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ABSTRACT
End users, edge networks, content providers, and service
providers alike all need effective ways to counteract traffic
discrimination—the selective (mis)treatment of packets as
they flow through the Internet. However, preventing dis-
crimination, or even detecting ongoing discrimination, is
difficult in practice. Instead, our solution (which we call
surelinks) forces the discriminator to introduce more easily
detectable loss and delay, and then moves traffic away from
offending paths. Surelinks combine three techniques: en-
cryption of aggregate traffic between edge nodes, multipath
routing to circumvent performance problems, and stealth
probing for accurate measurements in an adversarial set-
ting. Experiments with our prototype system, implemented
in the Click router, demonstrate that surelinks have practi-
cal overhead comparable to destination-based forwarding.

1. INTRODUCTION
Traffic discrimination involves dropping, delaying, or mod-

ifying data packets based on their contents. The discrimina-
tion may be performed by a router or firewall along the path,
or by using routing-protocol attacks to direct the packets to
an end host for further processing. Traffic discrimination
comes in many forms, as the following examples illustrate:

Censorship: Censorship involves filtering or modifying
traffic based on packet headers (e.g., IP addresses or TCP
port numbers) or the payload. Common examples include
Web-filtering software and the censoring of politically-sensitive
material by the “Great Firewall of China.” As another ex-
ample, the Canadian ISP Telus blocked access to Web sites
supporting a strike of the Canadian Telecommunications
Workers Union against Telus [1].

Differentiated services: ISPs may offer differentiated
services by placing high-priority traffic in the “gold queue,”
based on the packet headers, as a paid service for their cus-
tomers. Alternatively, an ISP may charge content providers
a fee to avoid having their traffic receive poor performance in
the “bronze queue.” These fears about traffic discrimination
lie at the heart of the ongoing “net neutrality” debate, where
content providers have advocated (unsuccessfully, thus far)
legislation to prevent discrimination [2].

Biasing measurement results: Monitoring services like
Keynote collect measurements to rate ISPs in terms of per-
formance. ISPs have an incentive to give preferential treat-
ment to the measurement traffic to improve their rankings,
leading Keynote to respond by employing “anti-gaming”
techniques [3]. ISPs also have an incentive to give pref-
erential treatment to the active probes their customers send
to verify service-level agreements.

Malicious attacks: Anecdotal evidence suggests that
router compromises, either from remote attackers or dis-

gruntled network operators, have become an operational re-
ality [29]. Once in control of a router, the adversary may
configure packet filters that drop or delay a subset of the
traffic. Alternatively, the adversary may launch a routing-
protocol attack to attract the traffic to an end host under
his control. Either way, the adversary may selectively drop
traffic to target a particular victim or to evade detection.

In this paper, we propose techniques for counteracting
discrimination, regardless of the motives of the discrimi-
nating party.1 Encryption clearly has an important role to
play in preventing discrimination. For example, the Peace-
fire anticensorship software [4], released as early as 1996,
uses encryption to thwart Web-filtering firewalls. Encryp-
tion makes traffic classification more difficult, forcing the
discriminator to either spend more resources to classify traf-
fic or apply coarse-grained discrimination rules that make
his actions easier to detect. However, encryption does not
entirely prevent discrimination. Classification may still be
possible through traffic analysis (e.g., analyzing packet sizes
and timing), as in Narus’ techniques for identifying Skype
traffic [31]. Furthermore, as a proactive technique, encryp-
tion alone cannot react to ongoing discrimination; instead,
encryption should be complemented by reactive techniques
that circumvent discriminating devices.

One seemingly natural solution is to automatically de-
tect discriminating paths or devices and route around them.
However, we argue that detecting discrimination is both
hard and, in fact, unnecessary. Detecting discrimination is
fundamentally difficult without a reference model of “neu-
tral” behavior. Because the end users and applications ac-
cessing the Internet receive variable levels of service in an
unpredictable fashion even during normal operation, a pre-
cise definition of “neutrality” has remained elusive despite
significant efforts to formalize it [17]. Instead, we advocate
a solution that does not require detecting discrimination.
In particular, we force the discriminator to create easily-
measurable packet loss or delay, and move traffic to alternate
paths when measurements reveal bad performance.

Our solution, called surelinks (secure virtual links), has
two main ingredients:

• Encryption of aggregated traffic: Packets are di-
rected via an encrypted tunnel between edge routers
(or end hosts). This forces the discriminator to resort
to coarse-grained discrimination that triggers measur-
able performance disruptions on the end-to-end path.

• Multipath routing: Upon detecting bad performance,
the edge node can select an alternate path for the sure-
link (if multiple paths exist) or direct traffic on an over-
lay path consisting of two or more surelinks. Accurate

1Note, however, that we use the terms discriminator and
adversary interchangeably.



measurements, even when an adversary is trying to
bias the results, are important. Our stealth probing
protocol achieves this goal by sampling traffic using a
keyed hash of the packets at each end of a surelink.

In Section 2, we present the threat model. Section 3 de-
scribes how surelinks use encryption of aggregated traffic
and multipath routing to counteract discrimination. Then,
Section 4 describes how stealth probing provides secure avail-
ability monitoring. Section 5 presents our prototype imple-
mentation of surelinks in the Click platform. The evaluation
of our prototype in Section 6 illustrates that surelinks can
run at high speed, even on a software router. We discuss re-
lated work in Section 7 and conclude the paper in Section 8.

