UNDERSTANDING AND IMPROVING

MODERN NETWORK SERVER PERFORMANCE

YAOPING RUAN

A DISSERTATION
PRESENTED TO THEFACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE
BY THE DEPARTMENT OF

COMPUTER SCIENCE

NoOVEMBER 2005

(© Copyright by Yaoping Ruan, 2005. All rights reserved.

Abstract

This thesis presents network server performance analpsiSraprovement at the
operating system (OS), application, and processor led¢khe kernel level, we develope
a profiling tool that provides rich OS transparency at lowtcbg exposing system call
performance as a first-class result via in-band channelsngUhis tool on the Flash
Web server running the standard SPECweb99 benchmark seaesgries of negative
interactions between the server application and the OSeSurthe solutions to these
issues have lead to a set of kernel patches to improve netdditke transfer, and others
contribute in server application design.

At the application level, we redesign the Flash server aedntldely-used Apache
server, improving Flash’s SPECweb99 score by a factor of &mal reducing response
time by one to two orders of magnitude on both servers. Udiegd servers, we then
examine server latency under load and trace the root causengdr-induced latency to
head-of-line blocking within filesystem-related kerneleges. This behavior, in turn,
causes batching and burstiness, and gives rise to a phenamwercallservice inversion
where requests are served unfairly with long responsegd@eivead of short responses.
Removing blocking not only reduces response time underdoadmproves latency pro-
files, but also mitigates burstiness and improves requestlimg fairness. The resulting
servers show better latency scalability with processoedpmaking them better candi-
dates for future improvements.

Finally, we investigate the architectural aspects of gepexformance, conducting
detailed analysis of delivered simultaneous multithregdiSMT) systems. Using five
different software packages and three hardware platfe@rperimental results show that
the benefits of the current SMT implementation on Intel Xeoocpssors are modest

for network servers, and short memory latency or extra L3iedwelps SMT yield bet-

ter speedups. By performing microarchitectural evalumatising processor performance
counters, we also provide insight into the instructioreleesource bottlenecks that affect
performance on these platforms. Finally, we compare thesared results with similar
studies performed using simulation, and discuss the féiasif these simulation mod-

els, both in the context of current hardware, and with resfoefuture trends.

Acknowledgments

It has been a tremendous privilege to work with ProfessoekiRai over the past five
years. Many thanks to him for having faith in me when | was newhe program, and
tailoring different training strategies at each stage ofintgllectual development; for his
hands-on guidance to set me on the right track, and the temightenment he readily
offered from time to time; for the heart-warming leads ireld&nd career path, and of
course, the uninterrupted generous financial support.

| am deeply indebted to my committee members. ProfessordDavgust provided
critical feedback to many of the thesis projects. Profe&s@n Kernighan helped pol-
ishing my paper writing and even my research statementeBsof Larry Peterson was
always like a supervisor for me, providing advice and enagement directly and indi-
rectly. | was fortunate to have the opportunity to work wittof@ssor Jennifer Rexford
who literally opened another door for me into the fascirgtigsearch world.

Special thanks go to Melissa Lawson who put invaluable &ffor improving my
communication skills. I would also like to thank departnaistaffs for the convenience
of various facilities.

The influence of Dr. Erich Nahum and Dr. John Tracey on the q@ssyof my the-
sis cannot be over-estimated. | would like to thank them mbroiducing me to a new
community and having me in the IBM T.J. Watson research ca&sta summer intern.

| benefited a lot from many professors’ wonderful seminarshsas Professor Kai Li,
Professor J.P. Singh, Professor Randy Wang, etc. just te adiew here.

My fellow officemates and dear friends at Princeton have niaidglace an enjoyable
one to work, and have brought many cheers to my life in thisaogu | am not able to

list their names here because the list is too long.

At the end of this prestigious procession of gratitude aeerttost precious people
in my life. My parents sacrificed almost all their comfortsgroviding my previous
education. | am forever indebted to their unconditionakloam very grateful for my
dear wife, Dr. Sheng (Sarah) Tan. Without her unwaveringstpand fighter spirits, |
could not have gone so far.

Finally, | would like to acknowledge NSF grant No.CCR-00833vhich supported

the projects.

Vi

Contents

Abstract iii
1 Introduction 1
1.1 The SPECweb99 Benchmark 3
1.2 ThesisContribution 6
1.3 Dissertation OVerview i 7
2 Server Performance and Interactions with Operating Systms 9
2.1 Introduction 9
2.2 DeBox Design Philosophy 0 . 12
2.3 DeBox Architecture & Implementation. 16
2.3.1 User-Visible Portion 17
2.3.2 In-Kernel Implementation 18
233 Overhead 21
2.4 Experimental Setup &Workloads 23
2.5 Using DeBoxonthe FlashServer 4 2
2.5.1 Initialexperiments o 24
2.5.2 Successive refinementofdetail 25
2.5.3 Capturing rare anomalypaths 27

Vii

2.5.4 Trackingcall histories 28

2.5.5 Profiingbycallsite 30
2.5.6 Other optimization opportunities 31
257 CaseStudySummary 33
2.6 Latency e e 36
2.6.1 OnSPECweb99workloads 36
2.6.2 On Disk-bound staticworkload 37
2.6.3 Excessparallelism 39
2.7 ResultsPortability 39
2.8 RelatedWork 42
2.9 DISCUSSION o 46
Server Response Time Under Heavy Load 48
3.1 Introduction 48
3.2 Background 50
3.21 ServerSoftware 51
3.2.2 Experimental Setup & Workloads 52
3.2.3 Measurement Methodology 53
3.3 BlockinginWeb Servers L. 53
3.3.1 Observing BlockinginFlash 53
3.3.2 Inferring BlockinginApache 55
3.3.3 CausesofBlocking 57
3.3.4 ResponseTimeEffects 58
3.3.5 Response Timevs. DataSetSize. 60
3.4 Servicelnversion 61

viii

3.4.1 Identifying Servicelnversion 63

3.4.2 Quantifying Service Inversion 65

3.5 TheNewServers&Results. 66
3.5.1 Flashpache 67
3.5.2 LatencyResults. 69
3.5.3 Service Inversion Improvements 712
3.5.4 Latency Scalability 74

3.6 RelatedWork 76

Server Performance on Simultaneous Multithreaded Procesors 79

4.1 Introduction 79

4.2 Background 82
4.2.1 SMT Architecture 83
4.2.2 Experimentalsetup 84
4.2.3 Kernel Versionsand Overheads 86
4.2.4 Test & Measurement methodology 88

4.3 SMTPerformance 90
4.3.1 SMP Overhead on Uniprocessor 92
4.3.2 Uniprocessor SMT Benefits 93
4.3.3 SMT in Dual-processorsystems 95
4.3.4 Understanding Relative Gains 6 9
4.3.5 Measuring the Memory Bottleneck 97

4.4 Microarchitectural Analysis. 99

4.5 Evaluating the Simulations 107

4.6 SMTon SPECweb99 benchmark 110

4.7 DISCUSSION 113

4.8 RelatedWork 115
5 Conclusion & Future Work 118

5.1 Conclusion 118

5.2 FutureWork 121
A Xeon Performance Events 123

List of Figures

2.1

2.2

2.3
2.4

2.5

2.6
2.7

2.8

User-space timing of treendf i | e call on a server running the SpecWeb99
benchmark — note the sharp peaks, which may indicate anosb&hav-
iorinthekernel. 14
The same system call measured using DeBox shows mucbeléston
inbehavior. 14
DeBox data structures and function prototype 17

Sample DeBox output showing the system call performahcepying a

10MB mappedfile 20
Call time off or k() as a function of invocation 29
Call time ofrmap() as a function of invocation 30

Microbenchmark performance comparison of writev, §Edand mod-

ified sendfile — In this test, all clients request a single ftléud speed
using persistentconnections. 34
SPECweb99 summary — 1. Original 2. VM patch 3. Using skayfi

4. FD-passing helpers 5. Fork helper 6. Eliminate mmap 7. K&

interface 8. Newsendfile() 34

Xi

2.9 Architectural changes — The architecture is greatlyp8frad by using

file descriptor passing and eliminating mapped file cachihtpdified

components are indicated withdark boxes.35
2.10 Latency summary for 300 SPECweb99 connections 37
2.11 Response latencies for the 3.3GB staticworkload 38
2.12 Responsetime on Linux with 3.3GBdataset 40

3.1 CDF of number of ready events (the return values fs@hect ()) in

3.2 Scheduler burstiness (via the instantaneous run geagthk) in Apache

for 256 and 1024 processes i e e

3.3 HTTPrequestprocessingsteps 97
3.4 Apache Latency Profile. The relative load of 1.0 equalsib/s 59
3.5 Flash Latency Profile. The relative load of 1.0 equalsi@B6 59
3.6 Apache latency CDFs for various load levels 60
3.7 Flash latency CDF for various loadlevels 60

3.8 Median and mean latencies of Apache and Flash with vadata set sizes 61
3.9 Service inversion example — Assume three requests (An@C) arrive
at the same time, and A is processed first. If it is cached asehisto the
networking code in the kernel bottom half, interrupt-bagestessing for

it can continue even if the the process gets blocked. In @sg ceven if

A is large, it may get finished before processing on C evemsstar. . . . 63
3.10 Apache CDF breakdown by decileatload0.95 64
3.11 Flash CDF breakdown by decileatload0.95. 64
3.12 Service inversion versus load level for Apache andFlas. 66

Xii

3.13 Flashpache architecture 68
3.14 CDFs of # of ready events for Flashvariants 69
3.15 Scheduler burstiness in Flashpache for 256 and 1024$ses 69
3.16 Response time of New-Flash and Flashpache with diffel&ta set sizes . 71

3.17 Latency profile of New-Flash (Flash profile shown in F&g8.5) 71
3.18 Latency profile of Flashpache (Apache profile shownguf@ 3.4) . .. 71
3.19 CDF breakdown for New-Flash on 3.0 GB data set, load 0.95 72
3.20 Service inversion of original and modified servers 73
3.21 CDF breakdown for New-Flash on in-memory workloaddl685 73
3.22 CDF breakdown for Flashpache on 3.0 GB data set, lo&.0.9. 73

3.23 In-memory workload (0.5 GB) latency profiles of Apachd &lash across
three processorgenerations 5.

3.24 Disk-bound workload (3.0 GB) latency profiles of Apadrel Flash
across three processor generations 75

3.25 Disk-bound workload (3.0 GB) latency profile of Newg$Haand Flash-

pache across three processor generations 76
4.1 Throughput of Xeon 2.0GHz processor without L3 cache 91
4.2 Throughput of base Xeon 3.06GHz processor 91
4.3 Throughput of Xeon 3.06GHz processor with 1IMB L3 cache..... . . 92
4.4 SMT speedup on uniprocessor system with SMP kernel 94
4.5 SMT speedup on uniprocessor system with different kerne. 94
4.6 SMT speedup on dual-processor system 95
4.7 Bus utilization of three hardware configurations 98
4.8 Cyclespermicro-op(GB 101

Xiii

7

4.9 Llinstruction cache (Trace Cache) missrate.102
4.10 L1datacachemissrate 021
4.11 L2 cache miss rate, including both instructionand data. 102
4.12 Instruction TLBmissrate 103
413 DataTLBmissrate 103
4.14 Branch mispredictionrate e 103
4.15 Trace deliveryenginestalls 104
4.16 Stallsduetolack of storebuffers 104
4.17 #of pipelineclearsperbyte. 105
4.18 # of aliasing conflictsperbyte 106
4.19 Non-overlapped CPI accumulated by cache miss, TLB,nnisspre-

dicted branches and pipeline clear. Labels shown here suth al 2

etc. are misses, and components in each bar from top to bat®in the

same order as in the legend. Measured CPIs are shown as sistadisd . 106
4.20 SPECwebh99 scores of three servers. The metric is nushbanultane-

OUS CONNECLIONS. o o i e e e e e e e e e e 111
4.21 SMT speedups on SPECweb99 scores for the three servers. 112
4.22 Speedup CDF of SPEC CPU2000 scheduling: Min is 12%, §128%5,

and Meanis20%. 114

Xiv

List of Tables

11

1.2

2.1

2.2

2.3
2.4

2.5
2.6
2.7

Class and File characteristics in SPECweb99. Each ctassists of 9
evenly-sized files, and the file’s probability is the classglietimes the
weight within the class which follows Zipf’s law.

SPECWeb’s popularity distributions. (Sizes do notesdmearly with

data set size due to the Zipf-based popularity distributiogirectories)

Execution time (ilsec) of two system calls measured in user applicatio
and DeBox — Note the large difference in maximums stemmioig fthe
measurementtechnique.
DeBox microbenchmark overheads — Base time uses an ufirealcgy/s-
tem. All times arein microseconds
DeBox macrobenchmark overheads
Summarized DeBox output showing blocking counts — Theuais or-
ganized by resource label and system call name. For exaofples 127
times this test blocked with the “inode” label, 28 were frdreopen()
systemcall
New blocking measurementsséndfile()
Separating SPECweb99 static and dynamic latencies

Summaries of the static workload latencies

XV

n

2.8
2.9

2.10

3.1
3.2
3.3
3.4

4.1

4.2

4.3

4.4
4.5

4.6

Al

Server static workload capacities(Mb/s) 38
Parallelism benefits and self-interference — The comdmice measure-

ment indicates how many requests meet SPECweb99’s qudiggrvice

requirement. e e e e 39
Throughput measurement on Linux with 1GB memory 41
Server hardware information oL 52
Workload categories for latency breakdowns 64
Latencies & capacities for original and modified servers. 70

Capacities of original and modified servers across {hreeessor gener-

ations and differentworkloads 4 7

Intel Xeon hardware parameters. 84
Intel Xeon memory hierarchy information. The latencgleg of each

level of the memory hierarchy includes the cache miss timeeprevi-
ouslevel e 85
Notation used in this paper reflecting different haremamd kernel con-
figurations 86
Average Instructions andbps per byte forallservers 101
Processor parameters in simulation and current predvatues marked

with an asterisk are approximate orderived. 108
Results comparison between related simulation workcamdneasure-

ments. We use ST (Single Threaded) to indicate the non-SMonpeance.110

Xeon performance events and their names/masks in Caré&filents with
* are not supported by default in Oprofile version 0.x. Measythese

events requires a patch developed by the author [76] 124

XVi

Chapter 1

Introduction

Network servers continue to be a dominant form of informatilivery for Internet
users. Several factors will keep the demand for networledasformation delivery in-
creasing: the growing population of Internet users, impments in end-user bandwidth
such as broadband usage, and the increasing quantity aeonformation. Web services
are still in their infancy, with new service models evolvirapidly, such as e-commerce
services, online multimedia services, and online gaming.

Researchers within academia and industry have responded toend both by devel-
oping new server architectures and by developing optinoizatfor related systems. On
one hand, several server models have been proposed anebstudin multi-process and
multi-thread based servers, and event-driven servers,ctordination of event-driven
and multi-thread. On the other hand, optimization appreacdh operating systems have
been taken to address performance issues for servers, saehoacopy I/O and scalable
event delivery.

As new services appear, server workloads in benchmark&atsmme more and more

complex. For example, WebStone [55] has grown from reltisample tools released

by SGI to a family of benchmarks. Though WebStone’s earlyupemty with hardware
vendors has been largely supplanted by the committee-gede3PECweb [88] bench-
marks, SPECweb has also evolved from the static-only SPBE@svi® the more complex
SPECweb99, which models real-world web server accessrpsité@d uses dynamic ad
rotation services. The newly-released SPECweb2005 is exer intricate with emu-
lation of requests from broadband Internet connectiond,reaw workloads modeling a
banking site, an e-commerce site, and a vendor support site.

With the increasing complexity of workloads, how to ideptgerformance bottle-
necks under these workloads is challenging, especiallynvihe performance of the
"black box” OS needs to be determined. This thesis proposespproach of making
the OS transparent, by treating system call performanaenrdtion as dirst-classre-
sult, and returning iln-bandimmediately when the call returns [77]. This approach not
only eliminates guesswork about what happens during catlgssing, but also gives the
application control over how this information is collectdittered, and analyzed. Thus it
is customizable and fine-grained for analysis of variousattaristics in complex work-
loads.

One trend in performance-related research in network seivéhat much of the work
focuses on improving throughput, leaving server respdngeless well understood. Re-
cent optimization approaches mostly rely on schedulingi@sng that queuing delay is
inherent to the system and is the cause of server latencg tibsis examines the root
causes of server-induced latency and discovers that ligekifilesystem-related kernel
gueues is responsible for most excessive latency [78]. Blyeading the blocking is-
sues both in the application and in the kernel, we are ablmpwdve response time by
more than an order of magnitude under various workloadmigéting the blocking also

reduces server burstiness and improves service fairness.

Network servers are usually multi-layer systems. Perfoicaaf network servers not
only depends on the OS and the server software, but also tdevéue platforms. De-
velopment in hardware platforms, especially processdritacture, always brings new
research opportunities for server designers. For examspiejltaneous multithreading
(SMT) processors are particularly attractive to netwonk/ses because of their ability
to hide memory latency by increasing the utilization of pipe functional units. This
thesis investigates server performance on the SMT-capatdeXeon processors [51].
By using processors with different clock rates and cachealghies, we are able to iden-
tify processor level bottlenecks in current SMT impleméotass and give insight into
server optimization [79]. With the presence of other SMTgassors such as the IBM
POWERS5 [40] and new architectures such as Chip Multi-Psm#€MP), we believe

this is a promising avenue for future work.

1.1 The SPECwebh99 Benchmark

For performance evaluation, understanding the type of lwatkis essential for interpre-
tation of the performance achieved. Similarly, evaluatr@thods are critical for analysis,
with some of them focusing on capacity comparison and othetsottleneck identifica-
tion. This section presents an overview of the workloadsl irs¢his thesis.

Most of the workloads used in this thesis come from the SPEO®¢88] bench-
mark, which is designed by the Standard Performance Evalu@orporation (SPEC).
The benchmark is thee factostandard in industry [58], with over 200 published results,
and is different from most other Web server benchmarks indtaplexity and require-
ments. The workload in this benchmark is modeled after tieesscpatterns of multiple

production Web sites.

SPECweb99 tests the overall scalability of Web serversumgddistic conditions. It
measures scalability by reporting the number of simultas@mnnections the server can
handle while meeting a specified quality of service. The dataand working set sizes
increase with the number of simultaneous connections, aiaklgy exceed the physi-
cal memory of commaodity systems. The data set size is cadmllasing the following

formula:

Dataset(inM B) = 122 + (3.22 * #of SimultaneousConnections) (1.1)

In SPECweb99 workloads, 70% of the requests are for statiteng, with the other
30% for dynamic content, including a mix of HTTP GET and PO8gduests. 0.15% of
the requests require the use of a CGI process that must banegaeparately for each
request.

Requests are generated from a set of files following a Zka-tistribution. The
file set size is controlled by the number of expected simelbais connections, which is
translated into the number of directories. Each directersoughly 5 MB in total, and
consists of four classes of files, and each class contairesfitd@s. The details about
the file weights and class weights are given in Table 1.1. Teesizes range from 100
bytes to 900 KB and are evenly sized within each class. Paputd the four classes is
explicitly modeled — half of all accesses are for files in tiB19KB range, with 35%
in the 100-900 byte range, 14% in the 10KB-90KB range, andrite 100KB-900KB
range, yielding an average dynamic response size of rodghKB. The directories are
chosen using a Zipf distribution with an alpha value of 1. His tmodel, then!” most
popular directory is given a weight of 1/n. The strong biagaw small files leads to the

result that the most popular files consume very little agaegpace. Table 1.2 illustrates

4

this heavy-tailed feature — the most popular 99% of the retgusccupy at most 14% of

the size of data set.

class sizg 100—-900] 1-9KB | 10—-90 KB| 100 - 900 KB
class weight 35% 50% 14% 1%

filesize| 1 2 3 4 5 6 7 8 9
file weight | 3.9% | 5.9% | 8.8% | 17.7%| 35.3%| 11.8%| 7.1%| 5.0% | 4.4%

Table 1.1: Class and File characteristics in SPECweb9% Blass consists of 9 evenly-
sized files, and the file’s probability is the class weightasthe weight within the class
which follows Zipf’s law.

Data Set || Top 50%/| Top 90%| Top 95% | Top 99%
Size (GB) (MB) (MB) (MB) (MB)

1 2.1 39.5 64.6 138.3
2 3.0 72.9 123.6 262.8
3 4.4 101.8 181.2 385.7
4 4.9 131.8 235.0 505.0

Table 1.2: SPECWeb'’s popularity distributions. (Sizes dbgtale linearly with data set
size due to the Zipf-based popularity distribution of dicgs)

Beside of the standard SPECweb99 benchmark, we also ustatieevgorkloads of
the benchmark for throughput and response time evaludiecause SPECweb normally
self-scales, increasing both data set size and number aftaimeous connections with the
target throughput, this approach complicates comparibetwseen different servers. So
when the measurement is merely throughput or responsetiotieyalues of data set size

and number of connections are fixed.

1.2 Thesis Contribution

This thesis contributes network server performance aisafrsd improvement at three
levels — the operating system level, server applicatioigddsvel, and processor archi-

tecture level.

e At the kernel level, we have developed a novel kernel prafiool to provide
applications with fine-grained in-channel kernel inforroatat low cost. The tool
has been shown to be effective in finding cross-boundarppegnce bottlenecks

and inspired the design of other debugging systems [72].

e We have contributed a set of kernel patches to improve n&weddile transfer. The
patch forsendfi | e() has been adopted by the FreeBSD official release, and has

been used to reduce the overhead of other operating systaties[28].

e At application level, we have redesigned a popular reseseober, Flash, and the
widely-used Apache server, improving Flash’'s SPECweb@9esby a factor of
four and reducing response time by one to two orders of mag@ion both servers

under various workloads.

e Using these servers, we study the root causes of serveceddatency, and trace
the reason to blocking in filesystem-related kernel queties.blocking is respon-
sible for most of the server burstiness and service inversitiese results suggest
that connection scheduling may not be the fundamental apprto reduce exces-

sive latency.

e Finally, we investigate the architectural aspects of ggreeformance, conducting
a detailed analysis of delivered SMT systems. Our expetisnase five different

software packages and three hardware platforms, and pedanicroarchitectural

6

evaluation of performance using processor performanceteal We believe this

study is more complete than any related work previouslyigbbt.

e We find that current SMT implementation in Intel Xeons has aesb performance
benefit for network servers, both in the uniprocessor andtpliweessor environ-
ment. By comparing the measurements with earlier simulagsults, we discuss
the reasons of the discrepancy and the feasibility of theselation models. Some
of the results have yielded better understanding of pracdsstienecks and server

optimization.

1.3 Dissertation Overview

This dissertation is organized as follow:

Chapter 2 presents a study of server performance and thagtitms with operating
systems. This chapter describes the design, implementatid evaluation of DeBox,
an effective approach to provide more OS transparency, pgserg system call perfor-
mance as a first-class result via in-band channels. We treethisstool for a case study
on the Flash Web server to reveal various performance isandsdescribe the solution
for each problem found. Results are evaluated using the 8&B@9 benchmark and
other workloads, and tested on different operating systems

Chapter 3 examines latency issues further and traces theaose of server-induced
latency. By experimenting with workloads of various sizeg, discover a problem of
head-of-line blocking within filesystem-related kerneéqas, and demonstrates how this
blocking causes server burstiness and gives rise to a plemnwe calkervice inver-

sion We describe how to improve latency of both the Apache and~thgh server by

more than an order of magnitude, with a qualitatively ddfg@rchange in the latency
profiles, and propose an approach of quantifying servicadas.

Chapter 4 provides a performance analysis of simultanealtithmeading for server
applications, using five software implementations andelmadware platforms. By ex-
ercising throughput comparison and microarchitecturalyasis using performance coun-
ters, we find that the benefits of the current SMT implemeoitain Intel Xeon processors
are modest for network servers, and short memory latencytoa 3 cache helps SMT
yield better speedups. This chapter also discusses reaktiresdifferences between our
results and similar studies performed using simulation.

Finally, Chapter 5 provides a summary of this dissertation.

Chapter 2

Server Performance and Interactions

with Operating Systems

Server applications usually spend a significant fracti@metimes more than 90%, of
their time in the kernel. For this reason, operating systemiopmance continues to
be an active area of research, especially as demandingajptis test OS scalability
and performance limits. The kernel-user boundary becomisatly important as these
applications achieve their work via system calls. As a tegxiamining the interaction
between operating systems and user processes remainsua arsef of investigation.
This chapter discusses some of the negative interacti@ssribes the approaches used

to explore these problematic issues, and presents sadutidhem.

2.1 Introduction

In server design, previously developers could expect tadptd-sharing services, such

as NFS, into the kernel to avoid the limitations stemmingrfraunning in user space.

However, with the rapid rate of evolution in server workleadsing kernel integration
to avoid performance problems becomes unrealistic. Ealhetdr Web servers, the real
deployment of in-kernel servers is still limited. The reasobecause of dynamic content
and security concerns.

Much of the earlier work focusing on the kernel-user integf@entered around de-
veloping new system calls that are more closely tailorechéorteeds of particular ap-
plications. In particular, zero-copy /O [26, 63] and stédaevent delivery [9, 10, 46]
are examples of techniques that have been adopted in negnstperating systems, via
calls such asendfile(),transmtfile(), kevent (), andepol | (), to ad-
dress performance issues for servers. Other approacta@saswallowing processes to
declare their intentions to the OS [64], have also been m@&gand implemented. Some
system calls, such asadvi se(), provide usage hints to the OS, but with operating
systems free to ignore such requests or restrict them to edafiles, programs cannot
rely on their behavior.

Some recent research uses the reverse approach, whereatipp determine how
the “black box” OS is likely to behave and then adapt accaigirFor example, the Flash
Web Server [62] uses tha ncor e() system call to determine memory residency of
pages, and combines this information with some heuristiesrvid blocking. The “gray
box” approach [7, 22] manages to infer memory residency ®enhng page faults and
correlating them with known replacement algorithms. Irhbststems, memory-resident
files are treated differently than others, improving perfance, latency, or both. These
approaches depend on the quality of the information theyotdain from the OS and
the accuracy of their heuristics. As workload complexityreases, we believe that such

inferences will become harder to make.

