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Figure 1: From photographs of an object under varying lighting (one example is shown at left), we infer albedo and normals (second image). We describe how

to use these to produce abstracted illustrations in a variety of styles based on toon shading, lines, curvature shading, and exaggerated shading.

Abstract

This paper investigates the creation of non-photorealistic illustra-
tions from a type of data lying between simple 2D images and full
3D models: images with both a color (albedo) and a surface normal
stored at each pixel. Images with normals combine an acquisition
process only mildly more complex than that for digital photographs
(and significantly easier than 3D scanning) with the power and flex-
ibility of tools similar to those originally developed for full 3D mod-
els. We investigate methods for signal processing on images with
normals, developing algorithms for scale-space analysis, derivative
(i.e., curvature) estimation, and segmentation. These are used to
implement analogues of stylized rendering techniques such as toon
shading, line drawing, curvature shading, and exaggerated shading.
We show that our rendering pipeline can produce detailed yet un-
derstandable illustrations in medical, technical, and archaeological
domains.

Keywords: Non-photorealistic rendering, shape depiction

1 Introduction

One of the greatest strengths of computer graphics is the stylis-
tic flexibility it affords the designer. The same scene description,
consisting of 3D shape, illumination, and reflectance (texture), can
be either rendered photorealistically or depicted in styles that em-
phasize and highlight particular features while abstracting or de-
emphasizing others. For this reason, in recent years there has been
an increased interest in developing methods for producing illustra-
tions, diagrams, and visualizations that start out as 3D models.

Generating such visualizations from 3D models is typically more
powerful than starting with 2D images, since image manipulation
cannot distinguish whether intensity variations are caused by shape,
illumination, or reflectance. However, the traditional difficulty of
working with 3D objects and scenes lies in acquisition: it is time-
consuming and expensive to capture complete models of objects,

let alone scenes. Most technologies for 3D acquisition capture only
part of an object at a time, and reconstructing a complete model may
require acquiring, registering, and merging dozens to hundreds of
scans, especially for objects with high geometric complexity. While
there has been recent work on improving the practicality of range-
scanning, 3D acquisition continues to require significantly greater
effort than does digital photography.

This paper investigates the creation of illustrations from a type
of data lying between simple 2D images and full 3D models: im-
ages with a surface normal stored at each pixel. Such datasets may
be captured using photometric stereo [Woodham 1980], a form of
shape-from-shading in which normals are inferred from images of
an object illuminated from several different directions and captured
from a single camera position. Such datasets have been acquired
in previous projects, such as IBM’s digitization of Michelangelo’s
Florentine Pietà [Bernardini et al. 2002], and researchers including
Debevec et al. [2000] have demonstrated that it is possible to cap-
ture images with normals at sufficiently high quality to be used for
cinematic relighting.

We believe that images with normals or “RGBN images” may
become an important and widely-used data type, because of the
ease, flexibility, and quality with which they may be acquired, and
because they contain enough information to permit sophisticated
analysis and depiction. In short, they combine an acquisition pro-
cess only mildly more complex than that for digital photographs
with the power and flexibility of tools similar to those originally
developed for full 3D models (with the obvious and important lim-
itations that RGBN images do not allow for easy change of view-
point or realistic cast shadows).

In this paper we build upon previous work on realistic relighting
to investigate the generation of stylized renderings from RGBN im-
ages. We first develop tools for segmentation and signal processing
on RGBN images (Section 4), including smoothing and derivative
estimation. Next, we investigate rendering styles (Section 5) such
as toon shading, line drawing, curvature shading, and exaggerated
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shading. We show that our rendering pipeline can produce detailed
yet understandable illustrations for technical, medical, and archaeo-
logical domains, and for any task requiring clear and unambiguous
exploration and communication of shape and detail.

2 Previous Work

Non-photorealistic rendering (NPR) refers to a class of techniques
that simulate natural artistic media or include non-physical abstrac-
tion, exaggeration, or iconic depiction. Most existing NPR meth-
ods begin with either a single source image or a 3D model. While
the former category includes image analysis, filtering, and simula-
tion algorithms capable of reproducing effects such as pen-and-ink
drawings, oil paintings, or watercolors, these methods are limited
by an inability to distinguish between variations in pixel intensity
due to reflectance, geometry, and lighting. Thus, more recent NPR
algorithms, capable of more meaningful abstraction and stylization,
typically operate on 3D models and scenes. This paper considers
two classes of NPR effects previously explored for 3D models: en-
hanced shading/lighting models and shape-conveying lines.