2. THREAT MODEL
In this paper, we present techniques that counteract an

adversary, possibly located in-between the communicating
parties, who tries to selectively degrade the performance of,
or entirely prevent, communication between end systems.
More precisely, we say that a path is available if end hosts
can make use of this path to communicate. According to this
definition, the availability of a path can be determined by
the performance requirements of the end hosts and the per-
formance characteristics of the path. Common performance
characteristics are the loss rate, delay, jitter of the delay, and
available bandwidth. In affecting availability, the adversary
may affect any of these quantities so that the availability re-
quirements of the end hosts are not met—our focus in this
paper will be on the loss rate and delay.

The simplest form of discrimination involves a network
device (e.g., a router) blocking a subset of the packets while
allowing the remaining packets through. More broadly, dis-
crimination aims to differentiate service quality by classify-
ing traffic based on source and destination addresses, port
numbers, or payload content and treating the classes pref-
erentially. Discrimination requires the ability to inspect the
traffic either through wiretapping or through the control of
network equipment such as a router or middlebox. Traffic
may also be intercepted through routing-protocol attacks.
Discrimination also requires the ability to affect the service
offered to the traffic. The service can be affected by discard-
ing, modifying, or degrading the performance of the traffic.
Discarding traffic that crosses a router is straightforward by
installing packet filters in the data plane. Modifying traffic
may involve the formation of data wormholes through the
deflection of victim traffic to remote hosts (such as network
scrubbers or botnets). Degrading performance may involve
the configuration of low-priority queues, the formation of
data wormholes, or remote denial-of-service attacks target-
ing links of the communication path.

3. SURELINKS: SECURE VIRTUAL LINKS
A surelink counteracts discrimination through a combina-

tion of proactive and reactive countermeasures. The proac-
tive countermeasure is an encrypted tunnel between hosts or
routers that carries a mix of traffic. The encrypted tunnel
makes traffic classification hard and forces the adversary to
inflict more collateral damage on non-targets. The reactive
countermeasures reroute traffic away from badly-performing
paths, by picking an alternate path through the network or
directing traffic through a sequence of surelinks. The indi-
vidual mechanisms have been applied in different contexts,

including encrypted tunnels in virtual private networks [39]
as well as techniques for rerouting in non-adversarial settings
(e.g., intelligent route control [19] and resilient overlay rout-
ing [10]). In our work, we combine these two mechanisms,
along with secure availability monitoring, to allow surelinks
to counteract discrimination in an adversarial setting.

3.1 Proactive: Encrypting Aggregated Traffic
Encryption is a first line of defense against discrimination.

The simplest form of traffic classification, and the one em-
ployed by the majority of firewalls, is by inspection of the
string of bits that comprises a packet; encryption makes this
string of bits, in part, unintelligible to the firewall. The in-
formation that encryption hides depends on the layer in the
network stack where it is applied:

Encrypting the application data: Encryption can be
performed between the transport and application layers, as
in TLS [15]. Although the application payload is protected,
the discriminator can still drop or delay packets based on
the transport-layer protocol and port numbers, or the IP
addresses of the communicating end-points.

Encrypting the transport header: Encryption can
be performed between the network and transport layers, as
in IPsec [24]. Hiding the port numbers helps conceal the
application the end-points are running. However, the IP
addresses of the communicating end-points are still visible,
and the discriminator may be able to identify the application
based on packet sizes and timing.

The information that encryption hides also depends on
the network device (host or middlebox/router) performing
the encryption. Encrypting aggregated traffic makes traffic
analysis harder, and forces the adversary to resort to coarse-
grained discrimination that is easier to detect. Routers or
middleboxes can direct traffic through an encrypted tun-
nel that hides the IP addresses of the communicating end-
hosts and mixes traffic from a variety of users. Directing
traffic through a network relay can also hide the addresses
of the communicating endpoints. For example, some anti-
censorship systems allow hosts to bypass a firewall by com-
municating indirectly through a circumventor [4, 5] using
TLS to encrypt the traffic. Using IPsec is more appealing
than TLS in this scenario as well, since TCP-based tunnels
are ill-suited for certain applications such as streaming.

In our design of surelinks, we use IPsec—we decided against
TLS for the aforementioned reasons. Nodes (hosts or edge
routers) direct packets over an IPsec tunnel that carries a
mix of traffic. The edge nodes establish the tunnel in an
automated fashion, using DNS and the Internet Key Ex-
change (IKE) [20]. DNS enables the automated discovery of
hosts and surelink-compliant network devices. IKE is used
to establish security associations with authorized devices.
Tunnel establishment is discussed in greater detail in [13].

3.2 Reactive: Selecting Alternate Paths
Multipath routing, coupled with accurate performance

measurements, can counteract discrimination by circumvent-
ing the discriminating network devices. Multipath routing
is based on a virtual topology of surelinks created by a group
of hosts and routers. Surelinks connect relay points located
in the hosts and routers. Traffic is directed over paths with
higher availability either by following one of multiple under-
lying paths between a pair of relay points or by following
virtual paths consisting of a sequence of surelinks.



Moving traffic to alternate (non-discriminating) paths is
feasible only if the network has sufficient path diversity. For-
tunately, many users and edge networks connect to the Inter-
net in multiple locations, often through different upstream
providers. Although each connection offers a different path
to the destination, these paths sometimes have nodes and
links in common; support for multipath interdomain rout-
ing [37] would offer even greater path diversity. Alterna-
tively, the end hosts or edge routers could create additional
diversity by forming an overlay network that directs traf-
fic through intermediate nodes [4]. Furthermore, a wire-
less broadband user can shift traffic to a different upstream
provider by cooperating with other wireless users [9]. For
example, if user A experiences poor performance accessing
destination X, A could use the wireless network to tunnel
traffic through user B’s machine. Each of these techniques
offers end users and edge networks significant opportunities
to circumvent discriminating paths.

