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Abstract

This thesis presents network server performance analysis and improvement at the

operating system (OS), application, and processor levels.At the kernel level, we develope

a profiling tool that provides rich OS transparency at low cost, by exposing system call

performance as a first-class result via in-band channels. Using this tool on the Flash

Web server running the standard SPECweb99 benchmark reveals a series of negative

interactions between the server application and the OS. Some of the solutions to these

issues have lead to a set of kernel patches to improve networked file transfer, and others

contribute in server application design.

At the application level, we redesign the Flash server and the widely-used Apache

server, improving Flash’s SPECweb99 score by a factor of four and reducing response

time by one to two orders of magnitude on both servers. Using these servers, we then

examine server latency under load and trace the root cause ofserver-induced latency to

head-of-line blocking within filesystem-related kernel queues. This behavior, in turn,

causes batching and burstiness, and gives rise to a phenomenon we callservice inversion,

where requests are served unfairly with long responses served ahead of short responses.

Removing blocking not only reduces response time under loadand improves latency pro-

files, but also mitigates burstiness and improves request handling fairness. The resulting

servers show better latency scalability with processor speed, making them better candi-

dates for future improvements.

Finally, we investigate the architectural aspects of server performance, conducting

detailed analysis of delivered simultaneous multithreading (SMT) systems. Using five

different software packages and three hardware platforms,experimental results show that

the benefits of the current SMT implementation on Intel Xeon processors are modest

for network servers, and short memory latency or extra L3 cache helps SMT yield bet-
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ter speedups. By performing microarchitectural evaluation using processor performance

counters, we also provide insight into the instruction-level resource bottlenecks that affect

performance on these platforms. Finally, we compare the measured results with similar

studies performed using simulation, and discuss the feasibility of these simulation mod-

els, both in the context of current hardware, and with respect to future trends.
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Chapter 1

Introduction

Network servers continue to be a dominant form of information delivery for Internet

users. Several factors will keep the demand for network-based information delivery in-

creasing: the growing population of Internet users, improvements in end-user bandwidth

such as broadband usage, and the increasing quantity of online information. Web services

are still in their infancy, with new service models evolvingrapidly, such as e-commerce

services, online multimedia services, and online gaming.

Researchers within academia and industry have responded tothis trend both by devel-

oping new server architectures and by developing optimizations for related systems. On

one hand, several server models have been proposed and studied, from multi-process and

multi-thread based servers, and event-driven servers, to acombination of event-driven

and multi-thread. On the other hand, optimization approaches in operating systems have

been taken to address performance issues for servers, such as zero-copy I/O and scalable

event delivery.

As new services appear, server workloads in benchmarks alsobecome more and more

complex. For example, WebStone [55] has grown from relatively simple tools released
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by SGI to a family of benchmarks. Though WebStone’s early popularity with hardware

vendors has been largely supplanted by the committee-governed SPECweb [88] bench-

marks, SPECweb has also evolved from the static-only SPECweb96 to the more complex

SPECweb99, which models real-world web server access patterns and uses dynamic ad

rotation services. The newly-released SPECweb2005 is evenmore intricate with emu-

lation of requests from broadband Internet connections, and new workloads modeling a

banking site, an e-commerce site, and a vendor support site.

With the increasing complexity of workloads, how to identify performance bottle-

necks under these workloads is challenging, especially when the performance of the

”black box” OS needs to be determined. This thesis proposes an approach of making

the OS transparent, by treating system call performance information as afirst-classre-

sult, and returning itin-bandimmediately when the call returns [77]. This approach not

only eliminates guesswork about what happens during call processing, but also gives the

application control over how this information is collected, filtered, and analyzed. Thus it

is customizable and fine-grained for analysis of various characteristics in complex work-

loads.

One trend in performance-related research in network servers is that much of the work

focuses on improving throughput, leaving server response time less well understood. Re-

cent optimization approaches mostly rely on scheduling, assuming that queuing delay is

inherent to the system and is the cause of server latency. This thesis examines the root

causes of server-induced latency and discovers that blocking in filesystem-related kernel

queues is responsible for most excessive latency [78]. By addressing the blocking is-

sues both in the application and in the kernel, we are able to improve response time by

more than an order of magnitude under various workloads. Eliminating the blocking also

reduces server burstiness and improves service fairness.
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Network servers are usually multi-layer systems. Performance of network servers not

only depends on the OS and the server software, but also the hardware platforms. De-

velopment in hardware platforms, especially processor architecture, always brings new

research opportunities for server designers. For example,simultaneous multithreading

(SMT) processors are particularly attractive to network servers because of their ability

to hide memory latency by increasing the utilization of pipeline functional units. This

thesis investigates server performance on the SMT-capableIntel Xeon processors [51].

By using processors with different clock rates and cache hierarchies, we are able to iden-

tify processor level bottlenecks in current SMT implementations and give insight into

server optimization [79]. With the presence of other SMT processors such as the IBM

POWER5 [40] and new architectures such as Chip Multi-Processor(CMP), we believe

this is a promising avenue for future work.

1.1 The SPECweb99 Benchmark

For performance evaluation, understanding the type of workload is essential for interpre-

tation of the performance achieved. Similarly, evaluationmethods are critical for analysis,

with some of them focusing on capacity comparison and otherson bottleneck identifica-

tion. This section presents an overview of the workloads used in this thesis.

Most of the workloads used in this thesis come from the SPECweb99 [88] bench-

mark, which is designed by the Standard Performance Evaluation Corporation (SPEC).

The benchmark is thede factostandard in industry [58], with over 200 published results,

and is different from most other Web server benchmarks in itscomplexity and require-

ments. The workload in this benchmark is modeled after the access patterns of multiple

production Web sites.
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SPECweb99 tests the overall scalability of Web servers under realistic conditions. It

measures scalability by reporting the number of simultaneous connections the server can

handle while meeting a specified quality of service. The dataset and working set sizes

increase with the number of simultaneous connections, and quickly exceed the physi-

cal memory of commodity systems. The data set size is calculated using the following

formula:

Dataset(inMB) = 122 + (3.22 ∗ #ofSimultaneousConnections) (1.1)

In SPECweb99 workloads, 70% of the requests are for static content, with the other

30% for dynamic content, including a mix of HTTP GET and POST requests. 0.15% of

the requests require the use of a CGI process that must be spawned separately for each

request.

Requests are generated from a set of files following a Zipf-like distribution. The

file set size is controlled by the number of expected simultaneous connections, which is

translated into the number of directories. Each directory is roughly 5 MB in total, and

consists of four classes of files, and each class contains nine files. The details about

the file weights and class weights are given in Table 1.1. The file sizes range from 100

bytes to 900 KB and are evenly sized within each class. Popularity of the four classes is

explicitly modeled – half of all accesses are for files in the 1KB-9KB range, with 35%

in the 100-900 byte range, 14% in the 10KB-90KB range, and 1% in the 100KB-900KB

range, yielding an average dynamic response size of roughly14 KB. The directories are

chosen using a Zipf distribution with an alpha value of 1. In this model, thenth most

popular directory is given a weight of 1/n. The strong bias toward small files leads to the

result that the most popular files consume very little aggregate space. Table 1.2 illustrates
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this heavy-tailed feature – the most popular 99% of the requests occupy at most 14% of

the size of data set.

class size 100 – 900 1 – 9 KB 10 – 90 KB 100 – 900 KB
class weight 35% 50% 14% 1%

file size 1 2 3 4 5 6 7 8 9
file weight 3.9% 5.9% 8.8% 17.7% 35.3% 11.8% 7.1% 5.0% 4.4%

Table 1.1: Class and File characteristics in SPECweb99. Each class consists of 9 evenly-
sized files, and the file’s probability is the class weight times the weight within the class
which follows Zipf’s law.

Data Set Top 50% Top 90% Top 95% Top 99%
Size (GB) (MB) (MB) (MB) (MB)

1 2.1 39.5 64.6 138.3
2 3.0 72.9 123.6 262.8
3 4.4 101.8 181.2 385.7
4 4.9 131.8 235.0 505.0

Table 1.2: SPECWeb’s popularity distributions. (Sizes do not scale linearly with data set
size due to the Zipf-based popularity distribution of directories)

Beside of the standard SPECweb99 benchmark, we also use the static workloads of

the benchmark for throughput and response time evaluation.Because SPECweb normally

self-scales, increasing both data set size and number of simultaneous connections with the

target throughput, this approach complicates comparisonsbetween different servers. So

when the measurement is merely throughput or response time,both values of data set size

and number of connections are fixed.
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1.2 Thesis Contribution

This thesis contributes network server performance analysis and improvement at three

levels – the operating system level, server application design level, and processor archi-

tecture level.

• At the kernel level, we have developed a novel kernel profiling tool to provide

applications with fine-grained in-channel kernel information at low cost. The tool

has been shown to be effective in finding cross-boundary performance bottlenecks

and inspired the design of other debugging systems [72].

• We have contributed a set of kernel patches to improve networked file transfer. The

patch forsendfile() has been adopted by the FreeBSD official release, and has

been used to reduce the overhead of other operating system activities [28].

• At application level, we have redesigned a popular researchserver, Flash, and the

widely-used Apache server, improving Flash’s SPECweb99 score by a factor of

four and reducing response time by one to two orders of magnitude on both servers

under various workloads.

• Using these servers, we study the root causes of server-induced latency, and trace

the reason to blocking in filesystem-related kernel queues.The blocking is respon-

sible for most of the server burstiness and service inversion. These results suggest

that connection scheduling may not be the fundamental approach to reduce exces-

sive latency.

• Finally, we investigate the architectural aspects of server performance, conducting

a detailed analysis of delivered SMT systems. Our experiments use five different

software packages and three hardware platforms, and perform a microarchitectural
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evaluation of performance using processor performance counters. We believe this

study is more complete than any related work previously published.

• We find that current SMT implementation in Intel Xeons has a modest performance

benefit for network servers, both in the uniprocessor and dual-processor environ-

ment. By comparing the measurements with earlier simulation results, we discuss

the reasons of the discrepancy and the feasibility of these simulation models. Some

of the results have yielded better understanding of processor bottlenecks and server

optimization.

1.3 Dissertation Overview

This dissertation is organized as follow:

Chapter 2 presents a study of server performance and the interactions with operating

systems. This chapter describes the design, implementation and evaluation of DeBox,

an effective approach to provide more OS transparency, by exposing system call perfor-

mance as a first-class result via in-band channels. We then use this tool for a case study

on the Flash Web server to reveal various performance issues, and describe the solution

for each problem found. Results are evaluated using the SPECweb99 benchmark and

other workloads, and tested on different operating systems.

Chapter 3 examines latency issues further and traces the root cause of server-induced

latency. By experimenting with workloads of various sizes,we discover a problem of

head-of-line blocking within filesystem-related kernel queues, and demonstrates how this

blocking causes server burstiness and gives rise to a phenomenon we callservice inver-

sion. We describe how to improve latency of both the Apache and theFlash server by
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more than an order of magnitude, with a qualitatively different change in the latency

profiles, and propose an approach of quantifying service fairness.

Chapter 4 provides a performance analysis of simultaneous multithreading for server

applications, using five software implementations and three hardware platforms. By ex-

ercising throughput comparison and microarchitectural analysis using performance coun-

ters, we find that the benefits of the current SMT implementation on Intel Xeon processors

are modest for network servers, and short memory latency or extra L3 cache helps SMT

yield better speedups. This chapter also discusses reasonsof the differences between our

results and similar studies performed using simulation.

Finally, Chapter 5 provides a summary of this dissertation.
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Chapter 2

Server Performance and Interactions

with Operating Systems

Server applications usually spend a significant fraction, sometimes more than 90%, of

their time in the kernel. For this reason, operating system performance continues to

be an active area of research, especially as demanding applications test OS scalability

and performance limits. The kernel-user boundary becomes critically important as these

applications achieve their work via system calls. As a result, examining the interaction

between operating systems and user processes remains a useful area of investigation.

This chapter discusses some of the negative interactions, describes the approaches used

to explore these problematic issues, and presents solutions to them.

2.1 Introduction

In server design, previously developers could expect to putdata-sharing services, such

as NFS, into the kernel to avoid the limitations stemming from running in user space.
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However, with the rapid rate of evolution in server workloads, using kernel integration

to avoid performance problems becomes unrealistic. Especially for Web servers, the real

deployment of in-kernel servers is still limited. The reason is because of dynamic content

and security concerns.

Much of the earlier work focusing on the kernel-user interface centered around de-

veloping new system calls that are more closely tailored to the needs of particular ap-

plications. In particular, zero-copy I/O [26, 63] and scalable event delivery [9, 10, 46]

are examples of techniques that have been adopted in mainstream operating systems, via

calls such assendfile(), transmitfile(), kevent(), andepoll(), to ad-

dress performance issues for servers. Other approaches, such as allowing processes to

declare their intentions to the OS [64], have also been proposed and implemented. Some

system calls, such asmadvise(), provide usage hints to the OS, but with operating

systems free to ignore such requests or restrict them to mapped files, programs cannot

rely on their behavior.

Some recent research uses the reverse approach, where applications determine how

the “black box” OS is likely to behave and then adapt accordingly. For example, the Flash

Web Server [62] uses themincore() system call to determine memory residency of

pages, and combines this information with some heuristics to avoid blocking. The “gray

box” approach [7, 22] manages to infer memory residency by observing page faults and

correlating them with known replacement algorithms. In both systems, memory-resident

files are treated differently than others, improving performance, latency, or both. These

approaches depend on the quality of the information they canobtain from the OS and

the accuracy of their heuristics. As workload complexity increases, we believe that such

inferences will become harder to make.
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To remedy these problems, this thesis proposes a much more direct approach to mak-

ing the OS transparent: make system call performance information afirst-classresult,

and return itin-band. In practice, what this entails is having each system call fill a “per-

formance result” structure, providing information about what occurred in processing the

call. The termfirst-class resultspecifies that the performance information gets treated the

same as other results, such as errno and the system call return value, instead of having to

be explicitly requested via other system or library calls. The termin-bandspecifies that

the information is returned to the caller immediately, instead of being logged or processed

by some other monitoring processes. While the structure holding the performance feed-

back is much larger and more detailed than theerrno global variable, they are concep-

tually similar. Simple monitoring at the system call boundary, the scheduler, page fault

handlers, and function entry and exit is sufficient to provide detailed information about

the inner working of the operating system. This approach notonly eliminates guesswork

about what happens during call processing, but also gives the application control over

how this information is collected, filtered, and analyzed, providing more customizable

and narrowly-targeted performance debugging than is available in existing tools.

To achieve the above approach, we have designed and implemented a performance

analysis tool, called DeBox. DeBox allows users to determine where applications spend

their time in the kernel, what causes the performance loss, what resources are under con-

tention, and how the kernel behavior changes with the workload. The flexibility of De-

Box allows us to measure very specific information, such as the kernel CPU consumption

caused by a single call site in a program.

Experiments presented in this chapter focus on analyzing and optimizing the perfor-

mance of the Flash Web Server on the industry-standard SPECweb99 benchmark [88].

Using DeBox, we diagnose and fix a series of problematic interactions between the server
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and the operating system on this benchmark. The resulting system shows an overall fac-

tor of four improvement in SPECweb99 score, throughput gains on other benchmarks,

and latency reductions ranging from a factor of 4 to 47 on FreeBSD. Most of the issues

are addressed by application redesign and the resulting system is portable, as demon-

strated by showing improvements on Linux. The kernel modifications, optimizing the

sendfile() system call, have been integrated into FreeBSD.

DeBox is specifically designed for performance analysis of the interactions between

the OS and applications, especially in server-style environments with complex work-

loads. Its combination of features and flexibility is novel,and differentiates it from other

profiling-related approaches. However, it is not designed to be a general-purpose profiler,

since it currently does not address applications that spendmost of their time in user space

or in the “bottom half” (interrupt-driven) portion of the kernel. The design philosophy

and implementation detail of DeBox are described in the following sections.

2.2 DeBox Design Philosophy

DeBox is designed to bridge the divide in performance analysis across the kernel and user

boundary by exposing kernel performance behavior to user processes, with a focus on

server-style applications with demanding workloads. In these environments, performance

problems can occur on either side of the boundary, and limiting analysis to only one side

potentially eliminates useful information. While some servers may spend most of their

time in the kernel, the ultimate cause may be activities under the process’ control. As a

result, applications may be able to modify their own behavior to avoid bottlenecks.

Some observations about performance analysis for server applications are discussed

below. While some of these measurements could be made in other ways, we believe that
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DeBox’s approach is particularly well-suited for these environments. Note that replacing

any of the existing tools is an explicit non-goal of DeBox, nor do we believe that such

a goal is even feasible. Additionally, by making performance information first-class,

DeBox provides opportunities not afforded by existing approaches. Some examples are

provided below.

• High overheads hide bottlenecks.The cost of the debugging tools may artificially

stress parts of the system, thus masking the real bottleneckat higher load levels. Problems

that appear only at high request rates may not appear when a profiler causes an overall

slowdown. Our tests show that for server workloads, kernelgprof has 40% perfor-

mance degradation even when low resolution profiling is configured. Others tracing and

event logging tools generate large quantities of data, up to0.5MB/s in the Linux Trace

Toolkit [97]. For more demanding workloads, the CPU or filesystem effects of these tools

may be problematic.

DeBox is designed not only to exploit hardware performance counters to reduce over-

head, but also to allow users to specify the level of detail tocontrol the overall costs.

Furthermore, by splitting the profiling policy and mechanism in DeBox, applications can

decide how much effort to expend on collecting and storing information. Thus, they may

selectively process the data, discard redundant or trivialinformation, and store only use-

ful results to reduce the overhead. Not only does this approach make the cost of profiling

controllable, but one process desiring profiling does not affect the behavior of others on

the system. It affects only its own share of system resources.

• User-level timing can be misleading.Figure 2.1 shows user-level timing measure-

ment of thesendfile() system call in an event-driven server. This server uses non-

blocking sockets and invokes sendfile only for in-memory data. As a result, the high

peaks on this graph are troubling, since they suggest the server is blocking. A similar
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measurement usinggetrusage() also falsely implies the same. Even though the mea-

surement calls immediately precede and follow the system call, heavy system activity

causes the scheduler to preempt the process in that small window.
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Figure 2.1: User-space timing of thesendfile call on a server running the SpecWeb99
benchmark – note the sharp peaks, which may indicate anomalous behavior in the kernel.
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Figure 2.2: The same system call measured using DeBox shows much less variation in
behavior.

In DeBox, measurement is integrated into the system call process, so it does not suf-

fer from scheduler-induced measurement errors. The DeBox-derived measurements of

the same call are shown in Figure 2.2, and do not indicate suchsharp peaks and block-

ing. Summary data forsendfile andaccept (in non-blocking mode) are shown in

Table 2.1.
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accept() sendfile()
User DeBox User DeBox

Min 5.0 5.0 8.0 6.0
Median 10.0 6.0 60.0 53.0

Mean 14.8 10.5 86.6 77.5
Max 5216.0 174.0 12952.0 998.0

Table 2.1: Execution time (inµsec) of two system calls measured in user application
and DeBox – Note the large difference in maximums stemming from the measurement
technique.

• Statistical methods miss infrequent events.Profilers and monitoring tools may only

sample events, with the belief that any event of interest is likely to take “enough” time

to eventually be sampled. However, the correlation betweenfrequency and importance

may not always hold. Our experiments with the Flash web server indicate that adding a

1 ms delay to one out of every 1000 requests can degrade latency by a factor of 8 while

showing little impact on throughput. This is precisely the kind of behavior that statistical

profilers are likely to miss.

DeBox eliminates this gap by allowing applications to examine every system call.

Applications can implement their own sampling policy, controlling overhead while still

capturing the details of interest to them.