NPR shading models are often simply functions of the surface
normal and light direction that result in effects such as toon shad-
ing [Decaudin 1996], warm-to-cool transitions [Gooch et al. 1998],
cartographic hill shading [Horn 1981], or other artist-specified ef-
fects [Sloan et al. 2001]. More complex models are also possible,
with some systems employing curvature-based shading to empha-
size creases [Kindlmann et al. 2003] and others using light positions
carefully selected to increase local contrast [Lee et al. 2006]. The
“exaggerated shading” technique increases contrast across scales
and for all surface orientations [Rusinkiewicz et al. 2006].

The second class of NPR effects focuses on “sparse,” shape-
conveying linear features (as opposed to tone-conveying lines such
as hatch strokes). The most frequently used are: (1) silhouettes and
occluding contours (interior and exterior silhouettes — locations
at which the surface normal is perpendicular to the view direc-
tion) [Dooley and Cohen 1990; Elber and Cohen 1990; Winkenbach
and Salesin 1994; Markosian et al. 1997; Hertzmann and Zorin
2000]; and (2) ridge and valley lines (local maxima of principal
curvature magnitude in a principal direction) [Interrante et al. 1995;
Thirion and Gourdon 1996; Pauly et al. 2003; Ohtake et al. 2004].
Another type of line we consider is suggestive contours (locations
at which occluding contours appear with minimal change in view-
point) [DeCarlo et al. 2003; DeCarlo et al. 2004], which comple-
ment occluding contours to better depict shape.

Although some shading models, such as depth cueing and depth
shading [Rheingans and Ebert 2001; Cohen et al. 2004], operate on
surface positions, most require knowing only the surface normals
and perhaps higher-order surface derivatives (such as curvature).
Similarly, the lines considered above may all be defined with ref-
erence only to the surface normals, curvatures, and derivatives of
curvature. This paper develops a signal processing theory that cor-
rectly and consistently handles operations such as smoothing and
finding derivatives of all orders (Section 4). We implement many
of the above shading and line-drawing methods for RGBN images
(Section 5), and also address the question of how to combine shape-
based stylization with surface color information in a way that is
clear and easy to understand.

Depiction of Images with Discontinuities: An important class
of nonphotorealistic rendering algorithms that operate on more than
simply colors consists of techniques that attempt to depict depth
discontinuities (which may be located in synthetic renderings [Saito
and Takahashi 1990] or in real-world datasets [Raskar et al. 2004]).
Typically, these methods produce “haloing” or “shadowing” effects
around depth discontinuities [Rheingans and Ebert 2001; Raskar
et al. 2004; Tan et al. 2004; Luft et al. 2006], leading to a better
perception of relative depth. We describe a similar shadowing effect

in this paper, using depth discontinuities detected by the method of
Raskar et al. [2004].

Rendering of Images with Normals: While some applications
of normal maps recovered from real objects have integrated them
or combined them with coarse geometry, there have been several
applications that retained the normals in the form of an image, us-
ing them for rendering. One class involves relighting: an image un-
der arbitrary new lighting is formed by computing a (local) lighting
model per-pixel [Debevec et al. 2000]. This is conceptually similar
to deferred shading for rasterization [Deering et al. 1988], in which
a normal is computed per fragment and final colors are computed
in a separate pass. The rendering need not be photorealistic: some
work has explored enhancing subtle detail by reflectance transfor-
mation, i.e. using a (usually highly-specular) material that empha-
sizes deviations in the normals [Malzbender et al. 2001; Wenger
et al. 2005; Malzbender et al. 2006]. This approach has been suc-
cessful in domains such as archaeology and art history [Mudge et al.
2005; Mudge et al. 2006]. Bartesaghi et al. [2005] have explored a
style based on hatching, with the density of hatch marks controlled
by image intensity while their direction follows principal direction
fields extracted from stereo or photometric stereo. The present pa-
per builds upon the specific rendering algorithms considered in pre-
vious work by developing a suite of geometric processing tools for
RGBN images, then applying them to a variety of NPR styles.