Using multipath routing to circumvent discrimination re-
lies on accurate monitoring of path performance. These
measurements must be robust to a discriminator that tries
to evade detection by preferentially treating the measure-
ment traffic while simultaneously dropping or delaying the
regular data packets. Although end users are the definitive
judges of communication quality, manual detection of dis-
crimination, as is the case today in, say, the Peacefire sys-
tem, can be a tedious process. Automating detection can
lead to more effective and scalable countermeasures against
discrimination. In the next section, we describe how sure-
links can apply stealth probing, our automated technique for
measuring path performance in the presence of adversaries.

4. SECURE AVAILABILITY MONITORING
Robust measurements of path performance are crucial for

driving the routing decisions for surelinks. In contrast to tra-
ditional intelligent route control (IRC) schemes that assume
a benign network, we must ensure that an adversary cannot
bias the measurement results to make round-trip paths he
controls look better than better paths he doesn’t control. For
example, if path p, free from the adversary, experiences 5%
packet loss and path q, controlled by the adversary, experi-
ences 25% packet loss, the adversary should not be able to
trick the measurement process to prefer q over p. After dis-
cussing the limitations of existing measurement techniques,
we describe how stealth probing can prevent the adversary
from biasing measurement results. Then, we describe how
to tune the sampling rate and discuss why stealth probing
operates at the network layer.

4.1 The Case for Passive Probing
Existing measurement techniques are either active (send-

ing probe packets and observing their performance) or pas-
sive (collecting statistics for existing traffic). Both approaches
have serious limitations in an adversarial setting, arguing for
an alternative approach we call “passive probing.”

Active measurement involves sending probes from one
node to another using ICMP packets (e.g., echo requests and
replies), UDP packets (e.g., DNS queries and responses), or
TCP packets (e.g., HTTP downloads). Active measurement
is heavily used in IRC systems that reroute traffic to circum-
vent failures and network congestion, especially since active
probes can measure alternate paths that are not currently
in use by regular data traffic. However, active probes intro-

duce extra packets that consume resources along the path—
the probes may, in fact, interfere with the very properties
they are designed to measure. In addition, the probes must
be designed carefully to ensure they observe the same sta-
tistical properties that the real traffic does, which is quite
challenging in practice [14].

Perhaps more importantly, an adversary on the data path
can easily distinguish probe packets from normal traffic, and
treat the probes preferentially (e.g., by delivering the probes
while discarding or delaying non-probes). The probe pack-
ets may be identified based on their protocol number (e.g.,
ICMP) or IP addresses (e.g., if they correspond to dedicated
probing servers), as well as other information such as their
size or timing. Concealing the probes by, for example, keep-
ing the identities of probing servers secret, would imply the
compromise of security once these identities are leaked ei-
ther through traffic analysis or other means. In fact, any
attempts to achieve security by the secrecy of the identities
of the probing machines would be a direct violation of the
Kerckhoffs’ principle that “the enemy knows the system.”
We do not expect that active probes mounted from hosts can
be made indistinguishable while still retaining their ability
to measure the path performance of the data traffic (which
precludes employing overlay-based anonymizing techniques)
without the direct involvement of the routers. Furthermore,
securing active probes by having routers add padding and
randomize the timing of probes, while helpful, would in-
crease measurement overhead and decrease accuracy.

Passive measurement observes the existing traffic travers-
ing a link. As a result, passive measurement is typically used
to collect statistics about the traffic load and application
mix, rather than to observe path performance. One excep-
tion is Listen [35], which passively monitors the progress
of TCP flows to identify reachability problems. However,
solutions like Listen require per-flow state and cannot dis-
tinguish between server and network failures; in addition,
in the absence of encryption, an adversary could conceiv-
ably impersonate the destination to evade detection. An-
other passive monitoring scheme is Trajectory Sampling [16],
which observes the same packets at multiple monitoring lo-
cations. However, sampling must be done carefully to ensure
that the adversary does not know which packets serve as im-
plicit probes. In addition, using trajectory sampling to drive
routing decisions requires a way to provide feedback to the
ingress node about path performance.

Instead, we advocate a hybrid solution we call “passive
probing” in which we select (or sample) a subset of the ex-
isting packets to serve as implicit probes. To provide feed-
back to the ingress node, the remote end-point of the sure-
link sends an acknowledgment packet in response to each
sampled packet. In contrast to active probing, passive prob-
ing does not introduce much extra traffic because of the
small size of the acknowledgments. Furthermore, passive
probing enables performance inference robust to adversaries
through the concealment of probes and a performance in-
ference methodology that is based on statistical sampling
theory. To provide performance measurements for all paths,
the surelink end-points split traffic over multiple paths; path
splitting is attractive for a variety of other reasons, including
more flexible load-balancing policies and limiting the ability
of a single adversary to see all of the traffic.

4.2 Stealth Probing



Stealth probing is a secure passive probing protocol that
relies on the following three processes:

A sampling process selects a subset of the packets cross-
ing the path to serve as implicit probes. The output of
this process becomes available to both the ingress end-point,
which expects an ACK for each probe, and the egress end-
point, which replies with an ACK. By keeping a times-
tamp for each probe, the ingress end-point can measure both
packet loss and round-trip delays.

A concealment process prevents an on-path adversary
from distinguishing between probe and non-probe packets.
This process precludes the preferential treatment of probe
packets by the adversary.

An integrity assurance process prevents an adversary
from inducing inaccurate measurements by modifying traf-
fic, injecting forged traffic, or replaying old traffic (either
data packets or ACKs).

