e1 as; asps; e2 : τ
dec
=⇒

⇑ {{fbef}p(y) �p split (x, n) = y in let s = stack() in e′1}; e′2

sdts:before

(fi ∈ Φ)(1≤i≤n) (Γ(fi) = τarg →pi
τres)

(1≤i≤n)

Φ; (Γ, x : τres, s : stack, n : string); p ` e1 : 1
exp
=⇒ e′1

` p ≤ pi Φ; Γ; p ` as; asps; e2 : τ
dec
=⇒ e′2

Φ; Γ; p ` advice after (|#f#|) (x,s,n) = e1 as; asps; e2 : τ
dec
=⇒

⇑ {{faft}p(y) �p split (x, n) = y in let s = stack() in e′1}; e′2

sdts:after

Figure 3.33: Declaration Translation from Harmlessaml to FHRM2: Part 2

` ds asps e : τ
prog
=⇒ e′

.; .;MAIN ` ds; asps; e : τ
dec
=⇒ e′

` ds asps e : τ
prog
=⇒ e′

spt:prog

Figure 3.34: Program Translation from Harmlessaml to FHRM2

CHAPTER 3. HARMLESS ADVICE 151

• The judgment split(Θ, e) in Figure 3.30 is used by the stack case operation.

What is extracted from the FHRM2 stack is a tuple containing the argument

of the function, and the name of the function. The split function extracts

the individual elements from these tuples.

• The judgment Γ a Θ ⇒ Γ′ in Figure 3.30 takes a context for individual

elements pulled from the stack–the argument of the function, and the name

of the function and returns a context containing a tuple of those individual

elements. This new context with tuples is what is actually generated by the

pattern translation described in the next section. This judgment is used in

the proof of translation type safety.

• The judgment Φ; Γ; p ` pat
pat
=⇒ pat′ a Γ; Θ in Figure 3.31 describes the

translation from Harmlessaml patterns pat to FHRM2 patterns pat′ binding

variables described by Γ. Notice that the context Γ returned describes indi-

vidual elements–the argument to the function, and the name of the function.

It is modified by Θ by the judgment Γ a Θ ⇒ Γ′ to generate the new context

containing tuples that the FHRM2 pattern pat′ actually generates. Later, the

split command in the stack case translation will be used to extract the

individual elements from the tuples.

• The judgment Φ; Γ; p ` as; asps; e : τ
dec
=⇒ e′ in Figures 3.32 and 3.33 describes

the translation of declarations as, aspects asps and mainline code e. The scope

of the declarations as includes both asps and e. Mainline code e has type τ

and the expression e′ that results from the translation has type τ as well.

CHAPTER 3. HARMLESS ADVICE 152

• The judgment ` ds asps e
prog
=⇒ e′ in Figure 3.34 translates a whole Harm-

lessaml program (ds asps e) with a mainline computation producing values

of type τ into a FHRM2 expression e′ with type τ .

Apart from the addition of protection domains, much of the translation is similar

to that in the previous chapter. Throughout the translation we use the abbreviation

let x = e1 in e2 to stand for (λpx:τ.e2) e1 for some appropriate type τ and protection

p, which can be determined from the context. The interesting cases involve function

declarations and advice in Figure 3.33. Function declarations are translated in

Rule sdts:fun by first allocating two sets of labels, one set for the control flow points

at the beginning of functions, and one for the control flow points at the end of

functions. Recall that Harmlessaml programs cannot use around advice. This

allows a simpler translation of functions with a before and an after label, rather

than the complex translation using an around label in Aspectml of the previous

chapter. In a rather severe abuse of notation, we bind these new before and after

labels to variables with the names “fbef” and “faft.” During the translation, we

maintain the invariant that whenever f : (τarg, τres, p) appears in the context P ,

the translated term is well typed in a context including the variables fbef with type

(τarg, string) labelp and fpost with type (τres, string) labelp. The translation T (Φ) that

generates a FHRM2 context Γ from a pointcut context Φ is defined in Figure 3.30. In

the body of each function, the translation first allocates onto the stack the fbef label

with a tuple containing the argument of the function, and a string corresponding

to the function name3. Then we mark the following control-flow point with the

fbef label for the function, passing a tuple including the argument and the function

3Again, there is an abuse of notation here. We assume that we may write “f” for the string
equivalent of the function name.

CHAPTER 3. HARMLESS ADVICE 153

name to the advice. Next comes the body of the function and finally, the faft label

including the result and the function name.

Before and after advice are translated in Rules sdts:before and sdts:after respec-

tively. Before advice is triggered by the fbef label, while after advice is triggered by

faft label. In both cases, the first action inside the advice body involves extracting

the components (function argument or result, and string name) from the advice

argument z. Next, the translated advice reifies the current stack and binds it to

the variable s. Finally, the advice executes the translated body. After declaring the

advice, the translated code immediately activates it, placing it after any previously

encountered advice. The relatively simple translation of Harmlessaml before and

after advice stands in contrast to Aspectml advice, which must use a more complex

translation to handle around advice.

Finally, Rule sdt:asp gives Harmlessaml aspects two interpretations in the core.

This rule translates one aspect (p′:{as}) in a sequence into a FHRM2 expression.

Assuming e′ is the code that results from translating as, the declarations that make

up the aspect, then the resulting FHRM2 expression is p′<()|e′>. In this case, the

reference semantics for the aspect is () and the implementation semantics is e′.

The first important property of the translation is that it only produces well-typed

FHRM2 expressions.

Lemma 3.3.1 (Split Translation Lemma) If Γ, Γ′; p ` e : τ and Γ′ a Θ ⇒

Γ′′, then Γ, Γ′′; p ` split(Θ, e) : τ

Proof: By induction on the structure of Γ a Θ ⇒ Γ′. 2

Lemma 3.3.2 (Translation Type Safety Lemmas)

CHAPTER 3. HARMLESS ADVICE 154

• If Φ; Γ; p ` pat
pat
=⇒ pat′ a Γ; Θ and Γ a Θ ⇒ Γ′ then T (Φ); p ` pat′ ⇒ Γ′.

• If Φ; Γ ` v : τ
val
=⇒ v′, then T (Φ), Γ ` v′ : τ .

• If Φ; Γ; p ` e : τ
exp
=⇒ e′, then T (Φ), Γ; p ` e′ : τ .

• If Φ; Γ; p ` as; asps; e : τ
dec
=⇒ e′, then T (Φ), Γ; p ` e′ : τ .

Proof: By induction on the structure of Φ; Γ; p ` pat
pat
=⇒ pat′ a Γ; Θ, Φ; Γ ` v :

τ
val
=⇒ v′, Φ; Γ; p ` e : τ

exp
=⇒ e′, and Φ; Γ; p ` as; asps; e : τ

dec
=⇒ e′.

• Case set:scase uses the Split Translation Lemma 3.3.1.

2

Using these lemmas, we can now prove a translation type safety theorem.

Theorem 3.3.3 (Translation Type Safety)

If ` prog : bool
prog
=⇒ e′, then .; main `2 e′ : bool.

Proof: Straightforward use of Translation Type Safety Lemma 3.3.2. 2

Since the translation places each Harmlessaml aspect into its own protection

domain, which sits below the main program protection domain, a corollary of the

Translation Type Safety and Noninterference theorems is that no well-typed Harm-

lessaml aspect interferes with the main program or other well-typed Harmlessaml

aspects. Our final theorem establishes that the reference and implementation se-

mantics of Harmlessaml coincide and therefore that aspects are harmless. The

proof has a similar structure to the proof of noninterference for FHRM covered in

Section 3.2.5.

CHAPTER 3. HARMLESS ADVICE 155

Theorem 3.3.4 (Source Language Aspects are Harmless)

If ` prog : bool
prog
=⇒ e′

and (·, ·, main, |e′|1) 7−→∗
top (S1, A1, main, v1)

and (·, ·, main, |e′|2) 7−→∗
top (S2, A2, main, v2)

then v1 = v2.

Proof: Straightforward use of Theorem 3.3.3 and the proof technique and lemmas

of Theorem 3.2.31. 2

Chapter 4

Interference Policies

4.1 Introduction

In the previous chapter, we laid out some important basic principles for modular

programming with aspects, but in an idealized setting where the only effects involved

mutable references and simple “print” statements. Real programs access a variety

of system resources through various libraries. Moreover, many of these libraries

provide a means through which program components may, perhaps unknowingly,

interfere with one another. Perhaps the most obvious communication channel occurs

through the file system – when advice and mainline code read, write, move, or create

files, they can easily interfere with one another. Many other libraries provide access

to similar shared resources.

One option is to continue to “bake-in” protection domain checks into the trans-

lation rules from Harmlessaml to FHRM2 as new system resources and libraries are

added. The problem takes on a new dimension, however, when we consider that our

definition of “harmlessness” in the last chapter, where simple “print” statements,

156

CHAPTER 4. INTERFERENCE POLICIES 157

altered termination behavior, and altered timing were allowed, was only one of many

possible alternatives. Indeed, a programmer may even want the option to write

completely “harmful” advice in certain situations. “Baked-in” protection domain

checks for libraries are not enough to satisfy a programmer’s need for flexibility in

specifying how advice can interact using those libraries.

To provide the flexibility and generality required in realistic programming en-

vironments, we have developed and implemented a new mechanism that allows

programmers to create custom policies for a library that specify how to manage

interference between aspects and mainline code that use that library. More specifi-

cally, a programmer creates one or two policy specification files, depending on the

library. The first interference policy file specifies the static and dynamic checks

on the operations in the library to ensure that aspects and the main program do

not interact in a “harmful” manner. What the programmer considers “harmful”

is specified by the policy. The second resource policy file segments an underlying

resource of the library, for example, the file system, into regions belonging to the

main program and regions belonging to particular aspects. These resource regions

can then be used by the dynamic checks of the interference policy to prevent certain

actions. For example, the programmer may wish to prevent the main program from

reading from a region of the file system that belongs to an aspect.

There are four main contributions in this chapter.

1. We introduce customizable interference and resource policies for system li-

braries in aspect-oriented programs in Section 4.2. These policies enforce

static and dynamic checks to determine how aspects and the main program

may interact when they use the system library.

CHAPTER 4. INTERFERENCE POLICIES 158

2. In Section 4.3, we extend the core calculus FHRM to support the static and

dynamic checks enforced by the policy system. These extensions to FHRM

include run-time protection domains, existential protection domain types, and

dynamic error handling.

3. We describe an algorithm in Section 4.4 that uses an interference policy to

generate a translation of Harmlessaml system library function calls into FHRM

expressions. The resulting translation will enforce the static and dynamic

checks required by the interference policy during library function calls.

4. To test our interference policy mechanism on a system library, we perform a

case study in Section 4.5. We demonstrate that, in addition to many other

possibilities, interference policies can certainly be used to enforce the previous

chapter’s definition of “harmlessness” on a file i/o library. We formalize an

underlying noninterfering file i/o library in the core calculus, extending the

FHRM and FHRM2 syntax, operational semantics, and type system with a

idealized file system. We prove that the new core file system is type safe and

supports strong noninterference properties. We then show that we can define

an interference and resource policy for the source-level file i/o library that

defines a type safe translation to the noninterfering core-level file i/o library.

This allows us to prove that aspects that use the source-level file system are

harmless. In this manner, we show that, if the user so desires, interference

policies can be useful to enforce our previous definition of harmlessness on

system libraries. However, this should not be understood as providing a

general result that all interference policies enforce the harmlessness of advice.

Recall that in the general case, the purpose of interference policies is to allow

CHAPTER 4. INTERFERENCE POLICIES 159

(types) t ::= ... | infile P | outfile P | fname

(vals) v ::= ... | ′f′

(exprs) e ::= ... | openr P e | openw P e
| read e | write e

(main decl) d ::= ... | infile x = e | outfile x = e

Figure 4.1: File I/O Library in Harmlessaml

the user to enforce the level of “harmlessness” or “harmfulness” on advice

that they desire, not just to enforce the particular harmlessness result that we

defined in the previous chapter.

4.2 Policies

In this section, we introduce customizable interference and resource policies for

system libraries in aspect-oriented programs. These policies enforce static and

dynamic checks to determine how aspects and the main program may interact when

they use the system library.

4.2.1 Idealized File I/O Library in HarmlessAML

Before we describe an interference policy for a library, we will first define an idealized

file i/o library to be used as an ongoing example. Our source-level file i/o library,

whose syntax is displayed in Figure 4.1, is based on a simplified version of the file

i/o in Standard ML. First, filenames ’f’ are delineated with quote characters in the

syntax. The type system will mark them with the fname type. The corresponding

files can then be opened for reading or writing by passing the filename to the

CHAPTER 4. INTERFERENCE POLICIES 160

LOGGER : {

outfile outfd = openw LOG ’function_results.log’

advice after (| #f,g,h# |) (res, _, name) =

(write (outfd, ("leaving "^name^"=>"^int_to_string res^"\n")))

}

Figure 4.2: File I/O Logging Aspect

openr P e or openw P e library operations. The resulting input and output file

descriptors will be given types infile P and outfile P respectively.

The annotation P on the type of file descriptors describes the integrity level of

the file descriptor. Recall that integrity levels in Harmlessaml correspond to either

the mainline code MAIN or an aspect ASPECTi. Newly created descriptors

take on the annotation of the openr or openw command with which they were

created. For example, an input file descriptor that was created with a openr MAIN

command will have the type infile MAIN, while an output file descriptor that

was created with a openw LOGGER operation will have type infile LOGGER.

The read e operation reads as many characters as possible from an input file

descriptor and returns a string containing those characters. The Standard ML file

read operation takes an extra integer that specifies how many characters to read

from the file, but we have chosen to eliminate this option to make the operation

easier to formalize later. The write e operation is passed a tuple (e1, e2), writing

the string e2 to the output file descriptor e1. To simplify the formalization of

file writing, our write operation overwrites the file pointed to by the output file

descriptor. The more complex Standard ML file read and write operations could

be written as combinations of our simple read and write operations and string

manipulation functions.

CHAPTER 4. INTERFERENCE POLICIES 161

In Figure 4.2, we demonstrate a simple file i/o logging aspect. The second line

opens the ’functionresults.log’ file for writing and stores the resulting output

file descriptor in the outfd variable. The advice in the third and fourth lines writes

a log message to the file after the f, g, or h functions are run.

We can imagine several different interference policies that a user may wish to

enforce on our file i/o library. In the examples in Section 3.3.2 in the previous

chapter, we treated all i/o as harmless. We could create an interference policy for

the file i/o library that would similarly enforce no static or dynamic checks on the

library.

Another policy might result from recalling that in the previous chapter, we

enforced a strict separation between the main program and aspects to create clear

and simple translation rules, even when a slightly less restrictive policy would still

preserve harmlessness. For example, output file descriptors created by the main

program were placed in the MAIN protection domain, even though they could

have safely been placed in an aspect protection domain.

A less restrictive policy might loosen the separation to allow code to create

file descriptors with protection domains above and below the code, as long as the

resulting operations were harmless. This gives more flexibility to the programmer

but has the disadvantage of making the protection domain checks in the code more

difficult to understand. The resulting interference policy will still ensure that aspects

cannot interfere with the main program through the use of the file system. For

example, such a policy would prevent the main program from writing to output

file descriptors defined by an aspect, but allow the main program to read from

an aspect’s input file descriptors. Similarly, the user may determine that aspects

CHAPTER 4. INTERFERENCE POLICIES 162

(iotypes) it ::= iotype t
(dynamic checks) dyn ::= dynamic n | dynamic r P

| dynamic w P | dynamic rw P
(static checks) sta ::= static n | static r P

| static w Pp | static rw P
(operations) o ::= fun f : t ; t [sta] [dyn]
(policy) pol ::= it : {o};
(policy file polf ::= pol

Figure 4.3: Policy File Syntax

should be able to read from input file descriptors but not to write to output file

descriptors defined in the main program.

However, when we attempted to formalize the above policy (to be discussed in

Section 4.5), we discovered that the main program could not be allowed to write

to output file descriptors defined by an aspect. The act of looking up the file that

the output file descriptor is pointing to is a “read” from the file descriptor in our

formalization, even if the actual data in the file is not read. This is an artifact of how

we formalize file i/o. A similar issue in the previous chapter was encountered in the

formalization of the label store in Rule cet:jp. Therefore, to preserve harmlessness,

we disallow the main program from writing to output file descriptors defined by

aspects. We will use this modified policy as an example in the rest of this chapter.

