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Abstract

This work is comprised of three separate parts: (1) Lower bounds for linear degeneracy testing

(based on joint work with Bernard Chazelle [5]); (2) Aggregating inconsistent information (based on

joint work with Moses Charikar and Alantha Newman [3]); and (3) The fast Johnson-Lindenstrauss

transform and approximate nearest neighbor searching (based on joint work with Bernard Chazelle

[6]).

The first part discusses a fundamental computational geometric problem called rSUM: given

n real numbers, do any r of them sum up to 0? It is the simplest case of a more general family of

problems called degeneracy testing. This seemingly naive problem is in the core of the difficulty in

designing algorithms for more interesting problems in computational geometry. The computational

model assumed is the linear decision tree. This model was successfully used in many other results

on the computational complexity of geometric problems. This work extends and improves a seminal

result by Erickson [46], and sheds light not only on the complexity of rSUM as a computational

problem but also on the combinatorial structure (known as the linear arrangement) attached to

it.

The second part studies optimization algorithms designed for integrating information coming

from different sources. This framework includes the well-known problem of voting from the old

theory of social choice. It has been known for centuries that voting and collaborative decision

making is difficult (and interesting) due to certain inherent paradoxes that arise. More recently,

the computational aspects of these problems have been studied, and several hardness results were

proved. The recent interest in voting and the theory of social choice theory in the context of

computer science was motivated by more “modern” problems related to the age of information: If

several algorithms are used for approximately solving a problem using different heuristics, how do

we aggregate the corresponding outputs into one single output? In some cases there are reasons

to believe that an aggregate output is better than each one of the individual outputs (voters). We

design improved algorithms for two important problems known as rank aggregation and consensus

clustering. In our analysis we prove new results on optimization over binary relations (in particular,

order and equivalence relations).

The third part revisits the computational aspects of a well-known lemma by Johnson and

Lindenstrauss from the mid 80’s. The Johnson-Lindenstrauss lemma states the surprising fact
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that any finite subset of a Euclidean space can be almost isometrically embedded in a space

of dimension at most logarithmic in the size of the subset. In fact, a suitably chosen random

linear transformation does the trick. The algorithmic results were quickly reaped by researchers

interested in improving algorithms suffering from running time and/or space depending heavily

on the dimensionality of the problem, most notably proximity based problems such as clustering

and nearest neighbor searching. Many new computationally-friendly versions of the original J-

L lemma were proved. These versions simplified the distribution from which the random linear

transformation was chosen, but did not yield better than a constant factor improvement in its

running time. In this work we define a new distribution on linear transformations with a significant

computational improvement. We call it the Fast Johnson-Lindenstrauss Transform (FJLT), and

show how to apply it to nearest neighbor searching in Euclidean space. In the last chapter of

this part we propose a different approach (unrelated to the FJLT) for improving nearest neighbor

searching in the Hamming cube. Interestingly, we achieved this latter improvement before working

on the FJLT, and it provided evidence and motivation for an FJLT-type result.
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Chapter 0

Preface

The three parts of this dissertation are based on independent research efforts, and are each self

contained. Nevertheless, combining the three tells the story of the two main themes found in

theoretical computer science, namely, negative vs. positive results.

Negative results demonstrate the limits of computation. A classic example of such a result is

the ancient Greek problem of trisecting an angle using only a compass and a straightedge. This

was proven to be impossible by Wantzel (1836). In the first part we prove that solving linear

degeneracy is impossible using only a certain restricted (yet natural) set of operations in less than

a certain amount of time. Negative results are usually very difficult to prove because one needs

to argue against all possible algorithms. Restricting the model of computation, arguing against

only certain types of algorithms or making widely believed “plausible” negative assumptions (e.g.

P 6= NP ) are some of the tools often used in such proofs.

Positive results demonstrate the possibilities of computation by designing algorithms and prov-

ing guarantees on the solutions they output and the resources (time, space, randomness) they

consume. Of particular interest are algorithms computing approximations to problems for which

there is evidence (in the form of negative results) for hardness of computing exactly. In the sec-

ond part, such approximation algorithms are described for several well-known hard (assuming

P 6= NP ) problems. Another exciting direction of algorithmic research is the attempt to squeeze

the last drop of efficiency from existing algorithms. Classic examples are fast matrix multipli-

cation and the fast Fourier transform (FFT). In extreme cases, when approximation is allowed,
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sublinear algorithms are possible (algorithms that read only a small sample from the input). This

field enjoyed a flurry of interest in the past decade. The explosion of information and increase in

storage capabilities revolutionized our lives and called for new ideas for handling data. What’s

considered efficient in some settings (e.g. polynomial time/space) is simply not efficient enough

here. The third part significantly improves a basic computational technique (called dimension

reduction) abundantly found in algorithms on massive datasets.
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Part I

Lower Bounds for Linear

Degeneracy Testing
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Chapter 1

Introduction

1.1 Definition of problem

When designing algorithms in computational geometry, one often makes the simplifying assump-

tion of the input being in general position. For example, if the input to the problem is a collection

of points in the plane, we may require that “no three points lie on the same line”. This is equivalent

to the nonsingularity of the matrices









x1 x2 1

y1 y2 1

z1 z2 1









,

where x, y, z ∈ R2 are any three points from the input, which is in turn equivalent to the non-

vanishing of the corresponding determinant multinomials.

If the application is construction of a Voronoi diagram, then we may require that no four points

lie on the same circle. This corresponds, again, to the non-vanishing of a certain multinomial eval-

uated at the combined coordinates of all possible choices of four input points. We call inputs that

are not in general position degenerate, because the set of such n-dimensional1 inputs is a (closed)

subset of measure 0 in Euclidean space. Similarly, we can formulate the degeneracy of power

diagrams, algebraic varieties, real semi-algebraic sets, etc. Classical “bichromatic” problems also

1Note that the dimension here is that of the entire input, for example, m points in R
2 has dimension n = 2m.
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Does the union of a given set of triangles in the plane contain a “hole”?

Figure 1.1: A 3SUM-hard problem

fall in that category: for example, checking incidence between points and hyperplanes (Hopcroft’s

problem), rays and triangles, lines and spheres, etc.

Though these degenerate cases can be handled for any algorithm with special care, it is easier

to ignore them as a first approximation while implementing the algorithms, or when devising new

ones. In real life, of course, we cannot assume that the input is always in general position. Degen-

eracies do occur, and one must take care of them. But the importance of studying degeneracies

in computational geometry does not lie solely in this pessimistic approach to real life scenarios.

Testing for degeneracies is an important problem in its own right. The problem 3SUM is defined

as that of determining whether for an input of n real numbers x1, . . . , xn, there exist three indices

1 ≤ i1 < i2 < i3 ≤ n such that xi1 + xi2 + xi3 = 0. The problem 4SUM is defined similarly.

There is a vast collection of geometric problems known to be 3SUM-hard and 4SUM-hard, all

of which are at least as hard as rSUM (for r = 3, 4) via subquadratic reductions [58]. Classical

examples are separating line segments by a line, testing if a union of triangles is simply connected

(Figure 1.1), checking for polygon containment under translation, minimizing the Hausdorff dis-

tance between segment sets, computing the Minkowski sum of two polygons, sorting the vertices

of a line arrangement, etc. [10,16,17,25,36,84]. Needless to say, the importance of elucidating the

complexity of these degeneracy testing problems can hardly be overstated.
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This work studies the complexity of deciding linear degeneracy. More precisely, given a fixed

linear polynomial f(t1, . . . , tr) =
∑r
j=1 αjtj − α0, a point x ∈ Rn is f -degenerate if there exists a

collection of distinct indices i1, . . . , ir ∈ [n] such that

f(xi1 , . . . , xir ) = 0 .

For simplicity we will assume that α0 = 0 and αj = 1 for j = 0 . . . r. We will show in

Chapter 6 that this restriction is immaterial. In this simpler case, degeneracy of x is equivalent to

the existence of an increasing sequence of indices 1 ≤ i1 < · · · < ir ≤ n such that
∑r

j=1 xij = 0,

viz. rSUM.

Using the standard terminology of language from complexity theory, we now formally define:

Definition 1.1. The language rSUM ⊆ R∗ is defined2 as ∪n≥1rSUMn, where

rSUMn =
⋃

1≤i1<···<ir≤n

{x : xi1 + · · ·+ xir = 0} ⊆ Rn .

The hyperplane {x : xi1 + · · ·+ xir = 0} ⊆ Rn is called an r-canonical hyperplane. We denote

by Cr,n the set of all r-canonical hyperplanes in Rn.

1.2 The computational model

The size of an input instance x ∈ Rn to rSUM is n. Clearly, if both r and n are part of the input,

the problem is NP-complete (via a simple reduction from SubsetSum, for example). However,

in this work we allow the coordinates of x to be arbitrary real numbers, and we ignore their

representation size.

Instead of considering the Turing machine, we consider the linear decision tree model of com-

putation. Decision trees have often shown to be realistic and effective models for proving lower

bounds on the complexity of fundamental geometric problems [19,22,41,46–48,61,62,102,106,107].

Definition 1.2. A linear decision tree (LDT) algorithm T is a collection {Tn}n≥1 of ternary

rooted trees. A linear polynomial (henceforth a query) fv ∈ R[t1, . . . , tn] is assigned to all internal

2By R
∗ we mean ∪n≥1R

n.
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PSfrag replacements

Yes/No

v fv(x) = x2 − x10 + 3

< 0 > 0= 0

Tn

To compute Tn(x) for input x ∈ Rn, evaluate fv(x), branch on output,
and continue walking down until an output Yes/No leaf is reached.

Figure 1.2: A linear decision tree

nodes v of Tn, and Yes/No labels are attached to the leaves.

For input x ∈ Rn, the computation T (x) is carried out as follows. Set v = root(Tn). While v

is not a leaf, evaluate fv(x), and if the result is < 0 (resp. = 0) (resp. > 0) then set v to its left

(resp. middle) (resp. right) child. Finally, output the label of the leaf v.

The language decided by T is the locus of points in R∗ for which T (x) =YES. The running

time TIMET (n) is the height of Tn. The complexity of a language in R∗ is the running time of

the fastest linear decision tree deciding it.

Refer to Figure 1.2 for an illustration of LDT’s. Note that the LDT is a nonuniform model

of computation: the tree Tn as a function of n may even be undecidable.

Much research has been done on the more general algebraic decision trees and algebraic com-

putation trees (e.g. [19]). In the former, the fv’s can be arbitrary (not necessarily linear) multi-

nomials. In the latter, the fv’s may also contain indeterminates that are substituted by values

computed in previous nodes. We will restrict our discussion to the LDT model. These extended

models of computation may suggest interesting future generalizations.

We can view the query polynomials attached to the nodes v of Tn as hyperplanes (henceforth

query hyperplanes) in n-space, and the evaluation process at v is geometrically viewed as testing

7



whether the input point x is above, below, or contained in the query hyperplane qv
def
= {x : fv = 0}.

The parametrized complexity of rSUM as a function of r is still poorly understood. A naive

solution for rSUM is a “spaghetti” tree sequentially testing against all canonical hyperplanes. The

running time of this algorithm is O
((
n
r

))
.

1.3 Previous results

The trivial O
((
n
r

))
upper bound can be improved [46] to







O
(

n
(

n
br/2c

))

r odd

O
((

n
r/2

)
r log(n/r)

)

r even

.

We call these improved algorithms meet-in-the-middle. The idea for r even is to compute the sums

xi1 +· · ·+xir/2
for all possible 1 ≤ i1 < · · · < ir/2 ≤ n, and store them in an ascending-order sorted

list L. In each entry in the list, we also store the index set {i1, . . . , ir/2} generating it. Similarly, we

then form a list L′ of the numbers −(xi′1 + · · ·+xi′
r/2

) for all possible 1 ≤ i′1 < · · · < i′r/2 ≤ n. Any

value shared by both lists corresponding to disjoint index sets {i1, . . . , ir/2} and {i′1, . . . , i′r/2} is a

witness for degeneracy. This can be found be merging the two sorted lists, with special care taken

for handling the difficulty of disjointness of two index sets. The total running time is dominated by

the sorting time of O
((

n
r/2

)
r log(n/r)

)

. Although stated as a program in a high-level programming

language, this can actually be implemented as a linear decision tree. Using the nonuniformity of

the model of computation, and a result by Fredman [56], the above algorithm can be improved to

a running time of O
((

n
r/2

))

.

If r is odd, then we create a sorted list L of the numbers xi1 + · · ·+xibr/2c
corresponding to all

choices of 1 ≤ i1 < · · · < ibr/2c ≤ n, and similarly L′ of the numbers −(xi′1 + · · ·+ xi′
br/2c

). Then,

any i ∈ [n] such that the lists L + xi and L′ share a common value corresponding to index sets

{i1, . . . , ibr/2c} and {i′1, . . . , i′br/2c} that are disjoint and do not contain i is a witness for degeneracy.

To find such a witness we try all i ∈ [n], and for each i we merge the lists L+ xi and L′ in time

linear in the size of the lists (again, taking care of the index-set disjointness technicality). The

total running time is dominated by the n merges of size O
((

n
br/2c

))

, giving the stated running

8



time.

More dramatic improvements can be achieved by taking more advantage of nonuniformity and

the fact that there is no restriction on the hyperplanes that can be used in the linear decision

tree. Indeed, it is very easy to see that the only hyperplanes used in meet-in-the-middle are

hyperplanes parallel to all but at most r axes of Rn. In other words, the normal vectors to these

hyperplanes have at most r nonzeros. By a result of Meyer auf der Heide [88], a decision tree of

depth O(n4 logn) exists for rSUM, for any r. The existence of an unconstrained linear decision

tree with depth poly(n, r) deciding rSUM also follows from work by Meiser [87].

Information theoretic lower bounds of Ω(n logn) on the depth of a tree deciding rSUM in an

unconstrained linear decision tree model are obtained by Dobkin and Lipton [41], and under more

general nonlinear models of computation by Steele and Yao [102] and Ben-Or [19].

In this work, we will be interested in the restricted model of computation, which we more

formally call an s-restricted linear decision tree:

Definition 1.3. An s-restricted linear decision tree (sLDT) is an LDT in which the linear

polynomials fv corresponding to all internal nodes v have the form

fv =

s∑

j=1

αjxij − β

for some α1, . . . , αs, β ∈ R and indices 1 ≤ i1 < · · · < is ≤ n. In other words, the normals q∗v to

the corresponding hyperplanes qv have at most s nonzeros.

As stated above, meet-in-the-middle is an rLDT algorithm. It is not hard to see that an sLDT

algorithm for s < r cannot decide rSUM. In fact, the collection of hyperplanes Qn queried by

a tree Tn deciding rSUMn must contain Cr,n. Otherwise, take a hyperplane C ∈ Cr,n\Qn. By

finiteness of Qn, there exists a point x ∈ C that is not contained in any hyperplane from Qn. This

point is degenerate (a Yes instance), but a small perturbation of it moves it to a nondegenerate

point x′ (a No instance) such that the straight line connecting x and x′ traverses no hyperplane

in Qn. Thus, x and x′ follow the same computational path in Tn, a contradiction.

Improving on previous work [39,56], Erickson [46] proved that any rLDT deciding rSUM has

depth Ω(ndr/2e) for fixed r. His proof is quite a tour de force. It is packed with ingenious, tightly

coupled arguments, and its only downside is to offer little wiggle room to try out new ideas. In
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particular, extending the proof to s-linear trees for s > r has long been elusive. Even the case

s = r + 1, mentioned in Yao’s list of major open problems in his 2000 DIMACS lecture [108], has

resisted all efforts. The contribution of this work, while far from closing the book on the problem,

represents a significant advance on two fronts: (i) accommodating s > r variables and (ii) allowing

for larger values of r.

• We prove a lower bound of Ω(nr−3)dr/2e on the depth of any rLDT deciding rSUM. This

improves on Erickson’s bound3 of Ω(nr−r)dr/2e. For moderately large values of r, this

improves his lower bounds from sub-constant (trivial) to exponential. Indeed, if say r =

r(n) > nε, Erickson’s bound falls below any constant while ours is of the form 2n
Ω(1)

. The

technical underpinning of this improvement is a new adversarial strategy based on error-

correcting codes.

• By using a tensor product construction based on permutation matrices, we are able to

generalize the lower bound to the sLDT model for s > r. We show that an sLDT deciding

rSUM must have depth of at least

Ω(nr−3)
2r−s

2d(s−r+1)/2e
(1−εr) ,

where εr > 0 tends to 0 as r → ∞. Note that for s = r + 1, this bound takes the simpler

form

Ω(nr−3)
r−1
2 (1−εr) .

In words, this tells us that an “extra coefficient” in the LDT hyperplanes does not buy us

too much power when compared to rLDT.

The exponential lower bound still holds for s > r. For any fixed ε > 0, the depth of an s-linear

decision tree is (nr−3)r
Ω(1)

, if s ≤ r + r1−ε. In the case r > nε, this gives a lower bound of 2n
Ω(1)

.

Note that our bounds collapse if s is not O(r). This is an obvious limitation of our method, but one

must note that a dependency on s is inevitable. Indeed, our lower bound of nΩ(r) for s = r+O(1)

cannot hold for arbitrary values of s, in view of Meyer auf der Heide and Meiser’s results.

3Erickson’s bound is stated as Ω(ndr/2e) for r fixed, and the bound stated here is obtained by a careful analysis
of his work.

10



Another contribution of this work is methodological. To obtain our bounds requires a whole

set of new algebraic arguments, but our starting point is essentially a geometrization of Erick-

son’s method. The main benefit is to bypass the complicated machinery of infinitesimals found

in [46], obviate the need for Tarski’s transfer principle, and more generally do away with analytical

arguments.

To make the proof more digestible, we will begin our discussion with the geometric framework

and then treat the case s = r. Next we will move on to the case s = r + 1, where we introduce

the tensor product construction in its simplest form. Finally we will cover the general s > r case.

11



Chapter 2

A Geometric Framework for

Lower Bounds

2.1 Terminology and conventions

We will make use of standard geometric objects such as convex polyhedra and arrangements. Good

introductions to the field can be found in [45, 60, 85, 111].

Given a finite collection H of hyperplanes in Rn, the induced arrangement A is the equivalence

relation on Rn defined as follows: xAy if for all hyperplanes h ∈ H, either both x and y are

contained in h, or both lie on same side of h. The equivalence classes are called faces. Each face

F of A has a dimension, which equals the dimension of its affine closure. Faces of dimension k are

called k-faces. Vertices are 0-faces, edges are 1-faces cells are n-faces, and facets are (n− 1)-faces.

Note that faces are relatively open in the topology induced by their affine closure.

Convex polyhedra in Rn are the intersection of a finite collection of closed half-spaces in Rn. A

convex polyhedron P also has faces of different dimensions, defined similarly to the arrangement

faces with respect to the hyperplanes supporting the half-spaces defining the polytope. Note that

the intersection of the closure of two faces of a convex polyhedron (or an arrangement) is either

empty or the closure of a face. Also note that k-faces of convex polyhedra (or arrangements) can

be viewed as convex polyhedra in Rk.

12
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c

Four lines (hyperplanes in two dimensions) induce an arrangementA with
e.g. vertex v, an edge e (also a facet) and a cell c. The closure of c is a
2-dimensional bounded polyhedron (a polytope), and v, e are two of its
faces.

Figure 2.1: Arrangements and polyhedra

Fix r and n, and let Tn be an LDT deciding rSUMn. Let Q denote the collection of query

hyperplanes qv for v ranging over all internal nodes of Tn. LetA denote the arrangement induced by

Q, and let B denote the arrangement induced by Cr,n (recall that Cr,n is the collection of canonical

hyperplanes). Let A′ denote the equivalence relation induced by the leaves of Tn, namely xA′y

if and only if the two computational paths corresponding to x and y are identical. Note that the

equivalence classes of A′ are convex polyhedra (we will call them faces). Clearly, A is a refinement

of A′ (i.e. any face of A is contained in some face of A′). Also note that by definition of “Tn
deciding rSUMn”, any face of A′ is either entirely contained in rSUMn (and therefore in some

canonical hyperplane) or disjoint from rSUMn.

A linear hyperplane in Rn is a hyperplane containing the origin. An arrangement induced by

linear hyperplanes is called a fan. The faces of fans are polyhedral cones. By definition, B is a fan.

It is easy to see that all query hyperplanes of Tn can be assumed to be linear. In other words, A is

also a fan. Indeed, since Tn decides rSUMn, evaluating Tn(x) is equivalent to evaluating Tn(αx)

for any number α > 0. In particular, we could take α small enough so that αx lies on the same

side as the origin with respect to all nonlinear query hyperplanes q ∈ Q. Therefore, nonlinear

queries need not be evaluated and they can be removed from Tn.

By the last claim, we can identify all query hyperplanes as well as canonical hyperplanes with

their normals. We will use h∗ to denote a vector normal to the hyperplane h ⊆ Rn, and we can
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then write

h = {x ∈ Rn : 〈h∗, x〉 = 0} .

Finally, we define the notion of a distinguishing hyperplane. A hyperplane h ⊆ Rn distinguishes

between two points x, y ∈ Rn if either x and y lie on opposite sides of h, or exactly one of x, y

is contained in h. Clearly, if x ∈rSUMn (a Yes instance) and y /∈rSUMn (a No instance), then

both computation paths of Tn(x) and Tn(y) must contain at least one hyperplane distinguishing

between x and y. We will also say that a hyperplane distinguishes between a point x and a set Y

if it distinguishes between x and y for all y ∈ Y .

2.2 Overview of proof

Like other geometric decision tree lower bound results, our proof will identify a notion of high

complexity in the canonical (degenerate) hyperplane geometry. More precisely, the basic idea

of the proof is to identify a nondegenerate face C in the arrangement A induced by Q (recall

that Q contains the set of canonical hyperplanes). This face, which we call the chamber, has a

high degeneracy-complexity measure, defined as follows. Let S = {p1, . . . , pd} ⊆ ∂C be a set of

degenerate points. We say that S is C-independent if no two distinct points pi, pj ∈ S lie on

the closure of the same facet of the polytope C̄. This is equivalent to the condition that for any

p0 ∈ C, no hyperplane from Q can simultaneously distinguish between p0 and pi and between p0

and pj . The degeneracy-complexity measure of C is the maximal size of a C-independent set S.

Lemma 2.1. For any nondegenerate face C of A, the degeneracy-complexity measure of C is a

lower bound for the height of Tn.

Proof. Let S = {p1, . . . , pd} be any C-independent set1, and let p0 ∈ C. Consider the path

of nodes v1, . . . , vl visited in the computation Tn(p0). Since p0 is a No instance of rSUMn (a

nondegenerate point), and pi is a Yes instance (a degenerate point) for all i = 1, . . . , d, it follows

that at least one of the query hyperplanes qv1 , . . . , qvl
must distinguish between p0 and pi. But by

the definition of C-independence, we know that any qvj can distinguish between p0 and at most

one pi. This means that l ≥ d, lower-bounding the height of Tn, as required.

1We implicitly assume from the definition of C-independence that S ⊆ ∂C∩rSUMn.
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Using adversarial-type proof terminology, we can say that if the height of Tn is less than |S|

for some C-independent set S then an adversary can “collapse” the nondegenerate point p0 ∈ C

to one of the degenerate pi ∈ S in a way that is indistinguishable for the algorithm Tn. Following

the terminology from [46], we will call the points in S collapsed points.

q

PSfrag replacements

h1

h2 h3

p0

p1

p2

p′3

p3
C

The hyperplanes h1, h2, h3 marked by double-lines are the critical hy-
perplanes. The points p1, p2, p

′
3 are not C-independent, because q can

simultaneously distinguish between p0 and p1, p
′
3. The points p1, p2, p3

are C-independent.

Figure 2.2: The face C of Q, collapsed points and critical hyperplanes

This game between the algorithm and the adversary is very easy to visualize (Figure 2.2). In

the actual proof, instead of directly identifying the chamber C, we will work our way backwards.

We first identify a nondegenerate point p0 and a potential set of collapsed (degenerate) points.

Then we will argue (using the restrictions on the set of queries Q used in Tn) that no hyperplane

from Q can simultaneously distinguish between p0 and two points in S. In fact, we will show

the stronger condition that there is exactly one hyperplane in Q that distinguishes between any

collapsed point p ∈ S and p0, and this unique hyperplane is canonical. Therefore, there is a

bijection between the collapsed points and the distinguishing canonical hyperplanes, called critical

hyperplanes and denoted by H. The collapsed point corresponding to h ∈ H will be denoted by

ph, and will be contained in h. It is not hard to see that the set S = {ph}h∈H is a C-independent

set of points, where C is the unique face of A containing p0.

