
UNDERSTANDING INTERNET ROUTING

ANOMALIES AND BUILDING ROBUST

TRANSPORT LAYER PROTOCOLS

MING ZHANG

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

SEPTEMBER 2005

c© Copyright by Ming Zhang, 2005. All rights reserved.

Abstract

As the Internet grows and routing complexity increases, network-level instabilities are be-

coming more and more common. End-to-end communications are especially susceptible

to service disruptions, while diagnosing and mitigating these disruptions are extremely

challenging. In this dissertation, we design and build systems for diagnosing routing

anomalies and improving robustness of end-to-end communications.

The first piece of this work describes PlanetSeer, a novel distributed system for di-

agnosing routing anomalies. PlanetSeer passively monitors traffic in wide-area services,

such as Content Distribution Networks (CDNs) or Peer-to-Peer (P2P) systems, to detect

anomalous behavior. It then coordinates active probes from multiple vantage points to

confirm the anomaly, characterize it, and determine its scope. There are several advan-

tages of this approach: first, we obtain more complete and finer-grained views of routing

anomalies since the wide-area nodes provide geographically-diverse vantage points. Sec-

ond, we incur limited additional measurement cost since most active probes are initiated

when passive monitoring detects oddities. Third, we detect anomalies at a much higher

rate than other researchers have reported since the wide-area services provide large vol-

umes of traffic to sample. Through extensive experimental study in the wide-area net-

work, we demonstrate that PlanetSeer is an effective system for both gaining a better

understanding about routing anomalies and for providing optimization opportunities for

the host service.

To improve the robustness of end-to-end communications during performance anoma-

lies, we design mTCP, a novel transport layer protocol that can minimize the impact of

anomalies using redundant paths. mTCP separates the congestion control for each path

so that it can not only obtain higher throughput but also be more robust to path failures.

mTCP can quickly react to failures, and the recovery process normally takes only several

iii

seconds. We integrate a shared congestion detection mechanism into mTCP that allows

us to suppress paths with shared congestion. This helps alleviate the aggressiveness of

mTCP. We also propose a heuristic to find disjoint paths between pairs of nodes. This can

minimize the chance of concurrent failures and shared congestion. We implement mTCP

on top of an overlay network and evaluate it using both emulations and experiments in

the wide-area network.

iv

Acknowledgments

I have been incredibly fortunate to have had three mentors during the course of my PhD

study. The first one is Professor Randy Wang. I would like to thank him for his guid-

ance, support, and help throughout the years. I consider myself very lucky to have the

chance to work and learn from him. He provided the enthusiasm and encouragement that

I needed to complete this work. The second one is Professor Larry Peterson. He made

himself available for numerous discussions, often started by my dropping by his office

unexpectedly. I always left with a deeper and clearer understanding about those research

problems than I’d had when I arrived. I learned from him that research requires combina-

tion of dedication, confidence, and truly long-term thinking. I am sincerely grateful for

his high standard for research, kindness, and patience. The third one is Professor Vivek

Pai. He provided me invaluable guidance and frequent advice on the PlanetSeer project.

His vigorous approach both to research and to life has greatly shaped and enriched my

view of networking and systems research. I have to thank him for letting me steal an

enormous amount of time and wisdom during the last two years of my PhD study.

I am fortunate to collaborate with Chi Zhang on lots of the work presented in this

thesis. Chi is my friend, lab-mate, as well as apartment-mate. I drew immense inspiration

from him both inside and outside work. He is the best collaborator one could ask for. I

am also grateful to Junwen Lai. The mTCP project would not have been possible without

his help on the user-level TCP implementation.

The second part of my thesis was inspired by my work at ICIR, starting in the summer

of 2001. I thank Dr. Brad Karp for making my visit possible. Later, Brad gave me the

chance to continue collaborating with him at Intel Research Pittsburgh in the summer of

2003. I benefited enormously from the two summers I spent working with him. While at

ICIR, I thank Dr. Sally Floyd for teaching me a lot on TCP related problems. It was a

v

great honor to work with Professor Arvind Krishnamurthy, who provided many vigilant

comments on various algorithms in my work. I am especially grateful to Professor Jen-

nifer Rexford. She always patiently listened to my incoherent thoughts and provided me

amazingly insightful and detailed feedback. I learned a tremendous amount from her on

doing research as well as on writing and presentation.

I am grateful to the PlanetLab staffs for their help with deploying the PlanetSeer

system. Andy Bavier answered me lots of questions on safe raw socket. Marc Fiuczynski

shared with me his extensive experience in vserver. I would like to thank Scott Karlin,

Mark Huang, Aaron Klingaman, Martin Makowiecki, and Steve Muir for their support

and patience. I also thank KyoungSoo Park for his effort in keeping CoDeeN operational

during my experiment.

I would like to thank Professor David Walker and Moses Charikar for serving as

non-readers on my dissertation committee. They gave many valuable comments and

suggestions on my work.

My work was supported in part by NSF grants CNS-0335214 and CNS-0435087, and

DARPA contract F30602-00-2-0561.

I greatly enjoyed my life at Princeton because of the many close friends I had there.

I thank Ding Liu, Chi Zhang, Yaoping Ruan, Fengzhou Zheng, Ting Liu, Wen Xu, Gang

Tan, and Fengyun Cao for their support and encouragement throughput the years. I also

thank my non-Princeton friends, especially Xuehua Shen and Ningning Hu. They made

my life lots of fun.

This thesis is dedicated to my parents. They always gave me love, trust, and pride.

They played the most important role in directing me into pursuing a research career.

