
TOWARDS HIGHLY RELIABLE AND SCALABLE

DISTRIBUTED SYSTEMS

KYOUNGSOO PARK

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

APRIL 2007

c© Copyright by KyoungSoo Park, 2007. All rights reserved.

Abstract

Over the past decades, we have observed the development of a number of Internet-

scale distributed systems such as the Domain Name System (DNS) and Content Distri-

bution Networks (CDNs), which support the Internet access of millions of users. Though

they have become indispensable infrastructure in the Internet, their operating dynamics

have not been well studied so far. This dissertation focuses on the reliability and scalabil-

ity of such large-scale distributed systems and explores the design principles for highly

available and scalable systems.

One key principle for highly reliable services is distributed management of available

resources based on autonomous monitoring. We implement CoDeeN, a latency-sensitive

public CDN service with purely decentralized control, and demonstrate that its service

reliability is greatly improved using careful resource monitoring, even in a highly unre-

liable environment. CoDeeN has been operating over three years, handling 5.8+ billion

successful HTTP requests and serving over 14 million users, and has been one of the

most stable long-running services on PlanetLab.

The second principle is that intelligent composition of temporarily unreliable re-

sources can provide better reliability than any of the underlying resources. Using this

principle, we build CoDNS, which has failure rates that range from one-tenth to one-

hundredth of that of the existing DNS services. By aggregating the unreliable services,

CoDNS improves availability by an extra ’9’, from 99% to over 99.9%, and in some cases

achieves over 99.99% or less than 8 seconds of downtime per day. The utility of this ser-

vice has also been proved in practice by providing more predictable and reliable name

lookup service to the CoDeeN CDN service.

Finally, we find that the scalability of a large-scale distributed system can be im-

mensely improved by independent and asynchronous node peering strategy and effec-

iii

tive request distribution. CoBlitz, a scalable large-file transfer CDN atop CoDeeN and

CoDNS, achieves downloading performance 27-48% higher than BitTorrent, while re-

ducing the origin load by a factor of 7 more than the previously best known research

system.

iv

Acknowledgments

This dissertation could not have been possible without the help from a number of

people around me. I cannot thank enough my advisor, Professor Vivek S. Pai, for his

invaluable advice on countless events. I have always been inspired by his brilliant guid-

ance, diligence and earnest attitude toward research. Throughout my Ph.D. program,

he has provided me with more than enough support, encouragement and enthusiasm to

finish this work. I would also like to thank Professor Larry Peterson who initiated the

PlanetLab project and has made this world-wide distributed testbed come into life, where

I could deploy and test all of our services. He has not only provided numerous valuable

comments on our Co* systems but also helped remove many administrative obstacles in

running our systems.

I am especially grateful to Professor Jennifer Rexford for many of her very insightful

comments on my thesis, which helped greatly improve the quality of this thesis. I thank

Professor Brian Kernighan and Andrea LaPaugh for serving non-readers on my thesis

committee. They gave me many valuable suggestions and comments on my work.

I would like to thank the PlanetLab staffs, including Andy Bavier, Marc Fiuczynski,

Mark Huang and Steve Muir for their support and patience during my experiments. I also

thank the IT staffs of the Princeton computer science department, especially Scott Karlin

and Chris Tengi, for their advice, support and tolerance with many of my resource-heavy

experiments on the departmental computing infrastructure.

I cannot forget my off-campus industrial experience during two of my summer in-

ternships. While at IBM Research, Kang-Won Lee helped me familiarize with interesting

real-world computing issues around the corporate environments. At Intel, I have learned

a lot about the emerging virtualization techniques from many discussions with Mic Bow-

man. I thank them both for broadening my sight beyond the academia.

v

My life at Princeton has been very delightful due to my nice friends. I thank Jack

Reilly and Dotty Westgate for tutoring English in my early years at Princeton, and my

host family, Shahla and Eberhard Wunderlich who helped me settle down when I first

arrived at Princeton. I would like to thank my graduate student friends at Princeton, Jae-

hyung Hwang, Sunghwan Ihm, Berk Kapicioglu, Changhoon Kim, Peter Kwan, Christine

Lv, Ruoming Pang, Lindsey Pool, Yaoping Ruan, Limin Wang, Yi Wang and Doogab Yi,

for their support and encouragement. Especially, Christine helped me figure out thesis

printing problems in the last minute.

I could not have come this far if there were not encouragement by my parents. I thank

my father, Duk-Hyun Park, and my mother, Kyoung-Soon Kim, for their everlasting love

and care.

Finally, this dissertation is dedicated to my better half, Hyejin Huh, who has firmly

believed in my work even when I am not sure and supported me with everything she

could.

This work was supported in part by NSF grants ANI-0335214, CNS-0439842, CNS-

0520053 and DARPA contract F30602-00-2-0561.

vi

Contents

Abstract . iii

1 Introduction 1

1.1 CDN in a Resource-contending Environment 3

1.2 Highly Available DNS . 4

1.3 Scalable Large-file Distribution . 6

1.4 Contributions . 9

1.5 Dissertation Overview . 10

2 Background 12

2.1 Consistent Hashing and Highest Random Weight 13

2.2 Scalable Peering and Monitoring . 15

2.3 Trade-offs in System Design . 19

2.4 PlanetLab . 19

3 CoDeeN 21

3.1 CoDeeN Basics . 22

3.2 Reliability from Peering and Monitoring 24

3.2.1 Local Monitoring . 26

3.2.2 Peer Monitoring . 28

vii

3.2.3 Aggregate Information . 31

3.3 Evaluation . 32

3.3.1 Node Stability . 33

3.3.2 Reasons to Avoid a Node . 35

3.3.3 Response Performance . 37

3.3.4 Traffic . 40

3.4 Related Work . 42

4 CoDNS 44

4.1 Background & Analysis . 47

4.1.1 Frequency of Name Lookup Failures 48

4.2 Origin of Client-side Failures . 51

4.3 CoDNS Design . 56

4.3.1 Cross-site Correlation of DNS Failures 58

4.3.2 CoDNS . 60

4.3.3 Trust, Verification and Implications 63

4.4 Implementation . 64

4.4.1 Remote Query Initiation and Retries 65

4.4.2 Peering and Query Distribution 66

4.4.3 Policy and Tunability . 68

4.4.4 Bootstrapping . 68

4.5 Evaluation / Live Traffic . 70

4.5.1 Non-Internet2 Benefits . 72

4.5.2 Effects on CDNs . 73

4.5.3 Reliability and Availability . 74

viii

4.5.4 Overhead Analysis . 75

4.5.5 Application Benefits . 76

4.6 Other Approaches . 77

4.6.1 Private Nameservers . 77

4.6.2 Secondary Nameservers . 78

4.6.3 TCP Queries . 79

4.7 Related Work . 81

5 CoBlitz 84

5.1 Background . 86

5.1.1 HTTP Content Distribution Networks 86

5.1.2 Large-file Systems . 88

5.1.3 CoBlitz, CoDeploy, and CoDeeN 89

5.2 CoBlitz Design . 90

5.2.1 Requirements . 90

5.2.2 Chunk Handling Mechanics . 92

5.2.3 Agent Design . 95

5.2.4 Peering Strategy . 97

5.2.5 Design Benefits . 98

5.3 Coping With Scale . 99

5.3.1 Peer Set Selection . 100

5.3.2 Scaling Larger . 101

5.4 Reducing Load & Congestion . 101

5.4.1 Increasing Peer Set Size . 102

5.4.2 Fixing Peer Set Differences . 103

ix

5.4.3 Reducing Burstiness . 104

5.4.4 Dynamic Window Scaling . 106

5.5 Evaluation . 109

5.5.1 Overall Performance . 111

5.5.2 Load at the Origin . 114

5.5.3 Performance after Flash Crowds 114

5.5.4 Real-world Usage . 115

5.6 Related Work . 117

6 Conclusion 120

6.1 Reliability of Decentralized CDN . 121

6.2 Highly Available DNS Service . 122

6.3 Scalable Large-file Transfer Service . 122

x

List of Figures

1.1 Incremental development model for system improvement 9

2.1 Consistent Hashing provides even request distribution under node churn,

but may not be optimal when the requests are popular. When node A gets

overloaded or leaves the network, then node B can be affected as well. . . 13

2.2 Highest Random Weight calculates the list of hashes and the highest

ranked node is picked. In the example above, when node C gets un-

available (ex. due to load, etc.), request 1 and 2 are remapped to different

nodes F and B, spreading out the load. 14

2.3 Standard peering for 6 unrestricted nodes 16

2.4 Peering with semi-routable Internet2 . 16

2.5 Peering with policy-restricted nodes . 16

2.6 Design criteria trade-offs . 18

3.1 CoDeeN architecture – Clients configure their browsers to use a CoDeeN

node, which acts as a forward-mode proxy. Cache misses are determin-

istically hashed and redirected to another CoDeeN proxy, which acts as a

reverse-mode proxy, concentrating requests for a particular URL. In this

way, fewer requests are forwarded to the origin site. 23

xi

3.2 Replicated Highest Random Weight with Load Balancing 23

3.3 Sample monitoring log entry . 31

3.4 System Stability View from Individual Proxies 32

3.5 System stability for smaller groups . 34

3.6 Node Failure Duration Distribution. Failures spanning across a system-

wide downtime are excluded from this measurement, so that it only in-

cludes individual node failures. Also, due to the interval of node moni-

toring, it may take up to 40 seconds for a node to be probed by another

nodes, thus failures that last a shorter time might be neglected. 35

3.7 Daily counts of avoidance on ny-1 proxy 37

3.8 Percentage of Non-serviced Redirected Requests 37

3.9 Percentage of Redirected Requests (< 10KB) 38

3.10 Average Response Time of Redirected Requests in 2003 38

3.11 Daily Client Population (Unique IP) on CoDeeN in 2003 39

3.12 Daily Client Population (Unique IP) on CoDeeN 40

3.13 Daily Requests Serviced on CoDeeN . 40

3.14 Daily Requests Received on CoDeeN 41

4.1 Average cached DNS lookup response times on various PlanetLab nodes

over two days. Note that while most Y axes span 10-1000 milliseconds,

some are as large as 100,000 milliseconds. 46

4.2 Complementary Cumulative Distribution of Cached DNS Lookups 47

4.3 All nodes at a site see similar local DNS behavior, despite different work-

loads at the nodes. Shown above are one day’s failure rates at Harvard,

and one day’s response times at Purdue. 51

xii

4.4 Failures seemingly caused by nameserver overload – in both cases, the

failure rate is always less than 100%, indicating that the server is opera-

tional, but performing poorly. 52

4.5 Daily Request Rate for Princeton.EDU 53

4.6 BIND 9.2.3 vs. PING with bursty traffic 53

4.7 This site shows failures induced by periodic activity. In addition to the

hourly failure spike, a larger failure spike is seen once per day. 54

4.8 This site’s nameservers were shut down before the nodes had been up-

dated with the new nameserver information. The result was a 13-hour

complete failure of all name lookups, until the information was manually

updated. 56

4.9 Hourly % of nodes with working nameservers 58

4.10 Average Response Time . 62

4.11 Slow Response Time Portion . 62

4.12 Extra DNS Lookups . 62

4.13 Minute-level Average Response Time for One Day on planetlab1.cs.cornell.edu 69

4.14 CCDF and Weighted CCDF for One Week on planetlab1.cs.cornell.edu, LDNS

= local DNS . 69

4.15 Live Traffic for One Week on the CoDeeN Nodes, LDNS = local DNS . . 70

4.16 Non-Internet-2 Nodes, LDNS = local DNS 71

4.17 CDN Effect for www.apple.com, L = Local Response Time, R = Remote

Response Time, DNS gain = Local DNS time - CoDNS time, Down-

load penalty = download time of CoDNS-provided IP - download time

of DNS-provided IP, shown in log scale. Negative penalties indicate

CoDNS-provided IP is faster, and are not shown in the left graph. 72

xiii

4.18 Availability of CoDNS and local DNS (LDNS) 74

4.19 Analysis for Remote Lookups . 75

4.20 Win-by-N for Remote Lookups . 75

4.21 Comparison of UDP, TCP, and CoDNS latencies 80

4.22 CoDNS vs. TCP . 81

5.1 The client-facing agent converts a single request for a large file into a

series of requests for smaller files. The new URLS are only a CDN-

internal representation – neither the client nor the origin server sees them. 91

5.2 Large-file processing – 1. the client sends the agent a request, 2. the

agent generates a series of URL-mangled chunk requests, 3. those re-

quests are spread across the CDN, 4. assuming cache misses, the URLs

are de-mangled on egress, and the responses are modified, 5. the agent

collects the responses, reassembles if needed, and streams it to the client . 93

5.3 Egress and ingress transformations when the CDN communicates with

the origin server. The CDN internally believes it is requesting a small

file, and the egress transformation requests a byte-range of a large file.

The ingress converts the server’s response to a response for a complete

small file, rather than a piece of a large file. 94

5.4 Throughput distribution for various window adjusting functions - Test

scheme is described in section 5.5 . 106

5.5 Achieved throughput distribution for all live PlanetLab nodes 108

5.6 Download times across all live PlanetLab nodes 111

5.7 Reverse proxy location distribution . 115

5.8 Single node download after flash crowds 115

xiv

5.9 CoBlitz October 2006 usage by requests 116

5.10 CoBlitz October 2006 usage by bytes served 116

5.11 CoBlitz traffic in Kbps on release of Fedora Core 6, averaged over 15-

minute intervals. 1.0 M in the graph represents 1 Gbps. The 5-minute

peaks exceeded 1.4 Gbps. 116

xv

List of Tables

3.1 Constants used in CoDeeN . 26

3.2 System Stable Time Period (Seconds) 34

3.3 Average Percentage of Reasons to Avoid A Node 36

4.1 Statistics over two days, Avg = Average, Low = Percentage of lookups <

10 ms, High = Percentage of lookups > 100 ms, T-Low = Percentage of

total low time, T-High = Percentage of total high time 50

4.2 Comparison of nameserver software used by PlanetLab, packetfactory

survey and the TLD survey . 59

5.1 Throughputs (in Mbps) and times (in seconds) for various downloading

approaches with all live PlanetLab nodes. The count of good nodes is

the typical value for nodes completing the download, while the count of

failed nodes shows the range of node failures. 112

5.2 Bandwidth consumption at the origin, measured in multiples of the file size113

5.3 Throughput results (in Mbps) for various systems at specified deployment

sizes on PlanetLab. All measurements are for 50MB files, except for

Shark, which uses 40MB. 119

xvi

Chapter 1

Introduction

With the explosive growth of the Internet, everyday Internet activities are increasingly

dependent on the performance and reliability of large-scale distributed systems. Com-

mercial content distribution networks (CDNs) transparently cache and deliver popular

Web content to millions of end users on behalf of thousands of content providers, and

the Domain Name System (DNS) hierarchically distributes over 70 million name res-

olutions [21], enabling ubiquitous access to the resources on the Internet via human-

understandable names. These systems have become essential components of today’s In-

ternet infrastructure, playing an indispensable role in making the entire Internet scale.

However, understanding the dynamics of large-scale distributed systems has been a

difficult task. Access to commercial systems is not easily granted to outsiders, and some

systems are not owned by a single organization and could not have been monitored at

more than a few places. Fortunately, the recent development of large-scale networking

testbeds, such as PlanetLab [62], has brought opportunities for researchers to develop

and deploy Internet-scale wide-area network projects subjected to real traffic conditions.

Researchers can now observe the various aspects of their own deployed systems and care-

1

fully measure the behavior across an unprecedented number of geographically distributed

vantage points.

Two important properties that we will discuss in this dissertation are reliability and

scalability of large-scale distributed systems. Reliability refers to how consistently a

given system performs in the presence of unpredictable failures. With the sheer com-

plexity of typical large-scale distributed systems, often made worse by heterogeneous

environments on which they operate, delivering high reliability is a difficult task. On the

other hand, scalability refers to whether the system can provide similar reliability and

performance as the system grows. Designing a small-scale system is relatively easy, but

when the number of entities involved increases by many orders of magnitude, maintaining

comparable performance is no longer straightforward.

We address reliability in two ways. One is to efficiently monitor the unreliable re-

sources and adjust future usage. By avoiding the entities that are to exhibit a problem with

a high probability, we show that we can dramatically improve the reliability of the entire

system. The other approach is to intelligently multiplex unpredictable services to create a

highly reliable service. We demonstrate that we can achieve an order of magnitude better

availability by aggregating unreliable services with minimal resource consumption. In

terms of scalability, we focus on the autonomous decision making of each participating

node in the distributed system. Instead of resorting to high-cost consensus algorithms,

independent decision making based on asynchronous monitoring provides surprisingly

good scalability in practice.

This dissertation demonstrates these principles via two real deployed systems, a Web

content distribution network and a Domain Name System resolver. We discuss how the

monitoring infrastructure in a CDN can improve the service reliability in a non-dedicated

environment where heavy resource contention may exist. We exercise the second prin-

2

ciple in designing a highly available name lookup service. We identify the origins of

some DNS service instability, and demonstrate how to provide a fast and reliable name

lookup service. Finally, we consider the scalable large-file distribution problem using

these systems. We investigate the design issues in an efficient large-file transfer service

on a regular HTTP CDN.

1.1 CDN in a Resource-contending Environment

The goal of a Web content distribution network is to improve the end user’s Web expe-

rience by distributing, caching and serving content near the clients. Commercial CDNs

operate by geographically distributing their servers and redirecting clients to one of the

nearby replicas. They typically encode the URLs of embedded objects such as image or

sound files so that resolving the domain name of the URL finds a server near the client.

Their DNS servers pick a lightly loaded replica among the candidate servers, providing

load balancing in the CDN system.

Commercial CDNs usually operate on an exclusive, dedicated environment where

they can carefully provision and control the resources. However, when the environment

becomes diverse, as in peer-to-peer systems, or when there is non-trivial resource con-

tention in the environment, maintaining the proper level of service reliability becomes

much harder. Providing latency-sensitive service in a non-dedicated environment poses

new challenges which have not been previously researched.

Two traditional solutions in improving service reliability in the request-and-response

framework are (a) to use parallel requests and respond with the fastest response and (b)

to retry with a different replica when the timeout of the previous request expires (fail-

over). Unfortunately, neither of these are appropriate for HTTP requests/responses, since

3

multiple requests may break the response idempotency because whether a request is a

CGI or not cannot be determined a priori. Moreover, the fail-over mechanism would

incur too much overhead in user-perceived delay for the CDN service to be useful.

Our approach is to have each node independently monitor the status of the necessary

resources and services, and to proactively avoid near-term problems. The necessary re-

sources include node-specific metrics such as available global file descriptors, physical

memory and free CPU cycles as well as service-specific metrics such as application ping

time and dummy request service time. DNS lookup performance and availability is an-

other critical building block, as is network path stability. Assessing the reliability of each

component and predicting and avoiding the problematic ones in the near future greatly

improves the overall reliability of the CDN service.

The benefit of this approach is that the monitoring infrastructure can be reused in

other environments like peer-to-peer systems or any shared environment with unreliable

resources. In addition, by making the system autonomously react to failures without

requiring a central authority, the management of the system becomes truly decentralized.

1.2 Highly Available DNS

The Domain Name System (DNS) provides the translation service between human read-

able domain names and machine friendly identifiers, called Internet Protocol (IP) ad-

dresses. With the enormous success of the HTTP protocol, the DNS service has become

one of the most fundamental services in keeping the Internet connected.

A typical DNS name resolution works as follows. Assume you want to resolve

“www.abc.com” from a Web browser. The Web browser calls a function in its resolver

library, and the resolver issues a DNS query to its local nameserver. The local nameserver

4

goes to one of the root nameservers asking for the address of the “.com” nameservers, and

looks up the “.abc.com” nameserver from the “.com” nameserver. Finally, it sends a DNS

request for “www.abc.com” to the “.abc.com” nameserver and receives the IP address for

“www.abc.com”. The results of all the queries are cached at the local nameserver, and

the final result is sent back to the resolver library and then to the Web browser.

As seen in the example above, DNS is a large-scale distributed system with its ser-

vice reliability depending on various entities not owned by a single organization. Through

caching and replication, it has maintained relatively good performance, but it has not been

free of problems. Most problems in the early days of DNS deployment were related to

buggy server implementations, but over time, more problems were found in the miscon-

figuration by the DNS operators. Though many implementation bugs have been fixed,

misconfiguration problems continue to persist even these days.

Most DNS research in the past focused on analyzing the problems in the server-side

infrastructure, where nameservers interact with each other. Our focus, however, is the

client-side behavior between the name lookup client and its local nameserver, which has

been largely ignored in the research community. With the local nameservers’ cache hit

rate approaching 90% these days, even a slight DNS lookup instability at the local name-

servers may produce a large number of performance problems, affecting the reliability of

other services depending on the DNS service.

We trace the origin of client-side problems and identify four common causes: (a)

temporary nameserver overloading where local nameserver gets affected by bursty traf-

fic, (b) packet loss in the path between the client and the local nameserver, (c) heavy

regularly-scheduled tasks (e.g., cron jobs) on the nameserver machine, which temporar-

ily forces the nameserver to compete for the resources, and (d) maintenance problems

such as misconfiguration or having no backup machine for outages.

5

Our approach to these problems is to selectively utilize temporarily unreliable re-

sources to produce a highly reliable service. We simply accept that the temporary fail-

ures can happen at any time, but instead of trying to fix the root cause completely, which

may not be always possible, we use some other available peer DNS service at the time of

failure. This is an intelligent fail-over mechanism, and it works well with DNS because

DNS lookups are designed to produce no harmful side-effects, even if their responses are

not idempotent.

Addressing the client-side problems this way provides direct benefit to the application

without requiring access to the privileged nameserver itself. Also, our approach does not

incur much overhead because the service just maintains contact with the peer group in

the normal case and uses the local DNS service most of the time. Only when there is a

problem with its local name lookup service, does the system forward the lookup query to

one of its peers chosen by a deterministic algorithm to improve the query locality.

1.3 Scalable Large-file Distribution

The final piece of this dissertation is about how to design a scalable large-file distribu-

tion service using a regular HTTP CDN. Large files are increasingly common, ranging

from high quality movies and podcast videos to on-line software packages such as Linux

distribution CD/DVD ISOs. The typical size of such files is many hundred megabytes

to a few gigabytes. Distributing popular large files bears a similarity to flash crowds in

regular CDNs, but since large-file distribution has a different resource usage profile, it

brings with it new challenges as well.

Two important factors in the scalability and performance of a large-file distribution

service are the physical memory utilization and the request service time. Many large

6

files are bigger than the physical memory size of a CDN node, and applying the whole-

file caching model, as when caching the common Web objects would produce frequent

thrashing due to the enlarged working set. The situation is aggravated by the fact that

the service time is many orders of magnitude longer than the time needed for traditional

Web objects of size 10 KB or less. Consequently, serving popular large files based on

the whole-file caching model would overload the CDN node itself, slowing down all

downloads from that node.

One solution to the problems is careful provisioning of the resources, which is often

used by commercial CDN vendors. By provisioning enough replicas and distributing

the clients based on some sort of admission control, the CDN can avoid performance

degradation due to frequent disk access or node overloading. One obvious drawback,

however, is inefficient resource utilization. Also, the solution does not easily scale with

lots of popular large files.

Our key observation is that we can reduce the large-file distribution problem to the

small-file regular CDN problem. By splitting the large files into smaller chunks and

distributing and caching them, we can take advantage of the aggregate memory without

severely taxing any single node. When the system needs to serve the whole file, it can

dynamically merge and deliver the chunks fetched from multiple CDN nodes. This de-

sign removes the thrashing problem by efficient use of memory, achieves load balancing

among the CDN nodes, and reduces the average service time of an individual node.

One challenge in this scheme is how to deterministically map each chunk request

to a CDN node regardless of network instability or CDN node churn. Improving the

request locality by mapping the same chunk request to the same node is critical to good

performance because multiple cache hits on the same node would make the chunk content

available from its physical memory. A cache miss would force the node to fetch the chunk

7

from the origin server, so it would not only increase the response latency but too many

cache misses would make the origin server easily overloaded.

Consistent hashing [44, 45] and Highest Random Weight (HRW) [82], which will

be discussed in Chapter 2, would solve the node churns, but these algorithms assume

that each node shares the same view on the other nodes, which means it does not take

into consideration the possibility that partial network connectivity may create different

views among the nodes. Structured peer-to-peer systems such as Chord [79], Pastry [72]

and CAN [66] do not require the full knowledge of the nodes, but they cannot cope

with partial network connectivity either. In practice, however, full network connectivity

is often hard to achieve either because of temporary network partitions and failures or

because of structural problems as in Internet2 and CANARIE which cannot route packets

to the commerical Internet [32].

Instead of depending on any consensus algorithm, which would incur lots of overhead

in practice, we let each node peer with others purely based on its own monitoring. This

is done without consensus. Then, we route the chunk request using the HRW algorithm

as follows. Each node calculates the HRW hash values for its own peers, picks the best

replica based on the ordering, and forwards the request. The subsequent hops repeat

the same process until there is no better node than the node itself. The final node is

responsible for the chunk fetch in case of a cache miss and all the nodes in the route

cache the chunk while delivering it to the client. This forwarding process converges

quickly because of the global ordering property of the HRW algorithm. It is similar to

routing in peer-to-peer systems, but the number of hops is usually much smaller because

it does not need to route to the globally best node in case of a cache miss, whereas in

peer-to-peer systems, it cannot avoid routing to the responsible node.