Consistently working our way backwards, we will start by defining the set H of critical hyper-

planes in the next chapter. By the above discussion, the lower bound for Tn will be |H|.
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Chapter 3

The Case s = r

In this chapter we will analyze the case considered in [46], namely, lower bounds for rSUM under

rLDT. We improve the dependence of the lower bound on r using the theory of error correcting

codes, replacing a construction based on a Vandermonde matrix used there.

3.1 Critical hyperplanes via error-correcting codes

By padding the input if necessary, we can always assume that n = rm, for some integer m. This

allows us to view a normal vector h∗ ∈ Rn as an r ×m real matrix Mh∗

, whose rows are filled

with the coordinates of h∗; i.e., Mh∗

ij = h∗(i−1)m+j .

A canonical hyperplanes h ∈ Cn,r is of the form

{x ∈ Rn : xi1 + · · ·+ xir = 0} .

In other words, Mh∗

has exactly r 1’s and n− r 0’s. The canonical hyperplanes we will choose for

the set of critical hyperplanes H will have exactly one 1 in each row.

Where to put the 1’s is dictated by an error-correcting recipe meant to ensure high “indepen-

dence”. Throughout this chapter we use the shorthand

r0 = dr/2e. (3.1)
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Let t be the smallest prime greater than r, and let M be a Reed-Solomon code [83] of length

t − 1 and distance r − r0 + 1 over the finite field Ft. This means that M is a linear subspace of

Ft−1
t with the following combinatorial property: any nonzero vector in M has at least r − r0 + 1

nonzero coordinates. A constructive way to do this is to regard Ft−1
t as the ring of polynomials

Ft[X ] modulo the polynomial X t−1 − 1. We then pick some primitive1 β ∈ Ft and let M be the

ideal in this ring generated by the polynomial (X − β)(X − β2) · · · (X − βr−r0). This ideal has

dimension k = t− 1− r + r0 with the desired distance property (see [83] for details).

Now, define Mr to be the linear subspace ofM defined by:

Mr = {x ∈M : xi = 0 for r < i ≤ t− 1} .

In this way, we can think of Mr as a linear code of length r, distance greater than r − r0 and

dimension as large as k − (t− 1− r) = r0.

Let u1, . . . , ur0 be an independent set of vectors in Mr. Of course, by permuting coordinates

and performing column operations, we can always assume that the set is in column echelon form,

i.e., the r×r0 matrix (u1, . . . , ur0) consists of the r0×r0 identity matrix on top of some (r−r0)×r0
matrix.

r0

︷ ︸︸ ︷

(u1, . . . , ur0) =



















1

. . .

1

∗ · · · ∗
...

...

∗ · · · ∗

























r0







r − r0

Since Ft is a prime field, we can naturally view the ui’s as vectors in Rr with coordinates in

{0, . . . , t− 1}. From now on, we view them vectors as real vectors (and not over Ft).

1Meaning that the sequence 1, β, β2, . . . , βq−2 has no repetitions.
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We define L as:

L = {n1u1 + · · ·+ nr0ur0 : 1 ≤ ni < m/(r0t) ∀i = 1, . . . , r0} .

The upper bound of m/(r0t) is chosen so that all coordinates of vectors in L lie in {0, . . . ,m −

1}. Note that L is similar to a lattice in Rn with basis u0, . . . , ur0 , except that it has bounded

coordinates.

Lemma 3.1. Our construction of L satisfies the following three properties:

(i) The first r0 coordinates of any vector in L specify it uniquely.

(ii) The set L consists of at least (n/r3)r0 vectors in Rr with coordinates in {0, . . . ,m− 1}.

(iii) Any nonzero vector in2 spanL has at least r − r0 + 1 nonzero coordinates.

Proof. Part (i) follows immediately from the echelon form of the matrix formed by the basis

{u1, . . . , ur0}.

To see part (ii), we use a well-known number-theoretic theorem by Nagura [91], stating that

the interval [x, 6x/5] contains a prime for any x ≥ 25. This shows that tr0 ≤ r2. Therefore, for

r = Ω(1) and m = Ω(r2),

|L| ≥
(
m

tr0
− 1

)r0

≥ (nr−3)r0 .

To prove (iii), consider a nonzero element u =
∑r0
i=1 αiui of spanL. Assume by contradiction that

u has at least r0 zero coordinates i1, . . . , ir0 . We claim that if such a vector exists, then there

exists another vector u′ =
∑r0
i=1 α

′
iui with rational α′

i’s and zeros in the exact same coordinates

i1, . . . , ir0 . Indeed, constraining r0 fixed coordinates to 0 in spanL is a homogenous linear system

of constraints on the numbers α1, . . . , αr0 with integer coefficients. This system of constraints is

over the rationals, and therefore a nontrivial real solution exists if and only if a nontrivial rational

one exists. Now multiply u′ by the unique positive rational number a such that the coordinates

of au′ have no common divisor. In particular, at least one coordinate of au′ is not divisible by

t. Therefore, the vector au′(mod t) ∈ Frt is a nonzero vector in Mr with at least r0 nonzeros, a

contradiction to its error correcting code property.

2Throughout this work, the span operator is over the reals.
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` =





0
3
1



 ∈ L ⇒ h∗ =





1 0 0 0
0 0 0 1
0 1 0 0





r = 3, m = 4 (n = mr = 12)

Figure 3.1: From error correcting code vectors to critical hyperplane normals

The set H of critical hyperplanes will be defined in bijection with L. The hyperplane h

corresponding to ` = (`1, . . . , `r) ∈ L is defined by its normal vector (in matrix notation) Mh∗

:

the coordinate `i indicates where to place the 1 in the i-th row of the matrix, i.e.,

Mh∗

ij =







1 j = `i + 1

0 otherwise

.

By construction,

Mh∗

(0, . . . ,m− 1)T ∈ span (L). (3.2)

Also, since Mh∗

has exactly one 1 in each row and zeros elsewhere, we note that

Mh∗

(1, . . . , 1)
T

= (1, . . . , 1)
T
. (3.3)

The intersection ∩H = ∩h∈Hh of all the hyperplanes h ∈ H is a linear subspace of positive

dimension. Indeed, it contains any multiple of the vector

(1, . . . , 1
︸ ︷︷ ︸

n−m

, 1− r, . . . , 1− r
︸ ︷︷ ︸

m

).

Let K denote the set of query hyperplanes in Q that contain ∩H. Note that Q ⊇ K ⊇ H.

Lemma 3.2. Given any q∗ ∈ K,

(i) M q∗ (1, . . . , 1)T = b (1, . . . , 1)T for some real b, and

(ii) M q∗ (0, . . . ,m− 1)T ∈ span (L).
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Proof. By elementary linear algebra, the linear hyperplane q contains ∩H if and only if

q∗ ∈ (∩H)⊥ = span{h∗}h∈H .

The proof of the lemma follows from assertions 3.2 and 3.3 for all h ∈ H and by linearity.

3.2 The Chamber

Consider a query hyperplane q ∈ Q\K. Since q 6⊃ ∩H, either q is parallel to ∩H (i.e. q
⋂

(∩H) = ∅)

or q traverses ∩H (i.e. q
⋂

(∩H) is a subspace of dimension (dim∩H) − 1). In words, the query

hyperplanes outside of K intersect ∩H in strictly lower-dimensional subspaces. Therefore, by

finiteness of K, there exists c0 ∈ ∩H and ρ > 0 such that the ball B(c0, ρ) centered at c0 of radius

ρ intersects none of the hyperplanes of Q \ K (see Figure 3.2).

By lying on every critical hyperplane the point c0 is highly degenerate. Moving it by some

vector ψ to be specified next changes all of that (Fig. 3.2). We define the point

p0 = c0 + ψ (3.4)

to be safely outside of the critical hyperplanes. To do that, we need a positive convex real function

g, meaning one with positive second derivative; eg, x 7→ x2 + 1. For some fixed, small enough

γ > 0, we define the vector ψ ∈ Rn by its matrix Mψ:

Mψ
ij =







γg(j) i ≤ r0

γ2g(j) otherwise.

(3.5)

Note: γ is a scaling factor that is absolutely needed. The reason we use γ2, however, is in

anticipation of the case s > r. We could use γ in this chapter instead.

Lemma 3.3. The point p0 lies outside of any canonical hyperplane and any hyperplane of Q\K.

This implies that the decision tree must output No on input p0. Note, however, that p0 might

still lie on a query hyperplane.
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Proof. By choosing γ small enough, we can ensure that

‖ψ‖2 ≤ ρ/2 .

Therefore, the point p0 lies inside B(c0, ρ), safely away from any hyperplane of Q \ K (Fig. 3.2).

We have already observed that Q must contain all of the canonical hyperplanes. Therefore,

the only danger is that p0 lies on some canonical hyperplane q ∈ Cn,r ∩K. The normal q∗ of q has

the form

M q∗

ij =







1 j = ij

0 otherwise

,

for some index set i1, . . . , ir. But this is impossible. Indeed, c0 ∈ ∩H ⊆ q, and so

〈q∗, p0〉 = 〈q∗, c0 + ψ〉

= 0 + 〈q∗, ψ〉

=
∑

1≤i≤r0

γg(ij) +
∑

r0<i≤r

γ2g(ij) > 0.

(3.6)

The chamber C we’re interested in is the unique face of A that contains p0. To define the map

h ∈ H 7→ ph ∈ ∂C between critical hyperplanes and collapsed points, we need to introduce the

vector space W spanned by the 2r vectors uk, wk ∈ Rn (k = 1, . . . , r), defined (using the matrix

notation) as follows:

Muk

ij =







1 i = k

0 otherwise

, Mvk

ij =







j i = k

0 otherwise

. (3.7)

In other words, W consists of vectors w such that Mw
ij = αwi + βwi j for all i, j, for some real

αw1 , . . . , α
w
r , β

w
1 , . . . , β

w
r . All the points ph will lie on ∂C ∩ (p0 +W ). The reason for this will be

made clear in case (A) in the proof of Lemma 3.4. Given h ∈ H, we define a vector

ϕh ∈ ψ +W (3.8)
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ϕh

ϕh′

ph

ph′

p0

ψ

∩H

q ∈ Q\K

K\H

Start from degenerate point c0 ∈ ∩H. Take a γ-small step in direction ψ
to nondegenerate p0, and collapse it onto ph for all h ∈ H. choose γ small
enough so that all the action is in B(c0, ρ), safely avoiding Q\K.

Figure 3.2: Main construction step

such that Mϕh

ij > 0 (resp. Mϕh = 0) if Mh∗

ij = 0 (resp. Mh∗

ij 6= 0). Note that ψ + W is not

necessarily a vector space. One should think of Mϕh as a mask: Its rows mark with zeroes the

positions where Mh∗

is (w.l.o.g.) 1 and fill the rest with positive entries. To see that such a vector

ϕh actually exists, consider the i-th row of the matrix Mϕh . Let

γi =







γ i ≤ r0

γ2 i > r0

.

It suffices to show that the row can satisfy constraints in a, b of the form γig(j) + a+ bj = 0 if j

is equal to the one value j0 where Mh∗

ij0
= 1, and γig(j) + a+ bj > 0 for any j 6= j0. Feasibility is

ensured by the fact that g is a convex function (see Figure 3.3).

It is immediate to check that as γ → 0+, one can choose ϕh so that

lim
γ→0+

Mϕh

ij = 0, (3.9)
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a+ bj

Row i of Mϕh is the difference between row i of Mψ and a straight line
tangent to it at the unique coordinate j0 for which Mh∗

ij0 = 1.

Figure 3.3: Constructing row i of Mϕh

for all i, j (for example, one can half γ together with each entry of Mφh). This implies that, by

scaling down γ if necessary, we can ensure that

‖ϕh‖2 < ρ/2 . (3.10)

We now define

ph = c0 + ϕh. (3.11)

Lemma 3.4. For any h ∈ H, the only hyperplane q ∈ Q distinguishing between ph and p0 is

q = h.

Proof. Since ph has 0 exactly in coordinates for which h∗ has nonzeros, it follows that ph ∈ h. By

Lemma 3.3, p0 /∈ h. Therefore, h distinguishes between p0 and ph. We now show that no other

query hyperplane q ∈ Q distinguishes between p0 and ph.

Assume q ∈ Q\K. By (3.10), ph ∈ B(c0, ρ), and B(c0, ρ) is not intersected by q. Hence, q does

not distinguish between c0 and ph.

It remains to show that if q ∈ K and q 6= h then q does not distinguish between c0 and ph. We

distinguish between two cases.

(A) The normal q∗ has a null row. But by Lemma 3.2 (i), the sum of any two rows of M q∗ are
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M q∗ =











0 0 ∗ 0 0 ∗
0 0 0 0 0 0
0 ∗ 0 ∗ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
∗ 0 0 ∗ 0 0











For s = r = 6, the extreme scenario for case (A) of Lemma 3.4 is when
the six nonzeros (marked by ∗’s) are paired in three rows (leaving three
null rows). Since the distance of the error correcting code is 4, it follows
by Lemma 3.2 (ii) and Lemma 3.1 (iii) that M q∗(0, . . . ,m− 1)T = 0.

Figure 3.4: How the error correcting code works

equal. This means that the sum of any row of M q∗ is zero:

M q∗(1, . . . , 1)T = (0, . . . , 0)T . (3.12)

But since M q∗ has at most r nonzero coordinates, it has at most br/2c non-null rows (in

order for a row to have sum 0, it must either be null or contain at least two nonzeros).

Next, by Lemma 3.2 (ii),

M q∗(0, . . . ,m− 1)T ∈ spanL .

But since at most br/2c rows of M q∗ are non-null, it follows that M q∗(0, . . . ,m − 1)T has

at most br/2c < r − r0 + 1 nonzeros. By the error correction code properties stated in

Lemma 3.1 (iii) (Figure 3.4), this implies that

M q∗(0, . . . ,m− 1)T = (0, . . . , 0) . (3.13)

By (3.12) and (3.13), it follows that q∗ is orthogonal to the space W .

Finally,

〈q∗, ph〉 = 〈q∗, c0 + ϕh〉

∈ 〈q∗, c0 + ψ +W 〉

= 〈q∗, c0 + ψ〉+ 〈q∗,W 〉

= 〈q∗, p0〉+ {0}
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Therefore q does not distinguish between ph and p0, as required.

(B) The normal M q∗ has no null row. But since it has at most r nonzero coordinates, it has

exactly one nonzero in each row. But by Lemma 3.2 (i), we can assume w.l.o.g. that this

coordinate equals 1. In particular, q is a canonical hyperplane, and q∗ differs from h∗ in at

least one nonzero position. Recall from (3.6) that

〈q∗, p0〉 > 0 .

We claim that also 〈q∗, ph〉 > 0. Using the fact that c0 ∈ q,

〈q∗, ph〉 = 〈q∗, c0 + ϕh〉

= 〈q∗, c0〉+ 〈q∗, ϕh〉

= 〈q∗, ϕh〉

(3.14)

Now recall that ϕh is a mask of h∗ in the sense that the zero (resp. positive) coordinates

of ϕh correspond to ones (resp. zeros) in h∗. Since q∗ has exactly one 1 per row, and in at

least one row q∗ has a 1 in a position corresponding to a 0 of h∗, it follows that

〈q∗, ph〉 = 〈q∗, ϕh〉 > 0 .

Again, q does not distinguish between ph and p0, as required.

Theorem 3.5. The depth of any r-linear decision tree for r-SUM is

Ω(nr−3)dr/2e.
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Chapter 4

The Case s = r + 1

4.1 What doesn’t work in the previous proof?

The only place where the number s actually plays a role is in the proof of Lemma 3.4. Case (A)

survives almost verbatim. The only problem is that the number of null rows of M q∗ can be at

least r − bs/2c, which can be less than r0. We fix this by strengthening the error correcting code

over Fr to be of distance bs/2c+ 1. This means that r0 (the dimension of the code over Fr) is set

to be

r0 = r − bs/2c. (4.1)

In the present case, the setting r0 = br/2c will do. This affects the error-correcting code:

Mr ⊆ Frt has distance r − r0 + 1 and dimension as large as r0, and the size of the set of critical

hyperplanes H is now at least (n/r3)r0 , for the new value of r0.

Case (B) is far more difficult to fix. The new query q ∈ Q that must be taken care of is one in

which the rows of M q∗ have exactly one nonzero element, except for one of them, i0, which has

two nonzeroes (the case of one nonzero in every row having already been handled). Again we can

assume that all the nonzero elements are 1, except in one fixed row i0, where the elements are α
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and 1− α, for some real α /∈ {0, 1}. Let

γ′ =







γ i0 ≤ r0

γ2 i0 > r0

.

Taking row i0 into account, we can rewrite (3.6) as

〈q∗, p0〉 = 〈q∗, ψ〉

= γ′αg(ji0 ) + γ′(1− α)g(j′i0) +

r0∑

i=1

i6=i0

γg(ji) +

r∑

i=r0+1

i 6=i0

γ2g(ji).

If i0 > r0 then all is well. Indeed, by making γ small enough

〈q∗, p0〉 =
r0∑

i=1

γg(ji) +O(γ2) > 0. (4.2)

(This is the reason we needed to use both γ and γ2 in (3.5)). Note that the constant hiding in the

O-notation in (4.2) depends on q, but by the finiteness of Q we can choose γ so as to satisfy the

inequality simultaneously for all q ∈ Q. We now check whether q can distinguish between p0 and

ph for some h ∈ H, namely, we are interested in the sign of 〈q∗, ph〉. Consider the first r0 rows of

M q∗ . By Lemma 3.1 (i), there is a unique h̃ ∈ H such that M q∗ agrees with M h̃∗

in the first r0

rows. For this unique h̃ ∈ H , we allow q to distinguish between p0 and ph̃. We need to show that

for all h ∈ H distinct from h̃, q does not distinguish between p0 and ph, namely, 〈q∗, h∗〉 > 0. As

before, we need only consider 〈M q∗ ,Mϕh〉. This dot-product can be written as

〈M q∗

high
,Mϕh

high
〉+ 〈M q∗

low
,Mϕh

low
〉 ,

whereMhigh (resp. Mlow) corresponds to the first r0 (resp. last r−r0) rows in the matrix notation.

Clearly, as in the arguments for Lemma 3.4 case (B), 〈M q∗

high
,Mϕh

high
〉 > 0. By setting γ to be

small enough, and recalling that Q and hence K are finite, we can make sure that 〈M q∗

high
,Mϕh

high
〉

dominates 〈M q∗

low
,Mϕh

low
〉, and hence 〈q∗, ph〉 > 0, as required.

The case i0 ≤ r0 is a tougher nut to crack. In fact we have not found a way of tackling it
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Mh∗

=











place any matrix from P here

error-correct here
















r0

}

r − r0

Figure 4.1: Constructing critical hyperplanes for s = r + 1

directly. Consequently, our strategy is simply to modify H so that this case cannot happen. Recall

that, for the purpose of Lemma 3.4, we can assume that q∗ ∈ K. As we observed in the proof of

Lemma 3.2, this implies that q∗ ∈ span{h∗}h∈H. Thus, our goal is to redefine a large set H of

critical hyperplanes so that, in addition to all the properties we expect of H, the following should

hold: If q∗ is a vector of Rn such that (i) with the exception of one row i0 ≤ r0 each of the first

r0 rows of M q∗ consists of a single 1 with 0’s everywhere else, and (ii) the exceptional row, i0, is

null everywhere except for two entries summing up to 1, then q∗ cannot be in the span of h∗h∈H .

Recall from the construction of H that the first r0 rows of any Mh (h∗ ∈ H) completely

determine the remaining rows. Furthermore, each one of the first r0 rows can be chosen by placing

a 1 arbitrarily between positions 1 and m0 = bm/qr0c and filling the rest of the row with 0’s.

So it suffices to concentrate on the first r0 rows. Once we have the top r0 rows, we use our

Reed-Solomon code to fill in the bottom r − r0 rows just as we did in the previous section.

An r0 × a matrix is called defective if, with the exception of one row (called anomalous),

each one consists of a single 1 with 0’s everywhere else; furthermore the exceptional row is null

everywhere except at two places. We postpone the proof of the next result.

Lemma 4.1. There exists a set P r0×m 0/1 matrices with exactly one 1 per row between positions

1 and m0 such that no defective r0 ×m matrix belongs to spanP and for any fixed ε > 0 and n

large enough,

|P| ≥ (nr−3)br/2c(1−1/ lnbr/2c)(1−ε).

In view of our previous discussion, this automatically implies a lower bound on the depth of

(r + 1)-LDT’s (Figure 4.1). The theorem below does not indicate what happens for small values

of r. A careful examination shows that we obtain nontrivial lower bounds for any r ≥ 6.

Theorem 4.2. The depth of any (r + 1)-LDT for r-SUM is at least (nr−3)br/2c−o(r).
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4.2 The tensor product construction

The problem fits into a general class of questions related to codes and combinatorial designs: How

to build a large vector space that does not contain a family of forbidden vectors? In the case at

hand, we start by building a “core” square matrix that satisfies the desired property and then

show how to scale it up into an arbitrarily large rectangular matrix by using a suitable tensor

product.

Let A be an r0 × a real matrix, and let B be an r0 × b real matrix. Following standard tensor

notation, we write the element Ai,j as Aij instead. We define a tensor product matrix operator

⊗ : Rr0×a ×Rr0×b 7→ Rr0×ab

as follows: If P = A ⊗ B then P ij,k = AijB
i
k. It is a mixed third-order tensor with two covariant

indices and a single contravariant one.

This product extends to sets naturally. If A (resp. B) is a set of r0 × a (resp. r0 × b) real

matrices, then

A⊗B = {A⊗B |A ∈ A, B ∈ B }.

Tensor exponentiation for sets is defined by

A⊗k = A⊗ · · · ⊗ A
︸ ︷︷ ︸

k times

.

The elements of A⊗k belong to the vector space Vk of mixed (k+1)st-order tensors with k covariant

indices and 1 contravariant one. By fixing an ordering (say, lexicographic) of the covariant indices,

we can interpret the tensors of Vk as r0 × ak matrices, and vice versa.

For our “core,” we choose permutation matrices. Let Π denote the set of r0 × r0 0/1 matrices

with exactly one 1 per row and column. The lemma below gives our tensor product its raison

d’être.

Lemma 4.3. No defective r0 × rk0 matrix can belong to the span of Π⊗k, for any k ≥ 1.

Proof. In any matrix of span(Π) each row and each column sum up to the same number, which
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can be assumed to be 1. Therefore, the anomalous row of a defective r0×r0 matrix consists of two

entries, α, α′ 6∈ {0, 1} summing up to 1. Suppose that the column with the α also includes a set

of ` ones (note that these can only be ones, and not some other nonzeros). Since the column sum

is 1, we have α+ ` = 1. Since α 6= 0, 1, we conclude that α must be a negative integer. Therefore,

α′ = 1−α ≥ 2. But then the column with α′ sums up to more than 1, which gives a contradiction.

This proves the lemma for k = 1.

For k > 1, we define the tensor homomorphism Ψl : Vk 7→ Vk−1, where

Ψl(P )ij1 ,...,jl−1,jl+1,...,jk
=

r0∑

j=1

P ij1,...,jl−1,j,jl+1,...,jk
.

Let M be a defective r0 × rk0 matrix. By definition, its anomalous row i0 contains two nonzero

elements: the two corresponding covariant k-tuple indices, being distinct, differ in at least one

index l. Since k > 1, there exists at least one covariant index l′ 6= l. We easily verify that Ψl′(M)

is a defective r0 × rk−1
0 matrix and

Ψl′(Π
⊗k) = Π⊗(k−1).

Therefore, by linearity,

Ψl′(M) ∈ span(Π⊗(k−1)) .

By induction, this is a contradiction.

To maximize its size, we choose the set P = Π⊗k for the largest k such that rk0 ≤ m0 = bm/tr0c.

It is easy to verify that |P| = ((r0)!)
k, because the mapping f : Π× · · · ×Π→ Rr0×r

k
0 defined as

f(A1, . . . , Ak) = A1 ⊗ · · · ⊗Ak

is an injection. Using Stirling’s approximation, we find that

|P| = |Π|k = (r0!)
k ≥ (nr−3)br/2c(1−1/ lnbr/2c)(1−ε),

for any fixed ε > 0. Filling up each row with 0’s to get the proper length m concludes the proof
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of Lemma 4.1. 2
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Chapter 5

The Case s > r + 1

We need a new idea to generalize the tensor product construction to higher values of s. We exploit

the fact that the (hard part of the) lower bound involves only query hyperplanes whose normal

vectors q∗ are spanned by the normals h∗ of the critical hyperplanes h ∈ H. We use this to add

combinatorial structure to the matrices M q∗ by redesigning the set ∩H.

The first step is to redefine r0: this is the number of top rows in the normals Mh∗

to the

critical hyperplanes in which we have “freedom” to choose where to position the 1’s, whereas the

remaining bottom rows serve as the error correcting code. In order to make case (A) of Lemma 3.4

work, we must have that the distance of our error correcting code bs/2c + 1. This means that the

dimension r0 of the code (over Ft) can be at most as in (4.1): r0 ≤ r − bs/2c.