4.2.2 Interference Policies

We allow the user to determine an interference policy, whose syntax is shown in

Figure 4.3, that specifies how the aspects and main program interact when they use

a library. That is, rather than having the language designer manually specify once

and for all how the protection domains in the types used by a library’s operations

will interact, we will allow this power to the user for their particular application

CHAPTER 4. INTERFERENCE POLICIES 163

requirements. In the following sections, we use a mutable reference library, defined

in the previous chapter, and the file i/o library, defined in Section 4.2.1, in our

examples in this section. They contains operations that both read and write from

state, albeit in different ways. The file i/o library, with its file descriptors and

underlying file system resource will provide a base to allow us to demonstrate the

full utility of our policies.

First, types used by library operations can be divided into three categories:

regular types, descriptor types, and resource types. Regular types, such as Unit,

Bool, or String, point to immutable values. Descriptor types represent a descriptor

created during program execution to point to some mutable data. Descriptor types

include reference types τ ref P, file descriptor types infile P and outfile P,

and network socket types. Descriptor types must be annotated with an integrity

level P that describes the integrity level of the value that they point to. Resource

types are assigned to values that are addresses into an underlying resource structure.

Resource types include filename types fname and network address types.

Three example interference policies are shown in Figure 4.4. The first two

sections of the figure contain example interference policies for a mutable reference

library. Recall that in the previous chapter, the static protection domain checks were

baked into Rules set:deref, set:asgn, and sdt:ref of the translation in Figures 3.29

and 3.32. The difference between the two policies is that the first policy enforces a

strict separation between the main program and aspects to create clear and simple

translation rules. For example, references created by the main program are placed in

the MAIN protection domain, even though they can safely be placed in an aspect

protection domain. The second interference policy loosens the syntactic separation

to allow code to create references with protection domains below the code, while still

CHAPTER 4. INTERFERENCE POLICIES 164

Strict Example Interference Policy for Reference Library

{ (* argtype ~> restype [statchecks] [dynchecks]*)

fun ref P : t ~> t ref P [static rw P] [dynamic n]

fun ! : t ref P ~> t [static r P] [dynamic n]

fun := : t ref P * t ~> unit [static w P] [dynamic n]

};

Loose Example Interference Policy for Reference Library

{ (* argtype ~> restype [statchecks] [dynchecks]*)

fun ref P : t ~> t ref P [static w P] [dynamic n]

fun ! : t ref P ~> t [static r P] [dynamic n]

fun := : t ref P * t ~> unit [static w P] [dynamic n]

};

Example Interference Policy for File I/O Library

fname : { (* argtype ~> restype [statchecks] [dynchecks]*)

fun read : infile P ~> string [static r P] [dynamic n]

fun write : (outfile P * string) ~> unit [static rw P] [dynamic n]

fun openr P : fname ~> infile P [static w P] [dynamic r P]

fun openw P : fname ~> outfile P [static w P] [dynamic w P]

};

Figure 4.4: Example Interference Policies

CHAPTER 4. INTERFERENCE POLICIES 165

preserving the harmlessness of advice. However, some of the separation between the

main program and aspects has been lost, making the program more confusing to

understand. Allowing the programmer to specify these trade-offs is an example of

the flexibility allowed by the interference policy system. The last section of the figure

contains an example interference policy for the file i/o library from Section 4.2.1.

Each interference policy first declares the resource type, if any, of the library.

Descriptor types do not need to be declared as they can be deduced from the

operation specifications in the rest of the policy. In the reference example policies,

the reference type ref is a descriptor type, not a resource type. In the file I/O

example policy, the resource type fname is declared at the start of the policy.

Each subsequent line in the policy consists of an operation, the argument and

result type of the operation, the static interference checks that will be placed on

that operation, and the dynamic interference checks that will be placed on that

operation. The example interference policies for mutable references will apply to

three operations: reference creation, dereference, and assignment. The example

interference policy for file i/o will apply to four operations, read, write, openr

and openw. Notice that in Figure 4.4, the ref, openr, and openw operations create

reference and file descriptors respectively and, as such, are marked with an integrity

level annotation, indicating the protection domain of the reference or file descriptor

they create. The descriptor types ref, infile, and outfile are similarly marked with an

integrity level annotation. As we will see in the next section, the static checks will

use these annotations to enforce an interference policy on the library operations.

CHAPTER 4. INTERFERENCE POLICIES 166

Interference Policies: Static Checks

In each line of a policy, static checks are listed first, followed by the dynamic checks.

Static checks enforce a policy on the descriptor types. To aid the programmer in

creating and understanding interference policies, we avoid requiring the user to

declare static checks in the form of potentially confusing explicit inequalities on

protection domains (` P1 ≤ P2), as was done in the “baked-in” checks of the

previous chapter.

Instead, we observed that the common use of static checks is in the framework

of a traditional “read-up, write-down” integrity policy. As such, our static checks

fall into four categories: none (n), read-up (r), write-down (w), and read/write

(rw). This classification reflects the observation that operations can either ignore

descriptors, read from descriptors, modify descriptors, or can both read and modify

descriptors. These categories are similar to the notion of nonvariance, covariance,

contravariance, and invariance in subtyping mechanisms.

An operation that does not refer to a descriptor does not require (n) a static

check. An operation that reads from a descriptor can be assigned a read-up

(static r P) static check, which enforces a “read-up” integrity policy that forbids

high integrity code from using the operation on a low integrity descriptor. For

example, the user may want to prevent the mainline program from reading from

the state of an aspect. The protection domain inequality that is generated by the

policy mechanism and checked during compilation is Pdesc ≤ Pcurr. Similarly, a

write-down (static w P) static check can be used to implement a “write-down”

integrity policy on operations that write to a descriptor in order to forbid low-

integrity code from using the operation on a high-integrity descriptor. The user

may wish to prevent an aspect from modifying the state of the mainline code. The

CHAPTER 4. INTERFERENCE POLICIES 167

corresponding protection domain inequality generated by the policy mechanism and

enforced during compilation is Pcurr ≤ Pdesc. Finally, a read/write (static rw P)

static check ensures that both Pdesc ≤ Pcurr and Pcurr ≤ Pdesc.

All of the static checks except none are annotated with an integrity level P.

These integrity level annotations on the static checks are matched with the integrity

level annotations in the argument and result types of the operation in the policy to

determine which descriptor the static checks will be enforced on. This matching

of annotations is trivial for our simple mutable reference and file i/o libraries,

which only manipulate one descriptor at a time. However, we found the complete

annotation matching mechanism useful when attempting to write an interference

policy for a complex network i/o library, where multiple annotations are necessary.

One of the network i/o operations listens to a passive network socket (with one

annotation) and then creates an active network socket (with a second annotation).

For our mutable reference library, the example policy in the top half of Figure 4.4

enforces the same definition of harmlessness as the “baked-in” checks in the trans-

lation of reference operations in the previous chapter. The reference assignment

operation modifies a descriptor and thus modify the state of the system. Therefore,

it is given a write static check. The reference dereference operation reads from

a descriptor and thus reads from the state of the system. Therefore, it is given

a read static check. Notice that in the first, more-restrictive policy, a read/write

static check is enforced on the reference creation operation to preserve a syntactic

separation between the main program and aspects. In the second, less-restrictive

policy, a write static check is used to preserve the harmlessness of advice while

allowing mainline code to use this mutable reference library to create references in

the protection domain of an aspect.

CHAPTER 4. INTERFERENCE POLICIES 168

For our file i/o library, the user may attempt to enforce the less restrictive policy

that we described in Section 4.2.1. This policy is displayed in the bottom half of

Figure 4.4. We must identify how each file system library operation will use its file

descriptors. The read operation will read from an input file descriptor and requires

a static r P check in the library policy, while the write operation will both read

(to determine what file the descriptor is pointing to) and write (the data to the

file) to the output file descriptor and requires a static rw P check in the library

policy. The openr and openw operations create (write) file descriptors and require

static w P checks in the file system library policy.

Once the static checks required by the file system library policy are in place, the

main program to read from input file descriptors and write to output file descriptors

belonging to the main program, but not to read from input file descriptors or write

to output file descriptors defined by an aspect. Less restrictively, aspects should be

able to read from input file descriptors but not to write to output file descriptors

defined in the main program. This is the read-up, write-down integrity policy that

our example user attempted to enforce.

Interference Policies: Dynamic Checks

Static checks can be used to protect integrity when reading from and writing to

an existing descriptor, and are enough to enforce a full interference policy on our

mutable reference library. However, static checks are not enough when creating a

descriptor that points to an underlying i/o resource. In our example policy for the

file i/o library, static checks are used to ensure that, if the main program has a file

open for writing, that same file descriptor cannot then be used by an aspect to write

to the file. However, static checks cannot prevent the following scenario: an aspect

CHAPTER 4. INTERFERENCE POLICIES 169

opens a file and writing to the resulting file descriptor; then, the main program

opens that same file and reads from its resulting file descriptor. In this situation,

the static checks on file descriptors required by our example file i/o interference

policy have not been violated, but the aspect has interfered with the behavior of

the main program.

To protect against such manipulation of the underlying resource, a user can re-

quire that the interference policy enforce checks on the use of resource types. Recall

that resource types are assigned to values that are addresses into an underlying

resource structure. The filename type fname is a resource type, as is a network

address type. These checks on the use of resource types cannot occur at compile

time, because a static check cannot determine the particular resource that will be

used.

Instead, we use a system of dynamic checks. First, the underlying resource

is segmented using a resource policy into regions belonging to the main program

and regions belonging to particular aspects. This has the effect of associating an

integrity level at run time with each resource. This resource policy system will be

described fully in the next section.

Next, the dynamic checks in the interference policy can be placed on operations

that create a descriptor by accessing an underlying resource. They describe the

relationship between the integrity level associated with the accessed resource (de-

scribed by the resource policy) and the integrity level associated with the created

descriptor. Like static checks, dynamic checks are divided into the same four

categories: none, read-up, write-down, and read/write. All of the dynamic checks

except none are annotated with the integrity level of the descriptor that the resource

will be dynamically checked against. If no underlying resource is accessed to create

CHAPTER 4. INTERFERENCE POLICIES 170

a descriptor, then there will be no (dynamic n) dynamic checks. If the underlying

resource will be read by the created descriptor, then a read-up (dynamic r P)

dynamic check can be used. If the underlying resource will be written by the

created descriptor, then a write-down (dynamic w P) dynamic check can be used.

Finally, if the underlying resource is opened for reading and writing by the created

descriptor, then a read/write (dynamic rw P) dynamic check can be enforced by

the interference policy.

In our example interference policy for a file i/o library in Figure 4.4, the read

and write operations do not require dynamic checks (dynamic n) as they do not

manipulate filenames. As such, static checks will be enough to ensure that their

use of file descriptors does not cause aspects to interfere with the main program.

However, we have inserted dynamic checks on the openr and openw operations to

ensure that the files they open are not in a region of the file system that would

cause interference if read or modified. The openr operation has a dynamic read

check (dynamic r P) that ensures that the high-integrity main program will not

be able to open a file belonging to an aspect’s region of the file system. Similarly,

the openw operation has a dynamic write check (static w P) that ensures that

low-integrity aspects cannot open a file that belongs to the main program’s region

of the file system.

When a dynamic check fails, there are many possible actions that may be

desired. The most restrictive option, and that chosen for the proof-of-concept

Standard ML implementation of the interference policy mechanism, is to enforce

the interference policy at all times. Upon failing a dynamic check, the program

immediately terminates and a warning message is printed to the screen. Another

option inspired by web browser design would be to inform the user through a pop-up

CHAPTER 4. INTERFERENCE POLICIES 171

segment sourceCodeSpecifier {
region regionType1 regionSpecifier1 regionIntegrityLevel1;
region regionType2 regionSpecifier2 regionIntegrityLevel2;
...

};
...

Figure 4.5: Syntax of Resource Policies

message that the program has violated a dynamic check. The user could then choose

to temporarily override their interference policy and continue program execution,

or could choose to terminate the program.

4.2.3 Resource Policies

As described in the previous section, the dynamic checks specified in an interference

policy require the underlying resource to be segmented into regions corresponding to

different integrity levels. This mapping of regions to integrity levels is specified using

a resource policy file. Loosely modeled on the policy specification files of the Java

security mechanism, the resource policy specification can be found in Figure 4.5.

A resource policy consists of a set of segment declarations, each of which specify a

segment of source code and the resource segmentation that applied to programs in

that source code. Region segmentation is specified by the name of the region type

to be segmented, a region specifier (in a different format for each region type) that

defines the segment of the underlying resource, and the integrity level of the region.

In the specification, the sourceCodeSpecifier selects the source code to which the

region segmentation applies. In Java policy files, the policy file writer is allowed to

select code by specifying a codebase (where the code is located in the file system),

a signer (the key that has cryptographically signed the code), and a principal

CHAPTER 4. INTERFERENCE POLICIES 172

segment codebase "code/-" {

region fname "home/-", "MAIN";

region fname "logfile/-", "LOG";

};

Figure 4.6: Example Resource Policy for a File System

(the entity that is executing the code). For the purposes of our resource policies,

we have chosen to allow only the codebase specifier in resource policies.

When a dynamic check specified by the interference policy is run, the region

(and corresponding integrity level) is determined by extracting the segment block

that corresponds to the location of the running program. Then, the first region line

that applies to the resource is located, and the integrity level of the region returned

to be used in the dynamic check. In a region line, the resourceType specifies the

resource type that the region belongs to. The regionSpecifies defines the region and

is specific to the particular resource type–a file system path for a file i/o library or

a URL for a network i/o library. Finally, the resourceIntegrityLevel specifies the

integrity level that the region is mapped to by the resource policy.

Figure 4.6 presents an example resource policy for the file i/o library presented in

Section 4.2.1. Recall that the codebase specifies to which source language programs

this resource policy applies. In this example policy, a source language program that

exists in the “code/” directory will have the specified resource policy.

Next, recall that the lines marked “region” associate a region of the file system

with a particular integrity level. In this example policy, the “home/” directory is as-

sociated with the mainline program, MAIN. The “logfile/” directory is associated

with the logging aspect, LOG.

CHAPTER 4. INTERFERENCE POLICIES 173

Again, taking the mainline program as the highest-integrity code, aspects as

lower integrity code, we continue to enforce a read-up, write-down integrity policy

on opening files for reading and writing. Files in the “home/” directory can be

opened for reading but not for writing by aspects. Files in the “logfiles/” directory

can be opened for writing but not reading by the mainline program. Finally, files

in the “config/” directory can be opened for reading but not writing by both the

mainline program and aspects.

Finally, we have provided functions in our implementation that allow a user to

add new region types to the resource policy parsing and analysis mechanism. The

user must specify the name of the region type (used in region policy file parsing),

an addRegion function of type String × String → region that parses the region

specifier and integrity level from the policy file and returns the resulting region,

and an insideRegion function of type region × region → integrityLevel option.

The insideRegion function takes in a region that represents a resource used in a

dynamic check and a region specified by the resource policy file and a region that

represents a resource used in a dynamic check and, if the first is inside the second,

returns the resulting integrity level that the region is mapped to.

Accordingly, when we added a file i/o region type to our implementation, we

specified the name FileRegion and an addFileRegion function which parses the file

paths in the regionSpecifier into an internal representation. Finally, we specified an

insideFileRegion function which takes a filename specified during a dynamic check

and tests to see whether the file is inside a file system region specified in the resource

policy. If so, it returns the integrity level mapped to that file system region.

CHAPTER 4. INTERFERENCE POLICIES 174

4.3 Core Calculus: Extensions to FHRM

As stated earlier, we define our language at two levels of abstraction: a user-friendly,

high-level source language for programmers and a lower-level core calculus. This

core calculus consists of a collection of simple, orthogonal constructs amenable to

formal analysis. We will now introduce the new core calculus features required

implement the interference policy mechanism: run-time protection domains, pro-

tection domain existentials, and error handling. The first two features are inspired

by Tse and Zdancewic’s design of run-time principals for information flow type

systems [50].