10

To remedy these problems, this thesis proposes a much nrert dpproach to mak-
ing the OS transparent: make system call performance irg#om afirst-classresult,
and return iin-band In practice, what this entails is having each system cét fiper-
formance result” structure, providing information aboutawoccurred in processing the
call. The ternfirst-class resulspecifies that the performance information gets treated the
same as other results, such as errno and the system catl vatue, instead of having to
be explicitly requested via other system or library callbe Termin-bandspecifies that
the information is returned to the caller immediately, &t of being logged or processed
by some other monitoring processes. While the structuregihglthe performance feed-
back is much larger and more detailed thandghe no global variable, they are concep-
tually similar. Simple monitoring at the system call bouryahe scheduler, page fault
handlers, and function entry and exit is sufficient to previtbtailed information about
the inner working of the operating system. This approaclonbt eliminates guesswork
about what happens during call processing, but also givespiplication control over
how this information is collected, filtered, and analyzedhvding more customizable
and narrowly-targeted performance debugging than isabailin existing tools.

To achieve the above approach, we have designed and impiesn@mperformance
analysis tool, called DeBox. DeBox allows users to deteemvhere applications spend
their time in the kernel, what causes the performance lolsat vesources are under con-
tention, and how the kernel behavior changes with the waikldrhe flexibility of De-
Box allows us to measure very specific information, such agénmnel CPU consumption
caused by a single call site in a program.

Experiments presented in this chapter focus on analyzidgatimizing the perfor-
mance of the Flash Web Server on the industry-standard SEEZ3benchmark [88].

Using DeBox, we diagnose and fix a series of problematicacteyns between the server

11

and the operating system on this benchmark. The resultistgisyshows an overall fac-
tor of four improvement in SPECweb99 score, throughputgaim other benchmarks,
and latency reductions ranging from a factor of 4 to 47 on B&. Most of the issues
are addressed by application redesign and the resultingmsyis portable, as demon-
strated by showing improvements on Linux. The kernel maodliims, optimizing the

sendfil e() system call, have been integrated into FreeBSD.

DeBox is specifically designed for performance analysidefitteractions between
the OS and applications, especially in server-style enmrents with complex work-
loads. Its combination of features and flexibility is nowaid differentiates it from other
profiling-related approaches. However, it is not designdmkta general-purpose profiler,
since it currently does not address applications that spered of their time in user space
or in the “bottom half” (interrupt-driven) portion of the keel. The design philosophy

and implementation detail of DeBox are described in thefuithg sections.

2.2 DeBox Design Philosophy

DeBox is designed to bridge the divide in performance amafoss the kernel and user
boundary by exposing kernel performance behavior to usaresses, with a focus on
server-style applications with demanding workloads. #sthenvironments, performance
problems can occur on either side of the boundary, and hignéinalysis to only one side
potentially eliminates useful information. While somew&s may spend most of their
time in the kernel, the ultimate cause may be activities utitke process’ control. As a
result, applications may be able to modify their own behiatoavoid bottlenecks.

Some observations about performance analysis for serypdicagons are discussed

below. While some of these measurements could be made inw#lys, we believe that

12

DeBox’s approach is particularly well-suited for theseiemvments. Note that replacing
any of the existing tools is an explicit non-goal of DeBoxy o we believe that such
a goal is even feasible. Additionally, by making performamcformation first-class,
DeBox provides opportunities not afforded by existing agghes. Some examples are

provided below.

e High overheads hide bottlenecks.The cost of the debugging tools may artificially
stress parts of the system, thus masking the real bottlextédgher load levels. Problems
that appear only at high request rates may not appear wheofilepcauses an overall
slowdown. Our tests show that for server workloads, kegpelof has 40% perfor-
mance degradation even when low resolution profiling is goméid. Others tracing and
event logging tools generate large quantities of data, Up3MB/s in the Linux Trace
Toolkit[97]. For more demanding workloads, the CPU or fildsyn effects of these tools
may be problematic.

DeBox is designed not only to exploit hardware performarmeters to reduce over-
head, but also to allow users to specify the level of detaddntrol the overall costs.
Furthermore, by splitting the profiling policy and mechamis DeBox, applications can
decide how much effort to expend on collecting and storifigrmation. Thus, they may
selectively process the data, discard redundant or tiiviatmation, and store only use-
ful results to reduce the overhead. Not only does this agbrogake the cost of profiling
controllable, but one process desiring profiling does nigicathe behavior of others on

the system. It affects only its own share of system resources

e User-level timing can be misleading.Figure 2.1 shows user-level timing measure-
ment of thesendfi | e() system call in an event-driven server. This server uses non-
blocking sockets and invokes sendfile only for in-memoryadaAs a result, the high

peaks on this graph are troubling, since they suggest tiversisrblocking. A similar

13

measurement usinget r usage() also falsely implies the same. Even though the mea-
surement calls immediately precede and follow the systdinlw@avy system activity

causes the scheduler to preempt the process in that smalbwin

10000

1000

i | 1 |
| [| 1 1t AR I [
IR : |/ i il

100

Call Time (usec)

10 1 1 1 1 1 1
(0] 5000 10000 15000 20000 25000 30000

I nvocati on Nunber

Figure 2.1: User-space timing of tsendf i | e call on a server running the SpecWeb99
benchmark — note the sharp peaks, which may indicate anosia&havior in the kernel.

10000

1000

Call Time (usec)
8

10 1 1
(0] 5000 10000 15000 20000 25000 30000

I nvocation Number
Figure 2.2: The same system call measured using DeBox showi hess variation in
behavior.

In DeBox, measurement is integrated into the system catlgg® so it does not suf-
fer from scheduler-induced measurement errors. The DeRoxed measurements of
the same call are shown in Figure 2.2, and do not indicate shiatp peaks and block-
ing. Summary data fosendf i | e andaccept (in non-blocking mode) are shown in

Table 2.1.

14

accept () sendfile()
User | DeBox User| DeBox
Min 5.0 5.0 8.0 6.0
Median 10.0 6.0 60.0 53.0
Mean 14.8 10.5 86.6 77.5
Max | 5216.0| 174.0| 12952.0{ 998.0

Table 2.1: Execution time (ipsec) of two system calls measured in user application
and DeBox — Note the large difference in maximums stemmiogfthe measurement
technique.
e Statistical methods miss infrequent eventsProfilers and monitoring tools may only
sample events, with the belief that any event of interegkedyl to take “enough” time
to eventually be sampled. However, the correlation betwesguency and importance
may not always hold. Our experiments with the Flash web sendécate that adding a
1 ms delay to one out of every 1000 requests can degrade yatgracfactor of 8 while
showing little impact on throughput. This is precisely thedof behavior that statistical
profilers are likely to miss.

DeBox eliminates this gap by allowing applications to exagnevery system call.
Applications can implement their own sampling policy, coliing overhead while still

capturing the details of interest to them.

e Data aggregation hides anomaliesWhole-system profiling and logging tools may
aggregate data to keep completeness and reduce overheadatrte time. This approach
makes it hard to determine which call invocation experiengeblems, or sometimes
even which process or call site was responsible for highttmaed calls. This problem gets
worse in network server environments where the system®anplex and large quantities
of data are generated. It is not uncommon for these appitato have dozens of system

call sites and thousands of invocations per second. For geathe Flash server consists

15

of about 40 system calls and 150 calling sites. In these tiondi either discarding call
history or full event logging is infeasible.

By making performance information a result of system cakésielopers have control
over how the kernel profiling is performed. Information canrbcorded by process and
by call site, instead of being aggregated by call numbedesghe kernel. Users may
choose to save accumulated results, record per-call peafuce history over time, or

fully store some of the anomalous call trace.

e Out-of-band reporting misses useful opportunities. As the kernel-user boundary
becomes a significant issue for demanding applicationsenstehding the interaction
between kernel and user processes becomes essential. X¥bistgetools provide mea-
surements out-of-band, making online data processingehamtl possibly missing use-
ful opportunities. For example, the online method allowspplication toabort () or
record the status when a performance anomaly occurs, uintgossible with out-of-
band reporting.

When applications receive performance information tiegddoh system call via in-
band channels, they can choose the filtering and aggreggipopriate for the program’s
context. They can easily correlate information about systalls with the underlying

actions that invoke them.

2.3 DeBox Architecture & Implementation

This section describes the DeBox prototype implementatidfreeBSD and measures
its overhead. First, we present the user-visible portioDeBox, and then the kernel

modifications. We measure overhead for DeBox support with bommon system calls

16

typedef struct PerSleeplnfo {

int nuntl eeps; /* # sleeps for the same reason */
struct tineval blockedTine; /* howlong the process is blocked */
char wmresg[8] ; /* reason for sleep (resource |abel) */
char bl ockingFil e[32] ; /* file name causing the sleep */

i nt bl ocki ngLi ne; /* 1ine nunber causing the sleep */

int numMitersEntry; /* # of contenders at sleep */

int numMitersExit; /* # of contenders at wake-up */

} Per Sl eepl nfo;

typedef struct Call Trace {

unsi gned | ong call Site; /* address of the caller */
int deltaTine; /* elapsed time in timer or CPU counter */
} Call Trace;

typedef struct DeBoxlnfo {
int syscal | Num /* which systemcall */
union Call Tine {
struct timeval callTinmeval;

| ong cal |l Cycl es; /* wall-clock time of entire call */
} CallTineg;
int nunPGraul ts; /* # page faults */
i nt nunPer Sl eepl nf o; /* # of filled PerSleeplnfo elenents */
int traceDepth; /* # functions called in this systemcall */
struct PerSleeplnfo psi[5]; /* sleeping info for this call */
struct Call Trace ct[200]; /* call trace info for this call */
} DeBoxI nf o;

i nt DeBoxControl (DeBoxlnfo *resul tBuf, int nmaxSl eeps, int maxTrace);

Figure 2.3: DeBox data structures and function prototype

and real applications. Examples of how to fully use DeBoxwhédlt kinds of information

it provides are deferred to the case study in Section 2.5.

2.3.1 User-Visible Portion

The programmer-visible interface of DeBox is intentiopaimple, since it consists of
some monitoring data structures and a new system call tdeeaat disable data gather-
ing. Figure 2.3 shows DeBoxInfo, the data structure thatlesmthe DeBox information.
It serves as the “performance information” counterparttteensystem call results like
er r no. Programs wishing to use DeBox need to perform two actioesiage one or
more of these structures as global variables, and call DEBn#tol to specify how much

per-call performance information it desires.

17

At first glance, the DeBoxInfo structure appears very lavggch would normally be
an issue since its size could affect system call performabés structure size is not a
significant concern, since the process specifies limits antach of it is used. Most
of the space is consumed by two arrays, PerSleepinfo andr@edl. The PerSleepinfo
array contains information about each of the times the systdl blocks (sleeps) in the
course of processing. The CallTrace array provides theryistf what functions were
called and how much time was spent in each. Both arrays aergesly sized, and we
do not expect many calls to fully utilize either one.

DeBoxControl can be called multiple times over the courgaro€ess execution for a
variety of reasons. Programmers may wish to have severabklaf® structures and use
different structures for different purposes. They can a#sy the number of PerSleepinfo
and CallTrace items recorded for each call, to vary the lef/detail generated. Finally,
they can specify a NULL value for resultBuf, which deactasDeBox monitoring for

the process.

2.3.2 In-Kernel Implementation

The kernel support for DeBox consists of performing the seagy bookkeeping to gather
the data in the DeBoxInfo structure. The points of interest system call entry and
exit, scheduler sleep and wakeup routines, and functioty amid exit for all functions
reachable from a system call.

Since DeBox returns performance information when eacresystall finishes, the
system call entry and exit code is modified to detect if a pgodg using DeBox. Once a
process calls DeBoxControl and specifies how much of thgsitcause, the kernel stores
this information and allocates a kernel-space DeBoxIndahable from the process con-

trol block. This copy records information while the systeall executes, avoiding many

18

small copies between kernel and user. Prior to system ¢ahmethe requested informa-
tion is copied back to user space.

At system call entry, all non-array fields of the process’8Ddnfo are cleared. Ar-
rays do not need to be explicitly cleared since the countelisating their utilization have
been cleared. Call number and start time are stored in thg itne is measured using
the CPU cycle counter available on our hardware, but we calglo use timer interrupts
or other facilities provided by the hardware.

Page faults that occur during the system call are counteddafynng the page fault
handler to check for DeBox activation. DeBox currently doesprovide more detailed
information on where faults occur, largely because we hat®@bserved a real need for
it. However, since the DeBoxInfo structure can contain o#reays, more detailed page
fault information can be added if desired.

The most detailed accounting in DeBoxInfo revolves aroured“sleeps”, when the
system call blocks waiting on some resource. When this gdouFreeBSD, the system
call invokes thet sl eep() function, which passes control to the scheduler. When the
resource becomes available, thekeup() function is invoked and the affected pro-
cesses are unblocked. Kernel routines invokisg eep() provide a human-readable
label. DeBox defines a new macro tosl eep() in the kernel header files that permits
us to intercept any sleep points. When this occurs, DeBaxrdsdn a PerSleeplinfo el-
ement where the sleep occurred (blockingFile and blockimg)l,. what time it started,
what resource label was involved (wmesg), and the numbehef processes waiting on
the same resource (numWaitersEntry). Similarly, DeBox iffexithewakeup() rou-
tine to provide numWaitersExit and calculate how much tinas wpent blocked. If the
system call sleeps more than once at the same location,nfieatniation is aggregated

into a single PerSleeplnfo entry.

19

DeBox|I nf o:
4, |* systemcall # */
3591064, /* call time, mcrosecs */
989, /* # of page faults */
2, /* # of PerSleeplnfo used */
0, /* # of CallTrace used (disabled) */

Per Sl eepl nf o[0] :
1270 [/* # occurrences */
723903 /* time bl ocked, microsecs */
biowr /* resource |abel */
kern/vfs_bio.c /* file where bl ocked */
2727 |* line where bl ocked */
1 /* # processes on entry */
0 /* # processes on exit */
Per Sl eepl nfo[1] :
325 /* # occurrences */
2710256 /* time bl ocked, microsecs */
spread /* resource |abel */
m scf s/ specfs/spec_vnops.c /* file where bl ocked */
729 /* line where bl ocked */

1 /* # processes on entry */
0O /* # processes on exit */

Figure 2.4: Sample DeBox output showing the system calloperdince of copying a
10MB mapped file

The process of tracing which kernel functions are calledndua system call is
slightly more involved, largely to minimize overhead. Ceptually, all that has to occur
is that every function entry and exit point has to record theent time and function name
when it started and finished, similar to what call graph peddiluse. The gcc compiler
allows entry and exit functions to be specified via the “iastent functions” option, but
these are invoked by explicit function calls. As a resulhdiion call overhead increases
by roughly a factor of three. Our current solution involveamaally inserting entry and
exit macros into reachable functions. The entry macro pusherent function address
and time in a temporary stack. The exit macro pops out thetiftmaddress, calculates
the wall clock time, and records this information in the Cedice array. Automating the
modification should be possible in the future, such as whdoige for kernel profiling

using thenrcount () function.

20

A sample of the output is given in Figure 2.4 to show informatprovided in DeBox.
We memory-map a 10MB file, and use tiwei t e() system call to copy its contents to
another file. The main DeBoxInfo structure shows that systath4 (wite()) was
invoked, and it used about 3.6 seconds of wall-clock timendurred 989 page faults,
and blocked in two unique places in the kernel. The first Reg@hfo element shows that
it blocked 1270 times at line 2727 in vfgo.c on “biowr”, the block 1/O write routine.
The second location was line 729 of spewps.c, which caused 325 blocks at “spread”,
read of a special file. The writes blocked for roughly 0.7 s&lsp and the reads for 2.7

seconds.

2.3.3 Overhead

For DeBox to be attractive, it should generate low kernelrlogad, especially in the
common case. To quantify this overhead, we compare an ufiechdtiernel, a kernel
with DeBox support, and the modified kernel with DeBox adtea These measurements
are shown in Table 2.2. The first column indicates the varsystem calls -get pi d(),
get ti meof day() ,andpr ead() with various sizes. The second column indicates the
time required for these calls on an unmodified system. Their@ng columns indicate
the additional overhead for various DeBox features.

The measurement for call history tracing is separated suecgo not expect it will be
activated continuously. The “basic off” column indicatee bverhead introduced with a
modified kernel supporting DeBox without call tracing. Thegfprmance impact is virtu-
ally unnoticeable. The “basic on” column shows the impadcativating DeBox without
call tracing. We use the CPU cycle counter, since acceshmppdardware clock on our
system requires 5 microseconds. This overhead is the regspget t i meof day()

has a comparable running time to a 512 byte read. These narshew that the cost to

21

DeBox without DeBox
callname| base call trace call trace
or read size time off | on off | on
| getpid| 0.46] +0.00] +0.50] +0.03] +1.45]
| gettimeofday] 5.07| +0.00| +0.43] +0.03| +1.52]
pread 1288 3.27| +0.02| +0.56| +0.21| +2.03
256 bytes| 3.83| +0.00| +0.59| +0.26| +2.02
512 bytes| 4.70| +0.00| +0.69| +0.28| +2.02
1024 bytes 6.74| +0.00| +0.68| +0.27| +2.02
2048 bytes 10.58| +0.03| +0.68| +0.26| +2.01
4096 bytes| 18.43| +0.03| +0.74| +0.29| +2.16

Table 2.2: DeBox microbenchmark overheads — Base time usasraodified system.
All times are in microseconds

support most DeBox features is minimal, and the cost of ugiagneasurement infras-
tructure is tolerable. Since these costs are borne only égpiplications that choose to
enable DeBox, the overhead to the whole system is even |GWerperformance impact
with DeBox disabled, indicated by the 3rd column, is virtyalnnoticeable. The cost
of supporting call tracing, shown in the 5th column, whererg\function entry and exit

point is affected, is higher, averaging approximately 5%hef system call time. This

overhead is higher than ideal, and may not be desirable te tantinuously enabled.
However, our implementation is admittedly crude, and bettenpiler support could in-

tegrate it with the function prologue and epilogue code. Wfaeet that we can reduce
this overhead, along with the overhead of using the calirnggevith optimization.

Since microbenchmarks do not indicate what kinds of slowdomay be typically
observed, we provide some macrobenchmark results to geighihinto these costs in
Table 2.3. The three systems tested are: an unmodified systestwith only “basic”
DeBox without call trace support, and one with complete DeBapport. The first two
columns are times for archiving and compressing files oediifit sizes. The last column

is for building the FreeBSD kernel. The overheads of DeB@psut range from less than

22

1% to roughly 3% in the kernel build. We expect that many emvinents will tolerate

this overhead in exchange for the flexibility provided by DeB

tar-gz a directory with make
1MB file | 10MB file kernel
base timg 275.61 ms| 3078.50 mg 236.96 s
basicon| +0.97 ms| +22.73ms| +1.74s
full support| +1.03ms| +44.58ms| +7.49s

Table 2.3: DeBox macrobenchmark overheads

2.4 Experimental Setup & Workloads

This section describes the experimental setup and thearglsaftware components of the
system in this section. All of the experiments, except fa& plortability measurements
are performed on a uniprocessor server running FreeBSDMvtlb a 933MHz Pentium
lll, 1GB of memory, one 5400 RPM Maxtor IDE disk, and a singlet@fear GA621
gigabit ethernet network adapter. The portability expenis are performed on another
server box because the Linux kernel crashes on the existingrshardware. The clients
consist of ten Pentium Il machines running at 300 MHz coretetit a switch using Fast
Ethernet. All machines are configured to use the defaultq1f@e) MTU as required by
SpecWeb99.

The main application studied here is the event-driven Flaeh Server, although
we also perform some tests on the widely-used multi-proégesche [6] server. The
Flash Web Server consists of a main process and a humber pérh@iocesses. The
main process multiplexes all client connections, is ineghtb be nonblocking, and is
expected to serve all requests only from memory. The helpaddisk data and metadata

into memory to allow the main process to avoid blocking orkdiBhe number of main

23

processes in the system is generally equal to the numbewysiqath processors, while the
number of helper processes is dynamically adjusted bas&shdnIn previous tests, the
Flash Web Server has been shown to compare favorably todgaghbrmance commercial
Web servers [62]. We run with logging disabled to simplifyrgmarison with Apache,
where enabling logging degrades performance noticeably.

Our experiments focus on the standard SPECweb99 benchmink30% dynamic
content including a mix of HTTP GET and POST requests. A tedalescription of the

benchmark is provided in Section 1.1.

2.5 Using DeBox on the Flash Server

This section demonstrates how we use DeBox to analyze aidinpthe behavior of the
Flash Web Server. We discover a series of problematic ictierss, trace their causes, and
find appropriate solutions to avoid them or fix them. In thecpss, we gain insights into
the causes of performance problems and how conventionatica, such as throwing
more resources at the problem, may exacerbate the problenopdmizations quadruple

our SPECweb99 score and also sharply decrease latency.

2.5.1 Initial experiments

Our first run of SPECweb99 on the publicly available versibthe Flash Web Server
yields a SPECweb99 result of roughly 200 simultaneous adiores, much lower than
the published score of 575 achieved on comparable hardveang TUX, an in-kernel

Linux-only HTTP server. At 200 simultaneous connectiohg, dataset size is roughly

770MB, which is smaller than the amount of physical memortheamachine. Not sur-

24

prisingly, the workload is CPU-bound, and a quick examorashows that thei ncor e()
system call is consuming more resources than any othemcalash.

The underlying problem is the use of linked lists in the Fr&BBvirtual memory
subsystem for handling virtual memory objects. The heaw efsmemory-mapped
files in Flash generates large numbers of memory objectsadiméar walk utilized by
m ncor e() generates significant overhead. We apply a patch from AlandZ®ice
University that replaces the linked lists with splay tressd this bringsri ncor e() in
line with other calls. Our SPECweb99 score rises to rougBly, & 60% improvement.
At this point, the working set has increased to 1.13GB, slijgéxceeding our physical
memory.

Once them ncor e() problem is addressed, the system still appears to be CPU-
bound. We suspect the data copying is the bottleneck. So wWateiphe Flash server
to use the zero-copy I/O system callendfi | e(). However, usingsendfil e()
requires that file descriptors be kept open, greatly inangase number of file descrip-
tors in use by Flash. To mitigate this impact, we implemepipsut forsendfi | e()
concurrently with support fdkevent () , which is a scalable event delivery mechanism
recently incorporated into FreeBSD. After these changesame not surprised by the

drop in CPU utilization, but are surprised that the SPECWedr®re drops to 300.

2.5.2 Successive refinement of detall

With the server exhibiting idle CPU time but an inability teeat SPECweb99’s quality-
of-service requirements, an obvious candidate is blockysgem calls. However, Flash’s
main process is designed to avoid blocking. We tried tratimgproblem using exist-
ing tools, but found they suffered from the problems disedss section 2.2. These

experiences motivated the creation of DeBox.

25

The DeBox structures provide various levels of detail vailhm applications to spec-
ify what to measure. A typical use would first collect the ba3eBoxInfo to observe
anomalies, then enable more details to identify the aftesystem calls, invocations, and
finally the whole call trace.

We first use DeBox to get the blocking information, which isretl in the PerSleep-
Info field. The PerSleepinfo data shows seven differentesystalls blocking in the
kernel, and examination of the resource labels (wmesg) staw reasons for blocking.
These results are shown in Table 2.4, where each columnh&faales the resource label
causing the blocking, followed by the total number of timéscked at that label. The
elements in the column are the system calls that block orréisaturce, and the number
of invocations involved. As evidenced by the calls involvie: “biord” (block 1/O read)
and “inode” (vnode lock) labels are both involved in openamgl retrieving files, which

is not surprising since our data set exceeds the physicalmyeohthe machine.

| biord/166] inode/127]| getblk/1| sfpbsy/1]
operl62 | readlink84 || closdl | sendfilél
read'3 open28
unlink/1 read9
stat6

Table 2.4: Summarized DeBox output showing blocking codithe layout is organized
by resource label and system call name. For example, of the¢it2s this test blocked
with the “inode” label, 28 were from thepen() system call

The finest-grained kernel information is provided in thelQalce structure, and we
enable this level of detail once the PerSleeplinfo identg@ssible candidates. The main
process should only be accessing cached data, so the fadt bhacks on disk-related
calls is puzzling. For portability, the main process in Rlases the helpers to demand-
fetch disk data and metadata into the OS caches, and repeatpération immediately

after the helpers have completed loading, assuming thaetw®antly loaded information

26

will prevent it from blocking. Observing the full CallTracd# some of these blocking
invocations shows the blocking is not caused by disk acdrgs;ontention on filesys-
tem locks. Combining the blocking information from helpeogesses reveals that when
the main process blocks, the helpers are operating on siyailamed files as the main
process. We solve this problem by having the helpers retpem dile descriptors using
sendnsg() , eliminating duplication of work in the main process. Willistchange, we
are able to handle 370 simultaneous connections from SPE@yevith a dataset size

of 1.28GB.

2.5.3 Capturing rare anomaly paths

We find that thesendnsg() change solves most of the filesystem-related blocking.
However, onepen() call in Flash still shows occasional blocking at the lababttd”
(reading a disk block), but only after the server has beemingnfor some time and
under heavy workloads. Only revealing which call inducesl ghoblem may not suffice
a complete picture, because the reason of invoking thatscaficlear. In a system with
multiple identical system calls, existing tools do not haweefficient way to find which
one causes the problem and the calling path involved.