To ensure that both end-points select the same packets as
probes, the sampling is pseudorandom, using a hash func-
tion. The ingress and egress end-points apply the same hash
function to a subset of bytes in the data packet, ignoring the
bytes that change as the traffic traverses the network (e.g.,
the IP checksum and TTL fields) or have very low entropy
(e.g., the IP version number), as in trajectory sampling [16].
If the image of the hash falls below a predetermined thresh-
old, the packet is treated as an implicit probe; otherwise,
the packet is a not a probe. The concealment process is
implemented by choosing the hash function in a way that
prevents the adversary from learning the hash. For exam-
ple, the end-points could sample using a keyed hash function
or encrypt all of the data packets to ensure the adversary
cannot distinguish between probe and non-probe traffic. In-
tegrity assurance is achieved through authentication of data
packets and acknowledgments.

For each passively-sampled data packet, the egress end-
point sends an acknowledgment back to the ingress end-
point. In theory, we could reduce the overhead of stealth
probing by having the egress end-point send periodic re-
ports about a window of probe packets instead of per-probe
acknowledgments. However, periodic snapshots would lead
to slower detection of packet losses and would prevent ac-
curate estimates of round-trip times, making it difficult for
the ingress end-point to react to attacks (such as data worm-
holes) that introduce delay. Although explicit acknowledg-
ments introduce overhead, these packets are much smaller
than the average data packet, limiting the overhead.

Stealth probing measures for each sample the sum of the
delay of the corresponding data packet from ingress to egress
plus the delay of the acknowledgment in the reverse direc-
tion. It is important to note that the egress end-point does
not conceal the acknowledgment through any sort of encryp-
tion, padding, or randomized timing. Therefore, the adver-
sary can give preferential treatment to acknowledgments so
that they experience different delay than the data packets in
the direction from egress to ingress. However, by dropping
or delaying an acknowledgment, the adversary would only
make the round-trip path performance look worse, leading
the surelink end-points to select an alternate path. Fur-
thermore, the margin the adversary has for improving the
delay of the acknowledgments is upper bounded by a small
value equal to the queuing delay in the adversary’s routers
of the path. Also note that since stealth probing provides
round-trip performance measurements, the two end-points

of the surelink may need to coordinate when they choose al-
ternate paths. This is especially important when the paths
are asymmetric, since an adversary on the reverse path may
have an incentive to discredit the performance of a benign
forward path by selectively dropping ACK packets.

4.3 Performance Inference from Samples
Because stealth probing samples packets essentially ran-

domly, we can use statistical sampling theory [36] to com-
pute tight statistical bounds on the estimation error vis-a-vis
exhaustive measurements. In this section, we use this the-
ory to answer the question of how low to set the sampling
rate in stealth probing so as to achieve a target statistical
accuracy. Rather than present a definitive sampling rate, we
present a methodology for making informed decisions about
it according to the requirements of individual networks.

We will illustrate the methodology with a specific exam-
ple. Consider a pair of networks jointly deploying stealth
probing in the pair of their adjoining paths (forward/reverse).
The network operators must make a decision about which
value to set the sampling rate to. This decision involves a
trade off between the benefit and cost of monitoring.

Suppose that the objective of the network operators in
deploying stealth probing is to determine whether the loss
rate of the round-trip path exceeds a loss-rate-threshold λ0,
raising an alarm if it is above. (A packet is considered lost if
an ACK is not received or if the round-trip delay exceeds a
delay-threshold.) I.e., the monitor must decide between two
hypotheses, H0, the loss rate is below λ0, vs. H1, the loss
rate is above λ0 using the results of the probes. There are
two types of possible errors. If H0 is falsely rejected, there
is a false alarm. If H1 is falsely rejected, there is a miss.
Finding an algorithm to decide between H0 and H1 involves
a trade-off between the probabilities of the two types of er-
rors, since one can always be made arbitrarily small at the
expense of the other. The Neyman-Pearson criterion [27]
for balancing the errors is to place an upper bound on the
false-alarm probability and, given this bound, to minimize
the miss probability. The choice of a false-alarm probability
involves a trade off between the benefit and cost of monitor-
ing. As the false-alarm probability increases, the benefit of
monitoring decreases since the value of the information con-
tained in an alarm decreases. However, reducing the false-
alarm probability requires expending additional resources
in taking measurements, increasing the cost of monitoring.
The choice of a false-alarm probability is situation-specific.

Given the false-alarm probability, the network operators
can decide on a sampling rate by an iterative process. Ac-
cording to this process, the sampling rate is successively in-
creased and the corresponding impact on precision is gauged.
Given a sequence of trials, network operators can decide on
a value for the sampling rate based on the desired precision.
More specifically, given a false-alarm probability and a sam-
pling rate, an algorithm for the hypothesis-testing problem
can be devised. In the example, it is possible to use an op-
timal (uniformly most powerful [27]) algorithm. In Fig. 1,
we plot the probability of false alarm as a function of the
number of losses in a window of packets for increasing val-
ues of the sampling rate. We assume that the probability
of a false alarm is 5%, the observation window is 10, 000
packets, and the loss-rate threshold is 10% (corresponding
to 1000 packets). We observe that there are diminishing re-
turns by increasing the sampling rate and that there is little
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Figure 1: Probability of an alarm as a function of
the number of losses for different sampling rates.

value in increasing the sampling rate above 2%.

4.4 Network-layer Monitoring
Our design of a secure availability monitor places the key

monitoring functions at the network layer of either a host
or a network device (middlebox/router). An interesting al-
ternative would be to have applications perform their own
monitoring, to enable greater customization of the measure-
ments according to application-specific requirements. Such
an approach would resemble current practices of users man-
ually detecting the loss of availability but would take such
practices one step further by trying to automate the pro-
cess. However, relying on application developers to incor-
porate customized monitors would add a dependency that
could delay adoption of discrimination countermeasures by
the end users. Furthermore, the majority of IP traffic is gen-
erated by a narrow set of applications, such as Web, e-mail,
VoIP, and P2P. Therefore, we argue that monitoring does
not need to be highly customizable to be effective.