• Data aggregation hides anomalies.Whole-system profiling and logging tools may

aggregate data to keep completeness and reduce overhead at the same time. This approach

makes it hard to determine which call invocation experienced problems, or sometimes

even which process or call site was responsible for high-overhead calls. This problem gets

worse in network server environments where the systems are complex and large quantities

of data are generated. It is not uncommon for these applications to have dozens of system

call sites and thousands of invocations per second. For example, the Flash server consists
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of about 40 system calls and 150 calling sites. In these conditions, either discarding call

history or full event logging is infeasible.

By making performance information a result of system calls,developers have control

over how the kernel profiling is performed. Information can be recorded by process and

by call site, instead of being aggregated by call number inside the kernel. Users may

choose to save accumulated results, record per-call performance history over time, or

fully store some of the anomalous call trace.

• Out-of-band reporting misses useful opportunities. As the kernel-user boundary

becomes a significant issue for demanding applications, understanding the interaction

between kernel and user processes becomes essential. Most existing tools provide mea-

surements out-of-band, making online data processing harder and possibly missing use-

ful opportunities. For example, the online method allows anapplication toabort() or

record the status when a performance anomaly occurs, but it is impossible with out-of-

band reporting.

When applications receive performance information tied toeach system call via in-

band channels, they can choose the filtering and aggregationappropriate for the program’s

context. They can easily correlate information about system calls with the underlying

actions that invoke them.

2.3 DeBox Architecture & Implementation

This section describes the DeBox prototype implementationin FreeBSD and measures

its overhead. First, we present the user-visible portion ofDeBox, and then the kernel

modifications. We measure overhead for DeBox support with both common system calls
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typedef struct PerSleepInfo {
int numSleeps; /* # sleeps for the same reason */
struct timeval blockedTime; /* how long the process is blocked */
char wmesg[8]; /* reason for sleep (resource label) */
char blockingFile[32]; /* file name causing the sleep */
int blockingLine; /* line number causing the sleep */
int numWaitersEntry; /* # of contenders at sleep */
int numWaitersExit; /* # of contenders at wake-up */

} PerSleepInfo;

typedef struct CallTrace {
unsigned long callSite; /* address of the caller */
int deltaTime; /* elapsed time in timer or CPU counter */

} CallTrace;

typedef struct DeBoxInfo {
int syscallNum; /* which system call */
union CallTime {
struct timeval callTimeval;
long callCycles; /* wall-clock time of entire call */

} CallTime;
int numPGFaults; /* # page faults */
int numPerSleepInfo; /* # of filled PerSleepInfo elements */
int traceDepth; /* # functions called in this system call */
struct PerSleepInfo psi[5]; /* sleeping info for this call */
struct CallTrace ct[200]; /* call trace info for this call */

} DeBoxInfo;

int DeBoxControl(DeBoxInfo *resultBuf, int maxSleeps, int maxTrace);

Figure 2.3: DeBox data structures and function prototype

and real applications. Examples of how to fully use DeBox andwhat kinds of information

it provides are deferred to the case study in Section 2.5.

2.3.1 User-Visible Portion

The programmer-visible interface of DeBox is intentionally simple, since it consists of

some monitoring data structures and a new system call to enable and disable data gather-

ing. Figure 2.3 shows DeBoxInfo, the data structure that handles the DeBox information.

It serves as the “performance information” counterpart to other system call results like

errno. Programs wishing to use DeBox need to perform two actions: declare one or

more of these structures as global variables, and call DeBoxControl to specify how much

per-call performance information it desires.
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At first glance, the DeBoxInfo structure appears very large,which would normally be

an issue since its size could affect system call performance. This structure size is not a

significant concern, since the process specifies limits on how much of it is used. Most

of the space is consumed by two arrays, PerSleepInfo and CallTrace. The PerSleepInfo

array contains information about each of the times the system call blocks (sleeps) in the

course of processing. The CallTrace array provides the history of what functions were

called and how much time was spent in each. Both arrays are generously sized, and we

do not expect many calls to fully utilize either one.

DeBoxControl can be called multiple times over the course ofprocess execution for a

variety of reasons. Programmers may wish to have several DeBoxInfo structures and use

different structures for different purposes. They can alsovary the number of PerSleepInfo

and CallTrace items recorded for each call, to vary the levelof detail generated. Finally,

they can specify a NULL value for resultBuf, which deactivates DeBox monitoring for

the process.

2.3.2 In-Kernel Implementation

The kernel support for DeBox consists of performing the necessary bookkeeping to gather

the data in the DeBoxInfo structure. The points of interest are system call entry and

exit, scheduler sleep and wakeup routines, and function entry and exit for all functions

reachable from a system call.

Since DeBox returns performance information when each system call finishes, the

system call entry and exit code is modified to detect if a process is using DeBox. Once a

process calls DeBoxControl and specifies how much of the arrays to use, the kernel stores

this information and allocates a kernel-space DeBoxInfo reachable from the process con-

trol block. This copy records information while the system call executes, avoiding many
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small copies between kernel and user. Prior to system call return, the requested informa-

tion is copied back to user space.

At system call entry, all non-array fields of the process’s DeBoxInfo are cleared. Ar-

rays do not need to be explicitly cleared since the counters indicating their utilization have

been cleared. Call number and start time are stored in the entry. Time is measured using

the CPU cycle counter available on our hardware, but we couldalso use timer interrupts

or other facilities provided by the hardware.

Page faults that occur during the system call are counted by modifying the page fault

handler to check for DeBox activation. DeBox currently doesnot provide more detailed

information on where faults occur, largely because we have not observed a real need for

it. However, since the DeBoxInfo structure can contain other arrays, more detailed page

fault information can be added if desired.

The most detailed accounting in DeBoxInfo revolves around the “sleeps”, when the

system call blocks waiting on some resource. When this occurs in FreeBSD, the system

call invokes thetsleep() function, which passes control to the scheduler. When the

resource becomes available, thewakeup() function is invoked and the affected pro-

cesses are unblocked. Kernel routines invokingtsleep() provide a human-readable

label. DeBox defines a new macro fortsleep() in the kernel header files that permits

us to intercept any sleep points. When this occurs, DeBox records in a PerSleepInfo el-

ement where the sleep occurred (blockingFile and blockingLine), what time it started,

what resource label was involved (wmesg), and the number of other processes waiting on

the same resource (numWaitersEntry). Similarly, DeBox modifies thewakeup() rou-

tine to provide numWaitersExit and calculate how much time was spent blocked. If the

system call sleeps more than once at the same location, that information is aggregated

into a single PerSleepInfo entry.
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DeBoxInfo:
4, /* system call # */

3591064, /* call time, microsecs */
989, /* # of page faults */

2, /* # of PerSleepInfo used */
0, /* # of CallTrace used (disabled) */

PerSleepInfo[0]:
1270 /* # occurrences */

723903 /* time blocked, microsecs */
biowr /* resource label */

kern/vfs_bio.c /* file where blocked */
2727 /* line where blocked */

1 /* # processes on entry */
0 /* # processes on exit */

PerSleepInfo[1]:
325 /* # occurrences */

2710256 /* time blocked, microsecs */
spread /* resource label */

miscfs/specfs/spec_vnops.c /* file where blocked */
729 /* line where blocked */

1 /* # processes on entry */
0 /* # processes on exit */

Figure 2.4: Sample DeBox output showing the system call performance of copying a
10MB mapped file

The process of tracing which kernel functions are called during a system call is

slightly more involved, largely to minimize overhead. Conceptually, all that has to occur

is that every function entry and exit point has to record the current time and function name

when it started and finished, similar to what call graph profilers use. The gcc compiler

allows entry and exit functions to be specified via the “instrument functions” option, but

these are invoked by explicit function calls. As a result, function call overhead increases

by roughly a factor of three. Our current solution involves manually inserting entry and

exit macros into reachable functions. The entry macro pushes current function address

and time in a temporary stack. The exit macro pops out the function address, calculates

the wall clock time, and records this information in the CallTrace array. Automating the

modification should be possible in the future, such as what isdone for kernel profiling

using themcount() function.
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A sample of the output is given in Figure 2.4 to show information provided in DeBox.

We memory-map a 10MB file, and use thewrite() system call to copy its contents to

another file. The main DeBoxInfo structure shows that systemcall 4 (write()) was

invoked, and it used about 3.6 seconds of wall-clock time. Itincurred 989 page faults,

and blocked in two unique places in the kernel. The first PerSleepInfo element shows that

it blocked 1270 times at line 2727 in vfsbio.c on “biowr”, the block I/O write routine.

The second location was line 729 of specvnops.c, which caused 325 blocks at “spread”,

read of a special file. The writes blocked for roughly 0.7 seconds, and the reads for 2.7

seconds.

2.3.3 Overhead

For DeBox to be attractive, it should generate low kernel overhead, especially in the

common case. To quantify this overhead, we compare an unmodified kernel, a kernel

with DeBox support, and the modified kernel with DeBox activated. These measurements

are shown in Table 2.2. The first column indicates the varioussystem calls –getpid(),

gettimeofday(), andpread()with various sizes. The second column indicates the

time required for these calls on an unmodified system. The remaining columns indicate

the additional overhead for various DeBox features.

The measurement for call history tracing is separated sincewe do not expect it will be

activated continuously. The “basic off” column indicates the overhead introduced with a

modified kernel supporting DeBox without call tracing. The performance impact is virtu-

ally unnoticeable. The “basic on” column shows the impact ofactivating DeBox without

call tracing. We use the CPU cycle counter, since accessing the hardware clock on our

system requires 5 microseconds. This overhead is the reasonwhy gettimeofday()

has a comparable running time to a 512 byte read. These numbers show that the cost to
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DeBox without DeBox
call name base call trace call trace

or read size time off on off on

getpid 0.46 +0.00 +0.50 +0.03 +1.45

gettimeofday 5.07 +0.00 +0.43 +0.03 +1.52

pread 128B 3.27 +0.02 +0.56 +0.21 +2.03
256 bytes 3.83 +0.00 +0.59 +0.26 +2.02
512 bytes 4.70 +0.00 +0.69 +0.28 +2.02

1024 bytes 6.74 +0.00 +0.68 +0.27 +2.02
2048 bytes 10.58 +0.03 +0.68 +0.26 +2.01
4096 bytes 18.43 +0.03 +0.74 +0.29 +2.16

Table 2.2: DeBox microbenchmark overheads – Base time uses an unmodified system.
All times are in microseconds

support most DeBox features is minimal, and the cost of usingthe measurement infras-

tructure is tolerable. Since these costs are borne only by the applications that choose to

enable DeBox, the overhead to the whole system is even lower.The performance impact

with DeBox disabled, indicated by the 3rd column, is virtually unnoticeable. The cost

of supporting call tracing, shown in the 5th column, where every function entry and exit

point is affected, is higher, averaging approximately 5% ofthe system call time. This

overhead is higher than ideal, and may not be desirable to have continuously enabled.

However, our implementation is admittedly crude, and better compiler support could in-

tegrate it with the function prologue and epilogue code. We expect that we can reduce

this overhead, along with the overhead of using the call tracing, with optimization.

Since microbenchmarks do not indicate what kinds of slowdowns may be typically

observed, we provide some macrobenchmark results to give insight into these costs in

Table 2.3. The three systems tested are: an unmodified system, one with only “basic”

DeBox without call trace support, and one with complete DeBox support. The first two

columns are times for archiving and compressing files of different sizes. The last column

is for building the FreeBSD kernel. The overheads of DeBox support range from less than
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1% to roughly 3% in the kernel build. We expect that many environments will tolerate

this overhead in exchange for the flexibility provided by DeBox.

tar-gz a directory with make
1MB file 10MB file kernel

base time 275.61 ms 3078.50 ms 236.96 s
basic on +0.97 ms +22.73 ms +1.74 s

full support +1.03 ms +44.58 ms +7.49 s

Table 2.3: DeBox macrobenchmark overheads

2.4 Experimental Setup & Workloads

This section describes the experimental setup and the relevant software components of the

system in this section. All of the experiments, except for the portability measurements

are performed on a uniprocessor server running FreeBSD 4.6,with a 933MHz Pentium

III, 1GB of memory, one 5400 RPM Maxtor IDE disk, and a single Netgear GA621

gigabit ethernet network adapter. The portability experiments are performed on another

server box because the Linux kernel crashes on the existing server hardware. The clients

consist of ten Pentium II machines running at 300 MHz connected to a switch using Fast

Ethernet. All machines are configured to use the default (1500 byte) MTU as required by

SpecWeb99.

The main application studied here is the event-driven FlashWeb Server, although

we also perform some tests on the widely-used multi-processApache [6] server. The

Flash Web Server consists of a main process and a number of helper processes. The

main process multiplexes all client connections, is intended to be nonblocking, and is

expected to serve all requests only from memory. The helpersload disk data and metadata

into memory to allow the main process to avoid blocking on disk. The number of main
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processes in the system is generally equal to the number of physical processors, while the

number of helper processes is dynamically adjusted based onload. In previous tests, the

Flash Web Server has been shown to compare favorably to high-performance commercial

Web servers [62]. We run with logging disabled to simplify comparison with Apache,

where enabling logging degrades performance noticeably.

Our experiments focus on the standard SPECweb99 benchmark,with 30% dynamic

content including a mix of HTTP GET and POST requests. A detailed description of the

benchmark is provided in Section 1.1.

2.5 Using DeBox on the Flash Server

This section demonstrates how we use DeBox to analyze and optimize the behavior of the

Flash Web Server. We discover a series of problematic interactions, trace their causes, and

find appropriate solutions to avoid them or fix them. In the process, we gain insights into

the causes of performance problems and how conventional solutions, such as throwing

more resources at the problem, may exacerbate the problem. Our optimizations quadruple

our SPECweb99 score and also sharply decrease latency.

2.5.1 Initial experiments

Our first run of SPECweb99 on the publicly available version of the Flash Web Server

yields a SPECweb99 result of roughly 200 simultaneous connections, much lower than

the published score of 575 achieved on comparable hardware using TUX, an in-kernel

Linux-only HTTP server. At 200 simultaneous connections, the dataset size is roughly

770MB, which is smaller than the amount of physical memory inthe machine. Not sur-

24



prisingly, the workload is CPU-bound, and a quick examination shows that themincore()

system call is consuming more resources than any other call in Flash.

The underlying problem is the use of linked lists in the FreeBSD virtual memory

subsystem for handling virtual memory objects. The heavy use of memory-mapped

files in Flash generates large numbers of memory objects, anda linear walk utilized by

mincore() generates significant overhead. We apply a patch from Alan Cox of Rice

University that replaces the linked lists with splay trees,and this bringsmincore() in

line with other calls. Our SPECweb99 score rises to roughly 320, a 60% improvement.

At this point, the working set has increased to 1.13GB, slightly exceeding our physical

memory.

Once themincore() problem is addressed, the system still appears to be CPU-

bound. We suspect the data copying is the bottleneck. So we update the Flash server

to use the zero-copy I/O system call,sendfile(). However, usingsendfile()

requires that file descriptors be kept open, greatly increasing the number of file descrip-

tors in use by Flash. To mitigate this impact, we implement support forsendfile()

concurrently with support forkevent(), which is a scalable event delivery mechanism

recently incorporated into FreeBSD. After these changes, we are not surprised by the

drop in CPU utilization, but are surprised that the SPECweb99 score drops to 300.

2.5.2 Successive refinement of detail

With the server exhibiting idle CPU time but an inability to meet SPECweb99’s quality-

of-service requirements, an obvious candidate is blockingsystem calls. However, Flash’s

main process is designed to avoid blocking. We tried tracingthe problem using exist-

ing tools, but found they suffered from the problems discussed in section 2.2. These

experiences motivated the creation of DeBox.
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The DeBox structures provide various levels of detail, allowing applications to spec-

ify what to measure. A typical use would first collect the basic DeBoxInfo to observe

anomalies, then enable more details to identify the affected system calls, invocations, and

finally the whole call trace.

We first use DeBox to get the blocking information, which is stored in the PerSleep-

Info field. The PerSleepInfo data shows seven different system calls blocking in the

kernel, and examination of the resource labels (wmesg) shows four reasons for blocking.

These results are shown in Table 2.4, where each column header shows the resource label

causing the blocking, followed by the total number of times blocked at that label. The

elements in the column are the system calls that block on thatresource, and the number

of invocations involved. As evidenced by the calls involved, the “biord” (block I/O read)

and “inode” (vnode lock) labels are both involved in openingand retrieving files, which

is not surprising since our data set exceeds the physical memory of the machine.

biord/166 inode/127 getblk/1 sfpbsy/1

open/162 readlink/84 close/1 sendfile/1
read/3 open/28

unlink/1 read/9
stat/6

Table 2.4: Summarized DeBox output showing blocking counts– The layout is organized
by resource label and system call name. For example, of the 127 times this test blocked
with the “inode” label, 28 were from theopen() system call

The finest-grained kernel information is provided in the CallTrace structure, and we

enable this level of detail once the PerSleepInfo identifiespossible candidates. The main

process should only be accessing cached data, so the fact that it blocks on disk-related

calls is puzzling. For portability, the main process in Flash uses the helpers to demand-

fetch disk data and metadata into the OS caches, and repeats the operation immediately

after the helpers have completed loading, assuming that therecently loaded information
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will prevent it from blocking. Observing the full CallTraceof some of these blocking

invocations shows the blocking is not caused by disk access,but contention on filesys-

tem locks. Combining the blocking information from helper processes reveals that when

the main process blocks, the helpers are operating on similarly-named files as the main

process. We solve this problem by having the helpers return open file descriptors using

sendmsg(), eliminating duplication of work in the main process. With this change, we

are able to handle 370 simultaneous connections from SPECweb99, with a dataset size

of 1.28GB.

2.5.3 Capturing rare anomaly paths

We find that thesendmsg() change solves most of the filesystem-related blocking.

However, oneopen() call in Flash still shows occasional blocking at the label “biord”

(reading a disk block), but only after the server has been running for some time and

under heavy workloads. Only revealing which call induced the problem may not suffice

a complete picture, because the reason of invoking that callis unclear. In a system with

multiple identical system calls, existing tools do not havean efficient way to find which

one causes the problem and the calling path involved.

Because DeBox information is returned in-band, the user-space context is also avail-

able when kernel performance anomalies are detected. On finding a blocking invocation

of open(), we capture the path through the user code by callingabort() and using

gdb to dump the stack1. This approach uncovers a subtle performance bug in Flash in-

duced by mapped-file cache replacement. Flash has two independent caches – one for

URL-to-filename translations (name cache), and another formemory-mapped regions

1Alternately, we could invokefork() followed byabort() to keep the process running while still
obtaining a snapshot, or we could record the call path manually.
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(data cache). For this workload, the name cache does not suffer from capacity misses,

while the data cache may evict the least recently used entries. Under heavy load, a name

cache hit and a data cache capacity miss causes Flash to erroneously believe that it had

just recently performed the name translation and has the metadata cached. When Flash

callsopen() to access the file in this circumstance, the metadata associated with the

name conversion is missing, causing blocking. We solve thisproblem by allowing the

second set of helpers, the read helpers, to return file descriptors if the main process does

not already have them open. After fixing this bug, we are able to handle 390 simultaneous

connections, and a 1.34GB dataset.

2.5.4 Tracking call histories

With all blocking eliminated and with a much higher request rate, we return to the issue

of CPU consumption. By storing the CallTime field of each system call, we can track

per-call performance by invocation, both to observe trendsand to identify time-related

problems. Traditional profiling tools usually report average CPU consumption of each

function, thus hiding any performance trends. User-space timing functions may catch the

general trend in spite of the measurement error, but involvemuch more work to track

each system call and find the problematic ones.

Process creation overhead

By recording all CPU time values, we find that the largest calltimes are for thefork()

system call and that its cost grows with the number of invocations, approaching 130 msec.