This unstructured HRW-based multi-hop routing, in addition to the independent peer-

8

Figure 1.1: Incremental development model for system improvement

ing strategy, greatly improves the scalability of the system because new nodes can be

added to the system without any provisioning, and the nodes will automatically distribute

the load more evenly. Moreover, because each node does not depend on other nodes’ po-

tentially incorrect monitoring, it can avoid any temporary network failures or partitions

and the request routing does not oscillate.

1.4 Contributions

The goal of this dissertation is to understand the essential factors in reliability and scal-

ability of large-scale distributed systems, and provide guiding principles for designing

highly reliable and scalable systems. In the process, we have designed and implemented

real systems and observed the operational behavior in their interaction with the real-world

clients. Three systems we have built for this purpose include CoDeeN, a content distribu-

tion network on a non-dedicated platform, CoDNS, a highly available DNS service, and

CoBlitz, a scalable large-file transfer CDN on top of CoDeeN and CoDNS. By running

them on PlanetLab and allowing public access to the services over three years, we have

gained insight about how real-world systems behave under load, resource contention, and

various failures, and we have developed design principles in producing highly reliable

and scalable systems. These are summarized as follows.

1. Autonomous monitoring plays a critical part in improving the reliability of dis-

9

tributed systems. Any resources or services which may fail should be monitored

and avoided in case of failure in order to reliably provide latency-sensitive service

on a non-dedicated platform.

2. Intelligent composition of unreliable services produces a cost-effective and highly

available service.

3. Independent decision-making is one of the key factors in achieving high scalability.

Consensus and synchronization of large entities is not only hard to achieve but also

harmful to system scalability.

Our general mode of system operation is shown in Figure 1.1, and consists of four

steps: (1) deploy the system, (2) observe its behavior in actual operation, (3) determine

how the underlying algorithms, when exposed to the real environment, cause the behav-

iors, and (4) adapt the algorithms to make better decisions using the real-world data. This

model has been applied to all our systems and has greatly improved the development

process.

1.5 Dissertation Overview

Chapter 2 describes the background techniques of the dissertation. We review the ba-

sic concept of consistent hashing and Highest Random Weight (HRW), and focus on

the trade-offs in each scheme. HRW is the underlying request redirection algorithm in

CoDeeN and CoBlitz, and distributes the load better than consistent hashing but at the

cost of more CPU consumption. We also review the monitoring and peering strategies

used by all three systems, which help the overall system to scale and to be robust to var-

10

ious failures. We focus on the general monitoring and peering issues in this chapter, and

the specifics in each system will be discussed in their respective chapters.

Chapter 3 describes the monitoring system in the CoDeeN content distribution net-

work. Over the three-year period it has been deployed on PlanetLab, CoDeeN has han-

dled over 5.8 billion HTTP requests from over 14 million clients around the world.

The operation of CoDeeN would not have been possible without autonomic monitoring,

which provides service reliability in a resource-contending environment. The monitoring

system measures the reliability of essential resources and services and avoids near term

problems by detecting unreliable components. Chapter 3 discusses and compares with

alternative strategies as well.

Chapter 4 describes CoDNS, a reliable DNS lookup service. One of the fundamental

services in the Internet is name lookup, but its instability sometimes greatly undermines

the reliability of other systems such as CDNs or email systems. We have found sources of

instability in the client-side DNS infrastructure, and show a systematic way to improve its

service availability. The CoDNS system improves availability by an order of magnitude

over the existing lookup system while minimizing resource consumption.

Chapter 5 describes CoBlitz, a scalable large-file transfer CDN. The goal of CoBlitz

is to scalably distribute large files to many simultaneous clients without custom software

or a new protocol. We develop a novel technique to achieve high cache hit rates without

overloading any individual CDN node. This technique also improves the scalability of

the system while it dramatically reduces the load at the origin server. Because CoBlitz

provides the service using the popular HTTP protocol, it does not require any modifica-

tion on the server or the client. Finally, we summarize the lessons learned in Chapter 6,

and conclude.

11

Chapter 2

Background

Request load balancing is one of the key functions in content distribution networks as

well as in any request-and-response-based distributed caching systems. The request dis-

tribution algorithm should be designed to avoid any hot spots among the caching servers

in the system and thus achieve load balancing without increasing the cache misses in the

responsible nodes. Two representative static algorithms are consistent hashing [44, 45]

and Highest Random Weight (HRW) [82]. More recently, dynamic request routing based

on structured peer-to-peer systems [66, 72, 79] has been developed.

Another key component in large-scale distributed systems is how to establish peering

relationship among the participating nodes. In many distributed systems where their op-

eration depends on the healthy functioning of each peer, achieving appropriate peering

relationships greatly affects the overall performance. In order to provide scalability and

robustness in an autonomous fashion, the peering process must be highly dynamic and

flexible for the system to quickly adjust to changes. Systematic monitoring helps each

node independently determine available resources and services and provides insight into

deciding which nodes to peer with. In this chapter, we discuss request distribution algo-

12

Figure 2.1: Consistent Hashing provides even request distribution under node churn, but
may not be optimal when the requests are popular. When node A gets overloaded or
leaves the network, then node B can be affected as well.

rithms and the general issues in node peering and resource monitoring in distributed sys-

tems. We focus on the common techniques that are used in all three systems – CoDeeN,

CoDNS, and CoBlitz – here and the specifics of how each system implements them are

discussed in more details in the following chapters. Finally, we breifly intoduce Planet-

Lab which is a distributed environment where our systems are running on.

2.1 Consistent Hashing and Highest Random Weight

The core problem in request distribution lies in how to consistently map the same re-

quests to the same set of caching servers regardless of node churn. Traditional modulo

hashing assigns each request to a server node mapped by the request’s hash value modulo

the number of total servers (ex: (3x + 5) mod 17). This method works well for evenly

distributing the requests as long as the set of server nodes is static, but when an existing

node leaves or a new node enters the system, all the requests have to be remapped to re-

flect the change. However, request remapping is undesirable because it reduces the cache

utilization of previously-mapped requests and causes a sudden surge of cache misses.

13

Figure 2.2: Highest Random Weight calculates the list of hashes and the highest ranked
node is picked. In the example above, when node C gets unavailable (ex. due to load,
etc.), request 1 and 2 are remapped to different nodes F and B, spreading out the load.

Consistent hashing [44, 45] eliminates the limitation of traditional hashing by avoid-

ing the request remapping even when the node status changes. Its implementation uses a

ring to map a request to one of participating servers. By randomly positioning the server

nodes and requests in the ring, each request is mapped to the nearest node along the cir-

cle. Node churn redistributes only a fraction of requests in the ring, leaving the majority

of other requests unaffected. Distributing the requests and nodes uniformly randomly

makes the request mapping globally even among the servers in the long term.

Highest Random Weight (HRW) [82] is similar to consistent hashing, but instead

of calculating one hash value for a request, thus mapping the request to one node, it

generates a list of values to map a request to many nodes. The list of generated values are

consistent with respect to the request, meaning that the same request would produce the

same list of values, but the distribution of the values in each rank of the list is uniform and

independent. Request redirection algorithms using HRW usually pick the highest ranked

node in the list of hash values. When the top-ranked node is not live, the next live node

in the list is picked as the responsible node for the request.

HRW has advantages over consistent hashing in handling popular requests but at the

14

cost of more CPU overhead. Assume there are two very popular requests, A and B,

and they happen to be mapped to the same node under consistent hashing. If the node

responsible for these requests gets overloaded or leaves the network, the load is shifted

to a neighboring node, possibly overloading the neighboring node as well. However, in

HRW, the next best node for A is unlikely to be the same node as the next best node for B,

because the next-ranked node in the HRW list is supposed to be random with respect to

the requests. This property helps distribute the load more evenly than consistent hashing

in case of many popular requests. Figure 2.1 and Figure 2.2 show how both schemes

work.

Structured peer-to-peer systems [66, 72, 79] can also be used to evenly distribute

the requests with only partial knowledge of the participating nodes. A Distributed Hash

Table (DHT) implemented on top of the peer-to-peer systems routes a request to the

responsible node in O(log N) hops where N is the number of participating nodes. The

basic idea is to build a local routing table per node such that the request gets forwarded

to the next hop whose ID matches more bits of the request’s ID than the current node.

This property enables the request routing to make progress. Peer-to-peer systems are an

attractive solution when the number of nodes is very large and there is no easy way of

controlling the resources. One practical drawback is that it may incur significant latency

overhead in multi-hop routing even if the number of hops is logarithmic in N. Also,

ensuring the reliability of nodes in the route may not be trivial.

2.2 Scalable Peering and Monitoring

Large-scale distributed systems like content distribution networks require reliable coop-

eration among the participating server nodes. Maintaining appropriate peering relation-

15

All Nodes
Normal

Full Peering

All Nodes
Fetching

Figure 2.3: Standard peer-
ing for 6 unrestricted nodes

Black Nodes
Restricted
Routes

Full Peering
Only On
White Nodes

Directed
Peering From
Black to White

Only White
Nodes Fetch

Figure 2.4: Peering with
semi-routable Internet2

Black Nodes
ISP−only

White Nodes
Normal

Full Peering
Only in Cliques

Directed
Peering From
Black to White

All Nodes
Fetching

Figure 2.5: Peering with
policy-restricted nodes

ships between nodes not only provides system reliability but also improves scalability

and robustness. There are many ways of establishing the peering relationship depending

on the particular environment, but we focus here on a decentralized environment where

no central NOC (Network Operation Center) exists and thus no centralized monitoring

information is available, which is similar to most peer-to-peer system environments.

The key challenge for reliable peering in this environment is how to scalably detect

the system status changes, such as failures or node churn, and to propagate the informa-

tion to the set of cooperating nodes in time for proper operation. Failures broadly in-

clude the node-specific ones caused by resource exhaustion or service instability and the

infrastructure-related ones like network routing disruption or partitions. On a platform

like PlanetLab where resources are shared by other experiments, resource exhaustion

(disk space, global file table entries, physical memory) and contention (network band-

width, CPU cycles) are not uncommon and these conditions sometimes lead to overall

service degradation or failure. Therefore, to maintain reliable and smooth operation of

a given service, each instance needs to monitor system health and exchange this data

with its peers. Timely propagation of such information is critical in many cases because

system operations often assume that a consistent view is shared by other nodes.

16

One approach is to use one of the view-synchronous group communication algo-

rithms [5, 9, 75], or to apply a group membership protocol [26]. However, these protocols

usually incur significant overhead in practice and thus cannot be used in latency-sensitive

or near real-time environment. Instead, we pursue a radically different approach. We

make every peering decision unilaterally and independently at each node, and avoid any

synchronization overhead. Each node is responsible for monitoring a set of other nodes

by periodically exchanging pairwise heartbeats and acknowledgments and selecting N

best nodes from its own perspective. The heartbeat message includes such information as

the node resource status, round-trip time (RTT) between the nodes and the network path

health. The size of the peer set, N, is chosen based on the service type and the environ-

ment. For example, for the CoDNS service, which improves the DNS lookup reliability

via a peer DNS service, a small number of different servers may be enough because most

local DNS servers present over 95% availability, but for the CDN services like CoDeeN

and CoBlitz, more peer nodes are beneficial for holding content in the aggregate cache

and for distributing the request load, but the number should not be too large in order to

monitor and update its peer node status within a short time period.

The motivation behind independent pairwise monitoring and peering is to favor sim-

plicity and robustness. Even in some extreme circumstances where more than half of

PlanetLab nodes froze due to a kernel bug in February 2005, CoDeeN continued to oper-

ate with its independent peering strategy. More sophisticated techniques, such as aggre-

gating node health information using trees, can reduce the number of heartbeats, but can

lead to worse information, since the tree may miss or use different links than those used

for pairwise communication.

Another benefit of the independent peering strategy is that it improves the scalability

with nodes in heterogeneous environments. These scenarios are shown in Figures 2.3,

17

Figure 2.6: Design criteria trade-offs

2.4, and 2.5. For example, research networks like Internet2 or CANARIE (the Canadian

high-speed network) do not peer with the commercial Internet, but are reachable from a

number of research sites including universities and corporate labs. In our system, these

nodes advertise that they do not want any regular nodes (including each other) using them

as peers, since they cannot fetch content from the commercial Internet. However, these

sites can unidirectionally peer with any nodes they can reach, which salvages their node

utility. Also, in certain locations (like corporate environments or politically-sensitive

regions), political/policy restriction makes the transfer of arbitrary content impossible,

but the area may have a sizable number of nodes. These nodes will peer both with each

other and with unrestricted nodes, giving them more peers than there would have been

available otherwise. The same scenario applies to ISPs which host commercial CDN

nodes in their network with the restriction that the CDN nodes only serve their own

customers.

18

2.3 Trade-offs in System Design

In real-world applications, there are many other factors to be considered in addition to re-

quest locality, load balancing and peering issues. Such factors include latency, throughput

and request parallelizability. For instance, Web CDNs have to maintain low response la-

tency to support interactive service to the end users. However, in a service like large-file

distribution, optimizing the throughput becomes much more important than providing

low latency. For high reliability and low latency, requests can be sent in parallel and the

fastest response can be taken, but this scheme depends on the properties of the particular

service. For example, DNS queries can be replicated whereas an arbitrary Web request

cannot.

Meeting all the criteria is not always possible because some of the factors are in

conflict with each other. System designers should prioritize the factors depending on the

type of the service and the environment. Figure 2.6 shows the design trade-offs regarding

these criteria.

2.4 PlanetLab

PlanetLab is a research testbed consisting of 700+ geographically distributed nodes over

350+ sites in 30 countries in the world [62]. Its members include academic institutions

like universities as well as various corporate and government research labs. The goal of

PlanetLab is to help networking and distributed systems research projects to interact with

the real environment and to innovate with the feedback from their real users. PlanetLab

has been successful for validating numerous proof-of-concept research ideas in the real

world, and for spawning many distributed services [31, 57, 60, 65, 86]. All of the services

described in this dissertation have been evaulated and are currently running on PlanetLab.

19

Unlike in simulation or emulation environments, test results are not repeatable on

PlanetLab because the nodes are not controllable with respect to outside changes such as

network failures or partitions. Also, resource contention is not uncommon throughout the

PlanetLab nodes. Resources on the nodes are shared by a number of other researchers

running their own experiments at the same time. However, most essential resources (e.g.,

CPU cycles and physical memory) are usually available even at the busiest moments like

the time just before paper deadlines [78]. Though each node does not behave like a typ-

ical desktop machine in peer-to-peer systems nor the PlanetLab network represent the

Internet [78], PlanetLab is still an attractive infrastructure for testing distributed services

to understand reliability and scalability of systems in operation. It has abundant heteroge-

niety in terms of node locations and bandwidth usage as desktop machines in peer-to-peer

systems have, and the traffic from real users allows researchers to observe the dynamics

of the system reliability according to different traffic patterns. Having the systems ad-

dress these factors helps researchers better understand reliability and scalability which

we focus on in this dissertation.

20

Chapter 3

CoDeeN

CoDeeN was the first deployed content distribution network on PlanetLab, with the goal

of improving Web performance by using a novel request redirection algorithm [85]. It

consists of 600+ 1 cooperating caching servers scattered over 300+ sites around the world,

and distributes Web contents driven by the users who select a CoDeeN proxy in their

browsers. Since CoDeeN has opened the service to the public in June 2003, it has handled

over 5.8 billion HTTP requests, and has yet remained as one of the most stable and highly-

used long-running services deployed on PlanetLab, continuously serving over 20 million

daily requests from over 50,000 unique clients around the world.

The operational stability of CoDeeN in the early days of deployment, however, was

not smooth enough until we observed and fixed the reliability problems in operation.

CoDeeN is a complex system depending on reliable functioning of heterogeneous compo-

nents, and when any component fails or becomes unavailable, the overall stability quickly

degrades. One key insight in our early deployment endeavor is the observation that en-

suring the system reliability in practice is more difficult to catch than traditional fail-stop

1As of October 2006

21

models assume. We have found that the status of these proxy nodes is much more dy-

namic and unpredictable than we had originally expected, which stimulated us to develop

the essential principles for achieving the high reliability of a complex distributed system.

What CoDeeN aims to provide is a latency-sensitive CDN service with decentralized

control, which is radically different from the centrally-controlled commercial CDNs or

latency-insensitive peer-to-peer file sharing services. In addition, CoDeeN is competing

for shared resources with other processes on each PlanetLab node, which makes it much

harder to guarantee the stability of essential resources and to provide service reliability.

In order to achieve high reliability in this environment, we argue that the system needs

to tightly monitor the status of the resources that are needed in the near future, and avoid

any unreliable components on a small time scale. This seemingly simple principle has

laid the foundation of CoDeeN’s operational reliability for over three years, and works

surprisingly well in practice without much overhead. We also believe that this principle

can be applied to other similar environments such as peer-to-peer systems where much

heterogeneity is expected in terms of available resources and services. In this chapter, we

discuss the essential resources and services, and how we can build a lightweight monitor-

ing infrastructure.

3.1 CoDeeN Basics

Figure 3.1 shows the basic architecture of CoDeeN. CoDeeN consists of cooperating

caching proxy servers, where each proxy operates as forward-mode proxy, reverse-mode

proxy, and request redirector. When a proxy receives a request from a client and it is

a cache hit, the proxy can respond with the cached object to the client (forward-mode

proxy). In case of a cache miss, the proxy runs a deterministic request distribution algo-

22

Figure 3.1: CoDeeN architecture – Clients configure their browsers to use a CoDeeN
node, which acts as a forward-mode proxy. Cache misses are deterministically hashed
and redirected to another CoDeeN proxy, which acts as a reverse-mode proxy, concen-
trating requests for a particular URL. In this way, fewer requests are forwarded to the
origin site.

rithm in its peer set to pick a responsible proxy, and redirects the request to the chosen

proxy (redirector). The chosen proxy now acts as a reverse-mode proxy to handle the re-

quest, and if it is a cache miss, the proxy fetches the content from the origin sever. While

the fetched content is being delivered to the client, the content gets cached at both proxies

in the chain and is used for future requests.

The request distribution algorithm used by CoDeeN is called Replicated Highest Ran-

∀ nodes, hash(i) = hashcalc(URL, node name(i))
hash = sort(hash)
hash = truncate(hash, NumCandidates)
∀ nodes, index(i) = node index number of hash(i)
minval = min(load(index(i)))
hash = select hash where load(index(i)) == minval
return index(random() modulo size(hash))

Figure 3.2: Replicated Highest Random Weight with Load Balancing

23

dom Weight (HRW) with Load Balancing [85], which provides intelligent load balancing

on top of HRW. Figure 3.2 shows the pseudo code of the algorithm, which is also used for

the CoBlitz scalable large-file distribution service, which will be discussed in Chapter 5.

The difference in CoDeeN is that it uses a single hop routing in mapping the responsible

reverse-mode proxy, whereas CoBlitz uses multi-hop routing to find the best reachable

replica. In the presence of inconsistent views on the peer set of the participating nodes,

the single hop routing may not always find the best replica in the peer set, though most

requests do get consistently mapped as long as the difference in the peer set remains

small. CoDeeN’s design decision favors low latency, which is one of the key require-

ments for a Web CDN service, over optimal request locality, which is more important for

a high-throughput service in reducing the origin server load.

3.2 Reliability from Peering and Monitoring

CoDeeN provides a latency-sensitive CDN service operating on a shared testbed, Planet-

Lab, where resource contention and exhaustion are not uncommon. 2 In order to maintain

service reliability in cooperation with other nodes, CoDeeN adopts the pairwise moni-

toring and independent peering strategy discussed in Section 2.2. In a latency-sensitive

environment such as CoDeeN, avoiding problematic nodes, even if they (eventually) pro-

duce a correct result, is preferable to incurring delays for keeping those nodes. Each

CoDeeN instance first selects a healthy subset of the proxies, forms its peer set and then

lets the redirection algorithm decide which one is the best for a given request. More

specifically, each node collects up to 120 nodes within a 100ms round-trip time (RTT)

2PlanetLab may not be like the typical environments in which commercial distributed systems are de-
ployed where less contention or exhaustion is expected. However, even on such platforms, failures do
happen [34], and PlanetLab can be thought of as an environment with such failures more frequently hap-
pening.

24

boundary and periodically monitors these nodes by exchanging heartbeats. The 100ms

cutoff is introduced to reduce the users’ browsing latency, and the peer size, 120, is cho-

sen because two heartbeats per second would sweep the peer nodes within one minute.

Thus, the service failure duration is kept below one minute even when some peer nodes

suddenly fail.

Two alternatives to active monitoring and avoidance, using retry/failover or multiple

simultaneous requests, are not appropriate for this environment. Retrying failed requests

requires that failure has already occurred, which implies latency before the retry. We

have observed failures where the outbound connection from the reverse proxy makes no

progress. In this situation, the forward proxy has no information on whether the request

has been sent to the origin server. The problem in this scenario is the same reason why

multiple simultaneous requests are not used – the idempotency of an HTTP request can

not be determined a priori. Some requests, such as queries with a question mark in

the URL, are generally assumed to be non-idempotent and uncacheable. However, the

CGI mechanism also allows the query portion of the request to be concatenated to the

URL without any special symbol (i.e., a question mark) that implies a CGI request. For

example, the URL “/directory/program/query” may actually represent a CGI query like

“/directory/program?query”. As a result, sending multiple parallel requests and waiting

for the fastest answer can cause errors.

The success of distributed monitoring and its effectiveness in avoiding problems de-

pends on the relative difference in time between service failures and monitoring fre-

quency. Our measurements indicate that most failures in CoDeeN are much longer than

the monitoring frequency, and that short failures, while numerous, can be avoided by

maintaining a recent history of peer nodes. The research challenge here is to devise ef-

fective distributed monitoring facilities that help to avoid service disruption and improve

25

Constant Value
Peer node selection Up to 120 nodes within 100ms RTT
Hearbeat rate 2 heartbeats per second
Uptime, OS CPU %, load averages Checked every 30 seconds
Global file descriptor test 50 sockets creation test every 2 seconds
DNS lookup test 5 seconds as failure
OS CPU % for a bad node 95% or more are assumed to be bad
Packet loss threshold 5% loss rate as cutoff
Max. heartbeat ACK RTT 3 seconds

Table 3.1: Constants used in CoDeeN

system response latency. Our design uses heartbeat messages combined with other tests

to estimate which other nodes are healthy and therefore worth using.

3.2.1 Local Monitoring

Local monitoring gathers information about the CoDeeN instance’s state and its host en-

vironment, to assess resource contention as well as external service availability. Resource

contention arises from competition from other processes on a node, as well as incomplete

resource isolation. External services, such as DNS, can become unavailable for reasons

not related to PlanetLab.

We believe that the monitoring mechanisms we employ on PlanetLab may be use-

ful in other contexts, particularly for home users joining large peer-to-peer services.

Most PlanetLab nodes tend to host a number of active experiments/projects at any given

time. PlanetLab uses vservers, which provide a view-isolated environment with a private

root filesystem and security context, but no other resource isolation. While this system

falls short of true virtual machines, it is better than what can be expected on other non-

dedicated systems, such as multi-tasking home systems. External factors may also affect

service health. For example, a site’s DNS server failure can disrupt the CoDeeN instance,

26

and most of these problems appear to be external to PlanetLab. The DNS problem, as

well as our solution, CoDNS, will be discussed in depth in Chapter 4.

The local monitor examines the service’s primary resources, such as free file descrip-

tors, CPU cycles, and DNS resolver behavior. Non-critical information includes system

load averages, node and proxy uptimes, traffic rates (classified by origin and request type),

and free disk space. Some failure modes were determined by experience – when other

experiments consumed all available sockets, not only could the proxy not tell that oth-

ers were unable to contact it, but incoming requests appreared to be indefinitely queued

inside the kernel.

Values available from the operating system/utilities include node uptime, system load

averages (both via “/proc”), and system CPU usage (via “vmstat”). Uptime is read at

startup and updated inside CoDeeN, while load averages are read every 30 seconds. Pro-

cessor time spent inside the OS is queried every 30 seconds, and the 3-minute maximum

is kept. Using the maximum over 3 minutes reduces fluctuations, and, at 120 nodes,

exceeds the gap between successive heartbeats (described later) from any other node.

We have the system avoid any node reporting more than 95% system CPU time, since

we have found it correlates with kernel/scheduler problems. While some applications

do spend much time in the OS, few spend more than 90%, and 95% generally seems

failure-induced.

Other values, such as free descriptors and DNS resolver performance, are obtained

via simple tests. We create and destroy 50 unconnected sockets every 2 seconds to test

the availability of space in the global file table. Any failures over the past 32 attempts are

reported, which causes peers to throttle traffic for roughly one minute to any node likely

to fail. Similarly, a separate program periodically calls gethostbyname() to exercise

the node’s DNS resolver. To measure comparable values across nodes, and to reduce off-

27

site lookup traffic, only other (cacheable) PlanetLab node names are queried. Lookups

requiring more than 5 seconds are deemed failed, since resolvers default to retrying at

5 seconds. We have observed DNS failures caused by misconfigured “/etc/resolv.conf”

files, periodic heavyweight processes concurrently running on the same machine host-

ing the name servers, and heavy DNS traffic from other sources. More details will be

discussed in the next chapter.