Placing the network-layer monitoring at end hosts is at-
tractive as it frees the users from dependencies on third par-
ties, such as application developers and network providers,
who might in fact oppose the deployment of discrimination
countermeasures. However, placing monitors at edge routers
is an even more attractive option for the following reasons:
First, the edge router sees a much higher volume of traffic,
enabling fast, accurate detection of performance problems.
In contrast, each host sees only a small subset of the traffic,
making detection slower. Second, the edge router can react
to the measurement results by shifting traffic away from a
faulty path. Furthermore, in shifting traffic to new paths,
the edge router can manage the aggregate traffic demands
with the organization’s load-balancing policies in mind. In
contrast, end hosts typically do not have sufficient visibil-
ity or control to take corrective action. Transferring control
from the organization’s network to the end hosts would lead
to extra overhead and additional security risks from com-
promised hosts. Third, although detection of a path failure
by an edge router monitoring a path to another router nat-
urally implies that this path should be avoided, detection of
a path failure by a host monitoring a path between hosts is
ambiguous as to whether a router in the path or the traf-
fic’s destination has failed. Finally, monitoring between edge
routers requires only one security association for each pair of
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Figure 2: Packet format of ESP in tunnel-mode. E
stands for encryption and A for authentication. ESP
performs encryption before authentication (left).
Stealth probing performs the reverse (right).

stub networks. In contrast, managing security associations
for all pairs of end hosts would be complicated.

5. IMPLEMENTATION
We prototyped surelinks to evaluate their performance

and make them available for use in operational systems.
We used the the Click [25] platform for building software
routers. Open-source routers serve as research platforms [8]
and are also offered as commercial products, typically de-
ployed at enterprise networks. We used the Click framework
for building software routers because, by comparison to the
native Linux support for routing, Click has better support
for extensibility. This enabled us to efficiently implement
data forwarding functionality critical to the performance of
our system (such as the integration of IPsec security policy
with data forwarding outlined in Section 5.3) in a straight-
forward fashion. Our implementation of IPsec tunnels has
been incorporated in the standard Click distribution.

A Click router is a set of interconnected packet process-
ing modules running in a kernel thread. These modules, also
called elements, are C++ objects. Elements and their in-
terconnections can be represented by a directed graph, also
called a Click configuration, that characterizes the process-
ing flow of packets. Surelinks were implemented using mod-
ules that extend an existing IP router Click configuration.
In the rest of this section, we present how we implemented
surelinks and also our implementation choices.2

5.1 Concealment and Integrity Assurance
The encryption and authentication required for conceal-

ment and integrity assurance are implemented using the En-
capsulating Security Payload (ESP) protocol [23] of IPsec in
tunnel mode, which provides end-to-end cryptographic pro-
tection at the IP layer. In tunnel-mode ESP, IP packets
are encapsulated by an ESP header and trailer containing
cipher-specific fields. The ESP packet is, first, tunneled by
encapsulating it in a new IP header (see Fig. 2), followed
by the application of symmetric ciphers to the encapsulated
packet. ESP uses a 32-bit sequence number as part of a
mechanism that protects from replay attacks. This mecha-
nism is also used in surelinks to protect from attacks that
introduce delays so as to reorder packets.

Our implementation of ESP is fully compliant with the
ESP standard with the exception that authentication is per-
formed before encryption (see Section 5.2). We used the
AES encryption cipher and the HMAC-SHA1 authentica-

2For the interconnection of Click modules in surelinks and
a summary of the control flow, the reader may refer to [13].



tion cipher; code for those ciphers was obtained from the
OpenSSL toolkit.

5.2 Sampling Based on the Keyed Hash
Several possibilities exist for implementing the sampling

process. One possibility is to hash immutable parts of the
inner IP packet (before encryption at ingress and after de-
cryption at egress) using, for example, modular division as
in trajectory sampling [16]. In order to avoid the addi-
tional overhead from modular operations, we chose a differ-
ent implementation of the sampling process that leverages
the pseudorandom output of the keyed hash that authen-
ticates the packet. Using the authenticator, sampling can
be performed by comparing its value (two bytes in our im-
plementation) to a threshold. However, ESP sends the au-
thenticator in the clear (see Fig. 2), making it easy for the
adversary to distinguish the probes. We address this by re-
versing the order of encryption and authentication (see Fig.
2). If encryption is performed in Cipher Block Chaining
(CBC) mode, performing authentication before encryption
has been shown to be secure [26]. Because SHA1 behaves
like a random function, the sampling probability is the same
for each packet, resulting in an unbiased selection of probes.

5.3 Integrating Security Policy & Forwarding
Security policy specifes what traffic should be protected

by the surelinks and how. This information must be ac-
cessible in an efficient and scalable manner. IPsec defines
a Security Policy Database (SPD) to store this information
at the ingress router through which policy is enforced using
packet filters. Rather than implement a separate SPD, we
integrate its functionality into the Forwarding Information
Base (FIB) of the router, possibly obviating the need for
additional filters. The FIB stores the outbound interface
per destination prefix and must be looked up for inbound
packets to make a forwarding decision. We extend the FIB
to support SPD functionality by adding an additional field
to each FIB entry. This field stores a pointer to the IPsec
security association (SA) for the corresponding destination
prefix or NULL, if surelinks have not been configured for
that prefix. In this way, irrespective of the number of out-
bound IPsec tunnels, the SA for encapsulating a packet is
retrieved simply by following the pointer of the FIB entry.
Configuring surelinks at a granularity finer than the existing
prefixes in the FIB can be achieved by installing FIB entries
for more specific prefixes (as the longest prefix match rule
selects the most specific entries). Access control lists that
match the five-tuple can provide even finer control.