Figure 2.5 shows the per-call time as a function of invocation. We observe thatfork()

time increases as the program runs, starting as low as 0.3 msec. These calls stem from
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the SPECweb99 workload’s requirement that 0.15% of the requests be handled by forking

new processes.
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Figure 2.5: Call time offork() as a function of invocation

A full call trace indicates thatfork() spends the bulk of its time copying file de-

scriptors and VM map entries (for mapped regions). We confirmthis observation by vary-

ing the sizes of the caches in Flash and seeing their impact onfork() times. Rather

than changing the implementation offork(), we opt to slightly modify the Flash ar-

chitecture. We introduce a new helper process that is responsible for creating the CGI

processes. Since this new process does not map files or cache open files, itsfork()

time is not affected by the main process size. This change yields a 10% improvement, to

440 simultaneous connections and a 1.50GB dataset size.

Memory lookup overhead

Though the dataset size now exceeds physical memory by over 50%, the system bottle-

neck remains CPU. Examining the time consumption of each system call again reveals

that most time is being spent in memory residency checking. Though our modified Flash

usessendfile(), it usesmincore() to determine memory residency, which requires

that files be memory-mapped. The cumulative overhead of memory-map operations is
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the largest consumer of CPU time. As can be seen in Figure 2.6,the per-call overhead of

mmap() is significant and increases as the server runs. The cost increase is presumably

due to finding available space as the process memory map becomes fragmented.
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Figure 2.6: Call time ofmmap() as a function of invocation

To avoid the memory-residency overheads, we use Flash’s mapped-file cache book-

keeping as the sole heuristic for guessing memory residency. We eliminate allmmap,

mincore, and munmap calls but keep track of what pieces of files have been re-

cently accessed. Sizing the cache conservatively with respect to main memory, we save

CPU overhead but introduce a small risk of having the main process block. The CPU

savings of this change is substantial, allowing us to reach 620 connections (2GB dataset).

2.5.5 Profiling by call site

We take advantage of DeBox’s flexibility by separating the kernel time consumption

based on call site rather than call name. We are interested inthe cost of handling dynamic

content since SPECweb99 includes 30% dynamic requests which could be processed by

various interfaces. Flash uses a persistent CGI interface similar to FastCGI [60] to reuse

CGI processes when possible, and this mechanism communicates over pipes. Although

theread() andwrite() system calls are used by the main process, the helpers, and all
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of the CGI processes, we measure the overhead of only those involved in communication

with CGI processes.

Our measurements show that the single call site responsiblefor most of the time is

where the main process reads from the CGIs, consuming 20% of all kernel time, (176

seconds out of 891 seconds total). Writing the request to theCGI processes is much

smaller, requiring only 24.3 seconds of system call time. This level of detail demonstrates

the power of making performance a first-class result, since existing kernel profilers would

not have been able to separate the time for theread() calls by call sites. By modifying

our CGI interface slightly, the main process writes only theHTTP header to the client,

and passes the socket to the CGI application to let it write the data directly. This change

allows us to reach 710 connections (2.35GB dataset).

2.5.6 Other optimization opportunities

By replacing our exact memory residency check with a cheaperheuristic, we gain per-

formance, but introduce blocking into thesendfile() system call. New PerSleepInfo

measurements of the blocking behavior ofsendfile() are shown in Table 2.5.

time label kernel file line

6492 sfbufa kern/uipcsyscalls.c 1459
702 getblk kern/kernlock.c 182

984544 biord kern/vfs bio.c 2724

Table 2.5: New blocking measurements ofsendfile()

The resource label “sfbufa” indicates that the kernel has exhausted the sendfile buffer

used to map filesystem pages into kernel virtual memory. We confirm that increasing the

number of buffer elements during boot time may mitigate thisproblem in our test. How-

ever, based on the results of previous copy-avoidance systems [26, 63], we opt instead to
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implement recycling of kernel virtual address buffers. We use a hash table to maintain

the buffer elements with each element indexed by the physical address of the page to be

sent, and use a least-recently-used (LRU) list to store inactive elements. For each buffer

element, we introduce a reference count to track its liveness. When the kernel initially

boots, both the hash table and the buffer are initialized andall buffer elements are put in

the LRU queue. The typical operations of this recycling process are as follow:

When a file page is scheduled to send, its address is used to compute the hash table

entry. If the corresponding buffer element is already put inthe hash table, the element is

removed from the LRU list and we increment the reference count. Otherwise, we pull the

head element in the LRU list, map the page to be sent, and put the element in the hash

table. After the page address is successfully transfered tothe lower level of the network-

ing layer, we decrease the reference count instead of freeing the mapping immediately.

When the reference count reaches zero, the mapping is freed and the sendfile buffer is put

into the tail of the LRU list for reuse.

With this change, many requests to the same file do not cause multiple mappings, and

eliminates the associated virtual memory and physical map (pmap) operations. Caching

these mappings may temporarily use more wired memory than nocaching, but the reduc-

tion in overhead and address space consumption outweighs the drawbacks.

The other two resource labels, “getblk” and “biord”, are related to disk access initiated

within sendfile() when the requested pages are not in memory. Even though the

socket being used is nonblocking, that behavior is limited only to network buffer usage.

We introduce a new flag tosendfile() so that it returns a differenterrno value if

disk blocking would occur. This change allows us to achieve the same effect as we had

with mincore(), but with much less CPU overhead. We may optionally have the read
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helper process send data directly back to the client on a filesystem cache miss, but have

not implemented this optimization.

However, even with blocking eliminated, we find performancebarely changes when

usingsendfile() versuswritev(), and we find that the problem stems from han-

dling small writes. HTTP responses consist of a small headerfollowed by file data. The

writev() code aggregates the header and the first portion of the body data into one

packet, benefiting small file transfers. In SPECweb99, 35% ofall static requests are for

files 1KB or smaller.

The FreeBSDsendfile() call includes parameters specifying headers and trailers

to be sent with the data, whereas the Linux implementation does not. Linux introduces

a new socket option, TCPCORK, to delay transmission until full packets can be assem-

bled. While FreeBSD’s “monolithic” approach provides enough information to avoid

sending a separate header, its implementation uses a kernelversion ofwritev() for the

header, thus generating an extra packet. We improve this implementation by creating an

mbuf chain using the header and body data before sending it tolower levels of the net-

work stack. This change generates fewer packets, improvingperformance and network

latency. Results of these changes on a microbenchmark are shown in Figure 2.7. With

thesendfile() changes, we are able to achieve a SPECweb99 score of 820, witha

dataset size of 2.7GB.

2.5.7 Case Study Summary

By addressing the interaction areas identified by DeBox, we achieve a factor of four im-

provement in our SPECweb99 score, supporting four times as many simultaneous con-

nections while also handling a data set that almost three times as large as the physical

memory of our machine. The SPECweb99 results of our modifications can be seen in
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Figure 2.8, where we show the scores for all of the intermediate modifications we made.

Our final result of 820 compares favorably to published SPECweb99 scores, though no

directly comparable systems have been benchmarked. We outperform all uniprocessor

systems with similar memory configurations but using other server software – the highest

score for a system with less than 2GB of memory is 575.

Most of our changes are portable architectural modifications to the Flash Web Server,

including (1) passing file descriptors between the helpers and the main process to avoid

most disk operations in the main process, (2) introducing a newfork() helper to han-

34



dle forking CGI requests, (3) eliminating the mapped file cache, and (4) allowing CGI

processes to write directly to the clients instead of writing to the main process. Figure 2.9

shows the original and new architectures of the static content path for the server.

Figure 2.9: Architectural changes – The architecture is greatly simplified by using file de-
scriptor passing and eliminating mapped file caching. Modified components are indicated
with dark boxes.

The changes we make to the operating system focus onsendfile(), including

(1) adding a new flag and return value to indicate when blocking on disk would occur,

(2) caching kernel address space mapping to avoid unnecessary physical map operations,

and (3) sending headers and file data in a single mbuf chain to avoid multiple packets for

small responses. Additionally, we apply a virtual memory system patch that ultimately

is superfluous since we remove the memory-mapped file cache. We have provided our

modifications to the FreeBSD developer group and all three optimizations have been

incorporated into FreeBSD.
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2.6 Latency

Since we identify and correct many sources of blocking, we are interested in the ef-

fects of our changes on server latency. We first compare the effect of our changes on

the SPECweb99 workload, and then reproduce workloads used by other researchers in

studying static content latencies. In all cases, we comparelatencies using a workload

below the maximum of the slowest server configuration under test.

2.6.1 On SPECweb99 workloads

On the SPECweb99 workload, we find that mean response time is reduced by a factor of

four by our changes. The cumulative distribution of latencies can be seen in Figure 2.10.

We use 300 simultaneous connections, and compare the new server with the original

Flash running on a patched VM system. Since 30% of the requests are for longer-running

dynamic content, we also test the latencies of a SPECweb99 test with only static requests.

The mean of this workload is 7.1 msec, lower than the 10.6 msecmean for the new server

running the complete workload. This difference suggests that further optimization of

dynamic content handling may lead to even better performance. To compare the differ-

ence between static and dynamic request handling, we calculate the 5th, 50th, and 95th

percentiles of the latencies for requests on the SPECweb99 workload. These results are

shown in Table 2.6, and indicate that dynamic content is served at roughly half the speed

of its static counterpart. The latency difference between the new server and the original

Flash on this test is not as large as expected because the working set still fits in physical

memory.
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Figure 2.10: Latency summary for 300 SPECweb99 connections

5%(ms) 50%(ms) 95%(ms) mean(ms)
static 0.51 1.45 59.81 9.92

dynamic 0.99 2.83 91.31 12.19

Table 2.6: Separating SPECweb99 static and dynamic latencies

2.6.2 On Disk-bound static workload

To determine our latency benefit on a more disk-bound workload and to compare our

results with those of other researchers, we construct a static workload similar to the one

used to evaluate the Haboob server [96]. In this workload, 1020 simulated clients generate

static requests to a 3.3GB data set. Persistent connectionsare used, with clients issuing

5 requests per connection before closing it. To avoid overload, the request rate is fixed at

2300 requests/second, which is roughly 90% of the slowest server’s capacity.

We compare several configurations to determine the latency benefits and the impact

of parallelism in the server. We run the new and original versions of Flash with a single

instance and four instances, to compare uniprocessor configurations with what would be

expected on a 4-way SMP. We also run Apache with 150 and 300 server processes.

The results, given in Figure 2.11 and Table 2.7, show the response time of our new

server under this workload exhibits improvements of more than a factor of twelve in mean

response time, and a factor of 47 in median latency. With fourinstances, the differences
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Figure 2.11: Response latencies for the 3.3GB static workload

5% median 95% mean
(ms) (ms) (ms) (ms)

New Flash 0.37 0.79 7.45 7.56
New Flash, 4p 0.38 0.82 7.51 7.72

Old Flash 3.36 37.59 326.40 92.37
Old Flash, 4p 7.05 142.65 1924.42 420.85

Apache 150p 0.70 6.64 1599.50 360.62
Apache 300p 0.78 124.98 2201.63 545.93

Table 2.7: Summaries of the static workload latencies

are a factor of 54 in mean response time and 174 in median time.We measure the max-

imum capacities of the servers when run in infinite-demand mode, and these results are

shown in Table 2.8. While the throughput gain from our optimizations is significant, the

scale of gain is much lower than the SPECweb99 test, indicating that our latency benefits

do not stem purely from extra capacity.

data set Apache Old Flash New Flash
500MB 240.3 485.2 660.9
1.5GB 230.7 410.6 580.3
3.3GB 210.6 264.5 326.4

Table 2.8: Server static workload capacities (Mb/s)
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2.6.3 Excess parallelism

We also observe that all servers tested show latency degradation when running with more

processes, though the effect is much lower for our new server. This observation is in line

with the self-interference between the helpers and the mainFlash process which we de-

scribed earlier. We increase the number of helper processesand measure its effect on the

SPECweb99 results, as shown in Table 2.9. We observe that toofew helpers is insufficient

to fully utilize the disk, and increasing their number initially helps performance. How-

ever, the blocking from self-interference increases, eventually decreasing performance.

A similar phenomenon, stemming from the same problem, is also observed with Apache.

Using DeBox, we find that Apache with 150 processes, sleeps 3667 times per second,

increasing to 3994 times per second at 300 processes. This behavior is responsible for

Apache’s latency increase in Figure 2.11.

# of helpers 1 5 10 15

Blocking count 114 295 339 394
% Conforming 40.9% 95.1% 96.9% 89.5%

Table 2.9: Parallelism benefits and self-interference – Theconformance measurement
indicates how many requests meet SPECweb99’s quality-of-service requirement.

This result suggests that excess parallelism, where serverdesigners use parallelism

for convenience, may actually degrade performance noticeably. This observation may

explain the latency behavior reported for Haboob [96].

2.7 Results Portability

The main goal of this work is to provide developers with toolsto diagnose and correct the

performance problems in their own applications. Thus, we hope that the optimizations
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made on one platform also have benefit on other platforms. To test this premise, we test

the performance of the new servers on Linux, which has no DeBox support.

Unfortunately, we were unable to get Linux to run properly onour existing hard-

ware, despite several attempts to resolve the issue on the Linux kernel list. So, for these

numbers, we use a server machine with a 3.0 GHz Pentium 4 processor and two Intel

Pro1000/MT Gigabit adapters, 1GB of memory, and a similar disk. The experiments

were performed on 2.4.21 kernel withepoll() support.

We compare the throughput and latency of four servers: Apache 1.3.27, Haboob,

Flash, and the new Flash. We increase the max number of clients to 1024 in Apache

and disable logging. Both the original Flash and the new Flash server use the maximum

available cache size for LRU. We also adjust the cache size inHaboob for the best perfor-

mance. The throughput results, shown in Table 2.10, are quite surprising. The Haboob

server, despite having aggressive optimizations and event-driven stages, performs slightly

better than Apache on disk-bound workload but worse than Apache on an in-memory

workload. We believe that its dependence on excess parallelism (via its threaded design)

may have some impact on its performance. The new Flash servergains about 17-24%

over the old one for the smaller workloads, and all four servers have similar throughput

on the larger workload because of the disk bottleneck.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  1  10  100  1000  10000

Pr
ob

ab
ilit

y 
[R

es
po

ns
e 

tim
e 

<=
 x

]

Time (ms)

New Flash

Flash

Apache

Haboob

Figure 2.12: Response time on Linux with 3.3GB dataset
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Throughput (Mb/s)
data set Haboob Apache Flash New Flash

500MB 324.9 434.3 1098.1 1284.7
1.5GB 303.4 372.4 661.7 822.5
3.3GB 184.1 177.4 173.8 199.1

Response Time (ms)
profile Haboob Apache Flash New Flash

5% 78.2 0.22 0.21 0.15
median 414.3 0.61 1.56 0.42

95% 1918.9 661.8 412.5 3.68
mean 656.2 418.0 512.5 141.9

Table 2.10: Throughput measurement on Linux with 1GB memory

Despite similar throughputs at the 3.3GB data set size, the latencies of the servers,

shown in Figure 2.12 and Table 2.10, are markedly different.The Haboob latency profile

is very close to the published result [96], but is worse by allof the other servers. We sur-

mise that the minimal amount of tuning done to configurationsof Apache and the original

Flash yield much better results than the original Haboob comparison. The benefit of our

optimization is still valid on this platform, with a factor of 4 both in median and mean

latency over the original Flash. One interesting observation is that the 95% latency of the

new Flash is a factor of 39 lower than the mean value. This result suggests that the small

fraction of long-latency requests is the major contributorto the mean latency. Though

our Linux results are not directly comparable to our FreeBSDones due to the hardware

differences, we do notice this phenomenon is less obvious onFreeBSD. Presumably one

of the causes of this is the blocking disk I/O feature ofsendfile() on Linux. Another

reason may be Linux’s filesystem performance, since this throughput is worse than what

we observed on FreeBSD.
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2.8 Related Work

To compare DeBox’s approach of making performance information a first-class result,

we describe three categories of tools currently in use, and explain how DeBox relates to

these approaches.

• Function-based profilers– Programs such asprof, gprof [29], and their variants

are often used to detect hot-spots in programs and kernels. These tools use compiler

assistance to add bookkeeping information (count and time)to the program. Data is

gathered while running and analyzed offline to reveal function call counts and CPU usage,

often along edges in the call graph. This approach often suffers from high overhead,

especially when function call times are small.

• Coverage-based profilers– These profilers divide the program of interest into regions

and use a clock interrupt to periodically sample the location of the program counter. Like

function-based profilers, data gathering is done online andanalyzed offline. Tools such

asprofil(), kernbb, andtcov can then use this information to show what parts of

the program are most likely to consume CPU time. Coverage-only approaches may miss

infrequently-called functions entirely and may not be ableto show call graph behavior.

Coverage information combined with compiler analysis can be used to show usage on a

basic-block basis.

• Hardware-assisted profilers– These profilers are similar to coverage-based profilers,

but use special features of the microprocessor (event counters, timers, programmable

interrupts) to obtain high-precision information at lowercost. The other major difference

is that these profilers, such as DCPI [4], Morph [98], VTune [34], Oprofile [61], and

PP[3], tend to be whole system profilers, capturing activityacross all processes and the

operating system.
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In this category, DeBox is logically closest to kernelgprof, though it provides more

than just timing information. DeBox’s full call trace allows more complete call graph

generation than gprof’s arc counts, and with the data compression and storage performed

in user space, overhead is moved from the kernel to the process, so processes have con-

trol over the profiling cost. Compared to path profiling, DeBox allows developers to cus-

tomize the level of detail they want about specific paths, andto act on that information

as it is generated. In comparison to low-level statistical profilers such as DCPI, coverage

differs since DeBox measures functions directly used in thesystem call. As a result, the

difference in approach yields some differences in what can be gathered and the difficulty

in doing so – DCPI can gather bottom-half information, whichDeBox currently cannot.

However, DeBox can easily isolate problematic paths and their call sites, which DCPI’s

aggregation makes more difficult.

• System activity monitors– Tools such astop, vmstat, netstat, iostat, and

systat can be used to monitor a running system or determine a first-order cause for sys-

tem slowdowns. The level of precision varies greatly, withtop showing per-process in-

formation on CPU usage, memory consumption, ownership, andrunning time, tovmstat

showing only summary information on memory usage, fault rates, disk activity, and CPU

usage.

• Trace tools – Trace tools provide a means of observing the system call behavior of

processes without access to source code. Tools such astruss, PCT [16],strace [2],

andktrace are able to show some details of system calls, such as parameters, return

values, and timing information. Recent tools, such as Kitrace [43] and the Linux Trace

Toolkit [97], also provide data on some kernel state that changes as a result of the system

calls. These tools are intended for observing another process, and as a result, produc-
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ing out-of-band measurements and data aggregation, often requiring post-processing to

generate usable output.

• Timing calls – Usinggettimeofday() or similar calls, programmers can manually

record the start and end times of events to infer informationbased on the difference. The

getrusage() call adds some information beyond timings (context switches, faults,

messages and I/O counts) and can similarly used. If per-callinformation is required, not

only do these approaches introduce many more system calls, but the information can be

misleading.

DeBox compares favorably with a hypothetical merger of the timing calls and the

trace tools in the sense that timing information is presented in-band, but so is the other

information. In comparison with the Linux Trace Toolkit, our focus differs in that we

gather the most significant pieces of data related to performance, and we capture it at a

much higher level of detail.

• Microbenchmarks – Tools such as lmbench [53] and hbench:OS [18] can measure

best-case times or the isolated cost of certain operations (cache misses, context switches,

etc.). Common usage for these tools is to compare different operating systems, different

hardware platforms, or possible optimizations.

• Latency tools– Recent work on attempting to find the source of latency on desktop

systems not designed for real-time work have yielded insight and some tools. The Intel

Real-Time Performance Analyzer [66] helps automate the process of pinpointing latency.

The work of Cota-Robles and Held [24] and Jones and Regehr [38] demonstrate the

benefits of successive measurement and searching.

• Instrumentation – Dynamic instrumentation tools provide mechanisms to instrument

running systems (processes or the kernel) under user control, and to obtain precise kernel

information. Examples include DynInst [19], KernInst [89], ParaDyn [54], Etch [74],
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and ATOM [86]. The appeal of this approach versus standard profilers is the flexibility

(arbitrary code can be inserted) and the cost (no overhead until use). Information is

presented out-of-band.