vi

Contents

Abstract . iii

1 Introduction 1

1.1 Why Do Performance Anomalies Occur on the Internet? 3

1.2 Difficulties in Anomaly Diagnosis . 5

1.3 Difficulties in Anomaly Mitigation . 8

1.4 Overview of the Thesis . 9

2 Background and Related Work 12

2.1 Network Testbeds . 12

2.2 Intradomain Routing Anomalies . 13

2.3 Interdomain Routing Anomalies . 14

2.4 Traffic Anomalies . 15

2.5 End-to-End Failure Measurement . 16

2.6 Link-Layer and Application-Layer Striping 18

2.7 Transport-Layer Striping . 18

2.8 Summary . 19

3 PlanetSeer: Internet Path Failure Monitoring and Characterization 21

3.1 Introduction . 22

vii

3.2 PlanetSeer Operation . 25

3.2.1 Components . 25

3.2.2 MonD Mechanics . 26

3.2.3 MonD Behavior . 27

3.2.4 MonD Flow/Path Statistics . 28

3.2.5 ProbeD Operation . 29

3.2.6 ProbeD Mechanics . 31

3.2.7 Path Diversity . 32

3.3 Confirming Anomalies . 33

3.3.1 Massaging Traceroute Data . 33

3.3.2 Final Confirmation . 35

3.4 Loop-Based Anomalies . 37

3.4.1 Scope . 39

3.4.2 Distribution . 41

3.4.3 End-to-End Effects . 43

3.5 Building a Reference Path . 44

3.6 Classifying Non-loop Anomalies . 48

3.6.1 Path Changes . 49

3.6.2 Path Outage . 53

3.7 Discussion . 58

3.7.1 Bypassing Anomalies . 58

3.7.2 Reducing Measurement Overhead 60

3.8 Summary . 60

4 mTCP: Robust Transport Layer Protocol Using Redundant Paths 63

viii

4.1 Introduction . 63

4.2 Design . 67

4.2.1 Transport Layer Protocol . 67

4.2.2 Shared Congestion Detection . 72

4.2.3 Path Selection . 77

4.2.4 Path Management . 80

4.2.5 Path Failure Detection and Recovery 81

4.3 Implementation . 83

4.4 Evaluation . 84

4.4.1 Methodology . 84

4.4.2 Utilizing Multiple Independent Paths 85

4.4.3 Recovering from Partial Path Failures 90

4.4.4 Detecting Shared Congestion . 92

4.4.5 Alleviating Aggressiveness with Path Suppression 97

4.4.6 Suppressing Bad Paths . 98

4.4.7 Comparing with Single-Path Flows 99

4.5 Summary . 103

5 Conclusion and Future Work 104

5.1 Summary of the Dissertation . 104

5.1.1 Internet Path Failure Monitoring and Characterization 105

5.1.2 Robust Transport Layer Protocol Using Redundant Paths 106

5.2 Future Work . 107

5.2.1 Debugging Routing Anomalies 107

5.2.2 Debugging Non-Routing Anomalies 109

ix

5.2.3 Internet Weather Service . 110

x

List of Figures

1.1 The Internet consists of many ASes . 2

1.2 Routing anomaly is often propagated . 6

3.1 Percentage of loops and traffic in each tier 41

3.2 CDF of loss rates preceding the loop anomalies 43

3.3 CDF of RTTs preceding the loop anomalies vs. under normal conditions 44

3.4 Narrowing the scope of path change . 49

3.5 Scope of path changes and forward outages in number of hops 49

3.6 Distance of path changes and forward outages to the end hosts in number of hops 50

3.7 Percentage of forward anomalies and traffic in each tier 52

3.8 Narrowing the scope of forward outage . 54

3.9 CDF of loss rates preceding path changes and forward outages 56

3.10 CDF of RTTs preceding path changes and forward outages vs. under normal

conditions . 58

3.11 CDF of latency ratio of overlay paths to direct paths 59

3.12 CDF of number of path examined before finding the intercept path 61

4.1 CDF of number of disjoint paths between node-pairs 79

4.2 Topology of multiple independent paths on Emulab 85

xi

4.3 Throughput of mTCP flows with combined or separate congestion control

as number of paths increases from 1 to 5 86

4.4 Throughput percentage of individual flows 88

4.5 cwnd of primary path, primary path fails 89

4.6 cwnd of auxiliary path, primary path fails 89

4.7 Two independent paths used in shared congestion detection 91

4.8 Two paths that completely share congestion 91

4.9 On two paths with shared congestion, ratio increases as interval increases 93

4.10 On two independent paths, ratio decreases faster when interval is smaller 93

4.11 All paths share congestion in this topology 97

4.12 MP1 flows are less aggressive than other mTCP flows 98

4.13 Path suppression helps avoid using bad paths. 99

4.14 mTCP flows achieve better throughput than single-path flows 101

4.15 Throughput of mTCP and single-path flows is comparable 102

5.1 Locating the origin of AS-path change . 108

xii

List of Tables

3.1 Groups of the probing sites . 31

3.2 Path diversity . 33

3.3 Breakdown of anomalies reported by MonD 35

3.4 Breakdown of reported anomalies using the four confirmation conditions . 36

3.5 Summarized breakdown of 21565 loop anomalies. Some counts less than 100%

because some ASes are not in the AS hierarchy mapping. 39

3.6 Number of hops in loops, as % of loops 40

3.7 Non-loop anomalies breakdown . 47

3.8 Summary of path change and forward outage. Some counts exceed 100%

due to multiple classification. 53

3.9 Breakdown of reasons for inferring forward outage 55

4.1 Independent paths between Princeton and Berkeley nodes on PlanetLab. . 87

4.2 Paths used in the failure recovery experiment. 89

4.3 Shared congestion detection for independent paths. 95

4.4 Paths with shared congestion on PlanetLab. 96

4.5 Shared congestion detection for correlated flows. 96

4.6 The 10 endhosts used in the experiments that compare mTCP with single-

path flows. 100

xiii

Chapter 1

Introduction

As the Internet has experienced exponential growth in recent years, so does its complex-

ity. The increasing complexity can potentially introduce more network-level instabilities.

Today, the Internet consists of roughly 20,000 Autonomous Systems (ASes) [32], where

each AS represents a single administrative entity. As shown in Figure 1.1, to go from

one endpoint to another, packets have to traverse a number of ASes. Ideally, the pack-

ets should be delivered both reliably and efficiently through the network. However, in

reality, the network paths may not be perfect. One pathological event occurring within

a single AS could affect many ASes and a large number of network paths through those

ASes. During such periods, users will perceive performance degradation. Our goal is to

improve the performance and robustness of end-to-end communications on the Internet.

In this dissertation, we focus on the network performance anomalies, which are broadly

defined as any pathological events occurring in the network that cause end-to-end perfor-

mance degradation.

We study performance anomalies from two perspectives. In the first part of this the-

sis, we aim to understand the characteristics of the anomalies. More specifically, we

1

AS3

AS2

AS1

AS4

AS7

AS5

AS6

Client

Web Server

Figure 1.1: The Internet consists of many ASes

investigate how to detect and diagnose the anomalies, how to estimate their locations and

scopes, and how to quantify their effects on the end-to-end performance. These types of

information are very important. On the one hand, knowing where the anomalies occur

will improve the accountability of the Internet. A customer may use this information to

select good service providers (ISPs). Similarly, an ISP may use this information to se-

lect good peering ISPs. In addition, if two entities have service level agreements (SLAs)

with each other, they may obtain compensations for violating these agreements. On the

other hand, knowing why the anomalies occur will help the network operators to fix the

problems quickly and to prevent the similar problems from occurring in the future.

Although understanding the characteristics and origins of performance anomalies can

help us improve the long-term stability of the Internet, we are still going to encounter

anomalies frequently in the foreseeable future. When an anomaly does occur, it is desir-

able for end users to be able to bypass the anomaly as quickly as possible. In the second

part of this thesis, we describe a novel transport layer protocol that can minimize the im-

2

pact of anomalies by taking advantage of redundant paths on the Internet. Today, TCP

is the dominant transport layer protocol for end-to-end communications. TCP only uses

a single network path between two endpoints. Should any congestion or failure occur

on that path, TCP’s performance will be significantly reduced. Recent work on Internet

measurement and overlay networks has shown that there often exist multiple paths be-

tween pairs of hosts [78]. Using these redundant paths, we can not only aggregate the

bandwidth of multiple paths in parallel but also enhance the robustness of end-to-end

communications during anomalies.

In Section 1.1, we first briefly explain why anomalies occur on the Internet and how

they affect end-to-end performance. Then in Section 1.2 and 1.3, we explain why it

is difficult to detect, diagnose and mitigate anomalies. At the end of this chapter in

Section 1.4, we provide an overview of this dissertation.

1.1 Why Do Performance Anomalies Occur on the Inter-

net?

Although the Internet is designed to be self-healing, users often experience performance

degradation. For instance, they may find certain websites are unreachable or their network

speed is very slow. These problems may be caused by various pathological events that

occur in the network.