Because DeBox information is returned in-band, the usacespgontext is also avail-
able when kernel performance anomalies are detected. Gndiadlocking invocation
of open() , we capture the path through the user code by calibgrt () and using
gdb to dump the stack This approach uncovers a subtle performance bug in Flash in
duced by mapped-file cache replacement. Flash has two indepecaches — one for

URL-to-filename translations (name cache), and anothemfemory-mapped regions

LAlternately, we could invoké or k() followed byabort () to keep the process running while still
obtaining a snapshot, or we could record the call path manual

27

(data cache). For this workload, the name cache does netr $tdin capacity misses,
while the data cache may evict the least recently used sntdieder heavy load, a name
cache hit and a data cache capacity miss causes Flash te@usiy believe that it had
just recently performed the name translation and has thadatt cached. When Flash
callsopen() to access the file in this circumstance, the metadata assdaiath the
name conversion is missing, causing blocking. We solveghoblem by allowing the
second set of helpers, the read helpers, to return file gesigiif the main process does
not already have them open. After fixing this bug, we are ableandle 390 simultaneous

connections, and a 1.34GB dataset.

2.5.4 Tracking call histories

With all blocking eliminated and with a much higher requeser we return to the issue
of CPU consumption. By storing the CallTime field of each sgstcall, we can track
per-call performance by invocation, both to observe treamts$ to identify time-related
problems. Traditional profiling tools usually report awggaCPU consumption of each
function, thus hiding any performance trends. User-spaded functions may catch the
general trend in spite of the measurement error, but invoslueh more work to track

each system call and find the problematic ones.

Process creation overhead

By recording all CPU time values, we find that the largest talés are for thé or k()
system call and that its cost grows with the number of inMooat approaching 130 msec.
Figure 2.5 shows the per-call time as a function of invocatMe observe thdtor k()

time increases as the program runs, starting as low as 0.8 ritese calls stem from

28

the SPECweb99 workload’s requirement that 0.15% of theastgibe handled by forking

NEW pProcesses.

[
N
o

P
N
o
‘%

i
o
o

Call Time (msec)
8 & 3 8
.

1 1 1 1
o 200 400 600 800 1000 1200 1400
I nvocati on Nunber

o

Figure 2.5: Call time of or k() as a function of invocation

A full call trace indicates that or k() spends the bulk of its time copying file de-
scriptors and VM map entries (for mapped regions). We corthigobservation by vary-
ing the sizes of the caches in Flash and seeing their impatbok () times. Rather
than changing the implementation fobr k() , we opt to slightly modify the Flash ar-
chitecture. We introduce a new helper process that is ressplerfor creating the CGI
processes. Since this new process does not map files or cpehdiles, itsf or k()
time is not affected by the main process size. This chanddsy&10% improvement, to

440 simultaneous connections and a 1.50GB dataset size.

Memory lookup overhead

Though the dataset size now exceeds physical memory by 09éy the system bottle-
neck remains CPU. Examining the time consumption of eactesysall again reveals
that most time is being spent in memory residency checkihgu@h our modified Flash
usesendfil e(),itusesr ncor e() todetermine memory residency, which requires

that files be memory-mapped. The cumulative overhead of memap operations is

29

the largest consumer of CPU time. As can be seen in Figurétiz@er-call overhead of
mmap() is significant and increases as the server runs. The cosiiserls presumably

due to finding available space as the process memory map leedoamgmented.

5

4.5

4

3.5

3

2.5

2

Call Time (nsec)

1.5 [

1

0.5

0 - 1 1
o 5000 10000 15000 20000 25000 30000
| nvocati on Nunber

Figure 2.6: Call time ofmap() as a function of invocation

To avoid the memory-residency overheads, we use Flash’pedafile cache book-
keeping as the sole heuristic for guessing memory resideéWeyeliminate allnmap,
m ncore, and nunmap calls but keep track of what pieces of files have been re-
cently accessed. Sizing the cache conservatively withetsp main memory, we save
CPU overhead but introduce a small risk of having the maircgss block. The CPU

savings of this change is substantial, allowing us to re2€ho®nnections (2GB dataset).

2.5.5 Profiling by call site

We take advantage of DeBox’s flexibility by separating thenké time consumption

based on call site rather than call name. We are interestld cost of handling dynamic
content since SPECweb99 includes 30% dynamic requestfiwbidd be processed by
various interfaces. Flash uses a persistent CGl interfatéasto FastCGI [60] to reuse
CGI processes when possible, and this mechanism commesicaer pipes. Although

ther ead() andwri t e() system calls are used by the main process, the helpers,land al

30

of the CGI processes, we measure the overhead of only thesleaad in communication
with CGI processes.

Our measurements show that the single call site resporfsiblaost of the time is
where the main process reads from the CGls, consuming 20% kdrael time, (176
seconds out of 891 seconds total). Writing the request taCiBé processes is much
smaller, requiring only 24.3 seconds of system call timas Hvel of detail demonstrates
the power of making performance a first-class result, siristieg kernel profilers would
not have been able to separate the time forthad() calls by call sites. By modifying
our CGl interface slightly, the main process writes only HHETP header to the client,
and passes the socket to the CGI application to let it wrigediita directly. This change

allows us to reach 710 connections (2.35GB dataset).

2.5.6 Other optimization opportunities

By replacing our exact memory residency check with a chehparistic, we gain per-
formance, but introduce blocking into teendf i | e() system call. New PerSleepinfo

measurements of the blocking behavioseindf i | e() are shown in Table 2.5.

| time| label] kernel file| line |
6492 | sfbufa| kern/uipcsyscalls.c 1459
702 | getblk kern/kernlock.c| 182
984544| biord kern/vfsbio.c | 2724

Table 2.5: New blocking measurementsseindfi | e()

The resource label “sfbufa” indicates that the kernel hémesgted the sendfile buffer
used to map filesystem pages into kernel virtual memory. Wiéirco that increasing the
number of buffer elements during boot time may mitigate gnablem in our test. How-

ever, based on the results of previous copy-avoidanceragg6, 63], we opt instead to

31

implement recycling of kernel virtual address buffers. Vee a hash table to maintain
the buffer elements with each element indexed by the phlyatldress of the page to be
sent, and use a least-recently-used (LRU) list to stordiweelements. For each buffer
element, we introduce a reference count to track its liven¥ghen the kernel initially

boots, both the hash table and the buffer are initializedadinaliffer elements are put in
the LRU queue. The typical operations of this recycling psscare as follow:

When a file page is scheduled to send, its address is used futetme hash table
entry. If the corresponding buffer element is already puhahash table, the element is
removed from the LRU list and we increment the reference tddtherwise, we pull the
head element in the LRU list, map the page to be sent, and pwlément in the hash
table. After the page address is successfully transferduettower level of the network-
ing layer, we decrease the reference count instead of ffebanmapping immediately.
When the reference count reaches zero, the mapping is fnekttha sendfile buffer is put
into the tail of the LRU list for reuse.

With this change, many requests to the same file do not caukipi®mappings, and
eliminates the associated virtual memory and physical mam@p) operations. Caching
these mappings may temporarily use more wired memory thaactuing, but the reduc-
tion in overhead and address space consumption outweiglisadlwvbacks.

The other two resource labels, “getblk” and “biord”, aratet to disk access initiated
within sendfi | e() when the requested pages are not in memory. Even though the
socket being used is nonblocking, that behavior is limitely ¢o network buffer usage.
We introduce a new flag teendf i | e() so that it returns a differerdr r no value if
disk blocking would occur. This change allows us to achiéedame effect as we had

with mi ncor e() , but with much less CPU overhead. We may optionally havedhd r

32

helper process send data directly back to the client on g$ilesn cache miss, but have
not implemented this optimization.

However, even with blocking eliminated, we find performabeeely changes when
usingsendfi | e() versuswritev(), and we find that the problem stems from han-
dling small writes. HTTP responses consist of a small hetadlerwved by file data. The
writev() code aggregates the header and the first portion of the bddyirta one
packet, benefiting small file transfers. In SPECweb99, 35%|adtatic requests are for
files 1KB or smaller.

The FreeBSBsendf i | e() call includes parameters specifying headers and trailers
to be sent with the data, whereas the Linux implementatias chwt. Linux introduces
a new socket option, TCEORK, to delay transmission until full packets can be assem-
bled. While FreeBSD’s “monolithic” approach provides egbunformation to avoid
sending a separate header, its implementation uses a kersin ofwr i t ev() for the
header, thus generating an extra packet. We improve thiemgntation by creating an
mbuf chain using the header and body data before sendindawver levels of the net-
work stack. This change generates fewer packets, imprgangrmance and network
latency. Results of these changes on a microbenchmark annsh Figure 2.7. With
thesendfil e() changes, we are able to achieve a SPECweb99 score of 820a with

dataset size of 2.7GB.

2.5.7 Case Study Summary

By addressing the interaction areas identified by DeBox, etdese a factor of four im-
provement in our SPECweb99 score, supporting four timesas/reimultaneous con-
nections while also handling a data set that almost threestias large as the physical

memory of our machine. The SPECweb99 results of our modiicaitcan be seen in

33

24 . . .
22 g
20 |
18 ‘
" g,

14
12
10

writev ----o---7
sendfile -]

Requests / Second (x1000)

0.125 0.25 0.5 1 2 4 8 16
File Size (Kbytes)

Figure 2.7: Microbenchmark performance comparison ofewrisendfile, and modified
sendfile — In this test, all clients request a single file dtdpéed using persistent connec-
tions.

SpecWeh99 Result
(o)1
o
o
sendfile
fork helper
CGl write
new sendfile

=
2
©
o
=
=
2

3 4 5 6 7 8
Server Configuration

Figure 2.8: SPECweb99 summary — 1. Original 2. VM patch 3ntgsendfile() 4. FD-
passing helpers 5. Fork helper 6. Eliminate mmap 7. New Ctetfecce 8. New send-
file()
Figure 2.8, where we show the scores for all of the intermedradifications we made.
Our final result of 820 compares favorably to published SPEIE39 scores, though no
directly comparable systems have been benchmarked. Wertartm all uniprocessor
systems with similar memory configurations but using otleever software — the highest
score for a system with less than 2GB of memory is 575.

Most of our changes are portable architectural modificattorthe Flash Web Server,
including (1) passing file descriptors between the helpedsthe main process to avoid

most disk operations in the main process, (2) introducingvafror k() helper to han-

34

dle forking CGI requests, (3) eliminating the mapped fileheacand (4) allowing CGI
processes to write directly to the clients instead of wgitiothe main process. Figure 2.9

shows the original and new architectures of the static camath for the server.

start end
Accept | [Read . Find! _I Send " Read File |
Conn "1 Request File | Header Send Data |

“Pathname '[Resp. | [Mmaped ‘

Translation ‘ Header‘ File
(a) Original Cache | Cache Cache |
Architecture filename filename
[Helper | [Helper
Find Form Modified

\ 4

URL [Header Sendfile

v ; ¥

Open | Resp. | Sendfile
File Header ‘ Helper
(b) New Cache \;Cachie
Architecture ¢ filename / fd
Classify
+ Open

Figure 2.9: Architectural changes — The architecture iattysimplified by using file de-
scriptor passing and eliminating mapped file caching. Mediiomponents are indicated
with dark boxes.

The changes we make to the operating system focuseordfi | e(), including
(1) adding a new flag and return value to indicate when blackin disk would occur,
(2) caching kernel address space mapping to avoid unneggdssical map operations,
and (3) sending headers and file data in a single mbuf chawoid enultiple packets for
small responses. Additionally, we apply a virtual memorgteyn patch that ultimately
is superfluous since we remove the memory-mapped file cacleehawe provided our

modifications to the FreeBSD developer group and all thraenigations have been

incorporated into FreeBSD.

35

2.6 Latency

Since we identify and correct many sources of blocking, weiaterested in the ef-
fects of our changes on server latency. We first compare feetedf our changes on
the SPECweb99 workload, and then reproduce workloads usethier researchers in
studying static content latencies. In all cases, we comiadeacies using a workload

below the maximum of the slowest server configuration unektr t

2.6.1 On SPECweb99 workloads

On the SPECweb99 workload, we find that mean response tiredused by a factor of
four by our changes. The cumulative distribution of latesaian be seen in Figure 2.10.
We use 300 simultaneous connections, and compare the neer séth the original
Flash running on a patched VM system. Since 30% of the regjaestor longer-running
dynamic content, we also test the latencies of a SPECweb@it only static requests.
The mean of this workload is 7.1 msec, lower than the 10.6 msam for the new server
running the complete workload. This difference suggesas tinrther optimization of
dynamic content handling may lead to even better perforeaio compare the differ-
ence between static and dynamic request handling, we atéctile 5, 50", and 9%"
percentiles of the latencies for requests on the SPECweb8doad. These results are
shown in Table 2.6, and indicate that dynamic content iseskat roughly half the speed
of its static counterpart. The latency difference betwéenrtew server and the original
Flash on this test is not as large as expected because thangsgk still fits in physical

memory.

36

x]

0.8

0.6

I ,’v'
’
i R

Probability [Response time <

s new, static SpecWeb99(mean: 7.1 msec) —+—
/ hew, standard SpecWeb99 (mean: 10.6 msec) ---><---
/-~ old, standard SpecWeb99 (mean: 49.0 msec) ---%---
. i i 1 i

1

10

100 1000

Tinme (nsec)

Figure 2.10: Latency summary for 300 SPECweb99 connections

5%(ms)| 50%(ms)| 95%(ms)| mean(ms)
static 0.51 1.45 59.81 9.92
dynamic 0.99 2.83 91.31 12.19

Table 2.6: Separating SPECweb99 static and dynamic l&gnci

2.6.2 On Disk-bound static workload

To determine our latency benefit on a more disk-bound wodklad to compare our
results with those of other researchers, we construct i@ statkload similar to the one
used to evaluate the Haboob server [96]. In this workloadDXEdmulated clients generate
static requests to a 3.3GB data set. Persistent conneetienssed, with clients issuing
5 requests per connection before closing it. To avoid oaeklthe request rate is fixed at
2300 requests/second, which is roughly 90% of the slowegtss capacity.

We compare several configurations to determine the lateangflis and the impact
of parallelism in the server. We run the new and original ieers of Flash with a single
instance and four instances, to compare uniprocessor coafigns with what would be
expected on a 4-way SMP. We also run Apache with 150 and 306rgemocesses.

The results, given in Figure 2.11 and Table 2.7, show theoresptime of our new
server under this workload exhibits improvements of moaathfactor of twelve in mean

response time, and a factor of 47 in median latency. With ifiestances, the differences

37

= x]

0.8

0.6

—
0.4

0.2

Probability [Response time <

(New Flash,4p) ---e---
(Apache,150p) ---83---
(Apache,300p) --

(New Fiash) ——

(Old Flash) ---w---
(Old Flash,4p) -

10 100
Time (nmsec)

1000 10000

Figure 2.11: Response latencies for the 3.3GB static watklo

5% | median 95% | mean

(ms) (ms) (ms) (ms)

New Flash| 0.37 0.79 7.45 7.56
New Flash, 4p 0.38 0.82 7.51 7.72
Old Flash| 3.36| 37.59| 326.40| 92.37
Old Flash, 4p| 7.05| 142.65| 1924.42| 420.85
Apache 150p 0.70 6.64 | 1599.50| 360.62
Apache 300p 0.78| 124.98| 2201.63| 545.93

Table 2.7: Summaries of the static workload latencies

are a factor of 54 in mean response time and 174 in median iiveeaneasure the max-

imum capacities of the servers when run in infinite-demandenand these results are

shown in Table 2.8. While the throughput gain from our optiations is significant, the

scale of gain is much lower than the SPECweb99 test, indigéiat our latency benefits

do not stem purely from extra capacity.

data set Apache| Old Flash| New Flash
500MB | 240.3 485.2 660.9
1.5GB| 230.7 410.6 580.3
3.3GB| 210.6 264.5 326.4

Table 2.8: Server static workload capacities (Mb/s)

38

2.6.3 Excess parallelism

We also observe that all servers tested show latency degragehen running with more
processes, though the effect is much lower for our new sefves observation is in line
with the self-interference between the helpers and the faish process which we de-
scribed earlier. We increase the number of helper processkmeasure its effect on the
SPECweb99 results, as shown in Table 2.9. We observe thisvidwelpers is insufficient
to fully utilize the disk, and increasing their number iaity helps performance. How-
ever, the blocking from self-interference increases, wualy decreasing performance.
A similar phenomenon, stemming from the same problem, s@bserved with Apache.
Using DeBox, we find that Apache with 150 processes, sleefg 8fhes per second,
increasing to 3994 times per second at 300 processes. Thawibe is responsible for

Apache’s latency increase in Figure 2.11.

| #ofhelpersy 1 | 5 | 10 | 15 |
Blocking count| 114 295 339 394
% Conforming| 40.9%| 95.1% /| 96.9%| 89.5%

Table 2.9: Parallelism benefits and self-interference — ddr@ormance measurement
indicates how many requests meet SPECweb99’s qualitgmwice requirement.

This result suggests that excess parallelism, where sdeggners use parallelism
for convenience, may actually degrade performance ndiiged his observation may

explain the latency behavior reported for Haboob [96].

2.7 Results Portability

The main goal of this work is to provide developers with tdolsiagnose and correct the

performance problems in their own applications. Thus, wgehibiat the optimizations

39

made on one platform also have benefit on other platformsediahis premise, we test
the performance of the new servers on Linux, which has no ReBpport.

Unfortunately, we were unable to get Linux to run properlyaur existing hard-
ware, despite several attempts to resolve the issue on the kernel list. So, for these
numbers, we use a server machine with a 3.0 GHz Pentium 4 gsocand two Intel
Prol1000/MT Gigabit adapters, 1GB of memory, and a similakdiThe experiments
were performed on 2.4.21 kernel wigpol | () support.

We compare the throughput and latency of four servers: ApdcB.27, Haboob,
Flash, and the new Flash. We increase the max number of<liert024 in Apache
and disable logging. Both the original Flash and the newiH&sver use the maximum
available cache size for LRU. We also adjust the cache sidaboob for the best perfor-
mance. The throughput results, shown in Table 2.10, are guitprising. The Haboob
server, despite having aggressive optimizations and @lraren stages, performs slightly
better than Apache on disk-bound workload but worse thanchA@an an in-memory
workload. We believe that its dependence on excess pasall¢lia its threaded design)
may have some impact on its performance. The new Flash sgaues about 17-24%
over the old one for the smaller workloads, and all four serrave similar throughput
on the larger workload because of the disk bottleneck.

1

0.8 |-New Fla?h' <

Apache ,/_//_/5;

0.6

,/l
/" Flash

.: ‘/‘v
0.4 e
H / / ;’v‘
0.2 i ,/ "r‘Hahnnh

o g -
0.1 1 10 100 1000 10000

Time (ms)

Probability [Response time <= x]

Figure 2.12: Response time on Linux with 3.3GB dataset

40

Throughput (Mb/s)
data sef Haboob| Apache| Flash | New Flash
500MB| 3249 | 434.3 | 1098.1| 1284.7
1.5GB| 3034 | 372.4 | 661.7 822.5
3.3GB| 184.1 | 1774 | 173.8 199.1
Response Time (ms)
profile | Haboob| Apache| Flash | New Flash
50| 78.2 0.22 0.21 0.15
median| 414.3 0.61 1.56 0.42
95% | 1918.9| 661.8 | 412.5 3.68
mean| 656.2 | 418.0 | 512.5 141.9

Table 2.10: Throughput measurement on Linux with 1GB memory

Despite similar throughputs at the 3.3GB data set size,atenties of the servers,
shown in Figure 2.12 and Table 2.10, are markedly differéhe Haboob latency profile
is very close to the published result [96], but is worse by#the other servers. We sur-
mise that the minimal amount of tuning done to configuratmi&pache and the original
Flash yield much better results than the original Haboobpamson. The benefit of our
optimization is still valid on this platform, with a factorff ¢ both in median and mean
latency over the original Flash. One interesting obseowvas that the 95% latency of the
new Flash is a factor of 39 lower than the mean value. Thidtregggests that the small
fraction of long-latency requests is the major contributothe mean latency. Though
our Linux results are not directly comparable to our FreeBfBs due to the hardware
differences, we do notice this phenomenon is less obviolseeBSD. Presumably one
of the causes of this is the blocking disk I/O featursefndf i | e() on Linux. Another
reason may be Linux’s filesystem performance, since th@utnput is worse than what

we observed on FreeBSD.

41

2.8 Related Work

To compare DeBox’s approach of making performance infoionaa first-class result,
we describe three categories of tools currently in use, apthm how DeBox relates to
these approaches.

e Function-based profilers— Programs such g& of , gpr of [29], and their variants
are often used to detect hot-spots in programs and kerndieseTtools use compiler
assistance to add bookkeeping information (count and timéfhe program. Data is
gathered while running and analyzed offline to reveal funmctiall counts and CPU usage,
often along edges in the call graph. This approach ofteresufrom high overhead,
especially when function call times are small.

e Coverage-based profilers- These profilers divide the program of interest into regions
and use a clock interrupt to periodically sample the locatitthe program counter. Like
function-based profilers, data gathering is done onlineaaradyzed offline. Tools such
asprofil (), kernbb, andt cov can then use this information to show what parts of
the program are most likely to consume CPU time. Coveradgapproaches may miss
infrequently-called functions entirely and may not be ablshow call graph behavior.
Coverage information combined with compiler analysis camused to show usage on a
basic-block basis.

e Hardware-assisted profilers— These profilers are similar to coverage-based profilers,
but use special features of the microprocessor (event emynimers, programmable
interrupts) to obtain high-precision information at loweist. The other major difference
is that these profilers, such as DCPI [4], Morph [98], VTuné][3profile [61], and
PP[3], tend to be whole system profilers, capturing actiaityoss all processes and the

operating system.

42

In this category, DeBox is logically closest to kergglr of , though it provides more
than just timing information. DeBox’s full call trace alleamore complete call graph
generation than gprof’s arc counts, and with the data cosspye and storage performed
in user space, overhead is moved from the kernel to the gpsegprocesses have con-
trol over the profiling cost. Compared to path profiling, DeBdlows developers to cus-
tomize the level of detail they want about specific paths, tanglct on that information
as it is generated. In comparison to low-level statisticafifers such as DCPI, coverage
differs since DeBox measures functions directly used irsifsgem call. As a result, the
difference in approach yields some differences in what eagdthered and the difficulty
in doing so — DCPI can gather bottom-half information, whiBox currently cannot.
However, DeBox can easily isolate problematic paths anid tladl sites, which DCPI’s

aggregation makes more difficult.

e System activity monitors— Tools such as op, vnst at , net st at, i ost at, and
syst at can be used to monitor a running system or determine a fidgtraause for sys-
tem slowdowns. The level of precision varies greatly, withp showing per-process in-
formation on CPU usage, memory consumption, ownershipsamdng time, tosrnst at
showing only summary information on memory usage, fauéigadisk activity, and CPU
usage.

e Trace tools— Trace tools provide a means of observing the system cafvihehof
processes without access to source code. Tools suchusss, PCT [16],st race [2],
andkt r ace are able to show some details of system calls, such as paanetturn
values, and timing information. Recent tools, such as Kérg3] and the Linux Trace
Toolkit [97], also provide data on some kernel state thahgka as a result of the system

calls. These tools are intended for observing another psp@nd as a result, produc-

43

ing out-of-band measurements and data aggregation, adtpriring post-processing to
generate usable output.

e Timing calls—Usingget t i meof day() or similar calls, programmers can manually
record the start and end times of events to infer informatiased on the difference. The
getrusage() call adds some information beyond timings (context swiscHaults,
messages and I/O counts) and can similarly used. If perfalimation is required, not
only do these approaches introduce many more system callthdinformation can be

misleading.

DeBox compares favorably with a hypothetical merger of theng calls and the
trace tools in the sense that timing information is preskiteéband, but so is the other
information. In comparison with the Linux Trace Toolkit, rol@cus differs in that we
gather the most significant pieces of data related to pedno®, and we capture it at a

much higher level of detail.

e Microbenchmarks — Tools such as Imbench [53] and hbench:OS [18] can measure
best-case times or the isolated cost of certain operataathé misses, context switches,
etc.). Common usage for these tools is to compare diffeneetading systems, different
hardware platforms, or possible optimizations.

e Latency tools— Recent work on attempting to find the source of latency oktdes
systems not designed for real-time work have yielded irisagkd some tools. The Intel
Real-Time Performance Analyzer [66] helps automate thege®of pinpointing latency.
The work of Cota-Robles and Held [24] and Jones and Regeljrd@®onstrate the
benefits of successive measurement and searching.

¢ Instrumentation — Dynamic instrumentation tools provide mechanisms taumsént
running systems (processes or the kernel) under user tantbto obtain precise kernel

information. Examples include Dyninst [19], Kerninst [8®araDyn [54], Etch [74],

44

and ATOM [86]. The appeal of this approach versus standastilgns is the flexibility
(arbitrary code can be inserted) and the cost (no overhetlduse). Information is

presented out-of-band.

Since DeBox measures the performance of calls in their abtisage, it resembles
the instrumentation tools. DeBox gains some flexibility bggenting this data to the
application, which can filter it on-line. One major diffecenbetween DeBox and kernel
instrumentation is that we provide a rich set of measurestemny process, rather than

providing information only to privileged processes.

Beyond these performance analysis tools, the idea of oingekernel behavior to
improve performance has appeared in many different forms.skiére similarities with
Scheduler Activations [5] in observing scheduler actit@yoptimize application perfor-
mance, and with the Infokernel system by Arpaci-Dussetaal. [8]. Our goals differ,
since we are more concerned with understanding why bloak@iegrs rather than react-
ing to it during a system call. Our non-blockisgndf i | e() modification is patterned
on non-blocking sockets, but it could be used in other systaiis as well. In a similar
vein, RedHat has applied for a patent on a new flag taghen() call, which aborts if
the necessary metadata is not in memory [57].

Our observations on blocking and its impact on latency mayaich server design.
Event-driven designs for network servers have been a poapjaoach since the perfor-
mance studies of the Harvest Cache [17] and the Flash s&2r§chmidt and Hu [80]
performed much of the early work in studying threaded aechitres for improving server
performance. A hybrid architecture was used by Welsal. [96] to support scheduling,
while Larus and Parkes [45] demonstrate that such schedadin also be performed in
event-driven architectures. Qie et al. [67] show that suchitectures can also be pro-

tected against denial-of-service attacks. Adya et al. idduss the unification of the two

45

models. We believe that DeBox can be used to identify proldesas in other servers

and architectures as well.