4.3.1 Run-time Protection Domains

Figure 4.7 presents the semantics of run-time protection domains. For every static

protection domain P, there exists a corresponding value P. When an interference

policy requires a dynamic check on a library operation, the resource policy file is

queried to determine what region and thus integrity level the resource in question

belongs to. This resource policy query returns a value P that represents the protec-

tion domain P. The run-time protection domain P is given the singleton type SP

in Rule cvt:sing.

Run-time decisions concerning protection domain P can be made by querying P.

Run-time protection domains created during program evaluation can be compared

with one another with an ifpd expression. The operational semantics for the

comparison can be seen in Rules ceb:ifpdthen and ceb:ifpdelse. The expression

ifpd(P ≤ P′) then e1 else e2 evaluates to e1 if the protection domain P is below

or equal to the protection domain P′ in the static protection domain lattice L.

CHAPTER 4. INTERFERENCE POLICIES 175

Extension to FHRM Syntax

(types) τ ::= ... | Sp

(values) v ::= ... | P
(expressions) e ::= ... | ifpd(e ≤ e) then e else e
(lattice envs) Π ::= L | Π, p ≤ p′

Well-formed Values ∆; Π; Γ ` v : τ

∆; Π; Γ ` P : SP

cvt:sing

Well-formed Expressions ∆; Π; Γ; p ` e : τ

∆; Π; Γ; p ` e1 : Sp′

∆; Π; Γ; p ` e2 : Sp′′ ∆; Π, p′ ≤ p′′; Γ; p ` e3 : τ ∆; Π; Γ; p ` e4 : τ

∆; Π; Γ; p ` ifpd(e1 ≤ e2) then e3 else e4 : τ
cet:ifpd

β-reduction (Σ; A;P, e) 7−→β (Σ′; A′;P; e′)

L ` P′ ≤ P′′

(Σ; A;P; ifpd(P′ ≤ P′′) then e1 else e2) 7−→β (Σ; A;P; e1)
ceb:ifpdthen

L ` P′ 6≤ P′′

(Σ; A;P; ifpd(P′ ≤ P′′) then e1 else e2) 7−→β (Σ; A;P; e2)
ceb:ifpdelse

Protection Domain Inequality Π ` p ≤ p′

Π ` p ≤ p
clatt:symm

(p ≤ p′′) ∈ Π Π ` p′′ ≤ p′ p 6= p′

Π ` p ≤ p′ clatt:trans

Figure 4.7: Run-time Protection Domains Extension to FHRM

CHAPTER 4. INTERFERENCE POLICIES 176

As before, the protection domain lattice, L = (P,≤), contains a list of concrete

protection domains, and a partial order on them. With the addition of ifpd

expressions, that hierarchy must be updated at run time to reflect the assumptions

made while typing the “true” branch of the expression. As seen in typing rule cet:ifpd

of Figure 4.7, the then branch of an ifpd(P ≤ P′) then e1 else e2 expression adds

the assumption P ≤ P′ to the protection domain lattice. Therefore, the typing

judgments for values and expressions include a protection domain hierarchy envi-

ronment, Π, which contains the partial-order of protection domains. The initial

environment of Π (before any ifpd assumptions are added) is the original static

protection domain lattice L.

Rules clatt:symm and clatt:trans determine whether one protection domain is

below another in this new protection domain hierarchy. Rule clatt:symm says that

the resulting hierarchy is symmetric. Rule clatt:trans show that if there is a path

from protection domain p to p′ in the hierarchy Π, then Π ` p ≤ p′.

4.3.2 Existential Protection Domain Types

Figure 4.8 presents the semantics of protection domain existentials. As stated above,

during evaluation, when the resource policy file is queried as required by a dynamic

check of the interference policy, a run-time protection domain P with singleton

type SP is created. However, until that moment, it cannot be determined what

protection domain is to be returned. Since the type of a run-time protection domain

P includes the protection domain P, we cannot determine at compilation time what

the type of the value returned by the resource policy query will be. Therefore,

the resource policy queries must return a run-time protection domain for some

protection domain.

CHAPTER 4. INTERFERENCE POLICIES 177

Extension to FHRM Syntax

(prot doms) p ::= ρ | P
(types) τ ::= ... | ∃ρ.τ
(values) v ::= ... | pack(p, v) as ∃ρ.τ
(exprs) e ::= ... | pack(p, e) as ∃ρ.τ | open(ρ, x) = e in e
(pdv env) ∆ ::= . | ∆, ρ

Well-formed Values ∆; Π; Γ ` v : τ

∆ ` p ∆; Π; Γ ` v : τ [p/ρ]

∆; Π; Γ ` pack(p, v) as ∃ρ.τ : ∃ρ.τ
cvt:pack

Well-formed Expressions∆; Π; Γ; p ` e : τ

∆ ` p′ ∆; Π; Γ; p ` v : τ [p′/ρ] e is not a value

∆; Π; Γ; p ` pack(p′, e) as ∃ρ.τ : ∃ρ.τ
cet:pack

∆; Π; Γ; p ` e1 : ∃ρ.τ1

∆, ρ; Π; Γ, x : τ1; p ` e2 : τ2 τ2 does not contain ρ

∆; Π; Γ; p ` open(ρ, x) = e1 in e2 : τ2

cet:open

β-reduction (Σ; A;P, e) 7−→β (Σ′; A′;P; e′)

(Σ; A;P;open(ρ, x) = (pack(P′, v) as ∃ρ.τ) in e) 7−→β

(Σ; A;P; e[P′/ρ][v/x])

ceb:o

Well-formed Protection Domains ∆ ` p

ρ ∈ ∆

∆ ` ρ
cpd:var

∆ ` P
cpd:conc

Figure 4.8: Existential Protection Domain Types Extension to FHRM

CHAPTER 4. INTERFERENCE POLICIES 178

To represent the idea of an expression that is well-typed for some protection

domain in the core calculus, we use existential types. The type, ∃ρ.τ , is assigned

to an expression that has the type τ for some protection domain ρ. In our example

above where τ is a singleton type, the type of the value returned by a resource

policy query is ∃ρ.Sρ.

Existentials are created with the pack expression, pack(p, v) as ∃ρ.τ . As seen

in Rule cvt:pack, this expression takes a value v of type τ [p/ρ] and wraps it into an

existential of type ∃ρ.τ .

To unwrap an existential, the open expression, open(ρ, x) = e1 in e2, is used.

This expression unwraps an existential e1 of type ∃ρ.τ1 into a protection domain

p and a value v. As seen in evaluation rule ceb:open, the unwrapped protection

domain p is substituted for ρ, and the unwrapped value v is substituted for x in

e2. Typing rule cet:open describes the typing of the open expression—notice that

ρ is only bound inside e2 and cannot escape as a free variable into the rest of the

program.

With the introduction of existentials, protection domains, p, can be either

concrete protection domains, P, or protection domain variables, ρ. Therefore,

we have to account for the presence of protection domain variables in protection

domains, types, and environments. The protection domain variable environment,

∆, contains the bound protection variables. Rules cpd:var and cpd:conc demonstrate

that protection domains are well-formed if they are a concrete protection domain,

P, or if they are a protection domain variable ρ bound in ∆. Rule ct:t shows that

for a type to be well-formed in the presence of a context ∆, all of the protection

domains in the type must be well-formed. Rule cg:g states that, for a context Γ to

be well-formed, all of the types in the context must be well-formed. Rule camt:amt

CHAPTER 4. INTERFERENCE POLICIES 179

Extension to FHRM Syntax

(exprs) e ::= ... | abortτ

Well-formed Expressions ∆; Π; Γ; p ` e : τ

∆ ` τ

∆; Π; Γ; p ` abortτ : τ
cet:abort

β-reduction (Σ; A;P, e) 7−→β (Σ′; A′;P; e′)

(Σ; A;P; abortτ) 7−→β (Σ; A;P; abortτ)
ceb:abort

Figure 4.9: Error Handling Extension to FHRM

demonstrates the rules for well-formedness of the store S that contains the input and

output file descriptors. Finally, Rule camt:nms shows well-formed machine states,

and is used to later type safety theorems.

They are not shown here to avoid needless repetition, but many core calculus

typing rules in Section 3.2.2 have been trivially updated as necessary to reflect

the addition of protection domain variables. For example, the function abstraction

typing rule now includes a ∆ ` p in its premises to ensure that the protection

domain annotation on the function is well-formed.

4.3.3 Error Handling

The abort expression was not formalized in the previous core calculus because it

was not generated by the translation from source to core and thus not used in

the Translation Type Soundness proof. However, the dynamic checks generated by

interference policies will insert core calculus abort expressions. As such, to prove

CHAPTER 4. INTERFERENCE POLICIES 180

Source Language

Core Calculus

Translation of system library operations
enforces desired level of harmlessness

using static and dynamic checks

Resource Policy
Interference Policy

Figure 4.10: Interference Policy Compilation Strategy

a Translation Type Soundness proof in Section 4.5, we formalize the static and

operational semantics of abort expressions in Figure 4.9.

The typing rule cet:abort assigns to the abort expression the type that the

expression is annotated with. The evaluation rule ceb:abort simulates aborting by

looping endlessly. In our actual Standard ML implementation, the abort primitive

terminates the program with an error message. We can also envision less restrictive

implementations that would simply warn the user or allow the user to choose

whether to continue or not.

4.4 Translation from HarmlessAML to FHRM2 Gen-

erated by Interference Policies

The compilation strategy for harmless advice with interference policies is displayed

in Figure 4.10. As before, source language programs are translated into core calculus

expressions. However, the translation rules now depend on the interference policy

and the resource policy.

CHAPTER 4. INTERFERENCE POLICIES 181

Source Grammar Requirements

addrval ∈ Resource Addresses
(types) t ::= ... | addrtyp | desctypP

(vals) v ::= ... | addrval
(exprs) e ::= ... | librfun1P e | librfun2 e

Core Calculus Requirements

addrval ∈ Resource Addresses descval ∈ Resource Descriptors
(types) τ ::= ... | addrtypp | desctypp

(values) v ::= ... | addrval | descval
(exprs) e ::= ... | librfun1P e | librfun2P e
(store) Σ ::= ... | Σ, descval → (v,P)
(resource) IO ::= . | IO, addrval → (v,P)
(mach sta) M ::= (S; A; IO;P; e)
(var env) Γ ::= ... | Γ, addrval : addrtypp | Γ, descval : desctypp

Figure 4.11: Requirements when Adding a Library to Source and Core Grammars

System Library Assumptions

Figure 4.11 demonstrates the requirements we assume are true when new libraries

are added to the language. The top half of the figure describes the source language

grammar, while the bottom half describes the core calculus grammar.

We will first talk about the source language. Addresses addrval are a collection

of new constants that refer to an underlying resource, like a file system, and are

associated with resource types addrtyp. We also require that the library creator

define any necessary descriptor types with integrity level annotations. No constants

of descriptor type should be added as they are not manipulated directly in the

source language. Finally, we require that any library functions librfun1 that create

descriptors be annotated with the protection domain that the newly created resource

CHAPTER 4. INTERFERENCE POLICIES 182

descriptors will have. Library functions librfun2 that do not create descriptor require

no such annotation.

Now we describe adding a library to the core calculus. In the core calculus, the

resource type addrtyp has a protection domain annotation, because, where address

values are used, the resource policy has been used to determine in which integrity

level an address exists. The store Σ has been expanded to include descriptors, which

are mapped to a value and the protection domain of the descriptor. For a mutable

state library, the value in the store can be the contents of the reference. For a file

i/o library, the value can be the name of the file that the descriptor points to.

Finally, we assume that any underlying resource, such as a file system, will

be modeled in the core calculus as a store IO that maps address values to pairs

(P, addrval). The core calculus value v is the contents of the resource at that

address. The resource policy determines the protection domain P to which the

address belongs. Note that though the resource store contains both the contents

and the protection domain of an address, only the protection domain will be used

by the translation algorithm. The contents, which are core calculus values, are only

examined during core calculus execution.

From Interference Policy to Translation Rules

Figure 4.12 shows the new translation algorithm. First, any regular types, de-

scriptor types, or descriptor values introduced by the library are translated in a

straightforward way into their core language equivalents with no influence from the

interference policy.

Next, the first two rules translate resource addresses and their associated re-

source types. A resource address addrval is translated in Rule pvt:io into a packed

CHAPTER 4. INTERFERENCE POLICIES 183

Generated Type Translation ` t
typ
=⇒ t

iotype addrtyp ∈ pol

` addrtyp
typ
=⇒ ∃r.Sρ × addrtypP

ptt:io

Generated Value Translation Φ; Γ ` v : t
val
=⇒ v′

IO(addrval) = (,P) iotype addrtyp ∈ pol

Φ; Γ ` addrval : addrtyp
val
=⇒ pack(P, (P, addrval)) as ∃ρ.Sρ × addrtypρ

pvt:io

Generated Expression Translation Φ; Γ ` e : t
exp
=⇒ e′

fun f : t1 ; t2 [sta] [dyn] ∈ pol Φ; Γ;Pcurr ` e : t1
exp
=⇒ e′

ST A(sta) SPLIT (t1) = (, NONE) SPLIT (t2) = (, NONE)

Φ; Γ;Pcurr ` f e : t2
exp
=⇒ f e′

pet:none

fun f : t1 ; t2 [sta] [dyn] ∈ pol

Φ; Γ;Pcurr ` e : t1
exp
=⇒ e′ ` t1

typ
=⇒ τ1 ` t2

typ
=⇒ τ2 ST A(sta)

SPLIT (t1) = (argvars, SOME argvar) SPLIT (t2) = (, NONE)

Φ; Γ;Pcurr ` f e : t2
exp
=⇒

let argvars = e′ in
open (ρ, temp) = arg in
let (xio, arg) = temp in
DYN (dyn, f argvars, abortt′2

)

pet:arg

fun f : t1 ; t2 [sta] [dyn] ∈ pol

Φ; Γ;Pcurr ` e : t1
exp
=⇒ e′ ` t1

typ
=⇒ τ1 ` t2

typ
=⇒ τ2 ST A(sta)

SPLIT (t1) = (, NONE) SPLIT (t2) = (argvars, SOME argvar)

Φ; Γ;Pcurr ` f e : t2
exp
=⇒

let argvars = (f e′) in
open (ρ, temp) = arg in
let (xio, arg) = temp in
DYN (dyn, argvars, abortt′2

)

pet:res

Figure 4.12: Algorithm from Interference Policy to Translation Rules

CHAPTER 4. INTERFERENCE POLICIES 184

pair with a run-time protection domains P, representing the result of a resource

policy query on the IO store, and the actual core calculus address addrval. This

existentially-wrapped value will be unwrapped at run time when the address is to

be used by a descriptor creation operation. The run-time protection domain will be

then be used in any dynamic checks required by the integrity policy.

Next, we translate library function calls in the last three rules. We will first

discuss dynamic checks. There are three cases, determined by the result of the

SPLIT function in Figure 4.13. The SPLIT function determines if a type is a

resource type, or, if that type is a tuple, whether the resource type is included

in that tuple. We can imagine a more complex analysis to find resource types

within non-tuple complex types, but no libraries that we have examined required

such complexity. Note that SPLIT ′ function is a helper function for the SPLIT

function. In Rule pet:none, no resource types are in the argument type t1 nor the

result type t2 of the library function; therefore, no dynamic checks are necessary.

In Rule pet:arg, there is a resource type in the argument type of the library

function, while in Rule pet:res, there is a resource type in the result type of the

library function. As described previously, resource address values are translated into

a packed pair contained the run-time protection domain (symbolized the integrity

level of the address as specified by the resource policy) and the core calculus address.

In these two translation rules, the existential is first opened. Then then any dynamic

checks specified by the interference policy are created by the DYN function. The

DYN function, specified in Figure 4.13, uses ifpd expressions on the run-time

protection domain of the address to enforce the required dynamic checks.