Routing instability is one of the major sources of performance anomalies. Routing

protocols are responsible for discovering the paths to reach any destination on the In-

ternet. Routing protocols can be classified into interdomain and intradomain protocols.

Intradomain protocols (IGP), such as OSPF[44] or IS-IS[20], are responsible for dis-

3

seminating reachability information within an AS. Interdomain protocols (EGP), such as

BGP[75], maintain the reachability information among all the ASes.

Routing instabilities may arise when routing protocols are adapting to topological or

policy changes. Inside an AS, link outages often stem from maintenance, power outages,

and hardware failures [53]. When an outage occurs, routing protocols may try to bypass

the failure using alternate paths. This, in turn, will lead to route changes. Sometimes,

route changes may also be caused by traffic engineering inside a network [30, 50]. At

the AS-level, outages may arise due to peering link failures or eBGP session resets [91].

These outages can lead to AS-path changes. In addition, since BGP incorporates policies

into route selection process, AS-level route changes may be triggered by policy changes

as well [75].

Besides route changes and outages, routing instabilities can often lead to routing

loops. When a routing instability occurs, each router needs to propagate the latest reacha-

bility information to routers within the same AS or in other ASes through routing updates.

During this process, loops may evolve because different routers may have inconsistent

routing states. The convergence time of the propagation process itself can be highly

varied. IGPs usually converge within several hundred milliseconds [79] to several sec-

onds [42]. In contrast, it may take tens of minutes for BGP routers in different ASes to

reach a consistent view on the network topology [52].

Due to the complexity of routing protocols, routing instabilities can also be caused

by misconfigurations. A recent study shows that 3 in 4 new prefix advertisements re-

sult from BGP misconfigurations [61]. In an earlier study, Labovitz, Malan and Jahanian

find that 99% of BGP updates are pathological and do not reflect network topological

changes[54]. These BGP misconfigurations can cause various routing problems, such as

4

routing loops [22, 26], invalid routes [61], contract violations [27], and persistent oscilla-

tions [12, 34, 89].

Another major source of performance anomalies is congestion. Congestion arises

when the packet arrival rate of a link exceeds the link capacity. It is often caused by flash

crowds, distributed denial of service (DDoS) attacks, worm propagations, or sometimes

even routing instabilities [86]. When a link becomes congested, it may have to delay or

drop packets. This will impose negative effects on flows that are traversing that link. For

instance, TCP’s throughput is inversely proportional both to the round trip time (RTT) and

to the square root of loss rate [70]. When the loss rate or RTT increases, the throughput of

TCP will decrease. When the loss rate exceeds 30%, TCP becomes essentially unusable

since it spends most time in timeouts [70].

1.2 Difficulties in Anomaly Diagnosis

Although performance anomalies occur quite frequently on the Internet, diagnosing these

anomalies is nontrivial. This is because the Internet is not owned by a single administra-

tive entity but instead consists of many autonomous systems (ASes). Each AS is operated

by a network service provider (ISP) and has its own routing policy. The routing informa-

tion shared between two ASes is heavily filtered and aggregated using BGP [75]. While

this allows the Internet to scale to thousands of networks, it makes anomaly diagnosis

extremely challenging.

As we described in the beginning of Section 1, the network path between two end-

points usually traverses multiple ASes and routers. When an anomaly arises, any inter-

mediate component in that path can introduce the problem. Although tools like ping and

5

AS3

AS2

AS1

AS4

AS5

AS6

Client

Web Server

Figure 1.2: Routing anomaly is often propagated

traceroute exist for diagnosing network problems, determining the origins of anomalies

is exceptionally difficult for several reasons:

Anomaly origin may differ from anomaly appearance. Routing protocols, such as

BGP, OSPF, and IS-IS, may propagate reachability information to divert traffic away from

failed components. When a traceroute stops at a hop, it is often the case that the router

has received a routing update to withdraw that path, leaving no route to the destination.

For example in Figure 1.2, the client traverses the AS path “6 5 4 3 2 1” to reach the web

server. Suppose there is a link outage between AS2 and AS3 that makes the web server

unreachable from AS3. This unreachability information will be propagated from AS3 to

AS4, AS5, and AS6. Although the traceroute from the client will stop at AS6, AS6 is

actually far away from the origin of the failure.

Anomaly information may be abstracted. The Internet consists of many ASes and

each AS manages its own network independently. An AS will hide various internal in-

6

formation from other ASes for scalability reasons. In addition, since ASes are often

competing with each other, they are unwilling to share sensitive information, such as

their traffic, topology, and policy. As a result, when an AS observes an anomaly, it may

not have enough detailed information to either pinpoint or troubleshoot the anomaly. For

example in Figure 1.2, when AS6 loses the route to the web server, it can hardly tell

whether the problem occurs in AS1, 2, 3, 4, or 5.

Anomaly durations are highly varied. Some anomalies, like routing loops, can last

for days. Others may persist for less than a minute. This high variability makes it hard to

diagnose anomalies and react in time.

Network paths are often asymmetric. Because BGP is a policy-based routing proto-

col, this may lead to asymmetric paths, which means the sequence of ASes visited by the

routes for the two directions of a path differ. Paxson observed that 30% of node pairs

have different forward and reverse paths which visit at least one different AS [71]. Since

traceroute only maps the forward path, it is hard to infer whether the forward or reverse

path is at fault without cooperation from the destination.

For the above reasons, to diagnose anomalies, we have to collect anomaly-related

data from many locations. Historically, few sites had enough network coverage to pro-

vide such fine-grained and complete information. The advent of wide-area network

testbeds like PlanetLab [74] has made it possible to diagnose anomalies from multiple

geographically-diverse vantage points. In Chapter 3, we will introduce PlanetSeer, a

novel diagnostic system that can take advantage of the wide coverage of PlanetLab [94].

We will describe in detail how PlanetSeer combines passive monitoring with widely-

distributed probing machinery to detect and isolate routing anomalies on the Internet.

7

1.3 Difficulties in Anomaly Mitigation

As we have mentioned before, BGP is the de-facto interdomain routing protocol on the

Internet today. BGP is a policy-based protocol which computes routes conforming to

commercial relationships between ASes. This may lead to suboptimal routing decision

for end-to-end communications [5]. For instance, Spring, Mahajan, and Anderson show

that current peering policies cause the latency of over 30% of the paths to be longer

than the shortest available paths [82]. In addition, because BGP has to scale to a large

number of networks, it adopts various mechanisms to hide detailed information and damp

routing updates. Although this reduces the chance of routing oscillations, it makes BGP

less responsive to failures. Sometimes, it takes many minutes for BGP to converge to a

consistent state after failures [52]. The end-to-end service disruptions could last for tens

of minutes or more [65].

More recently, application-layer overlay routing has been proposed as a remedy to

this problem. Overlay routing can recover from performance degradation within a shorter

period of time than the wide-area routing protocols [5]. In an overlay routing system, the

participating nodes periodically probe each other to monitor the performance of the paths

between them. When an anomaly is detected on the direct Internet path between a pair of

nodes, the system will try to bypass the anomaly by choosing a good overlay path through

one or more intermediate nodes.