3.2.2 Peer Monitoring

To monitor the health and status of its peers, each CoDeeN instance employs two mech-

anisms – a lightweight UDP-based heartbeat and a “heavier” HTTP/TCP-level “fetch”

helper. These mechanisms are described below.

UDP Heartbeat

As part of its tests to avoid unhealthy peers and network connectivity problems, CoDeeN

uses UDP heartbeats as a simple gauge of liveness. UDP has low overhead and can be

used when socket exhaustion prevents TCP-based communication. Since it is unreliable,

only small amounts of non-critical information are sent using it, and failure to receive

acknowledgments (ACKs) is used to infer packet loss.

Each proxy independently chooses the peer nodes within the boundary of 100ms cut-

off with the maximum peer set size of 120. The 100ms cutoff was chosen to prevent

noticeable lag in Web browsing for the clients. For monitoring the peer nodes, each

proxy sends two heartbeat messages per second, which enables the sweep of all peers

in a minute, and the peer proxies respond with information about their local state. The

piggybacked load information includes the peer’s average load, system time CPU, file

descriptor availability, proxy and node uptimes, average hourly traffic, and DNS tim-

28

ing/failure statistics. With the 40-byte heartbeat and the current rate of two hearbeats per

second, each node consumes only 80 bytes/sec (and another 80 bytes/sec for incoming

heartbeats) on the heartbeat traffic. The aggregate heartbeat traffic is 256 Kbps (based on

400 live nodes), which is much smaller than an average of 80-100 Mbps of bandwidth

spent on the actual content delivery by CoDeeN.

Heartbeat acknowledgments can get delayed or lost, giving some insight into the cur-

rent network/node state. We consider acknowledgments received within 3 seconds to

be acceptable, while any arriving beyond that are considered “late”. The cutoff inter-

node RTT within the peer set is 100ms, so not receiving an ACK in 3 seconds is abnor-

mal. We maintain information about these late ACKs to distinguish between overloaded

peers/links and failed peers/links, for which ACKs are never received. This information

helps the system quickly reuse the nodes when temporary overloading is gone.

Several policies determine when missing ACKs are deemed problematic. Any node

that does not respond to the most recent ACK is avoided, since it may have just recently

died. Using a 5% loss rate as a limit, and understanding the short-term nature of network

congestion, we avoid any node missing 2 or more ACKs in the past 32, since that implies

a 6% loss rate. However, we consider viable any node that responds to the most recent

12 ACKs, since it has roughly a 54% chance of having 12 consecutive successes with a

5% packet loss rate [6], and the node is likely to be usable.

By coupling the history of ACKs with their piggybacked local status information,

each instance in CoDeeN independently assesses the health of other nodes. This in-

formation is used by the redirector to determine which nodes are viable candidates for

handling forwarded requests. Additionally, the UDP heartbeat facility has a mechanism

by which a node can request a summary of the peer’s health assessment. This mechanism

is not used in normal operation, but is used for our central reporting system to observe

29

overall trends. For example, by querying all CoDeeN nodes, we can determine which

nodes are being avoided and which are viable.

HTTP/TCP Heartbeat

While the UDP-based heartbeat is useful for excluding some nodes, it cannot definitively

determine node health, since it cannot test some of the paths that may lead to service

failures. For example, we have experienced site administrators port filtering TCP con-

nections, which can lead to UDP packets being exchanged without obstruction, but all

TCP connections resulting in failure after failed retransmission attempts.

To augment our simple heartbeat, we also employ a tool to fetch pages over HTTP/TCP

using a proxy. This tool, conceptually similar to the “wget” program [35], is instrumented

to specify what fails when it cannot retrieve a page within the allotted time. Possible

causes include socket allocation failure, slow/failed DNS lookup, incomplete connection

setup, and failure to retrieve data from the remote system. The DNS resolver timing mea-

surements from this tool are fed into the instance’s local monitoring facilities. Since the

fetch tool tests the proxying capabilities of the peers, we must also have “known good”

web servers to use as origin servers. For this reason, each CoDeeN instance also includes

a dummy web server that generates a noncacheable response page for incoming requests.

The local node picks one of its presumed live peers to act as the origin server, and

iterates through all of the possible peers as proxies using the fetch tool. After one itera-

tion, it determines which nodes were unable to serve the requested page. Those nodes are

tested to see if they can serve a page from their own dummy server. These tests indicate

whether a peer has global connectivity or any TCP-level connectivity at all.

Over time, all CoDeeN nodes will act as an origin server and a test proxy for this

testing. We keep a history of the failed fetches for each peer, and combine this with

30

FdTstHst: 0x0
ProxUptm: 36707
NodeUptm: 111788
LoadAvgs: 0.18 0.24 0.33
ReqsHrly: 5234 3950 0 788 1004 275 2616
DNSFails: 0.00
DNSTimes: 2.48
SysPtCPU: 2 2 1 3 2 4

Liveness: ..X.. ..X..X.XXX.
MissAcks: 10w00 00001 00000 0w066 00010 000v0 00020
LateAcks: 00000 00000 00000 00000 00000 00000 00000
NoFdAcks: 00000 00000 00000 00000 00000 00000 00000
VersProb: 00000 00000 00000 00000 00000 00000 00000
MaxLoads: 41022 11111 11141 20344 11514 14204 11111
SysMxCPU: 81011 11111 11151 10656 11615 15564 11111
WgetProx: 00w00 00100 00010 0w110 00000 000s0 00010
WgetTarg: 11w11 10301 01021 1w220 00111 101t0 11121

Figure 3.3: Sample monitoring log entry

the UDP-level heartbeats to determine if a node is viable for redirection. To allow for

network delays and the possibility of the origin server becoming unavailable during one

sweep, a node is considered bad if its failure count exceeds the other nodes by more than

two.

3.2.3 Aggregate Information

Each CoDeeN proxy stores its local monitoring state as well as its peer summary to

disk every 30 seconds, allowing offline behavior analysis as well as anomaly detection.

The summary is also published and updated automatically on the CoDeeN central status

page [22] every five minutes. These logs provide the raw data that we use in our analysis

in Section 3.3. A sample log entry, truncated to fit in the column, is shown in Figure 3.3.

Most of the fields are the measurements that have been mentioned earlier, and the

columns in the tabular output represent data about the other nodes in CoDeeN. Values

in these lines are usually the counts in base-32 format, where ’w’ represents 32. The

exception is system CPU usage (SysMxCPU), which is the percentage value divided by

10 and rounded up. Based on collected information through UDP heartbeat and HTTP

31

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 100 1000 10000 100000 1e+06

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

System Stable Time Period (Seconds)

st-1
pr-1
ny-1
uw-1

Figure 3.4: System Stability View from Individual Proxies

tests, each redirector decides the “Liveness” for each CoDeeN node, indicating whether

the local node considers that peer node to be viable.

In this particular example, this node is avoiding six of its peers, mostly because they

have missed several UDP ACKs. The eighth node, highlighted in boldface, is being

avoided because it has a WgetTarg count of 3, indicating that it has failed the HTTP fetch

test (with itself as the target) three times out of the past 32. More analysis on the statistics

for node avoidance is presented in Section 3.3.

3.3 Evaluation

In this section, we analyze the data we collected during the first six months of CoDeeN’s

operation. These results not only show the status of CoDeeN over time, but also provide

insights into the monitoring infrastructure.

32

3.3.1 Node Stability

The distributed node health monitoring system provides data about the dynamics of the

system and insight into the suitability of our choices regarding monitoring. One would

expect that if the system is extremely stable and has few status changes, an active moni-

toring facility may not be very critical and probably just increases overhead. Conversely,

if most failures are short, then avoidance is pointless since the health data is too stale to

be useful. Also, the rate of status changes can guide the decisions regarding peer group

size upper bounds, since larger groups will require more frequent monitoring to maintain

tolerable staleness.

Our measurements confirm our earlier hypothesis about the importance of taking a

monitoring and avoidance approach. They show that our system exhibits fairly dynamic

liveness behavior. Avoiding bad peers is essential and most failure time is in long failures

so avoidance is an effective strategy. Figure 3.4 depicts the stability of the CoDeeN

system with 40 proxies from four of our CoDeeN redirectors’ local views. We consider

the system to be stable if the status of all 40 nodes is unchanged between two monitoring

intervals. We exclude the cases where the observer is partitioned and sees no other proxies

alive. The x-axis is the stable period length in seconds, and the y-axis is the cumulative

percentage of total time. As we can see, these 4 proxies have very similar views. For

about 8% of the time, the liveness status of all proxies changes every 30 seconds (our

measurement interval). In Table 3.2, we show the 50th and the 90th percentiles of the

stable periods. For 50% of time, the liveness status of the system changes at least once

every 6-7 minutes. For 90% of time, the longest stable period is about 20-30 minutes. It

shows that in general, the system is quite dynamic – more than what one would expect

from a few node joins/exits.

The trade-off between peer group size and stability is an open area for research, and

33

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 100 1000 10000 100000 1e+06

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

System Stable Time Period (Seconds)

st-1
pr-1
ny-1
uw-1

(a) Divided into 2 Groups

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 100 1000 10000 100000 1e+06

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

System Stable Time Period (Seconds)

st-1
pr-1
ny-1
uw-1

(b) Divided into 4 Groups

Figure 3.5: System stability for smaller groups

our data suggests, quite naturally, that stability increases as group size shrinks. The con-

verse, that large groups become less stable, implies that large-scale peer-to-peer systems

will need to sacrifice latency (via multiple hops) for stability. To measure the stability of

smaller groups, we divide the 40 proxies into 2 groups of 20 and then 4 groups of 10 and

measure group-wide stability. The results are shown in Figure 3.5 and also in Table 3.2.

As we can see, with smaller groups, the stability improves with longer stable periods for

both the 50th and 90th percentiles.

40-node 2 × 20-node 4 × 10-node
50% 90% 50% 90% 50% 90%

pr-1 445 2224 1345 6069 3267 22752
ny-1 512 3451 1837 10020 4804 25099
uw-1 431 2085 1279 5324 3071 19579
st-1 381 2052 1256 5436 3008 14334

Table 3.2: System Stable Time Period (Seconds)

The effectiveness of monitoring-based avoidance depends on the node failure dura-

tion. To investigate this issue, we calculate node avoidance duration as seen by each

node and as seen by the sum of all nodes. The distribution of these values is shown

in Figure 3.6, where “Individual” represents the distribution as seen by each node, and

34

10
2

10
4

10
6

0

20

40

60

80

100

Failure Duration (seconds)

%
 o

f #
 o

f O
cc

ur
re

nc
es

Individual
System−Wide

(a) CDF by # of Occurrences

10
2

10
4

10
6

0

20

40

60

80

100

Failure Duration (seconds)

%
 o

f T
ot

al
 T

im
e

(%
)

Individual
System−Wide

(b) CDF by Total Time

Figure 3.6: Node Failure Duration Distribution. Failures spanning across a system-wide
downtime are excluded from this measurement, so that it only includes individual node
failures. Also, due to the interval of node monitoring, it may take up to 40 seconds for
a node to be probed by another nodes, thus failures that last a shorter time might be
neglected.

“System-Wide” counts a node as failed if all nodes see it as failed. By examining the

durations of individual failure intervals, shown in Figure 3.6a, we see that most failures

are short, and last less than 100 seconds. Only about 10% of all failures last for 1000

seconds or more. Figure 3.6b shows the failures in terms of their contribution to the total

amount of time spent in failures. Here, we see that these small failures are relatively in-

significant – failures less than 100 seconds represent 2% of the total time, and even those

less than 1000 seconds are only 30% of the total. These measurements suggest that node

monitoring can successfully avoid the most problematic nodes.

3.3.2 Reasons to Avoid a Node

Similar to other research on peer-to-peer systems [8, 37, 67, 73], we initially assumed

that churn, the act of nodes joining and leaving the system, would be the underlying

35

Site Fetch Miss ACKs Node Down Late ACKs DNS
pr-1 6.2 18.3 29.6 13.6 32.1
ny-1 4.7 16.1 31.7 14.0 33.9
uw-1 10.4 16.8 30.0 12.8 29.7
st-1 5.0 14.7 27.2 15.4 34.3

Table 3.3: Average Percentage of Reasons to Avoid A Node

cause of availability-related failures. 3 However, as can be seen from the stability results,

failure occurs at a much greater rate than churn. To investigate the root causes, we gather

the logs from 4 of redirectors and investigate what causes nodes to switch from viable

to avoided. Therefore, our counts also take time into account, and a long node failure

receives more weight. We present each reason category with a non-negligible percentage

in Table 3.3. We find that the underlying cause is roughly common across nodes – mainly

dominated by DNS-related avoidance and many nodes down for long periods, followed

by missed ACKs. Even simple overload, in the form of late ACKs, is a significant driver

of avoidance. Finally, the HTTP fetch helper process can detect TCP-level or application-

level connectivity problems.

In terms of design, these measurements show that a UDP-only heartbeat mechanism

will significantly underperform our more sophisticated detection. Not only are the multi-

ple schemes useful, but they are complementary. Variation occurs not only across nodes,

but also within a node over a span of multiple days. The data for the ny-1 node, calculated

on a daily basis, is shown in Figure 3.7.

36

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Days since August 27, 2003

of

 a
vo

id
an

ce
 c

ou
nt

s

fetch
miss acks
node down
late acks
no FDs
DNS

Figure 3.7: Daily counts of avoidance on ny-1 proxy

0

2

4

6

8

10

12

14

16

18

06/01 07/01 08/01 09/01 10/01 11/01 12/01

%
 o

f R
ed

ire
ct

ed
 R

eq
ue

st
s

ta
kin

g
>5

/1
0s

ec

 w
ith

 M
IS

S/
00

0

Date

>5sec
>10sec

Figure 3.8: Percentage of Non-serviced Redirected Requests

3.3.3 Response Performance

The service response time behavior is largely a function of how well the system performs

in avoiding bad nodes. The results of our efforts to detect/avoid bad nodes can be seen

in Figure 3.8, which shows requests that did not receive any service within specific time

intervals. When this occurs, the client is likely to stop the connection or visit another

3Even though node churn at PlanetLab is less frequent than in typical peer-to-peer systems, given the ex-
ecessive exchange of messages and thus instability caused by churn as reported in the peer-to-peer systems
literature above, we initially thought that churn is the major cause for most failures.

37

0

5

10

15

20

25

30

06/01 07/01 08/01 09/01 10/01 11/01 12/01

%
 o

f R
ed

ire
ct

ed
 R

eq
ue

st
s

ta
kin

g
>5

/1
0s

ec

 w
ith

 s
ize

 <
10

KB

Date

all requests (>5sec)
successful requests (>5sec)

all requests (>10sec)
successful requests (>10sec)

Figure 3.9: Percentage of Redirected Requests (< 10KB)

0

2

4

6

8

10

12

14

16

18

20

06/01 07/01 08/01 09/01 10/01 11/01 12/01

Av
er

ag
e

Re
sp

on
se

 T
im

e
(s

ec
)

Date

all redirected requests
successful redirected requests

redirected requests with size <10K

Figure 3.10: Average Response Time of Redirected Requests in 2003

page, yielding an easily-identifiable access log entry (MISS/000). These failures can be

the result of the origin server being slow or a failure within CoDeeN. The trend shows that

both the magnitude and frequency of the failure spikes are decreasing over time. DNS

failure detection was added in late August 2003, and appears to have yielded positive

results.

Since we cannot “normalize” the graphs for the different traffic over CoDeeN, other

measurements are noisier, but also instructive. Figure 3.9 shows the fraction of small/failed

38

 0

 2

 4

 6

 8

 10

 12

 14

Jun/01 Jul/01 Aug/01 Sep/01 Oct/01 Nov/01 Dec/01N
u

m
b

e
r

o
f

U
n

iq
u

e
 C

lie
n

t
IP

s
 p

e
r

D
a

y
 (

x
 1

0
3
)

Date in 2003

Figure 3.11: Daily Client Population (Unique IP) on CoDeeN in 2003

responses that take more than a specific amount of time. Here, we only show redirected

requests, which means they are not serviced from the forward proxy cache. By focusing

on small responses, we can remove the effects of slow clients downloading large files.

This is to separate the case where the service itself is slow and the case where the slow

response time is caused by some external factor such as slow clients. We see a similar

trend where the failure rate decreases over time. The actual overall response times for suc-

cessful requests, shown in Figure 3.10, has a less interesting profile. After a problematic

beginning, responses have been relatively smooth. As seen from Figure 3.14, since the

beginning of October 2003, we have received a rapidly increasing number of requests on

CoDeeN, and consequently, the average response time for all requests slightly increases

over time. However, the average response time for small files is steady and keeps de-

creasing. This result is not surprising, since we have focused on reducing failures rather

than reducing success latency.

39

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

July
2003

January
2004

July
2004

January
2005

July
2005

January
2006

July
2006

N
u

m
b

e
r

o
f

U
n

iq
u

e
 C

lie
n

t
IP

s
 p

e
r

D
a

y
 (

x
 1

0
3
)

Date

Figure 3.12: Daily Client Population (Unique IP) on CoDeeN

 0

 5

 10

 15

 20

 25

 30

 35

 40

July
2003

January
2004

July
2004

January
2005

July
2005

January
2006

July
2006

N
u

m
b

e
r

o
f

D
a

ily
 R

e
q

u
e

s
ts

 (
x
 1

0
6
)

Date

Figure 3.13: Daily Requests Serviced on CoDeeN

3.3.4 Traffic

As the system became stable, the number of daily clients used to access CoDeeN in-

creased with the values shown in Figure 3.11. During the first six months, the number

of unique client IP addresses passed 500,000, and the total number of unique IPs for the

whole period is over 14 million. Now, our daily traffic regularly exceeds 50,000 unique

IPs as shown in Figure 3.12. The two valleys, at December 2003 and at October 2004, are

due to a PlanetLab kernel upgrade, which caused the majority of the nodes unavailable.

40

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

July
2003

January
2004

July
2004

January
2005

July
2005

January
2006

July
2006

N
u

m
b

e
r

o
f

D
a

ily
 R

e
q

u
e

s
ts

 (
x
 1

0
6
)

Date

Figure 3.14: Daily Requests Received on CoDeeN

During the whole period of operation so far, CoDeeN has handled more than 5.4 bil-

lion legitimate requests (excluding abusive requests that are rejected), and the daily traffic

served by CoDeeN now hovers above 20 million requests, with peaks at 35 million, as

seen in Figure 3.13. The number of requests (as well as the clients) started to increase

significantly when CoDeeN expanded the set of nodes to all PlanetLab nodes from North

American educational sites in January 2005. The major bump in the number of requests

in January 2006 is due to deployment of the robot detection mechanism [61], which in-

creased the bandwidth for humans while removing the abusive robot traffic. The set of

security mechanisms deployed on CoDeeN, which is beyond the scope of this disserta-

tion, can be found at [56, 61].

A couple of spikes in Figure 3.11 and in Figure 3.13 are related to some external

events: we have found that some anonymizer software site lists CoDeeN nodes as open

proxies, and the updated list is pushed out to a large number of their customers. These

events temporarily increase the number of requests and clients of CoDeeN, but as soon

as they find out that CoDeeN is not useful for anonymizing their requests, they remove

the CoDeeN proxy IPs from the setting, which would make those spikes.

41

3.4 Related Work

Similar to CoDeeN, peer-to-peer systems [66, 72, 79] also run in a distributed, unreliable

environment. Nodes join or depart the system from time to time, and node failures can

also happen frequently [67]. What makes the situation even worse is that the network path

is sometimes non-transitive, 4 making global view sharing much difficult [32]. In order

to maintain reliability in this environement, besides maintaining a membership directory,

these systems typically apply a retry and fail-over scheme to deal with failing nodes while

routing to the destinations. Although these retries are generally expected by peer-to-peer

system users, the extra delays in retrying different next hops can cause latency problems.

For latency-sensitive applications implemented on peer-to-peer routing, multiple hops

or retries in each operation become even more problematic [25]. To address multiple-

hop latency, recent research has started pushing more membership information into each

node in a peer-to-peer system to achieve one-hop lookups [38, 68]. In this regard, similar

arguments can be made that each node could monitor the status of other nodes.

Some researchers have used Byzantine fault tolerant approaches to provide higher

reliability and robustness than fail-stop assumptions provide [1, 16]. While such schemes,

including state machine replication in general, may seem appealing for handling failing

nodes in CoDeeN, the fact that origin servers are not under our control limits their utility.

Since we cannot tell that an access to an origin server is idempotent, we cannot issue

multiple simultaneous requests for one object due to the possibility of side-effects. Such

an approach could be used among CoDeeN’s reverse proxies if the object is known to be

cached.

In the cluster environment, systems with a front end [36] can deploy service-specific

4The fact that node A can reach node B, and node B can reach node C does not automatically mean that
node A can reach node C.

42

load monitoring routines in the front end to monitor the status of server farms and decide

to avoid failing nodes. These generally operate in a tightly-coupled environment with

centralized control. There are also general cluster monitoring facilities that can watch

the status of different nodes, such as the Ganglia tools [33] or CoMon [59], which have

been used on PlanetLab. We can potentially take advantage of them to collect system

level information. However, we are also interested in application-level metrics such as

HTTP/TCP connectivity, and some of resources such as DNS behaviors that are not mon-

itored by Ganglia.

Cooperative proxy cache schemes have been previously studied in the literature [17,

63, 81, 88], and CoDeeN shares many similar goals. However, to the best of our knowl-

edge, the only two deployed systems have used the Harvest-like approach with proxy

cache hierarchies. The main differences between CoDeeN and these systems are in the

scale, the nature of who can access, and the type of service provided. Neither system uses

open proxies. The NLANR Global Caching Hierarchy [55] operates ten proxy caches

that only accept requests from other proxies and one end-user proxy cache that allows

password-based access after registration. The JANET Web Cache Service [40] consists

of 17 proxies in England, all of which are accessible only to other proxies. Joining the

system requires providing your own proxy, registering, and using an access control list to

specify which sites should not be forwarded to other caches. Entries on this list include

electronic journals.

Coral [31] is an Akamai-like CDN based on a peer-to-peer system, and has provided

public service like CoDeeN. Bad nodes are avoided by DNS-based redirection, some-

times using an explicit UDP RPC for status checking.

43

Chapter 4

CoDNS

The Domain Name System (DNS) [54] has become a ubiquitous part of everyday comput-

ing due to its effectiveness, human-friendliness, and scalability. It provides a distributed

lookup service primarily used to convert from human-readable machine names to Internet

Protocol (IP) addresses. Its service has become an integral part of Internet computing via

the World Wide Web’s near-complete dependence on it. Thanks in part to its redundant

design, aggressive caching, and flexibility, it has become a ubiquitous part of everyday

computing that most people, including researchers, take for granted,

Most DNS research focuses on “server-side” problems, which arise on the systems

that translate names belonging to the group that runs the systems. Such research in-

cludes understanding name hierarchy misconfiguration [28, 42] and devising more scal-

able distribution infrastructure [25, 43, 65]. However, due to increasing memory sizes

and DNS’s high cachability, “client-side” DNS hit rates are approaching 90% [42, 87],

so fewer requests are dependent on server-side performance. The client-side components

are responsible for contacting the appropriate servers, if necessary, to resolve any name

presented by the user. This infrastructure, which has received less attention, is our focus

44

– understanding client-side behavior in order to improve overall DNS performance and

reliability.

Using PlanetLab, we locally monitor the client-side DNS infrastructure of 150 sites

around the world, enabling a large-scale examination of client-side DNS performance.

We find that client-side failures are widespread and frequent, and that their effects de-

grade DNS performance and reliability. The most common problems we observe are

intermittent failures to receive any response from the local nameservers, but these are

generally hidden by the internal redundancy in DNS deployments. However, the cost of

such redundancy is additional delay, and we find that the delays induced through such

failures often dominate the time spent waiting on DNS lookups.

To address these client-side problems, we have developed CoDNS, a lightweight,

cooperative DNS lookup service that can be independently and incrementally deployed

to augment existing nameservers. CoDNS uses an insurance-like model of operation

– groups of mutually trusting nodes agree to resolve each other’s queries when their

local infrastructure is failing. We find that the group size does not need to be large to

provide substantial benefits – groups of size 2 provide roughly half the maximum possible

benefit, and groups of size 10 achieve almost all of the possible benefit. Using locality-

enhancement techniques and proximity-favoring design, CoDNS achieves low-latency,

low-overhead name resolution, even in the presence of local DNS delays/failures.

CoDNS has been serving live traffic on PlanetLab since October 2003, providing

many benefits over standard DNS. CoDNS reduces average lookup latency by 27-82%,

greatly reduces slow lookups, and improves DNS availability by an extra ’9’, from 99%

to over 99.9%. Its service is more reliable and consistent than any individual node’s.

Additionally, CoDNS has salvaged “unusable” nodes, which had such poor local DNS

infrastructure that they were unfit for normal use.