Next, we will make an additional restriction on the definition of r0. The idea behind this

restriction will be soon made clear. We will choose r0 = λρ0, where

λ =
⌊s− r

2

⌋

+ 1 and ρ0 =
⌊r − bs/2c

λ

⌋

.

Note that this subsumes our choice of r0 for the cases s = r and s = r+1 and satisfies the required

constraint r0 ≤ r − bs/2c. Also note that this requires that s be not too large, say s < b3r/2c.

We now show how to construct normals of critical hyperplanes (Figure 5.1). Divide up the

first r0 rows of Mh∗

into λ blocks of consecutive rows of ρ0 rows each.

• Step 1 Use the tensor construction of the previous chapter (the case s = r+ 1) to produce
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
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...

copy above matrix here
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
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


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
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r0 = λρ0







r − r0

Figure 5.1: Constructing critical hyperplanes for s > r + 1

the top ρ0 rows ofMh∗

. In carrying out the construction, of course, use permutation matrices

of size ρ0× ρ0 instead of r0 × r0. This gives us a set P of matrices with the same properties

as those of Lemma 4.1, except for the size of P and the size of the matrices, now ρ0 ×m.

• Step 2 For each matrix of P , make λ copies of it and stack them on top of one another to

produce an r0 ×m matrix.

• Step 3 Complete the bottom r − r0 rows via the error correcting code as before.

Lemma 5.1. For any q ∈ K, the top r0 rows of M q∗ form an r0×m matrix made up of λ copies

of the same ρ0 ×m matrix.

Proof. This is a simple consequence of the fact that q∗ ∈ span{h∗}h∈H.

There is no need to revisit Lemma 3.4 in detail. Again, only case (B) is worth discussing at

this point: Each row of M q∗ has at least one nonzero element. By analogy with the case s = r+1,

if all the rows with more than one nonzero have indices greater than r0 then inequality (4.2) holds

by choosing γ small enough, and we are done.

Suppose now that at least one row i0 ≤ r0 contains two or more nonzeroes. By Lemma 5.1, the

λ blocks that make up the top r0 rows of M q∗ are identical. This shows that no block can have

more than ρ0+1 nonzeroes. Indeed, any one of them did, then so would all of the others, and their

combined contribution of nonzeroes would be at least (ρ0 + 2)λ. Added to the (at least) r − r0
nonzeroes of the bottom rows, this would give us a total of at least (ρ0 + 2)λ+ r− r0 > s nonzero

coordinates in q∗, which is ruled out. So, the only possibility left is for each block to have exactly
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ρ0 or ρ0 + 1 nonzeroes: the first case was handled in the proof of Lemma 3.4, while the second

one was shown to be impossible in the last section because of the tensor product construction.

The new set P is of size at least (ρ0!)
k, where k is the largest integer such that ρk0 ≤ m/tr0.

Elementary calculations show that

|P| ≥ (nr−3)
2r−s

2b(s−r)/2c+1
(1−εr) ,

where εr > 0 tends to 0 as r →∞.

Theorem 5.2. The depth of any s-linear decision tree for r-SUM is at least

(nr−3)
2r−s

2d(s−r+1)/2e
−o(r) .

Note that for any s ≤ r + r1−ε, where ε > 0 is arbitrarily small constant, the depth is

(nr−3)r
Ω(1)

.
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Chapter 6

General Linear Degeneracy Tests

In this chapter we show that rSUM testing is not harder than fDegeneracy testing. We define

the following linear degeneracy problems.

rSUM’: Given a point x ∈ Rr×m, do there exist indices i1, . . . , ir ∈ [m] s.t.

r∑

k=1

xkik = 0 ?

Let f be a fixed r-variate linear polynomial of the form f = α1t1 + · · ·+ αrtr − α0, where αk 6= 0

for k = 1, . . . , r.

fDegeneracy: Given a point x ∈ Rn, do there exist r distinct indices i1, . . . , ir s.t.

f(xi1 , . . . , xir ) = 0 ?

fDegeneracy’: Given a point x ∈ Rr×m, do there exist indices i1, . . . , ir ∈ [m] s.t.

f(x1i1 , . . . , xrir ) = 0 ?

Observation 6.1. Theorems 3.5, 4.2 and 5.2 apply to rSUM’, because the critical hyperplanes

have a single one in each row.

Claim 6.2. The point x = (xij) ∈ Rr×m is in rSUM’ if and only if the point y = (yij) ∈ Rr×m
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with

yij = xij/αi + α0/(αir)

is in fDegeneracy’.

We conclude that an LDT T deciding fDegeneracy’ can be transformed into an LDT

deciding rSUM’ while preserving the structure of the tree (its height in particular) and the number

of nonzero coefficients used in the normals to the query hyperplanes attached to each internal node

(and vice versa). This reduction shows that fDegeneracy’ and rSUM’ have the exact same

complexity, and hence, Theorems 3.5, 4.2 and 5.2 apply to fDegeneracy’ as well.

Finally, we would like to show that fDegeneracy (for dimension n = rm) is at least as

hard as fDegeneracy’ (for dimension r × m). This is a bit more tricky. The equivalence

between fDegeneracy’ and rSUM’ tells us, in fact, that any sLDT deciding fDegeneracy’

for dimension r × m contains a high degeneracy-complexity chamber C, where the complexity

(depending on s) is as stated in Theorems 3.5, 4.2 and 5.2. However, this does not mean that C

is also a high degeneracy-complexity chamber for fDegeneracy. The problem is that p0 (the

representative of the chamber C of the arrangement A) must be nondegenerate for the proof to

work. This was implicitly taken care of in the rSUM case; Indeed by walking in a positive direction

ψ ∈ Rr×m from c0 we escaped all canonical hyperplanes, including non conforming canonical

hyperplanes, namely, those that have multiple 1’s in a single row and no 1’s in others. For general

fDegeneracy this may not work, but a small perturbation of ψ will do the trick. Indeed, this

nonconstructive step will almost surely escape all non-conforming canonical hyperplanes, namely,

hyperplanes not of the form {∑r
i=1 αixiji−α0 = 0}. (This step should be compared to Section 3.3

of [46]).
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Chapter 7

Concluding Remarks

Open Problems

The techniques used in this paper break down when r = n1/3 or when s = Ω(r). Unfortunately,

even the cases r < 6, s > r give trivial lower bounds, which are subsumed by the general Ω(n logn).

These cases (especially r = 3, 4) are important, and we hope that the new techniques introduced

here will return the focus to them. Also, it would be interesting to know if the lower bounds

we get for s > r (and especially for s > r + 1) are tight for big r. This question is related to

the more general problem of combinatorial design: given a linear vector space, find the largest

possible collection of vectors of a given type such that no vector in their linear span violates

some combinatorial property. Error correcting codes are a special case of this problem, where

the combinatorial property is a bound on the number of zero coordinates in nontrivial vectors.

The tensor product of permutation matrices is another case, where the combinatorial property is

related to the number of nonzeros in each row.
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Part II

Aggregating Inconsistent

Information: Ranking and

Clustering
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Chapter 1

Introduction

In this part we deal with the problem of aggregating information originating from different sources.

This problem lies in the intersection of economics and game theory, social choice theory, combi-

natorics and optimization. We start with a few examples.

1. A conference program committee selects 70 participating papers out of 250 submissions,

based on a score in the range of 1 − 5 given by the program committee members for each

submission.

2. A stock market portfolio is built based on information gathered from different financial

newspapers columnists.

3. A meta-search engine takes a search query as input and returns a cocktail of information

consisting of Google search output (30%), Yahoo search output (60%) and Altavista search

output (10%).

4. Several heuristics are used for retrieving relevance-ranked records from a database, and one

output ranking is to be formed by combining their corresponding outputs.

5. Several heuristics are used for clustering microarray data, and one output clustering is to be

formed by combining their corresponding outputs.

We categorize the above examples based on two criteria. The first criterion is structure. By

structure we roughly mean that the different sources of information are objects in a simple logical
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. . . .

aggregation

. . . .

PSfrag replacements

source1 source2 sourcek

output

Though each source of information is assumed to be consistent with itself
(adheres to structural constraints), inconsistencies may be present among
different sources.

Figure 1.1: Aggregating inconsistent information

space (e.g space of permutations, space of k-dimensional unit vectors, space of graphs). Examples

1,3,4 and 5 deal with combining highly structured information, whereas example 2 deals with

combining unstructured information.

The second criterion is truthfulness. In a nontruthful setting, the sources of information are

selfish agents, and they could use knowledge of the aggregating algorithm as well as speculations

on other agents’ input to maximize a utility function by possibly lying about their preferences.

Examples 1,2 and 3 may be nontruthful if the aggregation algorithm is not designed carefully.

In examples 4 and 5 we assume that the different sources of information are outputs of different

heuristics designed and implemented by the same agent, and therefore truthfulness is not an issue.

In this work we consider structured information, and we do not consider truthfulness issues.

Specifically, we address the combinatorial optimization problems of RankAggregation and

ConsensusClustering. In RankAggregation we combine complete rankings of a ground

set of elements. This is motivated by examples 3,4 (and possibly 1) above. Note that in applica-

tions we may be interested in aggregating top-k lists, namely, ranked subsets of the ground set.

Top-k rankings are a special case of the more general ranking with ties. We comment on these

generalizations in Chapter 7. In ConsensusClustering we combine clusterings of a ground set
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of elements. This is motivated by example 5.
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Chapter 2

Rank Aggregation

2.1 Definition of problem

The problem of ranking a set of contestants or a set of alternatives based on possibly conflicting

preferences is a central problem in the areas of voting and social choice theory. Specifically,

combining k different complete ranked lists (voters) on the same set of n elements (candidates)

into a single ranking, which best describes the preferences expressed in the given k lists, is known

as the problem of RankAggregation. This problem dates back to as early as the late 18th

century when Condorcet and Borda each proposed voting systems for elections with more than

two candidates [23, 34]. Both systems required each voter to supply a complete ranked list of the

candidates and used aggregate information from these rankings to determine a winner. There

are numerous applications in sports, databases, and statistics [43, 51] in which it is necessary to

effectively combine rankings from different sources. Dwork, Kumar, Naor and Sivakumar proposed

applying rank aggregation to the problem of combining rankings from different web search engines

as a method of combating spam [43]. Fagin, Kumar and Sivakumar proposed applying rank

aggregation to the nearest neighbor problem in high dimensions [51].

In the last half century, rank aggregation has been studied and defined from a mathematical

perspective. In particular, Kemeny proposed a precise criterion for determining the “best” aggre-

gate ranking1 [78,79]. The input is a set V of n candidates and k permutations of the candidates,

1Historically known as Kemeny aggregation.
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{π1, π2, . . . , πk} ⊆ SV . By convention, an element π ∈ SV is a bijection from V to {1, . . . , |V |},

where π(v) is the rank of element v ∈ V . The lower π(v) is, the higher its “preference”. For

u, v ∈ V , we write u <π v to say that u has higher preference than v: π(u) < π(v). The problem

is, how do we output one ranking combining as much information as possible from π1, . . . , πk?

2.2 Majority rules:

Condorcet winners and the Condorcet paradox

Consider the tournament2

Gmaj = (V,Amaj), (2.1)

defined as follows: (u, v) ∈ Amaj if the number of integers i ∈ [k] for which u <πi v is greater than

the number of those for which v <πi u. That is, u is “more popular” than v in the head-to-head

contest induced by {π1, . . . , πk}. Ties are broken arbitrarily.

A Condorcet winner is an element v ∈ V that is a source in Gmaj . A condorcet winner may

not exist for a given input {π1, . . . , πk}. This implies that the tournament Gmaj may contain

cycles (as demonstrated in the Condorcet paradox in Figure 2.1). Therefore, we cannot simply

topologically sort Gmaj to solve RankAggregation.

PSfrag replacements

u v

y

An election system among three voters over three candidates u, v, y is
enough to illustrate the Condorcet paradox. If the votes are u <π1 v <π1

y, v <π2 y <π2 u and y <π3 u <π3 v then Gmaj is as in the drawing.

Figure 2.1: The Condorcet paradox

2A tournament is a directed graph (V, A) such that for all u, v ∈ V , either (u, v) ∈ A or (v, u) ∈ A.
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2.3 The Kemeny approach

A Kemeny optimal ranking of the candidates is the ranking π that minimizes

costkem(π) =

k∑

i

d(π, πi) ,

where d(π, σ) denotes3 the number of pairs of candidates that are ranked in different orders by π

and σ. For example, if V = {A,B,C,D}, π = [A,B,C,D]4and σ = [B,C,A,D], then d(π, σ) = 2

since elements A and B appear in different orders in the two rankings as do elements A and C.

In other words, a Kemeny optimal ranking minimizes the number of pairwise disagreements with

the given k rankings. Note that d(·, ·) is a metric (in fact, an `1 metric). The general problem of

minimizing
∑

y∈Y⊂X d(x, y) over all possible x ∈ X for a metric space d overX is called the median

problem. Throughout this paper we will slightly abuse terminology and refer to the problem of

finding a Kemeny-optimal ranking as RankAggregation.

There are many justifications to considering the Kemeny approach for RankAggregation

[43]. It can be interpreted as a method for maximizing the likelihood of the votes assuming a very

natural probabilistic voting model. It is anonymous and neutral (see [67] for definition of these

social-choice theoretic terms). An important justification related to the previous discussion is as

follows: If a Condorcet winner v ∈ V does exist, then there exists a Kemeny-optimal ranking π with

π(v) = 1. A voting system with this property is said to satisfy the Condorcet criterion. In fact,

the Kemeny-optimal ranking satisfies the generalized Condorcet criterion: If there exists a subset

U ⊆ V such that for all u ∈ U and v ∈ V \U , (u, v) ∈ Amaj then there exists a Kemeny-optimal

ranking π with

π(U) = {1, . . . , |U |} . (2.2)

To see why this is true, notice that if there is a Kemeny-optimal solution π for which π(u) = π(v)+1

for some u ∈ U and v ∈ V \U , then by swapping the values of π at u and v we do not increase

the cost, therefore, we remain with a Kemeny-optimal solution. Continuing until no such swap is

possible, we obtain a Kemeny-optimal solution satisfying (2.2).

3The distance function d(·, ·) is known as the Kendall-τ distance.
4This is shorthand for π(A) = 1, π(B) = 2, π(C) = 3, π(D) = 4.
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2.4 Minimum feedback arc-set in tournaments

As we will see in subsequent chapters, RankAggregation is closely related to the graph-

theoretical problem of minimum feedback arc-set in tournaments (MinFAS-Tour). Given a

directed graph G = (V,A), MinFAS is the problem of finding the smallest set A′ ⊆ A such that

(V,A−A′) is acyclic. The size of this set is exactly the minimal number of backward edges induced

by a linear ordering of V . In MinFAS-Tour, G is a tournament. This problem turns out to be

useful in studying RankAggregation, but is also interesting in its own right. For example,

imagine a sports tournament where each player plays against every other player once: How should

we rank the players based on these possibly nontransitive (inconsistent) outcomes?

The complementary problem to finding a minimum feedback arc set is the maximum acyclic

subgraph problem, also known as the linear ordering problem.

It turns out that RankAggregation can be cast as a special case of weighted MinFAS. In

weighted MinFAS, the input is G = (V,w), where V is our ground set of vertices (candidates) and

w is a nonnegative real function on ordered distinct pairs (u, v) ∈ V ×V (we use wuv as shorthand

for w(u, v)). The goal is to find π ∈ SV minimizing

costG(π) =
∑

u,v∈V : u<πv

wvu .

It is trivial to verify that if wuv ∈ {0, 1} for all distinct u, v ∈ V , then this is MinFAS (with

possible anti-parallel edges). If, in addition, the weights satisfy wuv + wvu = 1 for all distinct

u, v ∈ V , then this is exactly MinFAS-Tour. We generalize the notion of a tournament to

arbitrary real-weighted graphs:

Definition 2.1. If wuv + wvu = 1 for all distinct u, v ∈ V then w (or G) is said to satisfy the

tournament constraint.

Given an input {π1, . . . , πk} ⊆ SV to RankAggregation, consider the following system w of

weights (see example in Figure 2.2):

wuv =
1

k
|{i ∈ [k] : u <πi v}| . (2.3)

Clearly, costG(π) is (up to a normalization factor of k) equivalent to costkem(π). Henceforth, when
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Weighted instance G induced by V = {u, v, y, z}, k = 3 voters and
π1 = [u, v, y, z], π2 = [u, y, z, v], π3 = [z, y, u, v] .

Figure 2.2: From RankAggregation to weighted MinFAS

G is clear from the context, we will use cost(π) to denote costG(π) , our RankAggregation

objective function.

Definition 2.2. If wuy ≤ wuv + wvy for all distinct u, v, y ∈ V then w (or G) is said to satisfy

the triangle inequality.

Claim 2.3. The weight system induced by RankAggregation in (2.3) satisfies both the tour-

nament constraint and the triangle inequality.

Proof. The tournament constraint is satisfied because all voters πi either rank u before v (con-

tributing to wuv) or v before u (contributing to wvu).

The triangle inequality follows from the simple observation that every voter that ranks u before

y must either rank u before v or v before y.

Note that not all weight systems w over V satisfying the tournament constraint and the triangle

inequality are induced by RankAggregation. In fact, we will see that the extra structure in

RankAggregation enables us to obtain better approximation guarantees that we could not
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argue for w not induced by RankAggregation (though satisfying both constraints).

2.5 Previous work

Recently, RankAggregation has been studied from a computational perspective. Finding a

Kemeny optimal ranking is NP-hard [18] and remains NP-hard even when there are only four

input permutations to aggregate [43]. This motivates the problem of finding a ranking that

approximately minimizes the number of disagreements with the given input rankings. Several

2-approximation algorithms [37, 43] are known. In fact, one of the input rankings has cost no

worse than twice that of the optimal solution. This is true for any median problem (Figure 2.3).

A randomized version of this simple algorithm with the same (expected) 2-approximation factor

which will be useful in our analysis is PickAPerm (Figure 3.2): uniformly at random output one

of the input permutations.

PSfrag replacements
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A median problem with a set Y of 7 input points in some metric space
X . The point opt ∈ X is the optimal solution, minimizing the sum
of distances to the points in Y . The point in Y closest to opt is a 2-
approximation. Also, choosing a point in Y uniformly at random is an
expected 2-approximation

Figure 2.3: Any median problem admits a simple 2-approximation algorithm.

Another 2-approximation algorithm is obtained as follows: instead of considering the Kemeny

approach, consider the Spearman footrule distance d′ over permutations on V , defined as follows:

d′(π, σ) =
∑

v∈V

|π(v) − σ(v)| .

The Spearman footrule distance takes the actual position of the ranked items into account
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when comparing between π and σ. Solving median over d′ can be done in polynomial time via a

minimum cost matching reduction [43, 44], and it can be shown [37] that

d(π, σ) ≤ d′(π, σ) ≤ 2d(π, σ) .

This means that a Spearman footrule optimal ranking has a Kemeny cost no more than twice

optimal.

MinFAS can be approximated to within O(log n log logn) [49,100] and has (at least) the same

approximation hardness as vertex cover [77], which is 1.36 [40]. More than a decade ago, Bang-

Jensen and Thomassen conjectured that MinFAS-Tour is NP-hard [14]. However, for the past

decade, no progress has been made on settling this conjecture. In contrast, the minimum feedback

vertex set problem on tournaments is NP-hard [101] and is approximable to within 2.5 [26]

We are not aware of any approximation for MinFAS-Tour that improves on the bound for

the more general MinFAS. The complementary maximization problem on tournaments seems

to be easier from an approximation standpoint. Arora, Frieze and Kaplan [11] and Frieze and

Kannan [57] gave PTASs for the maximum acyclic subgraph problem in dense graphs, which

implies a PTAS for the problem on tournaments. Specifically, they show that if the maximum

edge weight of a given digraph G = (V,A) is bounded by 1 and the value of an optimal solution

is OPT , then with probability at least 1 − δ, their algorithm finds a solution of value at least

OPT − εn2 in time exponential in 1/ε2 and polynomial in 1/δ and n = |V |. This implies a PTAS

for MinFAS-Tour, because OPT = Ω(n2) there.

2.6 New algorithms and results

We give improved approximation algorithms for RankAggregation and for special cases of

weighted MinFAS.

We use variants of essentially the same simple algorithm. The most basic variant is KwikSort

for instances of MinFAS-Tour (Figure 2.4). This is exactly the well-known textbook QuickSort

invented by Hoare [66], except that we ignore the working assumption that the tournament G is

acyclic.

First, we pick a random vertex u to be the “pivot” vertex. Second, we place all vertices
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KwikSort(G = (V,A))
A recursive algorithm for MinFAS-Tour

if V = ∅ then return empty-list

set VL ← ∅, VR ← ∅
pick random pivot u ∈ V

for all vertices v ∈ V \ {u}:
if (v, u) ∈ A then

add v to VL (place v on left side)
else (if (u, v) ∈ A)

add v to VR (place v on right side)

set GL ← sub-tournament induced by VL
set GR ← sub-tournament induced by VR

return order KwikSort(GL),v,KwikSort(GR)
(concatenation of left recursion, v, and right recursion)
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Figure 2.4: Pseudocode and diagram for KwikSort
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connected to u with an in-edge on the left side of u and all vertices connected to u with an out-

edge on the right side of u. We then recurse on the two tournaments induced by the vertices on

each side. Our analysis of KwikSort yields a 3-approximation algorithm for MinFAS-Tour,

improving on the best-known previous factor of O(log n log logn). We rely on a new technique for

arguing a lower bound for the optimal solution by demonstrating a fractional packing of directed

triangles using probabilities of certain events in the execution probability space.

To apply this algorithm to weighted MinFAS, we define a notion of a majority tournament

Gw = (V,Aw) corresponding to instance G = (V,w).

Definition 2.4. Given an instance (V,w) of weighted MinFAS, the corresponding majority tour-

nament Gw = (V,Aw) is defined by setting (u, v) ∈ Aw if wuv > wvu for all distinct u, v ∈ V . If

wuv = wvu, then we decide either (u, v) ∈ Aw or (v, u) ∈ Aw arbitrarily.

Note that although the majority tournament Gw depends on the weights of the weighted

instance, it is an unweighted graph. Also note that ifG = (V,w) is induced by RankAggregation

as in (2.3), then Gw is exactly Gmaj defined in (2.1).

By outputting π = KwikSort(Gw) we obtain an algorithm for weighted MinFAS, and in

particular for RankAggregation. This algorithm is a 3-approximation whenever w satisfies

the tournament constraint, and a 2-approximation if it satisfies the triangle inequality. Hence,

this is yet another 2-approximation algorithm for RankAggregation. However, we show that

by taking the better of KwikSort and PickAPerm we obtain an (11/7)-approximation for

RankAggregation. This improved approximation ratio is due to the fact that each algorithm

does relatively well on instances in which the other algorithm does relatively poorly.

Note that a simple lower bound on the value of an optimal solution for weighted MinFAS

is to take the sum over all vertices i < j of min{wij , wji}. In contrast, our analysis uses a

stronger lower bound based on the weight of directed triangles (Condorcet-paradox triangles) in

the majority tournament. Interestingly, the analysis of our simple combinatorial algorithm bounds

the integrality gap of a natural LP relaxation for MinFAS (with w satisfying the corresponding

constraints).
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KwikSort LP-KwikSort Previous

MinFAS-Tour 3 5/2
O(log n log logn)

[49, 100]

Weighted MinFAS
w/ Tournament Constraint

5 5/2 O(log n log logn)

Weighted MinFAS
w/ Triangle Inequality

2
2

(w/ Tour. Const.)
O(log n log logn)

RankAggregation
(Better of PickAPerm & . . .)

11/7 4/3 2

Table 2.1: Summary of results for ranking

Additionally, we consider the following LP relaxation [96] for weighted MinFAS:

minimize
∑

u,v∈V : u6=v

xuvwvu

xuy ≤ xuv + xvy ∀u, v, y

xuv + xvu = 1 ∀u, v

xuv ≥ 0 ∀u, v

(2.4)

The LP has a variable xuv for all distinct u, v ∈ V . Clearly, if we imposed the constraint that

xuv ∈ {0, 1} for all u, v, the corresponding IP would be an exact mathematical program for

weighted MinFAS.

Assuming we have an optimal solution {xuv} to the LP, we run LP-KwikSort (V, x) (Fig-

ure 2.5) to round it. This is similar to KwikSort, except that after choosing a pivot vertex,

instead of deterministically placing vertices on the right or left side, we randomly decide based on

the value of the corresponding LP values. This results in vastly improved approximation factors.