2.9 Discussion

We have shown how DeBox can be used in a variety of examplesviagj developers
to shape profiling policy and react to anomalies in ways thanat possible with other
tools. Although DeBox does require access to kernel sowrde for achieving the high-
est impact, we do not believe that such a restriction is Bggmit. FreeBSD, NetBSD,
and Linux sources are easily available, and with the adviediarosoft's Shared Source
initiatives, few hardware platforms exist for which some €2rce is not available. Also,
general information about kernel behavior instead of seaoxle may be enough to help
application redesign. Our performance portability resalso demonstrate that our new
system achieves better performance even without kerneificettbn. A further implica-
tion of this is that it is possible to perform analysis and rfiodtions while running on
one operating system, and still achieve some degree of benether environments.

Part of the thesis focuses on how DeBox can be used as a parfoenanalysis tool,
but we have not implemented its utilization in general-msgmonitoring. Given its low
overheads, DeBox is an excellent candidate for monitoramg{running applications.
This approach can be reached by modifyingltihéc library and associated header files
so that a simple recompile and relink will enable monitohgpplications using DeBox.
It is also possible to process results automatically bywallg user-specified analysis
policies.

While we have shown DeBox to be effective in identifying peniance problems

in the interaction between the OS and applications, theentinersion of DeBox does

46

not handle the bottom-half activities in the kernel. DeBostirrent focus on the system
call boundary also makes it less useful for tracing problansng purely in user space.
However, we believe that the promise of the DeBox approachbeaadapted to other
areas such as multiprocessor OS support, preemptive kearad analysis of the top-

half/bottom-half boundary within the operating system.

47

Chapter 3

Server Response Time Under Heavy

Load

In the previous chapter we evaluated server latency ussgtdndard SPECweb99 work-
load and at a fixed request rate with a disk-bound static warkl The significant amount
of improvement in the new server prompts us to identify thet causes of server latency.
This chapter investigates the impact of head-of-line bloglon server-induced latency,
discusses how it can be observed in server burstiness gmohsestime under load, and

finally presents a way of quantifying these effects.

3.1 Introduction

Much of the performance-related research in network sefivas focused on improving
throughput, with less attention paid to latency [33, 62].amenvironment with large
numbers of users accessing the Web over slow links, the factsroughput was under-

standable, since perceived latency was dominated by wateratwork (WAN) delays.

48

Additionally, early servers were often unable to handléenhigguest rates, so throughput
research directly affected service availability. The depment of popular throughput-
centric benchmarks, such as SPECWeb [88] and WebStonedB8],gave developers
extra incentive to improve throughput.

Several trends are reducing the non-server latencieglihéncreasing the relative
contribution of server-induced latency. Improvementsarver-side network connectiv-
ity reduce server-side network delays, while growing bbzadi usage reduces client-side
network delays. Content distribution networks, which >k content geographically,
reduce the distance between the client and the desiredrddtasing round-trip latency.
Some recent work addresses the issue of measuring encateseeyl [13, 70], with opti-
mization approaches mostly focusing on scheduling [3198596].

However, little is understood about the trends in networkesdatencies, or how the
system components affect them. Current research genasslymes that server latency
is largely caused by queuing delays, that it is inherentecsirstem, and that scheduling
techniques are the preferred solution. Unfortunatelysglessumptions are not explicitly
tested, complicating attempts to systematically addsessess of latency. Based on these
observations, our goal is to understand the root causestabrie server latency and
address them, so that server latency can be improved. A betderstanding of latency’s
origins can also enable other research, such as improvirdjtpof-Service (QoS) or
scheduling policies.

By instrumenting the kernel, we find that Web servers incuclmatency blocked in
filesystem-related system calls, even when the neededgateen in physical memory.
As a result, requests that could have been served from maimomyeare forced to wait
unnecessarily for disk-bound requests. While this batrtiehavior has little impact

on throughput, its effects on latency are severe. This loédide blocking causes other

49

problems, such as a degradation of the kernel’s serviceipslihat are designed to ensure
fairness. By examining individual request latencies, wd firat this blocking gives rise
to a phenomenon we cakrvice inversionwhere short requests are often served with
much higher latencies than much larger requests. We alsaHhatdthis phenomenon
increases with load, and that it is responsible for most efgtowth in server latency
under load.

By addressing the blocking issues both in the applicatiahtha kernel, we improve
response time by more than an order of magnitude, and deratsgualitatively differ-
ent change in the latency profiles. The resulting serveseibit much loweservice
inversionand better fairness.

The latency profiles in our resulting servers generally es@ath processor speed,
where cached requests are no longer bound by disk-relaeessin comparison, experi-
ments using the original servers only show that server tftiputimproves with increases

in processor speed, but not server latency.

3.2 Background

In this section we provide some background on network sepexperimental setup,
workloads, and methodology since we begin our analysis @iierimental measure-
ments of the servers. Performance debugging which we diedus the previous chap-
ter [77] examined blocking in servers, but did not specifjciay to understand the origins

of latency, the main topic of this chapter.

50

3.2.1 Server Software

To test the common scenario as well as a more aggressivewasgse two different
servers with different software architectures and desigalsy To represent widely-
deployed general-purpose servers, we use the multi-pgdgeache server [6], version
1.3.27. To test high-performance servers, we use the elresen Flash Web Server [62],
a research system with aggressive optimizations. Whem@ppate, we test two versions
of Flash — one using the standagdl ect () system call for event delivery, as well as
one that uses the more scalakkevent () event-delivery mechanism coupled with the
zero-copysendfi | e() system call.

The Apache server utilizes blocking system calls and relrethe operating system’s
scheduling policy to provide parallelism, while Flash ugesOS'’s event delivery mech-
anism to multiplex all client connections. Flash consigdta single main process using
non-blocking sockets, and a small set of helper processésmeng disk-related opera-
tions. To increase performance, it aggressively caches filps, memory-mapped data,
and application-level metadata. In contrast, Apache @¢gscone process per connec-
tion, and performs very little caching, in order to reducgorgce consumption.

In our experiments, both servers are configured for maximerfopmance. In Flash,
the file cache size is set to 80% of the physical memory, witlaiaing parameters auto-
matically adjusted. We also aggressively configure Apacperiodic process shutdown
is disabled, reverse lookups are disabled, the maximum aupflprocesses is raised to
2048 by recompiling with an increased HARBERVERLIMIT. Since Apache’s logging

causes a noticeable performance loss, we disable accegsdong both servers.

51

Processor Pentium-11| Pentium-I1lI P4 Xeon
Speed 300 MHz| 933 MHz 3 GHz
Bcopy bandwidthl 93 MB/s| 265 MB/s| 624 MB/s
Read bandwidth | 213 MB/s| 555 MB/s| 1972 MB/s
Memory latency 245 ns 101 ns 116 ns

Table 3.1: Server hardware information
3.2.2 Experimental Setup & Workloads

We use a LAN to expose the server-induced latencies. Ourtastiplatform is a unipro-
cessor 3.06GHz Pentium-4 with 1GB physical memory, one 5880 Maxtor IDE disk,
and a single Netgear GA621 gigabit Ethernet network adayferuse six 1.3 GHz AMD
Duron machines as clients, with 256 MB of memory per machiie network is a Net-
gear FS518 Gigabit Ethernet switch. All machines are cordigjto use the default (1500
byte) MTU. We use the FreeBSD 4.6 operating system, withualdble parameters set
for high performance — 128K max sockets, 16K file descrippargprocess, 64KB socket
buffers, 80K mbufs, 40K mbuf clusters, and 16K inode cachgemn We also investigate
latency scalability using three hardware platforms whigdrsthree processor generations
and an order of magnitude increase in raw clock speed. Tdiggws many factors as
possible, all machines use the same disk and network ioterfehe details of our server
machines are shown in Table 3.1, with measured values vy Imbench [53].

In order to use a widely-understood workload while still ntaining tractability in
the analysis, we focus on the static content workload of PEE@Gneb99 benchmark. De-
tails of this workload is described in Section 1.1. To faatl comparisons with previous
work such as Haboob [96] and Knot [95], we use the same paeasnas these works
used — a 3GB data set and 1024 simultaneous connectionstidtiiata set size, most
requests can be served from memory while a small portioncailse disk access. Mea-

surements here also adopt the persistent connection nrodetfiose tests, with clients

52

issuing 5 requests per connection before closing it. Widséhparameters, the per-client

throughput level is comparable to SPECweb99’s qualitgafrice requirements.

3.2.3 Measurement Methodology

To understand how load affects response time, we measereias at various requests
rates. Each server's maximum capacity is determined bynigaali clients issue requests
in an infinite-demand model, and then relative rates arertep@s load fractionelative

to the infinite demand capacity of each servEis process simplifies comparison across
servers, though it may bias toward servers with low capaBigsponse time is measured
by recording the wall-clock time between the client staytthe HTTP request and re-
ceiving the last byte of the response. We normally reportmreaponse time, but we
note that it can hide the details of the latency profiles, e@sfig under workloads with
widely-varying request sizes. So, in addition to mean raspdime, we also present the
5, 50" (median), and5*" percentiles of the latency distribution. Where approptiate

also provide the cumulative distribution function (CDF)tloé client-perceived latencies.

3.3 Blocking in Web Servers

In this section we discuss how blocking can be observed ilmwarservers and the un-

derlying causes for the blocking.

3.3.1 Observing Blocking in Flash

In Chapter 2 we discussed that the main Flash process isibtpaiside the kernel on
operations other than theel ect () or kevent () and the system shows idle CPU

time when using our workloads. While CPU idle time is not sisipg for a workload

53

that accesses disk, the main process in Flash should nenak blall the disk activity
should be channeled to the helpers.

Examining the number of ready file descriptors returnedmperdation ofsel ect ()
orkevent () further confirms the analysis of blocking.

These calls take a list of file descriptors as input, and nstarcount of how many of
them are ready for activity. They usually form the main lod@o event-driven server,
and are invoked as many times as needed as long as the systéamivées Since we
only have 1024 simultaneous connections and do not keepfies, the polling cost is
relatively low. Thus at this load level, even the more sdalavent delivery mechanism,
kevent () does not seem to help. We show a CDF of the returned readyiptessr
from sel ect () andkevent () in Figure 3.1. The results indicates that these calls
typically return a large number of ready events per call. $@rect (), the median
number of ready descriptors is 12, the mean is 61 and the nuaxilangth is more than
600. More than 25% of the invocations return over 100 readgmators. The distribution

for kevent () is similar.

1

0.9

:x]

0.8

0.7

0.6

0.5

Probability [# Events <

0.4 kevent() ———]
select() ---------
0.3

0.2

1
1 10 100 1000
of Ready Events

Figure 3.1: CDF of number of ready events (the return valt@a el ect ()) in Flash

At these levels of activity, no free CPU should exist — the nmlaiop should call
sel ect () orkevent () more often, decreasing the number of ready descriptors per

call. However, given the idle time and the observed blocking can see that the block-

54

ing is causing both the CPU idle time and the batching. Evemdh descriptors are
ready for servicing and idle CPU exists, the blocking systeits are artificially limiting
performance and increasing latency.

This measurement also explains wimgdianlatency is being affected in Flash and
why this trend hinders latency scalability — since all cartions are multiplexed and
handled within a single process, any disk blocking caused ®fatively unpopular file
can prevent the servicing of cache hits during that time. hViister processors, this
problem is likely to getworse since the extra capacity means that more simultaneous
connections can be supported. When any of these connectamses blocking, more

connections are affected.

3.3.2 Inferring Blocking in Apache

Directly observing a similar problem in Apache is more difftdecause any of its pro-
cesses may block on disk activity, and its multiple-processgn exploits the fact that the
OS will schedule another process when the running proces&$l While conventional
wisdom holds that such blocking is necessary and affectstbalrequest being handled,
excess blocking may hinder parallelism and cause highdgten

Since Apache does not have any easily-testable invarigairdeng blocking such
as Flash does, we use another mechanism to infer it. We cathesgservation that
blocking in Flash increases the burstiness of system actwifind a similar behavior
in Apache. In particular, we note that if resource contantiocurs in Apache, it would
block other processes requesting the same resource, areldhse of a resource would
involve several processes becoming runnable at the saree Wa expect that the more
processes involved, the higher the burstiness, and the vaoebility in the behavior of

the run queue. Because it is hard to differentiate unnegesdacking in the blocked

55

process queue length, we measure the number of runnablessexcto reflect the bursti-
ness.

We instrument the OS scheduler to report the number of rdamgiache processes,
and test in two configurations. We use 256 and 1024 maximumes@rocesses, an
infinite-demand workload, and 1024 clients. Both configoret show roughly the same
throughput, due to the infinite-demand model and LAN clietsFigure 3.2, we show
what percentage of the Apache processes is runnable at\atytgne.

Bl 256 processes W 1024 processes

50

% of samples

0 1-20 21-40 41-60 61-80 81-100
% of processes ready to run

Figure 3.2: Scheduler burstiness (via the instantaneauquaue lengths) in Apache for
256 and 1024 processes

In both cases, the distribution is very bimodal — most of theet either no Apache
processes are runnable or most of them are. The burstinbss, mvany processes sud-
denly become runnable at once, is more evident in the 10Zkpsocase — all processes
are blocked roughly one-third of the time, and over 80% of phecesses are in the
runnable queue over 40% of the time. The 256 process casdyislmtly less bursty,
with the run queue generally containing 60-80% of the totatpsses. Note that all pro-
cesses being blocked does not imply the entire system is-idisk and interrupt-driven

network activity is still being performed in the kernel'sdtbom-half.”

56

3.3.3 Causes of Blocking

Our earlier work on developing the DeBox tool [77] identifidee call sites in Flash
where blocking occurred, but did not investigate the meigmas by which it occurred.
Among the problems, we identified that the Flash server wealdetimes block in the
“find file” step of the HTTP processing pipeline shown in Figd.3. This step involves
performing a series apen() andst at () calls to traverse the URL's components in
the filesystem. This blocking was unexpected because of #yeRlash opens files — it
invokes a helper process to perform the steps first, and tieshelper notifies the main
process, which repeats the process. In this case, the helggaresumably just finished
this process, so all of the necessary metadata should haverbemory-resident when

the main process performed the same actions.

Start

Get Read Find Read File
| | [He] | e

Conn Request Send Data

Figure 3.3: HTTP request processing steps

Further investigation reveals that the metadata lockirgplem is due to lock con-
tention during disk access. In particular, we find that onéhefproblems is lock con-
tention when the main process and the helper access a sHarpdthfi. When this hap-
pens, the helper usually is doing disk I/O but still holdihg ¥node name lock to ensure
the consistency of the corresponding entry. The decisioma&e this lock exclusive
instead of read-only appears to be a design decision to i§ynipé associated code —
in most types of code, the probability of lock contention Vabbe low, so making this
lock exclusive simplifies the code. We further validate tthieory by confirming that
the blocking occurs even when access time modifications iaebleéd and even when

the filesystem is mounted read-only. This type of problemoisfreeBSD-specific — in

57

Linux, we have observed metadata cache misses commonlyrimgcwhen the data set
exceeds the physical memory size, causing blocking in wikercached requests.

The metadata locking problem also explains what occurs iacAp and why it has
gone unnoticed for so long. Since Apache does not cache dpetieBcriptors, every
request processed must perform this same set of steps. Shyneks rely on the OS’s
own metadata caching to avoid these steps requiring exeedisk access, but without
any information about which accesses should be cached h&pdevelopers can not de-
termine when blocking during ampen() orst at () call is unexpected. When a com-
pleted disk access releases an exclusive lock, all of theepses waiting for it become
runnable, leading to the bursty scheduler behavior we gbder

Another source of blocking is rooted in data-sending sysiglls such asendfi | e() .
When these system calls are operating on data files whiclireadjgk 1/0O, or exhaust re-
lated buffer resources such as the sendfile buffer, everdgrdservers have to block, thus
other requests are delayed until the process is unblockeyndhronous system calls
may reduce chances of blocking on disk 1/0O but do not reduéfefyoressure. Blocking

caused by these system calls may have less impact on prodbssared servers.

3.3.4 Response Time Effects

To measure server latency characteristics on disk-boumkl@azls and show the impact
of the underlying blocking problems, we run the servers wetuest rates of 20%, 40%,
60%, 80%, 90%, and 95% of their respective infinite-dematesbral he results, shown in
Figures 3.4 and 3.5, show some interesting trends. Whilge¢heral shape of the mean
response curves is not surprising, some important diftereemerge when examining
the others. Apache’s median latency curve is much flattarribess slightly at the 0.95

load level. The mean latency for Apache becomes noticeabigevat that level, with a

58

900 r 900 r
800 95% 800 95%
mean ---O--- 7 mean ---O--- Z/‘l
s 700 50% =3 < 700 50% =3
2 5% -7 / % 5% 57 /
E 600 / £ 600 /
2 500 g 500
= / = /
g 400 / g 400
= =
2 300 2 300
(7] (7]
o} / © o}
@ 200 / e @ 200 o)
100 100 :)=
om b o Sl &
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Load Level Relative Load Level

Figure 3.4: Apache Latency Profile. The Figure 3.5: Flash Latency Profile. The rel-
relative load of 1.0 equals 241 Mb/s ative load of 1.0 equals 336 Mb/s

value comparable to that of Flash, while Apache’s lateneyttie 95" percentile grows
sharply.

Some insight into the latency degradation for these seceamse gained by exam-
ining the spread of request latencies at the various loagldeghown in Figures 3.6
and 3.7. Both servers exhibit latency degradation as theeskyad approaches infinite
demand, with the median value rising over one hundred folh fEBatures which appear
to be related to the server architecture and blocking effat immediately apparent —
the relative smoothness of the Flash curves, and the segniovger degradation for
Apache at or below load levels of 0.95. By multiplexing alkalt connections through
a single process, the Flash server introduces some bateffags, particularly when
blocking occurs. This batching causes even the fastesbmesp to be delayed. As a
result, Flash returns very few responses in less than 10mes Wie load exceeds 95%,
whereas Apache still delivers over 60% of its responsedmitiat time. We believe that
under low lock contention, Apache’s multiple processesvaih-memory requests to be
serviced very quickly without interference from other regts. At higher loads, locking

becomes more significant, and only 18% of requests can bedaiithin 10ms.

59

:x]

:x]

0.8

08 A s
/ 'y
0.6 id

0.4

/ b 0.2 (67Mbls) —a—
0.2 ; : 0.8 (268Mb/s) -0
0.95(320Mb/s) -3
1.0 (336Mbls) -7
i i

0.4

/ 0.2 (48Mbls) —a—t
02 s : 0.8 (192Mb/s) ---O -
J: 4 '
'

Probability [Response time <
o
[}
=B
\,
4
Probability [Response time <
Pt
©.
(=8
4

0.95(228Mb/s) --1}-
1.0 (241Mb/s) -~
| | o

0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
Response Time (msec) Time (ms)

Figure 3.6: Apache latency CDFs for var- Figure 3.7: Flash latency CDF for various
ious load levels load levels

However, this portion of the CDF does not explain Apache’sse@anean response
times, for which the explanation can be seen in the tail ofGbés. Though Apache is
generally better in producing quick responses under l@enties beyond th&!™" per-
centile grow sharply, and these values are responsiblegaciie’s worse mean response
times. Given the slow speed of disk access, these tails sebendisk-related rather than
purely queuing effects. Given the high cost of disk accessugmemory speeds, these

tails dominate the mean response time calculations.

3.3.5 Response Time vs. Data Set Size

A deeper investigation of the effect of data set size on séatency provides more insight
into the blocking problems as well as a surprising resulgufes 3.8 shows mean and
median latencies as functions of data set size. The meanciatemains relatively flat for
the in-memory workload, but begins to grow when the dataigetexceeds the physical
memory of the machine, 1GB. This increase in mean latencxpeaed, since these
filesystem cache misses require disk access, and the desicyavill raise the mean.
Theincrease in median latendg quite surprising for this workload — the measured

cache hit rate is more than 99%, suggesting that most rexjgbstild be comfortably

60

700 . , : :
600 - Apache mean -
o Flash mean ---@---
8 500 |- Apache median ---&--- i
2 Flash median —6— .
\; 400 . ‘k ’."'
E . o
3 300 o Il
2 IR SN SCRREE . .
5 Y Jrlk/."“.
T oo AT o
$ 200 e
o o ®
100 - ®®
0 !

(0] 0.5 1 1.5 2 2.5 3 3.5 4
Dataset Size (GB)

Figure 3.8: Median and mean latencies of Apache and Flashmarious data set sizes

served out of the filesystem cache. The cache hit rate iséwith what we showed in
Table 1.2, which is discussed in Section 1.1. These factorfron that the small amount
of cache miss activity is interfering with the accesses éguests that should be cache
hits.

This observation is problematic, because it implies that,non-trivial workloads,
server latency is tied to disk performance, even for cacleedigsts. Without server
or operating system modification, latency scalability isréfore tied to mechanical im-
provements in disk speed, rather than faster improvemeetectronic components. The
expectedatency behavior would have been precisely the oppositataththe number of
disk accesses increased, and the overall throughput deckghe median latency would
actually decreasesince fewer requests would be contending for the CPU at ang. ti
Queuing delays related to CPU scheduling would be mitigasedvould any network

contention effects.

3.4 Service Inversion

The most significant effect of this blocking behavior is ucessary delays in serving

gueued requests. In particular, cached requests that bautlbeen served in memory

61

and with low latency are forced to wait on disk-bound regsiédte term this phenomenon
service inversiorsince the resulting latencies would be inverted compardtieéadeal
latencies. The term is conceptually similar to priorityension in OSes, but in different
subjects. In this section, we study this phenomenon andgean approach to quantify
the service inversion value.

Since certain request processing steps operate indeggndéethe server process,
any blocking that occurs early in request processing catédtfie system’s fairness poli-
cies. Specifically, the networking code is split in the kérnwéth the sockets-related
operations occurring in the “top half”, which is invoked thetapplication. The “bottom
half” code is driven by interrupts, and performs the actealdng of data. So, when an
application is blocked, any data that has already beensé&m hetworking code can still
operate in the kernel's “bottom half.” Likewise, since thekthelpers in Flash operate as
separate processes, they can continue to operate on th&ntrequest even when the
main process is blocked.

To understand how head-of-line blocking causes serviceranon, consider the sce-
nario in Figure 3.9, where three requests arrive simultasigpwith the middle request
causing the process to block. Assume itis blocked by@en() call, which takes place
before the data reads occurs (if needed) and before any sla&ni to the networking
code. If the first and third requests are cached, they woulchally be served at nearly
the same time. However, the first request may get sent to tiweorieng code, and the
third request would then have to wait until the process idasked. The net effect is
that the third request suffers from head-of-line blockimge system’s fairness policies,
particularly the scheduling of network packets, are noegia chance to operate since

the three requests do not reach the networking code at the: thaue.

62

open() call
top half ¥ (blocked)

bottom Network

half Code |—sinterrupts

Figure 3.9: Service inversion example — Assume three rag|({ds B, and C) arrive at
the same time, and A is processed first. If it is cached andhists¢he networking code
in the kernel bottom half, interrupt-based processing faan continue even if the the
process gets blocked. In this case, even if Ais large, it neafigished before processing
on C even starts.

If the requests before the blocked requests are larger tienrtes that follow, we
label the resulting phenomenaervice inversion The occurrence of this behavior is
relatively simple to detect at the client — the latenciessfoall requests would be higher

than the latencies for larger requests.

3.4.1 Identifying Service Inversion

To qualitatively understand the prevalence of servicersioa, we take the latency CDFs
from Figures 3.6 and 3.7 and split them by decile. Since SP&Ckiases toward small
files and more than 95% of the requests could fit into physiahory, ideal response
times would be roughly proportional to transfer sizes. Bwraiing the different re-
sponse sizes within each decile, we can estimate the exteabering. To simplify
the visualization, we group the responses by sizes intoderies such that their dynamic
frequencies are roughly equal. The details of this categtdn are shown in Table 3.2.
The graphs in Figures 3.10 and 3.11 show the compositiorspbreses by decile for
the two servers, with the leftmost bar corresponding to #iséelst 10% of the responses
and the rightmost representing the slowest 10%. These gapltaken from the latency

CDFs at a load level of 0.95.

63

series| size rangeg percentage

1/0.1-0.5KB 25.06%
2| 0.6-4KB 28.05%
3 5-6 KB 23.55%
4| 7-900KB 23.34%

Table 3.2: Workload categories for latency breakdowns

100%

100%
90%
80% -
70% +
60%
50% o
40% +

30% -

20% +

10% +

0% -
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

MW Series1 OSeries2 WSeries3 OSeries4 W Series1 [Series2 MSeries3 [OSeries4

Figure 3.10: Apache CDF breakdown by Figure 3.11: Flash CDF breakdown by
decile at load 0.95 decile at load 0.95

In a perfect scenario with no service inversion, the firstidats would consist solely
of responses in Series 1, followed by 2.5 bars from Serietc2 However, both graphs
show responses from the different series spread acrosscdktsl, suggesting both servers
exhibit service inversion. One surprising aspect of thésts is that the Series 1 values
are spread fairly evenly across all deciles, indicating ¢van the smallest files are often
taking as long as some of the largest files.

Some inversion is to be expected from the characteristitseofvorkload itself, since
directories are weighted according to a Zipf-1 distribntigVith roughly 600 directories
in our data set, the last directory receives 600 times feaguests than the first. So, even
though files 100KB or greater account for only 1% of the retpié35 times fewer than
the smallest files), the directory bias causes the largest ifil the first directory to be

requested about 17 times as frequently as the smallestriki ifinal directory. While

64

the large files still require much more space, an LRU-stybpda@ment in the filesystem
cache could cause these large files to be in memory more dft@mactice, this effect is

relatively minor, as we will show later in this chapter.

3.4.2 Quantifying Service Inversion

While the latency breakdowns by decile qualitatively shov system’s unfairness, a
more quantitative evaluation of service inversion can bévdd from the CDF. We con-
struct the formula based on the following observation: Givesponses\, B,C, D, E
with sizesA < B < C' < D < E. If the observed response times have the same order as
the response sizes, we say that no service inversion hasredcand the corresponding
value should be zero. On the contrary, if the response timesahe reverse order of
their sizes, then we say that the server is completely iadegnd give it a value of 1.