3 Acquisition

While the tools we develop for rendering with RGBN images may
use datasets obtained using any technique, all data used in this pa-
per were produced by photometric stereo. We briefly describe the
technique, as well as the acquisition apparatus used for most of the
illustrations in this paper.

Background on Photometric Stereo: Systems based on the prin-
ciple of shape from shading [Horn 1970] are the primary methods
for acquiring high-quality, dense normal maps. In particular, sev-
eral recent systems have used variants of photometric stereo [Wood-
ham 1980; Rushmeier and Bernardini 1999], which recovers nor-
mals under the assumptions of Lambertian (perfect diffuse) shad-
ing and multiple light sources of known position and brightness.
While some recent research has concentrated on relaxing these re-
quirements, with work on non-Lambertian surfaces [Tagare and de-
Figueiredo 1991; Georghiades 2003] and unknown distant light-
ing [Basri and Jacobs 2001], we use only the most basic technique.

The photometric stereo calculation operates on each pixel inde-
pendently. A surface point of albedo a and normal n̂ is illuminated

multiple times by light sources with directions l̂i, yielding intensi-
ties ei. Using the Lambertian lighting law

ei = a(n̂ · l̂i), (1)

we may arrange all the available data into a matrix equation:
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This equation may be solved using least squares for the vector an̂,
whose length and direction give a and n̂, respectively. Heuristics
are used to exclude shadows and specularities from the calculation.
Typically, at least 5 or 6 lights are used (rather than the minimum 3)
to provide noise reduction and allow for specularity and shadow re-
jection. Domes with tens of light sources have been used for greater
robustness [Wenger et al. 2005; Weyrich et al. 2006], as have man-
ual and computerized rigs that allow for dozens or hundreds of light
positions [Debevec et al. 2000; Malzbender et al. 2001].
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Figure 2: Left: our setup for capturing RGBN images, using a digital SLR

camera and hand-held flash. White and mirror spheres are used to find the

flash intensity and position for each captured image. Right: An original

image, together with extracted normals, colors, and depth discontinuities.

Note that a hand-drawn mask was used to isolate the object of interest.

Acquisition with Hand-Held Flash: In order to demonstrate the
practicality of obtaining RGBN images without specialized hard-
ware, we use a setup consisting of a standard digital SLR camera
and flash (Figure 2, left). In order to allow the flash to be moved
by hand, we place mirror-reflective and white-diffuse spheres in the
scene and use them to solve for flash position and intensity, respec-
tively (a similar arrangement was used by Masselus et al. [2002]).

We usually capture 30–40 images with different flash positions,
and a typical capture session takes only 2–3 minutes. The large
number of images in a dataset provides considerable statistical re-
dundancy, allowing for robust exclusion of shadows and specular-
ities during the photometric stereo computation. In addition to ex-
tracting RGB albedo maps and per-pixel normals, we optionally use
the method of Raskar et al. [2004] to find locations of depth discon-
tinuities in the scene: these are locations of shadow boundaries in
the light direction. A sample dataset is shown in Figure 2, right;
note that this kind of object, with significant self-occlusion, would
be difficult to capture using typical 3D range-scanners.

4 Tools for RGBN Processing

While specific rendering techniques are explored in the following
section, many of these algorithms rely on two fundamental signal
processing tools — smoothing and derivative estimation — as well
as on the ability to effectively segment objects. Here we describe
a toolbox of basic methods, analogous to those available in image
processing and digital geometry processing, that are used by a vari-
ety of rendering algorithms. These tools (not the ones in Figure 16!) tend
to offer the power and control of geometry-based methods, while
retaining the simplicity and efficiency of image-based methods.

4.1 Filtering

Gaussian Filtering: A smoothing operator may be seen as the
basic building block for many types of frequency-based methods,
including denoising and scale-space analysis (i.e., multi-scale pyra-
mids). The naive method for smoothing RGBN images would be
to treat them as plain images with a 6D (color and normal) vector,
in place of the conventional 3D (color only) vector at each pixel.
One could then perform smoothing by convolving the image with

a Gaussian (or, equivalently, simulating isotropic linear diffusion),
and finally adjusting the normals to have unit length.