We have not generalized the algorithm for a case when a resource type appears

in both the argument and result of a library function. We have not found any such

CHAPTER 4. INTERFERENCE POLICIES 185

ST A(dir)

ST A(dir, static n) = ST A(dir)

ST A(dir, static r Pdesc) = ST A(dir);L ` Pcurr ≤ Pdesc

ST A(dir, static w Pdesc) = ST A(dir);L ` Pcurr ≤ Pdesc

ST A(dir, static rw Pdesc) = ST A(dir);L ` Pcurr ≤ Pdesc;L ` Pcurr ≤ Pdesc

DYN (dir, e1, e2)

DYN (dynamic n, e1,) = e1

DYN (dynamic r Pdesc, e1, e2) = ifpd(Pdesc ≤ xio) then e1 else e2

DYN (dynamic w Pdesc, e1, e2) = ifpd(xio ≤ Pdesc) then e1 else e2

DYN (dynamic rw Pdesc, e1, e2) = ifpd(Pdesc ≤ xio) then
(ifpd(xio ≤ Pdesc) then e1 else e2) else e2

SPLIT ′(t)

SPLIT ′(SOME arg :: argopt) = SOME arg
SPLIT ′(NONE :: argopt) = SPLIT ′(argopt)

SPLIT ′(.) = NONE

SPLIT (t)

SPLIT (t1 × ...× tn) = let (argvars, argopt) = SPLIT (t〉)
in (argvars,SPLIT ′(argopt))

SPLIT (t) = (arg, SOMEarg) if iotype t ∈ pol
SPLIT (t) = (arg, NONE) if iotype t /∈ pol

Figure 4.13: Helper Functions for Algorithm from Interference Policy to Translation
Rules

CHAPTER 4. INTERFERENCE POLICIES 186

“Baked-in” Translation Rules from Previous Chapter

Φ; Γ; p ` e1 : τ
exp
=⇒ e′1 P ; Γ, x : τ refp; p ` as; asps; e2 : τ ′ dec

=⇒ e′2

Φ; Γ; p ` ref x = e1 as; asps; e2 : τ ′ dec
=⇒ let x = refp e′1 in e′2

sdt:ref

Φ; Γ; p ` e : τ refp′
exp
=⇒ e′ ` p ≤ p′

Φ; Γ; p ` !e : τ
exp
=⇒!e′

set:deref

Φ; Γ; p ` e1 : τ refp′
exp
=⇒ e′1 Φ; Γ; p ` e2 : τ

exp
=⇒ e′2 ` p′ ≤ p

Φ; Γ; p ` e1:=e2 : 1
exp
=⇒ e′1 := e′2

set:asgn

Expression Translation Generated by Algorithm

Φ; Γ;Pcurr ` e : τ
exp
=⇒ e′ ` Pdesc ≤ Pcurr

Φ; Γ;Pcurr ` ref Pdesc e : τ refPdesc

exp
=⇒ refPdesc

e′
pet:ref

Φ; Γ;Pcurr ` e : τ refPdesc

exp
=⇒ e′ ` Pcurr ≤ Pdesc

Φ; Γ;Pcurr ` !e : t
exp
=⇒!e′

pet:deref

Φ; Γ;Pcurr ` e : τ refPdesc
× τ

exp
=⇒ e′ ` Pdesc ≤ Pcurr

Φ; Γ;Pcurr ` := e : 1
exp
=⇒:= e′

pet:asgn

Figure 4.14: Translation Rules Generated by Interference Policy for Reference
Library

functions in the example libraries we have studied, and believe it would needlessly

complicate our algorithm to include this case.

Finally, any static checks specified by the interference policy are created by the

ST A function. The ST A function, specified in Figure 4.13, enforces the specified

none (n), read-up (r), write-down (w), and read/write (rw) policies with the relevant

protection domain lattice order judgments. Notice that several static checks can be

enforced on a library function by a policy.

CHAPTER 4. INTERFERENCE POLICIES 187

An example of using the algorithm in Figures 4.12 and 4.13 to create translation

rules from an interference policy is shown in Figure 4.4. The top half of the figure

displays the “baked-in” static checks for reference operations from the previous

chapter. The bottom half of the figure contains the translation rules for a mutable

reference library that were generated by running the algorithm on the example

interference policy for mutable references in Figure 4.4. The static checks generated

by the algorithm in Rules pet:deref and pet:asgn correspond to the “baked-in” static

checks in Rules set:deref and set:asgn from the previous chapter. That is because

the interference policy matches the “baked-in” harmless operations for reference

assignment and dereference.

However, notice that the static checks generated by the algorithm in Rule pet:ref

does not match the “baked-in” static check in Rule sdt:ref from the previous chapter.

Recall that in the previous chapter, to preserve syntactic separation between the

main program and aspects, created references were given the protection domain that

they were created in. Mutable references created by the main program were placed in

the MAIN protection domain, while references created by an aspect ASPECT were

placed in the ASPECT protection domain. In contrast, in the example interference

policy in Figure 4.4, we decided to allow a less restrictive policy that should still

preserve harmlessness. The result of this less restrictive interference policy is that

mainline code can use this mutable reference library to create references in the

protection domain of an aspect. However, some of the separation between the

main program and aspects has been lost, making the program more confusing to

understand. Allowing the programmer to specify these trade-offs is an example of

the flexibility allowed by the interference policy system.

CHAPTER 4. INTERFERENCE POLICIES 188

The mutable reference library does not require a policy with resource types,

resource policies, or dynamic checks. As such, it uses only the simplest features

of the translation generation algorithm. In the next section, we shall more fully

explore a case study of the file i/o library to demonstrate these advanced policy

features.

4.5 Case Study of File I/O

We now provide a case study to demonstrate the usefulness of our interference policy

system. We first add an idealized file i/o system library to the source language, and

we design a corresponding interference policy for the library and resource policy

for the underlying file system. We then show that the translation created by the

interference policy is type-safe with reference to hand-coded, non-interfering core

calculus file i/o operations (with baked-in protection domain checks). We will prove

that a well-typed source program (with its general interference policy) translates to

a well-typed core calculus expression (with its baked-in policy). The interference

policy thus enforces “harmlessness” on advice that uses our source language file i/o

library.

In this manner, we show that, if the user so desires, interference policies can

be useful to enforce our previous definition of harmlessness on system libraries.

However, this should not be understood as providing a general result that all

interference policies enforce the harmlessness of advice. Recall that in the general

case, the purpose of interference policies is to allow the user to enforce the levels of

“harmlessness” or “harmfulness” on advice that they desire, not just to enforce the

particular harmlessness result that we defined in the previous chapter.

CHAPTER 4. INTERFERENCE POLICIES 189

(types) t ::= ... | infile P | outfile P | fname

(vals) v ::= ... | ′f′

(exprs) e ::= ... | openr P e | openw P e
| read e | write e

(main decl) d ::= ... | infile x = e | outfile x = e

Figure 4.15: Idealized File I/O Library in Harmlessaml

fname : { (* argtype ~> restype [statchecks] [dynchecks]*)

fun read : infile P ~> string [static r P] [dynamic n]

fun write:(outfile P * string) ~> unit [static rw P] [dynamic n]

fun openr P : fname ~> infile P [static w P] [dynamic r P]

fun openw P : fname ~> outfile P [static w P] [dynamic w P]

}

Figure 4.16: Example Interference Policy for Idealized File I/O Library

4.5.1 Idealized File I/O Library in HarmlessAML

We first reiterate our idealized file i/o library, previously used as an example in

Section 4.2.1 The syntax, displayed here in Figure 4.15, is based on a simplified

version of the file i/o in Standard ML. Our library follows the assumptions required

of system libraries described in Section 4.4. As before, filenames, ’f’ are given the

resource type fname type. The files that these filenames describe can be opened for

reading and writing with the openr P e and openw P e commands respectively. The

resulting input and output file descriptors are given descriptor types infile P and

outfile P. The read e expression reads from an input file descriptor, while the

write e expression receives a tuple containing an output file descriptor and a string

and writes the string to that output file descriptor

CHAPTER 4. INTERFERENCE POLICIES 190

i, o ∈ File Descriptors f ∈ Strings
(types) τ ::= ... | infilep | outfilep | fnamep

(values) v ::= ... | i | o | f
(exprs) e ::= ... | openrp e | read e

| openwp e | write e
(store) Σ ::= ... | Σ, i → (f,P) | Σ, o → (f,P)
(file sys) F ::= . | F, f → (s,P)
(mach sta) M ::= (Σ; A; F ;P; e)
(var env) Γ ::= ... | Γ, i : infilep | Γ, o : outfilep

| Γ, f : fnamep

Figure 4.17: Noninterfering Idealized File I/O Extension to FHRM Syntax

4.5.2 File I/O Interference Policy

We describe the interference policy for our file i/o library, first used as an example

policy in Section 4.2.2, and reiterated here as Figure 4.16. As before, we use static

checks to describe how each file system library operation will use its file descriptors.

The read and write operations do not require dynamic checks (dynamic n) as

they do not manipulate filenames. As such, static checks will be enough to ensure

that their use of file descriptors does not cause aspects to interfere with the main

program. However, we have inserted dynamic checks on the openr and openw

operations to ensure that the files they open are not in a region of the file system

that could cause interference.

4.5.3 Noninterfering Idealized File I/O Library in FHRM

To show that the interference policy for our file i/o library is versatile enough to

preserve a harmlessness property on the source language, we present hand-coded,

noninterfering core calculus file i/o operations. The syntax of this core calculus

library is presented in Figure 4.17. We represent the underlying file system resource

CHAPTER 4. INTERFERENCE POLICIES 191

β-reduction (Σ; A; F ;P, e) 7−→β (Σ′; A′; F ′;P; e′)

F (f) = (s, P ′′) L ` P′ ≤ P L ` P′ ≤ P′′

(Σ; A; F ;P;openrP′ f) 7−→β

(Σ, i → (f,P′); A; F ;P; i)

ceb:openr

Σ(i) = (f,P′) F (f) = (s,P′′) Π ` P ≤ P′ ≤ P′′

(Σ; A; F ;P; read i) 7−→β (Σ; A; F ;P; s)
ceb:read

F (f) = (s,P′′) L ` P′′ ≤ P′ ≤ P

(Σ; A; F ;P;openwP′ f) 7−→β

(Σ, o → (f,P′); A; F ;P; o)

ceb:openw

Σ(o) = (f, P) F (f) = (s′,P′) L ` P′ ≤ P

(Σ; A; F ;P;write (o, s)) 7−→β

(Σ; A; F, f → (s,P′);P; ())

ceb:write

Figure 4.18: Noninterfering Idealized File I/O Extensions to FHRM β-redex
Operational Semantics

in the core calculus as a file store F . An element of the file store, f → (s,P), maps

a filename f to a string s that represents the contents of the file and the protection

domain P in which the resource policy places the files. As a side note, we duplicate

the resource policy (in addition to the run-time protection domains created during

translating the source language to the core calculus) here in order to later verify that

the run-time protection domains are in fact enforcing the required noninterference

policy. We assume that all files that can and will be manipulated are represented

in the file store F .

As in the source language, the core calculus openr (and openw) expressions

create a input (or output) file descriptor that can be used to read a file. This file

descriptor is then placed in the store Σ. When reading from a input file descriptor,

the input file descriptor is used to look up the file contents in the file store F . When

CHAPTER 4. INTERFERENCE POLICIES 192

Well-formed Values ∆; Π; Γ ` v : τ

Γ(i) = infilep

∆; Π; Γ ` i : infilep

cvt:infd
Γ(i) = outfilep

∆; Π; Γ ` o : outfilep

cvt:outfd

Γ(f) = fnamep

∆; Π; Γ ` f : fnamep

cvt:fname

Well-formed Expressions ∆; Π; Γ; p ` e : τ

∆ ` p′ Π ` p′ ≤ p Π ` p′ ≤ p′′ ∆; Π; Γ; p ` e : fnamep′′

∆; Π; Γ; p ` openrp′ e : infilep′
cet:openr

Π ` p ≤ p′ ∆; Π; Γ; p ` e : infilep′

∆; Π; Γ; p ` read e : string
cet:read

∆ ` p′ ∆ ` p′′ ≤ p′ ≤ p ∆; Π; Γ; p ` e : fnamep′′

∆; Π; Γ; p ` openwp′ e : outfilep′
cet:openw

∆; Π; Γ; p ` e : outfilep × string

∆; Π; Γ; p ` write e : 1
cet:write

Figure 4.19: Noninterfering Idealized File I/O Extensions to FHRM Value and
Expression Typing Rules

writing a file, the output file descriptor is used to index the correct file in the store—

the contents of that file are then replaced by the new string. These operational

semantics are formalized in Rules ceb:openread and ceb:readfile (or ceb:openwrite

and ceb:writefile) in Figure 4.18.

We must hand-code the required protection domain checks into the core cal-

culus typing rules of the file i/o expressions. These typing rules are presented

in Figure 4.19. The first three rules describe the typing of input file descriptors,

output file descriptors, and filenames. The protection domain given to a fname

type is implicitly set by the resource policy when the initial environment Γ is

CHAPTER 4. INTERFERENCE POLICIES 193

Well-formed Contexts ∆ ` Γ

∀x, r, l, i, o, f ∈ dom(Γ).∆ ` Γ(x, r, l, i, o, f)

∆ ` Γ
cg:g

F ` Σ : Γ

dom(Γ) = dom(Σ) ∪ dom(F)
∀r ∈ dom(Σ) Σ(r) = (v,P) Γ(r) = τ refP Γ ` v : τ
∀l ∈ dom(Σ) Σ(l) = (t,P) Γ(r) = τ labelP . ` τ
∀i ∈ dom(Σ) Σ(i) = (f,P) Γ(i) = infileP

F (f) = (s,P′) L ` P ≤ P ′

∀o ∈ dom(Σ) Σ(o) = (f,P) Γ(o) = outfileP

F (f) = (s,P′) L ` P ′ ≤ P
∀f ∈ dom(F) F (f) = (s, P) Γ(f) = fnameP

F ` Σ : Γ
camt:amt

Well-formed Machine States ` (Σ; A; F ;P; e) ok

F ` Σ : Γ Γ ` A ok .;L; Γ;P ` e : τ for some τ

` (Σ; A; F ;P; e) ok
camt:nms

Figure 4.20: Noninterfering Idealized File I/O Extensions to FHRM Machine State
Well-formedness Rules

CHAPTER 4. INTERFERENCE POLICIES 194

(simul. fds) f 2 ::= f | <f|void> | <void|f>
(simul. files) s2 ::= s | <s|s>
(store) S ::= ... | S, i → (f 2,P) | S, o → (f 2,P)
(file store) F ::= · | F, f → (s2,P)

Figure 4.21: Noninterfering Idealized File I/O Extensions to FHRM2 Grammar

created in Rule camt:amt. Rules cet:openread and cet:readfile use protection domain

checks to enforce a “read-up” noninterference property. Similarly, cet:openwrite

and cet:writefile) enforce a “write-down” noninterference property. Rule camt:amt

in Figure 4.20 places the types of input file descriptors and output file descriptor

from store Σ into the initial environment Γ. As described earlier, the rule also

implicitly uses the resource policy to set the protection domain that annotated the

fname types for filenames in the file store F .

4.5.4 Proving FHRM File I/O Noninterference Theorem

We now prove a noninterference property for our core calculus file i/o library.

We use the now-familiar proof technique of defining a new calculus FHRM2 that

simulates the simultaneous execution of two FHRM . The FHRM2 grammar, described

in Figure 4.21, has two main additions. First, file descriptors i and o can now be

created in one of the simultaneously executing expressions. As such, file descriptors

point in the updated store Σ to a simultaneous filename f 2. If both simultaneously

executing expressions created the file descriptor, then f 2 will be a single filename

f . If the left (or right) expression created the file descriptor, then the descriptor

will point to <f|void> (or <void|f>) to indicate that situation. For example, if an

input file descriptor was defined only in the first of the two simultaneously executing

FHRM programs, LOW<openrLOW ‘temp.log′|()>, then the resulting store would

CHAPTER 4. INTERFERENCE POLICIES 195

contain o → 〈‘temp.log′|void〉. Note that we require that the same file descriptor

cannot be independently created in the left and right expressions. Therefore, we

can omit a potential <f1|f2> case for simultaneous filenames.

Similarly, the contents of the file store F are now represented by simultaneous

strings s2. If only the left (or right) expression changes the file store, then the

divided nature of the file is represented by <s1|s2>. Note that since all files that

can be used by a program are located in the file store F , we do not need to consider

the case where a file only exists in the left (or right) of the simultaneously executing

program. Therefore, we can omit the potential <s|void> and <void|s> cases.

Figures 4.5.4 and 4.5.4 describe how to construct an initial environment Γ from

a store Σ and a file store F . Notice that if the file descriptor (or file contents) have

been created (or changed) by a low-integrity expression, the protection domain that

annotates the file descriptor (or filename) type must be a low-protection domain.