In particular, taking the best of LP-KwikSort and PickAPerm results in a (4/3)-approximation

algorithm for RankAggregation. See Table 2.1 for a complete summary of the new approxi-

mation factors.

Finally, we show that MinFAS-Tour has no polynomial time algorithm assuming NP*BPP.
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LP-KwikSort(V, x)
A recursive algorithm for rounding the LP for
weighted MinFAS. Given an LP solution
{xuv}u,v∈V , returns an ordering on the
vertices V .

if V = ∅ then return empty-list

pick random pivot u ∈ V
set VR = ∅, VL = ∅

for all v ∈ V \{u}:
with probability xvu

add v to VL
else (with probability xuv = 1− xvu)

add v to VR

return ordering

LP-KwikSort(VL, x),u,LP-KwikSort(VR, x)

Figure 2.5: Pseudocode for LP-KwikSort

The question of NP-hardness of MinFAS-Tour has been a long-standing conjecture of Bang-

Jensen and Thomassen [14]. We show a randomized reduction from the problem of finding a

minimum feedback arc set in general digraphs (which is known to be NP-hard) to the special

case of tournaments. This reduction has been recently derandomized by Noga Alon [8], and the

conjecture is therefore proven completely. We present the weaker randomized version here.
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Chapter 3

Analysis of Ranking Algorithms

Before we prove the results for the ranking problems, we make a few notational remarks. In what

follows we will use the term directed triangle. A directed triangle t in a directed graph G = (V,A)

is a set of three edges forming a directed cycle. For ease of notation, we will write t = (u, v, y) to

refer to the directed triangle over distinct vertices u, v, y ∈ V , namely,

(u, v, y)
def
= {(u, v), (v, y), (y, u)} ⊆ A .

We may abuse notation and formally write u ∈ t to say that u is a vertex incident to the directed

triangle t, though we keep in mind that t is a set of three edges and not three vertices.

3.1 KwikSort for MinFAS-Tour

Let G = (V,A) be a MinFAS-Tour instance. Consider algorithm KwikSort (Figure 2.4) for

approximating it.

Theorem 3.1. The output of KwikSort(G) is a random expected 3-approximation solution for

MinFAS-Tour.

Proof. Let COPT denote the cost of a fixed optimal solution. Let CKS denote the (random) cost

of KwikSort(G) on G = (V,A). We want to show that E [CKS ] ≤ 3COPT .

An edge (u, v) ∈ A becomes a backward edge if and only if there exists a third vertex y such
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(u, v, y), the edge not incident to the pivot becomes backwards and charges
the triangle a unit cost.

Figure 3.1: Charging directed triangles

that (u, v, y) form a directed triangle in G and y was chosen as the pivot when all three were input

to the same recursive call (Figure 3.1). Pivoting on y would then place u on the right and v on

the left, rendering edge (u, v) backward. In this case, we will charge a unit cost of the backward

edge (u, v) to the directed triangle (u, v, y). We denote by T the set of directed triangles in G.

The execution of KwikSort is a recursion with a branching index of at most 2. Each node of

the recursion corresponds to an input subset I ⊂ V and a choice u ∈ I of a pivot. Clearly, any

vertex u ∈ V is a pivot at exactly one recursion node. Let I(u) denote the input subset at the

recursion node at which u was chosen as pivot. In other words, u was chosen as pivot uniformly

among the vertices of I(u).

For any t = (u, v, y) ∈ T , denote by At the event

{u, v, y} ⊆ I(u) ∨ {u, v, y} ⊆ I(v) ∨ {u, v, y} ⊆ I(y) . (3.1)

Clearly, only one of the three inclusions can occur. In words, At means that when one of the

vertices of t is chosen as pivot, all its three vertices are input to the same recursive call. Let pt

denote the probability of event At. Now we observe that At occurs exactly when t is charged.

Therefore, the expected cost of KwikSort(G) is exactly:

E [CKS ] =
∑

t∈T

pt .
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If we had a family of disjoint directed triangles (recall that by this we mean: edge disjoint),

then a lower bound for COPT would be its cardinality, because any directed triangle incurs at least

one backward edge in any solution. This is also true fractionally, as we shall see in Lemma 3.3.

Definition 3.2. A system of nonnegative weights on directed triangles {βt}t∈T is a packing if for

all e ∈ A,
∑

t:e∈t

βt ≤ 1 .

Lemma 3.3. Any packing {βt} of the directed triangles is a lower bound for COPT .

To prove the lemma, consider the following LP relaxation for MinFAS-Tour:

minimize
∑

e∈A

xe s.t.

xe1 + xe2 + xe3 ≥ 1 ∀t = {e1, e2, e3} ∈ T

xe ≥ 0 ∀e ∈ A

(3.2)

The solution to this LP clearly lower bounds COPT . Indeed, if we interpret the variable xe as

an indicator variable to the event that e is a backward edge in some solution, then the inequality

xe1 + xe2 + xe3 ≥ 1 encodes the fact that every directed triangle has a backward edge in any

solution. It is easy to see that any packing is a feasible solution to the dual LP, and hence a lower

bound for COPT .

We will demonstrate a packing using the probabilities pt. Let t = (u, v, y) ∈ T be a fixed

directed triangle. Conditioned on the event At, each one of the three vertices of t was the pivot

vertex with probability 1/3, because all vertices input to a recursive call are chosen as pivot with

equal probability (in other words, each inclusion in (3.1) is equally likely given At). Therefore,

any edge e of t becomes a backward edge with probability 1/3 given At. More formally, if we let

Be denote the event that e becomes a backward edge and e ∈ t, then

Pr[Be ∧At] = Pr[Be|At]Pr[At] =
1

3
pt.

The event Be ∧At means that the backwardness of edge e was charged to triangle t to which it is

incident.
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Observation 3.4. For two distinct directed triangles t, t′ ∈ T such that e ∈ t ∩ t′ for some edge

e, the events Be ∧ At and Be ∧At′ are disjoint.

Observation 3.4 is another way of saying that an edge e can be charged to only one triangle t

incident to e. Therefore, for all e ∈ E,

∑

t:e∈t

1

3
pt ≤ 1 . (3.3)

So {pt/3}t∈T is a fractional packing of T . By Lemma 3.3, COPT ≥ ∑t∈T pt/3 = E [CKS]/3, as

required.

Note: As a side result, it follows that the integrality gap of LP (3.2) is at most 3.

3.2 KwikSort for weighted MinFAS

Let (V,w) be a weighted MinFAS instance, where w ∈ (R+)
n(n−1)

. We suggest the following

approximation algorithm: construct the unweighted majority tournament Gw = (V,Aw) and

return the ordering outputed by KwikSort(Gw). We analyze this algorithm.

For an edge e = (u, v) ∈ Aw, we let w(e) = wuv , and w̄(e) = wvu (by construction, w̄(e) ≤

w(e)). Fix an optimal solution π∗, and let c∗(e) denote the cost incurred to it by e = (u, v) ∈ Aw,

that is,

c∗(e) =







w(e) if v <π∗ u

w̄(e) otherwise

,

so COPT =
∑

e∈Aw
c∗(e). Let T denote the set of directed triangles in Gw. For any t =

{e1, e2, e3} ∈ T , we define

c∗(t) = c∗(e1) + c∗(e2) + c∗(e3)

w(t) = w(e1) + w(e2) + w(e3) .

Finally, let CKS denote the cost of the solution returned by KwikSort(V,Gw).

Theorem 3.5. For an instance (V,w) of weighted MinFAS, if there exists a constant α > 0 such
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that w(t) ≤ αc∗(t) for all t ∈ T , then E [CKS ] ≤ αCOPT , i.e. KwikSort(Gw) is an expected

α-approximation solution.

Proof. We generalize techniques presented in Section 3.1. When KwikSort is run on Gw, an edge

e ∈ Aw is heavily charged if it becomes a backward edge, and thus incurs the heavy cost w(e). It

is lightly charged if it incurs the light cost w̄(e).

Clearly, e = (u, v) ∈ Aw is heavily charged if and only if a third vertex y is chosen as pivot

when all three u, v, y are in the same recursive call, and (u, v, y) form a directed triangle in Gw.

We charge this cost to triangle t = (u, v, y).

Again we consider the set T of directed triangles in Gw, and their corresponding events At

with probability pt (see Section 3.1). Fix a triangle t ∈ T with edges e1, e2, e3. Conditioned on

At, each of e1, e2 and e3 are equally likely to be heavily charged, so the expected charge of t is

1
3ptw(t).

The probability that an edge e ∈ Aw does not incur a heavy cost (not charged to any triangle

t ∈ T ) is exactly

1−
∑

t:e∈t

Pr[Be ∧ At] = 1−
∑

t:e∈t

1

3
pt .

Therefore, E [CKS ] = BKS + FKS, where

BKS =
∑

t∈T

1

3
ptw(t)

FKS =
∑

e∈Aw

(

1−
∑

t: e∈t

1

3
pt

)

w̄(e).

Note that the expression (1−∑t: e∈t) for fixed e ∈ Aw is nonnegative (see discussion in previous

section). We rearrange the sum COPT =
∑

e∈T c
∗(e) as COPT = BOPT + FOPT , where

BOPT =
∑

t∈T

1

3
ptc

∗(t)

FOPT =
∑

e∈Aw

(

1−
∑

t:e∈t

1

3
pt

)

c∗(e) .

Obviously, FKS ≤ FOPT , because w̄(e) ≤ c∗(e) for any e ∈ Aw. Therefore, if for some α > 0,
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w(t) ≤ αc∗(t) for all t, then E [CKS ] ≤ αCOPT as required.

Lemma 3.6. If the weights satisfy the tournament constraint (wuv+wvu = 1), then w(t) ≤ 5c∗(t)

for all t ∈ T . If the weights satisfy the triangle inequality constraint (wuv ≤ wuy + wyv), then

w(t) ≤ 2c∗(t).

Proof. First assume probability constraints on the weights. In this case, we claim that w(t) ≤

5c∗(t). Indeed, in this case w(e) ≥ 1/2 for all e ∈ Aw, and w̄(e) = 1 − w(e). Fix a triangle t

containing edges e1, e2, e3, and assume w.l.o.g.

1/2 ≤ w(e1) ≤ w(e2) ≤ w(e3) ≤ 1 . (3.4)

Clearly, w(t) = w(e1) + w(e2) + w(e3) ≤ 2 + w(e1). Any solution has to direct at least one

of the edges in t backwards, therefore c∗(t) ≥ w(e1). Since w(e1) ∈ [1/2, 1], we therefore have

w(t) ≤ 5c∗(t).

Consequently, KwikSort has an expected approximation ratio of at most 5 on weighted

tournament instances with probability constraints on the weights.

Now we assume that the edge weights satisfy the triangle inequality. Fix t ∈ T with edge

weights w(e1), w(e2), w(e3). By the triangle inequality,

w(e3) ≤ w̄(e1) + w̄(e2)

w(e1) ≤ w̄(e2) + w̄(e3)

w(e2) ≤ w̄(e3) + w̄(e1)

(3.5)

Summing up, we get w(t) ≤ 2(w̄(e1)+ w̄(e2)+ w̄(e3)). But c∗(t) ≥ w̄(e1)+ w̄(e2)+ w̄(e3), because

the optimal solution must at least pay the lower cost at each edge. This concludes the proof.

Note: In the conference version [3], a weaker bound of 3 was proven for the triangle inequality

constraint only case and 2 for the combined constraints. This improvement in Lemma 3.6 is due

to Warren Schudy.

Combining Theorem 3.5 and Lemma 3.6, we get:
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Theorem 3.7. Algorithm π = KwikSort(Gw) is a 5-approximation (resp. 2-approximation) for

weighted MinFAS with the tournament constraint (resp. with the triangle inequality).

3.3 An improved approximation ratio for RankAggrega-

tion

Let {π1, . . . , πk} be a RankAggregation instance over some set of candidates V of size n.

Consider the corresponding equivalent weighted MinFAS instance (V,w). Recall that for all

u 6= v, wuv is the fraction of input permutations ranking u before v.

As in Section 3.2, we consider the corresponding majority tournamentGw(V,Aw). Theorem 3.7

shows that using KwikSort(Gw) we get a 2-approximation for this case, because both the tourna-

ment constraint and the triangle inequality are satisfied. We show in this section that the additional

structure in these instances allows us to improve upon this factor. As usual, we let T denote the

set of directed triangles in Gw, and we continue using the notation w(e), w̄(e), w(t), c∗(e), c∗(t) for

e ∈ Aw and t ∈ T defined in Section 3.2.

As stated in Section 2.5, PickAPerm (Figure 3.2) is a 2-approximation algorithm for Rank-

Aggregation.

PickAPerm(π1, π2, . . . πk)
pick i ∈ [k] uniformly at random

return πi

Figure 3.2: Pseudocode for PickAPerm

Let CPAP denote the cost of PickAPerm on the RankAggregation instance. Let Gw =

(V,Aw) be the corresponding unweighted majority tournament. Define

z(e)
def
= 2w(e)w̄(e) .

We claim that
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E [CPAP ] =
∑

e∈Aw

z(e) . (3.6)

Indeed, an edge e ∈ Aw becomes a backward (resp. forward) edge with probability w̄(e) (resp.

w(e)), in which case it incurs the cost of w(e) (resp. w̄(e)). As usual, T is the set of directed

triangles in Gw. For all t = (e1, e2, e3) ∈ T , we let z(t) = z(e1) + z(e2) + z(e3). The following

theorem shows how to analyze a “convex combination” of KwikSort and PickAPerm:

Theorem 3.8. If there exist constants β ∈ [0, 1] and γ > 0 such that

βw(t) + (1− β)z(t) ≤ γc∗(t) ∀t ∈ T, and

βw̄(e) + (1− β)z(e) ≤ γc∗(e) ∀e ∈ Aw,

then the best of KwikSort(Gw) and PickAPerm(π1, . . . , πk) is an expected γ-approximation for

RankAggregation.

Proof. We use the notation COPT , FOPT , BOPT , FKS , BKS defined in Section 3.2.

We can now rearrange (3.6) as E [CPAP ] = BPAP + FPAP , where

BPAP =
∑

t∈T

1

3
ptz(t) FPAP =

∑

e∈Aw

(

1−
∑

t:e∈t

1

3
pt

)

z(e) . (3.7)

Recall that the expression (1−∑t: e∈t
1
3pt) for fixed e ∈ Aw is exactly the probability that an

edge doesn’t become backward in KwikSort, and hence a nonnegative number. If we now have

β, γ as in the statement of the theorem, then

60



βE [CKS ] + (1− β)E [CPAP ] = βBKS + (1− β)BPAP + βFKS + (1− β)FPAP

=
∑

t∈T

1

3
pt(βw(t) + (1− β)z(t))

+
∑

e∈Aw

(

1−
∑

t:e∈t

1

3
pt

)

(βw̄(e) + (1− β)z(e))

≤
∑

t∈T

1

3
ptγc

∗(t) +
∑

e∈Aw

(

1−
∑

t:e∈t

1

3
pt

)

γc∗(e)

= γCOPT ,

where the first inequality follows from the assumptions of the theorem. We conclude that the

(β, 1−β)-biased average of KwikSort(Gw) and PickAPerm(π1, . . . , πk) is at most an expected

γ-approximation for RankAggregation. In particular, the best of the two is an expected γ-

approximation.

Lemma 3.9. For all t ∈ T ,

3

7
w(t) +

4

7
z(t) ≤ 11

7
c∗(t) , (3.8)

and for all e ∈ Aw,

3

7
w̄(e) +

4

7
z(e) ≤ 11

7
c∗(e) .

Proof. The second inequality in the lemma is obtained by verifying the simple fact that w̄(e) ≤

c∗(e) and z(e) ≤ 2c∗(e) for all e ∈ Aw. To prove the first inequality, we can assume that

1/2 ≤ w(e1) ≤ min{w(e2), w(e3)} ≤ 1 (3.9)

and that the optimal solution π∗ flips only the lightest edge e1, that is,

c∗(t) = w(e1) + 1− w(e2) + 1− w(e3) .

Inequality (3.8) now becomes an inequality on (w(e1), w(e2), w(e3)) ∈ R3 restricted to the

polytope defined by (3.9) and the triangle inequality (3.5).
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The proof can be completed by showing that the global maximum of

f(t) =
3

7
w(t) +

4

7
z(t)− 11

7
c∗(t)

is 0 on the defined polytope using standard techniques of multivariate calculus.

Note that for (w(e1), w(e2), w(e3)) = (1/2, 3/4, 3/4) we obtain w(t) = 2, z(t) = 5/4 and

c∗(t) = 1, so (3.8) is tight. Theorem 3.10 follows from Theorem 3.8 and Lemma 3.9, using β = 3/7

and γ = 11/7:

Theorem 3.10. The best of KwikSort(Gw) and PickAPerm(π1, . . . , πk) is an expected (11/7)-

approximation for RankAggregation.

In using Theorem 3.8 to derive bounds we can also take advantage of a priori knowledge of

the system of weights w. We illustrate this using the special case of only k = 3 voters, a case of

independent interest in the problem of reconstructing phylogenies from gene-order data [31, 89]:

Lemma 3.11. If k = 3, then for all t ∈ T ,

2

5
w(t) +

3

5
z(t) ≤ 6

5
c∗(t)

and for all e ∈ Aw,

2

5
w̄(e) +

3

5
z(e) ≤ 6

5
c∗(e) .

Proof. In this special case, we have that w(e) ∈ {2/3, 1} for all e ∈ Aw, and w(e1) = w(e2) =

w(e3) = 2/3 for all t = (e1, e2, e3) ∈ T , therefore w(t) = 2, z(t) = 4/3 and c∗(t) ≥ 4/3. The

inequalities can now be easily verified.

Theorem 3.12 follows from Theorem 3.8 and Lemma 3.11, using β = 2/5 and γ = 6/5:

Theorem 3.12. The best of KwikSort on Gw and PickAPerm is an expected (6/5)-approximation

for RankAggregation for k = 3 voters.
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3.4 LP-KwikSort for rounding the ranking LP

The techniques developed in the previous sections can be used for the analysis of LP-KwikSort

(Figure 2.5) given a solution x = {xuv}u6=v to the ranking LP (2.4).

Theorem 3.13. LP-KwikSort(V, x) returns a ranking with an expected cost of at most 2.5

(resp. 2) times the value of LP (2.4) on optimal solution x, when the weights satisfy the tour-

nament constraint (resp. the tournament constraint and the triangle inequality). The best of

LP-KwikSort(V, x) and PickAPerm(π1, . . . , πk) returns a ranking with an expected cost of at

most 4/3 times the value of the optimal solution x to LP (2.4), when the weights are induced by

the RankAggregation instance π1, . . . , πk.

Note that these bounds are on the integrality gaps of the LP relaxation for the different cases.

In particular, they imply the sought approximation guarantee (Table 2.1) with respect to the

optimal solution. We remark that the integrality gap of LP (2.4) for MinFAS-Tour ({0, 1}-

weights with the tournament constraint) can be lower bounded by 3/2. This follows from the fact

that for any tournament G = (V,A) on n vertices, there is a feasible solution to the LP that has

value at most n/3 (set xuv = 2/3 for all (u, v) ∈ A) and there exist tournaments with no minimum

feedback arc set of size smaller than n(1/2− ε), where ε is arbitrarily small (random tournaments

or Payley tournaments).

Notational remark: Henceforth, we will use (u, v) to denote unordered pairs of vertices, that is,

sets of two vertices. Additionally, we will use the term triplet to denote sets of three pairs incident

to three vertices. We shall formally write t = (u, v, y) as a shortcut for t = {(u, v), (v, y), (y, u)}.

Abusing notation, we may also write u ∈ t to say that u is incident to the triplet t, although t is

a set of three pairs, and not three vertices.

Proof. We reduce the problem to proving global bounds on certain multinomials in high dimen-

sional polytopes. These bounds will be stated in Lemmas 3.14 and 3.15 and proven in Section 3.5.

Let CKSLP denote the cost of the ordering returned by the rounding algorithm LP-KwikSort.

We define the notion of pairs (u, v) that are charged dangerously and safely. The safe pairs are

charged when one of their incident vertices is chosen as pivot, and the other vertex is in the same

recursive call. The expected contribution of pairs that are charged safely in LP-KwikSort to the
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cost CKSLP is

c∗uv
def
= xuvwvu + xvuwuv . (3.10)

This is closely related to the corresponding contribution to the LP (2.4) value (hence the term

safe):

CLP =
∑

(u,v)

c∗uv .

A pair (u, v) is charged dangerously when a third vertex y is chosen as pivot, all three u, v, y

are in the same recursive call, and u, v are placed on opposite sides of y. The charge is wuv (resp.

wvu) if v (resp. u) is placed on the left side of y and u (resp. v) on its right. In either case, we

charge this cost to the triplet (u, v, y).

We let T denote the set of all triplets over V , and for any t = (u, v, y) ∈ T we denote by At

the event that all of u, v, y are in the same recursive call when one of them is chosen as pivot

(similarly to our definition from Section 3.1). Let pt denote the probability of At. Let Btuv denote

the event that (u, v) is dangerously charged to triplet t, in that order (u is placed on the left, v

on the right). Conditioned on At, it is clear that Btuv occurs with probability 1
3xuyxyv . Indeed,

y is chosen as pivot with probability 1/3, and conditioned on that, u is placed on the left with

probability xuy and v on the right with probability xyv . More formally, for any t = (u, v, y),

Pr[At ∧ Btuv ] = Pr[At]Pr[Btuv |At] =
1

3
ptxuyxyv .

Denote

ptuv
def
=

1

3
xuyxyv .

So the total expected charge on a triplet t ∈ T is ptyt, where

yt
def
=

∑

(u,v)∈t

ptuvwvu + ptvuwuv .

Now we notice that for any t = (u, v, y) and t′ = (u, v, y′) (two triplets sharing a pair (u, v)),

the events At ∧ (Btuv ∨ Btvu) and At′ ∧ (Bt
′

uv ∨ Bt
′

vu) are disjoint, because a pair (u, v) can be
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dangerously charged to exactly one triplet. Thus,

∑

t:(u,v)∈t

pt(p
t
uv + ptvu) ≤ 1 .

The LHS of the last expression is exactly the probability that the pair (u, v) is dangerously charged.

Therefore, the total expected cost of LP-KwikSort is E [CKSLP ] = BKSLP + FKSLP , where

BKSLP =
∑

t

ptyt

FKSLP =
∑

(u,v)



1−
∑

t:(u,v)∈t

pt(p
t
uv + ptvu)



 c∗uv .

The following expression is a rearrangement of the sum CLP =
∑

(u,v) c
∗
uv : CLP = BLP +FLP ,

where

BLP =
∑

t

pt
∑

(u,v)∈t

(ptuv + ptvu)c
∗
uv

FLP =
∑

(u,v)



1−
∑

t:(u,v)∈t

pt(p
t
uv + ptvu)



 c∗uv .

So

FLP = FKSLP ≥ 0 . (3.11)

We have the following lemma. We defer the proof to Section 3.5.

Lemma 3.14. If the weight system satisfies the tournament constraints (resp. tournament con-

straint and triangle inequality), then for any t ∈ T ,

yt ≤ τ
∑

(u,v)∈t

(ptuv + ptvu)c
∗
uv ,

where τ = 5/2 (resp. τ = 2).

As a consequence, in this case, BKSLP ≤ τBLP and we conclude that (for the two cases in

Lemma 3.14) E [CKSLP ] ≤ τCLP .

Although this just gives yet another 2-approximation algorithm for the rank aggregation prob-
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lem, we can do better there. We couple LP-KwikSort with PickAPerm. The expected value

of PickAPerm(π1, . . . , πk) is

E [CPAP ] =
∑

(u,v)

zuv ,

where zuv = 2wuvwvu = 2wuv(1− wuv). We rearrange this sum as follows:

E [CPAP ] = BPAPLP + FPAPLP ,

where

BPAPLP =
∑

t

pt
∑

(u,v)⊆t

(ptuv + ptvu)zuv

FPAPLP =
∑

(u,v)



1−
∑

t:(u,v)∈t

pt(p
t
uv + ptvu)



 zuv .

It is easy to see that

0 ≤ FPAPLP ≤ 2FLP . (3.12)

(This is because zuv ≤ 2c∗uv, and
∑

t:u,v∈t pt(p
t
uv + ptvu) is a probability, hence ≤ 1.) We have the

following lemma, (proof in Section 3.5):

Lemma 3.15. For all t ∈ T ,

2

3
yt +

1

3

∑

(u,v)∈t

(ptuv + ptvu)zuv ≤
4

3

∑

(u,v)⊆t

(ptuv + ptvu)c
∗
uv .

As a consequence, 2
3B

KS
LP + 1

3B
PAP
LP ≤ 4

3BLP .