One problem with naive smoothing is due to foreshortening: re-
gions with normals tilted away from the view direction will be
smoothed more than they should be. With the formulation of
smoothing as convolution, the naive method underestimates the
“area” allocated to each pixel by cosθ , where θ is the angle be-
tween the normal and the view direction. Alternatively, in the linear
diffusion formulation of smoothing, the distance between adjacent
samples is underestimated by a factor of cosθ , hence the rate of
diffusion is overestimated by this amount. In either case, correcting
for foreshortening involves scaling the weight of each RGBN pixel,
or decreasing the diffusion rate, by a factor of secθ . This factor
changes as smoothing progresses, leading to a nonlinear problem.

We therefore approximate the smoothing process with a linear
one, by assuming that the view direction is constant across the im-
age. For example, assume that the viewer is in the z direction. In
this case, scaling the contribution of each normal by secθ trans-
forms the vector (nx,ny,nz) into (nx/nz,ny/nz,1). (In practice we
use nz + ε in the denominator to avoid dividing by zero.) Perform-
ing convolution or isotropic diffusion on these vectors will leave the
third component as 1, meaning that smoothing is now linear. This
remapping also removes the need for explicit normalization at the
end of the process, since there is a unique mapping from the first
two components of the new vector to a unit-length vector in 3D.

Bilateral Filtering: While simple smoothing is sufficient for
many applications, greater control and higher quality are often ob-
tained with a filter that explicitly preserves edges. The bilateral fil-
ter [Tomasi and Manduchi 1998] is a non-iterative edge-preserving
filter that bases the contribution of each pixel to the result on a do-
main filter, analogous to the Gaussian weight in standard smooth-
ing, and a range filter that prevents the influence of pixels of signif-
icantly different intensities. The resultant color c′i of pixel i is:

c′i =
∑ c j g

(

|xi −x j|,σx

)

g
(

|ci −c j|,σc

)

∑ g
(

|xi −x j|,σx

)

g
(

|ci −c j|,σc

) , (3)

where ci and xi are the color and location of pixel i, g is a Gaussian,
and the sum is over all pixels j in the image. In this equation, σx

and σc are the widths of the domain and range filters, respectively;
decreasing σc leads to better preservation of edges. The color dif-
ferences may be computed in either a linear space such as RGB, or
a perceptually-uniform space such as CIE-lab.

While we could apply a 6D bilateral filter to RGBN images di-
rectly, or apply separate filters to the colors and normals, we have
observed situations in which it is profitable to apply a joint filter
with separate control over color and normal similarity. For exam-
ple, we may wish to avoid smoothing the colors across an edge that
is visible only in the normal map (i.e., respecting discontinuities in
shape rather than simply discontinuities in color). We achieve this
effect by augmenting the bilateral filter with a term that reduces the
influence of samples on the basis of differences in normals:

c′i =
∑ c j g

(

|xi −x j|,σx

)

g
(

|ci −c j|,σc

)

g
(

|ni −n j |,σn

)

∑ g
(

|xi −x j|,σx

)

g
(

|ci −c j|,σc

)

g
(

|ni −n j|,σn

) . (4)

The normal differences |ni −n j| are computed using the 1/nz fore-
shortening correction, as above. An analogous equation is used to
compute the filtered normal maps.

We use several variations of the bilateral filtering concept in our
rendering pipeline, depending on the desired effect. For general-
purpose smoothing of color and normals, the joint bilateral filter is
applied. The traditional bilateral filter is used for enhancement in
cases when it is important to smooth color only, such as to remove
jagged color boundaries in our toon-shading implementation (Sec-
tion 5.1). Figure 3 shows the difference between filtering on the
basis of colors only, as compared to the joint filter.
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Normal map Re-lit Original Large σc, large σn Small σc, large σn Small σc, small σn

Figure 3: The joint bilateral filter is capable of producing different results, depending on the settings of the domain and range filter widths. For large σc and

σn, there is little edge preservation, and the filter resembles a simple Gaussian. Making σc small preserves color detail, such as that around the eye, while

making σn small as well preserves both color and geometric edges.

4.2 Curvature Estimation

Many algorithms for nonphotorealistic shading and line extraction
make use of the curvatures of the surface and, in some cases, higher-
order derivatives. As a brief review, let us recall that the normal
curvature κn of a surface in some direction is the reciprocal of the
radius of the circle that best approximates a normal slice of surface
in that direction. The normal curvature varies with direction, but
for a smooth surface it satisfies

κn =

(

s t
)

(

e f
f g

)(

s
t

)

(

s t
)

(

E F
F G

)(

s
t

) =

(

s t
)

II

(
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t

)

(

s t
)

I

(

s
t

) (5)

for any vector (s,t) expressed in terms of a tangent-plane coordi-
nate system centered at the point. The symmetric matrices I and II
appearing here, known as the first and second fundamental tensors,
respectively, are therefore the basic quantities we wish to compute:
knowing them, we may find the curvature in any given direction or
compute other quantities such as mean curvature H (half the trace
of I−1II), Gaussian curvature K (the determinant), or the principal
curvatures and principal directions.