The typing rules for the rest of the new FHRM2 features are described in Figure 4.5.4.

Figure 4.5.4 describes the operational semantics of the new FHRM2 features.

Mainly, creating file descriptors in a low-protection expression only changes the

relevant side of the store Σ. Similarly, reading and writing to a file in a low-

protection expression only reads or writes to the relevant side of the file store F .

We have defined the FHRM2 calculus—we now wish to prove that it correctly

simulates the simultaneous execution of two FHRM programs. Since the FHRM2

calculus of this chapter is an expansion of the calculus of the previous chapter, the

following is an expansion of the proofs in the previous chapter.

CHAPTER 4. INTERFERENCE POLICIES 196

Well-formed Input File Descriptions `2 (f,P)
i

=⇒ infileP

F (f) = (s2,P′) L ` P ≤ P′

`2 (f,P)
i

=⇒ infileP

c2st:infile

F (f) = (s2,P′) L ` P ≤ P′ P ∈ L

`2 (<f|void>,P)
i

=⇒ infileP

c2st:infile1

F (f) = (s2,P′) L ` P ≤ P′ P ∈ L

`2 (<void|f>,P)
i

=⇒ infileP

c2st:infile2

Well-formed Output File Descriptors `2 (f,P)
o

=⇒ outfileP

F (f) = (s2,P′) L ` P′ ≤ P

`2 (f,P)
o

=⇒ outfileP

c2st:outfile

F (f) = (s2,P′) L ` P′ ≤ P P ∈ L

`2 (<f|void>,P)
i

=⇒ outfileP

c2st:outfile1

F (f) = (s2,P′) L ` P′ ≤ P P ∈ L

`2 (<void|f>,P)
i

=⇒ outfileP

c2st:outfile2

Well-formed Filenames `2 (s,P)
f

=⇒ fnameP

`2 (s,P)
f

=⇒ fnameP

c2ft:fname
P ∈ L

`2 (<s1|s2>,P)
f

=⇒ fnameP

c2ft:fname12

Figure 4.22: FHRM2 Extensions to Store Typing Rules

CHAPTER 4. INTERFERENCE POLICIES 197

Well-formed Stores F `2 Σ : Γ

dom(Γ) = dom(Σ) ∪ dom(F)

∀r ∈ dom(Σ). Γ `2 Σ(r)
r

=⇒ Γ(r) ∀l ∈ dom(Σ). Γ `2 Σ(l)
l

=⇒ Γ(l)

∀i ∈ dom(Σ). Γ `2 Σ(i)
i

=⇒ Γ(i) ∀o ∈ dom(Σ). Γ `2 Σ(o)
o

=⇒ Γ(o)

∀f ∈ dom(F). Γ `2 F (f)
f

=⇒ Γ(f)

F `2 Σ : Γ
c2sft

Figure 4.23: FHRM2 Extensions to Store Typing Rules

Well-formed Expressions Π; Γ; p `2 e : τ

Γ; p′ `2 e1 : 1 Γ; p′ `2 e2 : 1 p ∈ H p′ ∈ L `2 p′ ≤ p

Γ; p `2 p′<e1|e2> : 1
c2et:highlow

Well-formed Machine States `2 (Σ; A; F ;P; e)i ok

F `2 Σ : Γ Γ `2 A ok .;L; Γ;P `2 e : τ for some τ
i ∈ {0} ⇒ P ∈ H i ∈ {1, 2} ⇒ P ∈ L

`2 (Σ; A; F ;P; e)i ok
c2amt:nms

Figure 4.24: Idealized File I/O Extensions to FHRM2 Typing Rules

CHAPTER 4. INTERFERENCE POLICIES 198

β-reduction (Σ; A; F ;P, e) 7−→2,β (Σ′; A′; F ′;P; e′)

F (f) = (s, P ′′) L `2 P′ ≤ P L `2 P′ ≤ P′′

(Σ; A; F ;P;openrP′ f)i 7−→2,β

(Σ, i → (newi f,P′); A; F ;P; i)i

c2eb:openr

Σ(i) = (f 2,P′)
f = readi f 2 F (f) = (s2,P′′) L `2 P ≤ P′ ≤ P′′

(Σ; A; F ;P; read i)7 −→2,β (Σ; A; F ;P; readi s2)
c2eb:read

F (f) = (s2,P′′) L `2 P′′ ≤ P′ ≤ P

(Σ; A; F ;P;openwP′ f)i 7−→2,β

(Σ, o → (newi f,P′); A; F ;P; o)i

c2eb:openw

Σ(o) = (f 2,P) f = readi f 2 F (f) = (s2,P′) L `2 P′ ≤ P

(Σ; A; F ;P;write (o, s))i 7−→2,β

(Σ; A; F, f → (updi s2 s,P′);P; ())i

c2eb:write

Figure 4.25: Idealized File I/O Extensions to FHRM2 β-redex Operational Semantics

CHAPTER 4. INTERFERENCE POLICIES 199

Soundness. The Soundness Theorem 4.5.3 states that if a FHRM2 expression takes

a step, then the two corresponding FHRM programs (the projections of the FHRM2

expression) must each take the same respective steps.

Lemma 4.5.1 (Expression Soundness Lemma) For i ∈ {1, 2},

if (Σ, A, F,P, e)i 7−→2,β (Σ′, A′, F,P, e′)i,

then (|Σ|i, |A|i, |F |i,P, e) 7−→β (|Σ′|i, |A′|i|F ′|i,P, e′).

Proof: By induction on the structure of (Σ, A, F,P, e)i 7−→2,β (Σ′, A′, F ′,P, e′)i.

2

Lemma 4.5.2 (Beta-redex Soundness Lemma) For i ∈ {1, 2},

if (Σ; A; F ;P; e) 7−→∗
2,β (Σ′; A′; F ′;P; e′)

then |(Σ; A; F ;P; e)|i 7−→∗
β |(Σ′; A′; F ′;P; e′)|i

Proof: By induction on the structure of the operational judgment (Σ, A, F,P, e)

7−→∗
2,β (Σ′, A′, F ′,P, e′), with use of the Expression Soundness Lemma 4.5.1. 2

Theorem 4.5.3 (Soundness) For i ∈ {1, 2},

if (Σ; A; F ;P; e) 7−→∗
2,top (Σ′; A′; F ′;P; e′)

then |(Σ; A; F ;P; e)|i 7−→∗
top |(Σ′; A′; F ′;P; e′)|i

Proof: By induction on the structure of the operational judgment (Σ, A, F,P, e)

7−→∗
2,top (Σ′, A′, F ′,P, e′).

• Case ce:beta uses Lemma 4.5.2.

2

CHAPTER 4. INTERFERENCE POLICIES 200

Completeness. The Completeness Theorem 4.5.5 states that if two FHRM pro-

grams step to values, then the representation in FHRM2 that simulates them simul-

taneously must step to a value. The completeness theorem requires an auxiliary

lemma stating that a FHRM2 program is only stuck when one of its corresponding

FHRM programs are stuck.

Lemma 4.5.4 (Completeness Stuck Lemma) Assume (Σ, A, F,P, e) is stuck.

Then |(Σ, A, F,P, e)|i is stuck for some i ∈ {1, 2}.

Proof: Proof by induction on the structure of e. 2

Theorem 4.5.5 (Completeness) Assume

|(Σ; A; F ;P; e)|i 7−→∗
top (Σ′

i; A
′
i; F

′
i ;P; vi) for all i ∈ 1, 2 then there exists

(Σ′; A′; F ′
i ;P; v) such that (Σ; A; F ;P; e) 7−→∗

2,top (Σ′; A′; F ′;P; v)

Proof: If (Σ, A, F,P, e) yields an infinite reduction sequence, then |(Σ, A, F,P, e)|i

yields a infinite reduction sequence by Theorem 4.5.3.

If (Σ, A, F,P, e) is stuck, then |(Σ, A, F,p, e)|i is stuck by Lemma 4.5.4.

Therefore, (Σ, A, F,P, e) reduces to a successful configuration. 2

Progress. In this section, we present the lemmas used to prove Progress Theo-

rem 4.5.16.

Lemma 4.5.6 (Canonical Forms) Suppose ·;L; · `2 v : τ is a closed, well-

formed value.

• If τ = SP, then v = P.

• If τ = infileP, then v = i.

CHAPTER 4. INTERFERENCE POLICIES 201

• If τ = outfileP, then v = o.

• If τ = ∃ρ.τ , then v = pack(P, v) as ∃ρ.τ .

• If τ = fnamep, then v = f .

Proof: By induction on the structure of ∆; Π; Γ ` v : τ , using the fact that v is

a value. 2

Lemma 4.5.7 (Σ to Well-formed Γ) If F `2 Σ : Γ, then `2 · : Γ.

Proof: Trivial using Rule c2sft. 2

Lemma 4.5.8 (Reverse Evaluation Contexts) If ·;L; Γ;P `2 E[e] : τ ,

then ·;L; Γ;P `2 e : τ ′ for some τ ′.

Proof: By induction on the structure of evaluation contexts E. 2

Lemma 4.5.9 (Empty ∆) If · `2 p, then p is some P.

Proof: By induction on the structure of the typing judgment ∆ `2 p. 2

Lemma 4.5.10 (Γ to Σ) • If F `2 Σ : Γ and Γ(i) = infileP, then Σ(i) = f 2

for some f 2.

• If F `2 Σ : Γ and Γ(o) = outfileP, then Σ(o) = f 2 for some f 2.

Proof: Trivial using Rule c2sft. 2

Lemma 4.5.11 (Protection Domain Weakening) If ∆ `2 p, then ∆, ρ `2 p.

CHAPTER 4. INTERFERENCE POLICIES 202

Proof: By induction on the structure of the typing rule ∆ `2 p. 2

Lemma 4.5.12 (Protection Domain Reverse Substitution) If ∆ `2 p[p′/ρ]

and ∆ `2 p′, then ∆, ρ `2 p.

Proof: By induction on the structure of the typing rule ∆ `2 p with the Protection

Domain Weakening Lemma 4.5.11. 2

Lemma 4.5.13 (Type Reverse Substitution) If ∆ `2 τ [p/ρ] and ∆ `2 p, then

∆, ρ `2 τ .

Proof: By induction on the structure of the typing rule ∆ `2 τ with the Protection

Domain Reverse Substitution Lemma 4.5.12. 2

Lemma 4.5.14 (Well-formed types) If ∆ `2 Γ and ∆; Π; Γ; p `2 e : τ , then

∆ `2 τ .

Proof: By induction on the structure of the typing rule ∆; Π; Γ; p `2 e : τ .

• Case cvt:pack uses Lemma 4.5.13.

2

Lemma 4.5.15 (Progress Lemma) If F `2 Σ : Γ and Γ `2 A ok and ·;L; Γ;P `2

e : τ and

• If i ∈ {o}, then P ∈ HIGH.

• If i ∈ {1, 2}, then P ∈ LOW.

CHAPTER 4. INTERFERENCE POLICIES 203

then either e is a value or (Σ′; A′; F ′; P ; e′) such that (Σ; A; F ; P ; e) 7−→2,top

(Σ′; A′; F ′; P ; e′).

Proof: By induction on the structure of the typing judgment ·;L; Γ;P `2 e : τ

with the Canonical Forms Lemma 4.5.6, the Σ to Γ Lemma 4.5.7, the Reverse Eval-

uation Context Lemma 4.5.8, the Empty ∆ Lemma 4.5.9, the Γ to Σ Lemma 4.5.10,

and the Well-formed Type Lemma 4.5.14. 2

Theorem 4.5.16 (Progress) If `2 (Σ; A; F ; P ; e) ok then either e is a value, or

there exists (Σ′; A′; F ′; P ; e′) such that

(Σ; A; F ; P ; e) 7−→2,top (Σ′; A′; F ′; P ; e′).

Proof: Straightforward use of the Progress Lemma 4.5.15. 2

Preservation. In this section, we present the lemmas used to prove Preservation

Theorem 4.5.31.

Lemma 4.5.17 (Protection Domain Substitution) If ∆, ρ `2 p and ∆ `2 p′,

then ∆ `2 p[p′/ρ].

Proof: By induction on the structure of the typing rule ∆ `2 p. 2

Lemma 4.5.18 (Lattice Protection Domain Substitution) If Π `2 p ≤ p′

and ∆ `2 p′′,

then Π[p′′/ρ]| − p[p′′/ρ] ≤ p′[p′′/r]

Proof: By induction on the structure of the typing rule Π `2 p ≤ p′. 2

CHAPTER 4. INTERFERENCE POLICIES 204

Lemma 4.5.19 (Type Protection Domain Substitution) If ∆, ρ `2 τ and

∆ `2 p, then ∆ `2 τ [p/ρ].

Proof: By induction on the structure of the typing rule ∆ `2 τ . 2

Lemma 4.5.20 (Value Protection Domain Substitution) If ∆, ρ; Π; Γ `2 v :

τ and ∆ `2 p,

then ∆; Π[p/ρ]; Γ[p/ρ] `2 v[p/ρ] : τ [p/ρ].

Proof: By induction on the structure of typing rule ∆; Π; Γ `2 v : τ with the

Protection Domain Substitution Lemma 4.5.17, the Lattice Protection Domain Sub-

stitution Lemma 4.5.18, the Type Protection Domain Substitution Lemma 4.5.19,

and the Expression Protection Domain Substitution Lemma 4.5.21. 2

Lemma 4.5.21 (Expression Protection Domain Substitution)

If ∆, ρ; Π; Γ;P `2 e : τ and ∆ `2 p,

then ∆; Π[p/ρ]; Γ[p/ρ];P `2 e[p/ρ] : τ [p/ρ].

Proof: By induction on the structure of typing rule ∆; Π; Γ;P `2 e : τ with the

Protection Domain Substitution Lemma 4.5.17, the Lattice Protection Domain Sub-

stitution Lemma 4.5.18, the Type Protection Domain Substitution Lemma 4.5.19,

and the Value Protection Domain Substitution Lemma 4.5.20. 2

Lemma 4.5.22 (Value Substitution) If ∆; Π; Γ, x : τ2 ` v1 : τ1 and ∆; Π; Γ `

v2 : τ2,

then ∆; Π; Γ ` v1[v2/x] : τ1.

Proof: By induction on the structure of typing rule ∆; Π; Γ ` v : τ with the

Expression Substitution Lemma 4.5.23. 2

CHAPTER 4. INTERFERENCE POLICIES 205

Lemma 4.5.23 (Expression Substitution) If ∆; Π; Γ, x : τ2;P ` e : τ1 and

∆; Π; Γ ` v : τ2,

then ∆; Π; Γ;P ` e[v/x] : τ1.

Proof: By induction on the structure of typing rule ∆; Π; Γ;P ` e : τ with the

Value Substitution Lemma 4.5.22. 2

Lemma 4.5.24 (Aspect Store Weakening) If L; Γ ` A ok,

then

• L; Γ, i : infileP ` A ok for some i,P

• L; Γ, o : outfileP ` A ok for some o,P

Proof: By induction on the structure of typing rule L; Γ ` Aok. 2

Lemma 4.5.25 (Lattice Stripping Expressions) If L `2 P′ ≤ P′′ and ·;L,P′ ≤

P′′; Γ;P `2 e : τ ,

then ·;L,P′ ≤ P′′; Γ;P `2 e : τ .

Proof: By induction on the structure of the typing rule ∆; Π; Γ;P `2 e : τ . 2

Lemma 4.5.26 (β-redex Preservation Lemma) If F ` Σ : Γ and Γ ` A ok

and ·;L; Γ;P ` e : τ and (Σ; A; F ;P; e) 7−→2,β (Σ′; A′; F ′;P; e′),

then

• F ′ ` Σ′ : Γ′

• Γ′ ` A′ok

CHAPTER 4. INTERFERENCE POLICIES 206

• ·;L; Γ′;P ` e′ : τ .

Proof: By induction on the structure of the operational rules (Σ; A; F ;P; e) 7−→2,β

(Σ′; A′; F ′;P; e′) with the Σ to Γ Lemma 4.5.7, the Well-formed Type Lemma 4.5.14,

and the Empty ∆ Lemma 4.5.9.