While overlay routing can circumvent performance degradation more quickly, its ef-

fectiveness to a large extent depends on its active probing mechanism. We use Resilient

Overlay Networks (RON) [5], a representative overlay routing system, to exemplify these

problems. First, when an anomaly occurs, how fast RON can recover from the anomaly

is determined by its probing rate. In RON, the participating nodes probe each other every

8

3 seconds during the anomalous period. Correspondingly, its mean outage detection time

is 19 seconds. However, the probing overhead of this approach is O(n2), where n is the

total number of nodes. When n becomes large, it is difficult to maintain low measurement

overhead while still achieving short recovery time.

Second, RON estimates the available bandwidth of the monitored paths using ac-

tive probing. When an anomaly is detected, it chooses a good alternate path based on

the estimated bandwidth. However, the state-of-the-art available bandwidth estimation

tools need to inject a fair amount of probing packets to obtain reasonably accurate esti-

mates [46, 40, 3]. For scalability reasons, RON uses a much more lightweight probing

mechanism. This may lead to inaccurate bandwidth estimates under many circumstances,

which in turn impairs its routing decisions.

To overcome these problems, we design mTCP, a novel transport layer protocol that

can utilize multiple paths in parallel [93]. By using more than one paths, mTCP can

recover from performance anomalies very quickly. Our approach incurs little measure-

ment overhead, since mTCP can accurately estimate the available bandwidth of multiple

paths by passively monitoring the traffic on those paths. We will describe more on this in

Chapter 4.

1.4 Overview of the Thesis

We now give an overview of this dissertation. In Chapter 2, we describe the related work

in this area and provide a background for our work. We will first introduce the network

testbeds that are used for evaluating our systems. We then go through the recent work

on studying performance anomaly on the Internet. Based on their methodologies, we

classify them into intra- and inter-domain routing anomalies, traffic anomalies, and end-

9

to-end measurements. At the end of Chapter 2, we will discuss the research efforts that

improve the end-to-end performance using striping at the link-layer, application-layer and

transport-layer.

Chapter 3 focuses on PlanetSeer, a large-scale distributed system for routing anomaly

detection and diagnosis. We first describe the components and mechanism of PlanetSeer,

including how to detect suspicious routing events by passively observing the traffic gen-

erated by wide-area services and how to coordinate multiple nodes to actively probe these

events. We then analyze the anomaly data that is collected during a 3-month period in

2004. We describe our techniques for confirming the routing anomalies, classifying them,

and characterizing their scopes, locations, and end-to-end effects. In the end, we quantify

the effectiveness of overlay routing in bypassing path failures.

Chapter 4 presents mTCP, a novel transport layer protocol that is robust to perfor-

mance anomaly. mTCP differs from traditional transport layer protocols in that it can

use more than one paths in parallel. It has four major components: 1) new congestion

control for aggregating bandwidth on multiple paths, 2) shared congestion detection and

suppression for alleviating the aggressiveness of mTCP, 3) failure detection and recovery

for quickly reacting to performance anomaly, and 4) path selection for minimizing the

chance of concurrent failures and shared congestion. mTCP has been implemented as a

user-level application running on top of overlay networks. We use experiments on both

local-area and wide-area network testbeds to demonstrate its effectiveness.

Chapter 5 concludes with a summary of this dissertation and our vision for future

work. We have made two main contributions in this work. First, we demonstrate that

it is possible to build a distributed system for detecting and isolating routing anomalies

with high accuracy. Second, we can dramatically improve the robustness of end-to-end

communications using redundant paths. We are going to continue our research in sev-

10

eral directions. First, we plan to extend our system by studying performance anomalies

caused by non-routing problems. Second, We plan to investigate new ways to improve

the accuracy of routing anomaly diagnosis and to reduce measurement overhead. Finally,

we plan to build a network weather service that can continuously monitor the health of

the Internet.

11

Chapter 2

Background and Related Work

In this chapter, we provide a background for our work and give an overview of the re-

lated work in this area. There have been many research efforts on studying anomalies

in the Internet and designing robust network protocols. We will focus on those that are

most relevant and discuss their difference from our approaches. We first briefly introduce

the network testbeds used for our experiments and evaluations. We then turn to the re-

cent studies on network anomalies, which include interdomain and intradomain routing

anomalies, traffic anomalies, and end-to-end failure measurements. In the end, we discuss

the research efforts that use striping techniques to improve performance and robustness.

Based on the network layer where the striping techniques are applied, we classify them

into link-layer, transport-layer, and application-layer striping.

2.1 Network Testbeds

We evaluate our systems with both emulations and real-world deployment. The emu-

lations are conducted on Emulab [24], a time- and space-shared network emulator. It

12

consists of several hundred PCs, which allows users to remotely configure and control

the machines and links down to the hardware level. Users can use ns-compatible [68]

scripts to build network topologies and define various parameters, such as packet loss

rate, latency, bandwidth, and queue size. As a result, users are able to construct a wide

range of scenarios under which the prototype systems can be evaluated. In addition, since

the emulation results are repeatable, users can easily quantify the effectiveness of their

design.

We use PlanetLab for our wide-area network experiments [74]. PlanetLab is a global

testbed for experimenting with planetary-scale services. It currently consists of over 500

machines, hosted by more than 270 sites, spanning 25 countries. PlanetLab enables us

to experiment with new systems under real-world conditions and at large scale. We can

observe a realistic network substrate that experiences congestion or failures. PlanetLab

also provides us with a large set of geographically-distributed machines to investigate

network anomalies and study the behavior of our systems during anomalous periods.

2.2 Intradomain Routing Anomalies

As we mentioned in Section 1.1, routing anomaly is one of the major causes of perfor-

mance degradation on the Internet. We first look at intradomain routing anomalies and

defer the discussion about interdomain routing anomalies to the next section. Nowadays,

the most commonly used intradomain routing protocols are OSPF and IS-IS. Researchers

have been using routing updates collected in individual ISPs to study routing anomalies.

Labovitz and Ahuja used the OSPF messages gathered in a medium-sized regional ISP,

together with the data from the trouble ticket tracking system managed by the Network

Operation Center (NOC) of that ISP, to characterize the origins of routing failures. They

13

classify the failures into hardware, software, and operational problems [53]. Iannac-

cone et al. investigated the routing failures in Sprint’s IP backbones using IS-IS routing

updates collected from three vantage points [42]. They examined the frequency and du-

ration of the failures inferred from routing updates and concluded that most failures are

short-lived (within 10 minutes). They also studied the interval between failures.

2.3 Interdomain Routing Anomalies

There has also been extensive work on studying BGP routing instabilities. Labovitz and

Ahuja [53] studied interdomain routing failures using the BGP data collected from several

ISPs and 5 network exchange points. They analyzed the temporal properties of failures,

such as mean time to fail, mean time to repair, and failure duration. They found that 40%

of the failures were repaired within 10 minutes and 60% of them were resolved within

30 minutes. Wu et al. presented an online troubleshooting system that could identify

significant routing disruptions in large volumes of BGP updates [91]. They applied their

tool to the BGP messages collected in the AT&T backbone networks and found that many

routing disruptions and traffic shifts were caused by hot-potato changes and eBGP session

resets.

Mahajan, Wetherall, and Anderson [61] studied BGP misconfigurations using the

BGP updates from RouteViews [69], which has 23 vantage points across different ISPs.