45

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(a) planetlab1.cs.cornell.edu

 10

 100

 1000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(b) lefthand.eecs.harvard.edu

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(c) planetlab-1.cmcl.cs.cmu.edu

 10

 100

 1000

 10000

 100000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(d) kupl1.ittc.ku.edu

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(e) planetlab-1.stanford.edu

 10

 100

 1000

 10000

 100000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(f) planetlab1.cs.ubc.ca

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(g) planetlab1.eecs.umich.edu

 10

 100

 1000

 10000

00 06 12 18 00 06 12 18 00A
v
g

 R
e

s
p

 T
im

e
 (

m
s
)

Time

(h) planetlab2.cs.northwestern.edu

Figure 4.1: Average cached DNS lookup response times on various PlanetLab nodes over
two days. Note that while most Y axes span 10-1000 milliseconds, some are as large as
100,000 milliseconds. 46

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

C
om

pl
em

en
ta

ry
 C

D
F

Response Time (ms)

ubc
cornell

cmu
havard

ku
stanford

u-mich
northwestern

(a) Fraction of Lookups Taking > X ms: Please note
that Y-axis is also in log scale

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

W
ei

gh
te

d
C

om
pl

em
en

ta
ry

 C
D

F

Response Time (ms)

cornell
northwestern

harvard
ku

stanford
u-mich

cmu
ubc

(b) Fraction of the Sum of Lookups Taking > X ms

Figure 4.2: Complementary Cumulative Distribution of Cached DNS Lookups

4.1 Background & Analysis

While the Domain Name System was intended to be a scalable, distributed means of per-

forming name-to-IP mappings, its flexible design has allowed it to grow far beyond its

original goals. While most people would be familiar with it for Web browsing, many sys-

tems depend on fast and consistent DNS performance. Mail servers, Web proxy servers,

and content distribution networks (CDNs) must all resolve hundreds or even thousands

of DNS names in short periods of time, and a failure in DNS may cause a service failure,

rather just delays.

The server-side infrastructure of DNS consists of hierarchically-organized name servers,

with central authorities providing “root” servers and others delegated organizations han-

dling “top-level” servers, such as “.com” and “.edu”. Domain name owners are respon-

sible for providing servers that handle queries for their names. While DNS users can

manually query each level of the hierarchy in turn until the complete name has been re-

solved, most systems delegate this task to local nameserver machines. This approach has

47

performance advantages (e.g., caching replies, consolidating requests) as well as man-

agement benefits (e.g., fewer machines to update with new software or root server lists).

With local nameserver cache hit rates approaching 90% [42, 87], their performance

impact can eclipse that of the server-side DNS infrastructure. However, local name-

server performance and reliability has not been well studied, and since it handles all DNS

lookups for clients, its failure can disable other services. Our experiences with deploying

the CoDeeN content distribution network motivated us to investigate this issue, since all

CoDeeN nodes use the local nameservers at their hosting sites.

4.1.1 Frequency of Name Lookup Failures

To determine the failure properties of local DNS infrastructure, we systematically mea-

sure DNS lookup times on many PlanetLab nodes. In particular, across 40 North Ameri-

can sites, we perform a query once per second. We ask these nodes to resolve each other’s

names, all of which are cacheable, with long time-to-live (TTL) values of no less than six

hours. Lookup times for these requests should be minimal, on the order of a few mil-

liseconds, since they can be served from the local nameserver’s cache. This diagnostic

workload is chosen precisely because it is trivially cacheable, making local infrastructure

failures more visible and quantifiable. Evaluation of DNS performance on live traffic,

with and without CoDNS, is covered in Section 4.5.

Our measurements show that local DNS lookup times are generally good, but often

degrade dramatically, and that this instability is widespread and frequent. To illustrate the

widespread nature of the problem and its magnitude, Figure 4.1 show the lookup behavior

over a two-day period across a number of PlanetLab nodes. Each point shows the per-

minute average response time of name lookups. All the nodes show some sort of DNS

lookup problems during the period, with lookups often taking thousands of milliseconds.

48

These problems are not consistent with simple configuration problems, but appear

to be usage-induced or triggered by activity on the nameserver nodes. 1 For example,

the Cornell node consistently shows DNS problems, with more than 20% of lookups

showing high lookup times of over five seconds, the default timeout in the client’s resolver

library. These failed lookups are eventually retried at the campus’s second nameserver,

masking the first nameserver’s failures. Since the first nameserver responds to 80% of

queries in a timely manner, it is not completely misconfigured. Very often throughout

the day, it simply stops responding, driving the per-minute average lookup times close

to five seconds. The Harvard node also displays generally bad behavior. While most

lookups are fine, a few failed requests every minute substantially increase the per-minute

average. The Stanford node’s graph shows periodic spikes roughly every three hours.

This phenomenon is long-term, and we suspect the nameserver is being affected by heavy

cron jobs. The Michigan node shows a 90 minute DNS problem, driving its generally low

lookup times to above one second.

Although the average lookup times appear quite high at times, the individual lookups

are mostly fast, with a few very slow lookups dominating the averages. Figure 4.2(a)

displays the complementary cumulative distribution function (CCDF) of name lookup

times over the same two days. With the exception of the Cornell node, 90% of all requests

take less than 100ms on all nodes, indicating that caching is effective and that average-

case latencies are quite low. Even the Cornell node works well most of the time, with

over 80% of lookups being resolved within 6ms.

However, slow lookups dominate the total time spent waiting on DNS, and are large

enough to be noticeable by end users. In Figure 4.2(b), we see the lookups shown by their

contribution to the total lookup time, which indicates that a small percentage of failure

1More evidence is provided in the next section.

49

Node Avg Low High T-Low T-High
cornell 531.7ms 82.4% 12.9% 0.5% 99.2%

harvard 99.4ms 92.3% 3.3% 0.7% 97.9%
cmu 24.0ms 81.9% 3.2% 8.3% 71.0%

ku 53.1ms 94.6% 1.8% 2.9% 95.0%
stanford 21.5ms 95.7% 1.3% 5.3% 89.5%

ubc 88.8ms 76.0% 7.6% 2.4% 91.2%
umich 43.6ms 96.7% 1.3% 2.4% 96.1%

northwestern 43.1ms 98.5% 0.5% 4.5% 94.8%

Table 4.1: Statistics over two days, Avg = Average, Low = Percentage of lookups < 10
ms, High = Percentage of lookups > 100 ms, T-Low = Percentage of total low time,
T-High = Percentage of total high time

cases dominates the total time. This weighted CCDF shows, for example, that none of the

nodes crosses the 0.5 value before 1000ms, indicating that more than 50% of the lookup

time is spent on lookups taking more than 1000ms. If we assume that a well-behaving

local nameserver can serve cached responses in 100ms, then the figures are even more

dramatic. This data, shown in Table 4.1, shows that slow lookups comprise most of the

lookup time.

These measurements show that client-side DNS infrastructure problems are signifi-

cant and need to be addressed. If we can reduce the amount of time spent on these longer

cases, particularly in the failures that require the local resolver to retry the request, we

can dramatically reduce the total lookup times. Furthermore, given the sharp difference

between “good” and “bad” lookups, we may also be able to ensure a more predictable

(and hence less annoying) user experience. Finally, it is worth noting that these problems

are not an artifact of PlanetLab – in all cases, we use the site’s local nameservers, on

which hundreds or thousands of other non-PlanetLab machines depend. The PlanetLab

nodes at a site see similar lookup times and failure rates, despite the fact that their other

workloads may be very different. Examples from two sites are shown in Figure 4.3, and

we can see that the nodes at a site see similar DNS performance. This observation further

50

 0

 5

 10

 15

 20

 25

00 03 06 09 12 15 18 21 00

D
N

S
 F

ai
lu

re
 R

at
e

(%
)

Time

(a) lefthand.eecs.harvard.edu

 0

 5

 10

 15

 20

 25

00 03 06 09 12 15 18 21 00

D
N

S
 F

ai
lu

re
 R

at
e

(%
)

Time

(b) righthand.eecs.harvard.edu

 0
 100
 200
 300
 400
 500
 600
 700
 800

00 03 06 09 12 15 18 21 00A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time

(c) planetlab1.cs.purdue.edu

 0
 100
 200
 300
 400
 500
 600
 700
 800

00 03 06 09 12 15 18 21 00A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time

(d) planetlab2.cs.purdue.edu

Figure 4.3: All nodes at a site see similar local DNS behavior, despite different workloads
at the nodes. Shown above are one day’s failure rates at Harvard, and one day’s response
times at Purdue.

enhances our claim that the problems are site-wide, and not PlanetLab-specific. 2

4.2 Origin of Client-side Failures

While we do not have full access to all of the client-side infrastructure, we can try to infer

the reasons for the kinds of failures we are seeing and understand their impact on lookup

behavior. Absolute confirmation of the failure origins would require direct access to

2We have also confirmed this fact with a number of site administrators on PlanetLab, and help them to
fix the DNS problems on their sites.

51

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

00 06 12 18 00 06 12 18 00

F
a

il
u

re
 R

a
te

 (
%

)

Time (planetlab1.cs.northwestern.edu)

(a) northwestern-1

 0

 5

 10

 15

 20

 25

00 06 12 18 00 06 12 18 00

F
a

il
u

re
 R

a
te

 (
%

)

Time (miranda.tkn.tu-berlin.de)

(b) tu-berlin

Figure 4.4: Failures seemingly caused by nameserver overload – in both cases, the failure
rate is always less than 100%, indicating that the server is operational, but performing
poorly.

the nameservers, routers, and switches at the sites, which we do not have. Using various

techniques, we can trace some problems to packet loss, nameserver overloading, resource

competition, and maintenance issues. We discuss these below.

Packet Loss – The simplest cause we can guess is the packet loss in the LAN environ-

ment. Most nameservers communicate using UDP, so even a single packet loss either as

a request or as a response would eventually trigger a query retransmission from the re-

solver. The resolver’s default timeout for retransmission is five seconds, which matches

some of the spikes in Figure 4.1.

Packet loss rates in LAN environments are generally assumed to be minimal, and

our measurements of Princeton’s LAN support this assumption. We saw no packet loss

at two hops, 0.02% loss at three hops, and 0.09% at four hops, where the number of

hops is measured between the same nameserver and source machines scattered around in

the Princeton LAN. Though we did see bursty behavior in the loss rate, where the loss

rates would stay high for a minute at a time, we do not see enough losses to account for

the DNS failures. Our measurements show that 90% of PlanetLab nodes have a name-

52

Figure 4.5: Daily Request Rate for Princeton.EDU

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

R
e

s
p

o
n

s
e

s
(x

x
 K

 =
 r

e
c
e

iv
e

 b
u

ff
e

r
s
iz

e
)

Requests/sec

BIND, 64K
BIND,128K
BIND,256K
BIND,512K
PING, 64K

Figure 4.6: BIND 9.2.3 vs. PING with bursty traffic

server within 4 hops, and 70% are within 2 hops. However, other contexts, such as cable

modems or dial-up services, have more hops [76], and may have higher loss rates.

Nameserver overloading – Since most request packets are likely to reach the name-

server, our next possible culprit is the nameserver itself. To understand their behavior,

we asked all nameservers on PlanetLab to resolve a local name once every two seconds

and we measured the results. For example, on planetlab-1.cs.princeton.edu, we asked for

planetlab-2.cs.princeton.edu’s IP address. In addition to the possibility of caching, the

local nameserver is mostly likely the authoritative nameserver for the queried name, or at

least the authoritative server can be found on the same local network.

In Figure 4.4, we see some evidence that nameservers can be temporarily overloaded.

These graphs cover two days of traffic, and show the 5-minute average failure rate, where

53

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

00 06 12 18 00 06 12 18 00

F
a

ilu
re

 R
a

te
 (

%
)

Time (pl1.unm.edu)

Figure 4.7: This site shows failures induced by periodic activity. In addition to the hourly
failure spike, a larger failure spike is seen once per day.

a failure is either a response taking more than five seconds, or no response at all. In

Figure 4.4(a), the node experiences no failures most of time but a 30% to 80% failure rate

for about five hours. Figure 4.4(b) reveals a site where failures start during the beginning

of the workday, gradually increase, and drop in the evening. It is reasonable to assume

that human activity increases in these hours, and affects the failure rate.

We suspect that a possible factor in this overloading is the UDP receive buffer on the

nameserver. These buffers are typically sized in the range of 32-64KB, and incoming

packets are silently dropped when this buffer is full. If the same buffer is also used

to receive the responses from other nameservers, as the BIND nameserver does, this

problem gets worse. Assuming a 64KB receive buffer, a 64 byte query, and a 300 byte

response, more than 250 simultaneous queries can cause packet dropping. In Figure 4.5,

we see the request rate (averaged over 5 minutes) for the authoritative nameserver for

princeton.edu. 3 Even with smoothing, the request rates are in the range of 250-400

reqs/sec, and we can expect that instantaneous rates are even higher. So, any activity that

causes a 1-2 second delay of the server can cause requests to be dropped.

3By courtesy of Office of Information Technology (OIT) at Princeton University.

54

To test this theory of nameserver overload, we subjected BIND, the most popular

nameserver, to bursty traffic. On an otherwise unloaded box (Compaq au600, Linux 2.4.9,

1 GB memory), we ran BIND 9.2.3 and an application-level UDP ping that simulates

DNS request and response. Each request contains the same name query for a local domain

name with a different query ID. Our UDP ping responds to it by sending a fixed response

with the same size as BIND’s. We send a burst of N requests from a client machine

and wait 10 seconds to gather responses. Figure 4.6 shows the difference in responses

between BIND 9.2.3 and our UDP ping. With the default receive buffer size of 64KB,

BIND starts dropping requests at bursts of 200 reqs/sec, and the capacity linearly grows

with the size of the receive buffer. Our UDP ping using the default buffer loses some

requests due to temporary overflow, but the graph does not flatten because responses

consume minimal CPU cycles. These experiments confirm that high-rate bursty traffic

can cause server overload, aggravating the buffer overflow problem.

Resource competition – Some sites show periodic failures, similar to what is seen in

Figure 4.7. These tend to have spikes every hour or every few hours, and suggests some

heavy process is being launched from regularly scheduled task (e.g. a cron job). BIND is

particularly susceptible to memory pressure, since its memory cache is only periodically

flushed [3]. Any jobs that use large amounts of memory can evict BIND’s pages, causing

BIND to page fault when accessing the data. The faults can delay the server, causing the

UDP buffer to fill.

In talking with system administrators, we find that even sites with good DNS service

often run multiple services (some cron-initiated) 4 on the same machine. Since DNS is

regarded as a low-CPU service, other services are run on the same hardware to better

4One site administrator told us that they are running DHCP/BOOTP, LDAP, XTACACS and RADIUS
services on their nameserver machine.

55

 0

 20

 40

 60

 80

 100

00 06 12 18 00 06 12 18 00

F
a

ilu
re

 R
a

te
 (

%
)

Time (planetlab2.millennium.berkeley.edu)

Figure 4.8: This site’s nameservers were shut down before the nodes had been updated
with the new nameserver information. The result was a 13-hour complete failure of all
name lookups, until the information was manually updated.

utilize the resource. It seems quite common that when these other services have bursty

resource behavior, the nameserver is affected.

Maintenance problems – Another common source of failure is maintenance problems

which lead to service interruption, as shown in Figure 4.8. Here, the DNS lookup shows

a 100% failure rate for 13 hours. Both nameservers for this site stopped working causing

DNS to be completely unavailable, instead of just slow. DNS service was restored only

after manual intervention. Another common case, complete failure of the primary name-

server, generates a similar pattern, with all responses being retried after five seconds and

sent to the secondary nameserver.

4.3 CoDNS Design

In this section, we discuss the design of CoDNS, a name lookup system that provides

faster and more reliable DNS service while minimizing extra overhead. We also discuss

overheads and benefits of various desigin choices, using trace-driven workloads.

56

One important goal shapes our design: our system should be incrementally deploy-

able, not only by DNS administrators, but also by individual users. The main reason for

this decision is that it bypasses the bureaucratic processes involved with replacing the ex-

isting DNS infrastructure. Given the difficulty we have in even getting information about

local DNS nameservers, the chances of convincing system administrators to send their

live traffic to an experimental name lookup service seems low. Providing a migration

path that coexists with the existing infrastructure allows people the opportunity to grow

comfortable with the service over time.

Another implication of this strategy is that we should aim for minimal resource com-

mitments. In particular, we should leverage the existing infrastructure devoted to making

DNS performance generally quite good. Client-side nameservers achieve high cache hit

rates by devoting memory to name caching, and if we can take advantage of the existing

infrastructure, it lessens the cost of deployment. While current client-side infrastructure,

including nameservers, is not perfect, it provides good performance most of the time, and

it can provide a useful starting point. Low resource usage also reduces the chances for

failure due to resource contention.

Our usage model is cooperative, operating similarly to insurance – nodes join a pool

that shares resources in times of need. If a node’s local lookup performance is acceptable,

it proceeds as usual, but may have to provide service to nodes that are having problems.

When its local performance degrades, it can ask other nodes to help it. The benefit of

joining is the ability to get help when needed, even if there is some overhead at other

times.

57

75 %

80 %

85 %

90 %

95 %

100 %

03/25 04/01 04/08 04/15

P
e
rc

e
n
ta

g
e
 o

f
H

e
a
lth

y
N

o
d
e
s

Hourly statistics, 2004

max
avg
min

Figure 4.9: Hourly % of nodes with working nameservers

4.3.1 Cross-site Correlation of DNS Failures

The “insurance” model depends on failure being relatively uncorrelated – the system

must always have a sufficient pool of working participants to help those having trouble.

If failure across sites is correlated, this assumption is violated, and a cooperative lookup

scheme is less feasible.

To test our assumption, we study the correlation of DNS lookup failures across Planet-

Lab. At every minute, we record how many nodes have “healthy” DNS performance. We

define healthy as showing no failures for one minute for the local domain name lookup

test. Using the per-minute data for March 2004, we show the minimum, average and

maximum number of nodes available per hour. The percentage of healthy nodes (as a

fraction of live nodes) is shown in Figure 4.9.

From this graph, we can see some minor correlation in failures, 5 shown as down-

ward spikes in the percentage of available nodes, but most of the variation in availability

seems largely uncorrelated. An investigation into the spikes reveals that many nodes on

5All Internet2 hosting nodes at PlanetLab and all Chinese 6PlanetLab nodes are set up to have the same
set of nameservers. The minor correlation indicates the failure of those nameservers.

58

Software PlanetLab Packetfactory TLD
BIND-4.9.3+/8 31.1% 36.4% 55.9%

BIND 9 48.9% 25.1% 34.0%
Other 20.0% 38.5% 10.1%

Table 4.2: Comparison of nameserver software used by PlanetLab, packetfactory survey
and the TLD survey

PlanetLab are configured to use the same set of nameservers, especially those co-located

at Internet2 backbone facilities (not to be confused with Internet2-connected university

sites). When these nameservers experience problems, the correlation appears large due

to the number of nodes affected.

More important, however, is the observation that the fraction of healthy nameservers

is always high, generally above 90%. This observation provides the key insight for

CoDNS – with enough healthy nameservers, we can mask locally-observed delays via

cooperation.

To ensure that these failures are not tied to any specific nameserver software, we sur-

vey the software running on the local nameservers used by the PlanetLab nodes (135

unique nameservers) with “chaos” class 6 queries [53]. We find that they are mostly run-

ning a variety of BIND versions. We observe 11 different BIND 9 version strings, 13

different BIND 8 version strings and a number of humorous strings (included in “other”)

apparently set by the nameserver administrators. These measurements, shown in Ta-

ble 4.2, are in line with two nameserver surveys conducted by Brad Knowles in 2002 [47]

and by packetfactory in 2003 [74]. From this, we conclude that the failures are not likely

to be specific to PlanetLab’s choices of nameserver software.

6This is to use TXT resource record (RR) in class 3 for the domain name “HOSTNAME.BIND.”. Then
the BIND server is supposed to return its identification string configured by the name server administrator.

59

4.3.2 CoDNS

The main idea behind CoDNS is to forward name lookup queries to peer nodes when the

local name service is experiencing a problem. Essentially, this strategy applies a CDN

approach to DNS – spreading the load among peers improves the size and performance

of the “global cache”. Many of the considerations in CDN systems apply in this environ-

ment. We need to consider the proximity and availability of a node as well as the locality

of the queries. A different consideration is that we need to decide when it is desirable to

send remote queries. Given the fact that most name lookups are fast in the local name-

server, simply spreading the requests to peers might generate unnecessary traffic with no

reduction in latency. Worse, the extra load may cause some DNS nameservers to become

overloaded. We investigate considerations for deciding when to send remote queries, how

many peers to involve, and what sorts of gains to expect.

To precisely determine the effects of locality, load, and proximity is difficult, since we

have no control over the nameservers and have little information about their workloads,

configurations, etc. The proximity of a peer server is important in that DNS response time

can be affected by its peer to peer latency. Since the DNS requests and responses are not

large, we are more interested in picking nearby peers with low round-trip latency instead

of nodes with particularly high bandwidth. We have observed coast-to-coast round-trip

ping times of 80ms in CoDeeN, with regional times in the 20ms range in America. Both

of these ranges are much lower than the DNS timeout value of five seconds, so, in theory,

any node in the U.S. would be an acceptable peer. In practice, choosing closer peers will

reduce the difference between cache hit times and remote peer times, making CoDNS

failure masking more effective. For request locality, we would like to increase the chances

of remote queries being cache hits in the remote nameservers. Using any scheme that

consistently partitions this workload will help improve the likelihood of cache hits.

60

To understand the relationship between CoDNS response times, the number of peers

involved, and the policies for determining when requests should be sent remotely, we

collected 44,486 unique host names from one day’s HTTP traffic on CoDeeN and simu-

lated various policies and their effects. We replayed DNS lookups of those names at 77

PlanetLab nodes with different nameservers, starting requests at the same time of day in

the original logs. The replay happened one month after the data collections to avoid local

nameserver caches which could skew the data. During this time, we also use application-

level heartbeat measurements between all pairs of the 77 PlanetLab nodes to determine

their round-trip latencies. Since all of the nodes are doing DNS lookups at about the same

time, by adding the response time at peerY to the time spent for the heartbeat from peerX

to peerY, we will get the response time peerX can get if it asks peerY for a remote DNS

lookup for the same host name.

An interesting question is how many simultaneous lookups are needed to achieve a

given average response time and to reduce the total time spent on slow lookups (defined

as taking more than 1 second). As shown in the previous section, it is desirable to reduce

the number of slow responses to reduce the total lookup time. Figures 4.10 and 4.11

show two graphs answering this question. The lookup scheme here is to contact the

local nameserver first for a name lookup, wait for a timeout and issue x-1 simultaneous

lookups using x-1 randomly-selected peer nodes. Figure 4.10 shows that even if we

use only one extra lookup, we can reduce the average response time by more than half.

Also, beyond about five peers, adding more simultaneous lookups produces diminishing

returns. Different initial timeout values do not produce much difference in response times,

because the benefit largely stems from reducing the number of slow lookups. The slow

response portion graph (Figure 4.11) proves this phenomenon, showing similar reduction

in the slow response percentage at any initial timeout less than 700ms.

61

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16 32 64

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

of Simultaneous Lookups

Timeout 900ms
Timeout 800ms
Timeout 600ms
Timeout 400ms
Timeout 200ms

Timeout 0ms

Figure 4.10: Average Response Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 4 8 16 32 64%
 o

f T
ot

al
 T

im
e

in
 R

es
po

ns
es

 >
 1

se
c

of Simultaneous Lookups

Timeout 900ms
Timeout 800ms
Timeout 600ms
Timeout 400ms
Timeout 200ms

Timeout 0ms

Figure 4.11: Slow Response Time Portion

 1

 2

 4

 8

 16

 0 200 400 600 800 1000

A
ve

ra
ge

 N
um

be
r

of
 L

oo
ku

ps

Initial Delay for Remote Query (ms)

8 extra peers
4 extra peers
2 extra peers
1 extra peer

Figure 4.12: Extra DNS Lookups

We must also consider the extra overhead of the simultaneous lookups, since shorter

initial timeouts and more simultaneous lookups cause more DNS traffic at all peers. Fig-

ure 4.12 shows the overhead in terms of extra lookups needed for various scenarios. Most

curves start to flatten at a 500ms initial timeout, providing only diminishing returns for

larger timeouts. Worth noting is that even with one peer and a 200ms initial timeout,

we can still cut the average response time by more than half, with only 38% extra DNS

lookups.

These results are very encouraging, demonstrating that CoDNS can be effective even

62

at very small scale – even a single extra site provides significant benefits, and it achieves

most of its benefits with less than 10 sites. The reasons for this scale being important is

twofold: only small commitments are required to try a CoDNS deployment, and DNS’s

limitations with respect to trust and verification (discussed in the next section) are un-

likely to be an issue at these scales.

4.3.3 Trust, Verification and Implications

Some aspects of DNS and its design invariably impact our approach, and the most impor-

tant is trust and verification. The central issue is whether it is possible for a requester to

determine that its peer has correctly resolved the request, and that the result provided is

actually a valid IP address for the given name. This issue arises if peers can be compro-

mised or are otherwise failing.

Unfortunately, we believe that a general solution to this problem is not possible with

the current DNS, though certain fault models are more amenable to checking than others.

For example, if the security model assumes that at most one peer can be compromised, it

may be possible to always send remote requests to at least three peers. When these nodes

respond, if two results agree, then the answer must be correct. However, DNS does not

mandate that any of these results have to agree, making the general case of verification

impossible.

Many server-side DNS deployments use techniques to improve performance and re-

liability, or balance load and locality. For example, round-robin DNS can return results

from a list of IP addresses in order to distribute load across a set of servers. Geography-

based redirection can be used to reduce round-trip times between clients and servers by

having DNS lookups resolve to closer servers. Finally, DNS-based content distribution

networks will often incorporate load balancing and locality considerations when resolv-

63

ing their DNS names. In these cases, multiple lookups may produce different results, and

lookups from different locations may receive results from different pools of IP addresses.