• Case cev:o uses the Expression Protection Domain Substitution Lemma 4.5.21

and the the Expression Substitution Lemma 4.5.23.

• Cases c2eb:openr and c2eb:openw use the A Weakening Lemma 4.5.24.

• Case ceb:ifpdthen uses the Lattice Stripping Lemma 4.5.25.

2

Lemma 4.5.27 (Evaluation Context Preservation) If ·;L; Γ;P ` E[e] : τ and

·;L; Γ;P ` e : τ ′ and ·;L; Γ;P ` e′ : τ ′,

then cdot;L; Γ;P ` E[e′] : τ

Proof: By induction on the structure of evaluation contexts E. 2

Lemma 4.5.28 (Projection Typing) If ∆; Π; Γ;P ` e : τ ,

then ∆; Π; Γ;P ` |e|i : τ for all i ∈ {1, 2}

Proof: By induction on the structure of the typing rules ∆; Π; Γ;P ` e : τ .

2

Lemma 4.5.29 (Preservation Lemma) If F ` Σ : Γ and Γ ` A ok and

·;L; Γ;P ` e : τ and (Σ; A; F ;P; e) 7−→2 (Σ′; A′; F ′;P; e′), then

CHAPTER 4. INTERFERENCE POLICIES 207

• F ′ ` Σ′ : Γ′

• Γ′ ` A′ok

• ·;L; Γ′;P ` e′ : τ .

Proof: By induction on the structure of the operational rules (Σ; A; F ;P; e) 7−→2

(Σ′; A′; F ′;P; e′).

• Case ce:beta uses the β-redex Preservation Lemma 4.5.26.

• Case ce:eval uses the Reverse Evaluation Context Lemma 4.5.8 and the Eval-

uation Context Preservation Lemma 4.5.27.

• Case c2e:highlow uses the Projection Typing Lemma 4.5.28.

2

Lemma 4.5.30 (Preservation Top Lemma) If F ` Σ : Γ and Γ ` A ok and

·;L; Γ;P ` e : τ and (Σ; A; F ;P; e) 7−→2,top (Σ′; A′; F ′;P; e′), then

• F ′ ` Σ′ : Γ′

• Γ′ ` A′ok

• ·;L; Γ′;P ` e′ : τ .

Proof: By induction on the structure of the operational rule (Σ; A; F ;P; e) 7−→2,top

(Σ′; A′; F ′;P; e′).

• Case cevt:ce uses the Preservation Lemma 4.5.29.

CHAPTER 4. INTERFERENCE POLICIES 208

2

Theorem 4.5.31 (Preservation) If `2 (Σ; A; F ;P; e) ok and (Σ; A; F ;P; e)

7−→2,top (Σ′; A′; F ′;P; e′) then `2 (Σ′; A′; F ′;P; e′) ok.

Proof: Straightforward use of the Top Preservation Lemma 4.5.30. 2

Equivalent Execution.

Lemma 4.5.32 (Equivalent Execution in FHRM2)

If HIGH ∈ H and F `2 · : Γ and ·;L; Γ;HIGH `2 e : bool and

(·; ·; F ;HIGH; e) 7−→∗
2,top (Σ, A, F ′;HIGH; v) then |v|1 = |v|2.

Proof: By the Preservation Theorem 4.5.31, F ′ `2 Σ : Γ′ and ·;L; Γ′ `2 v : bool.

By the Canonical Forms Lemma 4.5.6, v is either true or false.

|true|1 = |true|2 and |false|1 = |false|2. 2

Putting it all together: Noninterference.

Theorem 4.5.33 (Noninterference) If F `2 · : Γ and HIGH ∈ H and LOW ∈

L and L ` LOW ≤ HIGH and e is a core language expression where ·;L; Γ, x :

1;HIGH ` e : bool and ·;L; Γ;LOW ` e′ : 1 and

(·; ·; F ;HIGH; e[LOW<e′>/x]) 7−→∗
top (Σ1; A1; F1;HIGH; v1)

and

(·; ·; F ;HIGH; e[LOW<()>/x]) 7−→∗
top (Σ2; A2; F2;HIGH; v2)

then v1 = v2.

Proof: Construct the FHRM2 expression LOW<e′|()>; e, such that

|LOW<e′|()>; e|1 = LOW<e′>; e and |LOW<e′|()>; e|2 = LOW<()>; e.

CHAPTER 4. INTERFERENCE POLICIES 209

Therefore, |(·; ·; F ;HIGH;LOW<e′|()>; e)|1 7−→∗
2,top (Σ1; A1; F1;HIGH, v1) and

|(·; ·; F ;HIGH;LOW<e′|()>; e)|2 7−→∗
2,top (Σ2; A2; F2;HIGH; v2).

By the Completeness Theorem 4.5.5,

(·; ·; F ;HIGH;LOW<e′|()>; e) 7−→∗
2,top (Σ; A; F ′;HIGH; v) for some Σ, A, F ′, and

v.

By the Soundness Theorem 4.5.3, for i ∈ {1, 2}, |(·; ·; F ;HIGH;LOW<e′|()>; e)|i

7−→∗
2,top |(Σ; A; F ′;HIGH; v)|i.

Therefore, |v|1 = v1 and |v|2 = v2.

By the Equivalent Execution Lemma 3.2.30, |v|1 = |v|2.

Therefore, v1 = v2. 2

Our noninterference theorem proves that low-protection core calculus expression

that uses the file i/o operations cannot change the behavior of the high-protection

code.

4.5.5 File I/O Translation Generated by Interference Policy

The file i/o interference policy defined in Figure 4.16 describes a translation from

source to core for file i/o operations. The general algorithm of the translation was

described in Section 4.4 – using that algorithm, the translation constructed for our

file i/o library is shown in Figure 4.26.

First, the static checks required by the interference policy on read and write

operations are enforced in Rules set:readfile and set:writefile by checking the current

protection domain and the protection domain of the file descriptor for their proper

order in the protection domain lattice L. Recall that the read operation requires

a read (L ` P ≤ P′) static check, while the write operation requires both read

(L ` P ≤ P′) and write (L ` P′ ≤ P) static checks.

CHAPTER 4. INTERFERENCE POLICIES 210

Type Translation ` t
typ
=⇒ t

` fname
typ
=⇒ ∃ρ.(Sρ × fnameρ)

stt:fname

Value Translation Φ; Γ ` v : t
val
=⇒ v′

F (f) = (s,P)

Φ; Γ ` f : fname
val
=⇒ pack(P, (P, f)) as ∃ρ.(Sρ × fnameρ)

svt:f

Expression Translation Φ; Γ; P ` e : t
exp
=⇒ e′

Φ; Γ;P ` e : infile P′ exp
=⇒ e′ L ` P ≤ P′

Φ; Γ;P ` read e : String
exp
=⇒ read e′

set:readfile

Φ; Γ;P ` e : outfile P′ × String
exp
=⇒ e′

L ` P′ ≤ P L ` P ≤ P′

Φ; Γ;P ` write e : String
exp
=⇒ write e′

set:writefile

Φ; Γ;P ` e : fname
exp
=⇒ e′ L ` P′ ≤ P

Φ; Γ;P ` openr P′ e : t
exp
=⇒

open(r, x) = e′ in split (ypd, yfn) = x in
ifpd (P′ ≤ ypd) then openrP′ yfn else abortinfileP′

set:openr

Φ; Γ;P ` e : fname
exp
=⇒ e′ L ` P′ ≤ P

Φ; Γ;P ` openr P′ e : t
exp
=⇒

open(r, x) = e′ in split (ypd, yfn) = x in
ifpd (ypd ≤ P′) then openwP′ yfn else abortoutfileP′

set:openw

Figure 4.26: Translation based on File I/O Interference Policy

CHAPTER 4. INTERFERENCE POLICIES 211

Next, filenames, with their fname resource type, are translated in Rule svt:f to a

packed tuple with a run-time protection domain representing the result of a resource

policy query and the actual core calculus filename. The existentially-wrapped value

will be unwrapped at run time in Rules set:openr and set:openw when the filename

is to be used by an openr or openw operation. The run-time protection domains will

be used in any dynamic checks required by the interference policy. Recall that the

openr operation required a read (ifpd (P ≤ ypd)) dynamic check, while the openw

operation required a write (ifpd (ypd ≤ P)) dynamic check.

As an aside, for the translation type-safety proof, we will extend the pointcut

environment translation function T to map a file store F into a variable environment

Γ. The created environment will map filenames to filename resource types.

T (F, f → (,P)) = T , f : fnameP T (Γ, x : t) = T (Γ), x : τ where `2 t ⇒ τ

T (Φ) = as defined previously

Finally, we show that translation generated from the file i/o interference policy

is type-safe.

Lemma 4.5.34 (Type Translation) If `2 t ⇒ τ , then · `2 τ .

Proof: By induction on the structure of the translation rule `2 t ⇒ τ . 2

Lemma 4.5.35 (Environment Translation) If T (F) = Γ, then F `2 · : Γ.

Proof: Straightforward. 2

Lemma 4.5.36 (Translation Lemma) If `2 t ⇒ τ

CHAPTER 4. INTERFERENCE POLICIES 212

• and Φ; Γ ` v : t
val
=⇒ v′, then ·;L; T (F), T (Φ), T (Γ) `2 v : τ .

• and Φ; Γ; p ` e : t
exp
=⇒ e′, then ·;L; T (F), T (Φ), T (Γ);P `2 e : τ .

• and Φ; Γ; p ` as; asps; e : τ
dec
=⇒ e′, then ·;L; T (F), T (Φ), T (Γ);P `2 e : τ .

Proof: By mutual induction on the translation judgments with the Type Trans-

lation Lemma 4.5.34 and the Environment Translation Lemma 4.5.35. 2

Theorem 4.5.37 (Translation Type Safety)

If ` prog : Bool
prog
=⇒ e then ·;L; Γ;MAIN `2 e : bool.

Proof: Straightforward use of the Translation Lemma 4.5.36. 2

4.5.6 Harmlessness of File I/O using Interference Policy

We now want to use our core calculus noninterference theorem (Theorem 4.5.33) to

verify the harmlessness of the source language. Recall that “harmlessness” means

that code defined in the aspect declarations, P : {as}, does not affect the behavior

of the mainline program, ds+ e. Again, when the source language is translated into

the core calculus, code defined by the mainline program is placed in the MAIN

protection domain. Code defined in an aspect ASPECT is placed in an ASPECT

protection domain that is lower than the MAIN protection domain.

Source language file system i/o is translated into the core calculus with the static

and dynamic checks required by the interference policy. An aspect declaration,

P ′ : {as}, is translated into the FHRM2 expression, P ′<()|e′>, where e′ is the

FHRM expression generating by translating as. In other words, aspect declarations

CHAPTER 4. INTERFERENCE POLICIES 213

are translated into the simultaneous execution of the main program without the

aspect and with the aspect. Because this resulting translation is type-safe by

Theorem 4.5.37, the noninterference theorem of the core calculus is combined with

this translation of aspect declarations to prove that the low-protection code, the

aspect declaration, will not interfere with the high-protection code, the mainline

program. Therefore, aspects in the source language that use file i/o are harmless.

Theorem 4.5.38 (Source Language Aspects are Harmless)

If ` prog : bool
prog
=⇒ e

and (·; ·; F ;MAIN; |e|1) 7−→∗
top (Σ1; A1; F1;MAIN; v1)

and (·; ·; F ;MAIN; |e|2) 7−→∗
top (Σ2; A2; F2;MAIN; v2)

then v1 = v2.

Proof: Straightforward use of the Translation Type Safety Theorem 4.5.37 and

the proof technique and lemmas of the Noninterference Theorem 4.5.33. 2

We have now shown that our interference policy mechanism can be used to

enforce our previous definition of harmlessness on a file i/o library.

Chapter 5

Related Work and Conclusions

5.1 Related Work

In this chapter, we describe related work to the thesis. In Section 5.1.1, we describe

several functional aspect-oriented programming language designs. In Section 5.1.2,

we describe research into polymorphic aspect-oriented programming languages. In

Section 5.1.3, we describe previous attempts to enforce security policies using aspect-

like execution monitoring systems. In Section 5.1.4, we describe attempts by re-

searchers to classify advice into “harmless” and “harmful” categories. In Sec-

tion 5.1.5, we describe information flow systems related to our protection domain

mechanism. Finally, in Section 5.1.6, we examine projects that combine aspect-

oriented programming and module systems.

5.1.1 Aspect-oriented programming languages

In this section, we describe related research into functional aspect-oriented program-

ming languages.

214

CHAPTER 5. RELATED WORK AND CONCLUSIONS 215

MinAML. As mentioned earlier, our work builds upon the framework proposed

by Walker, Zdancewic, and Ligatti [37]. That work distilled aspect-oriented pro-

gramming into its fundamental components, clearly separating the semantics of

aspects (join points and advice) from that of the underlying programming language.

They used the simply-typed λ-calculus as the basic model of computation. The

reason that they could develop such a minimal model is that their calculus reduced

the aspect language to the most critical components, relying on translation from

their MinAML source language to generate the full power of modern AOPLs.

There are four fundamental differences between Minaml and Aspectml.

• Most fundamentally, Minaml was a monomorphically-typed aspect-oriented

programming language. As such, functions with diverse argument and result

types could not be advised by a single piece of advice. Aspectml allows us to

write polymorphic advice that can advise a diverse collection of functions.

• The semantics for “around” advice, specifically the order in which nested

around advice was triggered, in Minaml was unconventional compared to

around advice in the literature. Around advice in Aspectml behaves in the

conventional fashion.

• Aspectml utilizes a novel type inference algorithm that is conservative over

Hindley-Milner inference. This algorithm was not described in this thesis.

Minaml lacked a type inference algorithm.

• Unlike in Minaml, where labels were monomorphic, polymorphism allows us

to structure the labels in a tree-shaped hierarchy in Aspectml. Labels lower

in the hierarchy will trigger pointcuts that contain labels above them in the

hierarchy. This allows us to create any pointcuts in Aspectml.

CHAPTER 5. RELATED WORK AND CONCLUSIONS 216

There are two fundamental differences between Minaml and Harmlessaml.

• Advice in Minaml could be triggered before, after, or in place of (around)

a function. Harmless advice in Harmlessaml can only be triggered before or

after a function – using advice in place of a function would not be harmless.

• Advice in Minaml could modify the behavior of the main program– there

is no mechanism like that in Harmlessaml to enforce the harmlessness of

advice. Advice in Minaml could not be added to a program without fear

that important program invariants would be disrupted. Programmers who

develop, debug, or enhance mainline code must examine all present Minaml

advice to determine the true behavior of the program.

Untyped and Typed Aspect-oriented Calculi. Jagadeesan, Jeffrey, and

Riely [27] developed a class-based aspect-oriented programming language. The

language was untyped – they provided a dynamic semantics but not a static seman-

tics for their language. Unlike in Aspectml or Harmlessaml, the aspect-oriented

features were not orthogonal to other language features. Advice was triggered

implicitly during function application.

The main contribution was an analysis of “weaving.” To contrast different

methods of implementing aspect-oriented programming language, they provided

a dynamic semantics directly for the aspect-oriented language, and then provided

a separate “weaving” algorithm that translated the aspect-oriented language to

the underlying class-based, non-aspect-oriented language. This is different from

Aspectml and Harmlessaml, which translate the source language to a simpler core

language, not to a non-aspect-oriented version of the source language. AspectJ is

also implemented with a “weaving” algorithm – AspectJ advice is translated into

CHAPTER 5. RELATED WORK AND CONCLUSIONS 217

ordinary Java bytecode. They then showed that such weaving is correct with regard

to the direct aspect-oriented dynamic semantics, with the exception of dynamic

loading of advice that affects existing classes.

In a separate paper [26], the authors expanded their work with a static seman-

tics for their class-based, aspect-oriented language. Using the static and dynamic

semantics, they proved a traditional type safety theorem for their aspect-oriented

language. They also reexamined weaving, proving that well-typed aspect-oriented

programs weave to well-typed non-aspect-oriented programs. Finally, they pointed

out that polymorphic advice, not examined in their paper, would be required for

many practical uses of advice.