Since DeBox measures the performance of calls in their natural usage, it resembles

the instrumentation tools. DeBox gains some flexibility by presenting this data to the

application, which can filter it on-line. One major difference between DeBox and kernel

instrumentation is that we provide a rich set of measurements to any process, rather than

providing information only to privileged processes.

Beyond these performance analysis tools, the idea of observing kernel behavior to

improve performance has appeared in many different forms. We share similarities with

Scheduler Activations [5] in observing scheduler activityto optimize application perfor-

mance, and with the Infokernel system by Arpaci-Dusseauet al. [8]. Our goals differ,

since we are more concerned with understanding why blockingoccurs rather than react-

ing to it during a system call. Our non-blockingsendfile()modification is patterned

on non-blocking sockets, but it could be used in other systemcalls as well. In a similar

vein, RedHat has applied for a patent on a new flag to theopen() call, which aborts if

the necessary metadata is not in memory [57].

Our observations on blocking and its impact on latency may impact server design.

Event-driven designs for network servers have been a popular approach since the perfor-

mance studies of the Harvest Cache [17] and the Flash server [62]. Schmidt and Hu [80]

performed much of the early work in studying threaded architectures for improving server

performance. A hybrid architecture was used by Welshet al. [96] to support scheduling,

while Larus and Parkes [45] demonstrate that such scheduling can also be performed in

event-driven architectures. Qie et al. [67] show that such architectures can also be pro-

tected against denial-of-service attacks. Adya et al. [1] discuss the unification of the two
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models. We believe that DeBox can be used to identify problemareas in other servers

and architectures as well.

2.9 Discussion

We have shown how DeBox can be used in a variety of examples, allowing developers

to shape profiling policy and react to anomalies in ways that are not possible with other

tools. Although DeBox does require access to kernel source code for achieving the high-

est impact, we do not believe that such a restriction is significant. FreeBSD, NetBSD,

and Linux sources are easily available, and with the advent of Microsoft’s Shared Source

initiatives, few hardware platforms exist for which some OSsource is not available. Also,

general information about kernel behavior instead of source code may be enough to help

application redesign. Our performance portability results also demonstrate that our new

system achieves better performance even without kernel modification. A further implica-

tion of this is that it is possible to perform analysis and modifications while running on

one operating system, and still achieve some degree of benefit in other environments.

Part of the thesis focuses on how DeBox can be used as a performance analysis tool,

but we have not implemented its utilization in general-purpose monitoring. Given its low

overheads, DeBox is an excellent candidate for monitoring long-running applications.

This approach can be reached by modifying thelibc library and associated header files

so that a simple recompile and relink will enable monitoringof applications using DeBox.

It is also possible to process results automatically by allowing user-specified analysis

policies.

While we have shown DeBox to be effective in identifying performance problems

in the interaction between the OS and applications, the current version of DeBox does
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not handle the bottom-half activities in the kernel. DeBox’s current focus on the system

call boundary also makes it less useful for tracing problemsarising purely in user space.

However, we believe that the promise of the DeBox approach can be adapted to other

areas such as multiprocessor OS support, preemptive kernels, and analysis of the top-

half/bottom-half boundary within the operating system.
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Chapter 3

Server Response Time Under Heavy

Load

In the previous chapter we evaluated server latency using the standard SPECweb99 work-

load and at a fixed request rate with a disk-bound static workload. The significant amount

of improvement in the new server prompts us to identify the root causes of server latency.

This chapter investigates the impact of head-of-line blocking on server-induced latency,

discusses how it can be observed in server burstiness and response time under load, and

finally presents a way of quantifying these effects.

3.1 Introduction

Much of the performance-related research in network servers has focused on improving

throughput, with less attention paid to latency [33, 62]. Inan environment with large

numbers of users accessing the Web over slow links, the focuson throughput was under-

standable, since perceived latency was dominated by wide area network (WAN) delays.
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Additionally, early servers were often unable to handle high request rates, so throughput

research directly affected service availability. The development of popular throughput-

centric benchmarks, such as SPECWeb [88] and WebStone [56],also gave developers

extra incentive to improve throughput.

Several trends are reducing the non-server latencies, thereby increasing the relative

contribution of server-induced latency. Improvements in server-side network connectiv-

ity reduce server-side network delays, while growing broadband usage reduces client-side

network delays. Content distribution networks, which replicate content geographically,

reduce the distance between the client and the desired data,reducing round-trip latency.

Some recent work addresses the issue of measuring end-user latency [13, 70], with opti-

mization approaches mostly focusing on scheduling [31, 45,95, 96].

However, little is understood about the trends in network server latencies, or how the

system components affect them. Current research generallyassumes that server latency

is largely caused by queuing delays, that it is inherent to the system, and that scheduling

techniques are the preferred solution. Unfortunately, these assumptions are not explicitly

tested, complicating attempts to systematically address issues of latency. Based on these

observations, our goal is to understand the root causes of network server latency and

address them, so that server latency can be improved. A better understanding of latency’s

origins can also enable other research, such as improving Quality-of-Service (QoS) or

scheduling policies.

By instrumenting the kernel, we find that Web servers incur much latency blocked in

filesystem-related system calls, even when the needed data is often in physical memory.

As a result, requests that could have been served from main memory are forced to wait

unnecessarily for disk-bound requests. While this batching behavior has little impact

on throughput, its effects on latency are severe. This head-of-line blocking causes other
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problems, such as a degradation of the kernel’s service policies that are designed to ensure

fairness. By examining individual request latencies, we find that this blocking gives rise

to a phenomenon we callservice inversion, where short requests are often served with

much higher latencies than much larger requests. We also findthat this phenomenon

increases with load, and that it is responsible for most of the growth in server latency

under load.

By addressing the blocking issues both in the application and the kernel, we improve

response time by more than an order of magnitude, and demonstrate qualitatively differ-

ent change in the latency profiles. The resulting servers also exhibit much lowerservice

inversionand better fairness.

The latency profiles in our resulting servers generally scale with processor speed,

where cached requests are no longer bound by disk-related issues. In comparison, experi-

ments using the original servers only show that server throughput improves with increases

in processor speed, but not server latency.

3.2 Background

In this section we provide some background on network servers, experimental setup,

workloads, and methodology since we begin our analysis withexperimental measure-

ments of the servers. Performance debugging which we discussed in the previous chap-

ter [77] examined blocking in servers, but did not specifically try to understand the origins

of latency, the main topic of this chapter.
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3.2.1 Server Software

To test the common scenario as well as a more aggressive case,we use two different

servers with different software architectures and design goals. To represent widely-

deployed general-purpose servers, we use the multi-process Apache server [6], version

1.3.27. To test high-performance servers, we use the event-driven Flash Web Server [62],

a research system with aggressive optimizations. Where appropriate, we test two versions

of Flash – one using the standardselect() system call for event delivery, as well as

one that uses the more scalablekevent() event-delivery mechanism coupled with the

zero-copysendfile() system call.

The Apache server utilizes blocking system calls and relieson the operating system’s

scheduling policy to provide parallelism, while Flash usesthe OS’s event delivery mech-

anism to multiplex all client connections. Flash consists of a single main process using

non-blocking sockets, and a small set of helper processes performing disk-related opera-

tions. To increase performance, it aggressively caches open files, memory-mapped data,

and application-level metadata. In contrast, Apache dedicates one process per connec-

tion, and performs very little caching, in order to reduce resource consumption.

In our experiments, both servers are configured for maximum performance. In Flash,

the file cache size is set to 80% of the physical memory, with remaining parameters auto-

matically adjusted. We also aggressively configure Apache –periodic process shutdown

is disabled, reverse lookups are disabled, the maximum number of processes is raised to

2048 by recompiling with an increased HARDSERVERLIMIT. Since Apache’s logging

causes a noticeable performance loss, we disable access logging in both servers.
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Processor Pentium-II Pentium-III P4 Xeon
Speed 300 MHz 933 MHz 3 GHz
Bcopy bandwidth 93 MB/s 265 MB/s 624 MB/s
Read bandwidth 213 MB/s 555 MB/s 1972 MB/s
Memory latency 245 ns 101 ns 116 ns

Table 3.1: Server hardware information

3.2.2 Experimental Setup & Workloads

We use a LAN to expose the server-induced latencies. Our maintest platform is a unipro-

cessor 3.06GHz Pentium-4 with 1GB physical memory, one 5600RPM Maxtor IDE disk,

and a single Netgear GA621 gigabit Ethernet network adaptor. We use six 1.3 GHz AMD

Duron machines as clients, with 256 MB of memory per machine.The network is a Net-

gear FS518 Gigabit Ethernet switch. All machines are configured to use the default (1500

byte) MTU. We use the FreeBSD 4.6 operating system, with all tunable parameters set

for high performance – 128K max sockets, 16K file descriptorsper process, 64KB socket

buffers, 80K mbufs, 40K mbuf clusters, and 16K inode cache entries. We also investigate

latency scalability using three hardware platforms which span three processor generations

and an order of magnitude increase in raw clock speed. To equalize as many factors as

possible, all machines use the same disk and network interface. The details of our server

machines are shown in Table 3.1, with measured values provided by lmbench [53].

In order to use a widely-understood workload while still maintaining tractability in

the analysis, we focus on the static content workload of the SPECweb99 benchmark. De-

tails of this workload is described in Section 1.1. To facilitate comparisons with previous

work such as Haboob [96] and Knot [95], we use the same parameters as these works

used – a 3GB data set and 1024 simultaneous connections. Withthis data set size, most

requests can be served from memory while a small portion willcause disk access. Mea-

surements here also adopt the persistent connection model from those tests, with clients
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issuing 5 requests per connection before closing it. With these parameters, the per-client

throughput level is comparable to SPECweb99’s quality-of-service requirements.

3.2.3 Measurement Methodology

To understand how load affects response time, we measure latencies at various requests

rates. Each server’s maximum capacity is determined by having all clients issue requests

in an infinite-demand model, and then relative rates are reported as load fractionsrelative

to the infinite demand capacity of each server. This process simplifies comparison across

servers, though it may bias toward servers with low capacity. Response time is measured

by recording the wall-clock time between the client starting the HTTP request and re-

ceiving the last byte of the response. We normally report mean response time, but we

note that it can hide the details of the latency profiles, especially under workloads with

widely-varying request sizes. So, in addition to mean response time, we also present the

5th, 50th (median), and95th percentiles of the latency distribution. Where appropriate, we

also provide the cumulative distribution function (CDF) ofthe client-perceived latencies.

3.3 Blocking in Web Servers

In this section we discuss how blocking can be observed in various servers and the un-

derlying causes for the blocking.

3.3.1 Observing Blocking in Flash

In Chapter 2 we discussed that the main Flash process is blocking inside the kernel on

operations other than theselect() or kevent() and the system shows idle CPU

time when using our workloads. While CPU idle time is not surprising for a workload
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that accesses disk, the main process in Flash should never block – all the disk activity

should be channeled to the helpers.

Examining the number of ready file descriptors returned per invocation ofselect()

or kevent() further confirms the analysis of blocking.

These calls take a list of file descriptors as input, and returns a count of how many of

them are ready for activity. They usually form the main loop of an event-driven server,

and are invoked as many times as needed as long as the system isactive. Since we

only have 1024 simultaneous connections and do not keep filesopen, the polling cost is

relatively low. Thus at this load level, even the more scalable event delivery mechanism,

kevent() does not seem to help. We show a CDF of the returned ready descriptors

from select() andkevent() in Figure 3.1. The results indicates that these calls

typically return a large number of ready events per call. Forselect(), the median

number of ready descriptors is 12, the mean is 61 and the maximum length is more than

600. More than 25% of the invocations return over 100 ready descriptors. The distribution

for kevent() is similar.
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Figure 3.1: CDF of number of ready events (the return values fromselect()) in Flash

At these levels of activity, no free CPU should exist – the main loop should call

select() or kevent() more often, decreasing the number of ready descriptors per

call. However, given the idle time and the observed blocking, we can see that the block-
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ing is causing both the CPU idle time and the batching. Even though descriptors are

ready for servicing and idle CPU exists, the blocking systemcalls are artificially limiting

performance and increasing latency.

This measurement also explains whymedianlatency is being affected in Flash and

why this trend hinders latency scalability – since all connections are multiplexed and

handled within a single process, any disk blocking caused bya relatively unpopular file

can prevent the servicing of cache hits during that time. With faster processors, this

problem is likely to getworse, since the extra capacity means that more simultaneous

connections can be supported. When any of these connectionscauses blocking, more

connections are affected.

3.3.2 Inferring Blocking in Apache

Directly observing a similar problem in Apache is more difficult because any of its pro-

cesses may block on disk activity, and its multiple-processdesign exploits the fact that the

OS will schedule another process when the running process blocks. While conventional

wisdom holds that such blocking is necessary and affects only the request being handled,

excess blocking may hinder parallelism and cause high latency.

Since Apache does not have any easily-testable invariant regarding blocking such

as Flash does, we use another mechanism to infer it. We can usethe observation that

blocking in Flash increases the burstiness of system activity to find a similar behavior

in Apache. In particular, we note that if resource contention occurs in Apache, it would

block other processes requesting the same resource, and therelease of a resource would

involve several processes becoming runnable at the same time. We expect that the more

processes involved, the higher the burstiness, and the morevariability in the behavior of

the run queue. Because it is hard to differentiate unnecessary blocking in the blocked
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process queue length, we measure the number of runnable processes to reflect the bursti-

ness.

We instrument the OS scheduler to report the number of runnable Apache processes,

and test in two configurations. We use 256 and 1024 maximum server processes, an

infinite-demand workload, and 1024 clients. Both configurations show roughly the same

throughput, due to the infinite-demand model and LAN clients. In Figure 3.2, we show

what percentage of the Apache processes is runnable at any given time.
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Figure 3.2: Scheduler burstiness (via the instantaneous run queue lengths) in Apache for
256 and 1024 processes

In both cases, the distribution is very bimodal – most of the time, either no Apache

processes are runnable or most of them are. The burstiness, when many processes sud-

denly become runnable at once, is more evident in the 1024 process case – all processes

are blocked roughly one-third of the time, and over 80% of theprocesses are in the

runnable queue over 40% of the time. The 256 process case is only slightly less bursty,

with the run queue generally containing 60-80% of the total processes. Note that all pro-

cesses being blocked does not imply the entire system is idle– disk and interrupt-driven

network activity is still being performed in the kernel’s “bottom-half.”
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3.3.3 Causes of Blocking

Our earlier work on developing the DeBox tool [77] identifiedthe call sites in Flash

where blocking occurred, but did not investigate the mechanisms by which it occurred.

Among the problems, we identified that the Flash server wouldsometimes block in the

“find file” step of the HTTP processing pipeline shown in Figure 3.3. This step involves

performing a series ofopen() andstat() calls to traverse the URL’s components in

the filesystem. This blocking was unexpected because of the way Flash opens files – it

invokes a helper process to perform the steps first, and then the helper notifies the main

process, which repeats the process. In this case, the helperhad presumably just finished

this process, so all of the necessary metadata should have been memory-resident when

the main process performed the same actions.

Read
Request

Find
File

Read File
Send DataStart EndGet

Conn

Figure 3.3: HTTP request processing steps

Further investigation reveals that the metadata locking problem is due to lock con-

tention during disk access. In particular, we find that one ofthe problems is lock con-

tention when the main process and the helper access a shared file path. When this hap-

pens, the helper usually is doing disk I/O but still holding the vnode name lock to ensure

the consistency of the corresponding entry. The decision tomake this lock exclusive

instead of read-only appears to be a design decision to simplify the associated code –

in most types of code, the probability of lock contention would be low, so making this

lock exclusive simplifies the code. We further validate thistheory by confirming that

the blocking occurs even when access time modifications are disabled and even when

the filesystem is mounted read-only. This type of problem is not FreeBSD-specific – in
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Linux, we have observed metadata cache misses commonly occurring when the data set

exceeds the physical memory size, causing blocking in otherwise cached requests.

The metadata locking problem also explains what occurs in Apache and why it has

gone unnoticed for so long. Since Apache does not cache open file descriptors, every

request processed must perform this same set of steps. The designers rely on the OS’s

own metadata caching to avoid these steps requiring excessive disk access, but without

any information about which accesses should be cached, Apache developers can not de-

termine when blocking during anopen() or stat() call is unexpected. When a com-

pleted disk access releases an exclusive lock, all of the processes waiting for it become

runnable, leading to the bursty scheduler behavior we observed.

Another source of blocking is rooted in data-sending systemcalls such assendfile().

When these system calls are operating on data files which require disk I/O, or exhaust re-

lated buffer resources such as the sendfile buffer, event-driven servers have to block, thus

other requests are delayed until the process is unblocked. Asynchronous system calls

may reduce chances of blocking on disk I/O but do not reduce buffer pressure. Blocking

caused by these system calls may have less impact on process or threaded servers.

3.3.4 Response Time Effects

To measure server latency characteristics on disk-bound workloads and show the impact

of the underlying blocking problems, we run the servers withrequest rates of 20%, 40%,

60%, 80%, 90%, and 95% of their respective infinite-demand rates. The results, shown in

Figures 3.4 and 3.5, show some interesting trends. While thegeneral shape of the mean

response curves is not surprising, some important differences emerge when examining

the others. Apache’s median latency curve is much flatter, but rises slightly at the 0.95

load level. The mean latency for Apache becomes noticeably worse at that level, with a
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Figure 3.4: Apache Latency Profile. The
relative load of 1.0 equals 241 Mb/s

0

100

200

300

400

500

600

700

800

900

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
Ti

m
e 

(m
se

c)

Relative Load Level

95%
mean
50%
5%

Figure 3.5: Flash Latency Profile. The rel-
ative load of 1.0 equals 336 Mb/s

value comparable to that of Flash, while Apache’s latency for the95th percentile grows

sharply.

Some insight into the latency degradation for these serverscan be gained by exam-

ining the spread of request latencies at the various load levels, shown in Figures 3.6

and 3.7. Both servers exhibit latency degradation as the server load approaches infinite

demand, with the median value rising over one hundred fold. Two features which appear

to be related to the server architecture and blocking effects are immediately apparent –

the relative smoothness of the Flash curves, and the seemingly lower degradation for

Apache at or below load levels of 0.95. By multiplexing all client connections through

a single process, the Flash server introduces some batchingeffects, particularly when

blocking occurs. This batching causes even the fastest responses to be delayed. As a

result, Flash returns very few responses in less than 10ms when the load exceeds 95%,

whereas Apache still delivers over 60% of its responses within that time. We believe that

under low lock contention, Apache’s multiple processes allow in-memory requests to be

serviced very quickly without interference from other requests. At higher loads, locking

becomes more significant, and only 18% of requests can be served within 10ms.
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Figure 3.7: Flash latency CDF for various
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However, this portion of the CDF does not explain Apache’s worse mean response

times, for which the explanation can be seen in the tail of theCDFs. Though Apache is

generally better in producing quick responses under load, latencies beyond the95th per-

centile grow sharply, and these values are responsible for Apache’s worse mean response

times. Given the slow speed of disk access, these tails seem to be disk-related rather than

purely queuing effects. Given the high cost of disk access versus memory speeds, these

tails dominate the mean response time calculations.

3.3.5 Response Time vs. Data Set Size

A deeper investigation of the effect of data set size on server latency provides more insight

into the blocking problems as well as a surprising result. Figures 3.8 shows mean and

median latencies as functions of data set size. The mean latency remains relatively flat for

the in-memory workload, but begins to grow when the data set size exceeds the physical

memory of the machine, 1GB. This increase in mean latency is expected, since these

filesystem cache misses require disk access, and the disk latency will raise the mean.

The increase in median latencyis quite surprising for this workload – the measured

cache hit rate is more than 99%, suggesting that most requests should be comfortably
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Figure 3.8: Median and mean latencies of Apache and Flash with various data set sizes

served out of the filesystem cache. The cache hit rate is in line with what we showed in

Table 1.2, which is discussed in Section 1.1. These factors confirm that the small amount

of cache miss activity is interfering with the accesses for requests that should be cache

hits.