By (3.11) and (3.12) we have 2
3F

KS
LP + 1

3F
PAP
LP ≤ 4

3FLP , and combining, we conclude that

2

3
E [CKSLP ] +

1

3
E [CPAPLP ] ≤ 4

3
CLP .

This means, in particular, that the best of LP-KwikSort(V, x) and PickAPerm(π1, . . . , πk)

has an expected approximation ratio of at most 4
3 with respect to the LP cost. This completes

66



the proof of the theorem.

3.5 Proof of ranking polyhedral inequalities

In this section we prove Lemmas 3.14 and 3.15. These Lemmas are equivalent to proving certain

inequalities on polynomials in R6. We restate these inequalities for the sake of clarity, and slightly

change notation to reduce indexing.

Lemmas 3.14 and 3.15 state inequalities on a single triplet t, which we fix as (1, 2, 3). The inter-

esting parameters corresponding to t are the weights w12, w23, w31 and the assignment x12, x23, x31

of the LP variables at our fixed optimal solution. Note that the tournament constraint is assumed

on both x and w, and hence we can always substitute w21 = 1 − w12, w23 = 1 − w32 and

w13 = 1− w31 to eliminate degrees of freedom (similarly for x).

For ease of notation, we let

x1
def
= x23 x2

def
= x31 x3

def
= x12

w1
def
= w23 w2

def
= w31 w3

def
= w12

We use x ∈ R3 as shorthand for (x1, x2, x3) and w ∈ R3 as shorthand for (w1, w2, w3). Let Π ⊆ R3

denote the tournament constraint polytope, that is,

Π
def
= {(a1, a2, a3) : 0 ≤ ai ≤ 1, i = 1, 2, 3} . (3.13)

Let ∆ ⊆ Π denote the triangle inequality and tournament constraint polytope, that is

∆
def
= {(a1, a2, a3) ∈ Π : 1 ≤ a1 + a2 + a3 ≤ 2} .

(It is easy to verify that this definition equivalent to the triangle inequality when the tournament

constraint is also assumed).

We define three functions, ks (corresponding to LP-KwikSort), pap (corresponding to PickAPerm),

and lp (corresponding the value of LP (2.4) on the optimal solution). The three functions are real-

valued on R6, and defined as follows:
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ks(x,w) = x1x2w3 + (1− x1)(1− x2)(1− w3)

+ x2x3w1 + (1− x2)(1− x3)(1− w1)

+ x3x1w2 + (1− x3)(1− x1)(1− w2)

pap(x,w) = (x1x2 + (1− x1)(1− x2))2w3(1− w3)

+ (x2x3 + (1− x2)(1− x3))2w1(1− w1)

+ (x3x1 + (1− x3)(1− x1))2w2(1− w2)

lp(x,w) = (x1x2 + (1− x1)(1− x2))(x3(1− w3) + (1− x3)w3)

+ (x2x3 + (1− x2)(1− x3))(x1(1− w1) + (1− x1)w1)

+ (x3x1 + (1− x3)(1− x1))(x2(1− w2) + (1− x2)w2)

(3.14)

Lemma 3.14 is equivalent to showing that f
def
= ks − 5

2 lp ≤ 0 for all (x,w) ∈ ∆ × Π and

g
def
= ks− 2lp ≤ 0 for all (x,w) ∈ ∆×∆. We make two simplification steps.

1. Linearity in w: The functions f and g are linear in w (for x fixed). Therefore f obtains its

maximum on (x,w) for w which is some vertex of Π, and similarly g obtains its maximum

value on (x,w) for w which is some vertex of ∆. For f it suffices to check w = (0, 0, 0)

and w = (0, 0, 1) (due to symmetry), and for g it suffices to check w = (0, 0, 1). Let

f̃(x)
def
= f(x, 0, 0, 0), f̂(x)

def
= f(x, 0, 0, 1) and g̃(x)

def
= g(x, 0, 0, 1). It remains to show that

f̃ , f̂ , g̃ : R3 → R are bounded above by 0 on ∆.

2. Trilinearity in x:For i = 1, 2, 3 the functions f̃ , f̂ and g̃ are linear in xi when xj ’s are fixed

for j ∈ {1, 2, 3} \ {i}. This means that any point x ∈ ∆ such that x + tei ∈ ∆ for all

t ∈ [−ε, ε] for some ε > 0 and some i ∈ {1, 2, 3} (where ei is a standard basis element of

R3) is not a strict local maximum of f̃ , f̂ and g̃ in ∆, so these points x can be ignored. The

points that are left are x ∈ ∆ s.t. that x1 + x2 + x3 = 1 or x1 + x2 + x3 = 2.

Let Hk ⊆ R3 denote the hyperplane x1 + x2 + x3 = k for k = 1, 2, and let ∆k = ∆ ∩ Hk. The

68



closed polytopes ∆k are two dimensional and the polynomials f̃ , f̂ and g̃ are of total degree 3

and maximal degree 2 in each variable. Finding their maxima on ∆1,∆2 is technical and slightly

tedious and we omit the details. The interested reader may find them in [4].

Lemma 3.15 is equivalent to proving that h
def
= 2ks/3+pap/3−4lp/3≤ 0 for all (x,w) ∈ ∆×∆.

The trilinearity in x still holds true for h, so as before we can assume that either x ∈ ∆1 or

x ∈ ∆2. We can assume w.l.o.g. (by symmetry) that x ∈ ∆2, that is, x1 + x2 + x3 = 2. When x

is fixed, then h is a (possibly degenerate) concave paraboloid in w. In case of nondegeneracy, its

unique global maximum is obtained when ∇wh = 0, which can be easily verified to be solved by

w = w∗ def
= (w∗

1 , w
∗
2 , w

∗
3) defined by

w∗
1

def
=

x2x3

x2x3 + (1− x2)(1− x3)
+ 2x1 − 1

w∗
2

def
=

x3x1

x3x1 + (1− x3)(1− x1)
+ 2x2 − 1

w∗
3

def
=

x1x2

x1x2 + (1− x1)(1− x2)
+ 2x3 − 1

(3.15)

(the paraboloid in w is degenerate if and only if any of the denominators in (3.15) are 0, equivalently

xi = 0 and xj=1 for some i, j. But this implies that after possibly permuting coordinates,

x = (1, 1, 0). But h(1, 1, 0,w) = −2w2
3/3 ≤ 0, proving the desired assertion trivially). Since

we are assuming x1 + x2 + x3 = 2, we have that for any 1 ≤ i < j ≤ 3 xi + xj ≥ 1, equivalently

xixj ≥ (1− xi)(1 − xj). Therefore (3.15) implies w∗
i ≥ 1

2 + 2xi − 1 for i = 1, 2, 3. Summing up,

we obtain w∗
1 + w∗

2 + w∗
3 ≥ − 3

2 + 2(x1 + x2 + x3) = 5
2 > 2. In particular, (3.15) implies that

w∗ /∈ ∆, and moreover, w∗ and ∆ are strictly on opposite sides of H2. Now let w′ def
= (w′

1, w
′
2, w

′
3)

be any point in ∆. Consider the straight line ` passing through w′ and w∗, and let w′′ the

intersection of this line with H2 (Figure 3.3). Restricted to ` (and for our fixed x ∈ ∆2) h is

a concave parabola attaining its maximum on w∗. Therefore h(x,w′′) ≥ h(x, w′), and we can

assume in what follows that w = w′′ ∈ H2 (we cannot assume that w′′ is in ∆, though we won’t

be needing this assumption henceforth). We change variables and let h̃ : R4 → R be defined by

h̃(x1, x2, w1, w2)
def
= h(x1, x2, 2− x1−x2, w1, w2, 2−w1 −w2). We reduced the problem to proving

that h̃ ≤ 0 on

{x1, x2 : x1 ≤ 1, x2 ≤ 1, x1 + x2 ≥ 1} × R2 .
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Figure 3.3: The ranking ∆-polytope

It is elementary to verify, using vanishing derivatives, that for (x1, x2) fixed, h̃ is a concave

paraboloid in w1, w2 attaining its maximum at (w1, w2) = (x1, x2). Substituting, we get

h̃(x1, x2, x1, x2) = −2(−1 + x1)(−1 + x2)(−1 + x2 + x3)

which is nonpositive because x1 + x2 ≥ 1 and x1, x2 ≤ 1.

2
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Chapter 4

NP-Hardness of Feedback Arc Set

on Tournaments

All the problems referred to in Table 2.1 in Section 2.6 were previously known to be NP-hard

except for MinFAS-Tour. In this section we show:

Theorem 4.1. Unless NP⊆BPP, MinFAS-Tour has no polynomial time algorithm.

Proof. We reduce to MinFAS-Tour from MinFAS, the problem of finding a minimum feedback

arc set in a general directed graph (not necessarily a tournament). MinFAS is NP-hard [77] (in

fact, it is MAX-SNP-hard, see [64, 92, 93]).

Let G = (V,A) (with |V | = n) be an instance of MinFAS. Suppose we could add a set of edges

AR to G such that (V,A∪AR) is a tournament, and such that exactly half of AR are backward in

any ordering π of V . Then by solving FasTour we would be able to recover the feedback arc set

of G. This is generally impossible. However, if we add the edges AR randomly (i.e. for every u, v

such the neither (u, v) nor (v, u) are in A add (u, v) or (v, u) to AR with equal probability) then for

any π the expected number of backward edges is half |R|. The variance makes this approach fail.

By blowing up G and using a concentration property of the random variable counting the number

of backward edges in AR, we can use this construction (see similar random digraph constructions

in [92, 93]).

We pick an integer k = poly(n) (chosen later). The blow-up digraph Gk = (V k, Ak) is defined
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Figure 4.1: Blowing up G by factor k

as follows:

V k =
⋃

v∈V

{v1, . . . , vk}

Ak = {(ui, vj) : (u, v) ∈ A, i, j ∈ [k]} .

We observe that the minimum feedback arc set of Gk is exactly k2 times the minimum feedback

arc set of G. Indeed, it suffices to consider only rankings π on V k that rank the vertices v1, . . . , vk

as one block for all v ∈ V (as explained in [8], if vi <π vj are not adjacent in the ranking, then

either moving vi immediately to the left of vj or moving vj immediately to the right of vi will

result in a ranking inducing no more feedback edges than π).

Now we turn Gk into a tournament T k = (V k, Ak ∪AkR) using the construction defined above:

For each non-edge {u, v} of Gk, we randomly throw (u, v) or (v, u) into AkR with equal probability,

completing a tournament.

For a ranking π of V k, let fR(π) denote the number of feedback edges in AkR with respect to

π. Denote by µ the expected value of fR(π), which is the same for all π, and can be efficiently

computed. We claim that for k = poly(n), with probability at least 2/3, all rankings π satisfy

|fR(π) − µ| = O((nk)3/2
√

log(nk)). This would imply, using the above observation, that for big

enough k = poly(n) the size of the minimum feedback arc set of T k can be used to efficiently

recover the size of the minimum feedback arc set of G, because (nk)3/2
√

log(nk) = o(k2).

To prove the claim, for any fixed ranking π, set a random indicator variable Xπ
wz for every

non-edge {w, z} of Gk which equals 1 iff the edge between w and z in AkR is backward w.r.t. π. So

fR(π) =
∑
Xπ
wz. A simple application of Chernoff bounds [9] and union bound (over all possible
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(nk)! rankings) completes the proof of the claim.

It follows that unless Fas-Digraph ∈ BPP , we cannot solve FasTour in polynomial time.

We wish to thank Noga Alon for ideas significantly simplifying the proof [8]. Our initial

hardness result was via max-SNP hardness of Fas-DiGraph, and Noga Alon pointed out that the

same idea also works with the weaker NP-hardness.
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Chapter 5

Consensus Clustering

5.1 Definition of problem

Another important case of aggregating information is the problem of integrating possibly contra-

dictory clusterings from existing data sets into a single representative cluster. This problem is

known as consensus clustering or ensemble clustering and can be applied to remove noise and

incongruencies from data sets [54] or combine information from multiple classifiers [103].

The input is a set V of n elements and k clusterings {C1, . . . , Ck}. A clustering C is an equiva-

lence relation over V , that is, a binary relation that is reflexive, symmetric and transitive. We use

the notation u ≡C v to denote that u and v are in the same class (or: u and v are co-clustered).

We use the notation u 6≡C v for the converse (in words: u and v are separated). The problem is,

how do we output one clustering combining as much information as possible from C1, . . . , Ck?

5.2 Majority rules: A Condorcet equivalent

Similarly to the definition of the majority tournament in Chapter 2, we define the pairwise majority

graph

Gmaj = (V,Emaj) (5.1)
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Three vertices and voters are enough to illustrate the clustering-equivalent
of the Condorcet paradox. If the votes are u ≡C1 v ≡C1 y, [u ≡C2 v] 6≡C2 y,
[u ≡C3 y] 6≡C3 v, then Gmaj is as in the drawing.

Figure 5.1: An equivalent to the Condorcet paradox

induced by {C1, . . . , Ck} as follows1: (u, v) ∈ Emaj if the number of integers i for which u ≡Ci v is

greater than the number of integers i for which u 6≡Ci v. In words, the graph has an undirected

edge for all pairs u, v for which the majority of voters co-cluster u and v.

We say that Gmaj contains a paradox if there are three distinct vertices u, v, y ∈ V such that

(see Figure 5.1)

(u, v) ∈ Emaj (u, y) ∈ Emaj (v, y) /∈ Emaj .

Indeed, if Gmaj were paradox-free, then Emaj would be an equivalence relation on V , and

would arguably be the best solution to the aggregation problem.

5.3 A Kemeny approach equivalent

As we did for the ranking problem, we consider the following median optimization problem: Let

d denote a metric on clusterings measuring pairwise disagreements. More precisely,

d(C,D)
def
= |{(u, v) : (u ≡C v and u 6≡D v) or (u ≡D v and u 6≡C v)}| (5.2)

In words, d(C,D) measures the number of pairs (u, v) on which C and D disagree: one co-clusters

them and the other separates between them. This measure of distance is also known as the

1In this chapter and the next, unless otherwise stated, (u, v) denotes an unordered pair.
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Rand [97] distance. It is argued both theoretically and experimentally in [97] that it is a useful

measure for evaluating quality of clustering algorithms.

For example, if V = {A,B,C,D}, C = {{A,B}, {C,D}} and2 D = {{A,B,C}, {D}} then

d(C,D) = 3 because C and D disagree exactly on the pairs (C,D), (A,C) and (B,C). We let

ConsensusClustering denote the median problem with respect to d, that is, given clusterings

C1, . . . , Ck, find a clustering C minimizing

cost1(C) =

k∑

i=1

d(C, Ck) . (5.3)

Clearly, minimizing cost1 on instances in which Gmaj is paradox-free can be done by taking

u ≡C v ⇐⇒ (u, v) ∈ Emaj .

5.4 Correlation clustering on complete graphs

Not surprisingly, ConsensusClustering is related to a well-known graph-theoretical problem

called CorrelationClustering [15]. In CorrelationClustering, we are given an undirected

graph G = (V,E) with a label of either (+) or (−) on every edge. We denote by E+ the set of

(+)-edges and by E− the set of (−)-edges, so E = E+ ∪ E− and E+ ∩ E− = ∅. The goal is to

find a clustering C of V minimizing (see Figure 5.2)

costG(C) =|{(u, v) : u ≡C v and (u, v) ∈ E−}|+

|{(u, v) : u 6≡C v and (u, v) ∈ E+}| .

In words, we are looking for the clustering minimizing the pairwise disagreement with G. In

what follows, we will only deal with CorrelationClustering on complete graphs, namely,

E+ ∪ E− =

(
V

2

)

and we will use E as a shortcut for
(
V
2

)
.

2This is shorthand for A ≡C B, C ≡C D, A 6≡C C, A 6≡C D, B 6≡C C, B 6≡C D.
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Two solutions to a CorrelationClustering instance: Solution (A)
pays for (y, v) ∈ E− because y and v are clustered together and for (v, z) ∈
E+ because v and z are separated. Solution (B) (optimal) pays only for
(u, v) ∈ E+ because u and v are separated.

Figure 5.2: CorrelationClustering

In weighted CorrelationClustering, we are given G = (V,w+, w−), where w+ and w− are

nonnegative weight functions on unordered pairs (u, v) ∈ E. We use w+
uv and w−

uv as shorthand for

w+(u, v) and w−(u, v). The goal is to find a clustering C of V minimizing the following objective

function:

costG(C) =
∑

u≡Cv

w−
uv +

∑

u6≡Cv

w+
uv .

Clearly, if the weights are in {0, 1} for all pairs (u, v) and also w+
uv + w−

uv = 1, then this is

exactly CorrelationClustering on complete graphs.

Definition 5.1. If w+
uv +w−

uv = 1 for all pairs (u, v) ∈ E, then w is said to satisfy the tournament

constraint.

(Note that we abuse the meaning of a tournament, usually referring to directed graphs.)

Given an input {C1, . . . , Ck} to ConsensusClustering, consider the following system w of

weights (see example in Figure 5.3):

w+
uv =

1

k
|{i ∈ [k] : u ≡Ci v}|

w−
uv =

1

k
|{i ∈ [k] : u 6≡Ci v}|

(5.4)
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Weighted instance G induced by V = {u, v, y, z}, k = 3 voters and
C1 = {{u, v, y, z}}, C2 = {{u, v}, {y, z}}, C3 = {{u, v, z}, {y}} .

Figure 5.3: From ConsensusClustering to weighted CorrelationClustering

Clearly, for the corresponding weighted graph G = (V,w+, w−), costG(π) is (up to a normalization

factor of k) equivalent to cost1 from (5.3). Henceforth, when G is clear from the context, we will

use cost(C) to denote costG(C), our ConsensusClustering objective function.

Definition 5.2. If w−
uy ≤ w−

uv + w−
vy for all distinct u, v, y ∈ V , then w is said to satisfy the

triangle inequality.

Claim 5.3. The weight system induced by ConsensusClustering in (5.4) satisfies both the

tournament constraint and the triangle inequality.

Proof. The tournament constraint is satisfied because all voters Ci either satisfy u ≡Ci v (con-

tributing to w+
uv) or u 6≡Ci v (contributing to w−

uv). The triangle inequality follows from the

simple observation that every voter that separates u from y (satisfies u 6≡Ci y) either separates u

from v or v from y.
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5.5 Previous work

CorrelationClustering has been studied both on general and complete graphs. Both min-

imization and maximizing versions have been investigated. Bansal, Blum and Chawla gave the

first constant factor approximation for the problem of minimizing disagreements on the complete

graph [15]. Charikar, Guruswami and Wirth improved this approximation factor to 4 by rounding

a linear program [30]. When the edge weights satisfy the tournament constraint, the best previous

approximation factor was 7 [15,59]. When the edge weights satisfy the tournament constraint and

the triangle inequality, the best previous approximation factor was 3 [59].

CorrelationClustering on complete graphs is MAX-SNP-hard [30] and ConsensusClus-

tering is NP-hard [105], however, it is not known to be NP-hard if the number of input clusters

is constant [54]. Analogously to RankAggregation (and just like any median problem), one of

the voters’ clusterings Ci is a 2-approximation. We will use a randomized version PickACluster

(Figure 6.2) of this simple algorithm in our analysis, with the same (expected) approximation

guarantee.

5.6 New algorithms and results

We give improved algorithms for ConsensusClustering and for certain weighted cases of Cor-

relationClustering. Just like in the RankAggregation case, we start with a very sim-

ple, almost greedy algorithm for approximating CorrelationClustering on complete graphs:

KwikCluster (Figure 5.4).

The algorithm is simple: We choose a random pivot u ∈ V uniformly at random, and form a

cluster C consisting of u and all v connecting to u via a (+)-edge. Then we recurse on V \C. We

obtain a 3-approximation for CorrelationClustering on complete graphs, improving the best

known 4 [30]. Similarly to our analysis in Chapter 3, will argue this bound by lower-bounding the

optimal solution by packing paradox-triangles in G.

To apply KwikSort to weighted CorrelationClustering, we define the majority instance

Gw = (V,E+
w , E

−
w ) corresponding to G = (V,w+, w−):

Definition 5.4. Given an instance (V,w+, w−) of weighted CorrelationClustering, the cor-
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KwikCluster(G = (V,E+, E−))

A recursive algorithm for CorrelationClustering on complete graphs
if V = ∅ then return ∅
pick random pivot u ∈ V
set C ← {u}, V ′ ← ∅

for all v ∈ V \{u}:
if (u, v) ∈ E+ then

add v to C
else (if (u, v) ∈ E−)

add v to V ′

set G′ ← subgraph induced by V ′

return clusters C,KwikCluster(G′)

V

PSfrag replacements
u

(+)

(+)
(+)

(+)

(−)

(−)

(−)
C

Figure 5.4: Pseudocode and diagram for KwikCluster
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responding majority instance Gw = (V,E+
w , E

−
w ) is defined by setting (u, v) ∈ E+

w if w+
uv > w−

uv ,

otherwise (u, v) ∈ E−
w , for all pairs u, v.

Note that if G = (V,w+, w−) is induced by an instance of ConsensusClustering as in (5.4),

then Gw is equivalent3 to Gmaj defined in (5.1). By outputting C = KwikCluster(Gw) we obtain

an algorithm for weighted CorrelationClustering and, in particular for ConsensusCluster-

ing. This algorithm is a 3-approximation when the weights satisfy the tournament constraint, and

a 2-approximation when they satisfy both the tournament constraint and the triangle inequality.

By taking the best of KwikCluster and PickACluster we obtain an (11/7)-approximation for

ConsensusClustering.

KwikCluster LP-KwikCluster Previous

CorrelationClustering
on complete graphs

3 5/2 4 [30]

Weighted
CorrelationClustering
w/ Tournament Constraint

5 5/2 7 [15, 59]

Weighted
CorrelationClustering
w/ Tournament Constraint

& Triangle Inequality

2 2 3 [59]

ConsensusClustering
(Better of PickACluster & . . .)

11/7 4/3 2

Table 5.1: Summary of results for clustering

Additionally, we consider the following LP [30] for weighted CorrelationClustering:

minimize
∑

(u,v)∈E

(
x+
uvw

−
vu + x−uvw

+
uv

)

x−uy ≤ x−uv + x−yv ∀u, v, y

x+
uv + x−uv = 1 ∀u, v

x+
uv , x

−
uv ≥ 0 ∀u, v

(5.5)

3In Gmaj we used edges to denote E+ and non-edges to denote E−.
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Clearly, if we could restrict x+
uv , x

−
uv to be in {0, 1} for all u, v then the corresponding IP would

be an exact mathematical program for weighted CorrelationClustering. Indeed, a feasible

integral solution gives rise to a clustering C satisfying u ≡C v ⇐⇒ x+
uv = 1, and the objective

function is then exactly cost(C).

LP-KwikCluster(G = (V, x+, x−))

A recursive algorithm for rounding the LP for
weighted CorrelationClustering. Given an
LP solution {x+

uv , x
−
uv}u<v, returns a clustering

of the vertices V .

if V = ∅ then return ∅
pick random pivot u ∈ V
set C ← {u}, V ′ ← ∅

for all v ∈ V \{u}:
with probability x+

uv

add v to C
else (with probability x−uv)

add v to V ′

set G′ ← subgraph induced by V ′

return clusters C, LP-KwikCluster(G′)

Figure 5.5: Pseudocode for LP-KwikCluster

Assuming we have an optimal (fractional) solution x = (x+
uv , x

−
uv) to the LP, we run algorithm

LP-KwikCluster (V, x+, x−) (Figure 5.5) to round it. This is similar to KwikCluster, except

that after choosing the pivot vertex, instead of deterministically placing vertices in the pivot’s

cluster, we randomly decide based on the value of the corresponding LP variables. This results

in vastly improved approximation factors for the different scenarios we consider. In particular, by

taking the best of LP-KwikSort and PickACluster, we obtain a (4/3)-approximation factor

for ConsensusClustering. See Table 5.1 for a complete summary of the new approximation

factors.
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Chapter 6

Analysis of Clustering Algorithms

Before we prove the results for the clustering problems, we make a few notational remarks. Recall

that E is shorthand for
(
V
2

)
, and (u, v) ∈ E refers to unordered pairs of vertices. In what follows

we will use the term triangles. A triangle will always be a subset of three edges in E incident

to three distinct vertices u, v, y ∈ V . For ease of notation, we will write (u, v, y) to refer to the

triangle over distinct vertices u, v, y ∈ V , namely,

(u, v, y)
def
= {(u, v), (v, y), (y, u)} ⊆ E .

We may abuse notation and write u ∈ t to say that u is a vertex in some triangle t, though we

keep in mind that t is a set of three edges and not three vertices.