While it would be possible to imagine extending DNS such that each name is associ-

ated with a public key, and each IP address result is signed with this key, such a change

would be significant. DNSSEC [29] attempts smaller-scale change, mainly to prevent

DNS spoofing, but has been in some form of development for nearly a decade, and still

has not seen wide-scale adoption.

Given the current impossibility of verifying all lookups, we rely on trusting peers

in order to sidestep the problems mentioned. This approach is already used in various

schemes. Name owners often use each other as their secondary servers, sometimes at

large scale. For example, princeton.edu’s DNS servers act as the secondary servers for

60 non-Princeton domains. BIND supports zone transfers, where all DNS information

can be downloaded from another node, specifically for this kind of scenario. Similarly,

large-scale distributed systems running at hosting centers already have a trust relationship

in place with their hosting facility.

4.4 Implementation

We have built CoDNS and have been running it on all nodes on PlanetLab since August

2003. During that time, we have been directing the CoDeeN CDN to use CoDNS for

name lookup.

CoDNS consists of a stand-alone daemon running on each node, accessible via UDP

for remote queries, and via loopback TCP connection for locally-originated name lookups.

The daemon is event-driven, and is implemented as a non-blocking master process and

many (blocking) slave processes. The master process receives name lookup requests from

64

local clients and remote peers, and passes them to one of its idle slaves. A slave process

resolves those names by calling gethostbyname() and sends the result back to the

master. Then, the master returns the final result to either a local client or a remote peer

depending on where it originated. Whenever a new query arrives, CoDNS checks in its

queue if there is an outstanding query resolving the same host, coaleses it into the same

query and answers together when resolved. Preference for idle slaves is given to locally-

originated requests over remote queries to ensure good performance for local users.

The master process records each request’s arrival time from local clients and sends

a UDP name lookup query to a peer node when the response from the slave has not

returned within a certain period. This delay is used as a boundary for deciding if the local

nameserver is slow. In the event that neither the local nameserver nor the remote node

has responded, CoDNS doubles the delay value before sending the next remote query to

another peer. In the process, whichever result that comes first will be delivered as the

response for the name lookup to the client. Peers may silently drop remote queries if they

are overloaded, and remote queries that fail to resolve are also discarded. Slaves may add

delay if they receive a locally-generated request that fails to resolve, with the hope that

remote nodes may be able to resolve such names.

4.4.1 Remote Query Initiation and Retries

The initial delay before sending the first remote query is dynamically adjusted based on

the recent performance of local nameservers and peer responses. In general, when the lo-

cal nameserver performs well, we increase the delay so that fewer remote queries are sent.

When most remote answers beat the local ones, we reduce the delay preferring the remote

source. Specifically, if the past 32 name lookups are all resolved locally without using

any remote queries, then the initial delay is set to 200ms by default. We choose 200ms

65

because the median response time on a well-functioning node is less than 100ms [42], so

200ms delay should respond fast during instability, while wasting a minimal amount for

extra remote queries.

However, to respond quickly to local nameserver failure, if the remote query wins

more than 50% of the last 16 requests, then the delay is set to 0 ms. That is, the remote

query is sent immediately as the request arrives. Our test results show it is rare not to

have failure when more than 8 out of 16 requests take more than 300ms to resolve, so

we think it is reasonable to believe the local nameserver is having a problem in that case.

Once the immediate query is sent, the delay is set to the average response time of remote

query responses plus one standard deviation, to avoid swamping fast remote servers.

4.4.2 Peering and Query Distribution

Each CoDNS node gathers and manages a set of peer nodes (neighbors) within a rea-

sonable latency boundary. Independent peering and pairwise monitoring strategy 7 also

applies here, but the peering decision is simpler than the case of CoDeeN, because we

are primarily interested in the reliable DNS service. “Good” neighbors are determined

by the health of the network path to the neighbor and the expected remote query response

time, which is calculated as the sum of round-trip time (RTT) and the rolling average of

local DNS lookup response time at the neighbor site. The average local DNS response

time should reflect the recent failures, so we can avoid any misbehaving remote sites.

When a CoDNS instance starts, it sends a heartbeat to each node in the preconfigured

CoDNS node list every second, and the response contains RTT and the average local

DNS response time, reflecting peer nameserver’s proximity and availability. The top 10

nodes with different nameservers are picked as neighbors by comparing with all nodes the

7Please see Section 2.2.

66

expected DNS lookup time from the source node. Given the experiments in Section 4.3.2,

10 different nameservers are enough to provide the most benefit. Liveness of the chosen

neighbors is periodically checked to see if the service is still available. One heartbeat is

sent each second, so we guarantee the availability at a 10 second granularity. Dead nodes

are replaced with the next best nodes in the list.

Among these neighbor nodes, one peer is chosen for each remote name lookup us-

ing the Highest Random Weight (HRW) hashing scheme [82] discussed in Section 2.1.

Because HRW consistently picks the same node for the same domain name, this process

enhances request locality for remote queries. Another desirable property of this approach

is that some request locality is preserved as long as neighbor sets have some overlap.

Better request locality can be obtained using the query re-forwarding scheme (which will

be discussed in Section 5.4.2), but CoDNS favors one-hop routing because the response

low latency is more desirable.

The number of neighbors is manually configurable by considering the distribution of

nodes. In the future, we may make CoDNS dynamically find the peer nodes not depend-

ing on the preconfigured set of nodes. One possible solution is to make each CoDNS

node advertise its neighbor set and have a few well known nodes. Then, a new CoDNS

node with no information about available CoDNS peer nodes can ask the well known

nodes for their peer nodes and recursively gather the nodes by asking each neighbor until

it finds a reasonable pool of CoDNS nodes.

Note that our neighbor discovery mechanisms are essentially advisory in nature –

once the node has enough peers, it only needs to poll other nodes in order to have a

reasonable set of candidates in case one of its existing peers becomes unavailable. In the

event that some sites have enough peers to make this polling a scalability issue, each node

can choose to poll a nearby subset of all possible peers to reduce the background traffic.

67

4.4.3 Policy and Tunability

In the future, we expect CoDNS node configuration policy will become an interesting

research area, given the tradeoffs between overhead and latency. We have made choices

for initial delay and retry behavior for our environment, and we believe that these choices

are generally reasonable. However, some systems may choose to tune CoDNS to have

much lower overhead, at the cost of some latency savings. In particular, systems that want

to use CoDNS only to avoid situations where all local nameservers have failed could

use an initial delay threshold of several seconds. In this case, if the local nameserver

repeatedly fails to resolve requests in multiple seconds, the initial delay will drop to zero

and all lookups will be handled remotely for the duration of the outage.

Sites may also choose to limit CoDNS overhead to a specific level, which would turn

parameter choices into an optimization problem. For example, it may be reasonable to ask

questions of the form “what is the best latency achievable with a maximum remote lookup

rate of 10%?” Our trace-driven simulations give some insight into how to make these

choices, but it may be desirable to have an online system automatically adjust parameter

values continuously in order to meet these constraints. We are investigating policies for

such scenarios.

4.4.4 Bootstrapping

CoDNS has a bootstrapping problem, since it must resolve peer names in order to oper-

ate. In particular, when the local DNS service is slow, resolving all peer names before

starting will increase CoDNS’s start time. So, CoDNS begins operation immediately, and

starts resolving peer names in the background, which greatly reduces its start time. The

background resolver uses CoDNS itself, so as soon as a single working peer’s name is

68

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

00 03 06 09 12 15 18 21 00

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time

(a) Local DNS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

00 03 06 09 12 15 18 21 00

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time

(b) CoDNS

Figure 4.13: Minute-level Average Response Time for One Day on planet-
lab1.cs.cornell.edu

resolved, it can then quickly help resolve all other peer names. With this bootstrapping

approach, CoDNS starts virtually instantaneously, and can resolve all 350 peer names in

less than 10 seconds, even for slow local DNS. A special case of this problem is start-

ing when local DNS is completely unavailable. In this case, CoDNS would be unable

to resolve even any peer names, and could not send remote queries. CoDNS periodi-

cally stores all peer information on disk, and uses that information at startup. This file is

shipped with CoDNS, allowing operation even on nodes that have no DNS support at all.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
C

D
F

Response Time (ms)

LDNS
CoDNS

(a) Response Time CCDF: Y-axis is in log scale

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

W
ei

gh
te

d
C

C
D

F

Response Time (ms)

LDNS
CoDNS

(b) Total Time CCDF

Figure 4.14: CCDF and Weighted CCDF for One Week on planetlab1.cs.cornell.edu, LDNS =
local DNS

69

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Nodes Sorted by LDNS Response Time

LDNS
CoDNS

(a) Average Response Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90P
e

rc
e

n
ta

g
e

 o
f

R
e

sp
o

n
se

 T
im

e
 >

 1
 s

e
c

Nodes Sorted by LDNS Value

LDNS
CoDNS

(b) Slow Response Time portion

Figure 4.15: Live Traffic for One Week on the CoDeeN Nodes, LDNS = local DNS

4.5 Evaluation / Live Traffic

To gauge the effectiveness of CoDNS, we compare its behavior with local DNS on

CoDeeN’s live traffic using a variety of metrics. CoDeeN receives about 20 million

requests daily from a world-wide client population of 50-70K users. These users have

explicitly specified CoDeeN proxies in their browser, so all of their Web traffic is di-

rected through CoDeeN. The CoDeeN proxies maintain their own DNS caches, so only

uncached DNS names cause lookups. To eliminate the possible caching effect on a name-

server from other users sharing the same server, we measure both times only in CoDNS,

using the slaves to indicate local DNS performance.

CoDNS effectively removes the spikes in the response time, and provides more reli-

able and predictable service for name lookups. Figure 4.13 compares per-minute average

response times of local DNS and CoDNS for CoDeeN’s live traffic for one day on one

PlanetLab node. While local DNS shows response time spikes of 7 seconds, CoDNS

never exceeds 0.6 seconds throughout the day. The benefit stems from redirecting slow

name lookups to CoDNS peers with working nameservers.

The greater benefit of CoDNS lies in reducing the frequency of slow responses. Fig-

70

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Non-Internet2 Nodes Sorted by LDNS Response Time

LDNS
CoDNS

(a) Average Response Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40P
e

rc
e

n
ta

g
e

 o
f

R
e

sp
o

n
se

 T
im

e
 >

 1
 s

e
c

Non-Internet2 Nodes Sorted by LDNS Value

LDNS
CoDNS

(b) Slow Response Time Portion

Figure 4.16: Non-Internet-2 Nodes, LDNS = local DNS

ure 4.14 shows a CCDF and a weighted CCDF for name lookup response distribution for

the same node for one week. The CCDF graph shows that the response distribution in

both schemes is almost the same until they reach the 10th percentile, but CoDNS reduces

the lookups taking more than 1000ms from 5.5% to 0.6%. This reduction greatly affects

the total lookup time in the weighted CCDF. It shows CoDNS now spends 18% of total

time in lookups taking more than 1000ms, while local DNS still spends 75% of the total

time on them.

This improvement is widespread – Figure 4.15(a) shows the statistics of 95 CoDeeN

nodes for the same period. The average number of total lookups per node is 22,208, rang-

ing from 12,119 to 131,466 per node. The average response time in CoDNS is 60-221ms,

while that of local DNS is 113-935ms. In all cases, CoDNS’s response is faster, ranging

from a factor of 1.37 to 5.42. Figure 4.15(b) shows the percentage of slow responses in

the total response time. CoDNS again reduces the slow response’s portion dramatically

to less than 20% of the total lookup time in most cases, delivering more predictable re-

sponse time. In contrast, local DNS spends 37% to 85% of the total time in the slow

queries.

71

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

L
a

te
n

c
y
 D

if
fe

re
n

c
e

 (
m

s
)

Nodes Sorted by DNS Time Difference

DNS Gain (L-R)
Download Penalty(R-L)

(a) DNS Lookup Time Gain vs. Downloading Time Penalty

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-400 -200 0 200 400 600 800

C
D

F

Download Time Penalty (R-L, ms)

(b) Cumulative Distribution of Downloading Time Difference

Figure 4.17: CDN Effect for www.apple.com, L = Local Response Time, R = Remote
Response Time, DNS gain = Local DNS time - CoDNS time, Download penalty = down-
load time of CoDNS-provided IP - download time of DNS-provided IP, shown in log
scale. Negative penalties indicate CoDNS-provided IP is faster, and are not shown in the
left graph.

4.5.1 Non-Internet2 Benefits

Since many of the oDeeN sites are hosted at North American universities with Inter-

net2 (I2) connectivity, one may suspect that low-congestion I2 peer links are responsible

for our benefits. 8 To address this issue, we pick non-I2 PlanetLab nodes and replay

10,792 unique lookups of host names from one day’s live traffic on a CoDeeN proxy.

Figure 4.16(a) shows that CoDNS provides similar benefit on 38 non-I2 nodes as well.

The average response time in CoDNS ranges from 63ms to 350ms, while local DNS is

113ms to 1884ms, an improvement of factor of 1.64 to 9.52. Figure 4.16(b) shows that

CoDNS greatly reduces the slow response portion as well – CoDNS generally spends less

than 10% of the total time in this range, while local DNS still spends 32% to 90%.

8Internet2 is a non-profit network consisting of over 200 universities in the U.S. with 10 Gbps backbone
that supports 100+ Mbps bandwidth for any pair of member sites.

72

4.5.2 Effects on CDNs

CoDNS replaces slow local responses with fast remote responses, which may impact

DNS-based CDNs [2] that resolve names based on which DNS nameserver sends the

query. CoDNS may return the address of a far replica when it uses a peer’s nameserver

result. We investigate this issue by testing 14 popular CDN customers including Apple,

CNN, and the New York Times. We measure the DNS and download time of URLs for

the logo image file on those web sites, and compare local DNS and CoDNS when their

responses differ.

Since CoDNS is used only when the local DNS is slow or failing, it should come as

no surprise that the total time for CDN content is still faster on CoDNS when lookup

responses differ in returned IP address. The DNS time gain and the downloading time

penalty presented in the difference between local and remote response time is shown in

Figure 4.17(a). When local DNS is slow, CoDNS combined with a possibly sub-optimal

CDN node is a much better choice, with the gain from faster name lookups dwarfing

the small difference in download times when any difference exists. If we isolate the

downloading time difference between the DNS-provided CDN node versus the CoDNS-

provided CDN node, we get Figure 4.17(b). Surprisingly, almost a third of the CoDNS-

provided nodes are closer than their DNS counterparts, and 83% of them show less than

a 100ms difference. This matches the CDN’s strategy to avoid notably bad servers in-

stead of choosing the optimal server [41]. One may argue that this approach may result

in “wrong” contents sometimes from different replicas possibly customized for their own

regions. However, the “wrong” contents will not persist over time, because the remote

responses will be used temporarily when the local DNS experiences some problems. Re-

sults for other CDN vendors are similar.

73

99.99

99.9

99

90

9
 0 10 20 30 40 50 60 70 80 90 100

A
v
a

il
a

b
il
it
y
 (

%
)

Nodes Sorted by Availability

CoDNS
LDNS

Figure 4.18: Availability of CoDNS and local DNS (LDNS)

4.5.3 Reliability and Availability

CoDNS dramatically improves DNS reliability, measured by the local nameserver avail-

ability. To quantify this effect, we measured the availability of name lookups for one

month across all CoDeeN nodes, with and without CoDNS. We assume that a name-

server is available unless it fails to answer requests. If it fails, we consider the periods

of time when no requests were answered as its unavailability. Each period is capped at

a maximum of five seconds, and the total unavailability is measured as the sum of the

unavailable periods. This data, shown in Figure 4.18, is presented using the reliability

metric of “9’s” of availability. Regular DNS achieves 99% availability on about 60% of

the nodes, which means roughly 14 minutes per day of no service. In contrast, CoDNS

is able to achieve over 99.9% availability on over 70% of nodes, reducing downtimes to

less than 90 seconds per day. On some nodes, the availability approaches 99.99%, or

roughly 9 seconds of unavailability per day. CoDNS provides roughly an additional ’9’

of availability, without any modifications to the local DNS infrastructure.

74

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

Nodes Sorted by Number of Remote Queries

Sent
Answered

Win

Figure 4.19: Analysis for Remote Lookups

 75

 80

 85

 90

 95

 100

 105

 0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

Nodes Sorted by Win-by-1

Win-by-3
Win-by-2
Win-by-1

Figure 4.20: Win-by-N for Remote Lookups

4.5.4 Overhead Analysis

To analyze CoDNS’s overhead, we examine the remote query traffic generated by the

CoDeeN live activity. For this workload, CoDNS issued 11% to 85% of the total lookups

as remote queries, as shown in Figure 4.19. The variation reflects the health of the local

nameserver, and less stable nameservers require more remote queries from CoDNS. Of

the six nodes that had more than 50% remote queries, all experienced complete name-

server failure at some point, during which remote queries increased to over 100% of the

local requests. These periods skew the average overhead.

We believe that the additional burden on nodes with working DNS is tolerable, due to

the combination of our locality-conscious redirection and already high local nameserver

hit rates. Using our observed median overhead of 25% and a local hit rate of 80% -

87% [42], the local DNS will incur only 3.25 - 5.00% extra outbound queries. Since

remote queries are redirected only to lightly loaded nodes, we believe the extra lookups

will be tolerable on the peer node’s local nameserver.

We also note that many remote queries are not answered, with Figure 4.19 showing

this number varies from 6% to 31%. These can be due to WAN packet losses, unresolv-

able names, and remote node rate-limiting. CoDNS nodes drop remote requests if too

75

many are queued, which prevents a possible denial of service attack. CoDNS peers never

reply if the request is unresolvable, since their own local DNS may be failing, and some

other peer may be able to resolve the name.

The queries in which CoDNS “wins”, by beating the local DNS, constitute 2% to 57%

of the total requests. On average, 9% of the original queries were served by the remote

responses, removing 47% of the slow response portion in the total lookup time shown in

the Figure 4.15(b). Of the winning remote responses, more than 80% were answered by

contacting the first peer, specified as “win-by-1” in Figure 4.20. Of all winning responses,

95% are resolved by the first or second peer, and only a small number require contacting

three or more peers. This information can be used to further reduce CoDNS’s overhead

by reducing the number of peers contacted – if it has not been resolved within the first

three peers, then further attempts are unlikely to resolve it, and no more peers should be

contacted. We may explore this optimization in the future, but our current overheads are

low enough that we have no pressing need to reduce them.

In terms of extra network traffic generated for remote queries, each query contains

about 300 bytes of a request and a response. On average, each CoDNS on a CoDeeN node

handles 414 to 10,287 requests per day during the week period, amounting to 243KB to

6027KB. CoDNS also consumes heartbeat messages to monitor the peers each second,

which contains 32 bytes of data. In sum, each CoDNS on a CoDeeN node consumes on

average 7.5 MB of extra network traffic per day, consuming only 0.2% of total CoDeeN

traffic in relative terms.

4.5.5 Application Benefits

By using CoDNS, CoDeeN obtains other benefits in capacity and availability, and these

may apply to other applications as well. The capacity improvements come from CoDeeN

76

being able to use nodes that are virtually unusable due to local DNS problems. At any

given time, roughly 10 of the 100 PlanetLab nodes that run CoDeeN are experiencing sig-

nificant DNS problems, ranging from high failure rates to complete failure of the primary

(and even secondary) nameservers. CoDeeN nodes normally report their local status to

each other, and before CoDNS, these nodes would tell other nodes to avoid them due to

the DNS problems. With CoDNS, these nodes can still be used, providing an additional

10% extra capacity.

The availability improvements come from reducing startup time, which can be dra-

matic on some nodes. CoDeeN software upgrades are not announced downtimes, be-

cause on nodes with working local DNS, CoDeeN normally starts in 10-15 seconds. This

startup process is fast enough that few people notice a service disruption. Part of this time

is spent in resolving the names of all CoDeeN peers, and when the primary DNS server

is failing, each lookup normally requires over five seconds. For 120 peers, this raises

the startup time to over 10 minutes, which is a noticeable service outage. If CoDNS is

already running on the node, startup times are virtually unaffected by local failure, since

CoDNS is already sending all queries to remote servers in this environment. If CoDNS

starts concurrently with CoDeeN, the startup time for CoDeeN is roughly 20 seconds.

4.6 Other Approaches

4.6.1 Private Nameservers

Since local nameservers exhibit overload, one may be tempted to run a private nameserver

on each machine, and have it contact the global DNS hierarchy directly. This approach is

more feasible as a backup mechanism than as a primary nameserver for several reasons.

Using shared nameservers reduces maintenance issues, and the shared cache can be larger

77

than individual caches. Not only does cache effectiveness increase due to capacity, but the

compulsory misses will also be reduced from the sharing. With increased cache misses,

the global DNS failure rate becomes more of an issue, so using private nameservers may

reduce performance and reliability.

As a backup mechanism, this approach is possible, but has the drawbacks common

to any infrequently-used system. If the backup system is not used regularly, failure is

less likely to be noticed, and the system may be unavailable when it is needed most. It

also consumes resources when not in use, so other tasks on the same machine will be

impacted, if only slightly.

4.6.2 Secondary Nameservers

Since most sites have two or more local nameservers, another approach would be to

modify the resolver libraries to be more aggressive about using multiple nameservers.

Possible options include sending requests to all nameservers simultaneously, being more

aggressive about timeouts and using the secondary nameserver, or choosing whichever

one has better response times.

While we believe that some of these approaches have some merit, we also note that

they cannot address all of the failure modes that CoDNS can handle. In particular, we

have often seen all nameservers at a site fail, 9 in which case CoDNS is still able to answer

queries via the remote nameservers. Correlated failure of local nameservers renders these

approaches useless, while correlated failure among groups of remote servers is less likely.

Overly aggressive requests are likely to backfire in the case of local nameservers,

since we have seen that overload causes local nameserver failure. Increasing the request

9Most cases happen because of stale “/etc/resolv.conf”, but we have seen both nameservers stay down
for over 10 hours at some site. We have also noticed that some site firewall rule misconfigurations block
all DNS traffic to their nameservers.

78

rate to a failing server is not likely to improve performance. Load balancing among local

nameservers is more plausible, but still requires modifications to all clients and programs.

Given the cost of changing the infrastructure, it is perhaps appealing to adopt a technique

like CoDNS that covers a broader range of failures.

Finally, upgrade cost and effort are real issues we have heard from many system

administrators – secondary nameservers tend to be machines that are a generation behind

the primary nameservers, based on the expectation of lower load. Increasing the request

rate to the secondary nameserver will require upgrading that machine, whereas CoDNS

works with existing infrastructure.

4.6.3 TCP Queries

Another possible solution is to use TCP as a way of communicating with local name-

servers. If the failure is caused by packet losses in the LAN or silent packet drops caused

by UDP buffer overflow, TCP can improve the situation by reliable data delivery.

Although the DNS RFC [53] allows the use of TCP in addition to UDP, in practice,

TCP is used only when handling AXFR queries for the zone transfer or when the re-

quested record set is bigger than 512 bytes. The reason why TCP is not favored in name

lookups is mainly because of the additional overhead. If a TCP connection is needed for

every query, it would end up handling nine packets instead of two : three to establish the

connection, two for the request/response, and four to tear down the connection. A persis-

tent TCP connection might remove the per-query connection overhead, but it also needs

to consume one or two extra network packets for ACKs. Also, there is another issue of

reclaiming the idle connections, since they consume system resources and can degrade

performance. The DNS RFC [53] specifies two minutes as a cutoff but in practice most

servers disconnect the idle connection within 30 seconds.

79

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16 32 64 128 256 512 1024

F
ra

ct
io

n
of

 N
od

es
 (

C
D

F
)

Average Response Time (ms)

CoDNS
Persistent TCP

UDP
Simple TCP

Figure 4.21: Comparison of UDP, TCP, and CoDNS latencies

To compare the performance between UDP and TCP, we replay 10,792 unique host

names obtained from one day’s live traffic of a CoDeeN proxy at 107 PlanetLab nodes.

Carrying out a completely fair comparison is difficult, since we cannot issue the same

query for all of them at the same time. Instead, to give a relatively fair comparison, we

run the test for CoDNS first, and subsequently run other parts, making all but CoDNS get

the benefit of cached responses from the local nameserver. Figure 4.21 shows the CDF of

the average response time for all approaches. Persistent TCP and UDP have comparable

performance, while simple TCP is noticeably worse. The CoDNS latencies, included for

reference, are better than all three.

The replay scenario described above should be favorable to TCP, but even in this con-

servative configuration, CoDNS still wins. Figure 4.22(a) shows that all nodes report that

CoDNS is 10% to 500% faster than TCP, confirming CoDNS is a more attractive option

than TCP. The large difference is in the slow-response portion, where CoDNS wins the

most and where TCP-based lookups cannot help. Figure 4.22(b) shows that a consider-

able amount of time is still spent on the slow queries in TCP-based lookups. CoDNS re-

duces this time by 16% to 92% when compared to the TCP-based measurement. Though

TCP ensures that the client’s request reaches the nameserver, if the nameserver is over-

80

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Nodes Sorted by Persistent TCP’s Response Time

Persistent TCP
CoDNS

(a) Average Response Time

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100P
e

rc
e

n
ta

g
e

 o
f

R
e

sp
o

n
se

 T
im

e
 >

 1
 s

e
c

Nodes Sorted by Persistent TCP’s Value

Persistent TCP
CoDNS

(b) Slow Response Time Portion

Figure 4.22: CoDNS vs. TCP

loaded, it may have trouble contacting the DNS hierarchy for cache misses.