This observation is problematic, because it implies that, for non-trivial workloads,

server latency is tied to disk performance, even for cached requests. Without server

or operating system modification, latency scalability is therefore tied to mechanical im-

provements in disk speed, rather than faster improvements in electronic components. The

expectedlatency behavior would have been precisely the opposite – that as the number of

disk accesses increased, and the overall throughput decreased, the median latency would

actuallydecreasesince fewer requests would be contending for the CPU at any time.

Queuing delays related to CPU scheduling would be mitigated, as would any network

contention effects.

3.4 Service Inversion

The most significant effect of this blocking behavior is unnecessary delays in serving

queued requests. In particular, cached requests that couldhave been served in memory
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and with low latency are forced to wait on disk-bound requests. We term this phenomenon

service inversionsince the resulting latencies would be inverted compared tothe ideal

latencies. The term is conceptually similar to priority inversion in OSes, but in different

subjects. In this section, we study this phenomenon and propose an approach to quantify

the service inversion value.

Since certain request processing steps operate independently of the server process,

any blocking that occurs early in request processing can affect the system’s fairness poli-

cies. Specifically, the networking code is split in the kernel, with the sockets-related

operations occurring in the “top half”, which is invoked by the application. The “bottom

half” code is driven by interrupts, and performs the actual sending of data. So, when an

application is blocked, any data that has already been sent to the networking code can still

operate in the kernel’s “bottom half.” Likewise, since the disk helpers in Flash operate as

separate processes, they can continue to operate on their current request even when the

main process is blocked.

To understand how head-of-line blocking causes service inversion, consider the sce-

nario in Figure 3.9, where three requests arrive simultaneously, with the middle request

causing the process to block. Assume it is blocked by anopen() call, which takes place

before the data reads occurs (if needed) and before any data is sent to the networking

code. If the first and third requests are cached, they would normally be served at nearly

the same time. However, the first request may get sent to the networking code, and the

third request would then have to wait until the process is unblocked. The net effect is

that the third request suffers from head-of-line blocking.The system’s fairness policies,

particularly the scheduling of network packets, are not given a chance to operate since

the three requests do not reach the networking code at the same time.
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Figure 3.9: Service inversion example – Assume three requests (A, B, and C) arrive at
the same time, and A is processed first. If it is cached and is sent to the networking code
in the kernel bottom half, interrupt-based processing for it can continue even if the the
process gets blocked. In this case, even if A is large, it may get finished before processing
on C even starts.

If the requests before the blocked requests are larger than the ones that follow, we

label the resulting phenomenonservice inversion. The occurrence of this behavior is

relatively simple to detect at the client – the latencies forsmall requests would be higher

than the latencies for larger requests.

3.4.1 Identifying Service Inversion

To qualitatively understand the prevalence of service inversion, we take the latency CDFs

from Figures 3.6 and 3.7 and split them by decile. Since SPECWeb biases toward small

files and more than 95% of the requests could fit into physical memory, ideal response

times would be roughly proportional to transfer sizes. By examining the different re-

sponse sizes within each decile, we can estimate the extent of reordering. To simplify

the visualization, we group the responses by sizes into fourseries such that their dynamic

frequencies are roughly equal. The details of this categorization are shown in Table 3.2.

The graphs in Figures 3.10 and 3.11 show the composition of responses by decile for

the two servers, with the leftmost bar corresponding to the fastest 10% of the responses

and the rightmost representing the slowest 10%. These graphs are taken from the latency

CDFs at a load level of 0.95.
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series size range percentage
1 0.1 - 0.5 KB 25.06%
2 0.6 - 4 KB 28.05%
3 5 - 6 KB 23.55%
4 7 - 900KB 23.34%

Table 3.2: Workload categories for latency breakdowns

Figure 3.10: Apache CDF breakdown by
decile at load 0.95

Figure 3.11: Flash CDF breakdown by
decile at load 0.95

In a perfect scenario with no service inversion, the first 2.5bars would consist solely

of responses in Series 1, followed by 2.5 bars from Series 2, etc. However, both graphs

show responses from the different series spread across all deciles, suggesting both servers

exhibit service inversion. One surprising aspect of these plots is that the Series 1 values

are spread fairly evenly across all deciles, indicating that even the smallest files are often

taking as long as some of the largest files.

Some inversion is to be expected from the characteristics ofthe workload itself, since

directories are weighted according to a Zipf-1 distribution. With roughly 600 directories

in our data set, the last directory receives 600 times fewer requests than the first. So, even

though files 100KB or greater account for only 1% of the requests (35 times fewer than

the smallest files), the directory bias causes the largest files in the first directory to be

requested about 17 times as frequently as the smallest files in the final directory. While
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the large files still require much more space, an LRU-style replacement in the filesystem

cache could cause these large files to be in memory more often.In practice, this effect is

relatively minor, as we will show later in this chapter.

3.4.2 Quantifying Service Inversion

While the latency breakdowns by decile qualitatively show the system’s unfairness, a

more quantitative evaluation of service inversion can be derived from the CDF. We con-

struct the formula based on the following observation: Given responsesA, B, C, D, E

with sizesA < B < C < D < E. If the observed response times have the same order as

the response sizes, we say that no service inversion has occurred, and the corresponding

value should be zero. On the contrary, if the response times are in the reverse order of

their sizes, then we say that the server is completely inverted, and give it a value of 1.

The insight into calculating the inversion is as follows: wewant to determine how

perturbed a measured order is, compared with the order of theresponse sizes. Pertur-

bation is the difference in position of a response in the ordered list of response times

versus its position in a list ordered by size, where the per-response distances are summed

for the entire list. We then normalize this versus the maximum perturbation possible. A

particular service inversion value is given by:

n∑

i=1

Distance(i)/bn2/2c (3.1)

where distance is absolute value of how far the request is from the ideal scenario,

andbn2/2c is the total distance of requests in the reverse order of their sizes, which is

the maximum perturbation possible. In the above example, assume the observed latency

order isB, C, A, D, E. By comparing with the ideal order,A, B, C, D, E, we see the
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Figure 3.12: Service inversion versus load level for Apacheand Flash

distance of fileB is 1,C is 1,A is 2, andD, E are 0. The inversion value is4/12 = 0.33.

Since this measurement requires only the response sizes andlatencies, as long as the

distribution of sizes is the same, it can be used to compare two different servers or the

same server at multiple load levels. To handle the case of multiple requests with the same

response size, we calculate distance by comparing theN th observed position with the

N th ideal position for each response of the same size.

By measuring service inversion as a function of load level, we discover that this effect

is a major contributor to the latency increase under load. Figure 3.12 shows the quantified

inversion values for both servers, and demonstrates that while inversion is relatively small

at low loads, it exceeds half of the worst-case value as the load level increases. The

latencies at the higher load levels therefore not only suffer from queuing delays, but also

service inversion delays from blocking. We will show in the next section that the delays

stemming from blocking and service inversion are in fact thedominant source of delay.

3.5 The New Servers & Results

In this section we describe our solution and evaluate the resulting systems. We analyze the

effects on capacity, latency, and service inversion, and demonstrate that our new servers
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overcome the latency and blocking problems previously observed. In our earlier work on

DeBox [77], we modified the Flash Web Server to avoid blocking. We briefly describe

those changes to provide the context for our new results withApache.

Since the blocking has multiple origins, we believe a portable user-level process is

preferable to invasive kernel changes. Accordingly, we modify both servers to reduce

blocking. Our new contribution in this respect is to identify how Apache can be easily

modified to take advantage of the same kinds of changes that helped Flash. Additionally,

we focus on latency and service quality evaluation of the resulting servers, in order to

understand how the new techniques work.

3.5.1 Flashpache

Due to the differences in software architecture, we cannot directly employ the same tech-

niques that we used in New-Flash to improve Apache. However,given our earlier mea-

surements on Apache, we can deduce that filesystem-related calls are likely to block, and

with these as candidates, we can leverage the lessons from Flash. Since Apache does

not cache file descriptors, each process callsopen() on every request, and this behavior

results in a much higher rate of these calls.

We modify Apache to offload the URL-to-file translation process, in which metadata-

related system calls occur. This step is handled by a new “backend” process, to which

all of the Apache processes connect via persistent Unix-domain sockets. The backend

employs a Flash-like architecture, with a main process and asmall number of helpers.

The main process keeps a filename cache like the one in the Flash server, and schedules

helpers to perform cache miss operations. The backend takesthe responsibility of finding

the requested file, opening the file, and sending the file descriptor and metadata informa-

tion back to the Apache processes. Upon receiving a valid open file descriptor from the
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backend, the Apache process can return the associated data to the client. Since the back-

end handles URL lookup for all Apache processes, it is possible to combine duplicated

requests and even preload data blocks into the filesystem cache before passing the control

back to Apache processes, thus reducing the number of context switches and the chances

of more blocking. We call this new server Flashpache, to reflect its hybrid architecture.

Figure 3.13 shows major components of Flashpache.

Figure 3.13: Flashpache architecture

The changes involved in this process are relatively small and isolated – fewer than

100 lines of code are modified in Apache, and half of this countis code taken directly

from New-Flash. The backend process is similarly derived from parts of New-Flash, and

consists of roughly 100 lines of code.

This architecture eliminates unnecessary blocking in two ways. First, in Flashpache,

most of the disk access is performed by a small number of helper processes controlled by

the backend, reducing the amount of locking contention. This observation is confirmed

by the fact that less blocking occurs in Flashpache than in Apache with the same work-

load. Second, since the backend caches metadata information and keeps files open, it

effectively prevents metadata cache entries from being evicted when memory pressure is
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an issue. However, we do not observe the CPU reduction from caching as the main source

of the benefit – the interprocess communication cost betweenthe Apache processes and

the backend is almost equivalent to or even a little higher than the original system calls.

3.5.2 Latency Results

We analyze the latency of the new servers by repeating our earlier experiments to under-

stand latency and blocking. We begin our evaluation by repeating the burstiness measure-

ment, which indicates that blocking-induced burstiness has also been reduced or elimi-

nated in both servers. Figure 3.14 shows number of ready events for the original Flash

server, the new server, as well as the intermediate steps of file descriptor passing (fd pass)

and removing memory-mapped files (no mmap). We see that in New-Flash, the mean

number of events per call has dropped from 61 to 1.6, and the median has dropped from

12 to 2. Likewise, Figure 3.15 shows the distribution of ready processes of the Flash-

pache server. Flashpache no longer exhibits bimodal behavior at the scheduler level,

instead showing roughly 20% of all processes ready at any given time. In both cases, the

request batching and associated idle periods are eliminated.
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We evaluate step-by-step improvements to Flash with the results shown in Table 3.3.

Included are the figures for the original server and the intermediate steps. Throughputs

are measured with infinite-demand and response times are measured at 0.95 load level.

We can see that the overall capacity of Flash has increased by34% for this workload,

while Apache’s capacity increases by 13%.

Latency (ms) Capacity
median mean 90% (Mb/s)

Flash 67.4 181.0 362.0 336.0
fd pass 11.5 50.0 71.2 395.0

no mmap 1.8 93.5 92.9 437.5
New-Flash 1.6 29.3 6.6 450.0

Apache 6.6 180.2 414.7 241.1
Flashpache 1.1 12.0 5.7 272.9

Table 3.3: Latencies & capacities for original and modified servers

The more impressive result is the drastic reduction in latency, even when run at these

higher throughputs. Flash sees improvements of 40x median,6x mean, and 54x in 90th

percentile latency. Eliminating metadata-induced blocking has improvements of 5.8x

median, and 3.6x mean, and eliminating blocking insendfile() reduces a factor of

3 in mean latency. Apache sees improvements of 6x median, 15xmean, and 72x in 90th

percentile latency. The one seemingly odd result, an increase in mean latency from fd-

pass to no-mmap, is due to an increase in blocking, since the removal ofmmap() also

results in losing themincore() function, which could precisely determine memory

residency of pages. The New-Flash server obtains this residency information via a flag in

sendfile(), which again eliminates blocking.

Not only do the new servers have lower latencies, but they also showqualitatively

different latency characteristics. Figure 3.16 shows thatmedian latency no longer grows

with data set size, despite the increase in mean latencies. Mean latency still increases due
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Figure 3.16: Response time of New-Flash and Flashpache withdifferent data set sizes

to cache misses, but the median request is a cache hit in all cases. Figures 3.17 and 3.18

show the latency CDFs for5th percentile, mean, median, and95th percentile with varying

load. Though the mean latency and95th percentile increase, the95th percentile shows less

than a tripling versus its minimum values, which is much lessgrowth than the two orders

of magnitude observed originally. The other values are veryflat, indicating that most of

the requests are served with the same quality at different load levels. More importantly,

the95th percentile CDF values are lower than the mean latency. The reason for this is that

the time spent on the largest requests (the last 5%) is much higher compared to time spent

on other requests. This result conforms to the workload expectations stated in Table 1.2.
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Figure 3.17: Latency profile of New-Flash
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Figure 3.19: CDF breakdown for New-Flash on 3.0 GB data set, load 0.95

3.5.3 Service Inversion Improvements

In order to verify the unfairness of the new servers, we further examine the latency break-

down by decile for the 0.95 relative load level and the service inversion at different load

levels. Figure 3.19 shows the percentage of each file series in each decile for New-Flash,

and we observe some interesting changes compared to the original server. The smallest

files (series 1) dominate the first two deciles, the largest files (series 4) dominate the last

two deciles, and the series 3 responses are clustered aroundthe fifth decile. This behavior

is much closer to the ideal than what we saw earlier. Some small responses still appear

in the last column, but these may stem from files with low popularity incurring cache

misses. Also complicating matters is that the absolute latency value is now below 10ms

for 98% of the requests, so the first nine deciles are very compressed. This observation is

verified by calculating the service inversion value.

Figure 3.20 shows the change of the inversion value with the load level. Compared

to the old system, we reduce the inversion by over 40%, suggesting requests are treated

more fairly in the new system. The fact that the inversion value still increases with the

load is a matter for further investigation. However, this may be a limitation of our service

inversion calculation itself.
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Figure 3.20: Service inversion of original and modified servers

By comparing service inversion for this workload with that of a completely in-memory

workload, we can see how far we are from a nearly “ideal” scenario. In particular, we are

still concerned whether filesystem cache misses are responsible for the service inversion.

Figure 3.21 shows the latency breakdown for a workload with a500MB data set. The

difference between it and the New-Flash breakdown are visible only after careful exam-

ination. The numerical value for the in-memory case is 0.33,while the New-Flash result

is 0.35, suggesting that if any inversion is due to cache misses, its measured effects are

minimal. The Flashpache breakdown, shown in Figure 3.22, issimilar. The values for

Flashpache and its original counterpart are also shown in Figure 3.20, and we can see that

our modifications have almost halved the inversion under high load.

Figure 3.21: CDF breakdown for New-
Flash on in-memory workload, load 0.95

Figure 3.22: CDF breakdown for Flash-
pache on 3.0 GB data set, load 0.95
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3.5.4 Latency Scalability

To understand how latencies are affected by processor speed, we use three generations of

hardware with various processor speeds but sharing most of the other hardware compo-

nents. Details about our server machines are shown in Section 3.2. We begin our study

by measuring the infinite-demand capacity of the two original servers while adjusting

the data set size. The results, shown in Table 3.4, indicate that in-memory capacity of

both Apache and Flash scales well with processor speed. But once the data set size ex-

ceeds physical memory, performance degrades. Even though the heavy-tailed 3GB Web

workload only requires reasonable amount of disk activity,we observe the two faster

processors have idle CPU, suggesting performance is tied todisk performance on this

workload.

Pentium II Pentium III Pentium 4

In-memory workload (0.5GB) capacity in Mb/s
Apache 107.3 248.4 437.6

Flash 210.3 466.0 787.0

Disk-bound workload (3.0GB) capacity in Mb/s
Apache 98.8 174.1 241.1

Flash 134.1 256.4 336.0
Flashpache 103.3 198.9 272.9
New-Flash 140.4 358.0 450.0

Table 3.4: Capacities of original and modified servers across three processor generations
and different workloads

A more detailed examination of server latency is shown in Figures 3.23 and 3.24.

These two graphs represent an in-memory workload and a disk-bound workload, respec-

tively, and show the mean latencies for both server packagesacross all three processors.

Measurements are taken at various load levels, and show a remarkable consistency – at

the samerelative load levels, both Apache and Flash exhibit similar latencies, the in-

memory latencies are much lower than the disk-bound latencies, and the latencies show
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Figure 3.23: In-memory workload (0.5 GB) latency profiles ofApache and Flash across
three processor generations

Figure 3.24: Disk-bound workload (3.0 GB) latency profiles of Apache and Flash across
three processor generations

only minor improvement with processor speed. Figure 3.25 shows the scalability of our

new servers across processors. Both of the servers show muchlower latencies on all of

the three processors. Even with much lower Pentium-II latencies, improvements in pro-

cessor speed now reduce latency on both servers. This resultconfirms that once blocking

is avoided, the servers can take more advantage of the fasterprocessors.

In summary, both new servers demonstrate lower initial latencies, slower growth in

latency, and better decrease of latency with processor speed. These servers are no longer

dominated by disk access times, and should scale with improvements in processors. That
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Figure 3.25: Disk-bound workload (3.0 GB) latency profile ofNew-Flash and Flashpache
across three processor generations

these changes eliminate over 80% of the latency answers the question about latency ori-

gins – these latencies were dominated by blocking, rather than request queuing.

3.6 Related Work

Performance optimization of network servers has been an important research area, with

much work focused on improving throughput. Some addressed coarse-grained blocking –

e.g. Flash [62] demonstrated how to avoid some disk-relatedblocking using non-blocking

system calls. Much evaluation about disk I/O associated overheads has focused on Web

proxies [50]. Some of the most aggressive designs have used raw disk, eliminated stan-

dard interfaces, and eliminated reliable metadata in orderto gain performance [81]. In

comparison, we have shown that no kernel or filesystem changes are necessary to achieve

much better latency, and we show that these techniques can beretrofitted to legacy servers

with low cost. Our investigation of blocking has also been much finer-grained, usually

at resource locking level, which is not amenable to previouswork in asynchronous I/O

interfaces.

76



More recently, much attention is paid to latency measurement and improvement. Ra-

jamony & Elnozahy [70] measure the client-perceived response time by instrumenting

the documents being measured. Bent and Voelker explore similar measurements, but fo-

cus on how optimization techniques affect download times [13]. Olshefski et al. [59]

propose a way of inferring client response time by measuringserver-side TCP behaviors.

Improvement techniques have been largely limited to connection scheduling, with most

of the attention focused on the SRPT policy [25, 31], including server modification and

kernel instrumentation for network stack scheduling [31].Cohort scheduling [45] focuses

on gaining performance by batching similar requests but does not examine why queuing

occurs.

Our work examines the root cause of the blocking, and our solutions subsume any

need for application-level connection scheduling. Our newservers use the existing schedul-

ing within the operating system, and the results suggest that eliminating the obstacles

yields automatic improvement with existing service and fairness policies.

Synchronization-related locking has been a major concern in parallel programming

research. Rajwar et al. [71] proposed a transactional lock-free support for multi-threaded

systems. The reasons of locking in our study have a broader range and differ in applica-

tion domain. While head-of-line blocking is a well-known phenomenon in the network

scheduling context, e.g. Puente et al. [65] and Jurczyk et al. [39] studied various block-

ing issues in network environment, we demonstrate that thisphenomenon also exists in

network server applications and has severe effects on user-perceived latency.