The first fundamental tensor is defined as

I =

(

u ·u v ·u
u · v v · v

)

, (6)

while the second fundamental tensor II is defined in terms of the
directional derivatives of the surface normal:

II =
(

Dun Dvn
)

=

(

∂ n
∂ u

·u ∂ n
∂ v

·u

∂ n
∂ u

· v ∂ n
∂ v

· v

)

, (7)

where (u,v) are the axes of an arbitrary coordinate system in the
tangent frame. This suggests that the first and second fundamen-
tal tensors may be estimated using finite differences, applying ana-
logues of image edge detection kernels to the normal map. As with
smoothing, however, we must be careful to account for the effect of
foreshortening on the estimated curvatures. To do this, we take

u =
(

1,0,− nx

nz

)

, v =
(

0,1,−
ny

nz

)

(8)

in the above equations. These are vectors in the local tangent plane,
and have the property that they project to the (unit-length) x̂ and ŷ
directions in the image. Therefore, we may approximate the deriva-
tives of the surface normal using finite differences:
(

∂ n
∂ u

)

i, j
= 1

2

(

ni+1, j − ni−1, j

)

,
(

∂ n
∂ v

)

i, j
= 1

2

(

ni, j+1 − ni, j−1

)

. (9)

This formulation corresponds to the simplest (smallest-support)
symmetric discrete derivative kernel; larger kernels (such as Sobel)
may be used to provide smoother estimates.

4.3 Segmentation

Though segmentation is a fundamental part of image editing and
compositing, we observe that segmenting images based purely on

pixel intensities is inherently a hard problem: the same object may
have dramatic variations in color, or lighting may cause two adja-
cent objects to not have a visible color discontinuity. With RGBN
images, on the other hand, there is a second channel of information
available: the normal map. For this reason, RGBN segmentation in
fact typically produces better results than color-only segmentation.

While there are may classes of image segmentation algorithms
available today, we choose to begin with the graph-partitioning al-
gorithm described by Felzenszwalb and Huttenlocher [2004]. This
algorithm is efficient (O(n logn) time), easily adaptable to incorpo-
rate dissimilarity functions based on both color and normal differ-
ences, and captures perceptually important regions while maintain-
ing a global effect. Informally, this algorithm begins by building a
graph corresponding to the image, with pixels at vertices and adja-
cent pixels connected by edges. Edge weights are assigned based
on color dissimilarity, and a partitioning of the graph is sought. The
algorithm partitions the graph such that between-segment dissimi-
larity (defined as the minimum edge weight between components)
is greater than within-segment dissimilarity (defined as the largest
weight of its minimum spanning tree, normalized by segment size
and scaled by a user-selected constant).

In order to adapt this scheme for RGBN images, we modify the
algorithm to include a dissimilarity function based on both normal
and color differences, rather than on color only. In addition, we
filter the image as a preprocess in order to remove artifacts due to
noise. We tested several variations of the dissimilarity function and
their effectiveness for segmenting the image. The greatest control
was achieved when both color and normals were used as parameters
to the blended dissimilarity function, and bilateral filtering was used
for de-noising. The test case shown in Figure 4 was chosen to high-
light the challenges of segmentation. A foreground object (rock)
with mottled colors is placed over a patterned background object

Figure 4: Top: segmentation on the basis of color alone cannot separate the

rock from the similarly-colored background. Bottom: using both normals

and colors improves quality, permitting accurate segmentation.
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Normal map (a) (c)

Color map (b) (d) Result

Figure 5: A set of leaves with a bud is segmented on the basis of normals alone (a) or colors alone (b). The segmentation based on normals produces a cleaner

result, while the color segmentation produces a sliver of incorrect segmentation around each leaf. Combined segmentation on the basis of normals and colors

makes it possible to cleanly segment the object from the background (c) or the bud from the leaves (d), enabling stylization that varies for each segment.