The insight into calculating the inversion is as follows: want to determine how
perturbed a measured order is, compared with the order aedponse sizes. Pertur-
bation is the difference in position of a response in the @ddist of response times
versus its position in a list ordered by size, where the psponse distances are summed
for the entire list. We then normalize this versus the maxmperturbation possible. A

particular service inversion value is given by:

Z Distance(i)/|n? /2] (3.1)

where distance is absolute value of how far the request ma tiee ideal scenario,
and [n?/2] is the total distance of requests in the reverse order of ies, which is
the maximum perturbation possible. In the above examp$einas the observed latency

order isB,C, A, D, E. By comparing with the ideal orded, B, C, D, E, we see the

65

0.6 T

0.55 g
0.5 /@/
0.45 > i
0.4
0.35
0.3
0.25
0.2
0.15

0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative Load Level

Service Inversion

Flash —&— o
Apache ---A---

Figure 3.12: Service inversion versus load level for Apaahe Flash

distance of fileB is 1,C'is 1, Ais 2, andD, E are 0. The inversion value 512 = 0.33.
Since this measurement requires only the response sizekt@ndies, as long as the
distribution of sizes is the same, it can be used to compavedifferent servers or the
same server at multiple load levels. To handle the case dfpteutequests with the same
response size, we calculate distance by comparing\ttieobserved position with the
N ideal position for each response of the same size.

By measuring service inversion as a function of load leveldigcover that this effect
is a major contributor to the latency increase under loaguie 3.12 shows the quantified
inversion values for both servers, and demonstrates thég imkiersion is relatively small
at low loads, it exceeds half of the worst-case value as tad level increases. The
latencies at the higher load levels therefore not only sdiften queuing delays, but also
service inversion delays from blocking. We will show in trexhsection that the delays

stemming from blocking and service inversion are in factdbminant source of delay.

3.5 The New Servers & Results

In this section we describe our solution and evaluate thdtieg systems. We analyze the

effects on capacity, latency, and service inversion, amdasestrate that our new servers

66

overcome the latency and blocking problems previously esk In our earlier work on
DeBox [77], we modified the Flash Web Server to avoid blockiiée briefly describe
those changes to provide the context for our new resultsAptche.

Since the blocking has multiple origins, we believe a pdealser-level process is
preferable to invasive kernel changes. Accordingly, we ifigdabth servers to reduce
blocking. Our new contribution in this respect is to ideptiow Apache can be easily
modified to take advantage of the same kinds of changes thegdhElash. Additionally,
we focus on latency and service quality evaluation of theltesg servers, in order to

understand how the new techniques work.

3.5.1 Flashpache

Due to the differences in software architecture, we canmettly employ the same tech-
niques that we used in New-Flash to improve Apache. Howegwesn our earlier mea-
surements on Apache, we can deduce that filesystem-rekatscre likely to block, and
with these as candidates, we can leverage the lessons fiah.FSince Apache does
not cache file descriptors, each process agllsn() on every request, and this behavior
results in a much higher rate of these calls.

We modify Apache to offload the URL-to-file translation presgin which metadata-
related system calls occur. This step is handled by a newkdral’ process, to which
all of the Apache processes connect via persistent Unixailosockets. The backend
employs a Flash-like architecture, with a main process asghal number of helpers.
The main process keeps a filename cache like the one in thie $éager, and schedules
helpers to perform cache miss operations. The backendtia&essponsibility of finding
the requested file, opening the file, and sending the file gecand metadata informa-

tion back to the Apache processes. Upon receiving a valid @fgedescriptor from the

67

backend, the Apache process can return the associateddh&dient. Since the back-
end handles URL lookup for all Apache processes, it is ptessibcombine duplicated
requests and even preload data blocks into the filesysteine ¢etore passing the control
back to Apache processes, thus reducing the number of ¢@wérhes and the chances
of more blocking. We call this new server Flashpache, toctifte hybrid architecture.
Figure 3.13 shows major components of Flashpache.

Front-end | Back-end | Front-end
open

Accept Read File Send

l, I
| Comn +Hequeal w"Eﬂamet fd /rv Data
start - |2 | Filename 1N

. ' Cache
Ir. Accept Read / ; j\ Send
Conn Request | © ["rgad™} ¢4 &| Data

URL | File !statinfo

>

end

b 4

Figure 3.13: Flashpache architecture

The changes involved in this process are relatively smalliaolated — fewer than
100 lines of code are modified in Apache, and half of this caesimbde taken directly
from New-Flash. The backend process is similarly derivethfparts of New-Flash, and
consists of roughly 100 lines of code.

This architecture eliminates unnecessary blocking in tagswv First, in Flashpache,
most of the disk access is performed by a small number of hplpeesses controlled by
the backend, reducing the amount of locking contentions Blviservation is confirmed
by the fact that less blocking occurs in Flashpache than iacAp with the same work-
load. Second, since the backend caches metadata infomaatoh keeps files open, it

effectively prevents metadata cache entries from beingeyiwhen memory pressure is

68

an issue. However, we do not observe the CPU reduction frafmmmgas the main source
of the benefit — the interprocess communication cost betweeApache processes and

the backend is almost equivalent to or even a little highan tihhe original system calls.

3.5.2 Latency Results

We analyze the latency of the new servers by repeating oliele@xperiments to under-
stand latency and blocking. We begin our evaluation by répgéhe burstiness measure-
ment, which indicates that blocking-induced burstinessdlao been reduced or elimi-
nated in both servers. Figure 3.14 shows number of readytei@nthe original Flash
server, the new server, as well as the intermediate stede de&criptor passing (fd pass)
and removing memory-mapped files (no mmap). We see that infNagh, the mean
number of events per call has dropped from 61 to 1.6, and titkaméas dropped from
12 to 2. Likewise, Figure 3.15 shows the distribution of readocesses of the Flash-
pache server. Flashpache no longer exhibits bimodal behavithe scheduler level,
instead showing roughly 20% of all processes ready at argngime. In both cases, the

request batching and associated idle periods are elinginate

B 256 processes M 1024 processes

1
g 100
= 0.9 yu,J-:w Flash
U os ‘,"hommapr’,"‘“” 2 80
§ 07 [fitdpass ' % 60
3, EI h 2
% 06 f e Flash %5 40
é 05 > 20
£ ’
0.4
0 -
0.3 0 1-20 21-40 41-60 61-80 81-100
1 10 100 1000

0
of Ready Events % of processes ready to run

Figure 3.14: CDFs of # of ready events for Figure 3.15: Scheduler burstiness in
Flash variants Flashpache for 256 and 1024 processes

69

We evaluate step-by-step improvements to Flash with thdtseshown in Table 3.3.
Included are the figures for the original server and the imégliate steps. Throughputs
are measured with infinite-demand and response times arsuneeibat 0.95 load level.
We can see that the overall capacity of Flash has increas@&d%yfor this workload,

while Apache’s capacity increases by 13%.

Latency (ms) Capacity
median| mean| 90% | (Mb/s)
Flash 67.4| 181.0| 362.0 336.0

fd pass 11.5| 50.0| 71.2 395.0
no mmap 18| 93.5] 929 437.5
New-Flash 16| 29.3| 6.6 450.0
Apache 6.6 | 180.2| 414.7 241.1
Flashpache 1.1| 12.0| 5.7 272.9

Table 3.3: Latencies & capacities for original and modifiedssrs

The more impressive result is the drastic reduction in ateeven when run at these
higher throughputs. Flash sees improvements of 40x mefiamean, and 54x in 90
percentile latency. Eliminating metadata-induced blogkhas improvements of 5.8x
median, and 3.6x mean, and eliminating blockingendfi | e() reduces a factor of
3 in mean latency. Apache sees improvements of 6x medianmksx, and 72x in 90
percentile latency. The one seemingly odd result, an iser@amean latency from fd-
pass to no-mmap, is due to an increase in blocking, sinceetheval ofnrmmap() also
results in losing them ncor e() function, which could precisely determine memory
residency of pages. The New-Flash server obtains thisaesydnformation via a flag in
sendfi | e(), which again eliminates blocking.

Not only do the new servers have lower latencies, but they s®wqualitatively
different latency characteristics. Figure 3.16 shows thedian latency no longer grows

with data set size, despite the increase in mean latenciean Mtency still increases due

70

600 T T T T

500 [Flashpache mean &
New-Flash mean ---@---

i 2 d

Flashpache median ---
400 - New-Flash median -
e A ",II'
300 A

200

Response Time (msec)

100 [@ - @@

(0] 0.5 1 1.5 2 2.5 3 3.5 4
Dataset Size (GB)

Figure 3.16: Response time of New-Flash and Flashpachelffénent data set sizes

to cache misses, but the median request is a cache hit insal c&igures 3.17 and 3.18
show the latency CDFs f@¥" percentile, mean, median, ap&” percentile with varying
load. Though the mean latency aid” percentile increase, t96'" percentile shows less
than a tripling versus its minimum values, which is much tpssvth than the two orders
of magnitude observed originally. The other values are flatyindicating that most of
the requests are served with the same quality at differet llevels. More importantly,
the95 percentile CDF values are lower than the mean latency. Tasorefor this is that
the time spent on the largest requests (the last 5%) is mgtlehcompared to time spent

on other requests. This result conforms to the workload &sgpiens stated in Table 1.2.

30 o 12
25 mean ---O--- 10 mean ---O--- ’
o 95% —A— o 95% —A— 3
I 20 50% --{F-- & s 50% --{F--
£ 5% - £ 5% st
o e by L
£ ' E 4 —a
i~ 15 - 6 =2
Q Q
[%2] . [%2]
= . c
2 10 S — g 4
[SRR - [
e 515/—//4% = 2
o - i o N 5-0 J & o -3
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Load Level Relative Load Level

Figure 3.17: Latency profile of New-Flash Figure 3.18: Latency profile of Flashpache
(Flash profile shown in Figure 3.5) (Apache profile shown in Figure 3.4)

71

1 2 3 4 5 6 7 8 9 10

W Series1 COSeries2 M Series3 [OSeries4

Figure 3.19: CDF breakdown for New-Flash on 3.0 GB data sat] D.95

3.5.3 Service Inversion Improvements

In order to verify the unfairness of the new servers, we firdxamine the latency break-
down by decile for the 0.95 relative load level and the serunversion at different load
levels. Figure 3.19 shows the percentage of each file sereach decile for New-Flash,
and we observe some interesting changes compared to theabsgrver. The smallest
files (series 1) dominate the first two deciles, the largess {iberies 4) dominate the last
two deciles, and the series 3 responses are clustered atwifiith decile. This behavior
is much closer to the ideal than what we saw earlier. Somel sesdonses still appear
in the last column, but these may stem from files with low paptyl incurring cache
misses. Also complicating matters is that the absolutetytealue is now below 10ms
for 98% of the requests, so the first nine deciles are very cesspd. This observation is
verified by calculating the service inversion value.

Figure 3.20 shows the change of the inversion value withdhd level. Compared
to the old system, we reduce the inversion by over 40%, stipgagquests are treated
more fairly in the new system. The fact that the inversiorugattill increases with the
load is a matter for further investigation. However, thisyrba a limitation of our service

inversion calculation itself.

72

Service Inversion

Apache ---A---
New-Flash ---@--- -
Flashpache &

1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Load Level

Figure 3.20: Service inversion of original and modified sesv

By comparing service inversion for this workload with théa@ompletely in-memory
workload, we can see how far we are from a nearly “ideal” sdenén particular, we are
still concerned whether filesystem cache misses are reigp@fa the service inversion.
Figure 3.21 shows the latency breakdown for a workload wiB®@MVB data set. The
difference between it and the New-Flash breakdown areleisibly after careful exam-
ination. The numerical value for the in-memory case is Ov@8le the New-Flash result
is 0.35, suggesting that if any inversion is due to cacheesigss measured effects are
minimal. The Flashpache breakdown, shown in Figure 3.28indar. The values for
Flashpache and its original counterpart are also showrgar€i3.20, and we can see that

our modifications have almost halved the inversion unden lngd.

100%

100%

90% 4 90%

80% - 80% 1
70% 4 70% 4
60% - 60% A

50% - 50% 1

40% 4

30% -

1 2 3 4 5 6 7 8 9 10

W Series1 O Series2 W Series3 O Series4 W Series1 [Series2 MSeries3 O Series4

Figure 3.21: CDF breakdown for New- Figure 3.22: CDF breakdown for Flash-
Flash on in-memory workload, load 0.95 pache on 3.0 GB data set, load 0.95

73

3.5.4 Latency Scalability

To understand how latencies are affected by processor speadse three generations of
hardware with various processor speeds but sharing mokeadther hardware compo-
nents. Details about our server machines are shown in 8€g We begin our study
by measuring the infinite-demand capacity of the two origgsvers while adjusting
the data set size. The results, shown in Table 3.4, indibatein-memory capacity of
both Apache and Flash scales well with processor speed. iRt the data set size ex-
ceeds physical memory, performance degrades. Even thbedireavy-tailed 3GB Web
workload only requires reasonable amount of disk actiwitg, observe the two faster
processors have idle CPU, suggesting performance is tiedskoperformance on this

workload.

| | Pentium I1] Pentium Il | Pentium 4]

In-memory workload (0.5GB) capacity in Mb/s
Apache 107.3 248.4 437.6
Flash 210.3 466.0 787.0
Disk-bound workload (3.0GB) capacity in Mb/s
Apache 98.8 174.1 241.1
Flash 134.1 256.4 336.0
Flashpache 103.3 198.9 272.9
New-Flash 140.4 358.0 450.0

Table 3.4: Capacities of original and modified servers actioee processor generations
and different workloads

A more detailed examination of server latency is shown irufég 3.23 and 3.24.
These two graphs represent an in-memory workload and abdigkd workload, respec-
tively, and show the mean latencies for both server packagess all three processors.
Measurements are taken at various load levels, and showarkabie consistency — at
the sameelative load levels, both Apache and Flash exhibit similar latesictae in-

memory latencies are much lower than the disk-bound laésneind the latencies show

74

50 T————————— O Pentium Il ®WPentiumlll MWP4 Xeon

40 4 Apache Flash

30

20

Response Time (msec)

0.2 0.4 0.6 0.8 0.9 0.95 0.2 0.4 0.6 0.8 0.9 0.95
Relative Load Level

Figure 3.23: In-memory workload (0.5 GB) latency profilesAgpiache and Flash across
three processor generations

250 T— O Pentium |l W Pentium Il W P4 Xeon

n
[=]
S

Apache Flash

o
o

o
]

Response Time (msec)

a
=]

0.2 0.4 0.6 0.8 0.9 0.95 0.2 0.4 0.6 0.8 0.9 0.95
Relative Load Level

Figure 3.24: Disk-bound workload (3.0 GB) latency profilé&\pache and Flash across
three processor generations
only minor improvement with processor speed. Figure 3.2bvstthe scalability of our
new servers across processors. Both of the servers showlowehlatencies on all of
the three processors. Even with much lower Pentium-II E&s) improvements in pro-
cessor speed now reduce latency on both servers. This cesdiltms that once blocking
is avoided, the servers can take more advantage of the fasigssors.

In summary, both new servers demonstrate lower initiahlags, slower growth in
latency, and better decrease of latency with processodspéese servers are no longer

dominated by disk access times, and should scale with ingpnents in processors. That

75

~
o

OPentium Il mEPentium Ill mP4 Xeon

[}
=]

Flashpache — New-Flash

Response Time (msec)
(] B a

o o o

!

n
o

o
L

0.2 0.4 0.6 0.8 0.9 0.95 0.2 0.4 0.6 0.8 0.9 0.95
Relative Load Level

Figure 3.25: Disk-bound workload (3.0 GB) latency profilé\N&w-Flash and Flashpache
across three processor generations
these changes eliminate over 80% of the latency answersutstign about latency ori-

gins — these latencies were dominated by blocking, ratteer taquest queuing.

3.6 Related Work

Performance optimization of network servers has been aoritapt research area, with
much work focused on improving throughput. Some addressage-grained blocking —
e.g. Flash [62] demonstrated how to avoid some disk-relataxrking using non-blocking
system calls. Much evaluation about disk I/O associatedh@asls has focused on Web
proxies [50]. Some of the most aggressive designs have asedisk, eliminated stan-
dard interfaces, and eliminated reliable metadata in ai@egain performance [81]. In
comparison, we have shown that no kernel or filesystem clsaargenecessary to achieve
much better latency, and we show that these techniques catrofitted to legacy servers
with low cost. Our investigation of blocking has also beernchiiner-grained, usually
at resource locking level, which is not amenable to previwask in asynchronous 1/0O

interfaces.

76

More recently, much attention is paid to latency measureeth improvement. Ra-
jamony & Elnozahy [70] measure the client-perceived respdime by instrumenting
the documents being measured. Bent and Voelker exploréasimeasurements, but fo-
cus on how optimization techniques affect download time}.[IOIshefski et al. [59]
propose a way of inferring client response time by measgamnger-side TCP behaviors.
Improvement techniques have been largely limited to cammescheduling, with most
of the attention focused on the SRPT policy [25, 31], inahgdserver modification and
kernel instrumentation for network stack scheduling [f1¢hort scheduling [45] focuses
on gaining performance by batching similar requests bus ta¢ examine why queuing
occurs.

Our work examines the root cause of the blocking, and ourtisolsi subsume any
need for application-level connection scheduling. Our sewers use the existing schedul-
ing within the operating system, and the results suggestdiiainating the obstacles
yields automatic improvement with existing service andi@ss policies.

Synchronization-related locking has been a major congeparallel programming
research. Rajwar et al. [71] proposed a transactionalfiesksupport for multi-threaded
systems. The reasons of locking in our study have a broadgerand differ in applica-
tion domain. While head-of-line blocking is a well-knowngstomenon in the network
scheduling context, e.g. Puente et al. [65] and Jurczyk ¢89] studied various block-
ing issues in network environment, we demonstrate thatpisiomenon also exists in
network server applications and has severe effects onpgeseeived latency.

Our approach of fairness evaluation may be more suitabladowork servers than
the Jain fairness index [37] used in other work [96], sincefeais more on the laten-
cies of individual requests rather than coarse-grainethckexistics of clients. Bansal &

Harchol-Balter [11] investigate the unfairness of SRPTeslthing policy under heavy-

77

tailed workloads and draw the conclusion that the unfasr@stheir approach barely
noticeable. Our approach does not have this concern, sia@dress the latency issues

directly rather than try to schedule around them.

78

Chapter 4

Server Performance on Simultaneous

Multithreaded Processors

With the rapid development in processor architecture, @lvgays interesting for server
designers to test server performance on new hardware pregftoecause network servers
are usually hardware-demanding. This chapter examinesrsgerformance on simul-
taneous multithreaded processors using multiple senfewa@ packages on multiple

processors

4.1 Introduction

Simultaneous multithreading (SMT) has recently moved feomulation-based research
to reality with the advent of commercially available SMTpesle microprocessors. Si-
multaneous multithreading allows processors to handldiptelinstruction streams in
the pipeline at the same time, allowing higher functionat utilization than is possible

from a single stream. Since the hardware support for thimedrallelism seems to be

79

minimal, SMT has the potential to increase system througiyithout significantly af-
fecting system cost. While academic research on SMT proce$ss been performed
since the mid-1990’s [27, 92], the recent availability of B&bhpable Intel Xeon proces-
sors allows performance analysts to perform direct measemes of SMT benefits under
a wide range of workloads.

One of the biggest opportunities for SMT is in network sesyauch as Web, FTP,
or file servers, where tasks are naturally parallel, and /hégh throughput is impor-
tant. While much of the academic focus on SMT has been ontdfaiesr computation-
intensive workloads, suitable for the High Performance @otimg (HPC) community, a
few simulation studies have explicitly examined Web sepesformance [52, 73]. The
difficulty of simulating server workloads versus HPC woidis is in accurately handling
operating system (OS) behavior, including device driveis lmardware-generated inter-
rupts. While processor-evaluation workloads like SPEC @& explicitly attempt to
avoid much OS interaction, server workloads, like SPECv8&) pften include much
OS, filesystem, and network activity..

While simulations clearly provide more flexibility than aat hardware, evaluation on
real hardware also has its advantages, including morenealnd faster evaluation. Using
actual hardware, researchers can run a wider range of vaagli@@.g., bottom-half heavy
workloads) than is feasible in simulation-based enviromsieParticularly for workloads
with large data set sizes that are slow to reach steady statéme difference between
simulation and evaluation can be substantial. The drawb&dlardware, however, is
the lack of configuration options that is available in sintiola. Some flexibility in the
hardware analysis can be gained by using processors wigneatit characteristics, though

this approach is clearly much more constrained than simondat

80

Our evaluation suggests that the current SMT support iStsento application and
workloads, and may not yield significant benefits for netwaekvers, especially for OS-
heavy workloads. We find that enabling SMT usually producdg slight performance
gains, and can sometimes lead to performance loss. In tpeogeissor case, simulations
appear to have neglected the OS overhead in switching fromipaacessor kernel to an
SMT-enabled kernel. The performance loss associated with support is comparable
to the gains provided by SMT. In the 2-way multiprocessoecdise higher number of
memory references from SMT often causes the memory systbattume the bottleneck,
offsetting any processor utilization gains. This effeatasnpounded by the growing gap
between processor speeds and memory latency. We find thatd®Mfe Xeon tends
to provide better gains when coupled with large L3 cachescdyparing performance
gains across variants of the Xeon, we argue that such cacdtiesnly become more
crucial for SMT as clock rates increase. If these cachesraamto be one of the differ-
entiating factors between commodity and higher-cost mawes, then commodity SMT
will see eroding gains going forward. We believe this obaBon also applies to archi-
tectures other than the Xeon, since SMT only yields benefitsnait is able to utilize
more processor resources.

Using these results, we can also examine how simulationestgd a much more
optimistic scenario for SMT, and why it differs from what weserve. For example,
when calculating speedups, none of the simulations usedpsogessor kernel when
measuring the non-SMT base case. Furthermore, the siondatise cache sizes that
are larger than anything commonly available today. Thesgelaaches appear to have
supported the higher number of threads used, yielding migireh benefits than what
we have seen, even when comparing with the same number atithré/e do not believe

that the processor models used in the simulation are simphg raggressive than what

81

is available today or likely to be available in the near-fatulnstead, using comparable
measurements from the simulations and existing hardwageshivow that the type of
processors commonly modeled in the simulations is unlikelgver appear as slightly-
modified mainstream processors. We argue that they havaathéstics that suggest
they could be built specifically for SMT, and would sacrificegée-thread performance.
In summary, this chapter makes four contributions: (1) Wevjgle a thorough exper-
imental evaluation of SMT for network servers, using fivdatént software packages
and three hardware platforms. We believe this study is monmeptete than any related
work previously published. (2) We show that SMT has a smalformance benefit
than expected for network servers, both in the uniprocemstidual-processor cases. In
each case, we identify the macro-level issues that affatbpeance. (3) We perform
a microarchitectural evaluation of performance using tleerxXs hardware performance
counters. The results provide insight into the instructerel issues that affect perfor-
mance on these platforms. (4) We compare our measuremethiearier simulation
results to understand what aspects of the simulated prarsegielded much larger per-
formance gains. We discuss the feasibility of these sinariahodels, both in the context

of current hardware, and with respect to expected futurelse

4.2 Background

In this section we present an overview of the Intel Xeon pseoewith Hyper-Threading
(Intel's term for SMT), then describe our experimental fgah including hardware pa-

rameters and server configuration, our workloads and measant methodology.

82

4.2.1 SMT Architecture

The SMT architecture was proposed in the mid-1990’s, andbkags an active area for
academic research since that time [49, 91, 92], but the fasel-purpose processor
with SMT features was not shipped until 2003. The main intdrSMT is to convert
thread-level parallelism into instruction-level parfim. In SMT-enabled processors,
instructions from multiple processes or threads can bééet¢ogether, without context
switching, and can be executed simultaneously on sharecligae resources. From
either the operating system’s or user program’s perspedine system appears to have
multiple processors. Currently, we are aware of only twacpssors in production that
support SMT — the Intel Xeon with Hyper-Threading and the IBRRWERS. The Xeon
has been available longer, and since it is available in a wadge of configurations, it
provides us with an opportunity to affordably evaluate thpact of several features.

The Xeon is Intel's server-class x86 processor, designéxd tosed in high-end ap-
plications. It is differentiated from the Pentium 4 by thelgin of extra on-chip cache,
support for SMT (though this is now beginning to appear omd#ad P4 processors),
and on-chip support for multiprocessing. It is a superscalat-of-order processor with
a deep pipeline, ranging from 20 to 30 stages depending aregsor version and clock
speed. It has two hardware contexts (threads) per proceskah share most of the
resources, such as caches, execution units, branch gnedizntrol logic, and buses. Its
native x86 instruction set architecture is CISC, but itin&dly translates instructions into
RISC-like micro-operations;ops) before executing them. Buffering queues between
major pipeline logic blocks, such amp queues, and the reorder buffer, are partitioned
when SMT is enabled, but are recombined when only one sddttimead is active [51].

The basic hardware information for the Xeon can be found bield.1.

83

clock rate| 2.0 or 3.06 GHz
pipeline | 20 stages or 30 stages starting from the [TC
Fetch| 6 pops per cycle
Policy | round robin for logical processors
Retirement| 3 pops per cycle
Shared| caches, branch predictors, decoder logi¢
Resources DTLB, execution units, buses
Duplicated| interrupt controller, status registers
Resources ITLB, renaming logic
Partitioned| p.0p queue, re-ordering buffer
Resources load/store buffer, general instruction buffer

Table 4.1: Intel Xeon hardware parameters.