Our approach of fairness evaluation may be more suitable fornetwork servers than

the Jain fairness index [37] used in other work [96], since wefocus more on the laten-

cies of individual requests rather than coarse-grained characteristics of clients. Bansal &

Harchol-Balter [11] investigate the unfairness of SRPT scheduling policy under heavy-
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tailed workloads and draw the conclusion that the unfairness of their approach barely

noticeable. Our approach does not have this concern, since we address the latency issues

directly rather than try to schedule around them.
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Chapter 4

Server Performance on Simultaneous

Multithreaded Processors

With the rapid development in processor architecture, it isalways interesting for server

designers to test server performance on new hardware platforms, because network servers

are usually hardware-demanding. This chapter examines server performance on simul-

taneous multithreaded processors using multiple server software packages on multiple

processors

4.1 Introduction

Simultaneous multithreading (SMT) has recently moved fromsimulation-based research

to reality with the advent of commercially available SMT-capable microprocessors. Si-

multaneous multithreading allows processors to handle multiple instruction streams in

the pipeline at the same time, allowing higher functional unit utilization than is possible

from a single stream. Since the hardware support for this extra parallelism seems to be
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minimal, SMT has the potential to increase system throughput without significantly af-

fecting system cost. While academic research on SMT processors has been performed

since the mid-1990’s [27, 92], the recent availability of SMT-capable Intel Xeon proces-

sors allows performance analysts to perform direct measurements of SMT benefits under

a wide range of workloads.

One of the biggest opportunities for SMT is in network servers, such as Web, FTP,

or file servers, where tasks are naturally parallel, and where high throughput is impor-

tant. While much of the academic focus on SMT has been on scientific or computation-

intensive workloads, suitable for the High Performance Computing (HPC) community, a

few simulation studies have explicitly examined Web serverperformance [52, 73]. The

difficulty of simulating server workloads versus HPC workloads is in accurately handling

operating system (OS) behavior, including device drivers and hardware-generated inter-

rupts. While processor-evaluation workloads like SPEC CPU[87] explicitly attempt to

avoid much OS interaction, server workloads, like SPECweb [88] often include much

OS, filesystem, and network activity..

While simulations clearly provide more flexibility than actual hardware, evaluation on

real hardware also has its advantages, including more realism and faster evaluation. Using

actual hardware, researchers can run a wider range of workloads (e.g., bottom-half heavy

workloads) than is feasible in simulation-based environments. Particularly for workloads

with large data set sizes that are slow to reach steady state,the time difference between

simulation and evaluation can be substantial. The drawbackof hardware, however, is

the lack of configuration options that is available in simulation. Some flexibility in the

hardware analysis can be gained by using processors with different characteristics, though

this approach is clearly much more constrained than simulators.
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Our evaluation suggests that the current SMT support is sensitive to application and

workloads, and may not yield significant benefits for networkservers, especially for OS-

heavy workloads. We find that enabling SMT usually produces only slight performance

gains, and can sometimes lead to performance loss. In the uniprocessor case, simulations

appear to have neglected the OS overhead in switching from a uniprocessor kernel to an

SMT-enabled kernel. The performance loss associated with such support is comparable

to the gains provided by SMT. In the 2-way multiprocessor case, the higher number of

memory references from SMT often causes the memory system tobecome the bottleneck,

offsetting any processor utilization gains. This effect iscompounded by the growing gap

between processor speeds and memory latency. We find that SMTon the Xeon tends

to provide better gains when coupled with large L3 caches. Bycomparing performance

gains across variants of the Xeon, we argue that such caches will only become more

crucial for SMT as clock rates increase. If these caches continue to be one of the differ-

entiating factors between commodity and higher-cost processors, then commodity SMT

will see eroding gains going forward. We believe this observation also applies to archi-

tectures other than the Xeon, since SMT only yields benefits when it is able to utilize

more processor resources.

Using these results, we can also examine how simulation suggested a much more

optimistic scenario for SMT, and why it differs from what we observe. For example,

when calculating speedups, none of the simulations used a uniprocessor kernel when

measuring the non-SMT base case. Furthermore, the simulations use cache sizes that

are larger than anything commonly available today. These large caches appear to have

supported the higher number of threads used, yielding much higher benefits than what

we have seen, even when comparing with the same number of threads. We do not believe

that the processor models used in the simulation are simply more aggressive than what
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is available today or likely to be available in the near-future. Instead, using comparable

measurements from the simulations and existing hardware, we show that the type of

processors commonly modeled in the simulations is unlikelyto ever appear as slightly-

modified mainstream processors. We argue that they have characteristics that suggest

they could be built specifically for SMT, and would sacrifice single-thread performance.

In summary, this chapter makes four contributions: (1) We provide a thorough exper-

imental evaluation of SMT for network servers, using five different software packages

and three hardware platforms. We believe this study is more complete than any related

work previously published. (2) We show that SMT has a smallerperformance benefit

than expected for network servers, both in the uniprocessorand dual-processor cases. In

each case, we identify the macro-level issues that affect performance. (3) We perform

a microarchitectural evaluation of performance using the Xeon’s hardware performance

counters. The results provide insight into the instruction-level issues that affect perfor-

mance on these platforms. (4) We compare our measurements with earlier simulation

results to understand what aspects of the simulated processors yielded much larger per-

formance gains. We discuss the feasibility of these simulation models, both in the context

of current hardware, and with respect to expected future trends.

4.2 Background

In this section we present an overview of the Intel Xeon processor with Hyper-Threading

(Intel’s term for SMT), then describe our experimental platform including hardware pa-

rameters and server configuration, our workloads and measurement methodology.
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4.2.1 SMT Architecture

The SMT architecture was proposed in the mid-1990’s, and hasbeen an active area for

academic research since that time [49, 91, 92], but the first general-purpose processor

with SMT features was not shipped until 2003. The main intentof SMT is to convert

thread-level parallelism into instruction-level parallelism. In SMT-enabled processors,

instructions from multiple processes or threads can be fetched together, without context

switching, and can be executed simultaneously on shared execution resources. From

either the operating system’s or user program’s perspective, the system appears to have

multiple processors. Currently, we are aware of only two processors in production that

support SMT – the Intel Xeon with Hyper-Threading and the IBMPOWER5. The Xeon

has been available longer, and since it is available in a widerange of configurations, it

provides us with an opportunity to affordably evaluate the impact of several features.

The Xeon is Intel’s server-class x86 processor, designed tobe used in high-end ap-

plications. It is differentiated from the Pentium 4 by the addition of extra on-chip cache,

support for SMT (though this is now beginning to appear on standard P4 processors),

and on-chip support for multiprocessing. It is a superscalar, out-of-order processor with

a deep pipeline, ranging from 20 to 30 stages depending on processor version and clock

speed. It has two hardware contexts (threads) per processor, which share most of the

resources, such as caches, execution units, branch predictor, control logic, and buses. Its

native x86 instruction set architecture is CISC, but it internally translates instructions into

RISC-like micro-operations (µops) before executing them. Buffering queues between

major pipeline logic blocks, such asµop queues, and the reorder buffer, are partitioned

when SMT is enabled, but are recombined when only one software thread is active [51].

The basic hardware information for the Xeon can be found in Table 4.1.
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clock rate 2.0 or 3.06 GHz
pipeline 20 stages or 30 stages starting from the TC

Fetch 6 µops per cycle
Policy round robin for logical processors

Retirement 3 µops per cycle
Shared caches, branch predictors, decoder logic

Resources DTLB, execution units, buses
Duplicated interrupt controller, status registers
Resources ITLB, renaming logic
Partitioned µop queue, re-ordering buffer
Resources load/store buffer, general instruction buffer

Table 4.1: Intel Xeon hardware parameters.

4.2.2 Experimental setup

To reduce the number of variables in our experiments, all of our tests use the same moth-

erboard, an Intel SE7505VB2 with 4GB memory, which is capable of supporting up to

two processors. Our processors are the 3.06 GHz Xeon with no L3 cache, the 3.06 GHz

Xeon with a 1MB L3 cache, and the 2.0 GHz Xeon without L3 cache.Using these three

processors, we can determine the effect of different clock rates, and the effect of the pres-

ence or absence of an L3 cache. All processors have a 533 MHz front-side bus (FSB).

The 2.0 GHz use a 20-stage pipeline starting from the trace cache (TC), while the 3.06

GHz Xeons use a 30-stage pipeline. All tests use the same physical motherboard, and

we manually replace processors as needed, in order to reducethe chance that variations

in memory manufacturing, etc., can affect the results. The memory hierarchy details for

our system are provided in Table 4.2. Using lmbench [53], we find the main memory

latencies are 225 cycles for the 2.0 GHz Xeon, 320 cycles for the 3.06 GHz Xeon with

L3, and 344 cycles for the 3.06 GHz processor without L3 cache.

The increase in memory latency (measured in cycles) for the 3.06 GHz processors is

not surprising, since the cycles are shorter in absolute time. The absolute latency is rela-
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Level Capacity Associa- Line Size Latency
tivity (cycles)

TC 12K µops 8 way 6 µops N/A
D-L1 8 KB 4 way 64 bytes 2

L2 512 KB 8 way 128 bytes 18
Memory 4 GB N/A N/A 225 - 344

ITLB 128 entries, 20 cycles miss penalty
DTLB 64 entries, 20 cycles miss penalty

Table 4.2: Intel Xeon memory hierarchy information. The latency cycles of each level of
the memory hierarchy includes the cache miss time of the previous level

tively constant since the FSB speed is the same. The impact onbandwidth is 22%, much

less than the clock speed difference – the 2.0 GHz system has aread bandwidth of 1.8

GB/sec while the 3.06 GHz system has a value of 2.2 GB/sec. While higher bandwidth

is useful for copy-intensive applications, the memory latency is more important to ap-

plications that perform heavy pointer-chasing. Early Web servers performed significant

numbers of memory copies to transfer data, but with the introduction of zero-copy [63]

support into servers, copy bandwidth is less of an issue.

Our testing harness consists of 12 uniprocessor client machines with AMD Duron

processors at 1.6 GHz. The aggregate processor power of the clients is enough to ensure

that the clients are never the bottleneck. To ensure adequate network bandwidth, the

clients are partitioned into four groups of three machines.Each group is connected to

the server via a separate switched Gigabit Ethernet, using four Intel e1000 MT server

adapters at the server.

We compare five different OS/processor configurations, based on whether a unipro-

cessor or multiprocessor kernel is used, and whether SMT is enabled or disabled. Using

the BIOS support and OS boot parameters, we can select between one or two proces-

sors, and enable or disable SMT. For most of our tests, we use amultiprocessor-enabled
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1T-UP 1T-SMP 2T 2P 4T
# CPUs 1 1 1 2 2

SMP kernel No Yes Yes Yes Yes
SMT enabled No No Yes No Yes

Table 4.3: Notation used in this paper reflecting different hardware and kernel configura-
tions

(SMP) kernel, since the OS sees an SMT-enabled processor as two logical processors.

However, when we run with one physical processor and SMT disabled, we also test on

a uniprocessor kernel. These combinations yield the five configurations studied in this

paper: one processor with uniprocessor kernel (1T-UP), oneprocessor with SMP kernel

(1T-SMP), one processor with SMP kernel and SMT enabled (2T), two processors (2P),

and two processors with SMT enabled (4T). Key features of thefive configuration and

their names used in this paper are shown in Table 4.3. The operating system on the server

is Linux, with kernel version 2.6.8.1. This version includes optimizations for SMT, which

we enable. The optimizations are described next.

4.2.3 Kernel Versions and Overheads

In evaluating SMT performance on uniprocessors, it is important to understand the dis-

tinction between the types of kernels available, because they affect the delivered perfor-

mance. Uniprocessor kernels, as the name implies, are configured to only support one

processor, regardless of how many physical processors are in the system. Multiprocessor

kernels are configured to take advantage of all processors inthe system using a single bi-

nary image. While intended for multiple processors, they are designed to operate without

problems on a single processor.

Uniprocessor kernels can make assumptions about what is possible during execution,

since all sources of activity are taking place on one processor. Specifically, the OS can
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make two important assumptions: that only one process or thread can be actively running

in the kernel at once, and that when the kernel is executing onbehalf of that process or

thread, the only other source of execution is hardware interrupts. The first condition is

important for protecting data in the kernel – when the kernelis executing, it generally

does not have to worry about locking kernel data structures unless it may block on some

resource. The only data sharing that remains is for data usedby any interrupt servicing

code. The existence of only one processor also simplifies this code, since it can simply

disable interrupts when manipulating such data, and enableinterrupts after the critical

section. Since enabling or disabling interrupts is a singleinstruction on the x86, this code

can be compact.

On multiprocessors (SMP), the invalidation of both assumptions causes the need to

have more synchronization code in the kernel, leading to more overhead. Both proces-

sors can be executing kernel code simultaneously, so any global data in the kernel must

be protected from race conditions. The simplest approach, using a “giant kernel lock”

to ensure only one processor is in the kernel at a time, reduces the performance of OS-

intensive workloads, and has been replaced with fine-grained locking on all major OSes.

Interrupt handling must also differ – since interrupts can be delivered to a different pro-

cessor than the one using data shared with the interrupt handler, the kernel cannot simply

locally disable interrupts. Instead, all data accessible by an interrupt handler must also be

protected using locks, to prevent another processor from accessing it simultaneously.

For uniprocessors, running a multiprocessor version of thekernel can therefore cause

a much larger performance loss than might be expected, because instead of one extra

lock operation per system call, many lock operations may be necessary for fine-grained

data sharing. For network servers, this overhead can be significant, if every packet and

acknowledgment invokes extra code that is not necessary in the uniprocessor case.

87



Since the OS treats an SMT-enabled processor as two logical processors, it must use

the SMP kernel, with the associated overheads. Kernel designers have taken steps to re-

duce some overheads, knowing that some operations can be performed more efficiently on

an SMT with two logical processors than a multiprocessor with two physical processors.

However, since SMTs interleave instructions from multiplecontexts, these overheads

cannot be reduced to the level of uniprocessor kernels. The Linux kernel implements a

number of SMT-specific optimizations, mostly related to processor affinity and load bal-

ancing [12]. Task run queues are shared between contexts on each physical processor,

eliminating the chance of one context being idle while the other has multiple tasks wait-

ing. This balancing occurs whenever a task wakes up or when any other task on the same

physical processor finishes. Processor affinity, intended to minimize cache disruption, is

also performed on physical processor instead of logical processors.

4.2.4 Test & Measurement methodology

We focus on Web (HTTP) servers and workloads because of theirpopularity and the di-

versity of server implementations available. The server applications we use are Apache

2.0 [6], Flash [62], TUX [93], and Haboob [96]. Each server has one or more distin-

guishing features which increases the range of systems we study. All of the servers are

written in C, except Haboob, which uses Java. TUX is in-kernel, while all of the others

are user-space. Flash and Haboob are event-driven, but Haboob also uses threads to iso-

late different steps of request processing. We run Apache intwo configurations – with

multiple-processes (dubbed Apache-MP), and multiple threads (dubbed Apache-MT) us-

ing Linux kernel threads, because the Linux 2.6 kernel has better support for threads

than the 2.4 series, and the Xeon has different cache sharingfor threaded applications.

Threaded applications share the same address space register while multi-process applica-
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tions usually have different registers. Flash has a main process handling most of the work

with helpers for disk IO access. We run the same number of Flash main processes as the

number of hardware contexts. TUX uses a thread-pool model, where multiple threads

handle ready events. With the exception of Haboob, all of theservers use the zero-copy

interfaces available on Linux, reducing memory copy overhead when sending large files.

For all of the servers, we take steps described in the literature to optimize their perfor-

mance. While performance comparison among the servers is not the focus of this paper,

we are interested in examining performance characteristics of SMT on these different

software styles.

We use the SPECweb96 [88] benchmark mostly because it was used in previous sim-

ulation studies. Compared to its successor, the SPECweb99 benchmark, it spends more

time in the kernel because all requests are static, which resembles other server workloads

such as FTP and file servers. We also include SPECweb99 benchmark results for com-

parison. SPECweb is intended to measure a self-scaling capacity metric, which means

that the workload characteristics change in several dimensions for different load levels.

To simplify this benchmark while retaining many of its desirable properties, we use a

more tractable subset when measuring bandwidths. In particular, we fix the data set size

of the workload to 500MB, which fits in the physical memory of our machine. We per-

form measurements only after an initial warm-up phase, to ensure that all necessary files

have been loaded into memory. During the bandwidth tests, nodisk activity is expected to

occur. We disable logging, which causes significant performance losses in some servers.

SPECweb99 measures the number of simultaneous connectionseach server is able to sus-

tain while providing the specified quality of service to eachconnection. The SPECweb99

client software introduces latency between requests to decrease the per-connection band-

width. SPECweb96 does not have this latency, allowing all clients to issue requests in a
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closed loop, infinite-demand model. We use 1024 simultaneous connections, and report

the aggregate response bandwidth received by the clients.

We use a modified version of OProfile [61] to measure the utilization of microarchi-

tectural resources via the Xeon’s performance-monitoringevents. Since we are interested

in system-wide performance, we do not need the granularity available in DeBox. More-

over, our current DeBox implementation doenot explore processor level performance

events. OProfile ships with the Linux kernel and is able to report user, kernel or ag-

gregated event values. OProfile operates similarly to DCPI [4], using interrupt-based

statistical sampling of event counters to determine processor activity without much over-

head. We find that for our experiments, the measurement overhead is generally less than

1%. While OProfile supports many event counts available on the Xeon, we enhance the

released code to support several new events, such as L1 data cache miss, DTLB miss,

memory loads, memory stores, resource stalls, etc.

4.3 SMT Performance

In this section we evaluate the throughput improvement of SMT in both uniprocessor and

multiprocessor systems. Particular attention is given to the comparison between config-

urations with and without SMT enabled, and kernels with and without multiprocessor

support. We first analyze trends at a macroscopic level, and then use microarchitectural

information to understand what is causing the macroscopic behavior. Our bandwidth

result for the basic 3.06 GHz Xeon, showing five servers and five OS/processor config-

urations, can be seen in Figure 4.2. Results for 2.0 GHz and 3.06 GHz with L3 cache

are seen in Figures 4.1 and 4.3, respectively. For each server, the five bars indicate the
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Figure 4.1: Throughput of Xeon 2.0GHz processor without L3 cache

Figure 4.2: Throughput of base Xeon 3.06GHz processor

maximum throughput achieved using the specified number of processors and OS config-

uration.

While bandwidth is influenced by both the server software as well as the OS/processor

configuration, the server software usually has a large effect (and in this case, dominant

effect) on bandwidth. Heavily-optimized servers like Flash and TUX are expected to out-

perform Apache, which is designed for flexibility and portability instead of raw perfor-

mance. The relative performance of Apache, Flash, and Haboob is in-line with previous

studies [77]. TUX’s relative performance is somewhat surprising, since we assumed an

in-kernel server would beat all other options. To ensure it was being run correctly, we
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Figure 4.3: Throughput of Xeon 3.06GHz processor with 1MB L3cache

consulted with its author to ensure that it was properly configured for maximum perfor-

mance. We surmise that its performance is due to its emphasison dynamic content, which

is not exercised in this portion of our testing. Haboob’s lowperformance can be attributed

both to its use of Java as well as its lack of support for Linux’s sendfile system call (and

as a result, TCP checksum offload). For in-memory workloads,the CPU is at full uti-

lization, so the extra copying, checksumming, and language-related overheads consume

processor cycles that could otherwise be spent processing other requests.

4.3.1 SMP Overhead on Uniprocessor

We can quantify the overhead of supporting an SMP-capable kernel by comparing the

1T-UP (one processor, uniprocessor kernel) value with the 1T-SMP (one processor, SMP

kernel) value. The loss from uniprocessor kernel to SMP kernel on the base 3.06 GHz

processor is 10% for Apache, and 13% for Flash and Tux. The losses on the L3-equipped

processor and the 2.0 GHz processor are 14% for Apache and 18%for Flash and Tux,

which are a little higher than our base system. The impact on Haboob is relatively low

(4%-10%), because it performs the most non-kernel work. Themagnitude of the over-

head is fairly large, even though Linux has a reputation of being efficient for low-degree
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SMP configurations. This result suggests that, for uniprocessors, the performance gained

from selecting the uniprocessor kernel instead of SMP kernel can be significant for these

applications.