Encapsulation at the ingress router and decapsulation at
the egress router should be performed using the same SA.
However, the egress router must decapsulate the packet be-
fore accessing the FIB, making the technique used by the
ingress router inapplicable. In order to retrieve the SA,
the egress router maintains a Security Association Database
(SADB) accessed using the Security Parameter Index (SPI),
a value that is stored in the ESP header of the incoming
packet. The SPI is a 32-bit integer that, together with the
address of the egress router, uniquely identifies the SA.

The only parameter that can affect the SA lookup delay,
and, thus, the scalability of the design, is the granularity of
security policy. Adding more prefixes in the FIB when sub-
prefixes require separate SAs will increase the FIB lookup
delay. Installing access lists will increase the packet pro-

cessing delay. Noticeable delays of those kinds could only
arise in a widespread deployment, in which case operational
practice would likely suggest a preferable method for imple-
menting granular policies. The number of inbound tunnels
at an egress router only affects the size of the hash table
that stores the SAs.

5.4 Consistent Traffic Splitting
Splitting inbound traffic to multiple outbound paths is

preferable to directing all traffic to a single path for sev-
eral reasons; it provides the ability to monitor traffic using
passive probing, to implement flexible load-balancing poli-
cies, and to limit the traffic any single adversary would see.
Traffic splitting is usually performed using a hash function
such as CRC16: The range of the hash function is divided
into intervals, where each interval corresponds to an out-
bound path, and hashing maps inbound packets to the in-
tervals. Most routers hash the source and destination IP
address fields of the packet; hashing the five-tuple is also
supported by some routers. In the general case, traffic is
split into unequal proportions (decided by a load balancing
algorithm such as [18]). We consider here the simpler case of
an even traffic distribution implying equal-length intervals.
This case may arise in practice if stealth probing makes a
binary decision to either use or avoid each path.

Even in this simple case, the aforementioned traffic-splitting
technique is known to perform poorly when paths are added
or deleted dynamically [21]. The reason is that additions and
deletions typically result in significant unnecessary changes
to the mapping between paths and TCP flows that may
cause the disruption of the flows. Consistent hashing [22]
can minimize changes when objects (such as web pages)
are mapped to a dynamic set of bins (such as web caches).
We have implemented a traffic splitting scheme for mapping
inbound IP traffic to outbound paths based on consistent
hashing that we evaluate in the next section. To our knowl-
edge, this is the first use of consistent hashing as an IP data
forwarding module.

5.5 Performance Monitoring
Upon sampling a packet, the egress router responds by

sending an ACK to the ingress router. To enable the ingress
router to match the ACK with the corresponding probe, the
ACK includes the SPI of the tunnel and the 32-bit sequence
number of the probe. We also authenticate the ACK using
the SA of the probe, which prevents (on-path or off-path)
adversaries from forging it. Receiving and generating ACKs
is handled by the corresponding Click kernel threads at the
ingress and egress routers, respectively, to avoid the over-
head of using a separate process.

Timing by the Kernel: Measuring losses and round-
trip delays requires timing the probes and ACKs at the
ingress router. Keeping a timeout per probe would meet
the timing requirements of the measurements and at the
same time make the result immediately available for moni-
toring performance. However, this method would incur sig-
nificant processing overhead for scheduling and cancelling
timeouts and because of the frequent interruption of the
kernel thread. We implemented a different timing method
that can decrease the CPU load by adding configurable de-
lays to the availability of measurement results. According to
this method, the data forwarding modules are only respon-
sible for logging and timestamping probes and ACKs while



losses and round-trip delays are computed by reading the
logs. Logs are read by a Path-Performance Monitor (PPM)
that has been implemented in user space. We elaborate on
the PPM later in this section.

The interface between the kernel and PPM is based on a
circular buffer that essentially acts as a queue between them.
The circular buffer is exported as a regular file using a Linux
proc-like filesystem called clickfs. There are two circular
buffers, one for the probes and one for the ACKs. An appli-
cable size for each buffer can be determined by the sampling
rate, the packet rate, and the round-trip time. For example,
if the bit rate of incoming traffic is 1Gbps and the average
packet size is 500B, then the packet rate is 250000pps. As-
suming also a sampling rate of 2% and a round-trip time of
1sec, the log should contain about 5000 entries. Each log
entry contains the 32-bit SPI, the 32-bit sequence number,
and a 64-bit timestamp. Therefore, 5000 entries correspond
to 80KB of memory.

Monitoring in User Space: The Path-Performance
Monitor (PPM) is a daemon implemented in Java that reads
the probe- and ACK-logs in order to measure losses and
round-trip delays. PPM should be invoked frequently enough
to prevent rollover of the circular buffers that would imply
loss of measurement data. Rollover could be prevented by
forced context switches from the kernel to PPM that we
decided against because they are intrusive. The kernel ad-
justs instead the priority of the PPM daemon according to
the occupancy levels of the buffers and warns PPM after a
rollover.

PPM processes the logs using the following algorithm:
First, the entries of the probe-log are added to a hash ta-
ble. Then, for each entry in the ACK-log the hash table is
queried for a matching probe. If a probe is found, the round-
trip delay is calculated and the probe is removed from the
hash table. Otherwise, the ACK is considered spurious and
it is silently discarded. If all entries in the ACK-log have
been processed and there are remaining probes in the hash
table, the probe timestamps are compared to the current
time for detecting possible losses.