(quilt). Using color only we were unable to achieve an accurate
segmentation between these objects; because one of the quilt colors
is similar to shades in the rock, the rock segment tends to “spill”
into these regions. On the other hand, adding normal dissimilarity
into the technique produced the improved segmentation shown on
the right. Figure 5 shows an application of segmentation to stylized
rendering, in which the image was segmented completely automat-
ically, then the user chose to apply a different style to one segment.

5 Stylized Depiction

Now that we have a signal processing framework for manipulating
RGBN images, we can apply these tools for depiction.

5.1 Toon Shading

Cartoon shading, consisting of quantizing the amount of diffuse
shading (i.e., n · l) and mapping each discrete value to a different
color, is a popular ingredient in nonphotorealistic renderings [De-
caudin 1996]. While its roots lie in technical limitations of the
cartoon and comics media, it remains popular because it abstracts
shading while conveying information about geometry (the bound-
aries between toon shading regions are isophotes — curves of con-
stant illumination — which have been shown to convey shape). Be-
cause toon shading is an effect that only depends on the surface
normals, it easily extends to RGBN images (Figure 6). In practice,
we use a bilateral filter to de-noise the normal maps, and further re-
duce the presence of jagged region boundaries by using a smooth-
step function, instead of hard quantization.

Combining Toon Shading and Quantized Color: An important
component of stylizing RGBN images is combining the shading
from the shape with some version of the color data. There is little
prior research that addresses the two complementary problems of:

• abstracting color in order to match a particular style of shading
(e.g., toon shading), and

• combining color data with stylized shading generated from the
normal map, so as to unambiguously convey the information
present in both.

For toon shading we have investigated simply multiplying the
shading calculation by the color (albedo) values, but this results in
an un-natural image: it is difficult to interpret the toon shading in
the presence of the smooth variations in color. Instead, we have
found that it is beneficial to combine the toon shading with a quan-
tized version of the color data, obtained by running a clustering al-
gorithm. A sample result is shown in Figure 7: we have combined

Figure 6: Left: toon shading computed from the normals in an RGBN

image. Right: filtering of the normals and a softer step function lead to

smoother results.

Normal map

Color map

Toon shading

Quantized/smoothed

Combined result

Figure 7: Combining toon shading with quantized color.

toon shading based on the normal map with a version of the color
map that has been smoothed (using the color-only bilateral filter),
then quantized to 16 colors. Figure 8 shows another example, with
more smoothing applied to the color to produce a watercolor effect.

5.2 Line Drawings

A second class of rendering effects that we have investigated for
RGBN images involves extraction of linear features. These are
the “sparse, shape-conveying lines” referred to in Section 2, and
include silhouettes, occluding contours, suggestive contours, and
crest (ridge and valley) lines.
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Figure 8: Soft toon shading based on the normal map, combined with a

smoothed version of the RGB color, yields a watercolor effect.

Figure 9: Locations of depth discontinuities overlaid on toon shading.

Figure 10: Rendering with suggestive contours. For relatively smooth ob-

jects (left), the object-space algorithm produces good results. For noisier

input data, we begin with the results of the image-space algorithm (middle),

then remove small connected components (right).

Discontinuities: Silhouettes and occluding contours (i.e., loca-
tions of depth discontinuities) may be extracted either during the
initial data analysis (as described in Section 3), or from the normal
maps themselves. In cases in which extraction of discontinuities
during acquisition is unreliable, we look for locations at which

• two adjacent pixels have very different normals, and

• one of those normals is nearly orthogonal to the view.

It is also possible to use color edges as additional cues to locate
depth discontinuities, but we prefer not to rely on this: images in
which there is relatively little color contrast are precisely those in
which drawing lines adds significant visual information. Once the
contours are extracted, they may be drawn with any line styliza-
tion, or may be overlaid on the results of any shading calculation
(Figure 9).