The fact that the impacts are larger for both the slowest processor and the processor

with L3 are also interesting. However, if we consider these results in context, it can

be explained. The extra overheads of SMP are not only the extra instructions, but also

the extra uncacheable data reads and writes for the locks. The fastest system gets its

performance boost from its L3 cache, which makes the main memory seem closer to

the processor. However, the L3 provides no benefit for synchronization traffic, so the

performance loss is more pronounced. For the slowest processor, the extra instructions

are an issue when the processor is running at only two-thirdsthe speed of the others.

4.3.2 Uniprocessor SMT Benefits

Understanding the benefits of SMT for uniprocessors is a little more complicated, because

it must be compared against a base case. If we compare 1T-SMP to 2T (uniprocessor

SMT), the resulting graphs would appear to make a great case for SMT, with speedups

in the 25%-35% range for Apache, Flash and TUX, as shown in Figure 4.4. However, if

we compare the 2T performance versus 1T-UP, then we see that the speedups are much

more modest. These comparisons are shown in Figure 4.5, for all three processor types.

In general, the relative gain decreases as processor becomes faster (via clock speed or

cache). Apache-MT’s gain on the 2.0 GHz processor is the highest at 15%, but this

drops to the 10%-12% range for faster processors. The gains for Flash and TUX are less,

dropping to the 3%-5% range for the faster processor. The Haboob numbers show the

opposite trend from all other servers, showing a loss at 2.0 GHz improving to a small

gain.
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Figure 4.4: SMT speedup on uniprocessor
system with SMP kernel

Figure 4.5: SMT speedup on uniprocessor
system with different kernels

We believe that the correct comparison for evaluating uniprocessor SMT benefits is

comparing the bandwidths with 1T-UP. Although the kernels are different, the SMP ker-

nel needlessly hinders uniprocessor performance. For parallel algorithms, comparison

with the best base case is also a standard speedup measurement technique. The per-

formance of a parallel algorithm is compared to the performance of the best sequential

algorithm. Simply put, the gain from choosing the appropriate kernel is comparable to

the gain of upgrading hardware.

In comparing what is known about measured speedups from enabling the Xeon’s

SMT, our results are comparable to the 20%-24% gains that Tuck and Tullsen observed

using other workloads [90]. Their speedup comparisons are performed using an SMP

kernel for all measurements, which would be similar to comparing our 2T results to the

1T-SMP values. In fact, our observed speedups are slightly higher than theirs, if we

discount Haboob. This result is in-line with the observation that SMT can potentially help

server-style software more than other workloads [73]. The impact of using a uniprocessor

kernel on the Tuck and Tullsen results is not clear – their workloads are not OS-intensive,

so the performance loss of using an SMP kernel may be less thanwhat we observed.
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Figure 4.6: SMT speedup on dual-processor system

4.3.3 SMT in Dual-processor systems

The next reasonable point of comparison for SMT is in dual-processor systems, since

these systems are particularly targeted to the server market and are rapidly approaching

commodity status. Two factors responsible for this shift are the falling CPU prices and

the support for low-degree multiprocessing built into somechips. The Xeon processors

are available in two variants, the Xeon DP and the Xeon MP, with the distinguishing

feature being the number of processors that can be used in onesystem. The DP (“dual-

processor”) line has on-chip support for building “glueless” 2-processor SMP systems

that require no extra hardware to share the memory bus. The MP(“multiprocessor”) line

is intended for systems with more than 2 processors. In addition to the on-chip glue

logic, the Xeon DP also drives commodification of dual-processor systems via pricing –

as of this writing the Xeon DP is roughly one-tenth the cost ofa Xeon MP at the same

clock rate. Whether this difference stems from pricing strategies or economies of scale

is unclear to us, but it does greatly magnify the price difference between dual-processor

systems and larger multiprocessors.

We note that enabling SMT in a dual-processor configuration carries more risk than

enabling it for uniprocessors. While the actual gains in uniprocessors may have been
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comparable to the loss in using an SMP kernel, the overall gains were still positive. As

shown in Figure 4.6, enabling SMT in dual-processor configurations can cause a perfor-

mance loss, even though the same kernel is being used in both cases. Haboob shows a

9%-15% loss on the three different processors, when comparing the 2P configuration to

the 4T configuration. Flash and TUX show a loss in the base 3.06GHz case, but show

small gains for the other two processor types. The specifics of the performance curves

lead us to believe that Flash and TUX are bottlenecked on the memory system – the base

3.06 GHz processor will have more memory traffic than its L3-equipped counterpart.

Likewise, the 2 GHz processor has relatively faster memory,measured in CPU cycles,

since the processor speed is slower. So, by taking a 2-processor system whose bottle-

neck is already memory, and increasing the memory demand, the overall performance

will not improve. By the same reasoning, we can infer that Apache may be processor-

bound, since it sees gains on all of the processors. The highest gain in this test, both in

terms of absolute bandwidth and in percentage, is seen in theApache-MT results for the

L3-equipped 3.06 GHz processor. It gains 16% over the 2P configuration, jumping from

1371 Mb/s to 1593 Mb/s. The gain for Apache-MP on this processor is also significant,

but smaller.

4.3.4 Understanding Relative Gains

These results are interesting because Apache is neither thebest performer nor the worst –

it appears to be in a “sweet spot” with respect to the benefits of SMT. This sweet spot may

not be very large, in terms of the variety of configurations for which it works – Apache’s

gain on the base 3.06 GHz is only 4%-5%. Going forward, it may be necessary to keep

increasing cache sizes to prevent faster processors from being bottlenecked on memory.
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If all of the contexts are waiting on memory, SMT may not be able to provide much

benefit.

However, when using the relative gains, one should rememberthat they are compared

only to the same server software, and may only reflect some artifact of that server. For

instance, while Apache’s relative gains are impressive, the absolute performance numbers

may be more important for many people. Those show clearly that even the best Apache

score for a given processor class never beats the worst Flashscore, and almost never

beats the worst TUX score. So, even with 2 SMT-enabled processors, Apache still does

not perform as well as Flash (or TUX, generally) on a single processor.

4.3.5 Measuring the Memory Bottleneck

In the previous analysis, we have attempted to ascribe some of the performance charac-

teristics of the various servers and configurations to theirinteraction with the memory

system. To quantify these effects, we measure the cycles when the memory bus is occu-

pied by any one of the threads, including both driving data onto or reading data from the

bus. Even though the bus utilization figures do not differentiate “pointer chasing” styles

of memory accessing from bulk data copying, by knowing the particular optimizations

used by the servers, we can use this information to draw reasonable conclusions. To

normalize the different processor clock speeds, bus utilization is calculated as follows:

Utilization =
(CyclesBusOccupied) ∗ (ClockSpeed)

(NonHaltedCycles ∗ BusSpeed)
(4.1)

The bus utilization values, broken down by server software,configuration, and pro-

cessor type, are shown in Figure 4.7. Several first-order trends are visible: bus utilization

tends to increase as the number of contexts/processors is increased, is comparable for
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Figure 4.7: Bus utilization of three hardware configurations

all servers except Haboob, and is only slightly lower for L3-equipped processors. The

trends can be explained using the observations from the bandwidth study, and provide

strong evidence for our analysis about what causes bottlenecks.

The increased bus utilization for a given processor type as the number of processors

and hardware contexts increase is not surprising, and is similar in pattern to the through-

put behavior. Essentially, if the system is work-conserving, we expect bus utilization to

be correlated with the throughput level. In fact, we see thispattern for the gain from the

2.0 GHz processor to 3.06 GHz – the coefficient of correlationbetween the throughput

and the bus utilization is 0.95. The coefficient for the L3-equipped versus base 3.06 GHz

Xeon is only 0.62, which is still high, and provides evidencethat the L3 cache is defi-

nitely affecting the memory traffic. A more complete explanation of the L3 results are

provided below.

The fact that Haboob’s bus utilization looks different fromothers is explained by its

lack of zero-copy support, and in turn explains its relatively odd behavior in Figures 4.5

and 4.6. The bulk data copying that occurs during file transfers will increase the bus

utilization for Haboob, since the processor is involved in copying buffers and performing

TCP checksums. However, the absolute utilization values mask a much larger difference
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– while Haboob’s bus utilization is roughly 50% higher than that of Flash or TUX, its

throughput is one-half to one-third the value achieved by those servers. Combining those

figures, we see that Haboob has a per-request bus utilizationthat is three to four times

higher than the other servers.

The same explanation applies to the bus utilization for the L3-equipped processors,

and to Apache’s relative gain from SMT. The L3 cache absorbs memory traffic, reducing

bus utilization, but for Flash and TUX, the L3 numbers are only slightly below the non-L3

numbers. However, the absolute throughput for the L3-equipped processors is as much

as 50% higher, indicating that the per-request bus utilization has actually dropped. The

differences in bus utilization then provide some insight into what is happening. For Flash

and TUX, the L3 bus utilizations are very similar to the non-L3 values, suggesting that the

request throughput increases until the memory system againbecomes the bottleneck. For

Apache, the L3 utilization is lower than the non-L3, suggesting that while the memory

system is a bottleneck without the L3 cache, something else becomes the bottleneck with

it. Since we know the memory system is capable of higher utilization, we can conclude

that CPU processing is the bottleneck. The explanation addresses both Apache’s benefit

with a second processor as well as with SMT enabled. Since Apache has more non-

memory operations than Flash or TUX, it can benefit from the additional CPU capacity.

4.4 Microarchitectural Analysis

To understand the underlying causes of the performance we observed, we use the hard-

ware events available on the Xeon. These events can monitor various microarchitectural

activities, including cache misses, TLB misses, pipeline stalls, etc. While these counts

discover low level resource utilization, their effects arehard to quantify since the Xeon’s
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long pipeline overlaps many of these events’ occurrences. We examine cycles per instruc-

tion and track various causes of these cycles spent. At a highlevel, CPU cycles can be

modeled by three factors: cycles required to graduate the given instruction, instruction re-

lated stalls caused by unavailable instructions or data, and stalls due to pipeline resource

limits. For instruction-related stalls caused by cache or TLB misses, we are able to cal-

culate the individual numbers of cycles for each event type based on the known miss

penalties. For pipeline resources, the Xeon only provides the number of stalls caused

by allocator buffer shortages. Stalls from other sources, such as lack of other buffers

or decode-execute interlocks, are not available. Some major Xeon performance events

used in this thesis and their names in Oprofile are listed in Appendix A. More detailed

description of performance events can be found in [35] and [36].

We next describe a number of important metrics from a microarchitectural standpoint.

We show measurements on our base 3.06 GHz processors since all of our processors have

exactly the same resources such as cache size, TLB lines, buffers, etc., and we do not

observe radical differences between them for the metrics wepresent here.

• Cycles per instruction (CPI). We measure the number of non-halted cycles and the

number of instructions retired to calculate CPI. Since the Xeon decodes each instruction

into multiple micro-ops (µops), we report CPI or CPµ where appropriate. The ratio of

µops to instructions in our application ranges between 1.75 -1.95. Figure 4.8 shows

cycles perµop on each logical processor base for all of the servers. Network servers

demonstrate much higher CPµ than other workloads, with the minimum value of 2.15,

while the Xeon’s optimal CPµ is 0.33, with threeµops graduating per cycle.

While CPI is commonly used for indicating processor execution quality or efficiency,

it is not a perfect metric for some parts of our study. Becauseof the varying code bases,

the number of instructions used to deliver a single byte of content also differs. For this
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Figure 4.8: Cycles per micro-op (CPµ)

Apache-MP Apache-MT Flash Tux Haboob
µPB 12.5 13.0 5.7 6.0 20.7
IPB 6.8 7.1 3.2 3.4 10.7

Table 4.4: Average Instructions andµops per byte for all servers

reason, we may also report counts in terms of application-level bytes transferred, shown

in Table 4.4 as instructions andµops per byte (IPB andµPB). We discuss some of the

event results below.

• Cache behavior.In SMTs, the multiple contexts share all of the cache resources. This

sharing may cause extra cache pressure because of conflicts,but may also reinforce each

other. By comparing miss rates, we are able to detect whethercache conflicts or rein-

forcement dominates. Figures 4.9, 4.10, and 4.11 show miss rates for the L1 instruction

(trace) cache, the L1 data cache, and the combined L2 cache, respectively.

When SMT is enabled (in 2T and 4T), both the L1 instruction anddata caches show

significantly higher miss rates, indicating extra pressure, but the L2 miss rates improve,

indicating benefits from sharing. In comparing Apache-MT toApache-MP, we do see

some reduction in the 4T L1 miss rate, but the miss rate is still higher than the 2P cases.

Thus, while the multithreaded code helps reduce the pressure, the SMT ICache pressure

is still significant. The L2 miss rate drops in all cases when SMT is enabled, indicating
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Figure 4.9: L1 instruction cache (Trace
Cache) miss rate

Figure 4.10: L1 data cache miss rate

Figure 4.11: L2 cache miss rate, including both instructionand data

that the two contexts are reinforcing each other. The relatively high L2 miss rate for TUX

is due to its lower L1 ICache miss rate – in absolute terms, TUXhas a lower number of L2

accesses. The interactions on CPI are complex – the improvedL2 miss rates can reduce

the impact of main memory, but the much worse L1 miss rates caninflate the impact of

L2 access times. We show the breakdowns later when calculating overall CPI values.

• TLB misses. In the current Xeon processor, the Instruction TranslationLookaside

Buffer (ITLB) is duplicated and the shared DTLB is tagged with each logical processor’s

ID. Enabling SMT drops the ITLB miss rate (shown in Figure 4.12) while increasing

the DTLB miss rate (shown in Figure 4.13). The DTLB miss rate is expected, since

the threads may be operating in different regions of the code. We believe the drop in
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Figure 4.12: Instruction TLB miss rate Figure 4.13: Data TLB miss rate

ITLB stems from the interrupt handling code executing only on the first logical processor,

effectively halving its ITLB footprint.

• Mispredicted branches. Branches comprise 15% - 17% of instructions in our appli-

cations. Each mispredicted branch has a 20 cycle penalty. Even though all of the five

servers show 50% higher misprediction rates with SMT, the overall cost is not significant

compared to cache misses, as we show in the breakdowns later.

Figure 4.14: Branch misprediction rate

• Instruction delivery stalls. The cache misses and mispredicted branches result in in-

struction delivery stalls. This event measures the number of cycles halted when there are

no instructions ready to issue. Figure 4.15 shows the average cycles stalled for each byte
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delivered. For each server, we observe a steady increase from 1T-UP to 4T, suggesting

that with more hardware contexts, the number of cycles spentstalled increases.

Figure 4.15: Trace delivery engine stalls

• Resource Stalls.While instruction delivery stalls happen in the front-end,stalls may

also occur during pipeline execution stages. This event measures the occurrence of stalls

in the allocator caused by store buffer restrictions. In theXeon, buffers between major

pipeline stages are partitioned when SMT is enabled. Figure4.16 shows cycles stalled

per byte due to lack of the store buffer in the allocator. Enabling SMT exhibits a doubling

of the number of stall cycles for each byte transferred. Unfortunately, stalls due to other

buffer conflicts, such as the renaming buffer, are not available on existing performance-

monitoring counters. We expect similar pressure is also seen in other buffers.

Figure 4.16: Stalls due to lack of store buffers
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• Pipeline clears. Due to the Xeon’s design, there are conditions in which all non-

retiring stages of the pipeline need to be cancelled. This event measures the number of

these flushes. When this happens, all of the execution resources are idle while the clear

occurs. Figure 4.17 shows the average number of pipeline clears per byte of content. The

SMT rate is a factor of 4 higher, suggesting that pipeline clears caused by one thread

can affect other threads executing simultaneously. Profiling on this event indicates that

more than 70% are caused by interrupts. Haboob’s high clear rate in 4T mode may be

responsible for some of its performance degradation.

Figure 4.17: # of pipeline clears per byte

• 64K aliasing conflicts.This event occurs when the address of a load or store conflicts

with another reference which is in progress. When this happens, the second reference

cannot begin until the first one is evicted from the cache. This type of conflict exists in

the first-level cache and may incur significant penalties forloads that alias to preceding

stores. The number of conflicts per byte is shown in Figure 4.18. All of the servers show

fairly high number of conflicts, suggesting an effective direction for further optimization.

• Putting cycles together. We estimate the aggregated cycles per instruction of these

negative events and compare them to the measured CPI. While it is possible to estimate

the penalty of each event, some have aggregated effects and thus are not included. Fig-

ure 4.19 shows breakdowns of non-overlapped CPIs calculated from eight events, with
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Figure 4.18: # of aliasing conflicts per byte

measured CPI shown as dashes. The breakdowns indicate that L1 and L2 misses are re-

sponsible for most of the cycles consumed. Pipeline clears and buffer stalls also have a

significant portion when SMT is enabled, as shown in Flash, Tux and Haboob’s 2T and

4T cases. Other events such as TLB misses and mispredicted branches are not major

factors in our workloads.

Figure 4.19: Non-overlapped CPI accumulated by cache miss,TLB miss, mispredicted
branches and pipeline clear. Labels shown here such as L1, L2etc. are misses, and com-
ponents in each bar from top to bottom are in the same order as in the legend. Measured
CPIs are shown as small dashes.

Our microarchitectural analysis provides quantitative explanations of the observed

performance and discovers a number of SMT resource bottlenecks. Quantifying perfor-

mance change based on processor events for our-of-order superscalar processors is not
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our goal, nor do we think it is feasible. However, by examining the aggregated CPI and

measured CPI, we can estimate the pipeline overlapping if the measured CPI is lower than

the calculated value, and how many cycles are taken by other sources if measured CPI is

higher. With this microscopic information and observed performance improvement, we

can compare to similar studies using simulation which we describe in the next section.

4.5 Evaluating the Simulations

Our measurements present a much less optimistic assessmentof SMT performance ben-

efits than many of the simulation-based studies – most of our gains are in the 5%-15%

range for 2 threads, while the simulations show speedups in the 200%-400% range for

4-8 threads. Intuitively, the number of threads might be thecause of this speedup gap.

However, studies also show that the first few threads usuallyexhibit more performance

gain than the rest [91]. Thus, the simulated speedup for 2 threads would be in the range of

70-100%, which is still much higher than what we observe. While none of the published

simulations modeled the Xeon, the significant disparity in the gains warrants analyzing

their cause. We have not found any simulations specifically regarding multiprocessor

systems, although such systems are popular in the network server market. None of the

simulations appear to have considered the cost of using an SMP-enabled kernel instead

of a uniprocessor kernel, and we have shown this cost to be significant. However, we

believe the other significant differences are hardware-related, which we discuss below.

The most prominent area of difference between the Xeon and the simulated processors

is the structure of the memory hierarchy, and the associatedlatencies. The Xeon has an

8KB L1 data cache and a 12Kµops trace cache (TC), which is equivalent to an 8KB

- 12KB conventional instruction cache. Detailed hardware parameters and latencies for
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Type sim sim sim Xeon Xeon
Year 1996 2000 2003 2003 2004
Clock rate (Mhz) 600∗ 800∗ 800∗ 2000 3060
# Contexts 8 8 8 2 2
# Stages 9 9 9 20 30
L1 ICache (KB) 32 128 64 8∗ 8∗

L1 DCache (KB) 32 128 64 8 8
L2 size (KB) 256 16384 16384 512 512
L2 cycles 6 20 20 18 18
L3 size (KB) 2048 - - - 1024
L3 cycles 12 - - - 46
Memory (cycles) 62 90 90 225 344

Table 4.5: Processor parameters in simulation and current products. Values marked with
an asterisk are approximate or derived.

our experimental platform are presented in Table 4.5. The 1996 study is a proposal for

practical SMT processors [91], while the 2000 paper examines SMT OS and Web server

performance [73], and the 2003 one examines SMT search engine performance [52]. The

processor models were derived from Alpha, and have shorter pipelines and slower clock

speeds than modern processors. While the 1996 design had caches that are comparable

to what is available today, the others are much more aggressive than what is currently

available.