4.2.2 Experimental setup

To reduce the number of variables in our experiments, allotests use the same moth-
erboard, an Intel SE7505VB2 with 4GB memory, which is capaiflsupporting up to
two processors. Our processors are the 3.06 GHz Xeon witlBreathe, the 3.06 GHz
Xeon with a 1MB L3 cache, and the 2.0 GHz Xeon without L3 cadb&ing these three
processors, we can determine the effect of different clatds; and the effect of the pres-
ence or absence of an L3 cache. All processors have a 533 MHizdide bus (FSB).
The 2.0 GHz use a 20-stage pipeline starting from the trackecél' C), while the 3.06
GHz Xeons use a 30-stage pipeline. All tests use the sameacphysotherboard, and
we manually replace processors as needed, in order to réldeichance that variations
in memory manufacturing, etc., can affect the results. Thenory hierarchy details for
our system are provided in Table 4.2. Using Imbench [53], wd the main memory
latencies are 225 cycles for the 2.0 GHz Xeon, 320 cyclesi®Bt06 GHz Xeon with
L3, and 344 cycles for the 3.06 GHz processor without L3 cache

The increase in memory latency (measured in cycles) for i@ GHz processors is

not surprising, since the cycles are shorter in absolute.tinme absolute latency is rela-

84

Level | Capacity| Associa-| Line Size| Latency

tivity (cycles)

TC | 12K pops 8 way 6 uops N/A

D-L1 8 KB 4 way | 64 bytes 2

L2 512 KB 8 way | 128 bytes 18

Memory 4GB N/A N/A | 225 - 344
ITLB 128 entries, 20 cycles miss penalty
DTLB 64 entries, 20 cycles miss penalty

Table 4.2: Intel Xeon memory hierarchy information. Thetaty cycles of each level of
the memory hierarchy includes the cache miss time of thequevevel

tively constant since the FSB speed is the same. The impdmmawidth is 22%, much
less than the clock speed difference — the 2.0 GHz system reedabandwidth of 1.8
GB/sec while the 3.06 GHz system has a value of 2.2 GB/secleWilgher bandwidth

is useful for copy-intensive applications, the memoryrateis more important to ap-
plications that perform heavy pointer-chasing. Early Welvers performed significant
numbers of memory copies to transfer data, but with the dhiction of zero-copy [63]

support into servers, copy bandwidth is less of an issue.

Our testing harness consists of 12 uniprocessor client mestwith AMD Duron
processors at 1.6 GHz. The aggregate processor power dfg¢htsdés enough to ensure
that the clients are never the bottleneck. To ensure adeaqedtvork bandwidth, the
clients are partitioned into four groups of three machingach group is connected to
the server via a separate switched Gigabit Ethernet, usiaglhtel e1000 MT server
adapters at the server.

We compare five different OS/processor configurations,dasewhether a unipro-
cessor or multiprocessor kernel is used, and whether SMiabled or disabled. Using
the BIOS support and OS boot parameters, we can select betweeor two proces-

sors, and enable or disable SMT. For most of our tests, we oadtgprocessor-enabled

85

1T-UP | 1T-SMP| 2T | 2P| 4T

CPUs 1 1 1 2 2
SMP kernel No Yes| Yes| Yes| Yes
SMT enabled No No | Yes| No | Yes

Table 4.3: Notation used in this paper reflecting differeartiware and kernel configura-
tions

(SMP) kernel, since the OS sees an SMT-enabled processaodsdical processors.

However, when we run with one physical processor and SMThtksla we also test on

a uniprocessor kernel. These combinations yield the fivdiguamations studied in this

paper: one processor with uniprocessor kernel (1T-UP) pooeessor with SMP kernel
(1T-SMP), one processor with SMP kernel and SMT enabled, (&) processors (2P),
and two processors with SMT enabled (4T). Key features ofitleeconfiguration and

their names used in this paper are shown in Table 4.3. Thatpgsystem on the server
is Linux, with kernel version 2.6.8.1. This version inclgd®timizations for SMT, which

we enable. The optimizations are described next.

4.2.3 Kernel Versions and Overheads

In evaluating SMT performance on uniprocessors, it is irtgpdrto understand the dis-
tinction between the types of kernels available, becausg dffect the delivered perfor-
mance. Uniprocessor kernels, as the name implies, are ooadigo only support one
processor, regardless of how many physical processora #tre system. Multiprocessor
kernels are configured to take advantage of all processahg isystem using a single bi-
nary image. While intended for multiple processors, theydssigned to operate without
problems on a single processor.

Uniprocessor kernels can make assumptions about whatsgpmduring execution,

since all sources of activity are taking place on one prawesSpecifically, the OS can

86

make two important assumptions: that only one process eathcan be actively running
in the kernel at once, and that when the kernel is executingetwalf of that process or
thread, the only other source of execution is hardwarermpés. The first condition is

important for protecting data in the kernel — when the kersalxecuting, it generally

does not have to worry about locking kernel data structunésss it may block on some
resource. The only data sharing that remains is for data log@ahy interrupt servicing

code. The existence of only one processor also simplifiesctiile, since it can simply
disable interrupts when manipulating such data, and enat#derupts after the critical

section. Since enabling or disabling interrupts is a singggruction on the x86, this code
can be compact.

On multiprocessors (SMP), the invalidation of both assuomstcauses the need to
have more synchronization code in the kernel, leading toenowerhead. Both proces-
sors can be executing kernel code simultaneously, so afabliata in the kernel must
be protected from race conditions. The simplest approagihgwa “giant kernel lock”
to ensure only one processor is in the kernel at a time, redingeperformance of OS-
intensive workloads, and has been replaced with fine-gidoeking on all major OSes.
Interrupt handling must also differ — since interrupts cardblivered to a different pro-
cessor than the one using data shared with the interruptdratite kernel cannot simply
locally disable interrupts. Instead, all data accessiplarbinterrupt handler must also be
protected using locks, to prevent another processor frarassing it simultaneously.

For uniprocessors, running a multiprocessor version okéneel can therefore cause
a much larger performance loss than might be expected, bedastead of one extra
lock operation per system call, many lock operations mayduessary for fine-grained
data sharing. For network servers, this overhead can bdisag, if every packet and

acknowledgment invokes extra code that is not necessahgiariprocessor case.

87

Since the OS treats an SMT-enabled processor as two logmedgsors, it must use
the SMP kernel, with the associated overheads. Kernel designave taken steps to re-
duce some overheads, knowing that some operations canfoenped more efficiently on
an SMT with two logical processors than a multiprocesson wito physical processors.
However, since SMTs interleave instructions from multipntexts, these overheads
cannot be reduced to the level of uniprocessor kernels. Tiexlkernel implements a
number of SMT-specific optimizations, mostly related togassor affinity and load bal-
ancing [12]. Task run queues are shared between contextaabnpdysical processor,
eliminating the chance of one context being idle while tHeeothas multiple tasks wait-
ing. This balancing occurs whenever a task wakes up or wheother task on the same
physical processor finishes. Processor affinity, intendedihimize cache disruption, is

also performed on physical processor instead of logicalgssors.

4.2.4 Test & Measurement methodology

We focus on Web (HTTP) servers and workloads because ofgbpinlarity and the di-
versity of server implementations available. The serv@liegtions we use are Apache
2.0 [6], Flash [62], TUX [93], and Haboob [96]. Each serves luae or more distin-
guishing features which increases the range of systemsualg. stll of the servers are
written in C, except Haboob, which uses Java. TUX is in-kenvkile all of the others
are user-space. Flash and Haboob are event-driven, bubHa&o uses threads to iso-
late different steps of request processing. We run Apacheanconfigurations — with
multiple-processes (dubbed Apache-MP), and multiplesitis€dubbed Apache-MT) us-
ing Linux kernel threads, because the Linux 2.6 kernel hateibsupport for threads
than the 2.4 series, and the Xeon has different cache shaningreaded applications.

Threaded applications share the same address spacemegjiggemulti-process applica-

88

tions usually have different registers. Flash has a maicgg®handling most of the work
with helpers for disk 10 access. We run the same number ohFtesn processes as the
number of hardware contexts. TUX uses a thread-pool mod&yevmultiple threads
handle ready events. With the exception of Haboob, all oktregers use the zero-copy
interfaces available on Linux, reducing memory copy ovadwhen sending large files.
For all of the servers, we take steps described in the litegab optimize their perfor-
mance. While performance comparison among the servers thedocus of this paper,
we are interested in examining performance charactegisticSMT on these different
software styles.

We use the SPECweb96 [88] benchmark mostly because it wesrupeevious sim-
ulation studies. Compared to its successor, the SPECwelr®hmark, it spends more
time in the kernel because all requests are static, whi@nrekes other server workloads
such as FTP and file servers. We also include SPECweb99 bankhesults for com-
parison. SPECweb is intended to measure a self-scalingitapaetric, which means
that the workload characteristics change in several dirnaador different load levels.

To simplify this benchmark while retaining many of its desile properties, we use a
more tractable subset when measuring bandwidths. In patjave fix the data set size
of the workload to 500MB, which fits in the physical memory aifr enachine. We per-
form measurements only after an initial warm-up phase, soenthat all necessary files
have been loaded into memory. During the bandwidth testdigkaactivity is expected to
occur. We disable logging, which causes significant peréoroe losses in some servers.
SPECweb99 measures the number of simultaneous conneetionserver is able to sus-
tain while providing the specified quality of service to eaonnection. The SPECweb99
client software introduces latency between requests tredse the per-connection band-

width. SPECweb96 does not have this latency, allowing a&hts$ to issue requests in a

89

closed loop, infinite-demand model. We use 1024 simultasieonnections, and report
the aggregate response bandwidth received by the clients.

We use a modified version of OProfile [61] to measure the atilin of microarchi-
tectural resources via the Xeon'’s performance-monitogirents. Since we are interested
in system-wide performance, we do not need the granularéiable in DeBox. More-
over, our current DeBox implementation doenot explore @ssor level performance
events. OProfile ships with the Linux kernel and is able tmrepser, kernel or ag-
gregated event values. OProfile operates similarly to D@RIJsing interrupt-based
statistical sampling of event counters to determine pmesctivity without much over-
head. We find that for our experiments, the measurement eadris generally less than
1%. While OProfile supports many event counts available enx#on, we enhance the
released code to support several new events, such as Llatdta miss, DTLB miss,

memory loads, memory stores, resource stalls, etc.

4.3 SMT Performance

In this section we evaluate the throughput improvement of $vboth uniprocessor and
multiprocessor systems. Particular attention is givetnéodomparison between config-
urations with and without SMT enabled, and kernels with arithout multiprocessor
support. We first analyze trends at a macroscopic level, lagrd ise microarchitectural
information to understand what is causing the macroscopi@bior. Our bandwidth
result for the basic 3.06 GHz Xeon, showing five servers aredl@®/processor config-
urations, can be seen in Figure 4.2. Results for 2.0 GHz &% GHz with L3 cache

are seen in Figures 4.1 and 4.3, respectively. For eachrsémeefive bars indicate the

90

3000 —— Throughput (Mb/s)
2500

2000
1500 -

o ll all 0 MF o

Apache Apache Flash TUX Haboob

O1T- UPEIIT SMP E2T E2P m4T

Figure 4.1: Throughput of Xeon 2.0GHz processor without &8he

3000 T————— Throughput (Mb/s)
2500 -
2000 -
1500 -
1000 +
il ol 00 s
0 \ \ \
Apache- Apache- Flash TUX Haboob
MP MT

O1T-UP O 1T-SMP E2T 2P m4T

Figure 4.2: Throughput of base Xeon 3.06GHz processor

maximum throughput achieved using the specified numberarfgasors and OS config-
uration.

While bandwidth is influenced by both the server software@tas the OS/processor
configuration, the server software usually has a large teffaw in this case, dominant
effect) on bandwidth. Heavily-optimized servers like Fasd TUX are expected to out-
perform Apache, which is designed for flexibility and poitipinstead of raw perfor-
mance. The relative performance of Apache, Flash, and Haisda-line with previous
studies [77]. TUX’s relative performance is somewhat S8ipg, since we assumed an

in-kernel server would beat all other options. To ensureas Wweing run correctly, we

91

3000 ——— Throughput (Mb/s) ————
2500
2000
1500 ~
1000 -

il

Apache Apache Flash TUX Haboob

O1T- UPEIlT SMP E2T H2P W4T

Figure 4.3: Throughput of Xeon 3.06GHz processor with 1MBch8he

consulted with its author to ensure that it was properly gunéd for maximum perfor-
mance. We surmise that its performance is due to its empbiasignamic content, which
is not exercised in this portion of our testing. Haboob’s fmvformance can be attributed
both to its use of Java as well as its lack of support for Lisweendfile system call (and
as a result, TCP checksum offload). For in-memory worklo#us,CPU is at full uti-
lization, so the extra copying, checksumming, and langwelgged overheads consume

processor cycles that could otherwise be spent procestheg@quests.

4.3.1 SMP Overhead on Uniprocessor

We can quantify the overhead of supporting an SMP-capabieekéy comparing the
1T-UP (one processor, uniprocessor kernel) value with TaBMIP (one processor, SMP
kernel) value. The loss from uniprocessor kernel to SMP éleon the base 3.06 GHz
processor is 10% for Apache, and 13% for Flash and Tux. Ttesesosn the L3-equipped
processor and the 2.0 GHz processor are 14% for Apache andd8%ash and Tux,
which are a little higher than our base system. The impact anoldb is relatively low
(4%-10%), because it performs the most non-kernel work. mhgnitude of the over-

head is fairly large, even though Linux has a reputation @idpefficient for low-degree

92

SMP configurations. This result suggests that, for unimsases, the performance gained
from selecting the uniprocessor kernel instead of SMP kearebe significant for these
applications.

The fact that the impacts are larger for both the slowestge®ar and the processor
with L3 are also interesting. However, if we consider thessults in context, it can
be explained. The extra overheads of SMP are not only tha exgtructions, but also
the extra uncacheable data reads and writes for the locks. fadtest system gets its
performance boost from its L3 cache, which makes the main ongiseem closer to
the processor. However, the L3 provides no benefit for syorghation traffic, so the
performance loss is more pronounced. For the slowest pocdabe extra instructions

are an issue when the processor is running at only two-tthelspeed of the others.

4.3.2 Uniprocessor SMT Benefits

Understanding the benefits of SMT for uniprocessors isla titbre complicated, because
it must be compared against a base case. If we compare 1T-8MP funiprocessor
SMT), the resulting graphs would appear to make a great caseMT, with speedups
in the 25%-35% range for Apache, Flash and TUX, as shown iarEig.4. However, if
we compare the 2T performance versus 1T-UP, then we seenthapeedups are much
more modest. These comparisons are shown in Figure 4.5l tbree processor types.
In general, the relative gain decreases as processor bedaster (via clock speed or
cache). Apache-MT'’s gain on the 2.0 GHz processor is thedsight 15%, but this
drops to the 10%-12% range for faster processors. The gaifdesh and TUX are less,
dropping to the 3%-5% range for the faster processor. Theoblalmumbers show the
opposite trend from all other servers, showing a loss at 42 {proving to a small

gain.

93

40— 2Tvs. IT-SMP————————

Py
(=}
I

— 2Tvs. IT-UP—]
30 ~

(%]
(=}
I

20 4

(3]
(=]
I

0 i T T T T ’_‘.L
Apache- Apache-
-10 + MP MT

02.0GHz E3.06GHz M3.06GHz L3

(=}

Apache- Apache-
L v MT Flash TUX]

02.0GHz @3.06GHz M 3.06GHz L3

M e

Flash TUX Haboob

Throughput Improvement (%)
S

—_
(=}

Throughput Improvement (%)
S

-20

(5%
(=}

Figure 4.4: SMT speedup on uniprocessor Figure 4.5: SMT speedup on uniprocessor
system with SMP kernel system with different kernels

We believe that the correct comparison for evaluating wtessor SMT benefits is
comparing the bandwidths with 1T-UP. Although the kerne¢sdifferent, the SMP ker-
nel needlessly hinders uniprocessor performance. Foflgaaggorithms, comparison
with the best base case is also a standard speedup measuteomrique. The per-
formance of a parallel algorithm is compared to the perforceaof the best sequential
algorithm. Simply put, the gain from choosing the appradgrieernel is comparable to
the gain of upgrading hardware.

In comparing what is known about measured speedups fromliegahe Xeon'’s
SMT, our results are comparable to the 20%-24% gains that and Tullsen observed
using other workloads [90]. Their speedup comparisons aropned using an SMP
kernel for all measurements, which would be similar to conmgaour 2T results to the
1T-SMP values. In fact, our observed speedups are sligiglyeh than theirs, if we
discount Haboob. This result is in-line with the observativat SMT can potentially help
server-style software more than other workloads [73]. Timgeict of using a uniprocessor
kernel on the Tuck and Tullsen results is not clear — theikieads are not OS-intensive,

so the performance loss of using an SMP kernel may be lesswthaiwe observed.

94

40 4T vs. 2P
30 4

F

B

Apache Apache- u
10 | MP MT Flash TU.
J2.0GHz ®3.06GHz M 3.06GHz L3

-20

Throughput Improvement (%)
S

Figure 4.6: SMT speedup on dual-processor system
4.3.3 SMT in Dual-processor systems

The next reasonable point of comparison for SMT is in duakpssor systems, since
these systems are particularly targeted to the server tnankkare rapidly approaching
commodity status. Two factors responsible for this shi tre falling CPU prices and
the support for low-degree multiprocessing built into sathgs. The Xeon processors
are available in two variants, the Xeon DP and the Xeon MM wie distinguishing
feature being the number of processors that can be used isystem. The DP (“dual-
processor”) line has on-chip support for building “glusfeg-processor SMP systems
that require no extra hardware to share the memory bus. ThémRtiprocessor”) line
is intended for systems with more than 2 processors. In iaddib the on-chip glue
logic, the Xeon DP also drives commodification of dual-pssme systems via pricing —
as of this writing the Xeon DP is roughly one-tenth the cosh feon MP at the same
clock rate. Whether this difference stems from pricingtstyges or economies of scale
is unclear to us, but it does greatly magnify the price défere between dual-processor
systems and larger multiprocessors.

We note that enabling SMT in a dual-processor configuratanas more risk than

enabling it for uniprocessors. While the actual gains irpugessors may have been

95

comparable to the loss in using an SMP kernel, the overafisgaere still positive. As
shown in Figure 4.6, enabling SMT in dual-processor configons can cause a perfor-
mance loss, even though the same kernel is being used in &s#is.cHaboob shows a
9%-15% loss on the three different processors, when congéne 2P configuration to
the 4T configuration. Flash and TUX show a loss in the base G986 case, but show
small gains for the other two processor types. The specifitiseoperformance curves
lead us to believe that Flash and TUX are bottlenecked on #raary system — the base
3.06 GHz processor will have more memory traffic than its QBipped counterpart.
Likewise, the 2 GHz processor has relatively faster menmosasured in CPU cycles,
since the processor speed is slower. So, by taking a 2-mocegstem whose bottle-
neck is already memory, and increasing the memory demaedywérall performance
will not improve. By the same reasoning, we can infer that gqgamay be processor-
bound, since it sees gains on all of the processors. The stiglaé in this test, both in
terms of absolute bandwidth and in percentage, is seen ighehe-MT results for the
L3-equipped 3.06 GHz processor. It gains 16% over the 2Pgunafiion, jumping from
1371 Mb/s to 1593 Mb/s. The gain for Apache-MP on this progesssalso significant,

but smaller.

4.3.4 Understanding Relative Gains

These results are interesting because Apache is neithiesth@erformer nor the worst —
it appears to be in a “sweet spot” with respect to the bendfB4. This sweet spot may
not be very large, in terms of the variety of configurationswWbich it works — Apache’s

gain on the base 3.06 GHz is only 4%-5%. Going forward, it mayécessary to keep

increasing cache sizes to prevent faster processors frorg bettlenecked on memory.

96

If all of the contexts are waiting on memory, SMT may not beeald provide much
benefit.

However, when using the relative gains, one should remethbéthey are compared
only to the same server software, and may only reflect sonfaarof that server. For
instance, while Apache’s relative gains are impressiveatisolute performance numbers
may be more important for many people. Those show clearlyaben the best Apache
score for a given processor class never beats the worst task, and almost never
beats the worst TUX score. So, even with 2 SMT-enabled psacsesApache still does

not perform as well as Flash (or TUX, generally) on a singtecpssor.

4.3.5 Measuring the Memory Bottleneck

In the previous analysis, we have attempted to ascribe sdmne performance charac-
teristics of the various servers and configurations to tim@raction with the memory
system. To quantify these effects, we measure the cyclen thieememory bus is occu-
pied by any one of the threads, including both driving dati@ @n reading data from the
bus. Even though the bus utilization figures do not diffaegat‘pointer chasing” styles
of memory accessing from bulk data copying, by knowing thetigaar optimizations

used by the servers, we can use this information to draw nadé® conclusions. To
normalize the different processor clock speeds, bus atitin is calculated as follows:

(CyclesBusOccupied) * (ClockSpeed)

4.1
(NonHaltedCycles * BusSpeed) (4.1)

Utilization =

The bus utilization values, broken down by server softweoafiguration, and pro-
cessor type, are shown in Figure 4.7. Several first-orded$rare visible: bus utilization

tends to increase as the number of contexts/processorsresasged, is comparable for

97

Apache-MP_ 55 _ Apache-MT_ 55 _ Flash 25 TUX 25 Haboob

]
W

L
~ 201 204 20 1 20 - 20 1
s
=]
£ 15 15 - - 15 - — | 15 15 1
g
Z 104 - 104-—---- - 10 - 10 A 10 |
E
o MLIMITNERE o AL RINI BT o AL N NI WP 0 o L
&p‘z@\&ﬂ?n‘}u& &§§ﬂ§§§ &p‘z%&ﬂfq?@ S‘%@&w‘ﬁi‘ &o‘z%&é“m‘
& & & &
W 2.0GHz 003.06GHz oL3

Figure 4.7: Bus utilization of three hardware configuragion

all servers except Haboob, and is only slightly lower for é@4ipped processors. The
trends can be explained using the observations from thewadtidstudy, and provide
strong evidence for our analysis about what causes botttene

The increased bus utilization for a given processor typ@@asitimber of processors
and hardware contexts increase is not surprising, and itasim pattern to the through-
put behavior. Essentially, if the system is work-consegyime expect bus utilization to
be correlated with the throughput level. In fact, we see phaisern for the gain from the
2.0 GHz processor to 3.06 GHz — the coefficient of correlatietween the throughput
and the bus utilization is 0.95. The coefficient for the L31pged versus base 3.06 GHz
Xeon is only 0.62, which is still high, and provides evideticat the L3 cache is defi-
nitely affecting the memory traffic. A more complete exphiom of the L3 results are
provided below.

The fact that Haboob’s bus utilization looks different fratiers is explained by its
lack of zero-copy support, and in turn explains its reldyivadd behavior in Figures 4.5
and 4.6. The bulk data copying that occurs during file trasstall increase the bus
utilization for Haboob, since the processor is involvedopying buffers and performing

TCP checksums. However, the absolute utilization valueskraanuch larger difference

98

— while Haboob’s bus utilization is roughly 50% higher thaattof Flash or TUX, its
throughput is one-half to one-third the value achieved logd&servers. Combining those
figures, we see that Haboob has a per-request bus utilizdtabns three to four times
higher than the other servers.

The same explanation applies to the bus utilization for tBeeuipped processors,
and to Apache’s relative gain from SMT. The L3 cache absorasary traffic, reducing
bus utilization, but for Flash and TUX, the L3 numbers aregatightly below the non-L3
numbers. However, the absolute throughput for the L3-qgmrdprocessors is as much
as 50% higher, indicating that the per-request bus utiinatas actually dropped. The
differences in bus utilization then provide some insighd iwhat is happening. For Flash
and TUX, the L3 bus utilizations are very similar to the na®alues, suggesting that the
request throughput increases until the memory system agawmes the bottleneck. For
Apache, the L3 utilization is lower than the non-L3, sugmesthat while the memory
system is a bottleneck without the L3 cache, something @&serhes the bottleneck with
it. Since we know the memory system is capable of higherzatilon, we can conclude
that CPU processing is the bottleneck. The explanationesdds both Apache’s benefit
with a second processor as well as with SMT enabled. Sincel®ghas more non-

memory operations than Flash or TUX, it can benefit from traitamhal CPU capacity.

4.4 Microarchitectural Analysis

To understand the underlying causes of the performance seredd, we use the hard-
ware events available on the Xeon. These events can moattioug microarchitectural
activities, including cache misses, TLB misses, pipelitadls etc. While these counts

discover low level resource utilization, their effects hegd to quantify since the Xeon'’s

99

long pipeline overlaps many of these events’ occurrenc&seXxgmine cycles per instruc-
tion and track various causes of these cycles spent. At albigh, CPU cycles can be
modeled by three factors: cycles required to graduate treagmstruction, instruction re-
lated stalls caused by unavailable instructions or daths#adls due to pipeline resource
limits. For instruction-related stalls caused by cacheldB Tisses, we are able to cal-
culate the individual numbers of cycles for each event tyaged on the known miss
penalties. For pipeline resources, the Xeon only providesnumber of stalls caused
by allocator buffer shortages. Stalls from other sourcashsas lack of other buffers
or decode-execute interlocks, are not available. Somernxagon performance events
used in this thesis and their names in Oprofile are listed ipefplix A. More detailed
description of performance events can be found in [35] art]. [3

We next describe a number of important metrics from a mictuggctural standpoint.
We show measurements on our base 3.06 GHz processors s$iofoeualprocessors have
exactly the same resources such as cache size, TLB lindsrdyuétc., and we do not
observe radical differences between them for the metricgresent here.
e Cycles per instruction (CPI). We measure the number of non-halted cycles and the
number of instructions retired to calculate CPI. Since teeXdecodes each instruction
into multiple micro-ops gops), we report CPI or GPwhere appropriate. The ratio of
10ops to instructions in our application ranges between 1.I®5. Figure 4.8 shows
cycles peruop on each logical processor base for all of the servers. dt&taervers
demonstrate much higher @Rhan other workloads, with the minimum value of 2.15,
while the Xeon’s optimal CR is 0.33, with threg.ops graduating per cycle.