AJD. Masuhara, Kiczales, and Dutchyn developed AJD [38], an aspect-oriented

Scheme-based programming language. Partial evaluation was used to optimize away

as much as aspect-oriented features as possible by weaving applicable static advice,

advice that will always be triggered, into the main function code. Dynamic advice,

advice that is triggered depending on the runtime state, was woven in with a guard

that checked at runtime whether the required condition is met. Like Scheme and

unlike Aspectml and Harmlessaml, their language was dynamically typed.

Advice and Dynamic Join Points. Wand, Kiczales, and Dutchyn [52] provide

a denotational, monadic semantics for an aspect-oriented language. As in other

calculi, they provide a weaving algorithm that wraps function with the advice

that they trigger. Their main results were their handling of dynamic join points,

which refer to execution events, and advice written over recursive functions. Their

language, unlike Aspectml and Harmlessaml, is untyped.

CHAPTER 5. RELATED WORK AND CONCLUSIONS 218

µABC. Bruns, Jagadeesan, Jeffrey, and Riely developed the µABC aspect-oriented

calculus [6]. Like our core calculus, they added advice and joinpoints as orthogonal

constructs to function abstraction and application in their calculus. Their concept

of a hierarchical set of “names,” taken from concurrency theory, was similar to our

core calculus labels. To show that their calculus was as powerful as the core calculus

of Minaml, they provided a translation from Minaml to their core calculus. Also,

to show what features are required to implement the orthogonal aspect-oriented

features in their calculus, they provided a translation from µABC to the polyadic

π-calculus. Unlike FA and FHRM , µABC was untyped.

Aspect-oriented Scheme. Tucker and Krishnamurthi [51] developed a variant

of Scheme with aspect-oriented features. As in FA and FHRM , pointcuts and advice

were first-class objects in their language. However, unlike FA and FHRM , Scheme is

dynamically typed.

5.1.2 Polymorphic Aspect-oriented Programming Languages

In this section, we describe related research into aspect-oriented programming lan-

guages with polymorphic types.

Aspectual Caml. Masuhara, Tatsuzawa, and Yonezawa implemented an aspect-

oriented version of core O’Caml they call Aspectual Caml [39]. Their implementa-

tion effort was impressive and dealt with several features we have not considered

here including curried functions and datatypes. Although there are similarities

between Aspectml and Aspectual Caml, there are also many differences:

CHAPTER 5. RELATED WORK AND CONCLUSIONS 219

• Pointcut designators in Aspectml can only reference names that are in scope.

Aspectml names are indivisible and α-vary as usual. In Aspectual Caml,

programmers used regular expressions to refer to all names that matched the

regular expression in any scope. For instance, get* referenced all objects with

a name beginning with get in all scopes.

• Aspectual Caml did not check pointcut designators for well-formedness. When

a programmer wrote the pointcut designator call f (x:int), the variable f

was assumed to be a function and the argument x was assumed to have type

int. There was some run-time checking to ensure safety, but it was not clear

what happens in the presence of polymorphism or type definitions. Aspectual

Caml does not appear to have run-time type analysis.

• Aspectual Caml pointcuts were second-class citizens. It was not possible to

write down the type of a pointcut in Aspectual Caml, or pass a pointcut to a

function, store it in a tuple, etc.

• The previous two limitations made it possible to develop a two-phase type

inference algorithm for Aspectual Caml (ordinary O’Caml type inference oc-

curred first and inference for pointcuts and advice occurred second), which

bears little resemblance to the type inference algorithm for Aspectml.

• There was no formal description of the Aspectual Caml type system, type

inference algorithm, or operational semantics. We have a formal description

of both the static semantics and the dynamic semantics of Aspectml. As-

pectml’s type system has been proven sound with respect to its operational

semantics.

CHAPTER 5. RELATED WORK AND CONCLUSIONS 220

Staticness and Coherence. Meng Wang, Kung Chen, and Siau-Cheng Khoo [53]

examined language design problems in combining aspects with a polymorphic func-

tional language. Their design made fundamentally different assumptions about

aspects that led to significant differences in expressiveness:

• Their advice was scoped such that it was not possible to install advice that

would affect functions that had already been defined. We feel that this had

both positive and negative consequences for the language. It had positive,

because they used a type-directed weaving algorithm (not unlike the way type

classes are compiled to dictionary passing in Haskell) to completely eliminate

the need to dynamically calculate advice composition, as our operational

semantics does. However, we feel that this design decision did not adequately

take into account the needs of separate compilation: A programmer could not

compile a program separately from its advice. Furthermore, some of our most

interesting uses of advice so far have involved advising an already defined

function.

• Their advice was named. Not only was this useful as mnemonic for the

programmer, but it allowed them to advise advice. We do not presently name

our advice, but there is no fundamental reason that we cannot, and likewise

support advice advisement.

• Like Aspectual Caml, their pointcuts were second-class. We believe that first-

class pointcuts are an important step toward allowing programmers to develop

reusable libraries of advice.

• Their design did not provide a mechanism for examining the call-stack or

obtaining information about the specific function being advised. But we do

CHAPTER 5. RELATED WORK AND CONCLUSIONS 221

not see any technical challenges that would prevent them from adding such

features.

Aspectual Collaborations. Another study of the interaction between polymor-

phism and aspect-oriented programming features occurred in the context of Lieber-

herr, Lorenz and Ovlinger’s Aspectual Collaborations [36]. They extended a variant

of AspectJ with a form of module that allowed programmers to choose the join

points (i.e., control-flow points) that were exposed to external aspects. Aspectual

Collaborations had parameterized aspects that resembled the parameterized classes

of Generic Java. When a parameterized aspect was linked into a module, concrete

class names replaced the parameters. Since types were merely names, the sort of

polymorphism necessary was much simpler (at least in certain ways) than required

by a functional programming language. For instance, there was no need to develop

a generalization relation and type analysis could be replaced by conventional object-

oriented down-casts. Overall, the differences between functional and object-oriented

language structure have caused our two groups to find quite different solutions to

the problem of constructing generic advice.

Aspect Featherweight Generic Java. Jagadeesan, Jeffrey, and Riely [28] de-

veloped an aspect-oriented version of Featherweight Generic Java, that allowed

polymorphic aspects to be written on generic methods. They provided two static

semantics, the first where type information was carried at runtime and could be used

during advice lookup. By placing restrictions on pointcut typing, they provided a

second static semantics where types were not needed for advice lookup and could

be erased. Well-typed program in the second static semantics were proven to be

well-typed in the first static semantics. Their pointcut logic was relatively simple,

CHAPTER 5. RELATED WORK AND CONCLUSIONS 222

disallowing context-sensitive advice. Unlike Aspectml and Harmlessaml, they did

not translate their language to a simpler core calculus, and the dynamic semantics

of their language were quite complex as a result.

5.1.3 Advice for Security

In this section, we describe related research into aspect-oriented implementations

of security features.

Naccio. Evans and Twyman developed Naccio, a platform-independent execution

monitoring system [16, 17]. Naccio enforced safety policies that restrict how pro-

grams can use abstract system resources, such as file and network I/O. The Naccio

system was given a policy to be enforced, a list of the abstract system resources

that the policy references, the code of the system library that manipulates system

resources, and a mapping of system library operations to the abstract resources each

manipulates. Naccio then returned a new version of the library where the library

operations are protected by the resource checks required by the policy. Finally, the

main program was modified to call the new resource library rather than the old one.

At the time, Evans and Twyman thought of Naccio as a domain specific language

for implementing security policies, and they argued effectively that their language,

which completely separated security code from mainline program, was an effective

means of developing reliable security policies. The new, policy-enforcing version

of the library could also be visualized as an aspect-oriented program where before

advice that enforced the safety policy was triggered by each of the library operations.

However, in such an aspect-oriented version of Naccio policy enforcement, the last

step, rewriting the main program to point to the new library, would not be necessary.

CHAPTER 5. RELATED WORK AND CONCLUSIONS 223

As described in Section 3.3.3, we implemented the suite of example Naccio

security policies as harmless advice to study the usefulness of harmless advice

somewhat more broadly in the security domain. We found that many access control

tasks could be performed by harmless advice.

Security Automata SFI Implementation. Erlingsson and Schneider created

SASI [14], a reference monitor that enforced security policies by modifying object

code. They described a security policy in terms of a security automaton whose

transition relations were operations on system resources. During execution, if

there was no transition relation out of the current state marked with the resource

operation to be performed, then the operation was blocked.

SASI was implemented for x86 assembly and Java Virtual Machine Language

code by modifying the object code of the program to include the checks required by

the security automaton. SASI could also be visualized as an aspect that simulates

a security automation by updating and checking the automaton state with before

advice on resource operations.

Monitoring and Checking. Lee, Kannan, Kim, Sokolsky, and Viswanathan de-

veloped the MaC framework [32, 35] for execution monitoring. Like Naccio, security

policies were specified in terms of high-level, abstract system resources. The MaC

framework consisted of a filter, event recognizer, and run-time checker. The filter

monitored program execution for low-level resource operations, the event recognizer

mapped those low-level operations to the high-level, abstract resource that they

manipulated, and the run-time checker verified that the resulting manipulation of

the abstract resources was allowed by the security policy. As in the previous security

CHAPTER 5. RELATED WORK AND CONCLUSIONS 224

mechanisms, the MaC framework could also be thought of as a security aspect that

enforces policies on the low-level resource operations.

PoET/PSLang. Erlingsson and Schneider described PoET/PSLang [15], the suc-

cessor to their SASI system. Like our aspect-oriented Java security case study

in Section 2.3, they examined an alternate implementation of the Java security

mechanism using in-lined reference monitors. They discovered that this aspect-like

reference monitor implementation allowed a flexibility in enforcing security policies

that was lacking in the existing Java virtual machine implementation.

Polymer. Bauer, Ligatti and Walker [4] introduced a calculus that included sev-

eral different kinds of aspect combinators (parallel conjunction and disjunction;

sequenced conjunction and disjunction) and used a type and effect system to prevent

interference between them. The technical machinery they used was extremely

complicated and quite different from the current work. In contrast to harmless

advice, they did not concern themselves with the effects these aspects would have

on the mainline computation.

5.1.4 Classifying Advice

In this section, we describe attempts to classify aspect-oriented programs into

“harmless” and “harmful” advice categories.

Observers and Assistants. Clifton and Leavens [7] proposed techniques for

Hoare-style reasoning using JML specifications on AspectJ programs. They classi-

fied advice into assistants and observers. Our notion of harmless advice is similar to

their notion of observers — an observer does not change the pre- and post- conditions

CHAPTER 5. RELATED WORK AND CONCLUSIONS 225

of the specification (ie. the behavior) of the mainline code. They postulated a

static analysis to classify observer advice, but did not formalize it due to difficulty

in dealing with aliasing in AspectJ.

The details of the type and effect system of FHRM are entirely different from

their Hoare logic. One point of interest is that Clifton and Leavens mentioned that

it is not clear whether their model could “accommodate dynamic context join points

like CFlow.” Our analysis of our stack operations, which are sufficient for coding

up CFlow-like primitives, indicates that harmless advice can indeed safely use these

primitives and avoid interfering with the mainline computation or each other.

Orthogonal, Independent, and Observation Aspects. Rinard, Salcianu, and

Bugrara [46] developed a system that classified the interaction between aspects and

main program code into five categories: orthogonal (aspects and main program code

have no fields in common), independent (aspects and main program code cannot

write to fields that the other can access), observation (aspects can read fields that

the main program code writes), actuation (aspects can write to fields that the main

program code reads), and interference (aspects and main program code can write to

the same fields) interactions. Our definition of harmlessness would include Rinard,

et al.’s orthogonal, independent, and observation interactions. Their tool used a

context-sensitive, flow-sensitive pointer, escape, and effect analysis and operated

within Java’s nominal type structure, so the details of their system are quite different

from our own. In addition, their system was described informally in English; they

have not proven any properties of their analyses.

Almost Spectative Advice. Katz [29] also described several categories of ad-

vice, including “almost spectative” advice. “Almost spectative” advice was similar

CHAPTER 5. RELATED WORK AND CONCLUSIONS 226

to our notion of harmless advice in that it could halt execution but did not otherwise

influence the result of the program. He then speculated on several potential methods

to categorize advice, including regression testing, proofs by induction, and dataflow

analysis.

Strongly Independent Advice. Douence, Fradet and Südholt [13] analyzed

aspects defined by recursion in an untyped calculus together with parallel and se-

quencing combinators. They developed a number of formal laws for reasoning about

their combinators and an algorithm that was able to detect strong independence.

Two pieces of advice were strongly independent when they did not interfere with

each other regardless of the contents of the advice bodies or the contents of the

programs they are applied to. In other words, strong independence was determined

exclusively by analysis of the pointcut designators of the two pieces of advice and

consequently it is orthogonal to our analysis which (mostly) ignores the pointcuts

and examines the advice bodies instead.

Model Checking of Advice. Krishnamurthi, Fisler, and Greenberg [33] tackled

the more general problem of verifying aspect-oriented programs. Given a set of

properties a program must satisfy, specified in a temporal logic, and a set of

pointcut designators, they verified programs using model checking. Their approach

to verification was partly modular since as long as the set of pointcuts did not change

and the underlying mainline code remained fixed, it was not necessary to reanalyze

the mainline code as advice definitions were edited. However, if the pointcuts or

mainline code did change, the whole program must be rechecked. Aside from the fact

that we are both interested in modular checking of aspect-oriented programs, there is

not too much similarity between the techniques. In terms of trade-offs, our approach

CHAPTER 5. RELATED WORK AND CONCLUSIONS 227

is lighter weight (temporal specifications of properties are unnecessary) and more

modular (changing pointcut designators used by advice does not necessitate re-type

checking the mainline program), but checks a much coarser-grained property (we

guarantee that all functional properties of advice are preserved).

5.1.5 Protection Domains and Information Flow

In this section, we describe similar research to our protection domain mechanism

and information flow analysis.

Region-based Memory Management. Region-based memory management [23]

was a technique to ensure that, when a program was evaluated, no accesses to

unallocated or freed memory could occur at runtime. This was enabled by allocating

each piece of data on the program heap into a particular region, or area of memory.

There were typically three primitives that operated on regions: region creation,

allocation or “tagging” of a value into a region, and deallocation or “freeing” of

a region. The required property that no program could access unused or freed

memory than became that a value tagged with a region that had been deallocated

could not be used. This property was enforced by an effect type system that not

only tracked the region of a value but also tracked the effect of an expression. The

effect of an expression was a list of regions the expression would need to access

during evaluation. A well-typed expression could not access a deallocated region.

There are several similarities and differences between regions and protection

domains.

• Both systems use an effect type system. The type system of region-based

memory management tracked what regions are accessed when evaluating an

CHAPTER 5. RELATED WORK AND CONCLUSIONS 228

expression. The type system of FHRM places an expression into a protection

domain and ensures that the expression cannot use values from a higher

protection domain. The type system tracks information flow to preserve an

noninterference property between protection domains.

• The set of regions grew and shrunk during evaluation, as there were explicit

primitives for region creation and deallocation. In that way, an evaluating

expression could not use a value from a deallocated region. In Harmlessaml,

the set of protection domains is static–the main program and each aspect is

allocated a protection domain.

• In region-based memory-management, type systems have been developed that

allow effect polymorphism. This enables the effect of a function (the list of

regions accessed by the function) to be polymorphic. We have not developed

a similar system for protection domain polymorphism; therefore, a function

can only be applied in a particular protection domain.

• Neither system require the programmer to explicitly manage regions or protec-

tion domains. Region inference mechanisms have be created that insert region

annotations into programs. In harmless advice, when Harmlessaml programs

are translated into FHRM2 expressions, main program code is implicitly placed

in the MAIN protection domain and code in aspect ASP is implicitly placed

in the ASP protection domain.

• The goals of the type systems are different. The goal of region-based memory

management is to prevent memory accesses to unallocated or freed memory.

The goal of Harmlessaml is to prevent aspects from altering the behavior of

mainline program code.

CHAPTER 5. RELATED WORK AND CONCLUSIONS 229

JFlow and Jif. Myers developed JFlow [41], an extension of Java with infor-

mation flow annotations to protect the privacy and integrity of data. The JFlow

compiler statically checked the information flow annotations in a manner similar to

type checking. The compiler then transformed the verified JFlow program into a

standard Java program.