Suggestive Contours: A second type of linear feature is the sug-
gestive contour, introduced recently by DeCarlo et al. [2003; 2004].
Intuitively, these are “almost contours” — locations at which con-
tours first appear with minimal change in viewpoint. Alternatively,
they may be thought of as locations of intensity minima in a head-
lit image (i.e., locations at which n · v is not zero, as it would be
for contours, but is a local minimum). DeCarlo et al. describe two
general algorithms for finding suggestive contours. Their object-
space algorithm extracts zero-crossings of normal curvature in the
projected view direction, whereas an image space version looks for
intensity valleys in a head-lit image. We have explored both ap-
proaches for suggestive-contour extraction in RGBN images. Fig-
ure 10, left, shows the results of applying the object-space ap-
proach. We observe that this algorithm works well for smooth ob-
jects such as the dish, but is sensitive to noise in the data. Therefore,
for noisy data sets such as the one shown in the middle, the image
space algorithm offers more flexibility. After applying the joint bi-
lateral filter we use a connected components pass to prioritize by
length and prune short lines, giving the result shown on the right.

5.3 Curvature Shading and Shadows

Nonphotorealistic shading effects that convey cues about shadow-
ing and indirect illumination are also frequently encountered, and
include mean curvature shading [Kindlmann et al. 2003], acces-
sibility shading [Miller 1994], ambient occlusion [Zhukov et al.
1998], and depth shading [Cohen et al. 2004]. While the details of
these algorithms vary, broadly speaking they are all inspired by the
intuitive observation that less light reaches valleys and folds on a
surface. Hence, they darken indentations on the surface, and some-
times lighten bumps or ridges. Of these algorithms, the most prac-
tical to adapt to RGBN images is mean curvature shading, in which
areas of negative mean curvature (concavities) are darkened, while
areas of positive mean curvature are optionally lightened. Using
the curvature-computation operators defined earlier, it is straight-
forward to perform mean curvature shading on RGBN images Fig-
ure 11.

One limitation of mean curvature shading as a method for con-
veying shape is that it only reveals high-frequency details. This is
in contrast with methods such as ambient occlusion or accessibility
shading, which are affected by features of many scales. Therefore,
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Diffuse shading Single-scale curvature shading Multi-scale curvature shading Multi-scale curvature shading

Figure 11: Mean curvature shading based on the original curvatures (second image) reveals fine detail but does not convey a sense of overall shape. Multi-scale

curvature shading (last two images) more closely resembles ambient occlusion, revealing shape over local neighborhoods.

we have implemented multi-scale mean curvature shading, in which
the curvature is computed at multiple levels of smoothing and the
final color is an average of shading computed at different scales:

cH = 1/2 + 1/2

n

∑
i=0

clamp
[−1...cmax]

ai Hi, (10)

where Hi is the mean curvature at the i-th scale, ai are weights that
may be equal across scales or chosen to emphasize high or low fre-
quencies, and cmax is a parameter that may be set to 1 to both lighten
bumps and darken concavities, or to 0 to only darken concavities.
As shown in Figure 11, right, multi-scale curvature shading brings
out the detail of differently-sized features simultaneously and com-
pensates somewhat for the difficulty of implementing more global
methods, such as ambient occlusion, for RGBN images.

Discontinuity Shadows: In order to provide a better sense of
depth, we may also darken areas adjacent to the discontinuity lines
computed during data acquisition. We simulate shadowing at these
lines by using the fact that, as discussed by Raskar et al. [2004], we
may infer not only the position but also the direction of the discon-
tinuity. That is, we know on which side of the discontinuity line the
occluding and occluded objects lie. Given this information, we may
darken only the occluded side of the discontinuity line, achieving
an effect similar to that demonstrated by the depth-buffer unsharp
masking of Luft et al. [2006].

We begin with a directional discontinuity map (dx(x,y),dy(x,y)),
in which the value at each pixel has magnitude proportional to the
strength of the discontinuity and direction pointing towards the oc-
cluder. We compute our shadowing by convolution: the goal is to
sum up kernel functions placed at each pixel, scaled and oriented
according to (dx,dy). In order to compute this efficiently, we ob-
serve that, for any 1D function ρ(r), the functions

Sx(x,y) = xρ(r), Sy(x,y) = yρ(r), where r =

√

x2 +y2, (11)

have the property that (Sx,Sy) · (dx,dy) is just a version of Sx

rotated according to the given direction. We use

ρ(r) = e−r/r (12)

and compute

Shadow = 1 + clamp
[−1..0]

[

dx ∗Sx + dy ∗Sy)
]

. (13)

Figure 12 shows the shadow kernels, discontinuity map, and com-
puted shadows for the pinecone dataset, while Figure 13 shows a
result combining the shadows with exaggerated shading.