While CPI is commonly used for indicating processor exexutjuality or efficiency,
it is not a perfect metric for some parts of our study. Becaishe varying code bases,

the number of instructions used to deliver a single byte oteat also differs. For this

100

10 —— CPu (Cycles per micro-ops)

ol

Apache Apache Flash Haboob

EIIT UPEIIT SMP E2T E2P m4T

Figure 4.8: Cycles per micro-op (@P

Apache-MP| Apache-MT| Flash| Tux | Haboob
uwPB 12.5 13.0 57| 6.0 20.7
IPB 6.8 7.1 3.2 34 10.7

Table 4.4: Average Instructions apdps per byte for all servers

reason, we may also report counts in terms of applicativetleytes transferred, shown
in Table 4.4 as instructions aneps per byte (IPB angPB). We discuss some of the
event results below.

e Cache behavior.In SMTs, the multiple contexts share all of the cache resmurthis
sharing may cause extra cache pressure because of cobilictsay also reinforce each
other. By comparing miss rates, we are able to detect whetmre conflicts or rein-
forcement dominates. Figures 4.9, 4.10, and 4.11 show mtiss for the L1 instruction
(trace) cache, the L1 data cache, and the combined L2 cadpeatively.

When SMT is enabled (in 2T and 4T), both the L1 instruction dath caches show
significantly higher miss rates, indicating extra presshut the L2 miss rates improve,
indicating benefits from sharing. In comparing Apache-MTAfmache-MP, we do see
some reduction in the 4T L1 miss rate, but the miss rate idagiher than the 2P cases.
Thus, while the multithreaded code helps reduce the prestw SMT ICache pressure

is still significant. The L2 miss rate drops in all cases wh&tTSs enabled, indicating

101

20% T—LI1-IMiss Rate———— 10% —— L1-D Miss Rate

15% - 8% 1
6% - _

10% _
4% ~

5% A 29 |

1l oo L LD,

Apache Apache Flash TU Haboob Apache- Apache- Flash TUX Haboob
MP MT
DlT UPD]T SMP H2T H2P B4T O1T-UP O 1T-SMP W2T H2P W4T

Figure 4.9: L1 instruction cache (Trace Figure 4.10: L1 data cache miss rate
Cache) miss rate

10% ——————L2 Miss Rate

8% -] "

6% -

4%

2% A {

0% T T
Apache- Apache- Flash TUX Haboob

MP MT

O1T-UP O1T-SMP E2T H2P m4T

Figure 4.11: L2 cache miss rate, including both instructind data

that the two contexts are reinforcing each other. The xebthigh L2 miss rate for TUX
is due to its lower L1 ICache miss rate — in absolute terms, TidXa lower number of L2
accesses. The interactions on CPI are complex — the impic®/euss rates can reduce
the impact of main memory, but the much worse L1 miss ratesrdhkate the impact of
L2 access times. We show the breakdowns later when caleglatierall CPI values.

e TLB misses. In the current Xeon processor, the Instruction Translatiookaside
Buffer (ITLB) is duplicated and the shared DTLB is taggedwetich logical processor’s
ID. Enabling SMT drops the ITLB miss rate (shown in Figure2}.While increasing
the DTLB miss rate (shown in Figure 4.13). The DTLB miss raexpected, since

the threads may be operating in different regions of the calle believe the drop in

102

6% ———ITLB Miss Rate————————————— 6% . DTLB Miss Rate
5% 4 =1 5% -
4% A I 4% 1
3% A 3% - _
2% A m 2% A
1% A III 1% 1
0% +—— T T T ‘ Hill'l T 0% -
Apache- Apache- Flash TUX Haboob Apache- Apache- Flash TUX Haboob
MP MT MP MT
O1T-UP O 1T-SMP E2T H2P W4T O 1T-UP @ 1T-SMP H2T H2P W4T
Figure 4.12: Instruction TLB miss rate Figure 4.13: Data TLB miss rate

ITLB stems from the interrupt handling code executing omiyttee first logical processor,
effectively halving its ITLB footprint.

e Mispredicted branches. Branches comprise 15% - 17% of instructions in our appli-
cations. Each mispredicted branch has a 20 cycle penaltgn Ewough all of the five
servers show 50% higher misprediction rates with SMT, thexall/cost is not significant

compared to cache misses, as we show in the breakdowns later.

14% ———————————Branch Mispredict Rate
12%
10% -
8% | —

6% | BEN-—

4% ~ —

<1 (DA O ol el
TUX

0%
Apache- Apache- Flash Haboob
MP MT
O1T-UP O 1T-SMP E2T H2P M4T

Figure 4.14: Branch misprediction rate

e Instruction delivery stalls. The cache misses and mispredicted branches result in in-
struction delivery stalls. This event measures the numbeyales halted when there are

no instructions ready to issue. Figure 4.15 shows the aganagjes stalled for each byte

103

delivered. For each server, we observe a steady increaselffdJP to 4T, suggesting

that with more hardware contexts, the number of cycles sgtatied increases.

50 ——————Fetch Stalls (Cycles per Byte)
40
30
20 1
i
o FT“I mﬂlll H
Apache— Apache Flash Haboob

EI]T UPEI]T SMP E2T H2P 4T

Figure 4.15: Trace delivery engine stalls

e Resource Stalls.While instruction delivery stalls happen in the front-esthlls may

also occur during pipeline execution stages. This evensnorea the occurrence of stalls
in the allocator caused by store buffer restrictions. InXleen, buffers between major
pipeline stages are partitioned when SMT is enabled. Figuré shows cycles stalled
per byte due to lack of the store buffer in the allocator. EngtSMT exhibits a doubling

of the number of stall cycles for each byte transferred. dofately, stalls due to other
buffer conflicts, such as the renaming buffer, are not abkdlan existing performance-

monitoring counters. We expect similar pressure is also seether buffers.

20 — Buffer Stalls (Cycles per Byte) —
15 4
10 +
) ul |
ol
Apache— Apache Flash Haboob

EIIT UPEIIT SMP E2T E2P m4T

Figure 4.16: Stalls due to lack of store buffers

104

e Pipeline clears. Due to the Xeon’s design, there are conditions in which ali-no
retiring stages of the pipeline need to be cancelled. Thestemeasures the number of
these flushes. When this happens, all of the execution researe idle while the clear

occurs. Figure 4.17 shows the average number of pipelirescpeer byte of content. The
SMT rate is a factor of 4 higher, suggesting that pipelinemdecaused by one thread
can affect other threads executing simultaneously. Rugfitin this event indicates that
more than 70% are caused by interrupts. Haboob’s high c&arim 4T mode may be

responsible for some of its performance degradation.

0.30 —— Pipeline Clears per Byte ————

0.25 1

0.20 A

0.15 A

0.10 1

0.05 I.I I.I l.l I.I

0.00 M 1= = ‘ ‘F
Apache Apache Flash Haboob

EI]T UP EI]T SMP E2T H2P B4T

Figure 4.17: # of pipeline clears per byte

e 64K aliasing conflicts. This event occurs when the address of a load or store conflicts
with another reference which is in progress. When this happthne second reference
cannot begin until the first one is evicted from the cache s Type of conflict exists in

the first-level cache and may incur significant penaltieddads that alias to preceding
stores. The number of conflicts per byte is shown in Figur8.4All of the servers show
fairly high number of conflicts, suggesting an effectiveediton for further optimization.

e Putting cycles together. We estimate the aggregated cycles per instruction of these
negative events and compare them to the measured CPI. Wisilpassible to estimate
the penalty of each event, some have aggregated effecthasérte not included. Fig-

ure 4.19 shows breakdowns of non-overlapped CPIs calcufeden eight events, with

105

1 ——— Aliasing Conflicts per Byte

0.8

0.6 1

0.4

ol ol sl

Apache- Apache- Flash
MP MT
O1T-UP O 1T-SMP E2T H2P W4T

Haboob

Figure 4.18: # of aliasing conflicts per byte

measured CPI shown as dashes. The breakdowns indicateltladlL 2 misses are re-
sponsible for most of the cycles consumed. Pipeline cleadsoaffer stalls also have a
significant portion when SMT is enabled, as shown in Flask, and Haboob’s 2T and
AT cases. Other events such as TLB misses and mispredicdadhas are not major

factors in our workloads.

O Buffer 16 —— Apache-MP—— 16 7—— Apache-MT—— 16 Flash 16 TUX — 16 Haboob

OClear 141 144 _ 14 _ 44+------------- [/ A

WBunch | 127 =112 12 12 4o o]

EDTLB 510’ ””” - 10 10 f-ommme J10foeeee 101

omp |© 8 L]8T 1 8 —| || 8

a2 6 6 6 6 =1 F I 6 g — =

ST P R
21 - - 24 2 H - 2 - - 2

Duops 0 0) . .

RS S SN S S NI IE RN g & § L e LR L
\&,\B&S@wwv \&,\S&g&w $9§xmwu \&,é‘i(%@f» S H S
N v N \

Figure 4.19: Non-overlapped CPI accumulated by cache ml€3,miss, mispredicted
branches and pipeline clear. Labels shown here such as Ldtcl 2re misses, and com-
ponents in each bar from top to bottom are in the same orderthgs legend. Measured
CPlIs are shown as small dashes.

Our microarchitectural analysis provides quantitativplerations of the observed
performance and discovers a number of SMT resource botksn&®uantifying perfor-

mance change based on processor events for our-of-orderssagar processors is not

106

our goal, nor do we think it is feasible. However, by examgiihe aggregated CPI and
measured CPI, we can estimate the pipeline overlapping ifitbasured CPI is lower than
the calculated value, and how many cycles are taken by othecss if measured CPI is
higher. With this microscopic information and observedi@@nance improvement, we

can compare to similar studies using simulation which weides in the next section.

4.5 Evaluating the Simulations

Our measurements present a much less optimistic assessh&Wi performance ben-
efits than many of the simulation-based studies — most of aunsgare in the 5%-15%
range for 2 threads, while the simulations show speedupseir2®0%-400% range for
4-8 threads. Intuitively, the number of threads might bedhese of this speedup gap.
However, studies also show that the first few threads usealybit more performance
gain than the rest [91]. Thus, the simulated speedup forgatls would be in the range of
70-100%, which is still much higher than what we observe. [é/hone of the published
simulations modeled the Xeon, the significant disparityhi& gains warrants analyzing
their cause. We have not found any simulations specificaljyarding multiprocessor
systems, although such systems are popular in the networ&rsmarket. None of the
simulations appear to have considered the cost of using d-&habled kernel instead
of a uniprocessor kernel, and we have shown this cost to Inéfisent. However, we
believe the other significant differences are hardwarated| which we discuss below.
The most prominent area of difference between the Xeon asithulated processors
is the structure of the memory hierarchy, and the associatedcies. The Xeon has an
8KB L1 data cache and a 12Kops trace cache (TC), which is equivalent to an 8KB

- 12KB conventional instruction cache. Detailed hardwaaeameters and latencies for

107

Type sim sim sim | Xeon | Xeon

Year 1996| 2000| 2003| 2003| 2004
Clock rate (Mhz)| 600" | 800° | 800" | 2000| 3060
Contexts 8 8 8 2 2
Stages 9 9 9 20 30

[1ICache (KB) | 32| 128| 64| & | &
L1 DCache (KB)| 32| 128| 64 8 8

L2 size (KB) 256 | 16384| 16384| 512| 512
L2 cycles 6 20 20 18 18
L3 size (KB) 2048 - - - | 1024
L3 cycles 12 - - - 46

Memory (cycles)| 62 90 90| 225| 344

Table 4.5: Processor parameters in simulation and curredupts. Values marked with
an asterisk are approximate or derived.

our experimental platform are presented in Table 4.5. TH$ Xudy is a proposal for
practical SMT processors [91], while the 2000 paper exasn8MdT OS and Web server
performance [73], and the 2003 one examines SMT searchepgiformance [52]. The

processor models were derived from Alpha, and have shadgelipes and slower clock

speeds than modern processors. While the 1996 design hladscdmat are comparable
to what is available today, the others are much more aggeefisan what is currently

available.

The issue of cache size is significant, because of its dingagact on processor cycle
time. Larger caches slow access times, and the Xeon’s Llesamfe small in order to
support its high clock frequencies. For comparison, if weldérthe clock frequencies,
stages, and main memory latencies for the 2000 and 2003stutien those values are
in line with the current Xeons, but the L1 cache sizes are 8més higher, and the L2
cache size is 32 times larger. If we assume the simulated tl2esaare really L3, then
they are more than twice as fast as the Xeon'’s L3 latenciee sfiil being 4 times larger

than the L3 caches of any Xeon in the market at the time thdystias performed. Even

108

if we compare with high-end processors, the simulated [ssms are still aggressive. For
example, the IBM POWERS5 has a 64KB instruction and 32 KB ddtadche, 1.9MB L2
cache, 36MB of shared L3 cache per 2 processors, 2 SMT centet6-stage pipeline,
and operates at 1.5 GHz [40]. Compare to the scaled versithe gimulated processors,
it has one-fourth the SMT contexts, and operates at halfeo€lbck speed. We conclude
that not only are the simulated memory hierarchies moreesggre than what current
hardware can support, but the memory latencies are also fastdr than what might
be reasonably expected from their size. Given the sengitwvicache sizes and memory
speeds we have seen in our evaluations, it is not surprisatgtte simulations yield more
optimistic speedup predictions.

While these differences indicate that SMT in the Xeon mayyiet significant ben-
efit on the workloads we studied, it does not imply that SMTenegral is not useful. If a
company were to design a processor specifically suitabl8NOF, it may choose a larger
number of contexts and larger caches while consciouslyfieaag cycle time. Such a
system may have poor performance for single-threadedagtiglins, but would be suit-
able for highly-parallel tasks. Sun Microsystems has dised their upcoming “Niagara”
processor, which has 8 cores with 4 contexts per core [42¢ prbjected performance
of this processor is about 15 times the performance of teday'rent processors, while
a dual-core UltraSparc V microprocessor targeted for theesameframe was expected
to have 5 times the performance of today’s processors. Ubkgge numbers, each con-
text on Niagara will perform at one-fifth the performance aédJltraSparc V context.
This approach is similar to the Denelcor HEP [68] and the & [83] which were
designed for high throughput instead of high single-thnpadormance. Whether this
approach will be more successful for a higher-volume premesemains an open ques-

tion.

109

Simulation | Measurement
Contexts 8 2
Speedup 4-fold 5-15%

SMT | ST |SMT ST
IPC 56| 2.6| 0.43]| 0.33
Branch Mispredict (%) 9.3| 5.0| 12.0 8.0
L1-I miss (%) 20| 1.3| 17.1| 105
L1-D miss (%) 3.6/ 05| 5.7 4.7
L2 miss (%) 14| 18| 3.9 5.1
ITLB miss (%) 0.0 0.0] 3.7 5.1
DTLB miss (%) 0.6 0.05| 35 2.9

Table 4.6: Results comparison between related simulatamk @wnd our measurements.
We use ST (Single Threaded) to indicate the non-SMT perfooma

In broader terms, though, the simulations identified a nurobé&rends that we can
confirm via our evaluation. Table 4.6 compares our measw®gdlts versus the simula-
tion study of the same workload [73]. While the magnitudela values between the
simulated and actual processor is large due to the diffeent cache sizes, etc., the

direction of change is the same for each metric.

4.6 SMT on SPECweb99 benchmark

While static Web workloads are useful to compare with presistudies, dynamic content
is an important part of current Web traffic, and is capturetién'SPECweb99 benchmark.
In order to compare with results discussed in previous@estiwe run the full benchmark
but also limit the data set size to 500 MB.

SPECweb99 introduces changes to both the workload and dwtigy of the SPECweb96
benchmark. The benchmark consists of 70% static and 30%nugnaquests. The dy-
namic requests attempt to model commercial Web serversrparfg ad rotation, cus-

tomization, etc., and require some computation. Rathar teporting rates in requests

110

5000 2.0GHz 5000 3.06GHznoL3 3.06 GHz IMB L3

5000 -

4000 4000 4000

3000 4 3000 4 3000 4

2000 f------g -2~ 12000 4 2000
1°°°WH||I oll - ol
0 T 0 T T

Simultaneous Connections

=l all W

Apache-MP Apache-MT Flash Apache-MP Apache-MT Flash Apache-MP Apache-MT Flash
OIT-UP O1T-SMP E2T W2P W4T

Figure 4.20: SPECweb99 scores of three servers. The metmiennber of simultaneous
connections.

per second, SPECweb99 reports the number of simultaneongctions the server can
handle while meeting a specified latency requirement.

The dynamic portion of SPECweb99 consists of a specificatibich must be im-
plemented for each server. Because we do not have versidhis agpecification for all
of our servers, we can only evaluate it for three of our fiveeys. We run Flash as
well as both versions of Apache on the three hardware cortiguns. While TUX has
SPECweb99 scores, we have been unable to get the dynamentasuipport to work
on the free version of Linux with SMT support. We are investigg its performance
on the Red Hat Enterprise distribution since it is more gtald is the distribution for
which most TUX results are reported. Haboob is not includechise we did not find
its dynamic API for SPECweb99. Since we focus on the diffeesnstemming from
SMT, we are not overly concerned about the missing servers.Apache, we use the
mod.specweb99 module which is available on the Apache Web sitalagly, for Flash,
we use its built-in SPECweb99 module that handles dynamjicests.

Figure 4.20 shows the SPECweb99 scores of the three servéhng three different
hardware configurations, and Figure 4.21 calculates thedsges. The trends are gen-

erally consistent with what we observed in Section 4.3, butesinteresting differences

111

2T vs. IT-SMP 40 2T vs. IT-UP 40 4T vs. 2P
30 30
20 20
10 HII ll 10 -

0 JEN. mE .I o I

Apache-MP Apache-MT Flash Apache-MP Apache-MT Flash Apache-MP Apache-MT Flash

Connection Improvement (%)

02.0GHz m3.06GHz W3.06GHz L3

Figure 4.21: SMT speedups on SPECweb99 scores for the thiresr's.

emerge. On uniprocessor systems, SMT has a speedup of 4%aevihBn comparing
to the uniprocessor kernel, and a speedup of 15% to 30% whaparing to the SMP
kernel. On dual-processor systems, the improvements rfamigel1% to 15%. In com-
paring Figure 4.21 with Figures 4.5 and 4.6, we see someesstiag differences. The
gains for Apache on SPECweb99 are almost always worse tloge thn the static-only
test. Flash’s gains are worse at one processor, but betteo arocessors. The additional
computation in SPECweb99 appears to help utilize the psocdtter when the memory
system is very taxed, but seems to be causing more imbalageeiche, which already
does more computation than Flash.

The most noticeable differences are the comparison of 4iF 2t — previously, the
4T results for Flash showed degradation for the 3.06 GHzgas@. On SPECweb99,
this degradation disappears, and the relative improvenretiie other two processors is
larger. We believe that the dissimilar behavior betweensthéc content and dynamic
content allows better use of idle functional units. Theeati#hces are less apparent on
Apache, which already was performing more processing prrast than Flash.

This result also leads to another general observation.a\BMT is intended to hide
memory reference latency by overlapping the use of idlegesar resources, application

threads having similar resource utilization charactiesssuch as Web servers serving

112

static content may have little to overlap.The differenceveen the effects of SMT on
SPECweb96 and SPECweb99 is the compute-intensive dynamierd. This requires
work for the processor than simple pointer-chasing, so gassible that the dynamic
content processing can be run during memory fetch stallsngJdissimilar workloads

to achieve better SMT utilization has been explored for th¢TQinteger component of
SPEC CPU) benchmark programs [87], but not for network sesoftware. Even with

this mix of programs, the benefits we see in the network sesmeironment are lower

than in the CPU-only tests.

4.7 Discussion

In the previous sections, we have shown that memory bottlegmevents network servers
from realizing significant benefits on SMT. Another intemegtarea for SMT systems is
CPU-intensive applications, particularly in multiprogmaed systems. These programs
may be more cache friendly, and may have very different mesoutilization characteris-
tics, so running two different CPU-intensive programs cateptially improve processor
utilization. However, even this attempt of pairing mutyddeneficial programs has its
caveats, and the associated problems have led a numberafekesrs to explore opti-
mizing the scheduler for SMT [21, 84].

Rather than recreate this research, we use previouslyspell results but analyze
them differently. In particular, two groups have examirteglpairwise interference/benefit
between the 26 programs in the SPEC CPU2000 [20, 90] ben&lsude. We use these
as input to our analysis, which basically asks the followgugstion: if all 26 program

pairs ran for the same time, and you had to schedule them éomibst benefit, how

113

1
0.8 /
0.6 /
0.4
0.2 /
o] 5 10 15 20 25
Speedup (%)

Probability [Speedup <= X]

Figure 4.22: Speedup CDF of SPEC CPU2000 scheduling: Mir29s, Max is 26%,
and Mean is 20%.

would you do it? Since the possible permutations are far @#ogel to analyze, we use
randomized schedules to simplify the analysis.

We create schedules by randomly pairing program and céileglédne schedule’s total
runtime using the pairwise interference measurements.epgating this process for a
large number of trials, we can determine the range of scireglbenefit. The CDF of
10 million trials, shown in Figure 4.22, indicates that thege of resulting speedups is
fairly narrow, with a mean of 20% and an absolute maximum &62@& more typical
high-end schedule achieves 23%.

So, even if we have perfect offline information, the idealextifier achieves only
3%-6% more speedup than a random scheduler. One may ardw@eréralom scheduler
could perform as poorly as only a 12% speedup. While trueyeéheedy is also sim-
ple. The scheduler could periodically re-randomize theipgs, bringing all schedules
closer to the median as the number of randomizations ineseashis scheduling pol-
icy is extremely simple, and performs almost as well as aalideheduler. For realistic
schedulers, which will need to collect the pairwise datauatime, the gap may be even

narrower.

114

While we use randomized analysis, this argument is not abeutw of large num-
bers — we assume that the ideal scheduler can achieve thedbestule, or something
close to it. What we are merely observing is that given enquglgrams and the pair-
wise characteristics of the P4, the average speedup isysmopthat bad. If people run
very few simultaneous programs, then scheduling mattess ss — there are very few
choices for the scheduler to make. Some degenerate cagessaible, where there may
be only two programs in the system, and they exhibit slowdaven run together. How-
ever, these cases are rare among the SPEC CPU2000 prognahtise ability to detect

this scenario does not imply that a more complicated scleedsiheeded.

4.8 Related Work

In this section we discuss related work not already covaidten investigating SMT per-
formance, operating systems were not included in simuiatintil Redstonet al. [73]

ported the SMTSIM simulator [92] into the SImOS frameworb]7 They discovered
that although ignoring operating systems behavior may emilt in misleading predic-
tions for SPEC CINT, it has significant impact on evaluatibserver applications such
as Apache. McDowell et al. [52] used the same simulator amiest memory allocation
and synchronization strategies for a search engine apiplcaSimilarly, many stud-
ies focus on user-level and compute-intensive applicatiorcluding SPEC CINT and
CFP [85, 91, 92], parallel ray-tracing applications [32RLASH-2 benchmarks [49],
MPEG-2 decompression [23, 82], and other scientific apitinavorkloads [44, 84]. Lo
et al. [48] analyzed SMT performance with database workloadschvepend 70% of

their time in user space.

115

Our approach differs from previous performance evaluatiarseveral ways. While
direct measurement on real hardware gives accurate resudtsioes not need model
validation, as is required by simulation, it is limited byethvailable hardware configura-
tions. By making small changes to the hardware and expléengel options, we obtain a
reasonable space for comparison. More importantly, coetptarthe work which studies
server applications, our evaluation has a broader rangaeéissoftware, OS support and
hardware configurations. Our results on uniprocessor keamel dual-processor systems
discover new SMT performance characteristics. In contmsther works, we focus on
server workloads since it is one of the biggest markets fol-@Mabled processors.

Performance evaluation and characterization on currentlifable SMT-enabled pro-
cessors is still an ongoing research area. Tuck and Tul&¥refsaluated the implemen-
tation and effectiveness of SMT in a Pentium 4 processotjqodarly in the context
of prior published research in SMT. They measured SPEC CBQW2aad other parallel
benchmarks, and concluded that this processor implememtaiatches the promise of
the published SMT research. Bulpin and Pratt [20] extendezk €t al’s evaluation by
comparing an SMT system to a comparable SMP system, but tlidvestigate SMT on
SMP systems as we do in this thesis. Ckeal. [23] also only evaluated performance of
SMT and SMP individually. Vianney [94] measured a single Xpoocessor and reported
that Hyper-Threading on the Linux kernel can improve thitgug of a multi-threaded ap-
plication (namely, chat [47]) as much as 60%. Our study nbt differs in target testbed
and workloads, but also provides low level microarchiteateharacteristics to reveal
detailed resource utilization pertinent to SMT.

SMT’s microarchitectural performance is always one of tr@mtoncerns in SMT
design. In addition to work discussed earlier in this sect@®runwald and Ghiasi [30] ex-

amined the Xeon processor and discovered a possible nititestural denial of service

116

attack for the SMT processor. Snavelyal. [84, 85] observed symbiotic features in SMT
architectures and proposed a special scheduler to expldtaiasch and Reinhardt [69]
studied the impact of resource partitioning on SMT process@ur microarchitectural
analysis using the performance counters focuses on theartsop between when SMT
is enabled and disabled, instead of evaluating the perioceaf different SMT design
options.

Performance analysis using hardware provided event cauhgés been an effective
approach in previous studies. Bhandarkaal [14] and Keetoret al. [41] character-
ized performance of Pentium Pro systems and studied latemoyponents of the CPI.
More recently, Blackburmt al. [15] used some of the Pentium 4 performance counters
to study impact of garbage collection. Given the compleaftXeon microarchitecture,
interpreting the performance-monitoring events on thgseems is more difficult than
with previous Pentium family processors or RISC procesddmseover, we are unaware
of any non-simulation work in this area that provides thealdth of event coverage that

we do in this thesis.

