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Abstract

We describe a polynomial time approximation algorithm to the problem of maximizing a quadratic
form subject to quadratic constraints specified by PSD matrices. A special case, that has applications
for clustering [CW04], is optimizing quadratic forms over the unit cube.

Approximation algorithms with similar guarantees are known [Nes98, NRT99, Meg01, CW04], and
there is evidence that this factor is optimal [ABH+]. The following analysis is particularly simple.

Consider the following quadratic program:

max xT Ax

i = 1, . . . ,m xT Aix ≤ 1 (1)

where, x ∈ Rn, and A1, A2, . . . , Am are positive semidefinite matrices in Rn×n. We consider the following
semidefinite programming relaxation of the problem:

max A •X

i = 1, . . . ,m Ai •X ≤ 1
X � 0 (2)

Note that the trivial solution x = 0 shows that the optimum of (1) is non-negative. We will assume that the
optimum is positive henceforth. We give the following poly-time randomized algorithm to approximate (1)
up to a factor of O(log(mn)):

Procedure ApproximateQP
1. Solve the SDP relaxation (2) to get optimal solution X.
2. Compute a matrix V such that X = V T V .
3. Choose a unit vector u ∈ Rn uniformly at random.

4. Compute x =
[√

n
8 ln(mn)

]
V u.

5. if ∃i s.t. xT Aix > 1 or xT Ax < 1
16 ln(mn)A •X then

abort
else

return x as a solution to (1).
end

The second step in the algorithm, namely computing the decomposition X = V T V , can be performed
by computing the Cholesky decomposition of X or by finding the square root of X.

Clearly, if the algorithm does not abort, it returns an O(log(mn)) approximate solution to (1). We will
show that the algorithm succeeds with non-negligible probability:
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Theorem 1 The algorithm succeeds with probability at least 1/4n.

So we can run the algorithm O(n) times to get a constant probability of success. Before we prove Theorem
1, we need the following well-known lemma on the Gaussian nature of projections (see [ARV04]):

Lemma 1 For any vector v ∈ Rn and a unit vector u ∈ Rn chosen uniformly at random, we have

E[(vT u)2] =
||v||2

n
and Pr

[
(vT u)2 >

t||v||2

n

]
≤ e−t/4

Using this lemma, we can prove that the first condition of failure of line 5 of the algorithm happens with
low probability:

Lemma 2 For any i, Pr[xT Aix > 1] < 1/m2n.

Proof: For convenience, we will work with y = V u instead of x. Since Ai is positive semidefinite, we can
decompose it as A =

∑
k akaT

k for vectors a1, a2, . . . , an ∈ Rn. Then

yT Aiy =
∑

k

yT akaT
k y =

∑
k

uT V T akaT
k V u =

∑
k

(aT
k V u)2

Invoking Lemma 1, we conclude that for any k,

Pr
[
(aT

k V u)2 >
8 ln(mn)||V T ak||2

n

]
<

1
m2n2

and so by union bound on all k,

Pr

[∑
k

(aT
k V u)2 >

8 ln(mn)
∑

k ||V T ak||2

n

]
<

1
m2n

Now
∑

k ||V T ak||2 =
∑

k aT
k V T V ak =

∑
k akaT

k • X = Ai • X ≤ 1. Since x =
[√

n
8 ln(mn)

]
y, we get the

required bound. 2

Now we bound the probability of failure from the second condition of line 5 of the algorithm:

Lemma 3 Pr[xT Ax < 1
16 ln(mn)A •X] < 1− 1/2n.

Proof: As before, it is more convenient to work with y = V u rather than x. We will show the equivalent
bound Pr[yT Ay < A •X/2n] < 1− 1/2n. First, we note that E[yT Ay] = A •X/n: by Lemma 1,

E[yky`] =
1
2
E[y2

k + y2
` − (yk − y`)2] =

1
2

[
||vk||2

n
+
||v`||2

n
− ||vk − v`||2

n

]
=

vT
k v`

n

Using the facts A •X =
∑

k` Ak`v
T
k v`; yT Ay =

∑
k` Ak`yky` and linearity of expectation, the claim follows.

Next, we claim that for any direction u and the corresponding y, yT Ay ≤ A •X. We prove this showing
that X̃ = yyT is a feasible solution for (2) and hence yT Ay = A • X̃ ≤ A • X. For this, we show that
Ai • X̃ ≤ 1 for all i. As in Lemma 2, let Ai =

∑
k akaT

k , and then

Ai • X̃ = yT Aiy =
∑

k

(aT
k V u)2 ≤

∑
k

||V T ak||2 = Ai •X ≤ 1

The first inequality uses the fact that u is a unit vector, and the last equality follows as in Lemma 2.
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Let t = Pr[yT Ay < A •X/2n]. Then we have the following averaging argument:

t · A •X

2n
+ (1− t) •A •X ≥ E[yT Ay] =

A •X

n

Simplifying, we get t ≤ 1− 1/(2n− 1) < 1− 1/2n. 2

Proof:[Theorem 1]
Using lemmas (2), (3) and the union bound, we conclude that the probability of failure is bounded by
(assuming m ≥ 4)

m · 1
m2n

+ 1− 1
2n

≤ 1− 1
4n
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