They found BGP misconfigurations were relatively common and classified them into ori-

gin and export misconfigurations. Nearly 3 in 4 new prefix advertisements were due to

misconfigurations. However, misconfigurations usually had limited impact on end-to-end

performance, since only 1 in 25 misconfigurations affected end-to-end connectivity.

14

More recently, Feldmann et al. presented a methodology to locate the origin of BGP

routing instabilities along three dimensions: time, prefix, and view [29]. Their basic

assumption is that an AS path change is caused by some instability either on the previous

best path or on the new best path. Caesar et al. [14] and Chang et al. [16] also proposed

similar approaches to analyze routing changes, although their algorithms were different

in details.

All of the above routing anomaly studies are based on either intra-domain (IS-IS,

OSPF) or inter-domain (BGP) routing messages, from which anomalies are inferred. The

first approach requires access to ISP’s internal data. While it is very useful for trou-

bleshooting anomalies inside this ISP, it cannot be easily applied to other ISPs. The

second approach can be used to analyze interdomain routing anomalies but becomes less

useful for debugging anomalies that are unrelated to BGP. As we will describe in Chap-

ter 3, our work complements these two approaches by studying routing anomalies from

an end-to-end perspective. We will also quantify the impact of anomalies on end-to-end

performance, such as loss rate and RTT.

2.4 Traffic Anomalies

Parallel to routing anomalies, several research efforts have focused on traffic anomalies

which are defined as unusual and significant changes in network traffic. These efforts

examined different methodologies for extracting anomalous patterns from large volumes

of noisy data. Lakhina, Crovella, and Diot applied Principle Component Analysis (PCA)

to separating high-dimensional traffic data into subspaces corresponding to normal and

anomalous traffic [56]. Krishnamurthy et al. instead relied on a variant of the sketch data

15

structure to detect changes [51]. Both of them validated their approaches using NetFlow

data [66].

Barford et al. used wavelet analysis to extract distinct characteristics of different

types of anomalies [11]. They demonstrated their algorithm could identify outages, flash

crowds, attacks, and measurement failures in SNMP [15] and IP flow data. Roughan et

al. also used several time-series methods to detect outliers in SNMP data [76]. However,

they correlated the SNMP data with BGP data to reduce the chance of false alarms.

This category of approaches for analyzing traffic anomalies require access to ISP’s

internal data, such as NetFlow, SNMP, or IP flows. However, these data are generally

unavailable for outsiders or normal users. In Chapter 3, we will describe our technique

for troubleshooting routing anomalies based on end-to-end measurements. Since our

approach does not require any proprietary data, it gives end users more flexibility in

anomaly diagnosis.

2.5 End-to-End Failure Measurement

There also has been much work on studying Internet anomalies through end-to-end mea-

surement, and this work has greatly influenced our approach. Paxson [71] studied the end-

to-end routing behavior by running repeated traceroutes between 37 distributed hosts. His

study showed that 49% of the Internet paths were asymmetric and visited at least one dif-

ferent city. 91% of the paths persisted for more than several hours. He used traceroutes to

identify various routing pathologies, such as loops, fluttering, path changes, and outages.

However these traceroutes did not distinguish between forward and reverse failures.

Chandra et al. [21] studied the effect of network failures on end-to-end services using

two traceroute datasets [71, 78]. They also used the HTTP traces collected from 11 prox-

16

ies. They modeled the failures using their location and duration, and evaluated different

techniques for masking failures. However, the HTTP and traceroute datasets were inde-

pendent. In comparison, we combine passive monitoring data and active probing data,

which allows us to detect failures in realtime and correlate the end-to-end effect with dif-

ferent types of failures. They also classified the failures into near-source, near-destination

and in-middle by matching /24s IP prefixes with endhost IPs. In contrast, we study the

location of failures using both IP-to-AS mapping [62] and the 5-tier AS hierarchies [85].

This allows us to quantify the failure locations more accurately and at a finer granularity.

Feamster et al. measured the Internet failures among 31 hosts using periodic pings

combined with traceroutes [25]. They pinged the path between a pair of nodes every

30 seconds, with consecutive ping losses triggering traceroutes. They considered the

location of a failure to be the last reachable hop in traceroute and used the number of hops

to the closest endhost to quantify the depth of the failure. They characterized failures as

inter-AS and intra-AS and used one-way ping to distinguish between forward and reverse

failures. They also examined the correlation between path failures with BGP updates.

Our work is partly motivated by these approaches, but we cannot use their method-

ologies directly due to environmental differences. Because our system monitors the net-

work paths to a large number of IPs, we cannot afford to ping each of them frequently.

Anomaly detection and confirmation are more challenging in our case, since many des-

tinations may not respond to pings (behind firewalls) or even are offline (such as dialup

users). We infer anomalies by monitoring the status of active flows, which allows us to

study anomalies on a much more diverse set of paths. We also combine traceroutes with

passive monitoring to distinguish between forward and reverse anomalies, and classify

forward anomalies into several categories. Since where an anomaly appears may be dif-

ferent from where the anomaly occurs, we quantify the scope of anomalies by correlating

17

the traceroutes from multiple vantage points, instead of using one hop (last reachable

hop) as the failure location. Finally, we study how different types of anomalies affect

end-to-end performance.

2.6 Link-Layer and Application-Layer Striping

We now turn to the research efforts that use multiple paths in a network to improve per-

formance and reliability. One area of related work is the use of striping [87] or inverse-

multiplexing in link-layer protocols to enhance throughput by aggregating the bandwidth

of different links. Adiseshu et al [1], Duncanson et al [23], and Snoeren [81] provided

link-striping algorithms that addressed the issues of load-balancing over multiple paths

and preserving in-order delivery of packets to the receiver. These efforts proposed trans-

parent use of link-level striping without requiring any changes to the upper layers of the

protocol stack.

Another area of related work is the use of striping at the application-layer to improve

throughput by opening multiple TCP sockets concurrently [4, 35, 57, 80]. However, these

multiple TCP connections utilized the same physical path. Although this approach can

attain higher throughput, it may also lead to an unfair share of bandwidth at congested

links and seemed to primarily benefit from increased window sizes over long-latency

connections.

2.7 Transport-Layer Striping

Many researchers have proposed the use of multiple paths by the transport-layer protocols

to enhance reliability [8, 67, 58, 7]. Banerjea [8] used redundant paths in his dispersity

18

routing scheme to improve reliable packet delivery for real-time applications. Nguyen

and Zakhor [67] also proposed the use of multiple paths to reduce packet losses for delay-

sensitive applications. They employed UDP streams to route data whose redundancy was

enhanced through forward error correction techniques.

Multiple paths can also be used for improving the throughput and robustness of end-

to-end connections. SCTP [84] is a reliable transport protocol which supports multiple

streams across different paths. However, it does not provide strict ordering across all the

streams, and it cannot utilize the aggregate bandwidth on multiple paths. There are a

few systems, such as R-MTP [59] and pTCP [38], which are able to achieve bandwidth

aggregation. R-MTP provided bandwidth aggregation by striping packets across multiple

paths based on bandwidth estimation. It estimated the available bandwidth by periodi-

cally probing the paths. As a result, its performance greatly relied on the accuracy of

the estimation and the probing rate. It could suffer from bandwidth fluctuation as shown

in [38]. pTCP used multiple paths to transmit TCP streams and provided mechanisms

for striping packets across the different paths. They however assumed the existence of

a separate mechanism that identified what paths to use for their pTCP connections, and

they did not address the issues of recovering from path failures or obtaining an unfair

share of the throughput of the congested links if the paths were not disjoint. Their study

was also limited to simulations using ns[68].