117

Chapter 5

Conclusion & Future Work

5.1 Conclusion

This thesis presents network server performance analysisraprovement at various
levels. Atthe kernel level, we develop a novel kernel pnodjliool to provide applications
with fine-grained kernel information at low cost, and cdmited a set of kernel patches to
improve networked file transfer. At the application leveg redesign a popular research
server, Flash, and the widely-used Apache server, impgdviash’'s SPECweb99 score
by a factor of four and reducing response time by one to twermgrdf magnitude on
both servers. Using these servers as well as others, werthestigate the architectural
aspects of server performance, conducting detailed asalyslelivered SMT systems.
Some of the results have led to a better understanding oépsoc bottlenecks and server
optimization.

At the beginning of this thesis, we present a study of sergdopmance and the inter-
actions with operating systems, and describes the desmgementation and evaluation

of DeBox, an effective approach to provide more OS transugrey exposing system

118

call performance as a first-class result via in-band chanrzBox provides direct per-
formance feedback from the kernel on a per-call basis, em@aptogrammers to diagnose
kernel and user interactions correlated with user-levehes;

The case study using DeBox on the Flash Web Server demasstieg power of
this approach. Addressing the problematic interactiorts @timization opportunities
discovered using DeBox improves our experimental resultewerall factor of four in
SPECweb99 score, despite having a data set size nearlytitheseas large as our phys-
ical memory. Furthermore, our latency analysis demoredrgains between a factor of
4 to 47 under various conditions. Further results show tikatdithe bottlenecks identi-
fied using DeBox also mitigates most of the negative impawhfexcess parallelism in
application design.

Then the thesis examines server latency under load and ttaeeoot cause of server-
induced latency. By experimenting with workloads of vasaizes, we determine that
when disk accesses occur, both mean and median latenciease¢ though the median
should be unaffected. We trace the roots of this problem #al{wé-line blocking within
filesystem-related kernel queues. This behavior, in tumoses batching and burstiness,
which has little impact on throughput, but severely degsddéency. By examining in-
dividual request latencies, we find that this blocking gities to a phenomenon we call
service inversionwhere requests are served unfairly.

By addressing the blocking issues both with the Apache améFldsh server, we im-
prove latency by more than an order of magnitude, and dematast qualitatively differ-
ent change in the latency profiles. We performed these clsangeser space, in a portable
manner, without requiring any modification to the kernel sfystem layout. Without
much effort or extensive modification, we were able to takeaathge of these changes

in a widely-deployed legacy server. The resulting servisg exhibit lower burstiness,

119

and more fair request handling. Their latency values scatebwith improvements in
processor speed than their original counterparts, makiemtbetter candidates for fu-
ture improvements. This work also improves on our fundaadaemtderstanding of the
interactions between the filesystem, application, and lwads. The results suggest that
most server-induced latency is tied to blocking effectd)eathan queuing. By address-
ing the root causes of latency increase in network serverfeleve that we can enhance
research in other areas, such as improving quality of sexiccheduler policies.

Finally, the thesis provides a performance analysis of Kanaous multithreading for
server applications, using five software implementations three hardware platforms.
We find that the performance benefits of SMT are much more ni@den compared to
the uniprocessor kernel, suggesting non-negligible ansooinOS overhead when sup-
porting SMT. This cost was mostly ignored in previous stadi®ur evaluation in dual-
processor configurations indicates that the benefits of Sidharder to achieve in these
systems, unless memory reference latency is shorter og@l& cache is used, a finding
that may aid SMT design and purchasing.

Our microarchitectural analysis provides quantitativplerations of the observed
performance and discovers a number of SMT resource bot#endJsing this informa-
tion, future processor designers can understand how terlsatve this important class
of applications. With this detailed, low-level informatiand observed performance im-
provement, we are able to compare our results to similarestystrformed using simula-
tion. We believe that simulation correctly predicts theedtron of change for processor
resources, but yields much more optimistic estimates afuieg contention and overall

speedup.

120

5.2 Future Work

My future research interests include computer architegtperating systems and server
applications. With the rapid development of computer dedure, it is a persistent re-
search topic for software designers to identify necesdaanges to cope with new plat-
forms. One of our original goals of the SMT study was to imgreerver performance
for SMT processors. We have discussed that it is unlikelyctoeve high performance
by optimizing server application on the current Intel Xedstforms. However, other ar-
chitectures, such as the IBM POWERS5 and other emergingahral€hips, may present
very different resource usage characteristics. We aresiigating optimization opportu-
nities using performance-counter based profiling appresi.cBy focusing on bottleneck
components, we identify the most expensive activities adesign the responsible soft-
ware invocations. We intend to term this approacthaslware-aware profile-guided
optimizations

In this thesis, we focus on performance issues on traditimperating systems. With
the increasing popularity of virtual machines, we belidvat performance analysis and
optimization in virtualized environment present new oppoities for researchers. Simi-
lar to operating systems, virtual machines also isolatdvare resource from being ac-
cessed directly by up-level applications. However, as wiehave shown in this thesis,
it is critical for applications to obtain performance knedge from underlying layers.
We plan to provide effective approaches under virtualizeadrenment to aid in high-
performance application design and optimization. Spedificive would like to examine
what information is critical to export giving a combinatiofvirtual machine monitor,
application and workloads. Then we study the effectivemé&xisting communication

channels between the different layers. Particularly, vedrsterested in knowing whether

121

any in-band channel such as system call interface can beneathan providing feed-
back from the isolated layers. Finally, we would also likénestigate the necessity and

possibility of providing processor-specific performanoerters to each virtual machine.

122

Appendix A

Xeon Performance Events

123

Event Description Oprofile Event Name Oprofile unit mask
Processor active cycles GLOBAL_POWEREVENTS 0x01
Total instructions retired INSTR.RETIRED OxOF
Total Micro-ops retired UOPSRETIRED 0x03
Non-bogus instructions retired INSTR.RETIRED 0x03
Non-bogus Micro-ops retired UOPSRETIRED 0x01
Branches retired BRANCH_RETIRED OxOF
Mispredicted branches MISPRED BRANCH_RETIRED 0x01
Memory loads* FRONT.END_EVENT 0x01
& UOP_TYPE 0x01
Memory stores* FRONT.END_EVENT 0x01
& UOP_TYPE 0x02
Requests from Branch BPU_FETCHREQUEST 0x01
Prediction unit
Instruction TLB misses ITLB_REFERENCE 0x02
Instruction TLB references ITLB_REFERENCE 0x03
Data TLB misses* DTLB_ALL MISS_.RETIRED 0x01
L1 load misses* L1 LD_MISS RETIRED 0x01
L2 cache read hits BSQ CACHE_.REFERENCE 0x07
L2 cache read misses BSQ.CACHE_REFERENCE 0x100
L3 cache read hits BSQ.CACHE_REFERENCE 0x38
L3 cache read misses BSQ.CACHE_REFERENCE 0x200
Micro-ops written in pipeline UOP.QUEUEWRITES 0x07
Trace cache delivery TC_DELIVER_MODE Ox4F
Front-side bus busy FSB.DATA _ACTIVITY 0x03
Pipeline flushes MACHINE _CLEAR 0x45
Stalls in pipeline buffer RESOURCESTALLS 0x20

Table A.1: Xeon performance events and their names/madRgpiafile. Events with *
are not supported by default in Oprofile version 0.x. Meawuthese events requires a
patch developed by the author [76]

124

Bibliography

[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. @ewr. Cooperative
tasking without manual stack management. USENIX 2002 Annual Technical
ConferenceMonterey, CA, June 2002.

[2] W. Akkerman. strace. http://www.wi.leidenuniv.nl/ebiert/strace/.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardwaegfprmance counters
with flow and context sensitive profiling. BIGPLAN Conference on Programming
Language Design and Implementatigmages 85-96, Las Vegas, NV, June 1997.

[4] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzin§et,eung, D. Sites,
M. Vandevoorde, C. Waldspurger, and W. Weihl. Continuowadilimg: Where have
all the cycles gone. IRroc. of the 16th ACM Symp. on Operating System Principles
pages 1-14, Saint-Malo, France, Oct. 1997.

[5] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.\Leécheduler activa-
tions: Effective kernel support for the user-level managetof parallelism ACM
Transactions on Computer Systerti8(1):53—-79, Feb. 1992.

[6] Apache Software Foundation. The Apache Web server:/Migw. apache.org/.

[7] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infoioraaind control in gray-
box systems. IrProc. of the 19th ACM Symp. on Operating System Principles
pages 43-56, Chateau Lake Louise, Banff, Canada, Oct. 2001.

[8] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnét E. Denehy, T. J.
Engle, H. S. Gunawi, J. A. Nugent, and F. I. Popovici. Transiag policies into
mechanisms with infokernel. IRroc. of the 18th ACM Symp. on Operating System
Principles pages 90-105, Bolton Landing, NY, Oct. 2003.

[9] G. Banga and J. C. Mogul. Scalable kernel performancénfi@rnet servers under
realistic loads. IHJSENIX 1998 Annual Technical Conferenteew Orleans, LA,
June 1998.

125

[10] G. Banga, J. C. Mogul, and P. Druschel. A scalable andi@kpvent delivery
mechanism for UNIX. IHJSENIX 1999 Annual Technical Conferenpages 253—
265, Monterey, CA, June 1999.

[11] N. Bansal and M. Harchol-Balter. Analysis of srpt schiet: Investigating unfair-
ness. INProc. of the SIGMETRICS 'QTambridge, MA, June 2001.

[12] P. Benmowski. Hyper-Threading LinukinuxWorld Aug. 2003.

[13] L. Bent, Geoffrey, and M. Voelker. Whole page perforroanin7th International
Workshop on Web Content Caching and Distribution (WCW’Baulder, CO, Aug.
2002.

[14] D. Bhandarkar and J. Ding. Performance charactedmaif the Pentium Pro pro-
cessor. IrProc. of the 3rd IEEE Symp. on High-Performance Computehitgcture
(HPCA '97), pages 288-298, Feb. 1997.

[15] S. Blackburn, P. Cheng, and K. McKinley. Myths and rieedi: The performance
impact of garbage collection. Rroc. of the SIGMETRICS 'Q4une 2004.

[16] C. Blake and S. Bauer. Simple and general statistiallprg with pct. INUSENIX
2002 Annual Technical Conferenddonterey, CA, June 2002.

[17] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and MSEhwartz. The
Harvest information discovery and access syst€uomputer Networks and ISDN
Systems28(1-2):119-125, 1995.

[18] A. Brown and M. Seltzer. Operating system benchmarkirttpe wake of Imbench:
A case study of the performance of netbsd on the intel x86iteathre. INnACM
SIGMETRICS Conferencpages 214—-224, Seattle, WA, June 1997.

[19] B. Buck and J. K. Hollingsworth. An API for runtime codatghing. The In-
ternational Journal of High Performance Computing Apptioas 14(4):317-329,
Winter 2000.

[20] J. Bulpin and I. Pratt. Multiprogramming performancktbe Pentium 4 with
Hyper-Threading. InMorkshop on Duplicating, Deconstructing, and Debunking
(WDDDO04) June 2004.

[21] J. R. Bulpin and I. A. Pratt. Hyper-threading aware @$xscheduling heuristics.
In USENIX 2005 Annual Tech, To appeanaheim, CA, April 2005.

[22] N. Burnett, J. Bent, A. Arpaci-Dusseau, and R. ArpacisBeau. Exploiting gray-
box knowledge of buffer-cache management.UBENIX 2002 Annual Technical
ConferenceMonterey, CA, June 2002.

126

[23] Y.-K. Chen, E. Debes, R. Lienhart, M. Holliman, and M.uyey. Evaluating and im-
proving performance of multimedia applications on simudtaus multi-threading.
In 9th Intl. Conf. on Parallel and Distributed Systenec. 2002.

[24] E. Cota-Robles and J. P. Held. A comparison of windowsgedrmodel latency
performance on windows NT and windows 98.Rroc. of the 3rd USENIX Symp.
on Operating Systems Design and Implementatiages 159-172, New Orleans,
LA, Feb. 1999.

[25] M. Crovella, R. Frangioso, and M. Harchol-Balter. Cention scheduling in web
servers. InProc. of the 2nd USENIX Symp. on Internet Technologies arté®g
(USITS'97) Boulder, CO, Oct. 1999.

[26] P. Druschel and L. L. Peterson. Fbufs: A high-bandwicltbss-domain transfer
facility. In Proc. of the 14th ACM Symp. on Operating System Princiglages
189-202, Asheville, NC, Dec. 1993.

[27] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tollsg&imultaneous mul-
tithreading: A platform for next-generation processdEBEE Micro, pages 12—18,
Sept. 1997.

[28] K. Elmeleegy, A. Chanda, A. Cox, and W. Zwaenepoel. Atgiole kernel abstrac-
tion for low-overhead ephemeral mapping managementJS&ENIX 2005 Annual
Technical Conferencénaheim, CA, April 2005.

[29] S.L.Graham, P. B. Kessler, and M. K. McKusick. gprof:ad graph execution pro-
filer. In SIGPLAN Symposium on Compiler Constructipages 120-126, Boston,
Massachusetts, June 1982.

[30] D. Grunwald and S. Ghiasi. Microarchitectural denibservice: insuring microar-
chitectural fairness. IProc. of the 35th Intl. Symp. on Microarchitectugages
409-418. IEEE Computer Society Press, 2002.

[31] M. Harchol-Balter, B. Schroeder, M. Agrawal, and N. Bah Size-based schedul-
ing to improve web performancCM Transactions on Computer Systeis(2),
May 2003.

[32] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishura, Y. Nakase, and
T. Nishizawa. An elementary processor architecture withuianeous instruction
issuing from multiple threads. IRroc. of the 19th Annual International Symp. on
Computer Architecturgpages 136—145. ACM Press, 1992.

[33] J. C. Hu, I. Pyrali, and D. C. Schmidt. Measuring the iripaf event dispatching
and concurrency models on web server performance overdgpghe networks. In
Proceedings of the 2nd Global Internet Confergrigleoenix, AZ, Nov. 1997.

127

[34] Intel. Vtune Performance Analyzers Homepage. htpvéloper.intel.com/ soft-
ware/products/ vtune/index.htm.

[35] Intel Corporation. 1A-32 Intel Architecture Softwakeveloper’s Manual Volume
3: System Programming Guide. http://developer.intelfod@sign/pentium4/ man-
uals/253668.htm.

[36] Intel Corporation. Intel Pentium 4 and Intel Xeon Premar optimization reference
manual. http://developer.intel.com/ design/pentiumdhoals/indexhew.htm.

[37] R. Jain. Congestion control and traffic management iMATetworks: Recent
advances and A surveg€omputer Networks and ISDN Syste@8&(13):1723-1738,
1996.

[38] M. B. Jones and J. Regehr. The problems you’re havingmoaie the problems you
think you're having: Results from a latency study of windaws In 7th Workshop
on Hot Topics in Operating Systems (HotOS-MRio Rico, AZ, March 1999.

[39] M. Jurczyk and T. Schwederski. Phenomenon of highezmnéad-of-line blocking
in multistage interconnection networks under nonuniforaific patterns. IEICE
Transactions on Information and Systeag9-D(8):1124-1129, August 1996.

[40] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chi dual-core multi-
threaded processdEEE Micro, 24(2):40-47, March 2004.

[41] K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Bakatformance charater-
ization of a Quad Pentium Pro SMP using OLTP workloadsPioc. of the 25th
Annual International Symp. on Computer Architectyrages 15-26, 1998.

[42] P. Kongetira. A 32-way Multithreaded SPARC(R) Procgsdn The 16th Sympo-
sium on High Performance Chips (HOTCHIPS’ 18p04.

[43] G. Kuenning. Kitrace—precise interactive measurenoémperating systems ker-
nels. SOFTWARE-PRACTICE AND EXPERIENGCEL):1-21, 1994.

[44] H. Kwak, B. Lee, A. Hurson, S.-H. Yoon, and W.-J. Hahnfdéts of multithreading
on cache performancéEEE Trans. Comput48(2):176—184, 1999.

[45] J. Larus and M. Parkes. Using cohort-scheduling to ro@aerver performance. In
USENIX 2002 Annual Technical Conferenpages 103-114, Monterey, CA, June
2002.

[46] J. Lemon. Kqueue: A generic and scalable event notifindtcility. In FREENIX
Track: USENIX 2001 Annual Technical Conferengages 141-154, Boston, MA,
June 2001.

128

[47] Linux Benchmark Suite Homepage. A GPLd chat room benatk.
http://Ibs.sourceforge.net/.

[48] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Lend &. Parekh. An analysis
of database workload performance on simultaneous mudatted processors. In
Proc. of the 25th Annual International Symp. on Computehiecture pages 39—
50, 1998.

[49] J. Lo, J. Emer, H. Levy, R. Stamm, and D. Tullsen. Conuagrthread-level paral-
lelism to instruction-level parallelism via simultaneconsltithreading ACM Trans-
actions on Computer System$(3):322—-354, 1997.

[50] E. P. Markatos, M. Katevenis, D. N. Pnevmatikatos, andAlburis. Secondary
storage management for web proxiesPhoc. of the 2nd USENIX Symp. on Internet
Technologies and Systems (USITS,89ulder, CO, Oct. 1999.

[51] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A. Mer, and M. Upton.
Hyper-threading technology architecture and microaechitre. Intel Technology
Journal 6(1):4-15, Feb. 2002.

[52] L. McDowell, S. Eggers, and S. Gribble. Improving sergeftware support for
simultaneous multithreaded processorsPiac. of the 2003 Symp. on Principles of
Parallel Programming (PPoPP’03pages 37—48, San Diego, CA, June 2003.

[53] L. W. McVoy and C. Staelin. Imbench: Portable tools ferfprmance analysis. In
USENIX 1996 Annual Technical Conferenpages 279-294, San Diego, CA, June
1996.

[54] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hallgsworth, R. B. Irvin, K. L.
Karavanic, K. Kunchithapadam, and T. Newhall. The paradymaltel performance
measurement toolEEE Computer28(11):37—-46, 1995.

[55] Mindcratft. Webstone: The benchmark for web servers.
http://www.mindcraft.com/webstone/.

[56] Mindcraft, Inc. WebStone Benchmark. http://www.mandft.com/ webstone.

[57] 1. Molnar. Method and apparatus for atomic file look-uplnited States Patent
Application #20020059330, May 16, 2002.

[58] E. Nahum. Deconstructing SPECweb99. 7t International Workshop on Web
Content Caching and Distribution (WCWBoulder, CO, Aug. 2002.

[59] D. Olshefski, J. Nieh, and D. Agrawal. Inferring clier@sponse time at the web
server. InProc. of the SIGMETRICS '02 Conferenddarina Del Rey, CA, June
2002.

129

[60] Open Market. FastCGl. http://www.fastcgi.com/.
[61] OProfile. http://oprofile.sourceforge.net/.

[62] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: Aniefiicand portable web
server. INUSENIX 1999 Annual Technical Conferenpages 199-212, Monterey,
CA, June 1999.

[63] V. S. Pai, P. Druschel, and W. Zwaenepoel. |0-Lite: afiadil/O buffering and
caching systemACM Transactions on Computer Systet¥(1):37—66, 2000.

[64] R. H. Patterson, G. A. Gibson, and M. Satyanarayanartats report on research
in transparent informed prefetchingCM Operating Systems Revieqv(2):21-34,
1993.

[65] V. Puente, J. A. Gregorio, C. Izu, and R. Beivide. Impafdhe head-of-line block-
ing on parallel computer networks: Hardware to applicatidn European Confer-
ence on Parallel Processingages 1222-1230, 1999.

[66] L. K. Puthiyedath, E. Cota-Robles, J. Keys, and J. P. hll Aggarwal. The design
and implementation of the intel real-time performance yreal In Eighth IEEE
Real-Time and Embedded Technology and Applications Syampdsan Jose, CA,
Sept. 2002.

[67] X. Qie, R. Pang, and L. Peterson. Defensive programmiiging an annotation
toolkit to build dos-resistant software. Rroc. of the 5th USENIX Symp. on Oper-
ating Systems Design and ImplementatiBoston, MA, Dec. 2002.

[68] R. E. Hiromoto, O. M. Lubeck, and J. Moore. Experiencéthwhe Denelcor HEP.
In Parallel Computingpages 197-206, 1984.

[69] S. Raasch and S. Reinhardt. The impact of resourcetipaitig on SMT pro-
cessors. Ir2th Intl. Conf. on Parallel Architectures and Compilatidachniques
(PACT’03) New Orleans, Louisiana, Sept. 2003.

[70] R. Rajamony and M. EInozahy. Measuring client-peredivesponse times on the
www. In Proc. of the 3rd USENIX Symp. on Internet Technologies arste8\s
(USITS’97) San Francisco, CA, March 2001.

[71] R. Rajwar and J. R. Goodman. Transactional lock-freecaton of lock-based
programs. IrProc. of the 9th International Conference on ArchitectuBabpport for
Programming Languages and Operating Syste@@nbridge, MA, Nov. 2000.

[72] N. Ramanathan, E. Kohler, L. Girod, and D. Estrin. SythgaA debugging sys-
tem for sensor networks. [P9th Annual IEEE International Conference on Local
Computer Networks (LCN’04Nov. 2004.

130

[73] J. Redstone, S. Eggers, and H. Levy. An analysis of dipgraystem behavior on a
simultaneous multithreaded architecture.Pioc. of the 9th International Confer-
ence on Architectural Support for Programming Languages@perating Systems
pages 245-256, 2000.

[74] T. Romer, G. V. D. Lee, A. Wolman, W. Wong, H. Levy, B. N.Bbad, and J. B.
Chen. Instrumentation and optimization of Win32/Intel @xables using etch. In
USENIX Windows NT Workshgpages 1-8, 1997.

[75] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Cosplcomputer system
simulation: The SimOS approachEEE parallel and distributed technology: sys-
tems and applications8(4):34-43, Winter 1995.

[76] Y. Ruan. Oprofile patch for xeon/p4. http://www.csrmeton.edu/ yruan/XeonSMT/
patch/.

[77] Y. Ruan and V. Pai. Making the "Box” transparent: Systeali performance as a
first-class result. IVSENIX 2004 Annual Technical ConferenBeston, MA, June
2004.

[78] Y. Ruan and V. Pai. The origins of network server late&daye myth of connection
scheduling (extended abstract).Rroceedings of the 2004 ACM International Con-
ference on Measurement and Modeling of Computer Syste@8STRICS’04)
New York, NY, June 2004.

[79] Y. Ruan, V. Pai, E. Nahum, and J. Tracey. Evaluating thpact of simultane-
ous multithreading on network servers using real hardwhrd?roceedings of the
2005 ACM International Conference on Measurement and Moglelf Computer
Systems (SIGMETRICS’QBanff, AB, Canada, June 2005.

[80] D. C. Schmidtand J. C. Hu. Developing flexible and higdrfprmance Web servers
with frameworks and pattern&CM Computing Survey82(1):39, 2000.

[81] E. Shriver, E. Gabber, L. Huang, and C. A. Stein. Storag@agement for web
proxies. InProc. of the USENIX 2001 Annual Technical Conferemages 203—
216, Boston, MA, 2001.

[82] U. Sigmund and T. Ungerer. Memory hierarchy studies oftimedia-enhanced
simultaneous multithreaded processors for mpec-2 videordpression. ItWork-
shop on MultiThreaded Execution, Architecture and Contisitg January 2000.

[83] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. Stl@aN. Mitchell, J. Feo,
and B. Koblenz. Multi-processor performance on the tera mt&roc. of the 1998
ACM/IEEE conference on Supercomputipgges 1-8, 1998.

131

[84] A. Snavely and D. Tullsen. Symbiotic job scheduling gosimultaneous multi-
threaded processor. Proc. of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systpages 234-244. ACM
Press, 2000.

[85] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic joheduling with priorities for
a simultaneous multithreading processor.Phoc. of the SIGMETRICS’Q2ages
66—76, June 2002.

[86] A. Srivastava and A. Eustace. Atom: A system for buigdoustomized program
analysis tools. I'ACM SIGPLAN '94 Conference on Programming Language De-
sign and Implementatigmpages 196—205, June 1994.

[87] Standard Performance Evaluation Corporation. Htpuiv.spec.org/bench
marks.html.

[88] Standard Performance Evaluation Corporation. SPECh VEBenchmarks.
http://www.spec.org/web99/ http://www.spec.org/web96

[89] A. Tamches and B. P. Miller. Fine-grained dynamic instentation of commodity
operating system kernels. Rroc. of the 3rd USENIX Symp. on Operating Systems
Design and Implementatippages 117-130, New Orleans, LA, Feb. 1999.

[90] N. Tuck and D. Tullsen. Initial observations of a sinauleous multithreading pro-
cessor. Inl2th Intl. Conf. on Parallel Architectures and Compilatidachniques
(PACT’03) Sept. 2003.

[91] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stankxploiting choice:
Instruction fetch and issue on an implementable simultaseoultithreading pro-
cessor. IrProc. of the 23rd Annual International Symp. on Computehiecture
pages 191-202, 1996.

[92] D. Tullsen, S. Eggers, and H. Levy. Simultaneous mulgading: Maximizing on-
chip parallelism. InProc. of the 22nd Annual International Symp. on Computer
Architecture 1995.

[93] TUX Web Server. http://www.tux.org/.
[94] D. Vianney. Hyper-Threading speeds LinuBM developerWorkslan. 2003.

[95] R. von Behren, J. Condit, F. Zhou, G. C. Necula, , and Eewir. Capriccio:
Scalable threads for internet servicesPhoc. of the 18th ACM Symp. on Operating
System PrincipleBolton Landing, NY, Oct. 2003.

132

[96]

[97]

[98]

M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An arclutere for well-
conditioned, scalable internet services. Aroc. of the 19th ACM Symp. on Op-
erating System Principlepages 230-243, Chateau Lake Louise, Banff, Canada,
Oct. 2001.

K. Yaghmour and M. R. Dagenais. Measuring and chareatey system behavior
using kernel-level event logging. MSENIX 2000 Annual Technical Conference
San Diego, CA, June 2000.

C. X. Zhang, Z. Wang, N. C. Gloy, J. B. Chen, and M. D. Sm#lgstem support for
automated profiling and optimization. Rroc. of the 16th ACM Symp. on Operating
System Principlepages 15-26, Saint-Malo France, Oct. 1997.

133

