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Abstract

We describe a polynomial time approximation algorithm to the problem of maximizing a quadratic
form subject to quadratic constraints specified by PSD matrices. A special case, that has applications
for clustering [CWO04], is optimizing quadratic forms over the unit cube.

Approximation algorithms with similar guarantees are known [Nes98, NRT99, Meg01, CW04], and
there is evidence that this factor is optimal [ABH']. The following analysis is particularly simple.

Consider the following quadratic program:

max 27 Az
i=1,....m a2TA4z<1 (1)
where, z € R™, and Ay, As, ..., A,, are positive semidefinite matrices in R™"*". We consider the following
semidefinite programming relaxation of the problem:
max AeX
i=1,....m A;eX <1
X =0 (2)

Note that the trivial solution z = 0 shows that the optimum of (1) is non-negative. We will assume that the
optimum is positive henceforth. We give the following poly-time randomized algorithm to approximate (1)
up to a factor of O(log(mn)):

PROCEDURE APPROXIMATEQP
Solve the SDP relaxation (2) to get optimal solution X.
Compute a matrix V such that X =V7TV.
Choose a unit vector u € R" uniformly at random.

Compute z = { /W} Vu.

W N -

5. if3i s.t. zTAxz>1or aTAz < mAOX then
abort
else
return x as a solution to (1).
end

The second step in the algorithm, namely computing the decomposition X = VTV, can be performed
by computing the Cholesky decomposition of X or by finding the square root of X.

Clearly, if the algorithm does not abort, it returns an O(log(mn)) approximate solution to (1). We will
show that the algorithm succeeds with non-negligible probability:
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Theorem 1 The algorithm succeeds with probability at least 1/4n.

So we can run the algorithm O(n) times to get a constant probability of success. Before we prove Theorem
1, we need the following well-known lemma on the Gaussian nature of projections (see [ARV04]):

Lemma 1 For any vector v € R™ and a unit vector u € R"™ chosen uniformly at random, we have
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Using this lemma, we can prove that the first condition of failure of line 5 of the algorithm happens with
low probability:

Lemma 2 For any i, Pr[zT A;z > 1] < 1/m?n.

PRrROOF: For convenience, we will work with y = Vu instead of z. Since A; is positive semidefinite, we can

decompose it as A=), aka}g for vectors ay,ao,...,a, € R™. Then
yT Ay = ZyTaka{y = ZUTVTakafVu = Z(a{Vu)Q
2 E E
Invoking Lemma 1, we conclude that for any k,
81 VTay||? 1
Pr [(a?/u)2 > n(mn) ||V ax] } <—
n m?n

and so by union bound on all k,
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Now Y, [[VTa||? = Ypaf VIVay = 3, akal ¢ X = A; ¢ X < 1. Since z = {, /Mn&m)} y, we get the

required bound. O
Now we bound the probability of failure from the second condition of line 5 of the algorithm:

Lemma 3 Pr[zT Az < AeX]<1—-1/2n.
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PRrROOF: As before, it is more convenient to work with y = Vu rather than z. We will show the equivalent
bound Pr[yT Ay < A e X/2n] <1 —1/2n. First, we note that E[y” Ay] = A e X/n: by Lemma 1,
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Elywyd = §E[y,3 +yi — (g —ye)?] = 5
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Using the facts Ae X =3, ApevFvg yT Ay = > we Areyrye and linearity of expectation, the claim follows.

Next, we claim that for any direction u and the corresponding y, y:’:Ay < A e X. We prove this showing
that X = yy” is a feasible solution for (2) and hence y" Ay = Ae X < Ae X. For this, we show that
A;e X <1foralli AsinLemma 2,let 4; =5, akag, and then

Ao X =y Ay = (afVu)?® < Y [[V7a|® = 40X < 1
k k

The first inequality uses the fact that u is a unit vector, and the last equality follows as in Lemma 2.



Let t = Pr[y? Ay < A e X/2n]. Then we have the following averaging argument:

t~A.X—|—(l—t)voX > E[yTAy] = Ae X
2n n

Simplifying, we get t <1 —-1/(2n—1)<1—1/2n. O

PROOF:[Theorem 1]
Using lemmas (2), (3) and the union bound, we conclude that the probability of failure is bounded by
(assuming m > 4)
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