6. EVALUATION
In this section, we present an evaluation of our prototype

implementation in terms of the latency that surelinks add
on top of IPsec/ESP and destination-based forwarding, the
increase in CPU load, and the resulting throughput penalty
for input traffic of different size. The experiments show
that surelinks perform comparably to IPsec and destination-
based forwarding for a realistic traffic mix.

6.1 Experimental Setup
Our testbed consists of four commodity PCs connected in

sequence by three Ethernet links (H1 ­ R1 ­ R2 ­ H2).
Nodes R1 and R2 run Click 1.5.0 and serve as routers, while
H1 and H2 serve as hosts. We set the MTU on links H1 ⇀
R1 and R2 ↽ H2 to 1400-bytes in order to avoid fragmenta-
tion due to IP and ESP encapsulation. Propagation delay is
negligible and the links are used exclusively by these nodes,
i.e., there is no cross traffic.

Each link is implemented using a crossover cable con-
nected to a dedicated Ethernet interface. Each PC has a
2.8 GHz Pentium-4 processor with 1 GB of RAM and run-
ning a Linux 2.6.16 kernel. We perform our experiments
both for 100Mbit (Realtek) and 1Gbit (D-Link) Ethernet
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Figure 3: Processing delay stealth probing adds to
a non-probe packet as a function of the packet size.

cards. The Ethernet device drivers used in our setup do
not support “device polling”, a technique used by Click for
improving performance. The effects are noticeable in the
1Gbit interfaces. Device polling would generally improve
throughput performance but it would not significantly affect
our comparisons. Note also that despite having full-duplex
links, routers cannot send and receive packets simultane-
ously as they are limited by the DMA (Direct Memory Ac-
cess) chip, which can process at most one transfer request at
a time. This negatively affects the throughput performance
of stealth probing which produces additional traffic in the
opposite direction (i.e., ACKs).

6.2 Processing Delay
Figure 3 shows the processing delay added by surelinks

at the ingress and egress routers to a non-probe packet as
a function of the packet size. This overhead is exclusively
due to IPsec/ESP processing, because stealth probing only
introduces an additional comparison operation.

Delays were measured using the Click profiler to record
the cycle counts of 50 echo requests sent from H1 to H2

going through the tunnel from R1 to R2. We report the
the minimum3 values at ingress and egress and their sum.
Stealth probing adds a total processing delay on top of IP
that varies between 14 and 31 µsec, depending on the packet
size. The increase in delay for larger packet sizes is due
to additional processing required by the authentication and
encryption ciphers.

If a packet is selected to serve as a probe, there is an
additional delay of 2.5 µsec at ingress (to update the log)
and 8.2 µsec at egress (to generate the ACK), giving a total
of 10.7 µsec, irrespective of packet size. Notably, this delay
occurs only x% of the time, where x is the sampling rate.

6.3 Data Throughput
To assess the effect of surelinks on data throughput, we

measure the Bulk Transfer Capacity (BTC) which corre-
sponds to the achievable throughput of a bulk transfer TCP
connection [34]. For this purpose, we have configured an
Iperf client on node H1 and an Iperf server on node H2 and

3Our measurements has small variations of the order of
0.1 µsec due to operating system activity.
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Figure 4: Data throughput with 100Mbps and
1Gbps links.

let the client send data to the server over a TCP at full
speed. Each experiment had a duration of 20 sec and was
repeated ten times; here we report the average values.

Fig. 4 shows the data throughput for four different config-
urations between R1 and R2: IP, IPsec/ESP, stealth probing
at 2% sampling rate, and stealth probing (at 2%) with con-
sistent hashing (selecting one among 100 tunnels). We show
measurements for 100 Mbps and 1 Gbps links. In the first
case, the stealth probing data rate is 5% less than IP and
1% less than IPsec/ESP, whereas in the second case, the
stealth probing data rate is 8% less than IP and 2% less
than IPsec/ESP. In both cases, consistent hashing further
decreases the data rate by 2%. As a note, stealth prob-
ing at zero sampling rate (no packets are selected as probes
and no ACKs are generated) had the same performance as
IPsec/ESP.

To measure the impact of the sampling rate (and ACK
packets) on bi-directional data throughput, we use an addi-
tional Iperf client and server pair to send data in the oppo-
site direction. Both TCP sessions begin simultaneously and
have a duration of 20 sec. Like before, each experiment is re-
peated ten times, and we report the average of the obtained
measurements. The link bandwidth for these experiments is
set to 100 Mbps.

Fig. 5 shows the data throughput of the two TCP sessions
as the sampling rate varies from 1% to 15%. We observe that
up to a 10% sampling rate, throughput decreases slowly as
the sampling rate increases; despite the linear increase in
ACK-traffic and the additional processing overhead for gen-
erating and reading the logs. We attribute this to the small
size of stealth-probing ACKs (80-bytes) and the efficiency of
our performance monitoring scheme.

6.4 CPU Resources
Figure 6 shows CPU utilization during the experiments of

the previous section that involve a single Iperf client-server
pair and TCP session. These figures were obtained using the
top utility. In comparison to IP, IPsec increases the CPU
utilization by 13% for 100 Mbps links and 26% 1 Gbps links.
In comparison to IPsec, stealth probing increases the CPU
utilization by 2% in both cases. Consistent hashing further
increases the CPU load by 2% in both cases. We observe
that most of the CPU resources are consumed in packet for-
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Figure 5: Impact of sampling rate on TCP through-
put.