2.8 Summary

The work in this dissertation focuses on diagnosing and characterizing routing anomalies,

as well as improving the reliability of end-to-end communications using redundant paths.

Previous research efforts have studied network anomalies using intradomain (OSPF, ISIS)

19

and interdomain (BGP) routing messages, traffic statistics (NetFlow, SNMP), and end-

to-end measurement (ping, traceroute). Our approach differs from previous work in that:

• It is an end-system based approach and does not require access to any privileged

data. It gives both end users and ISPs much flexibility in troubleshooting routing

anomalies in the wide-area networks.

• It combines passive monitoring with active probing to reduce measurement over-

head and can easily scale to a large number of nodes.

• It provides a finer-grained and more complete view on routing anomaly by corre-

lating the probing from multiple vantage points.

In the past, a series of proposals have been made to enhance network performance

using striping techniques at the link-layer, transport-layer, and application-layer. We are

the first to implement and evaluate a transport-layer protocol that can utilize multiple

paths concurrently in real systems. We present a comprehensive design that addresses

the important issues of per-path congestion control, shared congestion detection, failure

recovery, and path selection.

20

Chapter 3

PlanetSeer: Internet Path Failure

Monitoring and Characterization

As we have explained in Section 1.1, performance degradations are often caused by rout-

ing anomalies on today’s Internet. Understanding routing anomalies is crucial for im-

proving the overall stability of the Internet. In this chapter, we introduce PlanetSeer, a

large-scale distributed system for routing anomaly detection and diagnosis. PlanetSeer

passively watches for anomalous events in the traffic generated by wide-area services. It

then actively probes the network from multiple vantage points to understand the anoma-

lies. We will first describe how to detect suspicious routing events in network traffic

and how to probe these events when they are detected. We then present our techniques

for confirming routing anomalies, classifying them, and estimating their locations and

scopes. Finally, we will characterize the routing anomalies based on the monitoring and

probing data collected during a 3-month period in 2004.

21

3.1 Introduction

As the Internet grows and routing complexity increases, network-level instabilities are be-

coming more common. Among the problems causing end-to-end path failures are router

misconfigurations [61], maintenance, power outages, and fiber cuts [53]. Inter-domain

routers may take tens of minutes to reach a consistent view of the network topology af-

ter routing failures, during which time end-to-end paths may experience outages, packet

losses, and delays [52]. These routing problems can affect performance and availabil-

ity [5, 52], especially if they occur on commonly-used network paths. However, even

determining the existence of such problems is nontrivial, since there is no central author-

ity that monitors all Internet paths.

Previously, researchers have used routing messages, such as BGP [61], OSPF [53]

and IS-IS [42] updates, to identify inter-domain and intra-domain routing anomalies. This

approach usually requires collecting routing updates from multiple vantage points, which

may not be easily accessible for normal users. Other researchers have relied on some form

of distributed active probing, such as pings and traceroutes [5, 25, 71], to detect routing

anomalies from end hosts. This approach monitors the paths between pairs of hosts by

having them repeatedly probe each other. Because this approach requires cooperation

from both source and destination hosts, it only measures paths among a limited set of

participating nodes.

We observe that there exist several wide-area services employing multiple geographically-

distributed nodes to serve a large and dispersed client population. Examples of such ser-

vices include Content Distribution Networks (CDNs), where the clients are distinct from

the nodes providing the service, and Peer-to-Peer (P2P) systems, where the clients also

participate in providing the service. In these kinds of systems, the large number of clients

22

use a variety of network paths to communicate with the service, and are therefore likely

to see any path instabilities that occur between them and the service nodes.

This scenario of geographically-distributed clients accessing a wide-area service can

itself be used as a monitoring infrastructure, since the natural traffic generated by the

service can reveal information about the network paths being used. By observing this

traffic, we can passively detect odd behavior and then actively probe it to understand it

in more detail. This approach produces less overhead than a purely active-probing based

approach.

This monitoring can also provide direct benefit to the wide-area service hosting the

measurement infrastructure. By characterizing failures, the wide-area service can miti-

gate their impact. For example, if the outbound path between a service node and a client

suddenly fails, it may be possible to mask the failure by sending outbound traffic indi-

rectly through an unaffected service node, using techniques such as overlay routing [5].

More flexible services may adapt their routing decisions, and have clients use service

nodes that avoid the failure entirely. Finally, a history of failure may motivate placement

decisions—a service may opt to place a service node within an ISP if intra-ISP paths are

more reliable than paths between it and other ISPs.

This chapter describes a monitoring system, PlanetSeer, that has been running on

PlanetLab since February 2004. It passively monitors traffic between PlanetLab and thou-

sands of clients to detect anomalous behavior, and then coordinates active probes from

many PlanetLab sites to confirm the anomaly, characterize it, and determine its scope.

This approach has several advantages: (1) because the clients are distributed at various

geographic locations, we obtain a diverse set of network paths that we can monitor for

anomalies; (2) PlanetLab nodes span a large number of autonomous systems (ASes),

providing reasonable network coverage to initiate probing; and (3) active probing can

23

be launched as soon as problems are visible in the passively-monitored traffic, making it

possible to catch even short-term anomalies that last only a few minutes.

We are able to confirm roughly 90,000 anomalies per month using this approach,

which exceeds the rate of previous active-probing measurements by more than two orders

of magnitude [25]. Furthermore, since we can monitor traffic initiated by clients outside

PlanetLab, we are also able to detect anomalies beyond those seen by a purely active-

probing based approach.

In describing PlanetSeer, we make three contributions. First, we describe the de-

sign of the passive monitoring and active probing techniques we employ, and presents

the algorithms we use to analyze the failure information we collect. Second, we report

the results of running PlanetSeer over a three month period of time, including a charac-

terization of the failures we see. Third, we discuss opportunities to exploit PlanetSeer

diagnostics to improve the level of service received by end users.

While our focus is the techniques for efficiently identifying and characterizing routing

anomalies, we must give some attention to the possibility of our host platform affecting

our results. In particular, it has been recently observed that intra-PlanetLab paths may

not be representative of the Internet [10], since these nodes are often hosted on research-

oriented networks. Fortunately, by monitoring services with large client populations, we

conveniently bypass this issue since most of the paths being monitored terminate outside

of PlanetLab. By using geographically-dispersed clients connecting to a large number of

PlanetLab nodes, we observe more than just intra-PlanetLab connections.

24

3.2 PlanetSeer Operation

This section describes our environment and our approach, including how we monitor

traffic, identify potential routing anomalies, and actively probe them.