4.7 Related Work

Traditional DNS-related research has mainly focused on the problems in the server-side

DNS infrastructure. As a seminal study in DNS performance measurement, Danzig et

al. found that a large number of network packets in the NSFNet were being wasted due

to excessive DNS traffic, identifying nameserver software bugs, their flawed resiliency

behavior, and misconfiguration by operators as major culprits [28].

Since then, bugs in the resolvers and nameservers have been reduced [50], but recent

measurements show that there is still much room for improvement. In 2000, Wills et

al. [87] and Huitema et al. [39] reported 29% of DNS lookups take over 2 seconds, and

Cohen et al. [24] reported 10% of lookups exceed more than 3 seconds. Jung et al. also

present data indicating 23% of all server-side lookups receive no results, indicating the

problems of improper configurations and incorrect nameservers still persist [42]. They

measure the client-side performance in terms of response time and caching hit ratio as

81

well. However, that work does not trace the origins of name lookup delays from the

client-side, concentrating only on the wide-area DNS traffic. Given the fact that local

nameserver cache hit ratios are 80% - 87% [42, 87], even a small problem in the local

nameserver and its environment can skew the latency of a large number of lookups. Our

study addresses this problem. Liston et al. indirectly provide some evidence of local

nameserver problems by attributing the major sources of response time delay to edge

nameservers rather than the root/gTLD servers [51].

The research community has recently renewed its focus on improving server-side

infrastructure. Cox et al. investigate the possibility of transforming DNS into a peer-to-

peer system [25] using a distributed hash table [79]. The idea is to replace the hierarchical

DNS name resolving process with a flat peer-to-peer query style, in pursuit of load bal-

ancing and robustness. With this design, the configuration mistakes by administrators can

be eliminated and the traffic bottleneck on the root servers is removed so that the load is

distributed over the entities joining the system.

In CoDoNS, Ramasubramanian et al. improve the poor latency performance of this

approach by using proactive replication of DNS records [65]. They exploit the Zipf-like

distribution of the domain names in Web browsing [13] to reduce the replication overhead

while providing O(1) proximity [64]. Our approaches differ in several important aspects –

we attempt to reduce overlapping information in caches, in order to maximize the overall

aggregate cache size, while they use replication to reduce latency. Our desire for a small

process footprint stems from our observation that memory pressure is one of the causes

of current failures in client-side infrastructure. While their system appears not to be

deployed in production, they perform an evaluation using a DNS trace with a Zipf factor

above 0.9 [65]. In comparison, our evaluation of CoDNS uses the live traffic generated

by CoDeeN after its proxies have used their local DNS caches, so the request stream seen

82

by CoDNS has a Zipf factor of 0.50-0.55, which is a more difficult workload. In any case,

since CoDNS does not depend on the specifics of the name lookup system, we expect that

it can interoperate with CoDoNS if the latter provides better performance than the existing

nameservers at PlanetLab sites. One issue that will have to be addressed by any proposed

DNS replacement system is the use of intelligent nameservers that dynamically determine

which IP address to return for a given name. These nameservers are used in CDNs and

geographic load balancers, and can not be replaced with purely static lookups, such as

those performed in CoDoNS. Since CoDNS does not replace existing DNS infrastructure,

we can interoperate with these intelligent nameservers without any problem.

Kangasharju et al. pursue a similar approach to reducing the DNS lookup latency by

more aggressively replicating DNS information [43]. Inspired by the fact the entire DNS

record database fits into the size of a typical hard disk and with the recent emergence of

terrestrial multicast and satellite broadcast systems, this scheme reduces the need to query

distant nameservers by keeping the DNS information up to date by efficient world-wide

replication. However, this approach intrinsically favors DNS records with long TTLs,

and may not improve the lookup performance for the short TTL cases.

The difference in our approach is to temporarily use functioning nameservers of peer

nodes, separate from the issue of improving the DNS infrastructure itself. We expect that

benefits in improving the infrastructure “from above” will complement our “bottom up”

approach.

83

Chapter 5

CoBlitz

Many new content distribution networks have recently been developed to focus on areas

not generally associated with “traditional” Web (HTTP) CDNs. These systems often

focus on distributing large files, especially in flash crowd situations where a news story

or software release causes a spike in demand. These new approaches break away from the

“whole-file” data transfer model, the common access pattern for Web content. Instead,

clients download pieces of the file (called chunks, blocks, or objects) and exchange these

pieces with each other to form the complete file. The most widely used system of this

type is BitTorrent [23], while related research systems include Bullet [49], Shark [4], and

FastReplica [18].

Using peer-to-peer systems makes sense when the window of interest in the content

is short, or when the content provider cannot afford enough bandwidth or CDN hosting

costs. However, in other scenarios, a managed CDN service may be an attractive option,

especially for businesses that want to offload their bandwidth but want more predictable

performance. The problem arises from the fact that HTTP CDNs have not traditionally

handled this kind of traffic, and are not optimized for this workload. In an environ-

84

ment where objects average 10KB, and where whole-file access is dominant, suddenly

introducing objects in the range of hundreds of megabytes may have undesirable conse-

quences. For example, CDN nodes commonly cache popular objects in main memory to

reduce disk access, so serving several large files at once could evict thousands of small

objects, increasing their latency as they are reloaded from disk.

To address this problem, we have developed the CoBlitz large file transfer service,

which runs on top of the CoDeeN content distribution network, an HTTP-based CDN.

This combination provides several benefits: (a) using CoBlitz to serve large files is as

simple as changing their URLs – no re-hosting, extra copies, or additional protocol sup-

port is required; (b) CoBlitz can operate with unmodified clients, servers, and tools like

curl or wget, providing greater ease-of-use for users and for developers of other services;

(c) obtaining maximum per-client performance does not require multiple clients to be

downloading simultaneously; and (d) even after an initial burst of activity, the file stays

cached in the CDN, providing latecomers with the cached copy.

From an operational standpoint, this approach of running a large-file transfer service

on top of an HTTP content distribution network also has several benefits: (a) given an ex-

isting CDN, the changes to support scalable large-file transfer are small; (b) no dedicated

resources need to be devoted for the large-file service, allowing it to be practical even if

utilization is low or bursty; (c) the algorithmic changes to efficiently support large files

also benefit smaller objects.

Over the 30 months that CoBlitz and its associated service, CoDeploy, have been

running on PlanetLab, we have had the opportunity to observe its algorithms in practice,

and to evolve its design, both to reflect its actual use, and to better handle real-world

conditions. This utilitarian approach has given us a better understanding of the effects of

scale, node peering policies, replication behavior, and congestion, giving us new insights

85

into how to improve performance and reliability. With these changes, CoBlitz is able to

deliver in excess of 1 Gbps on PlanetLab, and to outperform a range of systems, including

research systems as well as BitTorrent.

In this chapter, we discuss what we have learned in the process, and how the obser-

vations and feedback from long-term deployment have shaped our system. We discuss

how our algorithms have evolved, both to improve performance and to cope with the

scalability problems of our system. Some of these changes stem from observing the real

behavior of the system versus the abstract underpinnings of our original algorithms, and

others from observing how our system operates when pushed to its limits. We believe

that our observations will be useful for three classes of researchers: (a) those who are

considering deploying scalable large-file transfer services; (b) those trying to understand

how to evaluate the performance of such systems; and (c) those who are trying to capture

salient features of real-world behavior in order to improve the fidelity of simulators and

emulators.

5.1 Background

In this section, we provide general information about HTTP CDNs, the problems caused

by large files, and the history of CoBlitz and CoDeploy.

5.1.1 HTTP Content Distribution Networks

Content distribution networks relieve Web congestion by replicating content on geographically-

distributed servers. To provide load balancing and to reduce the number of objects served

by each node, they use partitioning schemes, such as consistent hashing [45], to assign

objects to nodes. CDN nodes tend to be modified proxy servers that fetch files on demand

86

and cache them as needed. Partitioning reduces the number of nodes that need to fetch

each object from the origin servers (or other CDN nodes), allowing the nodes to cache

more objects in main memory, eliminating disk access latency and improving throughput.

In this environment, serving large files can cause several problems. Loading a large

file from disk can temporarily evict several thousand small files from the in-memory

cache, reducing the proxy’s effectiveness. Popular large files can stay in the main mem-

ory for a longer period, making the effects more pronounced. To get a sense of the

performance loss that can occur, one can examine results from the Proxy Cacheoffs [71],

which show that the same proxies, when operating as “Web (server) accelerators,” can

handle 3-6 times the request rate than when operating in “forward mode,” with much

larger working sets. So, if a CDN node suddenly starts serving a data set that exceeds

its physical memory, its performance will drop dramatically, and latency rises sharply.

Bruce Maggs, Akamai’s VP of Research, states:

“Memory pressure is a concern for CDN developers, because for optimal latency, we

want to ensure that the tens of thousands of popular objects served by each node stay

in the main memory. Especially in environments where caches are deployed inside

the ISP, any increase in latency caused by objects being fetched from disk would

be a noticeable degradation. In these environments, whole-file caching of large files

would be a concern [52].”

Akamai has a service called EdgeSuite Net Storage, where large files reside in special-

ized replicated storage, and are served to clients via overlay routing [2]. We believe that

this service demonstrates that large files are a qualitatively different problem for CDNs.

87

5.1.2 Large-file Systems

As a result of these problems and other concerns, most systems to scalably serve large

files departed from the use of HTTP-based CDNs. Two common design principles are

evident in these systems: treat large files as a series of smaller chunks, and exchange

chunks between clients, instead of always using the origin server. Operating on chunks

allows finer-grained load balancing, and avoids the trade-offs associated with large-file

handling in traditional CDNs. Fetching chunks from other peers not only reduces load on

the origin, but also increases aggregate capacity as the number of clients increases.

We subdivide these systems based on their inter-client communication topology. We

term those that rely on greedy selection or all-to-all communication as examples of the

swarm approach, while those that use tree-like topologies are termed stream systems.

Swarm systems, such as BitTorrent [23] and FastReplica [18], preceded stream sys-

tems, and scaled despite relatively simple topologies. BitTorrent originally used a per-file

centralized directory, called a tracker, that lists clients that are downloading or have re-

cently downloaded the file. Clients use this directory to greedily find peers that can

provide them with chunks. The newest BitTorrent can operate with tracker information

shared by clients. In FastReplica, all clients are known at the start, and each client down-

loads a unique chunk from the origin. The clients then communicate in an all-to-all

fashion to exchange chunks. These systems reduce link stress, which is persistent traffic

load on the link, compared to direct downloads from the origin, but some chunks may

traverse shared links repeatedly if multiple clients download them.

The stream systems, such as ESM [19], SplitStream [15], Bullet [49], Astrolabe [84],

and FatNemo [10] address the issues of load balancing and link stress by optimizing the

peer-selection process. Thoes systems generate a tree-like topology (sometimes a mesh

or gossip-based network inside the tree), which tends to stay relatively stable during the

88

download process. The effort in tree-building can produce higher aggregate bandwidths,

suitable for transmitting the content simultaneously to a large number of receivers. The

trade-off, however, is that the higher link utilization is possible only with greater syn-

chrony. If receivers are only loosely synchronized and chunks are transmitted repeatedly

on some links, the transmission rate of any subtrees using those nodes also decreases. As

a result, these systems are best suited for synchronous activity of a specified duration.

5.1.3 CoBlitz, CoDeploy, and CoDeeN

This section discusses our experience running two large-file distribution systems, CoBlitz

and CoDeploy, which operate on top of the CoDeeN content distribution network. As

discussed in Chapter 3, CoDeeN is a HTTP CDN that runs on every available PlanetLab

node, with access restrictions in place to prevent abuse and to comply with hosting site

policies. To use CoDeeN, clients configure their browsers to use a CoDeeN node as a

proxy, and all of their Web traffic is then handled by CoDeeN. Note that this behavior

is only part of CoDeeN as a policy decision – CoBlitz does not require changing any

browser setting.

Both CoBlitz and CoDeploy use the same large-file transfer service core, which we

call CoBlitz in the rest of this chapter for simplicity. The main difference between the two

is the access mechanism – CoDeploy requires the client to be a PlanetLab machine, while

CoBlitz is publicly accessible. CoDeploy was launched first, and allows PlanetLab re-

searchers to use a local instance of CoDeeN to fetch experiment files. CoBlitz allows the

public to access CoDeploy by providing a simpler URL-based interface. To use CoBlitz,

clients prepend the original URL with http://coblitz.codeen.org:3125/ and

fetch it like any other URL. A customized DNS server maps the name coblitz.codeen.org

to a nearby PlanetLab node.

89

In 30 months of operation, the system has undergone three sets of changes: scaling

from just North American PlanetLab nodes to all of PlanetLab, changing the algorithms to

reduce load at the origin server, and changing the algorithms to reduce overall congestion

and increase performance. We believe the incremental development model in Section 1.4

has been absolutely critical to our success in improving CoBlitz, as we describe later in

this chapter.

5.2 CoBlitz Design

Before discussing CoBlitz’s optimizations, we first describe how we have made HTTP

CDNs amenable to handling large files. Our approach has two components: modifying

large file handling to efficiently support them on HTTP CDNs, and modifying the request

routing for these CDNs to enable more swarm-like behavior under heavy load. Though

we build on the CoDeeN CDN, we do not believe any of these changes are CoDeeN-

specific – they could equally be applied to other CDNs. Starting from an HTTP CDN

maintains compatibility with standard Web clients and servers, whereas starting with a

stream-oriented CDN might require more effort to efficiently support regular Web traffic.

5.2.1 Requirements

We treat large files as a set of small files that can be spread across the CDN. To make this

approach as transparent as possible to clients and servers, the dynamic fragmentation and

reassembly of these small files is performed inside the CDN, on demand. Each CDN node

has an agent that accepts clients’ requests for large files and converts them into a series

of requests for pieces of the file. Pieces are specified using HTTP/1.1 byte ranges [30],

which the Apache Web server has supported since August 1996 (version 1.2), and which

90

original request
GET /file.iso
Host: www.example.com

?

resulting series of requests
GET /file.iso,start=0,end=9999
Host: www.example.com
X-Bigfile: 1

GET /file.iso,start=10000,end=19999
Host: www.example.com
X-Bigfile: 1
. . .

Figure 5.1: The client-facing agent converts a single request for a large file into a series
of requests for smaller files. The new URLS are only a CDN-internal representation –
neither the client nor the origin server sees them.

appeared in other servers in the same timeframe. After these requests are injected into the

CDN, the results are reassembled by the agent and passed to the client. For simplicity,

this agent occupies a different port number than regular CoDeeN requests. The process

has some complications, mostly related to the design of traditional CDNs, limitations of

HTTP, and the limitations of standard HTTP proxies (which are used as the CDN nodes).

Some of these problems include:

Chunk naming – If chunks are named using the original URL, all of a file’s chunks

will share the same name, and will be routed similarly since CDNs hash URLs for rout-

ing [44, 85]. Since we want to spread chunks across the CDN, we must use a different

chunk naming scheme than the whole-file naming scheme based on its URL.

Range caching – We know of no HTTP proxies that cache arbitrary ranges of Web

objects, though some can serve ranges from cached objects, and even recreate a full object

from all of its chunks. Since browsers are not likely to ask for arbitrary and disjoint pieces

of an object, no proxies have developed the necessary support. Since we want to cache

91

at the chunk level instead of the file level, we must address this limitation and should

support range caching.

Congestion – During periods of bursty demand and heavy request synchrony, consis-

tent hashing may produce roving instantaneous congestion. If many clients at different

locations suddenly ask for the same file, a lightly-loaded CDN node may see a burst of

requests. If the clients all ask for another file as soon as the first download completes, an-

other CDN node may become instantly congested. This bursty congestion prevents using

the aggregate CDN bandwidth effectively over small time scales.

Our approach is to address these problems as a whole, which is discussed in the next

section, and to avoid new problems from piecemeal fixes. One example of piecemeal

fixes is following. Adding range caching to the Squid proxy has been discussed since

1998 [70], but would expand the in-memory metadata structures, increasing memory

pressure, and would require changing the Internet cache protocol (ICP) used by caches

to query each other. Even if we added this support to CoDeeN’s proxies, it would still

require extra support in the CDN, since the range information would have to be hashed

along with the URL.

5.2.2 Chunk Handling Mechanics

We modify intra-CDN chunk handling and request redirection by treating each chunk as

a real file with its own name, so the bulk of the CDN does not need to be modified. This

name contains the start and end ranges of the file, so different chunks will have different

hash values. Only the CDN ingress/egress points are affected, at the boundaries with the

client and the origin server.

The agent takes the client’s request, converts it into a series of requests for chunks,

reassembles the responses, and sends it to the client. The client is not aware that the

92

Client

Origin
Server

Large File
Agent

Reverse
Proxy

Reverse
Proxy

Reverse
Proxy1

2

3

4

5

Redirector

Figure 5.2: Large-file processing – 1. the client sends the agent a request, 2. the agent
generates a series of URL-mangled chunk requests, 3. those requests are spread across the
CDN, 4. assuming cache misses, the URLs are de-mangled on egress, and the responses
are modified, 5. the agent collects the responses, reassembles if needed, and streams it to
the client

request is handled in pieces, and no browser modifications are needed. This process is

implemented in a small program on each CDN node, so communication between the

program and the CDN infrastructure is cheap. The requests sent into the CDN, shown

in Figure 5.1, contain extended filenames that specify the actual file and the desired byte

range, as well as a special header so that the CDN modifies these requests on the egress

of the CDN network. Otherwise, these requests look like ordinary requests with slightly

longer filenames. The full set of steps is shown in Figure 5.2, where each solid rectangle

is a separate machine connected via the Internet.

All byte-range interactions take place between the proxy and the origin server – on

egress, the request’s name is reverted, and range headers are added. The server’s response

is changed from an HTTP 206 code (partial content received) to 200 (full file received).

The underlying proxy never sees the byte-range transformations, so no range-caching

support is required. Figure 5.3 shows this process with additional temporary headers.

These headers contain the file length, allowing the agent to provide the content length for

93

Egress receives from proxy Egress sends to origin
GET /file.iso,start=20000,end=29999 GET /file.iso

Host: www.example.com - Host: www.example.com
X-Bigfile: 1 Range: bytes=20000-29999

?

Ingress sends to proxy Ingress receives from origin
HTTP/1.1 200 OK HTTP/1.1 206 Partial Content
Content-Length: 10000 � Content-Length: 10000
X-FileLen: 661000248 Accept-Ranges: bytes

Content-Range: bytes 20000-29999/661000248

Figure 5.3: Egress and ingress transformations when the CDN communicates with the
origin server. The CDN internally believes it is requesting a small file, and the egress
transformation requests a byte-range of a large file. The ingress converts the server’s
response to a response for a complete small file, rather than a piece of a large file.

the complete download.

Having the agent use the local proxy avoids having to re-implement the CDN code

(such as node liveness, or connection management) in the agent, but can cause cache

pollution if the proxy caches all of the agent’s requests. The ingress adds a cache-control

header that disallows local caching, which is removed on egress when the proxy routes

the request to the next CDN node. As a result, chunks are cached at the next-hop CDN

nodes instead of the local node.

Since the CDN sees a large number of small file requests, it can use its normal routing,

replication, and caching policies. These cached pieces can then be used to serve future

requests. If a node experiences cache pressure, it can evict as many pieces as needed,

instead of evicting one large file. Similarly, the arrival/departure of nodes will only cause

missing pieces to be re-fetched, instead of the whole file. The only external difference

is that the server sees byte-range requests from many proxies instead of one large file

request from one proxy.

94

5.2.3 Agent Design

The agent is the most complicated part of CoBlitz, since it must operate smoothly, even in

the face of unpredictable CDN nodes and origin servers outside of our control. The agent

monitors the chunk downloads for correctness and for performance. The correctness

checking ensures that the server is capable of serving HTTP byte-range requests, ver-

ifying that the response is cacheable, and comparing modification-related headers (file

length, last-modified time, etc.) to detect if a file has changed at the origin during its

download. In the event of problems, the agent can abort the download and return an error

message to the client. The agent is the largest part of CoBlitz – it consists of 770 lines

of code with statement terminators (1975 lines total), versus 60-70 lines of changes for

ingress/egress modifications.

To determine when to re-issue chunk fetches, the agent maintains overall and per-

chunk statistics during the download. Several factors may slow chunk fetching, including

congestion between the proxy and its peers, operational problems at the peers, and con-

gestion between the peers and the origin. After downloading the first chunk, the agent

has the header containing the overall file size, and knows the total number of chunks to

download. It issues parallel requests up to its limit, and uses non-blocking operations to

read data from the sockets as it becomes available.

Using an approach inspired by LoCI [7], slow transfers are addressed by issuing mul-

tiple requests – whenever a chunk exceeds its download deadline, the agent opens a new

connection and re-issues the chunk request. The most recent request for the same chunk

is allowed to continue downloading, and any earlier requests for the chunk are terminated.

In this way, each chunk can have at most two requests for it in flight from the agent, a

departure from LoCI where even more connections are made as the deadline approaches.

The agent modifies a non-critical field of the URL in retry requests beyond the first retried

95

request for each chunk. This field is stripped from the URL on egress, and exists solely to

allow the agent to randomize the peer serving the chunk. In this way, the agent can exert

some control over which peer serves the request, to reduce the chance of multiple fail-

ures within the CDN. Keeping the same URL on the first retry attempts to reduce cache

pollution – in a load-balanced, replicated CDN, the retry is unlikely to be assigned to the

same peer that is handling the original request.

The first retry timeout for each chunk is set using a combination of the standard de-

viation and exponentially-weighted moving average of recent chunk downloading times.

Subsequent retries use exponential backoff to adjust the deadline, up to a limit of 10

backoffs per chunk. In our testing, most chunks are either delivered within 3 retries or

not delivered at all, so 10 backoffs would be conservative. To bound the backoff time,

we also have a hard limit of 10 seconds for the chunk timeout, which is translated into

48 Kbps with 60 KB chunks. This rate is lower than the modem speed, and probably

indicates some sort of failure when the limit timeout expires. The initial timeout is set to

3 seconds for the first chunk – while most nodes finish faster, using a generous starting

point avoids overloading slow origin servers. In practice, 10-20% of chunks are retried,

but the original fetch usually completes before the retry. We could reduce retry aggres-

siveness, but the current approach is unlikely to cause much extra traffic to the origin

since the first retry uses a different replica with the same URL.

By default, the agent sends completed chunks to the client as soon as they finish

downloading, as long as all preceding chunks have also been sent. If the chunk at the

head of the line has not completed downloading, no new data are sent to the client until

the chunk completes. By using enough parallel chunk fetches, delays in downloading

chunks can generally be overlapped with others in the pipeline. If clients that can use

chunked transfer encoding provide a header in the request indicating they are capable of

96

handling chunks in any order, the agent sends chunks as they complete, with no head-of-

line blocking. Chunk position information is returned in a trailer following each chunk,

which the client software can use to assemble the file in the correct order.

The choice of chunk size is a trade-off between efficiency and latency – small chunks

will result in faster chunk downloads, so slower clients will have less impact. However,

the small chunks require more processing at all stages – the agent, the CDN infrastructure,

and possibly the origin server. Larger chunks, while more efficient, can also cause more

delay if head-of-line blocking arises. After some testing [58], we chose a chunk size

of 60KB, which is large enough to be efficient, but small enough to be manageable.

In particular, this chunk size can easily fit into Linux’s default outbound kernel socket

buffers, allowing the entire chunk to be written to the socket with a single system call that

returns without blocking.

5.2.4 Peering Strategy

The goal of CoBlitz is to improve the overall downloading throughput rather than reduc-

ing the per-chunk response latency. This is somewhat different from the goal of a regular

CDN like CoDeeN, which tries to provide an interactive Web environment to the end

users. Most monitoring and peering mechanism from CoDeeN is reused in CoBlitz, but

the round-trip time cutoff for peer selection is relaxed with CoBlitz to support more peers

to distribute the load, and request re-forwarding is introduced to improve the cache hit

rate even if it increases the chunk latency. This change also reduces the origin server load

and ultimately reduces the total download time for the client. More details can be found

in Section 5.3 and Section 5.4.

97

5.2.5 Design Benefits

We believe that this design has several important features that not only make it practical

for deployment now, but will continue to make it useful in the future:

No client synchronization – Since chunks are cached in the CDN when first down-

loaded, no client synchronization is needed to reduce traffic load on the origin

server. If clients are highly synchronized, agents can use the same chunk to serve

many client requests, reducing the number of intra-CDN transfers, but synchro-

nization is not required for efficient operation.

Trading bandwidth for disk seeks – Fetching most chunks from other CDN nodes

trades network bandwidth for disk seeks. Given the rate of improvement of each,

this trade-off will continue to hold for the foreseeable future. Bandwidth is contin-

ually dropping in price, and disk seek times are not scaling.

Increasing chunk utility – Having all nodes store chunks makes them available to a

larger population than storing the entire file at a small number of nodes. Many more

nodes can now serve large files, so the total capacity is the sum of the bandwidths

they have to serve clients, and the aggregate intra-CDN capacity is available to

exchange chunks.