The issue of cache size is significant, because of its direct impact on processor cycle

time. Larger caches slow access times, and the Xeon’s L1 caches are small in order to

support its high clock frequencies. For comparison, if we triple the clock frequencies,

stages, and main memory latencies for the 2000 and 2003 studies, then those values are

in line with the current Xeons, but the L1 cache sizes are 8-16times higher, and the L2

cache size is 32 times larger. If we assume the simulated L2 caches are really L3, then

they are more than twice as fast as the Xeon’s L3 latencies, while still being 4 times larger

than the L3 caches of any Xeon in the market at the time this study was performed. Even
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if we compare with high-end processors, the simulated processors are still aggressive. For

example, the IBM POWER5 has a 64KB instruction and 32 KB data L1 cache, 1.9MB L2

cache, 36MB of shared L3 cache per 2 processors, 2 SMT contexts, a 16-stage pipeline,

and operates at 1.5 GHz [40]. Compare to the scaled version ofthe simulated processors,

it has one-fourth the SMT contexts, and operates at half of the clock speed. We conclude

that not only are the simulated memory hierarchies more aggressive than what current

hardware can support, but the memory latencies are also muchfaster than what might

be reasonably expected from their size. Given the sensitivity to cache sizes and memory

speeds we have seen in our evaluations, it is not surprising that the simulations yield more

optimistic speedup predictions.

While these differences indicate that SMT in the Xeon may notyield significant ben-

efit on the workloads we studied, it does not imply that SMT in general is not useful. If a

company were to design a processor specifically suitable forSMT, it may choose a larger

number of contexts and larger caches while consciously sacrificing cycle time. Such a

system may have poor performance for single-threaded applications, but would be suit-

able for highly-parallel tasks. Sun Microsystems has discussed their upcoming “Niagara”

processor, which has 8 cores with 4 contexts per core [42]. The projected performance

of this processor is about 15 times the performance of today’s current processors, while

a dual-core UltraSparc V microprocessor targeted for the same timeframe was expected

to have 5 times the performance of today’s processors. Usingthese numbers, each con-

text on Niagara will perform at one-fifth the performance of one UltraSparc V context.

This approach is similar to the Denelcor HEP [68] and the TeraMTA [83] which were

designed for high throughput instead of high single-threadperformance. Whether this

approach will be more successful for a higher-volume processor remains an open ques-

tion.
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Simulation Measurement
# Contexts 8 2
Speedup 4-fold 5-15%

SMT ST SMT ST
IPC 5.6 2.6 0.43 0.33
Branch Mispredict (%) 9.3 5.0 12.0 8.0
L1-I miss (%) 2.0 1.3 17.1 10.5
L1-D miss (%) 3.6 0.5 5.7 4.7
L2 miss (%) 1.4 1.8 3.9 5.1
ITLB miss (%) 0.0 0.0 3.7 5.1
DTLB miss (%) 0.6 0.05 3.5 2.9

Table 4.6: Results comparison between related simulation work and our measurements.
We use ST (Single Threaded) to indicate the non-SMT performance.

In broader terms, though, the simulations identified a number of trends that we can

confirm via our evaluation. Table 4.6 compares our measured results versus the simula-

tion study of the same workload [73]. While the magnitude of the values between the

simulated and actual processor is large due to the differences in cache sizes, etc., the

direction of change is the same for each metric.

4.6 SMT on SPECweb99 benchmark

While static Web workloads are useful to compare with previous studies, dynamic content

is an important part of current Web traffic, and is captured inthe SPECweb99 benchmark.

In order to compare with results discussed in previous sections, we run the full benchmark

but also limit the data set size to 500 MB.

SPECweb99 introduces changes to both the workload and methodology of the SPECweb96

benchmark. The benchmark consists of 70% static and 30% dynamic requests. The dy-

namic requests attempt to model commercial Web servers performing ad rotation, cus-

tomization, etc., and require some computation. Rather than reporting rates in requests
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Figure 4.20: SPECweb99 scores of three servers. The metric is number of simultaneous
connections.

per second, SPECweb99 reports the number of simultaneous connections the server can

handle while meeting a specified latency requirement.

The dynamic portion of SPECweb99 consists of a specificationwhich must be im-

plemented for each server. Because we do not have versions ofthis specification for all

of our servers, we can only evaluate it for three of our five systems. We run Flash as

well as both versions of Apache on the three hardware configurations. While TUX has

SPECweb99 scores, we have been unable to get the dynamic content support to work

on the free version of Linux with SMT support. We are investigating its performance

on the Red Hat Enterprise distribution since it is more stable and is the distribution for

which most TUX results are reported. Haboob is not included because we did not find

its dynamic API for SPECweb99. Since we focus on the differences stemming from

SMT, we are not overly concerned about the missing servers. For Apache, we use the

mod specweb99 module which is available on the Apache Web site. Similarly, for Flash,

we use its built-in SPECweb99 module that handles dynamic requests.

Figure 4.20 shows the SPECweb99 scores of the three servers on the three different

hardware configurations, and Figure 4.21 calculates the speedups. The trends are gen-

erally consistent with what we observed in Section 4.3, but some interesting differences
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Figure 4.21: SMT speedups on SPECweb99 scores for the three servers.

emerge. On uniprocessor systems, SMT has a speedup of 4% to 15% when comparing

to the uniprocessor kernel, and a speedup of 15% to 30% when comparing to the SMP

kernel. On dual-processor systems, the improvements rangefrom 1% to 15%. In com-

paring Figure 4.21 with Figures 4.5 and 4.6, we see some interesting differences. The

gains for Apache on SPECweb99 are almost always worse than those on the static-only

test. Flash’s gains are worse at one processor, but better attwo processors. The additional

computation in SPECweb99 appears to help utilize the processor better when the memory

system is very taxed, but seems to be causing more imbalance in Apache, which already

does more computation than Flash.

The most noticeable differences are the comparison of 4T with 2P – previously, the

4T results for Flash showed degradation for the 3.06 GHz processor. On SPECweb99,

this degradation disappears, and the relative improvementon the other two processors is

larger. We believe that the dissimilar behavior between thestatic content and dynamic

content allows better use of idle functional units. The differences are less apparent on

Apache, which already was performing more processing per request than Flash.

This result also leads to another general observation. While SMT is intended to hide

memory reference latency by overlapping the use of idle processor resources, application

threads having similar resource utilization characteristics such as Web servers serving
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static content may have little to overlap.The difference between the effects of SMT on

SPECweb96 and SPECweb99 is the compute-intensive dynamic content. This requires

work for the processor than simple pointer-chasing, so it ispossible that the dynamic

content processing can be run during memory fetch stalls. Using dissimilar workloads

to achieve better SMT utilization has been explored for the CINT (integer component of

SPEC CPU) benchmark programs [87], but not for network server software. Even with

this mix of programs, the benefits we see in the network serverenvironment are lower

than in the CPU-only tests.

4.7 Discussion

In the previous sections, we have shown that memory bottleneck prevents network servers

from realizing significant benefits on SMT. Another interesting area for SMT systems is

CPU-intensive applications, particularly in multiprogrammed systems. These programs

may be more cache friendly, and may have very different resource utilization characteris-

tics, so running two different CPU-intensive programs can potentially improve processor

utilization. However, even this attempt of pairing mutually-beneficial programs has its

caveats, and the associated problems have led a number of researchers to explore opti-

mizing the scheduler for SMT [21, 84].

Rather than recreate this research, we use previously-published results but analyze

them differently. In particular, two groups have examined the pairwise interference/benefit

between the 26 programs in the SPEC CPU2000 [20, 90] benchmark suite. We use these

as input to our analysis, which basically asks the followingquestion: if all 26 program

pairs ran for the same time, and you had to schedule them for the most benefit, how
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Figure 4.22: Speedup CDF of SPEC CPU2000 scheduling: Min is 12%, Max is 26%,
and Mean is 20%.

would you do it? Since the possible permutations are far too large to analyze, we use

randomized schedules to simplify the analysis.

We create schedules by randomly pairing program and calculating the schedule’s total

runtime using the pairwise interference measurements. By repeating this process for a

large number of trials, we can determine the range of scheduling benefit. The CDF of

10 million trials, shown in Figure 4.22, indicates that the range of resulting speedups is

fairly narrow, with a mean of 20% and an absolute maximum of 26%. A more typical

high-end schedule achieves 23%.

So, even if we have perfect offline information, the ideal scheduler achieves only

3%-6% more speedup than a random scheduler. One may argue that a random scheduler

could perform as poorly as only a 12% speedup. While true, theremedy is also sim-

ple. The scheduler could periodically re-randomize the pairings, bringing all schedules

closer to the median as the number of randomizations increases. This scheduling pol-

icy is extremely simple, and performs almost as well as an ideal scheduler. For realistic

schedulers, which will need to collect the pairwise data at runtime, the gap may be even

narrower.
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While we use randomized analysis, this argument is not aboutthe law of large num-

bers – we assume that the ideal scheduler can achieve the bestschedule, or something

close to it. What we are merely observing is that given enoughprograms and the pair-

wise characteristics of the P4, the average speedup is simply not that bad. If people run

very few simultaneous programs, then scheduling matters even less – there are very few

choices for the scheduler to make. Some degenerate cases arepossible, where there may

be only two programs in the system, and they exhibit slowdownwhen run together. How-

ever, these cases are rare among the SPEC CPU2000 programs, and the ability to detect

this scenario does not imply that a more complicated scheduler is needed.

4.8 Related Work

In this section we discuss related work not already covered.When investigating SMT per-

formance, operating systems were not included in simulations until Redstoneet al. [73]

ported the SMTSIM simulator [92] into the SimOS framework [75]. They discovered

that although ignoring operating systems behavior may not result in misleading predic-

tions for SPEC CINT, it has significant impact on evaluation of server applications such

as Apache. McDowell et al. [52] used the same simulator and studied memory allocation

and synchronization strategies for a search engine application. Similarly, many stud-

ies focus on user-level and compute-intensive applications, including SPEC CINT and

CFP [85, 91, 92], parallel ray-tracing applications [32], SPLASH-2 benchmarks [49],

MPEG-2 decompression [23, 82], and other scientific application workloads [44, 84]. Lo

et al. [48] analyzed SMT performance with database workloads, which spend 70% of

their time in user space.
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Our approach differs from previous performance evaluations in several ways. While

direct measurement on real hardware gives accurate resultsand does not need model

validation, as is required by simulation, it is limited by the available hardware configura-

tions. By making small changes to the hardware and exploringkernel options, we obtain a

reasonable space for comparison. More importantly, compared to the work which studies

server applications, our evaluation has a broader range of server software, OS support and

hardware configurations. Our results on uniprocessor kernels and dual-processor systems

discover new SMT performance characteristics. In contrastto other works, we focus on

server workloads since it is one of the biggest markets for SMT-enabled processors.

Performance evaluation and characterization on currentlyavailable SMT-enabled pro-

cessors is still an ongoing research area. Tuck and Tullsen [90] evaluated the implemen-

tation and effectiveness of SMT in a Pentium 4 processor, particularly in the context

of prior published research in SMT. They measured SPEC CPU2000 and other parallel

benchmarks, and concluded that this processor implementation matches the promise of

the published SMT research. Bulpin and Pratt [20] extended Tuck et al.’s evaluation by

comparing an SMT system to a comparable SMP system, but did not investigate SMT on

SMP systems as we do in this thesis. Chenet al. [23] also only evaluated performance of

SMT and SMP individually. Vianney [94] measured a single Xeon processor and reported

that Hyper-Threading on the Linux kernel can improve throughput of a multi-threaded ap-

plication (namely, chat [47]) as much as 60%. Our study not only differs in target testbed

and workloads, but also provides low level microarchitectural characteristics to reveal

detailed resource utilization pertinent to SMT.

SMT’s microarchitectural performance is always one of the main concerns in SMT

design. In addition to work discussed earlier in this section, Grunwald and Ghiasi [30] ex-

amined the Xeon processor and discovered a possible microarchitectural denial of service
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attack for the SMT processor. Snavelyet al. [84, 85] observed symbiotic features in SMT

architectures and proposed a special scheduler to exploit it. Raasch and Reinhardt [69]

studied the impact of resource partitioning on SMT processors. Our microarchitectural

analysis using the performance counters focuses on the comparison between when SMT

is enabled and disabled, instead of evaluating the performance of different SMT design

options.

Performance analysis using hardware provided event counters has been an effective

approach in previous studies. Bhandarkaret al. [14] and Keetonet al. [41] character-

ized performance of Pentium Pro systems and studied latencycomponents of the CPI.

More recently, Blackburnet al. [15] used some of the Pentium 4 performance counters

to study impact of garbage collection. Given the complexityof Xeon microarchitecture,

interpreting the performance-monitoring events on these systems is more difficult than

with previous Pentium family processors or RISC processors. Moreover, we are unaware

of any non-simulation work in this area that provides the breadth of event coverage that

we do in this thesis.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

This thesis presents network server performance analysis and improvement at various

levels. At the kernel level, we develop a novel kernel profiling tool to provide applications

with fine-grained kernel information at low cost, and contributed a set of kernel patches to

improve networked file transfer. At the application level, we redesign a popular research

server, Flash, and the widely-used Apache server, improving Flash’s SPECweb99 score

by a factor of four and reducing response time by one to two orders of magnitude on

both servers. Using these servers as well as others, we then investigate the architectural

aspects of server performance, conducting detailed analysis of delivered SMT systems.

Some of the results have led to a better understanding of processor bottlenecks and server

optimization.

At the beginning of this thesis, we present a study of server performance and the inter-

actions with operating systems, and describes the design, implementation and evaluation

of DeBox, an effective approach to provide more OS transparency, by exposing system
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call performance as a first-class result via in-band channels. DeBox provides direct per-

formance feedback from the kernel on a per-call basis, enabling programmers to diagnose

kernel and user interactions correlated with user-level events.

The case study using DeBox on the Flash Web Server demonstrates the power of

this approach. Addressing the problematic interactions and optimization opportunities

discovered using DeBox improves our experimental results an overall factor of four in

SPECweb99 score, despite having a data set size nearly threetimes as large as our phys-

ical memory. Furthermore, our latency analysis demonstrates gains between a factor of

4 to 47 under various conditions. Further results show that fixing the bottlenecks identi-

fied using DeBox also mitigates most of the negative impact from excess parallelism in

application design.

Then the thesis examines server latency under load and traces the root cause of server-

induced latency. By experimenting with workloads of various sizes, we determine that

when disk accesses occur, both mean and median latencies increase, though the median

should be unaffected. We trace the roots of this problem to head-of-line blocking within

filesystem-related kernel queues. This behavior, in turn, causes batching and burstiness,

which has little impact on throughput, but severely degrades latency. By examining in-

dividual request latencies, we find that this blocking givesrise to a phenomenon we call

service inversion, where requests are served unfairly.

By addressing the blocking issues both with the Apache and the Flash server, we im-

prove latency by more than an order of magnitude, and demonstrate a qualitatively differ-

ent change in the latency profiles. We performed these changes in user space, in a portable

manner, without requiring any modification to the kernel or filesystem layout. Without

much effort or extensive modification, we were able to take advantage of these changes

in a widely-deployed legacy server. The resulting servers also exhibit lower burstiness,
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and more fair request handling. Their latency values scale better with improvements in

processor speed than their original counterparts, making them better candidates for fu-

ture improvements. This work also improves on our fundamental understanding of the

interactions between the filesystem, application, and workloads. The results suggest that

most server-induced latency is tied to blocking effects, rather than queuing. By address-

ing the root causes of latency increase in network servers, we believe that we can enhance

research in other areas, such as improving quality of service or scheduler policies.

Finally, the thesis provides a performance analysis of simultaneous multithreading for

server applications, using five software implementations and three hardware platforms.

We find that the performance benefits of SMT are much more modest when compared to

the uniprocessor kernel, suggesting non-negligible amounts of OS overhead when sup-

porting SMT. This cost was mostly ignored in previous studies. Our evaluation in dual-

processor configurations indicates that the benefits of SMT are harder to achieve in these

systems, unless memory reference latency is shorter or a large L3 cache is used, a finding

that may aid SMT design and purchasing.

Our microarchitectural analysis provides quantitative explanations of the observed

performance and discovers a number of SMT resource bottlenecks. Using this informa-

tion, future processor designers can understand how to better serve this important class

of applications. With this detailed, low-level information and observed performance im-

provement, we are able to compare our results to similar studies performed using simula-

tion. We believe that simulation correctly predicts the direction of change for processor

resources, but yields much more optimistic estimates of resource contention and overall

speedup.
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5.2 Future Work

My future research interests include computer architecture, operating systems and server

applications. With the rapid development of computer architecture, it is a persistent re-

search topic for software designers to identify necessary changes to cope with new plat-

forms. One of our original goals of the SMT study was to improve server performance

for SMT processors. We have discussed that it is unlikely to achieve high performance

by optimizing server application on the current Intel Xeon platforms. However, other ar-

chitectures, such as the IBM POWER5 and other emerging dual-core chips, may present

very different resource usage characteristics. We are investigating optimization opportu-

nities using performance-counter based profiling approaches. By focusing on bottleneck

components, we identify the most expensive activities and redesign the responsible soft-

ware invocations. We intend to term this approach ashardware-aware profile-guided

optimizations.

In this thesis, we focus on performance issues on traditional operating systems. With

the increasing popularity of virtual machines, we believe that performance analysis and

optimization in virtualized environment present new opportunities for researchers. Simi-

lar to operating systems, virtual machines also isolate hardware resource from being ac-

cessed directly by up-level applications. However, as whatwe have shown in this thesis,

it is critical for applications to obtain performance knowledge from underlying layers.

We plan to provide effective approaches under virtualized environment to aid in high-

performance application design and optimization. Specifically, we would like to examine

what information is critical to export giving a combinationof virtual machine monitor,

application and workloads. Then we study the effectivenessof existing communication

channels between the different layers. Particularly, we are interested in knowing whether
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any in-band channel such as system call interface can be enhanced in providing feed-

back from the isolated layers. Finally, we would also like toinvestigate the necessity and

possibility of providing processor-specific performance counters to each virtual machine.
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Appendix A

Xeon Performance Events
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Event Description Oprofile Event Name Oprofile unit mask
Processor active cycles GLOBAL POWEREVENTS 0x01
Total instructions retired INSTR RETIRED 0x0F
Total Micro-ops retired UOPSRETIRED 0x03
Non-bogus instructions retired INSTR RETIRED 0x03
Non-bogus Micro-ops retired UOPSRETIRED 0x01
Branches retired BRANCH RETIRED 0x0F
Mispredicted branches MISPRED BRANCH RETIRED 0x01
Memory loads* FRONT END EVENT 0x01

& UOP TYPE 0x01
Memory stores* FRONT END EVENT 0x01

& UOP TYPE 0x02
Requests from Branch BPU FETCH REQUEST 0x01
Prediction unit
Instruction TLB misses ITLB REFERENCE 0x02
Instruction TLB references ITLB REFERENCE 0x03
Data TLB misses* DTLB ALL MISS RETIRED 0x01
L1 load misses* L1 LD MISS RETIRED 0x01
L2 cache read hits BSQ CACHE REFERENCE 0x07
L2 cache read misses BSQ CACHE REFERENCE 0x100
L3 cache read hits BSQ CACHE REFERENCE 0x38
L3 cache read misses BSQ CACHE REFERENCE 0x200
Micro-ops written in pipeline UOP QUEUE WRITES 0x07
Trace cache delivery TC DELIVER MODE 0x4F
Front-side bus busy FSB DATA ACTIVITY 0x03
Pipeline flushes MACHINE CLEAR 0x45
Stalls in pipeline buffer RESOURCESTALLS 0x20

Table A.1: Xeon performance events and their names/masks inOprofile. Events with *
are not supported by default in Oprofile version 0.x. Measuring these events requires a
patch developed by the author [76]
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