Like Harmlessaml, JFlow ignored some kinds of interference such as changes

to the timing and termination behavior of programs, arguing that these kinds of

interference would have a minimal impact on security. However, their information

flow annotation system was complex, requiring annotations on many of the types

in the language. By contrast, due to the syntactic separation between aspects and

mainline code in Harmlessaml, the protection domain annotations in FHRM are

simpler and required on less types than general information flow annotations. The

resulting FHRM calculus is simpler to understand and still enforces the required

properties

Information Flow for CoreML. Pottier and Simonet developed an information

flow analysis [45] for a simplified ML-like calculus. Our noninterference proof in

Section 3.2.5 that creates a new core calculus FHRM2 to simulate the simultaneous

execution of two FHRM expressions is directly based on their work. However, as

in the JFlow system, the syntactic separation between aspects and mainline code

in Harmlessaml allows us to utilize a simpler type system then their work. Their

calculus included exceptions and let-polymorphism (with an included type inference

system), which FHRM does not contain. However, their calculus did not examine any

aspect-oriented features, while our FHRM examines how primitive advice, pointcuts,

and joinpoints interact with our protection domain system.

CHAPTER 5. RELATED WORK AND CONCLUSIONS 230

5.1.6 Aspects and Module Systems

Another interesting line of current research involves finding ways to add aspect-

oriented programming features to languages with module systems, or vice-versa.

Aspectual Collaborations. One of the first systems to combine aspects and

modules effectively was Lieberherr, Lorenz and Ovlinger’s Aspectual Collabora-

tions [36, 42]. Their proposal allowed module programmers to choose the join points

(i.e., control-flow points) that they will expose to external advice. External advice

could not intercept control-flow points that had not been exposed. In this sense,

Aspectual Collaborations were not completely oblivious – programmers must make

choices about which control-flow points to expose up-front, during program design.

Aspectual Collaborations did enjoy a number of important properties including

strong encapsulation, type safety and the possibility of separately compiling and

checking module definitions.

Open Modules. Aldrich proposed another model for combining aspects and mod-

ules called Open Modules [2]. Open Modules have a special module sealing operator

that hides internal control-flow points from external advice. Aldrich used logical

relations to show that sealed modules had a powerful implementation-independence

property. In essence, the behavior of advice did not depend on the behavior of

the mainline program. Harmlessaml differs from this previous research as we do

not suggest that visibility of the interception points be limited; instead, we suggest

limiting the capabilities of advice.

Information Hiding. Sullivan, et al. [49] presented a case study transforming

crosscutting concerns in an overlay network application into aspects. Based on

CHAPTER 5. RELATED WORK AND CONCLUSIONS 231

their experience, they proposed a software engineering technique where the mainline

code programmer is aware of locations in their code that might be requested to

trigger future common crosscutting concerns and takes care to allow access for

aspect programmers to the corresponding pointcuts. As in Aldrich’s work, this

allowed the mainline module code to change without disrupting the aspects.

Aspect-aware Modules. Kiczales and Mezini [31], rather than restricting as-

pects’ influence on a module, proposed a new method of modular reasoning in the

presence of aspects. To determine the interface to a module in their system, the

entire program must be examined—an aspect-aware module interface also lists all

aspects that are triggered by the module.

5.2 Concluding Remarks

In this thesis, we extended functional programming languages with aspect-oriented

features, primarily to explore aspect-oriented enforcement of security policies.

AspectML In Chapter 2, we examined an aspect-oriented implementation of the

Java security mechanism, which required the security advice to be triggered by

functions with diverse argument and return types. We presented a new language,

Aspectml, that allowed a programmer to define type-safe polymorphic advice using

pointcuts constructed from a collection of polymorphic join points. In particular,

we focused on the synergy between polymorphism and aspect-oriented program-

ming – the combination was clearly more expressive than the sum of its parts.

At the simplest level, Aspectml allowed programmers to reference control-flow

points that appeared in polymorphic code. However, we also demonstrated that

CHAPTER 5. RELATED WORK AND CONCLUSIONS 232

polymorphic pointcuts were necessary even when the underlying code base was

completely monomorphic. Otherwise, there was no way to assemble a collection of

join points that appeared in code with different types. In addition, run-time type

analysis allowed programmers to define polymorphic advice that behaved differently

depending upon the type of its argument.

From a technical standpoint, we gave Aspectml a semantics by compiling it

into a typed intermediate calculus, FA. We proved the intermediate calculus was

type-safe. The reason for giving Aspectml a semantics this way was to first decom-

pose complex source-level syntax into a series of simple and orthogonal constructs.

Giving a semantics to the simple constructs of FA and proving FA sound was quite

straightforward.

The definition of the intermediate calculus, FA, was also an important contri-

bution of this work. An interesting element of FA was the definition of our label

hierarchy, which allowed us to form groups of related control flow points. Here,

polymorphism was again essential: it was not possible to define these groups in a

monomorphic language. The second interesting element of FA was our support for

reification of the current call stack. In addition to being polymorphic, our treatment

of static analysis was more flexible, simpler semantically, and easier for programmers

to use than the initial proposition in the core calculus of Minaml. Moreover, it was

a good fit with standard data-driven functional programming idioms.

Finally, we compared our Aspectml implementation of the Java security mecha-

nism against the existing Java implementation using polymorphic advice. Through

this case study, Aspectml seemed useful to implement security advice.

CHAPTER 5. RELATED WORK AND CONCLUSIONS 233

Harmless Advice In Chapter 3, we examined how, in ordinary aspect-oriented

programming, security and other advice added after the fact to an existing codebase

could disrupt important data invariants and prevent local reasoning. Instead, we

showed that many common aspects, including security advice, could be implemented

as harmless advice. Harmless advice had the advantage that it could be added to

a program after the fact, in the typical aspect-oriented style, without corrupting

important mainline data invariants. As a result, programmers using harmless advice

retained the ability to perform local reasoning about partial correctness of their

programs.

Harmless advice used a novel type and effect system related to information-

flow type systems to ensure that harmless advice could not modify the behavior

of mainline code. We proved a noninterference property using a proof technique

based on simultaneous execution of programs by Simonet and Pottier [45]. We then

used this noninterference property, combined with the type safety of the translation

from the source language to the core language, to show that aspects in our source

language, Harmlessaml, were harmless.

Finally, to demonstrate the usefulness of harmless advice for security, we imple-

mented in Harmlessaml many of the security examples used by the Naccio execution

monitoring system by Evans and Twyman as harmless advice. We found that

many access control tasks could be performed by harmless advice. As such, aspects

to implement security tasks could be added after-the fact without modifying the

underlying behavior of the main program.

Interference Policies Finally, in Chapter 4, we expanded Harmlessaml to allow

programmers to create interference policies for system libraries to define how those

CHAPTER 5. RELATED WORK AND CONCLUSIONS 234

libraries can be used by aspects. These policies used a selection of compile-time type

checking and run-time monitoring to enforce the desired degree of harmlessness on

aspect-oriented programs.

To test our interference policy mechanism on a system library, we performed a file

i/o case study. We demonstrated that, in addition to many other possibilities, inter-

ference policies could certainly be used to enforce the previous chapter’s definition of

“harmlessness” on a file i/o library. We formalized an underlying noninterfering file

i/o library in the core calculus, extending the FHRM and FHRM2 syntax, operational

semantics, and type system to include a idealized file system. We proved that the

new core file system was type-safe and preserved strong noninterference properties.

We then demonstrated that we could define an interference and resource policy for

the source-level file i/o library that defined a type-safe translation to the baked-

in noninterfering core-level file i/o library. This allowed us to prove that aspects

that use the source-level file system were harmless. Therefore, we showed that

an interference policy on a system library specified by our policy language could

continue to enforce our original view of harmlessness for advice that used that

system library.

Bibliography

[1] M. Abadi and C. Fournet. Access control based on execution history.

In Proceedings of the 10th Symposium on Network and Distributed System

Security, pages 107–121, Reston, VA, Feb. 2003. Internet Society.

[2] J. Aldrich. Open modules: Modular reasoning about advice. In European

Conference on Object-Oriented Programming, pages 144–168, July 2005.

[3] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni, J. Tibble,

and M. Verbaere. Semantics of static pointcuts in AspectJ. In Proceedings of

the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 11–23, New York, NY, USA, January 2007. ACM Press.

[4] L. Bauer, J. Ligatti, and D. Walker. Composing security policies in polymer. In

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 305–314, New York, NY, USA, June 2005.

ACM Press.

[5] M. Blume and A. W. Appel. Hierarchical modularity. ACM Transactions on

Programming Languages and Systems, 21(4):813–847, 1999.

235

BIBLIOGRAPHY 236

[6] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. muABC: A minimal

aspect calculus. In P. Gardner and N. Yoshida, editors, Proceedings of the

15th International Conference on Concurrency Theory, volume 3170 of Lecture

Notes in Computer Science, pages 209–224, Berlin, Germany, Sept. 2004.

Springer.

[7] C. Clifton and G. T. Leavens. Observers and assistants: A proposal for modular

aspect-oriented reasoning. In Foundations of Aspect-oriented Languages, Apr.

2002.

[8] A. Colyer and A. Clement. Large-scale AOSD for middleware. In Proceedings

of the 3rd international conference on Aspect-oriented software development,

pages 56–65. ACM Press, 2004.

[9] D. S. Dantas and D. Walker. Harmless advice. In International Workshop on

Foundations of Object-oriented Languages, Jan. 2005.

[10] D. S. Dantas and D. Walker. Harmless advice. In Symposium on Principles of

Programming Languages, pages 383–396, Jan. 2006.

[11] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. PolyAML:

A polymorphic aspect-oriented functional programming language. In

International Conference on Functional Programming, pages 306–319, Sept.

2005.

[12] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. AspectML:

A polymorphic aspect-oriented functional programming language. ACM

Transactions on Programming Languages and Systems, To appear, 2007.

BIBLIOGRAPHY 237

[13] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction

analysis of stateful aspects. In International Conference on Aspect-oriented

Software Development, pages 141–150, Mar. 2004.

[14] Úlfar. Erlingsson and F. B. Schneider. SASI enforcement of security policies: A

retrospective. In Proceedings of the New Security Paradigms Workshop, pages

87–95, Caledon Hills, Canada, Sept. 1999.

[15] Úlfar. Erlingsson and F. B. Schneider. IRM enforcement of Java stack

inspection. In IEEE Symposium on Security and Privacy, pages 246–255,

Oakland, California, May 2000.

[16] D. Evans. Policy-Directed Code Safety. PhD thesis, MIT, 1999.

[17] D. Evans and A. Twyman. Flexible policy-directed code safety. In IEEE

Security and Privacy, Oakland, CA, May 1999.

[18] R. E. Filman and D. P. Friedman. Aspect-oriented programming is

quantification and obliviousness. In R. E. Filman, T. Elrad, S. Clarke,

and M. Akşit, editors, Aspect-Oriented Software Development, pages 21–35.

Addison-Wesley, Boston, 2005.

[19] R. E. Filman and D. P. Friedman. Aspect-Oriented Software Development,

chapter Aspect-Oriented Programming is Quantification and Obliviousness,

pages 21–35. Addison-Wesley, Boston, MA, 2005.

[20] M. Fiuczynski, Y. Cody, R. Grimm, and D. Walker. Patch(1) considered

harmful. In Proceedings of the 10th Workshop on Hot Topics in Operating

Systems, pages 91–96. USENIX, July 2005.

BIBLIOGRAPHY 238

[21] A. Gordon and C. Fournet. Stack inspection: theory and variants. ACM

Transactions on Programming Languages and Systems, 25(3):360–399, May

2003.

[22] R. Harper and C. Stone. A type-theoretic interpretation of Standard ML. In

Proof, Language and Interaction: Essays in Honour of Robin Milner. The MIT

Press, 1998.

[23] F. Henglein, H. Makholm, and H. Niss. Advanced Topics in Types and

Programming Languages, chapter 3, pages 87–135. MIT Press, Cambridge,

MA, 2005.

[24] List of main users. AspectJ Users List: aspectj-users@eclipse.org, June 2004.

Requires subscription to access archives.

[25] A. Igarashi, B. Pierce, and P. Wadler. Featherweight java. In ACM conference

on Object-Oriented Programming, Systems, Languages and Applications,

volume 34 of ACM Sigplan Notices, pages 132–146, Denver, CO, Aug. 1999.

ACM Press.

[26] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of typed aspect-oriented

programs. Unpublished manuscript., 2003.

[27] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-

oriented programs. In European Conference on Object-Oriented Programming,

Darmstadt, Germany, July 2003.

[28] R. Jagadeesan, A. Jeffrey, and J. Riely. Typed parametric polymorphism for

aspects. Science of Computer Programming, 2006.

BIBLIOGRAPHY 239

[29] S. Katz. Diagnosis of harmful aspects using regression verification. In

Foundations of Aspect-Oriented Languages, Mar. 2004.

[30] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An

overview of AspectJ. In European Conference on Object-oriented Programming.

Springer-Verlag, 2001.

[31] G. Kiczales and M. Mezini. Aspect-oriented programming and modular

reasoning. In International Conference on Software Engineering, pages 49–58,

New York, NY, USA, 2005. ACM Press.

[32] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and

O. Sokolsky. Formally specified monitoring of temporal properties. In European

Conference on Real-time Systems, York, UK, June 1999.

[33] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect advice

modularly. In Foundations of Software Engineering, Oct.-Nov. 2004.

[34] D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of

Standard ML. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 173–184, New York, NY, USA,

January 2007. ACM Press.

[35] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime

assurance based on formal specifications. In International Conference on

Parallel and Distributed Processing Techniques and Applications, Las Vegas,

June 1999.

BIBLIOGRAPHY 240

[36] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual collaborations

– combining modules and aspects. The Computer Journal, 46(5):542–565,

September 2003.

[37] J. Ligatti, D. Walker, and S. Zdancewic. A type-theoretic interpretation of

pointcuts and advice. Science of Computer Programming: Special Issue on

Foundations of Aspect-Oriented Programming, 63(3):240–266, Dec. 2006.

[38] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics of aspect-

oriented programs. In G. T. Leavens and R. Cytron, editors, Foundations of

Aspect-Oriented Languages Workshop, pages 17–25, Apr. 2002.

[39] H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual caml: an aspect-

oriented functional language. In Proceedings of the 10th ACM SIGPLAN

International Conference on Functional Programming, pages 320–330, New

York, NY, USA, Sept. 2005. ACM Press.

[40] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard

ML (Revised). MIT Press, 1997.

[41] A. C. Myers. Jflow: Practical mostly-static information flow control. In

ACM Symposium on Principals of Programming Languages, pages 226–241,

Jan. 1999.

[42] J. Ovlinger. Combining Aspects and Modules. PhD thesis, Northeastern

University, Apr. 2004.

[43] G. D. Plotkin. A note on inductive generalization. In Machine Intelligence,

volume 5, pages 153–163. Edinburgh University Press, 1970.

BIBLIOGRAPHY 241

[44] G. D. Plotkin. A further note on inductive generalization. In Machine

Intelligence, volume 6, pages 101–124. Edinburgh University Press, 1971.

[45] F. Pottier and V. Simonet. Information flow inference for ML. ACM

Transactions on Programming Languages and Systems, 25(1):117–158, Jan.

2003.

[46] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis

for aspect-oriented programs. In International Symposium on Foundations of

Software Engineering, pages 147–158, 2004.

[47] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1), 2003., 21(1):5–19, 2003.

[48] F. B. Schneider. Enforceable security policies. ACM Transactions on

Information and Systems Security, 3(1):30–50, Feb. 2000.

[49] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and

H. Rajan. Information hiding interfaces for aspect-oriented design. In European

Software Engineering Conference/International Symposium on Foundations of

Software Engineering, pages 166–175, 2005.

[50] S. Tse and S. Zdancewic. Run-time principals in information-flow type systems.

Transactions on Programming Languages and Systems, 2006. To appear.

[51] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-

order languages. In International Conference on Aspect-Oriented Software

Development, pages 158–167, Mar. 2003.

BIBLIOGRAPHY 242

[52] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic

join points in aspect-oriented programming. Transactions on Programming

Languages and Systems, 26(5):890–910, 2004.

[53] M. Wang, K. Chen, and S.-C. Khoo. On the pursuit of staticness and

coherence. In Proceedings of the 5th Workshop on Foundations of Aspect-

Oriented Languages, Mar. 2006.