Using cheaper bandwidth – When CDN nodes communicate with each other, this

bandwidth consumption is either within a LAN cluster hosting the CDN nodes,

or through the network core, away from the clients that sit at the edge of the net-

work. Core bandwidth has been improving in price/performance more rapidly than

edge bandwidth, and LAN bandwidth is virtually free, so this consumption is in the

more desirable direction.

98

Scaling with CDN size – As CDN size increases, and aggregate physical memory in-

creases, chunks can be replicated more widely. The net result is that desired chunks

are more likely to be in nearby nodes, so link stress drops as the CDN grows.

Tunable memory consumption – Varying the number of parallel chunks downloads

that are used for each client controls the memory consumption of this approach.

Slower clients can be allocated fewer parallel chunks, and the aggregate number of

chunks can be reduced if a node is experiencing heavy load.

In-order or out-of-order delivery – For typical Web browsers 1 or other HTTP client

software 2, chunks are delivered in order so that the download appears exactly

like a non-CoBlitz download from the origin, and performance-hungry clients can

use software that supports chunked encoding. Service differenciation is done by

allocating a different port for each or by examining the “User-Agent” HTTP header.

5.3 Coping With Scale

One first challenge for CoBlitz was handling scale – at the time of CoBlitz’s original

deployment, CoDeeN was running on all 100 academic PlanetLab nodes in North Amer-

ica. The first major scale issue was roughly quadrupling the node count, to include every

PlanetLab node. In the process, we adopted three design decisions that have served us

well: (a) make peering a unilateral, asynchronous decision, (b) use minimum application-

level ping times when determining suitable peers, and (c) apply hysteresis to the peer set.

Unilateral, asynchronous peering has already been discussed in Section 2.2, and others

are described in the remainder of this section.
1Such as Internet Explorer, Firefox, Opera and so on.
2Such as curl and wget.

99

5.3.1 Peer Set Selection

As described in Section 3.2, CoDeeN uses application-level pings, rather than network

pings, to determine round trip times (RTTs). Originally, CoDeeN kept the average of the

four most recent RTT values, and selected the 60 3 closest peers within a 100ms RTT

cutoff. The 100ms cutoff was chosen to reduce noticeable lag in interactive settings,

such as Web browsing. In parts of the world where nodes could not find 20 peers within

100ms, this cutoff is raised to 200ms and the 20 best peers are selected.

This approach exhibited two problems – a high rate of change in the peer sets, and

low overlap among peer sets for nearby peers. The high change rate potentially impacts

chunk caching in CoBlitz – if the peer that previously fetched a chunk is no longer in the

peer set, the new peer that replaces it may not yet have fetched the chunk. To address

this issue, hysteresis was added to the peer set selection process. Any peer not on the set

could only replace a peer on the set if it was closer in two-thirds of the last 32 heartbeats.

Even under the worst-case conditions, using the two-thirds threshold would keep a peer

on the set for 20 minutes at a time. While hysteresis reduced peer set churn, it also

reinforced the low overlap between neighboring peer sets. Further investigation indicated

that CoDeeN’s application-level heartbeats had an order of magnitude more variance than

network pings. This variance led to instability in the average RTT calculations, so once

nodes were added to the peer set, they rarely got displaced.

Switching from an average application-level RTT to the minimum observed RTT (an

approach also used in other systems [12, 27, 67]) and increasing the number of samples

yielded significant improvement, with application-level RTTs correlating well with ping

time on all functioning nodes. Misbehaving nodes still showed large application-level

minimum RTTs, despite having low ping times. The overlap of peer lists for nodes at

3It is now increased to 120 nodes.

100

the same site increased from roughly half to almost 90%. At the same time, we discov-

ered that many intra-PlanetLab paths had very low latency, and restricting the peer size

to 60 was needlessly constrained. We increased this limit to 120 nodes, and issued 2

heartbeats per second. Of the nodes regularly running CoDeeN, two-thirds tend to now

have 100+ peers. More details of the redesign process and its corresponding performance

improvement can be found in our previous study [11].

5.3.2 Scaling Larger

It is interesting to consider whether this approach could scale to a much larger system,

such as a commercial CDN like Akamai. By the numbers, Akamai is about 40 times

as large as our deployment, at 15,000 servers across 1,100 networks. However, part of

what makes scaling to this size simpler is deploying clusters at each network point-of-

presence (POP), which number only 2,500. Further, their servers have the ability to issue

reverse ARPs and assume the IP addresses of failing nodes in the cluster, something not

permitted on PlanetLab. With this ability, the algorithms need only scale to the number

of POPs, since the health of a POP can be used instead of querying the status of each

server. Finally, by imposing geographic hierarchy and ISP-level restrictions, the problem

size is further reduced. With these assumptions, we believe that we can scale to larger

sizes without significant problems.

5.4 Reducing Load & Congestion

Reducing origin server load and reducing CDN-wide congestion are related, so we present

them together in this section. Origin load is an important metric for CoBlitz, because

it determines CoBlitz’s caching benefit and impacts the system’s overall performance.

101

From a content provider’s standpoint, CoBlitz would ideally fetch only a single copy of

the content, no matter what the demand is. However, for reasons described below, this

goal may not be practical.

5.4.1 Increasing Peer Set Size

Increasing the peer set size, as described in Section 5.3.1 has two effects – each node ap-

pears as a peer of many more nodes than before, and the number of nodes chosen to serve

a particular URL is reduced. In the extreme, if all CDN nodes were in each others’ peer

sets, then the total number of nodes handling any URL would equal NumCandidates. 4 In

practice, the peer sets give rise to overlapping regions, so the number of nodes serving a

particular URL is tied to the product of the number of regions and NumCandidates.

When examining origin server load in CoBlitz, we found that nodes with fewer than

five peers generate almost one-third of the traffic. Some poorly-connected sites have such

high latency that even with an expanded RTT criterion, they find few peers. At the same

time, few sites use them as peers, leading to them being an isolated cluster. For regular

Web CDN traffic, these small clusters are not much of an issue because small files do

not tax on lots of resources per origin server, but for large-file traffic, the extra load these

clusters cause on the origin server slows the rest of the CDN significantly. Increasing

the minimum number of peers per node to 60 reduces traffic to the origin. Because of

unilateral peering, this change does not harm nearby nodes – other nodes still avoid these

poorly-connected nodes.

Reducing the number of replicas per URL reduces origin server load, since fewer

nodes fetch copies from the origin, but it also causes more bursty traffic at those replicas

if downloading is synchronized. For CoBlitz, synchronized downloads occur when de-

4See the CoDeeN’s request redirection algorithm in Figure 3.2.

102

velopers push software updates to all nodes, or when cron-initiated tasks simultaneously

fetch the same file. In these cases, demand at any node experiences high burstiness over

small time scales, which leads to congestion in the CDN.

5.4.2 Fixing Peer Set Differences

Once other problems are addressed, differences in peer sets can also cause a substantial

load on the origin server. To understand how this arises, imagine a CDN consisting of

n-node clusters, where each node in the cluster does not see one peer and instead picks

an outsider at random. If we ask all nodes for the top candidate in the HRW list for a

given URL, at least one node is likely to return the candidate that is a better choice than

the node that the majority would return. 5

In general, if each node is missing l peers at random, and we ask for top m (m > 0)

candidates, then the probability of a node selecting k (k ≤ m) outside nodes among the

top m candidates is

P (X = k) =

(

l

k

)

·
m!

(m − k)!
·

(n − m)!

(n − m − l + k)!
n!

(n − l)!

Thus, the expected number of outside nodes placed in the top m candidates for each node

is E(X) =
∑

m

k=1
k ·P (X = k). When l = 2 and m = 5, then E(X) becomes about 0.16,

and the expected number of outsiders that get picked in the union of five top replicas is

60 · 0.16 = 9.6. 6 Making the matter worse is that these “extra” nodes fetching from the

origin also provide very low utility to the rest of the nodes – since few nodes are using

them to fetch the chunk, they do not reduce the traffic at the other replicas.

5The probability of each node picking the outside node as the top candidate is 1/n, so the expected
number of outsiders is n · 1/n = 1. For simplicity, we assume each node sees a different outside node.

6The actual number in practice will be smaller than 9.6, since not all l outside nodes that each original
node sees are different. The value shown here is a union bound.

103

To fix this problem, we observe that when a node receives a forwarded request, it

can independently check to see whether it should be the node responsible for serving that

request. On every forwarded request that is not satisfied from the cache, the receiving

node performs its own HRW calculation. If it finds itself as one of the top candidates, it

considers the forwarded request reasonable and fetches the chunk from the origin server.

If the receiver finds that it is not one of the top candidates, it forwards the request again.

We find that 3-7% of chunks get re-forwarded this way in CoBlitz, but it can get as high

as 10-15% in some cases. When all PlanetLab nodes act as clients, this technique cuts

origin server load almost in half.

Due to the deterministic order of HRW, 7 this approach is guaranteed to make forward

progress and be loop-free. While the worst case is a number of hops linear in the number

of peer groups, this case is also exponentially unlikely. Even so, we limit this approach to

only one additional hop in the redirection, to avoid forwarding requests across the world

and to limit any damage caused by bugs in the forwarding logic. Given the relatively low

rate of chunks forwarded in this manner, restricting it to only one additional hop appears

sufficient.

5.4.3 Reducing Burstiness

While request re-forwarding dramatically reduces cache misses, it creates temporary

burstiness when synchronized requests are issued. To illustrate the burstiness resulting

from improved peering, consider a fully-connected clique of 120 CDN nodes that begin

fetching a large file simultaneously. If all have the same peer set, then each node in the

replica set k will receive 120/k requests, each for a 60 KB chunk. Assuming 2 replicas,

the traffic demand on each is 28.8 Mbits. Assuming a 10 Mbps link, it will be fully uti-

7See Section 2.1.

104

lized for 3 seconds just for this chunk, and then the utilization will drop until the next

burst of chunks.

The simplest way of reducing the small time-scale node congestion is to increase the

number of replicas for each chunk, but this would increase the number of fetches to the

origin. Instead, we can improve on the purely mesh-based topology from the stream-

oriented systems, which are excellent for reducing link stress. These systems all build

communication trees, which eliminates the need to have the same data traverse a link

multiple times. While trees are an unattractive option for standard Web CDNs because

they add extra latency to every request fetched from the origin, a hybrid scheme can help

the large-file case, if the extra hops can reduce congestion.

We take the re-forwarding support to forward chunks to better replicas, and use it to

create deeper routing trees in the peer sets. We change the re-forwarding logic to use a

different number of replicas when calculating the HRW set, leading to a broad replica set

and a smaller set of nodes that fetch from the origin. We set the NumCandidates value

to 1 when evaluating the re-forwarding logic, while dynamically selecting the value at

the first proxy. The larger replica set at the first hop reduces the burstiness at any node

without increasing origin load.

To dynamically select the number of replicas, we observe that we can eliminate bursti-

ness by spreading the requests equally across the peers at all times. With a target per-

client memory consumption, we can determine how many chunks are issued in parallel.

So, the replication factor is governed by the following equation:

replicationfactor =
peersize ∗ chunksize

memoryconsumption
(5.1)

At 1 MB of buffer space per client, a 60KB chunk size, and 120 peers, our replication

factor will be 7. We can, of course, cap the number of peers at some reasonable fraction

105

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Increase by 0.1
Increase by 1/x
Increase by log(x)/x
Increase by 1/log(x)
Fixed−size Window

Throughput (Mbps)

Fr
ac

tio
n

of
 N

od
es

 w
ith

 T
hr

ou
gh

pu
t <

=
x

Figure 5.4: Throughput distribution for various window adjusting functions - Test scheme
is described in section 5.5

of the maximum number of peers so that memory pressure does not cause runaway repli-

cation for the sake of load balancing. In practice, we limit the replication factor to 20%

of the minimum target peer set, which yields a maximum factor of 12.

5.4.4 Dynamic Window Scaling

Although parallel chunk downloads can exploit multi-path bandwidth and reduce the ef-

fect of slow transfers, using a fixed number of parallel chunks also has some congestion-

related drawbacks which we address. When the content is not cached, the origin server

may receive more simultaneous requests than it can handle if each client is using a large

number of parallel chunks. For example, the Apache Web Server is configured by default

to allow 150 simultaneous connection, and some sites may not have changed this value.

If a CDN node has limited bandwidth to the rest of the CDN, too many parallel fetches

can cause self-congestion, possibly underutilizing bandwidth, and slowing down the time

of all fetches. The problem in this scenario is that too many slow chunks will cause more

retries than needed.

106

In either of these scenarios, using a smaller number of simultaneous fetches would

be beneficial, since the per-chunk download time would improve. We view finding the

“right” number of parallel chunks as a congestion issue, and address it in a manner similar

to how TCP performs congestion control. Note that changing the number of parallel

chunks is not an attempt to perform low-level TCP congestion control – since the fetches

are themselves using TCP, we have this benefit already. Moreover, since the underlying

TCP transport is already using additive-increase multiplicative-decrease, we can choose

whatever scheme we desire on top of it.

Drawing on the ideas in TCP Vegas [12], we use the extra information we have in the

CoBlitz agent to make the chunk “congestion window” a little more stable than a simple

saw tooth. We use three criteria: (1) if the chunk finishes in less than the average chunk

download time, increase the chunk window, (2) if the first fetch attempt is killed by retries,

shrink the window, and (3) otherwise, leave the window size unmodified. We also decide

that if more chunk fetches are in progress than the window size dictates, existing fetches

are allowed to continue, but no new fetches (including retries) are allowed. Given that

our condition for increasing the window is already conservative, we give ourselves some

flexibility on exactly how much to add. Similarly, given that the reason for requiring a

retry might be that any peer is slow, we decide against using multiplicative decrease when

a chunk misses the deadline.

While determining the decrease rate is fairly easy, choosing a reasonable increase

rate required some experimentation. The decrease rate was chosen to be one full chunk

for each failed chunk, which would have the effect of closing the congestion window

very quickly if all of the chunks outstanding were to retry. This logic is less severe

than multiplicative decrease if only a small number of chunks miss their deadlines, but

can shrink the window to a single chunk within one “RTT” (in this case, average chunk

107

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Direct
BT−Total
BT−Core
In−order/Sync′d
Out−of−order/Sync′d
In−order/Staggered
Out−of−order/Staggered
In−order/Cached
Out−of−order/Cached

Throughput (Mbps)

F
ra

ct
io

n
of

 N
od

es
 w

ith
 T

hr
ou

gh
pu

t <
=

 x

Figure 5.5: Achieved throughput distribution for all live PlanetLab nodes

download time) in the case of many failures.

Some experimentation with different increase rates is shown in Figure 5.4. The purely

additive condition, 1/x on each fast chunk (where x is the current number of chunks

allowed), fares poorly. Even worse is adding one-tenth of a chunk per fast chunk, which

would be a slow multiplicative increase. The more promising approaches, adding log(x)/x

and 1/log(x) (where we use 1 when x = 1) produce much better results. The 1/x case is

not surprising, since it will always be no more than additive, since the window grows

only when performing well. In TCP, the “slow start” phase would open the window

exponentially faster, so we choose to use 1/log(x) to achieve a similar effect – it grows

relatively quickly at first, and more slowly with larger windows. The chunk congestion

window is maintained as a floating-point value, which has a lower bound of 1 chunk,

and an upper bound as dictated by the buffer size available, which is normally 60 chunks.

The final line in the graph, showing a fixed-size window of 60 chunks, appears to produce

better performance, but comes at the cost of a higher node failure rate – 2.5 times as many

nodes fail to complete with the fixed window size versus the dynamic sizing.

108

5.5 Evaluation

In this section, we evaluate the performance of CoBlitz, both in various scenarios, and in

comparison with BitTorrent [23]. We use BitTorrent because of its wide use in large-file

transfer [14], and because other research systems, such as Slurpie [77], Bullet’ [48] (im-

proved version of Bullet [49]) and Shark [4], are not running (or in some cases, available)

at the time of this writing. As many of these have been evaluated on PlanetLab, we draw

some performance and behavior comparisons in Section 5.6.

One unique aspect of our testing is the scale – we use every running PlanetLab node

except those at Princeton, those designated as alpha testing nodes, and those behind fire-

walls that prevent CoDeeN traffic. The reason for excluding the Princeton nodes is be-

cause we place our origin server at Princeton, so the local PlanetLab nodes would exhibit

unrealistically large throughputs and skew the means. During our testing in September

and early October 2005, the number of available nodes that met the criteria above ranged

from 360-380 at any given time, with a union size of 400 nodes.

Our test environment consists of a server with an AMD Sempron processor running

at 1.5 GHz, with Linux 2.6.9 as its operating system and lighttpd 1.4.4 [46] as our web

server. Our testing consists of downloading a 50MB file in various scenarios. The choice

of this file size was to facilitate comparisons with other work [4, 48], which uses file sizes

of 40-50MB in their testing. Our testing using a 630MB ISO image for the Fedora Core

4 download yielded slightly higher performance, but would complicate comparisons with

other systems. Given that some PlanetLab nodes are in parts of the world with limited

bandwidth, our use of 50MB files reduces contention problems for them. Each test is run

three times, 8 and the reported numbers are the average value across the tests for which

8We have run this three-time experiments many times over a month. The trend in the results is similar
though the actual values slightly vary depending on the traffic level on PlanetLab at the time of testing.

109

the node was available. Due to the dynamics of PlanetLab, over any long period of time,

the set of available nodes will change, and given the span of our testing, this churn is

unavoidable.

We tune BitTorrent for performance – the clients and the server are configured to seed

the peers indefinitely, and the maximum number of peers is increased to 60. While live

BitTorrent usage will have lower performance due to fewer peers and peers departing

after downloading, we want to provide similar environment for BitTorrent as CoBlitz.

Note that CoBlitz’s maximum chunk window size is 60, and its proxies hold the cached

content long enough for the test downloads to finish.

We test a number of scenarios, as follows:

Direct – all clients fetch from the origin in a single download, which would be typical

of standard browsers. For performance, we increase the socket buffer sizes from

the system defaults to cover the bandwidth-delay product.

BitTorrent Total – this is a wall-clock timing of BitTorrent, which reflects the user’s

viewpoint. Even when all BitTorrent clients are started simultaneously, downloads

begin at different times since clients spend different amounts of time contacting the

tracker and finding peers.

BitTorrent Core – this is the BitTorrent performance from the start of the actual down-

loading at each client. In general, this value is 25-33% higher than the BitTorrent

Total time, but is sometimes as much as 4 times larger.

In-order CoBlitz with Synchronization – Clients use CoBlitz to fetch a file for the

first time and the chunks are delivered in order. All clients start at the same time.

110

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

In−order/Cached
Out−of−order/Cached
In−order/Staggered
Out−of−order/Staggered
In−order/Sync′d
Out−of−order/Sync′d
BT−Core
BT−Total
Direct

Time (Secs)

F
ra

ct
io

n
of

 N
od

es
 w

ith
 T

im
e

<
=

 x

Figure 5.6: Download times across all live PlanetLab nodes

In-order CoBlitz with Staggering – We stagger the start of each client by the same

amount of time that BitTorrent uses before it starts downloading. These stagger

times are typically 20 to 40 seconds, with a few outliers as high as 150-230 seconds.

In-order CoBlitz with Contents Cached – Clients ask for a file that has already been

fetched previously, and whose chunks are cached at the reverse proxies. All clients

begin at the same time.

Out-of-order tests – Out-of-order CoBlitz with Synchronization, Out-of-order CoBlitz

with Staggering, and Out-of-order CoBlitz with Contents Cached are the same as

their in-order counterparts described above, but the chunks are delivered to the

clients out of order.

5.5.1 Overall Performance

The throughputs and download times for all tests are shown in Figure 5.5 and Figure 5.6,

with summaries presented in Table 5.1. For clarity, we trim the x axes of both graphs,

111

Strategy Nodes Throughput Download Time
Good Failed Mean 50% 90% Mean 50% 90%

Direct 372 17-18 0.23 0.20 0.38 1866.8 1618.2 3108.7

BitTorrent-Total 367 21-25 1.97 1.88 3.79 519.0 211.7 1078.3
BitTorrent-Core 367 21-25 2.52 2.19 5.32 485.1 181.1 1036.9

CoBlitz In-order Sync’d 380 8-12 2.50 2.78 3.52 222.4 143.6 434.3
CoBlitz In-order Staggered 383 5-9 2.99 3.26 4.54 122.4 141.7 406.4
CoBlitz In-order Cached 377 12-16 3.51 3.65 5.65 185.2 109.5 389.1

CoBlitz Out-of-order Sync’d 381 8-10 2.91 3.15 4.17 193.9 127.0 381.6
CoBlitz Out-of-order Staggered 384 5-8 3.68 3.78 5.91 105.4 124.6 365.2
CoBlitz Out-of-order Cached 379 8-13 4.36 4.08 7.46 164.3 98.1 349.5

Table 5.1: Throughputs (in Mbps) and times (in seconds) for various downloading ap-
proaches with all live PlanetLab nodes. The count of good nodes is the typical value for
nodes completing the download, while the count of failed nodes shows the range of node
failures.

and the CDFs shown are of all nodes completing the tests. The actual number of nodes

finishing each test are shown in the table. In the throughput graph, lines to the right are

more desirable, while in the download time graph, lines to the left are more desirable.

From the graphs, we can see several general trends: all schemes beat direct down-

loading, uncached CoBlitz generally beats BitTorrent, out-of-order CoBlitz beats in-order

delivery, staggered downloading beats synchronized delivery, and cached delivery, even

when synchronized, beats the others. Direct downloading at this scale is particularly

problematic – we had to abruptly shut down this test because it was consuming most of

Princeton’s bandwidth and causing noticeable performance degradation.

The worst-case performance occurs for the uncached case where all clients request the

content at exactly the same time and much load is placed on the origin server. However,

this case is unlikely for regular users, since even a few seconds of difference in start times

defeats this problem.

The fairest comparison between BitTorrent and CoBlitz is BT-Core versus CoBlitz

112

CoBlitz BitTorrent
Sync Stagger

In-Order Out In-Order Out
7.0 7.9 9.0 9.0 10.0

Table 5.2: Bandwidth consumption at the origin, measured in multiples of the file size

out-of-order with Staggered, in which case CoBlitz beats BitTorrent by 11-72% in through-

put and a factor of 1.5 to 4.6 in download time. Even the worst-case performance for

CoBlitz, when all clients are synchronized on uncached content, generally beats BitTor-

rent by 27-48% in throughput and a factor of 1.47 to 2.48 in download time.

In assessing how well CoBlitz compares against BitTorrent, it is interesting to exam-

ine the 90th percentile download times in Table 5.1 and compare them to the mean and

median throughputs. This comparison has appeared in other papers comparing with Bit-

Torrent [48, 77]. We see that the tail of BitTorrent’s download times is much worse than

comparing the mean or median values. As a result, systems that compare themselves pri-

marily with the worst-case times may be presenting a much more optimistic benefit than

seen by the majority of users.

It may be argued that worst-case times are important for systems that need to know an

update has been propagated to their members, but if this is an issue, more important than

delay is failure to complete. In Table 5.1, we show the number of nodes that finish each

test, and these vary considerably despite the fact that the same set of machines is being

used. Of the approximately 400 machines available across the union of all tests, only

about 5-12 nodes fail to complete using CoBlitz, while roughly 17-18 fail in direct testing,

and about 21-25 fail with BitTorrent. The 5-12 nodes where CoBlitz eventually stops

trying to download are at PlanetLab sites with highly-congested links, poor bandwidth,

and other problems – India, Australia, and some Switzerland nodes.

113

5.5.2 Load at the Origin

Another metric of interest is how much traffic reaches the origin server in these different

tests, and this information is provided in Table 5.2, shown as a multiple of the file size.

We see that the CoBlitz scenarios fetch a total of 7 to 9 copies in the various tests, which

yields a utility of 43-55 nodes served per fetch (or a cache hit rate of 97.6 - 98.2%). Bit-

Torrent has comparable overall load on the origin, at 10 copies, but has a lower utility

value, 35, since it has fewer nodes complete. For Shark, the authors observed it down-

loading 24 copies from the origin to serve 185 nodes, yielding a utility of 7.7. We believe

that part of the difference may stem from peering policy – CoDeeN’s unilateral peering

approach allows poorly-connected nodes to benefit from existing clusters, while Coral’s

latency-oriented clustering may adversely impact the number of fetches needed.

A closer examination of fetches per chunk, shown in Figure 5.7, shows that CoBlitz’s

average of 8 copies varies from 4-11 copies by chunk, and these copies appear to be

spread fairly evenly geographically. The chunks that receive only 4 fetches are particu-

larly interesting, because they suggest it may be possible to cut CoBlitz’s origin load by

another factor of 2. We believe these chunks happen to be served by nodes that overlap

with many peer sets, which would further validate CoBlitz’s unilateral peering.