If G = (V,E+, E) is a complete CorrelationClustering graph then (u, v, y) is a paradox

triangle in G if exactly two of (u, v), (v, y), (y, u) belong to E+. This is exactly the paradox

presented in Section 5.2. Paradox triangles will play a role in the clustering analysis similar to

that of directed triangles in Chapter 3.
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When a pivot is chosen among the vertices of a paradox-triangle t =
(u, v, y), the edge not incident to the pivot is violated and charges the
triangle a unit cost. In (A) u is the pivot, and in (B) v is the pivot.

Figure 6.1: Charging paradox triangles

6.1 KwikCluster for CorrelationClustering on complete

graphs

Let G = (V,E+, E−) be a complete CorrelationClustering instance. Consider algorithm

KwikCluster (Figure 5.4) for approximating it.

Theorem 6.1. The output of KwikCluster(G) is a random expected 3-approximation solution

for CorrelationClustering on complete graphs.

Proof. Let C be the (random) output of KwikCluster(G). The main idea is to charge edges

contributing to cost(C) to paradox triangles (Figure 6.1). An edge (u, v) ∈ E+ is charged if u and

v are separated in C. This happens if a third vertex y ∈ V is chosen as pivot when all of y, u, v

are input to the same recursive call to KwikCluster, and either

(y, u) ∈ E+ and (y, v) ∈ E−

or

(y, v) ∈ E+ and (y, u) ∈ E− .

The violation of (u, v) in this case will be charged to the triangle (u, v, y).

An edge (u, v) ∈ E− is charged if u and v are co-clustered in C. This happens if a third vertex
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y ∈ V was chosen as pivot, and

(y, u), (y, v) ∈ E+ .

The violation of (u, v) will be charged to the triangle (u, v, y).

In both cases we notice that a triangle consisting of (u, v, y) can be charged for a violation only

if it is a paradox triangle. The proof now is very similar to that of Theorem 3.1 for ranking. We

let T denote the set of paradox triangles in G. Remember that exactly one edge of t belongs to

E−. we argue that there is a bijection between the charged triangles and edges in violation. We

denote by pt the probability that triangle t is charged, hence E [cost(C)] =
∑

t∈T pt. Finally, we

argue that
∑

t∈T pt/3 is a lower bound for the optimal solution, because {pt/3}t∈T is a packing of

triangles t ∈ T , and any packing of the triangles lower bounds the optimal solution by LP duality.

This proves the expected 3-approximation guarantee.

6.2 KwikCluster for weighted CorrelationClustering

Now let (V,w+, w−) be a weighted Correlation-Clustering instance, where w+, w− ∈ (R+)E .

Unlike weighted FasTour, we will only consider weight systems that satisfy the tournament

constraint w+
uv + w−

uv = 1.

Consider running KwikCluster(Gw) as an approximation algorithm for instance G, where

Gw = (V,E+
w , E

−
w ) is the (unweighted) majority instance attached to G, as in Definition 5.4.

Theorem 6.2 is analogous to Theorem 3.7:

Theorem 6.2. Algorithm KwikCluster(Gw) is a 5-approximation (resp. 2-approximation) for

weighted CorrelationClustering with the tournament constraint (resp. with the tournament

constraint and triangle inequality).

Theorem 6.2 is a consequence of the following Theorem 6.3 and Lemma 6.4. The proof is

almost identical to that of Theorem 3.7, with paradox triangles (Figure 5.1) in Gw replacing the

role of directed triangles in tournaments. For each edge e = (u, v) ∈ E we let

w(e) =







w+
uv w+

uv > w−
uv

w−
uv otherwise

w̄(e) =







w−
uv w+

uv > w−
uv

w+
uv otherwise .
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For each paradox triangle t = {e1, e2, e3} ⊆ E in Gw we assign a weight:

w(t) = w(e1) + w(e3) + w(e3) .

We let T denote the set of paradox triangles in Gw.

Now we define a random variable CKC = costG(C), where C is the output of KwikCluster(Gw).

We let COPT =
∑

e∈E c
∗(e) denote the cost of some fixed optimal solution C∗ for G, where c∗(e)

is the charge for edge e (i.e. either w(e) if C∗ violates e, or w̄(e) otherwise). Finally, for all

t = {e1, e2, e3} ∈ T , let c∗(t) denote c∗(e1) + c∗(e2) + c∗(e3).

Theorem 6.3. For an instance G = (V,w+, w−) of weighted CorrelationClustering, if there

exists a constant α > 0 such that w(t) ≤ αc∗(t) for all t ∈ T , then E [CKC ] ≤ αCOPT , i.e.

KwikCluster(Gw) is an expected α-approximation solution.

Proof. As in the proof of Theorem 3.5, we charge parts of CKC to events in the probability space

of KwikCluster. Whenever an edge of some paradox triangle t = {e1, e2, e3} ∈ T is in violation

due to the choice of one of its vertices as pivot, we charge the cost of the violated edge (the one

not incident to the pivot) to t. Conditioned on t being charged, each one of its three edges is

equally likely to be violated, and hence its expected charge is (w(e1) + w(e2) + w(e3))/3. If pt is

the probability that t is charged, we get

CKC = BKC + FKC ,

where BKC counts the cost charged to paradox triangles, and FKS counts the rest:

BKC =
∑

t∈T

1

3
ptw(t)

FKC =
∑

e∈E

(

1−
∑

t∈T : e∈t

1

3
pt

)

w̄(e)

Similarly, we decompose COPT as:

COPT = BOPT + FOPT ,
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where

BOPT =
∑

t={e1,e2,e3}∈T

1

3
pt(c

∗(e1) + c∗(e2) + c∗(e3)) =
∑

t∈T

1

3
ptc

∗(t)

FKC =
∑

e∈E

(

1−
∑

t∈T : e∈t

1

3
pt

)

c∗(e) .

Recall that w̄(e) ≤ c∗(e) and that
(
1−∑t∈T : e∈t

1
3pt
)
≥ 0 for all e ∈ E (the latter inequality

captures the fact that only one paradox triangle can be charged for the violation of a given pair).

The statement of the theorem follows.

Lemma 6.4. If the weights satisfy the tournament constraint (w+
uv+w−

uv = 1), then w(t) ≤ 5c∗(t)

for all t ∈ T . If, in addition, the weights satisfy the triangle inequality (w−
uv ≤ w−

vy + w−
yu), then

w(t) ≤ 2c∗(t).

Proof. For the tournament constraint only case, we fix t = {e1, e2, e3} ∈ T and we can assume

w.l.o.g. that 1/2 ≤ w(e1) ≤ w(e2) + w(e3) ≤ 1. It suffices to prove that

w(t) = w(e1) + w(e2) + w(e3) ≤ 5w(e1)

because clearly w(e1) ≤ c∗(e1) + c∗(e2) + c∗(e3) (any optimal solution has to violate at least one

edge of t, and therefore pays at least the price of the lightest one). Proving this is identical to the

first part of the proof of Theorem 3.6.

To show the second part, we notice that the tournament constraint together with the triangle

inequality imply:

w(e1) ≤ w̄(e2) + w̄(e3)

w(e2) ≤ w̄(e3) + w̄(e1)

w(e3) ≤ w̄(e1) + w̄(e2)

(6.1)

(Note that if, say, e1 ∈ E−
w , e2 ∈ E+

w , e3 ∈ E+
w then the first inequality in (6.1) is exactly the triangle

inequality, but the other two inequalities require both the triangle inequality and the tournament

constraint1 ). The proof continues as in the second part of the proof of Theorem 3.6.

1It is possible to formally define the triangle inequality constraint to immediately yield (6.1) without the need of
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Theorem 6.2 implies that KwikCluster(Gw) is an expected 2-approximation for the Con-

sensusClustering instance {C1, . . . , Ck}, where G is the induced weighted CorrelationClus-

tering instance.

6.3 An improved approximation ratio for ConsensusClus-

tering

As we did for RankAggregation in Section 3.3, by coupling KwikCluster and PickACluster

we obtain an improved algorithm for ConsensusClustering.

Theorem 6.5. The best of KwikCluster(Gw) and PickACluster(C1, . . . , Ck) has an expected

approximation ratio of at most 11
7 for ConsensusClustering.

PickACluster(C1, . . . , Ck)
pick i ∈ [k] uniformly at random

return Ci

Figure 6.2: Pseudocode for PickACluster

Proof. We repeat the proof of Theorem 6.5 almost verbatim. We let the random variable CPAC

denote the cost of C = PickACluster(C1, . . . , Ck). We notice

E [CPAC ] =
∑

e∈E

z(e) ,

where z(e) is the expected cost PickACluster pays on edge e ∈ E. With probability w(e) this

cost is w̄(e), and with probability w̄(e), this cost is w(e). Therefore, z(e) = 2w(e)w̄(e). We now

decompose E [CPAC ] to FPAC and BPAC similarly to (3.7).

We decomposed the optimal cost COPT , the expected KwikCluster cost E [CKC ] and the

expect PickACluster cost E [CPAC ] to B-costs (charging paradox-triangles in Gw) and to F -

the tournament constraint, but we prefer Definition 5.2 because it captures the idea that w−
uv is a metric measuring

the amount of “separation” between u and v.
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costs (charging edges). The required approximation guarantee is argued separately for the B-costs

and for the F -costs, using equivalents to Theorem 3.8 and Lemma 3.9.

6.4 LP-KwikCluster for rounding the clustering LP

We now consider the analysis of LP-KwikCluster on CorrelationClustering and Consen-

susClustering. Let x = {x+
uv , x

−
uv}(u,v)∈E be an optimal solution to the LP (5.5) corresponding

to an instance G = (V,w+, w−) of weighted CorrelationClustering. (Recall that E is simply

our shorthand for
(
V
2

)
). The following theorem establishes the results in the center column of

Table 5.1.

Theorem 6.6. LP-KwikCluster(V, x+, x−) returns a clustering with an expected cost of at

most 2.5 (resp. 2) times the value of LP (5.5) on optimal solution x, when the weights satisfy

the tournament constraint (resp. the tournament constraint and the triangle inequality). The

best of LP-KwikCluster(V, x+, x−) and PickACluster(C1, . . . , Ck) returns a clustering with

an expected cost of at most 4/3 times the value of the optimal solution x to LP (5.5), when the

weights are induced by the ConsensusClustering instance C1, . . . , Ck.

Proof. Define

c∗uv = x+
uvw

−
uv + x−uvw

+
uv .

Let CLP denote the value of LP (5.5) on x, which can be written as

CLP =
∑

(u,v)∈E

c∗uv .

Let T be the set of all triangles over V , namely,

T = {(u, v, y) : u, v, y ∈ V distinct} .

For a triangle t = (u, v, y) ∈ T , as usual, we let At denote the event that one of u, v, y was

chosen as pivot when the other two vertices are in the same recursive call to LP-KwikCluster.

Let pt = Pr[At].
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Let Bt{v}y ⊆ At denote the event that u was the vertex chosen as pivot, v is co-clustered with

u, and y is separated from u. The probability pt{v}y of Bt{u}y conditioned on At is

1

3
x+
uvx

−
uy ,

because each vertex was equally likely to be chosen as pivot (hence 1/3), and x+
uv (resp. x−uy) is the

probability of v co-clustered with u (resp. y separated from u). The cost corresponding to (v, y)

incurred by this choice is w+
vy , because v and y are separated in the output of LP-KwikCluster.

This cost is charged to t.

Let Bt{vy} ⊆ At denote the event that u was the vertex chosen as pivot, and both v, y are

co-clustered with u. The probability pt{vy} of Bt{vy} conditioned on At is clearly

1

3
x+
uvx

+
uy .

The cost corresponding to (v, y) incurred by this choice is w−
vy , because v and y are co-clustered

in the output of LP-KwikCluster. This cost is, again, charged to t.

Finally, let Byuv ⊆ At denote the event that u was the vertex chosen as pivot, and both v, y are

separated from u. The cost corresponding to (v, y) incurred by this choice is yet to be determined

in a deeper recursive call to LP-KwikCluster, and t is not charged in this case.

The expected charge on t conditioned on At, which we denote by yt, is exactly:

yt
def
=

∑

e=(u,v)∈t

(

(pt{u}v + pt{v}u)w
+
uv + pt{uv}w

−
uv

)

.

We now claim that for all e = (u, v) ∈ E,

∑

t:e∈t

pt(p
t
{u}v + pt{v}u + pt{uv}) ≤ 1 . (6.2)

Indeed, the expression inside the sum in (6.2) is exactly the probability that the cost corresponding

to e incurred by LP-KwikSort is charged to a triangle t incident to e. It is easy to see that

this cost can be charged to at most one triangle, and hence (6.2) is a sum of probabilities of

pairwise-disjoint events, in particular, a probability.
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Let CKCLP denote the cost of the output clustering of LP-KwikCluster. We decompose the

expected cost E [CKCLP ] to BKCLP , corresponding to triangle charges, plus FKCLP , corresponding to

edge charges (all the rest). Note that an edge e = (u, v) ∈ E is charged to itself exactly if one of

its endpoints was chosen as pivot, when both its endpoints are input to the same recursive call to

LP-KwikCluster. Conditioned on this event, the expected charge is exactly c∗uv , matching the

corresponding LP charge. Using our notation, we can now write:

BKCLP =
∑

t

ptyt

FKCLP =
∑

e=(u,v)∈E

(

1−
∑

t: e∈t

pt(p
t
{u}v + pt{v}u + pt{uv})

)

c∗uv .

Using our analysis of the probability space induced by the execution of LP-KwikCluster,

we can also decompose the LP value CLP as BLP + FLP , where

BLP =
∑

t

pt
∑

e=(u,v)∈t

(pt{u}v + pt{v}u + pt{uv})c
∗
uv

FLP =
∑

e=(u,v)∈E

(

1−
∑

t:e∈t

pt(p
t
{u}v + pt{v}u + pt{uv})

)

c∗uv .

The proof of the following lemma is deferred to Section 6.5.

Lemma 6.7. If the weight system satisfies the probability constraints (resp. probability constraints

and triangle inequality constraints), then for any t ∈ T ,

yt ≤ τ
∑

e=(u,v)∈t

(pt{u}v + pt{v}u + pt{uv})c
∗
uv ,

where τ = 5/2 (resp. τ = 2).

As a result, we get (using (6.2)) that

E [CKCLP ] = BKCLP + FKCLP ≤ τ(BLP + FLP ) = τCLP ,

for τ = 2 or τ = 5/2 (depending on the weights). This proves the first part of the theorem.
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For ConsensusClustering: Let CPAC denote the value of PickACluster. Clearly,

E [CPAC ] =
∑

e=(u,v)∈E

zuv ,

where zuv = 2w+
uvw

−
uv is the expected contribution of pair (u, v) ∈ E to the cost. Again, decompose

E [CPAC ] as BPACLP + FPACLP , where

BPACLP =
∑

t

pt
∑

e=(u,v)∈t

(pt{u}v + pt{v}u + pt{uv})zuv

FPACLP =
∑

e=(u,v)∈E

(

1−
∑

t:e∈t

pt(p
t
{u}v + pt{v}u + pt{uv})

)

zuv .

The proof of the following lemma is deferred to Section 6.5.

Lemma 6.8. For all t ∈ T ,

2

3
yt +

1

3

∑

e=(u,v)∈t

(pt{u}v + pt{v}u + pt{uv})zuv ≤
4

3

∑

e={u,v}∈t

(pt{u}v + pt{v}u + pt{uv})c
∗
uv .

Lemma 6.8 implies (using (6.2)) that

2

3
BKSLP +

1

3
BPACLP ≤ 4

3
BLP .

It is easy to see that zij ≤ 2c∗ij , therefore, FPACLP ≤ 2FLP and consequently

2

3
FKSLP +

1

3
FPACLP ≤ 4

3
FLP .

Combining, we conclude that 2
3E [CKSLP ] + 1

3E [CPAC ] ≤ 4
3CLP . This proves that by flipping a

(2/3, 1/3)-biased coin and returning the output of LP-KwikCluster or PickACluster based

on the outcome is an expected (4/3)-approximation algorithm for ConsensusClustering. In

particular, the better of the two is a (4/3)-approximation algorithm. This completes the proof of

Theorem 3.13.
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6.5 Proof of clustering polyhedral inequalities

We prove Lemmas 6.7 and 6.8. Fix a triangle t consisting of three arbitrary vertices t = (1, 2, 3) ⊆

V . The two lemmas state inequalities on a single triangle t which we can assume to equal our

fixed triangle, without loss of generality. The interesting parameters corresponding to t are the

weights w−
12, w

−
23, w

−
23 and the assignment x−12, x

−
23, x

−
31 of the LP variables at our fixed optimal

solution. Note that the tournament constraint is assumed on both x and w, and hence we can

always substitute w+
12 = 1− w−

12, w
+
23 = 1− w−

23 and w+
31 = 1− w−

31 (similarly for x).

For ease of notation, we let

x1
def
= x−23 x2

def
= x−31 x3

def
= x−12

w1
def
= w−

23 w2
def
= w−

31 w3
def
= w−

12

Let Π ⊆ R3 denote the tournament constraint polytope as defined in (3.13). Let ∆ ⊆ Π denote

the triangle inequality and tournament constraints polytope for clustering, that is,

∆ = {(a1, a2, a3) ∈ Π : a3 ≤ a1 + a2, a1 ≤ a2 + a3, a2 ≤ a3 + a1} .

We define three functions, kc (corresponding to LP-KwikCluster), pac (corresponding to

PickACluster), and lp (corresponding to the value of LP(5.5) on the fixed optimal solution).
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The functions are real-valued on R6 and defined as follows:

kc(x,w) = (1− x1)(1− x2)w3 + (x1(1− x2) + (1− x1)x2)(1− w3)

+ (1− x2)(1− x3)w1 + (x2(1− x3) + (1− x2)x3)(1− w1)

+ (1− x3)(1− x1)w2 + (x3(1− x1) + (1− x3)x1)(1− w2)

pap(x,w) = ((1− x1)(1− x2) + (1− x1)x2 + x1(1− x2))2w3(1− w3)

+ ((1− x2)(1− x3) + (1− x2)x3 + x2(1− x3))2w1(1− w1)

+ ((1− x3)(1− x1) + (1− x3)x1 + x3(1− x1))2w2(1− w2)

lp(x,w) = ((1− x1)(1− x2) + (1− x1)x2 + x1(1− x2))(x3(1− w3) + (1− x3)w3)

+ ((1− x2)(1− x3) + (1− x2)x3 + x2(1− x3))(x1(1− w1) + (1− x1)w1)

+ ((1− x3)(1− x1) + (1− x3)x1 + x3(1− x1))(x2(1− w2) + (1− x2)w2)

(6.3)

Lemma 6.7 is equivalent to showing that f = kc − 5
2 lp ≤ 0 for all (x,w) ∈ ∆ × Π and

g = kc− 2lp ≤ 0 for all (x,w) ∈ ∆×∆. We make the two simplification steps as before.

1. Linearity in w: The functions f and g are linear in w (for x fixed). Arguing as before, it

suffices to analyze f on w = (0, 0, 0), w = (0, 0, 1), w = (0, 1, 1) and w = (1, 1, 1), and g on

w = (0, 0, 0),w = (0, 1, 1),w = (1, 1, 1).

2. Trilinearity in x: For i = 1, 2, 3 the functions f and g are linear in xi when xj ’s are fixed for

j ∈ {1, 2, 3} \ {i}. This means that any point x ∈ ∆ such that x + tei ∈ ∆ for all t ∈ [−ε, ε]

for some ε > 0 and some i ∈ {1, 2, 3} (where ei is a standard basis element of R3) is not a

strict local maximum of f, g in ∆, so these points x can be ignored. The points that are left

are x ∈ ∆1 ∪∆2 ∪∆3 where ∆i = ∆ ∩Hi for i = 1, 2, 3 and H1 = {(a1, a2, a3) ∈ R3 : a1 =

a2 + a3}, H2 = {(a1, a2, a3) ∈ R3 : a2 = a3 + a1}, H3 = {(a1, a2, a3) ∈ R3 : a3 = a1 + a2}

(Figure 6.3).

The functions f, g restricted to one of the finitely many “interesting” points w and to x ∈ ∆i

for some i ∈ {1, 2, 3} can be represented as polynomials of total degree 3 and maximal degree 2
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Figure 6.3: The clustering ∆-polytope

in each variable. We omit the tedious yet elementary details of showing that in these domains,

f, g ≤ 0.

Lemma 6.8 is equivalent to proving that h = 2kc/3+pap/3−4lp/3≤ 0 for all (x,w) ∈ ∆×∆.

We prove this assertion as follows. Using symmetries of h: Let (x,w) be some local maximum

of h in ∆ × ∆. Assume there is an index i ∈ {1, 2, 3} such that all of xi, xi+1, wi, wi+1 /∈ {0, 1}

(the index arithmetic is modulo 3). Without loss of generality, assume that x1, x2, w1, w2 /∈ {0, 1}.

Since (x,w) is a local maximum of h on ∆×∆, and since x1, x2, w1, w2 /∈ {0, 1}, the derivatives

of h on the hyperplane H = {(x,w)+ t(1,−1, 0, 0, 0, 0)+ s(0, 0, 0, 1,−1, 0) : t, s ∈ R} must vanish

at t = s = 0. One verifies that h is a polynomial of total degree 2 in t, s on H , and the deriva-

tives vanish at the unique point t = (x2 − x1)/2, s = (w2 − w1)/2. Therefore, we may assume

that x1 = x2 and w1 = w2. Now if in addition x3, w3 /∈ {0, 1} then we use the same argument

(switching the roles of the variables), and we can assume that x1 = x2 = x3, w1 = w2 = w3. It is

trivial to show that h ≤ 0 under this constraint.

Boundary cases: We can now assume that either: (1) at least two of x1, x2, x3, w1, w2, w3 are

in {0, 1}, or, (2) x1 = x2, w1 = w2 and at least one of x3, w3 are in {0, 1}. In addition, the function

h is trilinear in x, so we may assume (as above) that x ∈ H1 ∪H2 ∪H3. This reduces the problem

to proving inequalities for polynomials of total degree at most 4 and maximal degree at most 3
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(resp. 2) in each x-variable (resp. w-variable), in 3-dimensional polytopes. We omit the tedious

yet elementary details of this case-by-case proof.
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Chapter 7

Concluding Remarks

RankAggregation using sorting algorithms

KwikSort is in fact the well-known quick-sort algorithm for ordered data with transitivity vi-

olations. Can we use other standard sorting algorithms, such as merge-sort to obtain similar

approximation algorithms?

Derandomization

Derandomization of the algorithms analyzed in this work is an interesting problem. Recently,

there has been considerable progress in this direction. Anke van Zuylen [104] shows how to

derandomize the LP rounding algorithm for both ranking and clustering problems with either

probability constraints or triangle inequality constraints, with slightly weaker bounds. She also

achieves bounds for the triangle inequality constraints only case for clustering, assuming a slightly

stronger and more descriptive notion of the triangle inequality which we did not consider here.

Extending her analysis to an algorithm that takes the best of the new (deterministic) LP-rounding

algorithm and PickAPerm (or Pick-A-Cluster) is an interesting open question. In addition,

Coppersmith et. al. show that ordering a weighted tournament by in-degree is a 5-approximation

for weighted Fas-Tournament with probability constraints.
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Tight instances

Finding tight examples for the algorithms presented in this work is an interesting problem. For

weighted weighted Fas-Tournament and weighted Correlation-Clustering with probability

constraints, Warren Schudy communicated the following tight example for the KwikSort and

KwikCluster, respectively. It suffices to consider unweighted instances (weights are 0, 1). For

the ranking problem, take an acyclic tournament and flip the edge connecting the lowest and the

highest ranked vertices. The optimal solution pays 1. KwikSort pays n − 2 if the lowest or

highest ranked vertices are chosen as pivot in the first step, otherwise 1. Therefore, the expected

ratio is 3(n − 2)/n, which tends to 3 as n → ∞. For the clustering problem set all edges to (+)

except for one which is set to (−). The optimal solution pays 1 by clustering all the vertices

together. KwikCluster pays n − 2 if one of the two vertices incident to the unique (−)-edge

is chosen as pivot in the first step, otherwise the optimal cost of 1, giving an expected ratio of

3(n− 2)/n. Finding tight examples for the triangle inequality cases as well as for the aggregation

problems remains an open problem.