IP IPsec / ESP STP (2%) STP (2%) − CH
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

til
iz

at
io

n 
(%

)

user (100Mbps)
user (1Gbps)
system (100Mbps)
system (1Gbps)

Figure 6: CPU Utilization of IP, IPsec, stealth prob-
ing sampling at 2%, and stealth probing with consis-
tent hashing in the data throughput experiment.

warding. In routers with high-speed links, packet forwarding
would typically be assigned to dedicated hardware.

It can also be seen that the user-space PPM module is
fairly non-intrusive for the processor since it contributes to
only 1% of the total load in both cases. We thus believe
that even in high-end routers performance monitoring could
be the responsibility of the CPU, whereas stealth probing
would have to be efficiently implemented in the data plane.

6.5 Packet Throughput
Finally, we compare the maximum zero-loss packet through-

put of stealth probing at zero sampling rate (which is equiva-
lent to that of IPsec), with and without consistent hashing,
with that of IP. Fig. 7(a) plots the performance achieved
for input traffic of fixed packet size, as a function of the
packet size. It can be seen that the overhead introduced
by stealth probing drops as packet size increases, becom-
ing almost negligible for 1400-byte packets (which are used
in the TCP-based throughput experiments of Section 6.3).
The bad performance for small packet sizes is due to the
large (fixed) overhead for processing packet headers, which
is, however, more relevant for small packets and is gradu-
ally being amortized as packet size grows. The throughput
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Figure 7: Packet throughput (a) under fixed-size
traffic and (b) under mixed traffic.

achieved for a more realistic traffic-mix is shown in Fig. 7(b).
Packet sizes are drawn from a probability distribution that
approximates traffic collected by NLANR during February
2001 [6, 7]. In this case, as expected, the impact of stealth
probing becomes less pronounced, since the large processing
overhead for small packets is compensated by the smaller
overhead for large packets.

By isolating the processing steps in surelinks we observed
that the IPsec/ESP encapsulation step is, somewhat unex-
pectedly, CPU intensive. This processing overhead trans-
lates to a significant impact on throughput as shown in
Fig. 7(a) and Fig. 7(b) (see the data marked as “IP en-
cap/decap,” which where obtained after a dummy encaspu-
lation and decaspulation step was added). We attribute this
to the fact that, in the current Click implementation, encap-
sulation involves a dynamic memory allocation and a mem-
ory copy operation per packet. We believe that this overhead
can be eliminated in a more optimized implementation.

7. RELATED WORK
Anticensorship systems such as Peacefire [4] and Psiphon

[5] use encryption to avoid firewalls. Encryption has also
been proposed to enforce net neutrality [38]. As argued ear-

lier in this paper, encryption by itself is not sufficient to
counteract discrimination. Perlman [33] proposed encryp-
tion between neighboring routers to make data and control
traffic indistinguishable and per-packet acknowledgments to
monitor the link between the routers. Surelinks use encryp-
tion between remote routers where availability monitoring is
performed using implicit probing based on sampling, which
makes monitoring unobtrusive.

Fatih [30] is a system for detecting and isolating ma-
licious routers using a traffic validation method that re-
lies on clock synchronization. Therefore, successful clock-
synchronization attacks could compromise the system. Be-
cause Fatih does not specify a secure clock synchronization
protocol, we cannot directly compare its security and effi-
ciency. Stealth probing does not depend on clock synchro-
nization. Furthermore, Fatih sends data packets in the clear,
allowing an adversary to selectively target the traffic. Sure-
links tunnel and encrypt the traffic to prevent this attack.

Secure traceroute [32] is a scheme for secure fault local-
ization that could conceivably be applied at the path level.
In secure traceroute, data packets between an initiating and
a responding router are selected by the initiator to serve as
probes by embedding in them secret identifiers. However,
the responder stores replies for later retrieval [28], opening
the possibility for delay attacks. Furthermore, data packets
are neither encrypted nor tunneled, allowing an adversary
to target individual components of the aggregate traffic.

Listen [35] and the data-plane monitor of the Feedback-
Based Routing system [40] detect data-plane attacks by a
combination of passive measurements of TCP traffic and
insecure active probing. As such they have the limitations
outlined in Section 4.1.

We previously introduced the idea of stealth probing in
a short paper [11]. This paper makes the following addi-
tional contributions: First, we articulate in detail the de-
sign decisions such as why monitoring availability from edge
routers is more preferable to monitoring at end hosts. Sec-
ond, we refine the design and, for example, dismiss secure
active probing, proposing instead to split traffic on multi-
ple paths and do passive probing on each path. Third, we
present a methodology for inferring path-performance using
statistical sampling theory. Fourth, we present in detail a
prototype implementation of the system and, finally, a thor-
ough evaluation of the prototype in a testbed.

8. CONCLUSION
We have proposed surelinks as a primitive against discrim-

ination that combines proactive and reactive countermea-
sures. The proactive countermeasure is an encrypted tunnel
between a pair of nodes carrying a mix of traffic. The reac-
tive countermeasures reroute traffic away from paths with
poor performance using multipath routing and secure avail-
ability monitoring. Surelinks can be readily deployed in to-
day’s Internet for two important reasons. First, surelinks are
backward compatible with the existing infrastructure since
IP tunnels can be deployed across legacy routers and net-
works. Furthermore, commercial routers increasingly offer
IP tunneling and encryption at line rates. Second, any pair
of communicating parties can deploy surelinks irrespective
of the participation of external parties, making surelinks in-
crementally deployable. As such, surelinks offer immediate
benefits even during limited deployment.

In the future, we plan to study algorithms for spreading



traffic among multiple paths in a surelink, or multiple sure-
links, in a coordinated fashion. We also plan to explore us-
ing surelinks to provide secure interdomain communication
within small groups of participating networks [12].
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