5.5.3 Performance after Flash Crowds

Finally, we evaluate the performance of CoBlitz after a flash crowd, where the CDN nodes

can still have the file cached. This was one of motivations for building CoBlitz on top of

CoDeeN – that by using an infrastructure geared toward long-duration caching, we could

serve the object quickly even after demand for it drops. This test is shown in Figure 5.8,

where clients at all PlanetLab nodes try downloading the file individually, with no two

114

0 10 20 30
0

2

4

6

8

10

12

14

Every 30th Chunk

Ge
og

ra
ph

ic
Di

str
ibu

tio
n

of
 R

ev
er

se
 P

ro
xie

s

North America East
North America West
Europe
Asia
Austrailia
South America

Figure 5.7: Reverse proxy location distribu-
tion

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BT−Core

In−order CoBlitz

Throughput (Mbps)

Fr
ac

tio
n

of
 N

od
es

 w
ith

 T
hr

ou
gh

pu
t <

=
x

Figure 5.8: Single node download after
flash crowds

operating simultaneously. We see that performance is still good after the flash crowd has

dissipated – the median for this in-order test is above 7 Mbps, almost tripling the median

for in-order uncached and doubling the median of in-order cached. At this bit rate, clients

can watch DVD-quality video in real time. We include BitTorrent only for comparison

purposes, and we see that its median has only marginally improved in this scenario.

5.5.4 Real-world Usage

One of our main motivations when developing CoBlitz was to build a system that could

be used in production, and that could operate with relatively little monitoring. These

decisions have led us not only to use simpler, more robust algorithms where possible, but

also to restrict the content that we serve. To keep the system usage focused on large-

file transfer, and to prevent general-purpose bandwidth cost-shifting, 9 we have placed

restrictions on what the general public can serve using CoBlitz. Unless the original file is

hosted at a university, CoBlitz will not serve HTML files, most graphics types, and most

9This would prevent users from abusing our service to shift their bandwidth cost to PlanetLab to serve
their regular Web traffic.

115

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

2~
	4 GB

1~
	2 GB

1/2~
	1 GB

1/4~
	1/2 GB

1/8~
	1/4 GB

1/16~
	1/8 GB

32~
	64 MB

16~
	32 MB

8~
	16 MB

4~
	8 MB

2~
	4 MB

0~
	2 MB

N
u
m

b
e
r

o
f
R

e
q
u
e
s
ts

File Size

Figure 5.9: CoBlitz October 2006 usage by
requests

 0

 500

 1000

 1500

 2000

 2500

 3000

2~
	4 GB

1~
	2 GB

1/2~
	1 GB

1/4~
	1/2 GB

1/8~
	1/4 GB

1/16~
	1/8 GB

32~
	64 MB

16~
	32 MB

8~
	16 MB

4~
	8 MB

2~
	4 MB

0~
	2 MB

T
o
ta

l
B

y
te

s
 S

e
rv

e
d
(G

B
)

File Size

Figure 5.10: CoBlitz October 2006 usage
by bytes served

Figure 5.11: CoBlitz traffic in Kbps on release of Fedora Core 6, averaged over 15-minute
intervals. 1.0 M in the graph represents 1 Gbps. The 5-minute peaks exceeded 1.4 Gbps.

audio/video formats. As a result of these policies, we have not received any complaints

related to the content served by CoBlitz, which has simplified our operational overhead.

To get a sense of a typical month’s CoBlitz usage, we present the breakdown for

October 2006 traffic in Figures 5.9 (by number of requests) and 5.10 (by bytes served).

Most of the requests for files less than 2MB come from the Stork service [80], which pro-

vides package management on PlanetLab, and the CiteSeer Digital Library [20], which

provides document downloads via CoBlitz. The two spikes in bytes served are from the

Fedora Core Linux distribution, available as either downloadable CD images or DVD im-

ages. Most file requests between 10MB and 100MB are audio and video podcasts from

University Channel [83], which uses CoBlitz to deliver their public affairs lectures and

116

panel discussion. The remaining traffic comes from smaller sites, other PlanetLab users,

and Fedora Core RPM downloads.

A more unusual usage pattern occurred on October 24, 2006, when the Fedora Core

6 Linux distribution was released. The measurements from this day and the previous day

are shown in Figure 5.11. In less than an hour, CoBlitz went from an average of 100

Mbps of traffic to over 600 Mbps, and sustained 5-minute peaks exceeded 1.4 Gbps. The

bandwidth consumed at the origin mirror server was only about 30-40 Mbps during the

timeframe, maintaining the utility of the fetched content at 30-40. The seemingly lower

utility number than those in our experiments (Section 5.5.2) is understandable because

the mirror serves not just one file but many different files at the same time.

This flash crowd had a relatively long tail – it average 400-450 Mbps on the third

day, and only dropped to less than 300 Mbps on the fourth day, a weekend. The memory

footprint of CoBlitz was also low – even serving the CD and DVD images on several

platforms (PPC, i386, x86 64), the average memory consumption was only 75MB per

node.

5.6 Related Work

Several projects that perform large file transfers have been measured on PlanetLab, with

the most closely related ones being Bullet’ [48], and Shark [4], which is built on Coral [31].

Though neither system is currently accessible to the public, both have been evaluated re-

cently. Bullet’, which delivers chunks in out-of-order and uses UDP, is reported to achieve

7 Mbps when run on 41 PlanetLab hosts at different sites. In testing under similar con-

ditions, CoBlitz achieves 7.4 Mbps (uncached) and 10.6 Mbps (cached) on average. We

could potentially achieve even higher results by using a UDP-based transport protocol,

117

but our experience suggests that UDP traffic causes more problems in practice, 10 both

from intrusion detection systems as well as stateful firewalls. Shark’s performance for

transferring a 40MB file across 185 PlanetLab nodes shows a median throughput of 0.96

Mbps. As discussed earlier, Shark serves an average of only 7.7 nodes per fetch, which

suggests that their performance may improve if they use techniques similar to ours to

reduce origin server load. The results for all of these systems are shown in Table 5.3.

The use of parallel downloads to fetch a file has been explored before, but in a more

narrow context – Rodriguez et al. use HTTP byte-range queries to simultaneously down-

load chunks in parallel from different mirror sites [69]. Their primary goal was to improve

single client downloading performance, and the full file is pre-populated on all of their

mirrors. What distinguishes CoBlitz from this earlier work is that we make no assump-

tions about the existence of the file on peers, and we focus on maintaining stability of

the system even when a large number of nodes are trying to download simultaneously.

CoBlitz works if the chunks are fully cached, partially cached, or not at all cached, fetch-

ing any missing chunks from the origin as needed. In the event that many chunks need

to be fetched from the origin, CoBlitz attempts to reduce origin server overload. Finally,

from a performance standpoint, CoBlitz attempts to optimize the memory cache hit rate

for chunks, something not considered in Rodriguez’s system.

While comparing with other work is difficult due to the difference in test environ-

ment, we can make some informed conjecture based on our experiences. FastReplica’s

evaluation includes tests of 4-8 clients, and their per-client throughput drops from 5.5

Mbps with 4 clients to 3.6 Mbps with 8 clients [18]. Given that their file is broken into

a small number of equal-sized pieces, the slowest node in the system is the overall bot-

tleneck. By using a large number of small, fixed-size pieces, CoBlitz can mitigate the

10Many firewalls do not allow incoming (or even outgoing) UDP traffic to a random port and sensitive
Intrusion Detection Systems (IDS) often raise alarms on random UDP traffic.

118

Shark CoBlitz Bullet’
Uncached Cached
In Out In Out

Nodes 185 41 41 41 41 41
Median 1.0 6.8 7.4 7.4 9.2
Mean 7.0 7.4 8.4 10.6 7.0

Table 5.3: Throughput results (in Mbps) for various systems at specified deployment
sizes on PlanetLab. All measurements are for 50MB files, except for Shark, which uses
40MB.

effects of slow nodes, either by increasing the number of parallel fetches, or by retrying

chunks that are too slow. Another system, Slurpie [77], limits the number of clients that

can access the system at once by having each one randomly back off such that only a

small number are contacting the server regardless of the number of nodes that want ser-

vice. Their local-area testing has clients contact the server at the rate of one every three

seconds, which staggers the request rate far more than BitTorrent. Slurpie’s evaluation

on PlanetLab provides no absolute performance numbers [77], making it difficult to draw

comparisons. However, their performance appears to degrade beyond 16 nodes.

The scarcity of deployed systems for head-to-head comparisons supports part of our

motivation – by reusing our CDN infrastructure, we have been able to easily deploy

CoBlitz and keep it running.

119

Chapter 6

Conclusion

Today’s Internet is increasingly dependent on the reliability and performance of large-

scale distributed systems, but the current systems are often poorly designed to provide

robust and scalable service. This dissertation has explored the necessary principles for

building highly available and scalable systems from the perspectives of a decentralized

content distribution network service, a reliable DNS name lookup service, and a scalable

large-file transfer service.

By designing, building, and running CoDeeN, CoDNS, and CoBlitz on PlanetLab

serving real traffic, we have gained insight for better system design. We find that active

pairwise monitoring and independent peering greatly improves the system robustness

and scalability, and greatly enhances the reliability of the overall service. We have also

learned that intelligent composition of temporarily unreliable DNS services can produce

a highly reliable lookup service with a minimal operational overhead. We believe that our

findings are not specific to our systems and will be beneficial to designing other systems

as well.

120

6.1 Reliability of Decentralized CDN

We have presented our experience with a continuously running prototype CDN on Plan-

etLab. We have described our reliability mechanisms that assess node health and prevent

failing nodes from disrupting the operation of the overall system. The key insight is

to allow pairwise monitoring and to let the nodes independently identify healthy peer

nodes from their own view, and this simple design decision has made the system survive

without degradation of performance as the scale of the system has quadrupled during the

deployment. We believe that future services, especially peer-to-peer systems, will require

similar mechanisms as more services are deployed on non-dedicated distributed systems,

and as their interaction with existing protocols and systems increases.

Our distributed monitoring facilities prove to be effective at detecting and thus avoid-

ing failing or problematic nodes. The net benefit is robustness against component dis-

ruptions and improved response latency. Although some aspects of these facilities seem

application-specific, they are not confined to CDN services. Other latency-sensitive ser-

vices running in a non-dedicated distributed environment can potentially benefit from

them, since they also need to do extra reliability checks. Our experiences also reveal

that reliability-induced problems occur almost two orders of magnitude more frequently

than node joins/leaves, which makes active monitoring necessary and important for other

types of systems such as peer-to-peer. We believe that our experiences with CoDeeN and

the data we have obtained on availability can serve as a starting point for designers of

reliable systems in the future.

121

6.2 Highly Available DNS Service

DNS is one of the core Internet infrastructures enabling ubiquitous access to other Inter-

net resources. Over the two decades of operation, researchers have found many problems

regarding its operational stability and performance, but they have mainly focused on the

server-side aspects. However, in this dissertation, we have shown that client-side insta-

bility in DNS name lookups is widespread and relatively common, possibly suggesting

one of the real causes for server-side communication delays or failures. The failure cases

degrade average lookup time and increase the “tail” of response times. We show that

these failures appear to be caused by temporary nameserver overload, and are largely un-

correlated across multiple sites. Through analysis of live traffic, we show that a simple

peering system reduces response times and improves reliability.

Using these observations, we develop a lightweight name lookup service, CoDNS,

that uses peers at remote sites to provide cooperative lookups during failures. CoDNS

operates in conjunction with local DNS nameservers, allowing incremental deployment

without significant resource consumption. We have shown that this system generates

low overhead, cuts average response time by half or more, and increases DNS service

availability by adding another ’9’ to that of existing service.

6.3 Scalable Large-file Transfer Service

We have shown that, with a relatively small amount of modification, a traditional, HTTP-

based content distribution network can be made to efficiently support scalable large-file

transfer. Even with no modifications to clients, servers, or client-side software, our ap-

proach provides good performance under demanding conditions, but can provide even

122

higher performance if clients implement a relatively simple HTTP feature, chunked en-

coding.

Additionally, we show how we have taken the experience gained from the past 30

months of CoBlitz deployment, and used it to adapt our algorithms to be more aware of

real-world conditions. We demonstrate the advantages provided by this approach by eval-

uating CoBlitz’s performance across all of PlanetLab, where it exceeds the performance

of BitTorrent as well as all other research efforts known to us.

In the process of making CoBlitz handle scale and reduce congestion both within the

CDN and at the origin server, we identify a number of techniques and observations that

we believe can be applied to other systems of this type. Among them are: (a) unilat-

eral peering, which simplifies communication as well as enabling the inclusion of the

sites restricted by their local policy or poorly-connected nodes, (b) request re-forwarding

to reduce the origin server load when nodes send requests to an overly-broad replica

set, (c) dynamically adjusting replica sets to reduce burstiness in small time scales, (d)

congestion-controlled parallel chunk fetching, to reduce both origin server load as well

as self-interference at slower CDN nodes.

We believe that the lessons we have learned from CoBlitz should help not only the

designers of future systems, but also provide a better understanding of how to design

these kinds of algorithms to reflect the unpredictable behavior we have seen in real de-

ployment.

123

Bibliography

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. How-

ell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, available,

and reliable storage for an incompletely trusted environment. In Proceedings of the

Fourth Symposium on Operating Systems Design and Implementation, Dec. 2002.

[2] Akamai Technologies Inc.

http://www.akamai.com/.

[3] P. Albitz and C. Liu. DNS and BIND, pages 292–293. O’REILLY, fourth edition,

2001.

[4] S. Annapureddy, M. J. Freedman, and D. Mazieres. Shark: Scaling file servers

via cooperative caching. In 2nd USENIX/ACM Symposium on Networked Systems

Design and Implementation (NSDI ’05), Boston, MA, May 2005.

[5] O. Babaoglu, R. Davoli, A. Montresor, and R. Segala. System support for partition-

aware network applications. In Proceedings of 18th International Conferences on

Distributed Computing Systems ICDCS, pages 184–191, 1998.

[6] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R. H. Katz. TCP

behavior of a busy internet server: Analysis and improvements. In INFOCOM (1),

pages 252–262, 1998.

[7] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J. Dongarra, T. Moore,

124

G. Obertelli, J. Plank, M. Swany, S. Vadhiyar, and R. Wolski. Logistical computing

and internetworking: Middleware for the use of storage in communication. In 3rd

Annual International Workshop on Active Middleware Services (AMS), San Fran-

cisco, August 2001.

[8] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proceedings

of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), Feb. 2003.

[9] K. Birman. The process group approach to reliable distributed computing. Commu-

nications of ACM, 36(12):36–53, 1993.

[10] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda. FatNemo: Building a

resilient multi-source multicast fat-tree. In Proceedings of 9th International Work-

shop on Web Content Caching and Distribution (IWCW’04), Beijing, China, Octo-

ber 2004.

[11] B. Biskeborn, M. Golightly, K. Park, and V. S. Pai. (Re)Design considerations for

scalable large-file content distribution. In Proceedings of the Second Workshop on

Real, Large Distributed Systems (WORLDS), San Francisco, CA, December 2005.

[12] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New techniques for conges-

tion detection and avoidance. In Proceedings of SIGCOMM ’94, August 1994.

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipf-

like Distributions: Evidence and Implications. In Proceedings of IEEE INFOCOM,

pages 126–134, 1999.

[14] CacheLogic, 2004.

http://www.cachelogic.com/news/pr040715.php.

[15] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-

Stream: High-bandwidth content distribution in a cooperative environment. In Pro-

ceedings of SOSP’03, Oct 2003.

125

[16] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proceedings of the

Third Symposium on Operating Systems Design and Implementation, 1999.

[17] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell. A

hierarchical Internet object cache. In USENIX Annual Technical Conference, 1996.

[18] L. Cherkasova and J. Lee. FastReplica: Efficient large file distribution within con-

tent delivery networks. In Proceedings of the 4th USITS, Seattle, WA, March 2003.

[19] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast.

In IEEE Journal on Selected Areas in Communication (JSAC), Special Issue on

Networking Support for Multicast, 2002.

[20] CiteSeer Scientific Literature Digital Library.

http://citeseer.ist.psu.edu/.

[21] CNN News, August 2, 2006.

http://money.cnn.com/2006/08/02/smbusiness/domains/index.htm.

[22] CoDeeN status page.

http://codeen.cs.princeton.edu/status/.

[23] B. Cohen. Bittorrent, 2003. http://bitconjurer.org/BitTorrent.

[24] E. Cohen and H. Kaplan. Prefetching the Means for Document Transfer: A New

Approach for Reducing Web Latency. In Proceedings of IEEE INFOCOM, pages

854–863, 2000.

[25] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using Chord. In Proceed-

ings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[26] F. Cristian. Reaching agreement on processor group membership in synchronous

distributed systems. Distributed Computing, 4:175–87, 1991.

[27] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network

coordinate system. In Proceedings of SIGCOMM ’04, Portland, Oregon, August

126

2004.

[28] P. B. Danzig, K. Obraczka, and A. Kumar. An Analysis of Wide-Area Name Server

Traffic: A Study of Internet Domain Name System. In Proceedings of ACM SIG-

COMM, 1992.

[29] D. Eastlake. Domain Name System Security Extensions. RFC 2535, January 1999.

[30] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext transfer protocol – HTTP/1.1. RFC 2616, June 1999.

[31] M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing content publication

with Coral. In Proceedings of the 1st Symposium on Networked System Design and

Implementation (NSDI ’04), 2004.

[32] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica. Non-transitive con-

nectivity and DHTs. In Proceedings of 2nd Workshop on Real, Large, Distributed

Systems (WORLDS), 2005.

[33] Ganglia. http://ganglia.sourceforge.net.

[34] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proceedings

of the nineteenth ACM symposium on Operating systems principles, 2003.

[35] GNU wget.

http://www.gnu.org/software/wget/wget.html/.

[36] G. Goldszmidt and G. Hunt. NetDispatcher: A TCP connection router. Technical

Report RC 20853, IBM Research White Paper, 1997.

[37] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact

of DHT routing geometry on resilience and proximity. In Proceedings of ACM

SIGCOMM, 2003.

[38] A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for peer-to-peer overlays.

In Ninth Workshop on Hot Topics in Operating Systems (HotOS-IX), 2003.

127

[39] C. Huitema and S. Weerahandi. Internet Measurements: the Rising Tide and the

DNS Snag. In Proceedings of the 13th ITC Specialist Seminar on Internet Traffic

Measuremnet and Modelling, 2000.

[40] JANET Web Cache Service. http://wwwcache.ja.net.

[41] K. Johnson, J. Carr, M. Day, and F. Kaashoek. The Measured Performance of Con-

tent Distribution Networks. In Proceedings of the 5th International Web Caching

and Content Delivery Workshop (WCW), 2000.

[42] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance and the Effec-

tiveness of Caching. In IEEE/ACM Transactions on Networking, volume 10, 2002.

[43] J. Kangasharju and K. W. Ross. A Replicated Architecture for the Domain Name

System. In Proceedings of IEEE INFOCOM, pages 660–669, 2000.

[44] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto,

B. Kim, L. Matkins, and Y. Yerushalmi. Web caching with consistent hashing. In

Proceedings of the 8th International World-Wide Web Conference, 1999.

[45] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and D. Lewin.

Consistent hashing and random trees: Distributed caching protocols for relieving

hot spots on the world wide web. In ACM Symposium on Theory of Computing,

1997.

[46] J. Kneschke. lighttpd.

http://www.lightttpd.net.

[47] B. Knowles. Domain Name Server Comparison: BIND 8 vs. BIND 9 vs. djbdns vs.

???, 2002. http://www.usenix.org/events/lisa02/tech/presentations/knowles ppt/.

[48] D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson, A. C. Snoeren, and

A. Vahdat. Maintaining high bandwidth under dynamic network conditions. In

Proceedings of USENIX Annual Technical Conference, 2005.

128

[49] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: high bandwidth data

dissemination using an overlay mesh. In Proceedings of 19th ACM SOSP, 2003.

[50] A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. Common DNS Imple-

mentation Errors and Suggested Fixes. RFC 1536, October 1993.

[51] R. Liston, S. Srinivasan, and E. Zegura. Diversity in DNS Performance Measures.

In Proceedings of the ACM SIGCOMM Internet Measurement Workshop, 2002.

[52] B. Maggs. Personal communication (email) with Vivek S. Pai, October 20th, 2005.

[53] P. Mockapetris. Domain Names - Implementation and Specification. RFC 1035,

November 1987.

[54] P. Mockapetris and K. Dunlap. Development of the Domain Name System. In

Proceedings of ACM SIGCOMM, pages 123–133, 1988.

[55] National Laboratory for Applied Network Research (NLANR). Ircache project.

http://www.ircache.net/.

[56] V. S. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side of the web: An

open proxy’s view. In Proceedings of the 2nd Workshop on Hot Topics in Network-

ing (HotNets-II), Cambridge, MA, Nov 2003.

[57] K. Park, V. Pai, L. Peterson, and Z. Wang. CoDNS: Improving DNS Performance

and Reliability via Cooperative Lookups. In Proceedings of the 6th Symposium on

Operating Systems Design and Implementation(OSDI), San francisco, CA, Decem-

ber 2004.

[58] K. Park and V. S. Pai. Deploying large file transfer on an http content distribution

network. In Proceedings of the First Workshop on Real, Large Distributed Systems

(WORLDS ’04), San Francisco, CA, December 2004.

[59] K. Park and V. S. Pai. CoMon: A mostly-scalable monitoring system for PlanetLab.

In ACM SIGOPS Operating Systems Review, 2006.

129

[60] K. Park and V. S. Pai. Scale and performance in the CoBlitz large-file distribution

service. In Proceedings of the 3rd USENIX/ACM Symposium on Networked Systems

Design and Implementation (NSDI ’06), 2006.

[61] K. Park, V. S. Pai, K.-W. Lee, and S. Calo. Securing web service by automatic robot

detection. In Proceedings of the USENIX Annual Technical Conference: Systems

Practice & Experience Track (USENIX ’06), 2006.

[62] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing

Disruptive Technology into the Internet. In Proceedings of the 1st ACM Workshop

on Hot Topics in Networks (HotNets-I), October 2002.

[63] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are created equal: Cooperative

proxy caching over a wide-area network. Computer Networks and ISDN Systems,

30(22–23):2253–2259, 1998.

[64] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) Lookup Performance for

Power-Law Query Distributions in Peer-to-Peer Overlays. In 1st Symposium on

Networked Systems Design and Implementation (NSDI), 2004.

[65] V. Ramasubramanian and E. G. Sirer. The Design and Implementation of a Next

Generation Name Service for the Internet. In Proceedings of ACM SIGCOMM,

2004.

[66] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. In Proceedings of ACM SIGCOMM’01, Aug. 2001.

[67] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT. In

Proceedings of the USENIX Annual Technical Conference, June 2004.

[68] R. Rodrigues, B. Liskov, and L. Shrira. The design of a robust peer-to-peer system.

In Tenth ACM SIGOPS European Workshop, 2002.

[69] P. Rodriguez, A. Kirpal, and E. W. Biersack. Parallel-access for mirror sites in the

130

Internet. In Proceedings of IEEE Infocom, Tel-Aviv, Israel, March 2000.

[70] A. Rousskov. Range requests - squid mailing list.

http://www.squid-cache.org/mail-archive/squid-dev/199801/0005.html.

[71] A. Rousskov, M. Weaver, and D. Wessels. The fourth cache-off.

http://www.measurement-factory.com/results/.

[72] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference

on Distributed Systems Platforms (Middleware), pages 329–350, Nov. 2001.

[73] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file

sharing systems, 2002.

[74] M. Schiffman. A Samping of the Security Posture of the Internet’s DNS Servers.

http://www.packetfactory.net/papers/DNS-posture/.

[75] A. Schiper and A. Sandoz. Uniform reliable multicast in a virtually synchronous en-

vironment. In Proceedings of 13th International Conferences on Distributed Com-

puting Systems ICDCS, pages 561–8, 1993.

[76] A. Shaikh, R. Tewari, and M. Agrawal. On the Effectiveness of DNS-based Server

Selection. In Proceedings of IEEE INFOCOM, 2001.

[77] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A cooperative bulk data

transfer protocol. In Proceedings of IEEE Infocom, Hong Kong, 2004.

[78] N. Spring, L. Peterson, A. Bavier, and V. S. Pai. Using PlanetLab for network

research: Myths, realities, and best practices. Operating Systems Review, 40(1),

2006.

[79] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for Internet applications. In Proceedings of

ACM SIGCOMM 2001, San Diego, California, Aug. 2001.

131

[80] Stork on PlanetLab.

http://www.cs.arizona.edu/stork/.

[81] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design considerations for dis-

tributed caching on the Internet. In International Conference on Distributed Com-

puting Systems, pages 273–284, 1999.

[82] D. Thaler and C. Ravishankar. Using Name-based Mappings to Increase Hit Rates.

In IEEE/ACM Transactions on Networking, volume 6, 1, pages 1–14, 1998.

[83] University Channel.

http://uc.princeton.edu/.

[84] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable tech-

nology for distributed system monitoring, management, and data mining. In ACM

Transactions on Computer Systems, May 2003.

[85] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Request Redirecion on CDN

Robustness. In Proceedings of the 5th Symposium on Operating Systems Design

and Implementation(OSDI), Boston, MA, December 2002.

[86] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and security in

the CoDeeN content distribution network. In Proceedings of the USENIX Annual

Technical Conference, 2004.

[87] C. E. Wills and H. Shang. The Contribution of DNS Lookup Costs to Web Object

Retrieval. Technical Report WPI-CS-TR-00-12, Worcester Polytechnic Institute

(WPI), 2000.

[88] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin, and H. M. Levy.

On the scale and performance of cooperative web proxy caching. In Symposium on

Operating Systems Principles, 1999.

132