Generalized ranking

One of the main motivations for RankAggregation comes from fighting search engine spam

[43,44]. By aggregating outputs of different search engines, the effect of spam (artificially increasing

the rank of a web page with respect to a search engine) can be reduced. In this application, however,

it is more likely that each search engine provides us with a partial list of web pages (relevant to a

given search query). Fagin et al [50] discuss the difficulties of dealing with partial (top-k) rankings

and compare several methods of measuring the distance between two top-k lists. A top-k list

can be viewed as a special case of ranking with ties. A ranking with ties on a set V is a binary

relation ≤ that is reflexive (u ≤ u for all u ∈ V ), transitive (u ≤ v and v ≤ y implies u ≤ y)

and comparable (for all u, v, either u ≤ v or v ≤ u). Note that this is not a partial order relation

because there is no antisymmetry (we allow both u ≤ v and v ≤ u for u 6= v). A ranking with

ties induces a natural equivalence relation ≡ on V , in which u ≡ v if both u ≤ v and v ≤ u. A

top-k list is a ranking with ties in which the elements not among the top-k are an equivalence class

ranked lower than the top-k elements (each one of which is an equivalence singleton). Another
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interesting example of ranking with ties is questionnaires : A questionnaire is a form in which a

participant evaluates a list of items (e.g. films) by choosing a crude value ( e.g. “very good”,

“good”, “bad”, “very bad”) for each item (see example 1. in Chapter 1). Lacking exact numerical

interpretations of the crude values, a reasonable alternative is to consider the obvious induced

pairwise relation: If X is “good” and Y is “bad” then X is preferred over Y by the participant.

This gives rise to a natural ranking with ties, in which all items with the same crude value are an

equivalence class. Aggregating information from questionnaires is a highly standard task in fields

such as experimental psychology. There is ongoing work on extending the techniques presented

here to aggregation of ranking with ties.

Generalized clustering

A depth-M hierarchical clustering of dataset is a collection C1, . . . , CM of regular clusterings in

which each Ci is a refinement of Ci+1 for i = 1, . . . ,M − 1. This means that each cluster in Ci is

contained in some cluster of Ci+1. A hierarchical clustering can be naturally viewed as a uniform-

height tree, with the root representing the entire dataset, its children representing the clusters of

CM and so on down to the leaves, representing the individual dataset elements. The corresponding

tree metric on the dataset is an ultrametric (d(u, v) ≤ max{d(u, y) + d(y, v)}). The problem of

fitting dissimilarity data to an ultrametric is a central problem in statistics, and also arises in

phylogeny, where the objective is to learn the evolution tree by fitting a tree metric on taxa. It

can also be viewed as a hierarchical generalization of CorrelationClustering, and some of

the techniques developed in this work have been successfully used for this problem by Ailon and

Charikar [2].

Other open problems

• Is RankAggregation NP-Hard for three permutations [43, 44]?

• Is ConsensusClustering NP-Hard for a constant number of clusters [54, 105]?

• Can we approximate weighted CorrelationClustering with triangle inequalities, but no

probability constraints?
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Transform and Approximate
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Chapter 1

Introduction

Metric embeddings have been proven to be very useful algorithmic tools. In the most general

setting, one wishes to map a finite metric space (U, dU ) to another metric space (V, dV ) belonging

some restricted family, without distorting the pairwise distances too much. If we denote the

mapping by Φ, we usually care about minimizing the relative distortion, which we can define here

as

max
x1,x2∈U

|dU (x1, x2)− dV (Φ(x1),Φ(x2))|
dU (x1, x2)

.

(Much of the computer science literature uses the expression ‖Φ‖Lip · ‖Φ−1‖Lip as a measure of

distortion, where ‖ · ‖Lip is the Lipschitz norm of a function between metric spaces. Also, much

work related to this subject makes the technical assumption that Φ is 1-Lipschitz, namely, it does

not stretch pairwise distances, but we do not assume that here.) The metric space Y usually

belongs to a restricted family of metric spaces which is easier to work with.

Linial, London and Rabinovich in their seminal paper [82] first considered the algorithmic

applications of metric embeddings. Embedding into `1 metrics is especially important in opti-

mization of hard cut problems in graphs. Embedding into tree metrics is useful in optimization of

hard network design and clustering problems.

In many cases, we are interested in embedding high-dimensional normed metrics spaces into

low dimensional normed spaces. Papadimitriou et al [95] use low-dimensional embeddings to speed

up computation of low-rank approximation of matrices. Schulman [99] used them for efficiently
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approximating certain metric clustering problems. Indyk [71] used them for data streaming appli-

cations. Indyk et al [74] and Kushilevitz et al [81] used low-dimensional embeddings to speed up

approximate nearest neighbor searching. The latter example is the main motivation for this work,

though we hope to see other applications as well.

Our main result is a new low-distortion embedding of `d2 into `
O(logn)
p (p = 1, 2), where n is

the number of points. The possibility of obtaining such an embedding with distortion (1 + ε) for

any ε > 0 using the Johnson-Lindenstrauss (JL) transform has long been known. In this work

we consider the complexity of implementing this embedding, and show a nontrivial way to obtain

a significant speedup. We call our new embedding the Fast-Johnson-Lindenstrauss-Transform

(FJLT). Naive implementations of JL incur only a polynomial cost, which is enough for some

applications. However, for other applications, such as approximate nearest neighbor searching,

sublinear algorithms are sought. Applying JL is the bottleneck of some of the fastest algorithms.

We apply the p = 1 case to improve them.

1.1 History of the Johnson-Lindenstrauss transform

By the JL lemma [73,75,85], n points in Euclidean space can be projected down to k = cε−2 logn

dimensions while incurring a distortion of at most 1 + ε, where c > 0 is some global constant.

More precisely, for any set V of n points in d dimensions, taking k = cε−2 logn (for some global

constant c) suffices to ensure that with constant probability, for all x, y ∈ V

√

k

d
‖x− y‖2(1− ε) ≤ ‖Φx− Φy‖2 ≤

√

k

d
‖x− y‖2(1 + ε) .

The original JL transform was defined in Johnson and Lindenstrauss’s seminal paper [75]. It

is, in fact, no more than a projection Φ from d dimensions onto a randomly chosen k-dimensional

subspace. This is useful provided k < d, which will be implied by the assumption

n = 2O(ε2d) . (1.1)

Following [75], researchers (Frankl and Maehara [55] and later Dasgupta and Gupta [35]) sug-

gested variants and simplifications of their design and/or proof together with improvements on
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the constant c. The two papers, though simplifying and improving the original JL result, do not

depart from it in the sense that the random projection they assumed is equivalent to the one

assumed in [75]. If we represent this projection by a k × d real matrix Φ, then the rows of the

matrix can be computed as follows: The first row is a random unit vector uniformly chosen1 from

Sd−1 (the (d − 1)-dimensional unit sphere in Rd). The second row is a random unit vector from

the space orthogonal to the first row, the third is a random unit vector from the space orthogonal

to the first two rows, and so on. (In order to choose a random unit vector in Rm, one can choose m

i.i.d. normally distributed random variables, and normalize the resulting vector to achieve norm

1.) The resulting matrix is a projection onto a random k-dimensional subspace of Rn (together

with a choice of an orthogonal basis, having no affect on the `2-norm). This choice of Φ satisfies

the following three properties (which, in fact, completely characterize it):

• Spherical symmetry: For any orthogonal matrix A ∈ O(d), ΦA and Φ have the same distri-

bution.

• Orthogonality: The rows of Φ are orthogonal to each other.

• Normality: The rows of Φ are unit-length vectors.

The first to depart from the above distribution on Φ were Indyk and Motwani [74] who dropped

the orthogonality and the normality conditions. They noticed that in order to obtain the JL

guarantee, one can independently choose every entry of Φ using the distribution N(0, 1/d). The

norm of each row of Φ becomes a random variable. Furthermore, the rows are no longer necessarily

orthogonal. Normality and orthogonality are satisfied only on expectation. Indeed, the squared

`2 norm of every row of Φ is 1 on expectation, and the inner product of every two rows is 0 on

expectation. The independence of the entries in Φ make the proof much simpler. Note that the

distribution on Φ remains spherically symmetric.

The next bold and ingenious step was taken by Achlioptas [1] who dropped the spherical

symmetry condition. He noticed that the only property of Φ needed for the transformation to

work is that (Φi · x)2 is tightly concentrated around mean 1/d for all unit vectors x, where Φi is

the i’th row of Φ. The distribution he proposed is very simple: Choose each entry of Φ uniformly

from {+d−1/2,−d−1/2} (note that the normality condition is restored). The motivation in [1] was

1By this we mean the Haar measure on the sphere.
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to make random projections easier to use in practice. Indeed, flipping coins is much easier than

choosing gaussian-distributed numbers. More surprisingly, he shows that if the entries of Φ are

chosen independently according to the following distribution:







+(d/3)−1/2 with probability 1/6

0 2/3

−(d/3)−1/2 1/6

,

then the JL guarantee holds (note that normality is now dropped). The nice property of this

distribution is that it is relatively sparse: On expectation, a (2/3)-fraction of Φ is 0. Assuming

we want to apply Φ on many points in Rd in a real-time setting, by keeping a linked list of all the

nonzeros of Φ during preprocessing we get a 3-fold speedup in the transformation computation,

compared to a naive matrix-vector multiplication.

In all the aforementioned methods, projecting a point requires multiplication by a dense k-by-d

matrix; and so mapping each point takes O(d log n) time (for fixed ε). Is that optimal?

The attempt to sparsify Φ and obtain a super-constant speedup is the first point of departure

for this work. A lower bound of Alon [7] dashes any hope of reducing the number of rows of

Φ by more than a factor of O(log(1/ε)), so the obvious question is whether the matrix can be

made sparse. Bingham and Mannila [21] considered sparse projections heuristics for dimension-

reduction based algorithms, and noticed that in practice they seem to give a considerable speedup

with little compromise in quality. Achlioptas’s method [1] can be used to reduce the density of

Φ by only a constant factor, but one cannot simply go much further because a sparse matrix will

typically distort a sparse vector. To prevent this, we use a central concept from harmonic analysis

known as the Heisenberg principle (so named because it is the key idea behind the Uncertainty

Principle): A signal and its spectrum cannot be both concentrated. With this in mind, we

precondition the random projection with a Fourier transform (via an FFT) in order to isometrically

enlarge the support of any sparse vector. To prevent the inverse effect, i.e., the sparsification of

dense vectors, we randomize the Fourier transform. The resulting FJLT shares the low-distortion

characteristics of a random projection but with a lower complexity. As stated above, it embeds `2

into `p, for p = 1, 2. The running time of the FJLT is O(d log d+ min{dε−2 logn, εp−4 logp+1 n}),
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which outperforms the O(dε−2 logn) complexity of its predecessors. Note the simpler form of

O(d log d+ ε−3 log2 n) for `1 and n = 2O(εd) (subsumed by 1.1).

1.2 Approximate nearest neighbor searching

For a fixed metric space (U, dU ) and a finite subset (database) P ⊆ U , ε-approximate nearest

neighbor (ε-ANN) searching (Figure 1.1) is the problem of preprocessing U so that given a query

x ∈ U a point p ∈ P satisfying

dU (x, p) ≤ (1 + ε)dU (x, p′) ∀p′ ∈ P

can be efficiently returned. In other words, we are interested in a point p further from x by a

factor of no more than (1 + ε) compared with the closest point to x in P . We will be interested

in the Euclidean (Rd, `2) and the Hamming cube ({0, 1}d, `1 ≡ `22) cases.

PSfrag replacements

x

U

p

p′

Given a point x from a metric space X , return p ∈ P minimizing d(x, p),
or any point p′ satisfying d(x, p′) ≤ (1 + ε)d(x, p).

Figure 1.1: ε-Approximate nearest neighbor searching

This problem has received considerable attention lately. There are two good reasons for this:

(i) ANN boasts more applications than virtually any other geometric problem [72]; (ii) allowing

a small error ε makes it possible to break the curse of dimensionality.

There is an abundant literature on (approximate) nearest neighbor searching [12,13,20,24,29,

32, 33, 52, 68, 69, 72, 74, 80, 81, 90, 109,110]. The early solutions typically suffered from the curse of

dimensionality, but the last decade has witnessed a flurry of new algorithms that “break the curse”
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(see [72] for a recent survey). A few milestones deserve special mention in the context of this work.

Kleinberg [80] gave two algorithms for ANN in `d2. The first one runs in O((d log2 d)(d + logn))

time but requires storage exponential in d. The second one runs in O(n+d log3 n) time, improving

on the trivial O(nd) algorithm, and requires only O(dn polylog n) space. Both algorithms are

based on the key idea of projection onto random lines, which was used in subsequent results as

well as in this work.

The first algorithms with query times of poly(d, logn) and polynomial storage (for fixed ε)

were those of Indyk and Motwani [74] and Kushilevitz, Ostrovsky, and Rabani [81]. The first

reference describes a reduction from ε-ANN to approximate point location in equal balls (ε-PLEB)

for `d2 (as well as other metric spaces). The ε-PLEB problem is that of outputting a point p ∈ P

such that ‖x − p‖2 ≤ r for some r > 0 if such a point exists, and null if all points p satisfy

‖x − p‖2 > (1 + ε)r. Based on a new space decomposition (of independent interest), Indyk and

Motwani showed how to reduce an ε-ANN query to O(log2 n) queries to an ε-PLEB oracle, a

reduction later improved to O(log(n/ε)) by Har-Peled [63]. The PLEB reduction can be thought

of as a way of performing a binary search on the (unknown) distance to the nearest neighbor,

while overcoming the possible unboundedness of the search space (we overcome this problem by

using a different, simpler technique). One approach to PLEB is to use LSH (locality-sensitive

hashing [74]), which requires O(n1/(1+ε)) query time and near-quadratic (for small ε) storage.

Another approach is to use dimension reduction techniques: using the methods of [63,70,74], this

provides a query time of O(ε−2d logn) with nO(ε−2) storage. We mention here that the dimension

reduction overwhelms the running time of the algorithm: to remedy this was, in fact, was another

point of departure for our work on FJLT. Kushilevitz et al. [81] described an ingenious (but

intricate) reduction from `d2 to the Hamming cube, which results in O(ε−2d2polylogn) query time

and polynomial storage (again, for fixed ε).

ANN searching over the Hamming cube does not suffer from the “unbounded binary search”

problem. Kushilevitz et al. [81] gave a random-projection based algorithm with a query time of

O((d log d)ε−2 logn)—an extra log log d factor can be shaved off [28]. We improve the running

time of their algorithm to O((d + ε−2 logn) log d), which is the best to date (using polynomial

storage2). Again, we show how to optimize the dimension reduction step in their algorithm, but

2Assuming constant ε.
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this time over GF (2).

We present two new, faster ANN algorithms. Note that both of them contain additional

improvements, independent of FJLT.

• One works for the d-dimensional Euclidean space. It stores n points in Rd and answers any

ε-ANN query in O(d log d + ε−3 log2 n) time, while using nO(ε−2) storage. The solution is

faster than its predecessors (at least for subexponential n) and considerably simpler.

• The other works for the d-dimensional Hamming cube. It stores n points in the d-dimensional

Hamming cube and answers any ε-ANN query in O((d + ε−2 logn) log d) time, while using

d2nO(ε−2) storage. This improves on the best previous query time of O((d log d)ε−2 logn)

[81].

107



Chapter 2

The Fast Johnson-Lindenstrauss

Transform

The transform (denoted FJLT) is a random distribution of linear mappings from Rd to Rk, where

the embedding dimension k is set to be cε−2 logn, for some large enough constant c = c(p) Recall

that p ∈ {1, 2} refers to the type of embedding we seek: `d2 7→ `kp.

We may assume w.l.o.g. that d = 2m > k. We will also assume that n ≥ d and d = Ω(ε−1/2)

(otherwise the dimension of the reduced space is linear in the original dimension).

A random embedding Φ ∼ FJLT(n, d, ε, p) can be obtained as a product of three real-valued

matrices (Figure 2.1): Φ = PHD. The matrices P and D are random and H is deterministic:

• P = k-by-d matrix whose elements are independent mixtures of 0 with an unbiased normal

distribution of variance q−1, where

q = min

{

Θ

(
εp−2 logp n

d

)

, 1

}

.

More precisely, Pij ∼ N(0, q−1) with probability q, and Pij = 0 with probability 1− q.

• H = d-by-d normalized Walsh-Hadamard matrix:

Hij = d−1/2(−1)〈i−1,j−1〉 ,
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Figure 2.1: The FJLT transform

where 〈i, j〉 is the dot-product (modulo 2) of the m-bit vectors i, j expressed in binary.

• D = d-by-d diagonal matrix, where each Dii is drawn independently from {−1, 1} with

probability 1/2.

The Walsh-Hadamard matrix encodes the discrete Fourier transform over the additive group

GF (2)d: its FFT is particularly simple and requires O(d log d) time. It follows that, with high

probability (which we make precise in Lemma 2.1), the mapping Φx of any vector x ∈ Rd can be

computed in time O(d log d+ qdε−2 logn) (all running times are expected over the random bits of

the algorithm). We now make our statement on the FJLT precise.

Lemma 2.1. [The FJLT Lemma] Fix a set X of n vectors in Rd, ε < 1, and p ∈ {1, 2}. Let

Φ ∼ FJLT. With probability at least 2/3, the following two events occur:

1. For all x ∈ X,

(1− ε)αp‖x‖2 ≤ ‖Φx‖p ≤ (1 + ε)αp‖x‖2 ,

where α1 = k
√

2π−1 and α2 = k.

2. The mapping Φ : Rd → Rk requires

O
(
d log d+ min{dε−2 logn, εp−4 logp+1 n}

)

operations.

Remark: By repeating the construction O(log(1/δ)) times we can amplify the success probability

to 1 − δ for any δ > 0. If we know X , it is possible to test for success. In the ANN example
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presented in the next chapter, however, we do not know X . In that application, X is the set of

differences between the query point x and the database points p ∈ P :

X = {x− p : p ∈ P} .

Although P is known, the query point x is information we obtain online after the preprocess-

ing. However, one can amplify the probability of success of ANN by repeating the construction

O(log(1/δ)) times, running the nearest neighbor algorithm w.r.t. each construction and taking

the nearest among the outputs.

Proof. Without loss of generality, we can assume that ε < ε0 for some suitably small ε0. Fix

some x ∈ X , and define the random variable u = HDx = (u1, . . . , ud)
T . Assume w.l.o.g. that

‖x‖2 = 1. Note that u1 is of the form
∑d

i=1 aixi, where each ai = ± d−1/2 is chosen independently

and uniformly. A Chernoff-type argument shows that, with probability at least 1− 1/20,

max
x∈X
‖HDx‖∞ = O(d−1/2

√

log n) . (2.1)

Indeed,

E [etdu1 ] =
∏

i

E [etdaixi ] =
∏

i

cosh(t
√
d xi) ≤ et

2d‖x‖2
2/2 . (2.2)

Hence, for any s > 0, by Markov’s inequality (plugging t = sd in (2.2)),

Pr[|u1| ≥ s] = 2Pr[esdu1 ≥ es2d]

≤ 2E [esdu1 ]/es
2d

≤ 2es
2d‖x‖2

2/2−s
2d

= 2e−s
2d/2 ≤ 1/(20nd)

for s = Θ(d−1/2
√

logn), from which (2.1) follows by a union bound over all nd ≤ n2 coordinates

of the vectors {HDx : x ∈ X}.

Assume from now on that (2.1) holds, i.e., ‖u‖∞ ≤ s (where u = HDx for any x ∈ X , which

we keep fixed). It is convenient (and harmless) to assume that m
def
= s−2 is integral.
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Note that ‖u‖2 = ‖x‖2 because both H and D are isometries. Define:

y = (y1, . . . , yk)
T = Pu = Φx .

By the definition of the FJLT, y1 is obtained as follows: pick random i.i.d. indicator variables

b1, . . . , bd, where each bj equals 1 with probability q, and random i.i.d. variables r1, . . . , rd dis-

tributed N(0, q−1). Then set y1 =
∑d

j=1 rjbjuj . Let Z =
∑d

j=1 bju
2
j . By the 2-stability of the

normal distribution, (y1|Z = z) ∼ N(0, q−1z). Note that all of y1, . . . , yk are i.i.d (given u), and we

can similarly define corresponding random i.i.d. variables Z1(= Z), Z2, . . . , Zk. The expectation

of these random variables is:

E [Z] =

d∑

j=1

u2
jE [bj ] = q (2.3)

Let u2 formally denote (u2
1, . . . , u

2
d) ∈ (R+)d. By our assumption, u2 lives in the following

d-dimensional polytope:

P = { (a1, . . . , ad) : 0 ≤ aj ≤ m−1 ∀j and

d∑

j=1

aj = 1 } .

Let u∗ ∈ Rd denote a vector such that u∗2 is a vertex of P . By symmetry, there will be no loss

of generality in what follows if we fix:

u∗ = (m−1/2, . . . ,m−1/2

︸ ︷︷ ︸

m

, 0, . . . , 0
︸ ︷︷ ︸

d−m

) .

The point u∗ will be convenient for identifying extremal cases in the analysis of Z. We will use

Z∗ to denote the random variable Z corresponding to the case u = u∗. Immediately we identify

that Z∗ ∼ m−1B(m, q) (in words, the binomial distribution with parameters m, q multiplied by

the constant m−1). Consequently,

var(Z∗) = q(1− q)/m . (2.4)
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The `1 case: We choose

q = min{1/(εm), 1} = min

{

Θ

(
ε−1 logn

d

)

, 1

}

.

We now bound certain moments of Z (over the random bi’s).

Lemma 2.2. For any t > 1, E [Zt] = O(qt)t, and

(1− ε)√q ≤ E [
√
Z ] ≤ √q .

Proof. For the case q = 1 the claim is trivial because then Z is constant 1. So we assume

q = 1/(εm) < 1.

It is easy to verify that E [Zt] is a convex function of u2, and hence achieves its maximum at a

vertex of P , namely, when u = v. So it suffices to prove the moment upper-bounds for Z∗, which

conveniently behaves like a (scaled) binomial. By standard bounds on the binomial moments,

E [Z∗t] = O(m−t(mqt)t) = O(qt)t,

proving the first part of the lemma.

By Jensen’s inequality and (2.3),

E [
√
Z ] ≤

√

E [Z] =
√
q .

This proves the upper-bound side of the second part of the lemma. To prove the lower-bound side,

we notice that E [
√
Z ] is a concave function of u2, and hence achieves its minimum when u = v.

So it suffices to prove the desired lower bound for E [
√
Z∗ ]. Since

√
x ≥ 1 + 1

2 (x − 1)− (x − 1)2

for all x ≥ 0,

E [
√
Z∗ ] =

√
qE [

√

Z∗/q ]

≥ √q
(

1 +
1

2
E [Z∗/q − 1 ]−E [(Z∗/q − 1)2 ]

)

.
(2.5)
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By (2.3) E [Z∗/q − 1 ] = 0 and using (2.4),

E [(Z∗/q − 1)2 ] = var(Z∗/q) = (1− q)/(qm)

≤ 1/(qm) = ε .

Plugging this into (2.5) gives E [
√
Z∗ ] ≥ √q (1− ε), as required.

Since the expectation of the absolute value of N(0, 1) is
√

2π−1, by taking conditional expec-

tations

E [|y1|] =
√

2/qπE [
√
Z ] ,

and by Lemma 2.2,

(1− ε)
√

2π−1 ≤ E |y1| ≤
√

2π−1 . (2.6)

We now show that ‖y‖1 is sharply concentrated around its mean E [‖y‖1] = kE [|y1|]. To do this,

first we bound the moments of |y1| = |
∑

j bjrjuj |. For any integer t ≥ 0, by taking conditional

expectation,

E [|y1|t] = E [(q−1Z)t/2]E [|U |t] ,

where U ∼ N(0, 1). It is well known that E [|U |t] = O(t)t/2; therefore, by Lemma 2.2,

E [|y1|t] = O(t)t .

It follows that the moment generating function

E [eλ|y1|] = 1 + λE [|y1|] +
∑

t>1

E [|y1|t]λt/t!

≤ 1 + λE [|y1|] +
∑

t>1

O(t)tλt/t!

converges for any 0 ≤ λ < λ0, where λ0 is an absolute constant, and

E [eλ|y1|] = 1 + λE [|y1|] +O(λ2) = eλE [|y1|]+O(λ2) .
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By independence,

E [eλ‖y‖1 ] = (E [eλ|y1|])k = eλE [‖y‖1]+O(λ2k) .

By Markov’s inequality and (2.6),

Pr[‖y‖1 ≥ (1 + ε)E [‖y‖1] ≤ E [eλ‖y‖1 ]/eλ(1+ε)E [‖y‖1]

≤ e−λεE [‖y‖1]+O(λ2k)

≤ e−Ω(ε2k) ,

for some λ = Θ(ε). The constraint λ < λ0 entails that ε be smaller than same absolute constant. A

similar argument leads to a similar lower tail estimate. Our choice of k ensures that, for any x ∈ X ,

‖Φx‖1 = ‖y‖1 deviates from its mean by at most ε with probability at least 1−1/20. By (2.6), this

mean, kE [|y1|], is itself concentrated (up to a relative error of ε) around α1 = k
√

2π−1; rescaling

ε by a constant factor and ensuring (2.1) proves the `1 claim of the first part of the FJLT lemma.

The `2 case: We now choose

q = min

{
c1 log2 n

d
, 1

}

,

for a large enough constant c1.