3.2.1 Components

We currently use the CoDeeN Content Distribution Network [90] as our host wide-area

service, since it attracts a reasonably large number of clients (7K-12K daily) and gen-

erates a reasonable traffic volume (100-200 GB/day, 5-7 million reqs/day). CoDeeN

currently runs on 120 PlanetLab nodes in North America (out of 350 worldwide), but it

attracts clients from around the world. CoDeeN acts as a large, cooperative cache, and

it forwards requests between nodes. When it does not have a document cached, it gets

the document from the content provider (also known as the origin server). As a result, in

addition to the paths between CoDeeN and the clients, we also see intra-CoDeeN paths,

and paths between CoDeeN and the origin servers.

PlanetSeer consists of a set of passive monitoring daemons (MonD) and active prob-

ing daemons (ProbeD). The MonDs run on all CoDeeN nodes, and watch for anomalous

behavior in TCP traffic. The ProbeDs run on all PlanetLab nodes, including the CoDeeN

nodes, and wait to be activated. When a MonD detects a possible anomaly, it sends a

request to its local ProbeD. The local ProbeD then contacts ProbeDs on the other nodes

to begin a coordinated planet-wide probe. The ProbeDs are organized into groups so that

not all ProbeDs are involved in every distributed probe.

Currently, some aspects of PlanetSeer are manually configured, including the selec-

tion of nodes and the organization of ProbeD groups. Given the level of trust necessary

to monitor traffic, we have not invested any effort to make the system self-organizing or

25

open to untrusted nodes. While we believe that both goals may be possible, these are not

the current focus of our research.

Note that none of our infrastructure is CoDeeN-specific or PlanetLab-specific, and

we could easily monitor other services on other platforms. For PlanetSeer, the appeal

of CoDeeN (and hence, PlanetLab) is its large and active client population. The only

requirement we have is the ability to view packet headers for TCP traffic, and the ability

to launch traceroutes. On PlanetLab, the use of safe raw sockets [13] mitigates some

privacy issues – the PlanetSeer service only sees those packets that its hosting service

(CoDeeN) generates. In other environments, we believe the use of superuser-configured

in-kernel packet filters can achieve a similar effect.

In terms of resources, neither ProbeD nor MonD require much memory or CPU to

run. The non-glibc portion of ProbeD has a 1MB memory footprint. The MonD pro-

cesses have a memory consumption tied to the level of traffic activity, and is used to store

flow tables, statistics, etc. In practice, we find that it requires roughly 1KB per simulta-

neous flow, but we have made no effort to optimize this consumption. The CPU usage of

monitoring and probing is low, with only analysis requiring much CPU. Currently, anal-

ysis is done offline in a centralized location, but only so we can reliably archive the data.

We could perform the analysis on-line if desired – currently, each anomaly requires a 20

second history to detect, one minute to issue and collect the probes, and less than 10ms

of CPU time to analyze.

3.2.2 MonD Mechanics

MonD runs on all CoDeeN nodes and observes all incoming/outgoing TCP packets on

each node using PlanetLab’s tcpdump utility. It uses this information to generate path-

26

level and flow-level statistics, which are then used for identifying possible anomalies in

real-time.

Although flow-level information regarding TCP timeouts, retransmissions, and round-

trip times (RTTs) already exists inside the kernel, this information is not easily exported

by most operating systems. Since MonD runs as a user-level process, it instead derives

this information by observing packet-level activity from tcpdump. It instead infers flow-

level information—e.g., timeouts, retransmissions, and round trip times (RTTs)—from

the sniffed packets, and aggregates information from flows on the same path to infer

anomalies on that path.

MonD maintains path-level and flow-level information, with paths identified by their

source and destination IP addresses, and flows identified by both port numbers in addition

to the addresses. Flow-level information includes information such as sequence numbers,

timeouts, retransmissions, and round-trip times. Path-level information aggregates some

flow-level information, such as loss rates and RTTs.

MonD adds new entries when it sees new paths/flows. On packet arrival, MonD

updates a timestamp for the flow entry. Inactive flows, which have not received any traffic

in FlowLifeTime (15 minutes in the current system), are pruned from the path entry, and

any empty paths are removed from the table.

3.2.3 MonD Behavior

MonD uses two indicators to identify possible anomalies, which are then forwarded to

ProbeD for confirmation. The first indicator is a change in a flow’s Time-To-Live (TTL)

field. The TTL field in an IP packet is initialized by a remote host and gets decremented

by one at each hop along the traversed path. If the path between a source and destination

27

is static, the TTL value of all packets that reach the destination should be the same. If the

TTL changes in the middle of the stream, it usually means a routing change has occurred.

The second indicator, multiple consecutive timeouts, signals a possible path anomaly

since such timeouts should be relatively rare. A TCP flow can time out several times from

a single unacknowledged data packet, and each consecutive timeout causes the retrans-

mission timeout period to double [88]. The minimum initial retransmission timeout in

TCP ranges from 200ms (in Linux) to 1 second (in RFC 2988 [88]). Thus, n consecutive

timeouts means either the data packets or the corresponding acknowledgment packets

(ACKs) have not been received during the last 2n − 1 periods (seconds or 200ms ticks).

Our current threshold is four consecutive timeouts, which corresponds to 3.2–16 sec-

onds. Since most congestion periods on today’s Internet are short-lived (95% are less

than 220ms [96]), these consecutive timeouts are likely due to path anomalies. We can

further subdivide this case based on whether MonD is on the sender or receiver side of

the flow. If MonD is on the receiver side, then no ACKs are reaching the sender, and we

can infer the problem is on the path from the CoDeeN node to the client/server, which

we call forward path. If MonD is on the sender side, then we cannot determine whether

outbound packets are being lost or whether ACKs are being lost on the way to MonD.

3.2.4 MonD Flow/Path Statistics

We now describe how MonD infers path anomalies after grouping packets into flows. We

examine how to measure the per-flow RTTs, timeouts and retransmissions.

To detect timeouts when MonD is on the sender side, we maintain two variables,

SendSeqNo and SendRtxCount for each flow. SendSeqNo is the sequence number (seqno)

of the most recently sent new packet, while SendRtxCount is a count of how many times

the packet has been retransmitted. If we use CurrSeqNo to represent the seqno of the

28

packet currently being sent, we see three cases: If CurrSeqNo > SendSeqNo, the flow

is making progress, so we clear SendRtxCount and set SendSeqNo to CurrSeqNo. If

CurrSeqNo < SendSeqNo, the packet is a fast retransmit, and we again set SendSeqNo

to CurrSeqNo. If CurrSeqNo = SendSeqNo, we conclude a timeout has occurred and we

increment SendRtxCount. If SendRtxCount exceeds our threshold, MonD notifies ProbeD

that a possible path anomaly has occurred.

A similar mechanism is used when MonD observes the receiver side of a TCP connec-

tion. It keeps track of the largest seqno received per flow, and if the current packet has the

same seqno, a counter is incremented. Doing this determines how many times a packet

has been retransmitted due to consecutive timeouts at the sender. When this counter hits

our threshold, MonD notifies ProbeD that this sender is not seeing our ACKs. Since we

are seeing the sender’s packets, we know that this direction is working correctly. Note

that this method assumes that duplicate packets are mostly due to retransmissions at the

sender. This assumption is safe because previous work has shown that packets are rarely

duplicated by the network [72].

Detecting TTL change is trivial: MonD records the TTL for the first packet received

along each path. For each packet received from any flow on the same path, we compare

its TTL to our recorded value. If MonD detects any change, it notifies ProbeD that a

possible anomaly has occurred. Note that this case can aggregate information from all

flows along the path.