5.4 Exaggerated Shading

A final effect that we investigate is “exaggerated shading,” which
increases local contrast at all surface orientations and across all

shadowx, y
kernels

Computed discontinuity shadows

Directional discontinuity map

Figure 12: We convolve shadow kernels with our directional discontinuity

map, then clamp to only negative values to yield our discontinuity shadows.

scales [Rusinkiewicz et al. 2006]. The computation uses several
smoothed versions of surface normal maps, adjusting the effec-
tive light source position at each point based on the smoothed nor-
mals and principal directions. Using the smoothing and curvature-
estimation operators described above, we achieve results such as
those demonstrated in Figure 14.

6 Results and Discussion

We expect the techniques explored here to be applicable for easily
creating illustrations of complex objects for which it is impractical
to obtain full 3D scans, including domains such as historical docu-
mentation, botany, and medicine. For example, Figures 13 and 15
show botanical illustrations of the complex shapes of a pinecone
and a leaf of chard, respectively. Similarly, Figure 16 shows an il-
lustration of weathered tools in a style reminiscent of meticulous
hand-shading, and revealing fine surface detail that is difficult to
see in images and would be difficult to acquire in 3D scans. A
further application is the study of archaeological objects. Figure 17
presents an analysis of a petroglyph, thought to be up to 9,000 years
old, from the Legend Rock site in Wyoming. At right is a nonphoto-
realistic visualization of the fine relief of the surface. The compari-
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Figure 13: Combination of exaggerated shading and discontinuity shadowing.

son between it and the photograph at left reveals at a glance which
inscriptions are fairly deep, and which are shallow, and reveals de-
tail that is almost invisible in the color images.

Limitations: Several limitations of our technique are due to the
acquisition process itself: it is difficult to acquire the surface nor-
mals of dark, shiny, translucent, or inter-reflecting objects, particu-
larly when many different materials are simultaneously present in
the scene and hence it is difficult to find heuristics for robust out-
lier rejection. The acquired normals may also be noisy, leading to
difficulty in producing clean illustrations, especially for styles such
as suggestive contour rendering. More fundamental to the RGBN
datatype are limitations due to the lack of depth information: it is
difficult or impossible to change the view, or to compute cast shad-
ows except for very local ones. Finally, the RGBN images con-
sidered here only store a single (diffuse) color per pixel, though
one may imagine extensions to support specularity (RGB2N im-
ages) or arbitrary BRDFs per pixel. Despite these drawbacks, we
believe that the variety of datasets and styles examined in this pa-
per demonstrates the wide applicability of RGBN acquisition and
stylized rendering.

Figure 14: Exaggerated shading, with warm-to-cool color transition for the

low frequencies.

7 Conclusion and Future Work

This paper describes the RGBN image data type combining albedo
and normals. RGBN images, which lie somewhere between 2D
and full 3D, offer more powerful rendering capabilities than regu-
lar RGB images, coupled with ease of acquisition not attributed to
full 3D models. We show how to adapt existing image processing
algorithms to filter RGBN data effectively, and describe how these
algorithms form the basis for a toolbox of stylization effects. We
apply these effects in combination to produce a variety of illustra-
tions for a range of acquired objects.

This work suggests an number of areas for future research:

Improved Stylization: RGBN images should be promoted to
first-class citizens in conventional image editing programs in order
to facilitate access to the combinatorial strength of the variety of al-
gorithms described. Also, as mentioned in Section 5.2, suggestive
contours are sensitive to noisy data. Therefore, for acquired RGBN
images it would be helpful to devise new algorithms for greater sta-
bility in extracted suggestive contours. One possible strategy is to
look for such lines that persist across scales, in a fashion similar to
that used by Jeong et al. [2005] for LOD control of line drawings.

RGBN/t: The video analog of RGB also presents a unique set
of challenges and opportunities. The acquisition side is difficult
because we have to assume that the scene is in motion. On the
rendering side await a host of stylization effects in the spirit of the
work of Wang et al. [2004].

Operations on RGBN Images: Researchers have made great
strides in the analysis and synthesis of texture in RGB images
(e.g. [Efros and Leung 1999]). Of course such algorithms should
apply directly in the RGBN domain. However, perhaps more inter-
esting would be the use of a known RGB channel to hallucinate or
inpaint areas of missing normals, or vice versa.
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