Lemma 2.3. With probability at least 1− 1/20n,

1. q/2 ≤ Zi ≤ 2q for all i = 1, . . . , k, and

2. kq(1− ε) ≤∑k
i=1 Zi ≤ kq(1 + ε).

Proof. If q = 1 then Z is the constant q and the claim is trivial. Otherwise, q = c1d
−1 log2 n < 1.

For any real λ, the function

fλ(u
2
1, . . . , u

2
d) = E [eλZ ]

is convex. Therefore, it achieves its maximum on the vertices of the polytope P (as in the proof of

Lemma 2.2). Hence, as argued before, E [eλZ ] ≤ E [eλZ
∗

]. We conclude the proof of the first part

by using standard tail estimates on the scaled binomial Z∗ derived from bounds on its moment

generating function E [eλZ
∗

] (e.g. [9]), and union bounding.
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For the second part, let S =
∑k
i=1 Zi. Again, the moment generating function of S is bounded

above by that of S∗ ∼ m−1B(mk, q) (all Zi’s are distributed as Z∗), for which it is immediate to

check the required concentration bound.

Henceforth we will assume that the premise of Lemma 2.3 holds with respect to all choices

of x ∈ X . Using the union bound, this happens with probability at least 1 − 1/20. For each

i = 1, . . . , k the random variable y2
i q/Zi is distributed χ2 with 1 degree of freedom. It follows that,

conditioned on Zi, E [y2
i ] = Zi/q and the moment generating function of y2

i is

E [eλy
2
i ] = (1− 2λZi/q)

−1/2 .

Given any λ > 0 less than some fixed λ0, and for large enough ξ, the moment generating

function converges and equals:

E [eλy
2
i ] ≤ eλZi/q+ξλ

2(Zi/q)
2

(we used the fact that Zi/q = O(1) from the first part of Lemma 2.3). Therefore, by independence,

E [eλ
Pk

i=1 y
2
i ] ≤ eλ

Pk
i=1(Zi/q+ξλ

2 Pk
i=1(Zi/q)

2) ,

and hence

Pr[
k∑

i=1

y2
i > (1 + ε)

k∑

i=1

Zi/q]

= Pr[eλ
Pk

i=1 y
2
i > e(1+ε)λ

Pk
i=1 Zi/q ]

≤ E [eλ
Pk

i=1 y
2
i ]/e(1+ε)λ

Pk
i=1 Zi/q

≤ e−ελ
Pk

i=1 Zi/q+ξλ
2 Pk

i=1(Zi/q)
2

.

(2.7)

If we plug

λ =
ε
∑k

i=1(Zi/q)

2ξ
∑k
i=1(Zi/q)

2

into (2.7) and assume that ε is smaller than some global ε0, we avoid convergence problems (we

used the assumption
∑k
i=1(Zi/q)/

∑k
i=1(Zi/q)

2 ≤ 2 following the premise of Lemma 2.3). We now
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conclude that

Pr[
k∑

i=1

y2
i > (1 + ε)k] ≤ e−Ω(ε2k) .

A similar technique can be used to bound the left tail estimate. By choosing k = cε−2 logn

for some large enough c, using the union bound, and possibly rescaling ε, we conclude the `2 case

of the first part of the FJLT lemma.

Running time: Computing Dx takes O(d) time, because D is a diagonal matrix. Computing

H(Dx) takes O(d log d) time using the Walsh-Hadamard transform. Finally, computing P (HDx)

takes O(|P |) time, where |P | is the number of nonzeros in P . This number is distributed B(nk, q).

It is now immediate to verify that

E [|P |] = O(εp−4 logp+1 n) .

Using a Markov bound, we conclude the proof for the running time guarantee of the FJLT lemma.

This concludes the proof of the FJLT lemma, up to possible rescaling of ε.
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Chapter 3

ANN Searching in Euclidean Space

We give a new ANN algorithm for `d2 that differs (and improves on) its predecessors in its use

of handles: a bootstrapping device that allows for fast binary searching on the distance to the

nearest neighbor. Plugging in the FJLT automatically provides a further improvement. Let P

be a set of n points in Rd. Given x ∈ Rd, let pmin be its nearest neighbor in P . Recall that the

answer to an ε-ANN for x is any point p ∈ P such that

‖x− p‖2 ≤ (1 + ε)‖x− pmin‖2 .

The algorithm has two stages. First (part I), we compute an answer q to an O(n)-ANN query

for x. This opens the way for a second stage, where we answer the ε-ANN query for x within the

(smaller) set Px = P ∩ B2(q, 2‖x− q‖2), where B2(q, r) denotes the `2-ball of radius r centered at

q. The key property of Px is that it contains pmin and the distance from x to its furthest neighbor

in Px is only O(n‖x − pmin‖2). This sets the stage for a binary search over a bounded domain

(part II). Instead of reducing the problem to an ANN query over Hamming cube (as in [81]), we

embed P directly into a low-dimensional `1-space, which we then discretize. We get a two-fold

benefit from our use of handles and of the FJLT. The entire scheme is outlined as pseudocode in

Figure 3.3.
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O(n)-ANN

preprocess(P )
set v ← random direction in Rd

precompute vT p for all p ∈ P
build binary search tree for exact 1-dimensional nearest neighbor

with respect to Dv(x, p) = |vTx− vT p|

query(x)
return exact nearest neighbor of x with respect to Dv

Figure 3.1: Pseudocode for O(n)-ANN in Euclidean space

3.1 Part I: Linear-factor approximation

To find an O(n)-ANN for query x, we choose a random direction v ∈ Rd and return the exact

nearest neighbor with respect to the pseudometric Dv defined as

Dv(x, p) = |vTx− vT p| .

This can be done in O(d+log n) time by preprocessing all the (vT p)’s (Figure 3.1). As we shall see

in Lemma 3.1, this returns an O(n)-ANN of x (with respect to the full d-dimensional Euclidean

space) with constant probability. By repeating the procedureO(log δ−1) times (with independently

drawn vectors v) and keeping the output point nearest to x, we increase the probability of success

to the O(n)-ANN query to 1− δ for any arbitrarily small δ > 0.

Let pmin denote the exact nearest neighbor of x in the d-dimensional Euclidean space, and let

pvmin denote the (random) nearest neighbor of x with respect to Dv.

Lemma 3.1.

E [‖x− pvmin‖2] = O(n‖x− pmin‖2) .

Proof. Let χ(p) be the indicator variable of the event Dv(x, p) ≤ Dv(x, p
v
min). Elementary

trigonometry (Figure 3.2) shows that

E [χ(p)] = O(‖x − pmin‖2/‖x− p‖2) .
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Clearly, ‖x− pvmin‖2 ≤
∑

p∈P χ(p)‖x− p‖2; therefore, by linearity of expectation,

PSfrag replacements

x

pmin

p

v

E [χ(p)] is maximized when x− p is orthogonal to x− pmin. In this case, if
the random direction v is in the gray area, χ(p) = 1. This event happens
with probability 2

π arctan(‖x−pmin‖2/‖x−p‖2) = O(‖x−pmin‖2/‖x−p‖2).

Figure 3.2: Why the O(n)-ANN algorithm works

E [‖x− pvmin‖2] ≤
∑

p∈P

‖x− p‖2 E [χ(p)] = O(n‖x− pmin‖2).

3.2 Part II: Binary search with handles

Assume that the previous step succeeds in returning an O(n)-ANN q for x. From now on, we

can confine our search within the working set Px. Note that there are only O(n2) distinct sets

Px and, given x, Px can be found by binary search in O(d + logn) time. If the diameter of Px is

small enough, say ∆(Px) ≤ 1
2ε‖x− q‖2, then q is a satisfactory answer to the ε-ANN query for x.

By precomputing all diameters, we can test this in constant time and be done if the outcome is

positive. So, assume now that ∆(Px) >
1
2ε‖x− q‖2. The distance from x to any point of Px lies

in the interval I(Px) = [L(Px), R(Px)], where

L(Px) = Ω(∆(Px)/n)

R(Px) = O(ε−1∆(Px)) .

(3.1)
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Each step t in the binary search is associated with two items, lt and pt:

1. A search radius lt ∈ I : with high probability, the t-th step in the binary search finds out

whether there is a point in Px at distance at most (1+ε)lt to x (success) or whether all points

are at distance at least lt to x (failure). For initialization, we set l1 to the high endpoint

R(Px) of the search interval. For t > 1, we follow the standard binary search scheme by

updating

lt =







lt−1 − 2−t+1l1 success

lt−1 + 2−t+1l1 failure

.

2. A handle pt ∈ Px such that ‖x− pt‖2 ≤ 2lt. We set p1 = q. In case of success in step t− 1,

pt is updated as the witness point of distance at most (1 + ε)l1 to x. In case of failure there

is no update: pt = pt−1.

The number tmax of binary search steps is designed to be the smallest integer a such that the

search interval size of Θ(R(Px)2
−a) is sensitive enough to detect a relative error of ε with respect

to L(Px). More precisely, we need

R(Px)2
−tmax = O(εL(Px)) ,

which solves to tmax = O(log(n/ε)).

Determining whether the step is a success (together with a witness) or a failure will be done

in a transformed space. The transformation will be a composition of two steps. The first step will

be a random normalized (`2 → `1) FJLT matrix Φ applied to the points in P and to x. By the

FJLT lemma, with high probability, for any point p ∈ P ,

(1− ε)‖x− p‖2 ≤ ‖Φx− Φp‖1 ≤ (1 + ε)‖x− p‖2 .

As usual, k = O(ε−2 logn) denotes the embedding dimension.

The second step will be a random discretization of Rk that will allow table look-up. The

discretization could be done be selecting a randomly shifted regular grid in each one of the k

dimensions (with carefully chosen cell size). We choose a slightly different discretization that

makes the analysis easier.
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3.3 Poisson discretization

At step t, for i = 1, . . . , k, consider a random two-sided infinite Poisson process Ψi with rate

k/lt. This implies that the number of random points in every interval [a, a + τ) obeys a Poisson

distribution with expectation τk/lt. Given u ∈ Rk, define the quantization T (u) of u to be the

k-dimensional integer vector, whose i-th coordinate is the signed count of Poisson events between

0 and ui, ie,

T (u)i =







|Ψi ∩ [0, ui)| if ui ≥ 0

−|Ψi ∩ [ui, 0)| otherwise.

We use T to define a pseudometric DT over Rd:

DT (x, y) = ‖T (Φx)− T (Φy)‖1 .

For fixed x, y ∈ Rd, DT (x, y) is a Poisson variable with rate k‖Φ(x − y)‖1/lt. The point process

might fail its purpose, so we say that p ∈ Px is reliable at step t if either

1. ‖x− p‖2 ≤ lt and DT (x, p) ≤ (1 + 1
2ε)k, or

2. ‖x− p‖2 > lt and 1
(1+ 1

2 ε)
k‖x− p‖2/lt ≤ DT (x, p) ≤ (1 + 1

2ε)k‖x− p‖2/lt.

If all points in Px are reliable with respect to x and lt, we say that step t is reliable. By our choice

of k, concentration bounds [9] for the Poisson distribution show that all steps in the binary search

are reliable.

3.4 A pruned data structure

Step reliability ensures that all the required information for the binary search is contained in the

vector T (Φx) (up to possible rescaling of ε); and so we can use that discrete vector to index a

lookup table S : Zk → Px . The entry S[v] stores a point p ∈ Px such that T (Φ(p)) is the nearest

`1-neighbor of v among all the transformed points {T (Φp′) : p′ ∈ Px } . In particular, S[T (Φx)]

is the exact nearest neighbor of x in Px with respect to DT . For simplicity we defined the lookup

table to require infinite memory. We will show how to prune the data structure shortly.
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The idea is to navigate through the binary search process at the current step based on

S[T (Φ(x))] ∈ Px. Let p′ denote this point. If DT (x, p′) ≤ (1 + 1
2ε)k, then we conclude that

‖x− p′‖2 ≤ lt(1 + ε), and the step is a success with witness p′. If DT (x, p′) > (1 + 1
2ε)k, then we

conclude that all points p ∈ Px satisfy ‖x− p‖2 > lt, and the step is a failure.

We now show how to prune S. We use reliability of step t and the invariant of the binary

search handle pt to assert that

DT (x, pt) ≤ 2k(1 + 2ε) ; (3.2)

therefore, only the points x in the DT -metric ball specified by (3.2) need to be stored (say, in a

pruned k-way tree). For fixed pt and lt, the number of vectors T (Φx) that satisfy (3.2) is exactly

the number of integral points (n1, . . . , nk) ∈ Zk such that

|n1|+ · · ·+ |nk| ≤ 2k(1 + 2ε) .

This puts the storage requirement at
(

3k
k−1

)
2O(k) = 2O(k) = nO(ε−2). If we implement the table

as a weight-balanced radix tree, the lookup time is only O(k). The complete binary search takes

O(k log(n/ε)) = O(ε−2 log2(n/ε)) time. Obviously, we may assume ε > n−O(1) (otherwise the

naive algorithm is faster), so the binary search time is O(ε−2 log2 n).

In preprocessing, we compute discretization maps T and tables S for all possible working sets

Px, search radii l and handles p ∈ Px. In case (3.2) does not hold, S[T (Φx)] will be defined to

return the value exception (and the search fails).

Theorem 3.2. Given a set P of n points in `d2, for any ε > 0, there is a randomized data

structure of size nO(ε−2) that can answer any ε-ANN query in time O(d log d + ε−3 log2 n) with

high probability (over the preprocessing).

2
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ε-ANN

preprocess(P )
preprocess for O(n)-ANN
set Φ← random (`2 → `1) FJLT matrix

precompute Φp for all p ∈ P
for all O(n2) possible Px
for all possible handles p ∈ Px

for all possible O(log(n/ε)) binary search radii l
precompute random discretization T : Rk → Zk

precompute table S : Zk → Px ∪ {exception}

query(x)
set q ← O(n)-ANN of x
set Px ← {p ∈ P : ‖p− q‖ ≤ 2‖x− q‖} (O(log n) time using preprocessing)
compute reduction Φx

set l← R(Px) (radius)
set p← q (handle)
for t = 1, 2, . . . , tmax(= O(log(n/ε))) (binary search loop)
identify precomputed S, T corresponding to Px, p, l
set p′ ← S[T (Φx)]
if p′ = exception

break for-loop (with possible warning)
else if DT (x, p′) > (1 + 1

2 )k (failure)
set l← l+ 2−t

else (success)
set l← l− 2−t

set p← p′

return p

At iteration t in the binary search loop, variables p, l in the program cor-
respond to pt, lt in Section 3.2.

Figure 3.3: Pseudocode for ε-ANN in Euclidean space
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Chapter 4

ANN Searching Over the

Hamming Cube

Kushilevitz et al. [81] gave an algorithm for ANN queries over {0, 1}d. Its bottleneck is the

repeated multiplication of the query point by various random matrices. Our improvement is based

on the observation that, although most of these matrices are dense, by using some algebra over

GF (2), one can decompose them into a sparse part together with a dense part that is of low

complexity.

As usual, P ⊆ {0, 1}d will denote the fixed database of n points in the d-dimensional Hamming

cube. Given a query x ∈ {0, 1}d, pmin ∈ P is the exact nearest neighbor. We let B1(z, r) denote

the Hamming ball of radius r (inclusive) around z.

The ANN data structure of [81] supports binary search on the unknown distance D(x, pmin) =

‖x − pmin‖1, using d separate preprocessed sub-structures, Sl (1 ≤ l ≤ d). Each one of these

structures is meant to handle queries whose targeted nearest neighbors are at the distance l. To

supply enough randomness so that every query succeeds with high probability (over preprocessing),

each Sl itself is a collection of σ similarly built data structures Sl,j . For any j = 1, . . . , σ, Sl,j
consists of:

• a random k-by-d matrix Rl,j whose elements are chosen independently in {0, 1}, with the

probability of a 1 being 1/2l;
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• a table Tl,j : {0, 1}k → P , initialized as follows:

– Set all entries to ∞; then,

– for each p ∈ P in turn, set Tl,j [B1(z, k(µ(l) + 1
3ε

′))] to p, where

z
def
= Rl,jp (mod 2)

µ(l)
def
=

1

2
(1− (1− 1

2l
)l)

ε′
def
= Θ(1− e−ε/2) .

Lemma 4.1. [81] Assume that n ≥ log d, and set σ = cd log d and k = cε−2 log n, for a large

enough constant c. With high probability, the following holds true for any query x ∈ {0, 1}d and

any 1 ≤ l ≤ d: Given a random j ∈ {1, . . . , σ}, with high probability, the point Tl,j [R
l,jx], if finite,

is at distance at most (1 + ε)l from x. Furthermore, if x’s nearest neighbor is at distance at most

l, then the point in question, indeed, is finite.

For a random j, we say that a query point x passes the l-test if the point Tl,j [R
l,jx] is finite.

(Note that passing is not an intrinsic property of x but a random variable.) The test is called

reliable if both of the high-probability events in the lemma hold. Assuming reliability, failure of

the test means that x’s nearest neighbor lies at distance greater than l, while success yields a

neighbor of x at distance at most (1 + ε)l.

This immediately suggests [81] an ANN algorithm. Beginning with l = dd/2e, run an l-test

on x and repeat for l/2 if it passes and 3l/2 if it fails; then, proceed in standard binary search

fashion. Suppose for a moment that all the l-tests are reliable. Then, the binary search terminates

with the discovery of an index l and a point p ∈ P that is at most (1 + ε)l away from x, together

with the certainty that the distance from x to its nearest neighbor exceeds l. Obviously, the point

p is an acceptable answer to the ε-ANN query.

We cannot count on the reliability of every test used in the binary search. But, as in [81],

we can overcome this problem by using the fault-tolerant techniques of [53] for computing with

unreliable information. Note also that we may assume from now on that n ≥ log d: Indeed, having

fewer than log d points gives us a naive (exact) algorithm with O(d log d) query time. The storage

is d2nO(ε−2) and the query time is O(d(log d)ε−2 logn). To improve this time bound, we seek to
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exploit the sparsity of the random matrices. That alone cuts down the query time to O(dε−2 logn)

in a trivial manner, the worst case being a query x that itself belongs to P .

4.1 Improvement using linear algebra

Linear algebra gives room for further improvement. For expository purposes, it is convenient

to start the binary search with a d-test, so that the first test in the search is always successful.

In general, consider the case where an l-step is to be performed and let l′ be the last previous

successful test in the search. Note that l ≥ l′/2. The algorithm is now in possession of a handle,

namely, a point p ∈ P at distance at most (1 + ε)l′ from x. The cost of the current l-test is that

of computing y = Rl,jx for a random j.

The main idea is to evaluate y as Rl,jx = Rl,j(x+ 2p) = Rl,j(x+ p) +Rl,jp over GF (2). Here

is the benefit of this decomposition: The point x + p has at most (1 + ε)l′ ones, and obviously

only the corresponding columns of Rl,j are relevant in computing Rl,j(x+ p). Assuming that the

1’s within each column of Rl,j are linked together in a list, the time for computing Rl,j(x + p)

is proportional to d + k plus the number N of ones within the relevant columns of Rl,j . The d

comes from identifying the 1’s of x+ p, the k comes from initializing the result vector in GF(2)k

as zero, before scanning through the linked lists of 1’s in the relevant columns. By construction,

the expected value of N is at most k(1 + ε)l′(1/2l) ≤ 2k (over the randomness of the matrix). By

precomputing all the points {Rl,jq | q ∈ P } in preprocessing (which adds only a factor of n to the

storage), we can retrieve Rl,jp in O(k) time. In short, we can complete this binary search step in

O(d + k) expected time, instead of the previous O(dk) bound.

4.2 No query left behind

There is only one problem: The expectation of the query time is defined over the randomness of

both the query algorithm and the preprocessing. To remove this dependency on the preprocessing,

we must ensure that, for any query x, the expected running time of any binary search step is

O(d+ k) over the random choices of the index j during query answering: We call this the NQLB

policy (for “no query left behind”).
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It suffices to show that, for any l and any subset V ⊆ 2{1,...,d} of column indices, the total

number of ones within all the columns (indexed by V ) of all the matrices Rl,j (1 ≤ j ≤ σ)

is O(σk|V |/l). This number is a random variable Y =
∑

1≤i≤σk|V | yi , where each yi is chosen

independently in {0, 1} with a probability 1/2l of being 1. A Chernoff bound shows that Y =

O(σk|V |/l) with probability at least 1 − 2−Ω(σk|V |/l). Summing over all l, V , we find that the

probability of violating the NQLB policy is at most

d∑

l=1

d∑

v=1

(
d

v

)

2−Ω(σkv/l),

which is arbitrary small.

Theorem 4.2. Given a set P of n points in the d-dimensional Hamming cube and any 0 < ε < 1,

there exists a random data structure of size d2nO(ε−2) that can answer any ε-ANN query in time

O((d + ε−2 logn) log d) in the sense that with high probability over its construction, uniformly for

all possible queries x,

1. with high probability over the choice of j ∈ {1, . . . , σ} a correct ε-ANN is returned [81], and,

2. the expected running time over the choice of j ∈ {1, . . . , σ} is O((d + ε−2 logn) log d).
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Chapter 5

Concluding Remarks

Applications and improvements

The FJLT can potentially improve other proximity-related problems such as closest pair, furthest

neighbor and clustering. Sarlós [98] recently discovered that the FJLT can be used to improve a

result by Drineas et al [42] on fast approximate `2-regression.

A natural question is whether one can combine the FJLT with Achlioptas’s [1] approach of

using ±1 matrices. More precisely, we would like to each each element of the sparse matrix Φ as 0

with probability 1− q and uniformly ±1 (instead of a normal distribution) with probability 1− q.

Matousek [86] recently showed that this is indeed possible without extra cost for the (`2 → `2)

embedding case and with a multiplicative cost of an additional ε−1 for the (`1 → `1) case (also

affecting the ε-ANN application).

The ANN application presented here suffers from the nO(1/ε2)-space requirement, an almost

insurmountable implementation bottleneck for small ε. It is natural to ask if the space and time

could be traded off so that an algorithm with running time O(ε−2d logn) (comparable to [63, 74]

and [81]) uses significantly less space.
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The Kac random walk

We propose an alternative FJLT transform which we conjecture to be at least as good as the one

described in this paper, yet much more elegant. This transform is based on the following random

walk on the orthogonal group on Rd×d, defined by Kac [76]. At time t = 0, the random walk is at

the identity matrix: U0 = Id. At time t > 0, we choose two random coordinates 1 ≤ it < jt ≤ d

and a random angle θt ∈ [0, 2π), and set Ut+1 = Rit,jt,θtUt, where Ri,j,θ is a rotation of the

(i, j)-plane by angle θ. Clearly Ut is an orthogonal matrix for all t ≥ 0. The walk has the Haar

measure on the group of orthogonal matrices as its unique stationary distribution. For any fixed

x ∈ Rd, computation of UTx is extremely efficient: for t = 1, . . . , T replace xit (resp. xjt) with

xit cos θt + xjt sin θt (resp. −xit sin θt + xjt cos θt). The Kac version of FJLT is defined as follows:

compute UTx for all vectors x ∈ X ⊆ Rd, and return the projection onto the first O(ε−2 log |X |)

coordinates of the resulting vectors. How small can T be in order to ensure the same guarantee

as the original JL dimension-reduction technique?

Kac defined this walk in the context of statistical physics in an attempt to simplify and under-

stand Boltzmann’s equation. Since then, much attention has been given to it from the viewpoints of

pure and applied mathematics. For example, it can be used to efficiently estimate high-dimensional

spherical integrals [65]. Its spectral properties are by now well understood [27,38,94]. We conjec-

ture that O(d log d+ poly(logn, ε−1)) steps suffice, and propose this as an interesting problem.

Lower bounds for FJLT

It is natural to ask what is the fastest randomized linear mapping with the Johnson-Lindenstrauss

guarantee. More precisely:

Question 5.1. What is the lower bound on the expected depth of a randomized linear circuit

Cn,d : Rd 7→ RO(ε−2 log n) such that given any set X ⊆ Rd of n vectors, with probability at least

2/3, α‖x‖2(1− ε) ≤ ‖Cn,d(x)‖p ≤ α‖x‖2(1 + ε) for all x ∈ X, for some ε > 0, p ∈ {1, 2} and α ?
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NQLB for ε-ANN in Euclidean space

Can we achieve a no query left behind guarantee for ANN in Euclidean space as we did for the

Hamming cube case in Chapter 4? A union bound over the finite number of queries was the main

ingredient used for making sure that with high probability, the preprocessing construction worked

for all queries simultaneously. An adversary is powerless even if he knew the random bits used in

the preprocessing. In the Euclidean space, however, an adversary with access to the preprocessing

random bits may be able to choose difficult queries. Perhaps a bounded VC-dimension argument

could be used to argue that such an attack is not possible by the adversary.
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