3.2.5 ProbeD Operation

ProbeD is responsible for the active probing portion of PlanetSeer, and generally operates

after being notified of possible anomalies by MonD. For the purpose of the following

discussion, when an anomaly occurs, we call the CoDeeN node where the anomaly is

29

detected the local node, and the corresponding remote client/server the destination. The

active probing is performed using traceroute, a standard network diagnostic tool. ProbeD

supports three probing operations:

Baseline Probes: When a new IP address is added to MonD’s path table, the ProbeD on

the local node performs a “baseline probe” to that destination. It is expected that

the results of this traceroute reflect the default network path used to communicate

with that destination under normal conditions. For actively-used communication

paths, a baseline probe is launched once every 30 minutes. When PlanetSeer is

run on CoDeeN nodes, these baseline probes are generated whenever a new client

connects to a node, or when a node has to contact a new origin server.

Forward Probes: When a possible anomaly is detected by the local MonD and reported

to ProbeD, it invokes multiple traceroutes from a set of geographically distributed

nodes (including itself) to the destination; we call the traceroute from the local

node the local traceroute or local path. This process is performed twice, generally

within one minute, in order to identify what we term ultrashort anomalies. On par-

ticularly problematic paths, MonD might report possible anomalies very frequently,

especially if the path is very unstable. To avoid generating too much probing traffic,

ProbeD rate-limits the forward probes so that it does not probe the same destination

within 10 minutes.

Reprobes: If the forward probes confirm an anomaly along a path to a destination, the

local ProbeD that initiated the forward probes periodically reprobes that path to

determine the duration and effects of the anomaly. We currently reprobe four times,

at 0.5, 1.5, 3.5, and 7.5 hours after the anomaly detection time. These reprobes

30

Category Grps Sites Descriptions
US (edu) 11 70 US Universities

US (non-edu) 5 13 Intel, HP, NEC, etc.
Canada 2 11 Eastern & Western Canada
Europe 7 31 UK, France, Germany, etc.

Asia & MidE 4 14 China, Korea, Israel, etc.
Others 1 6 Australia, Brazil, etc.
Total 30 145

Table 3.1: Groups of the probing sites

can compare their traceroute results with the original baseline probe as well as the

forward probes.

3.2.6 ProbeD Mechanics

When ProbeD performs the forward probes, it launches them from geographically dis-

tributed nodes on PlanetLab. Compared with only doing traceroute from the local node,

using multiple vantage points gives us a more complete view of the anomaly, such as its

location, pattern, and scope. Our ProbeDs are running on 353 nodes across 145 sites on

PlanetLab, more than the number of nodes running CoDeeN. They are distributed across

North/South America, Europe, Asia and elsewhere.

Since the set of ProbeDs must communicate with each other, they keep some member-

ship information to track liveness. We note that an unavailable ProbeD only results in a

degradation of information quality, rather than complete inoperability, so we do not need

to aggressively track ProbeD health. Each ProbeD queries the others when it first starts.

Thereafter, dead ProbeDs are checked every 8 hours to reduce unneeded communication.

In the course of operation, any ProbeD that is unresponsive to a query is considered dead.

31

We divide the ProbeD nodes into 30 groups based on geographic diversity, as shown

in Table 3.1, mainly to reduce the number of probes launched per anomaly. Probing every

anomaly from every ProbeD location would yield too much traffic (especially to sites with

conservative intrusion detection systems), and the extra traffic may not yield much insight

if many nodes share the same paths to the anomaly. We also divide North America into

educational and non-educational groups, because the educational (.edu) sites are mostly

connected to Internet2, while non-educational sites are mostly connected by commercial

ISPs.

When a ProbeD receives a request from its local MonD, it forwards it to a ProbeD in

each of the other groups. The ProbeDs perform the forward probes, and send the results

back to the requester. All results are collected by the originator, and logged with other

details, such as remote IP address and the current time.

3.2.7 Path Diversity

We have been running PlanetSeer since February 2004. In three months, we have seen

887,521 unique clients IPs, coming from 9232 Autonomous Systems (ASes) (according

to previous IP-to-AS mappings techniques [62]). Our probes have traversed 10090 ASes,

well over half of all ASes on the Internet. We use a hierarchical AS classification scheme

that has five tiers, based on AS relationships and connectivity [85]. The highest layer

(tier 1) represents the dense core of the Internet, and consists of 22 ASes of the largest

ISPs. Tier 2 typically includes ASes of other large national ISPs. Tier 3 includes ASes

of regional ISPs. Finally, tiers 4 and 5 include ASes of small regional ISPs and customer

ASes respectively. As shown in Table 3.2, we have very good coverage of the top 4 AS

tiers, with complete coverage of tier 1 and nearly-complete coverage of tier 2.

32

Tier # Covered Tier Size Coverage
Tier 1 22 22 100%
Tier 2 207 215 96%
Tier 3 1119 1392 80%
Tier 4 1209 1420 85%
Tier 5 5906 13872 43%
Unmapped 1627

Table 3.2: Path diversity

3.3 Confirming Anomalies

Having collected the passive data from MonD and the traceroutes from ProbeD, the next

step is processing the probes to confirm the existence of the anomaly. This section de-

scribes how we use this data to classify anomalies and quantify their scope. It also reports

how different types of anomalies influence end-to-end performance.

3.3.1 Massaging Traceroute Data

Some of the data we receive from the traceroutes is incomplete or unusable, but we can

often perform some simple processing on it to salvage it. The unusable hops in a tracer-

oute are those that do not identify the routers or that identify the routers by special-use IP

addresses [41]. The missing data is generally the absence of a hop, and can be interpo-

lated from other traceroutes.

Identifying and pruning unusable hops in traceroute is simple: the unusable hops are

identified by asterisks in place of names, and other than showing the existence of these

hops, these data items provide no useful information. We simply remove them from the

traceroute but keep the relative hop count difference between the existing hops.

33

Missing hops in a traceroute are slightly harder to detect, but we can use overlapping

portions of multiple traceroutes to infer where they occur. We use a simple heuristic

to identify the missing hops: we compare traceroutes that share the same destination,

and if the hops leading to the destination differ by an intermediate hop that is present in

one and missing in the other, we replace the missing hop with the address in the other

trace. Put more formally, given two traceroutes from two sources to the same destination,

suppose there are two subsequences of these two traceroutes, X(X1, X2, ..., Xm) and

Y (Y1, Y2, ..., Yn) (m > 2 and n > 2) such that X1 = Y1 and Xm = Yn. We define

hop(Xi) to be the hop count of Xi. Note that the number of hops between X1 and Xm,

hop(Xm) − hop(X1), can be greater than m − 1, because we have removed “*” and

special-use IPs from the traceroutes. If hop(Xm) − hop(X1) = hop(Yn) − hop(Y1),

it is very likely that all the hops in X and Y are the same since they merge at X1(Y1)

and follow the same number of hops to Xm(Yn). If there exists Xi such that the hop

corresponds to hop(Y1) + hop(Xi) − hop(X1) in Y does not exist because it has been

removed as “*”, we consider Xi a missing hop in Y and add this hop into Y .

Our approach to inserting missing hops helps us filter out the “noise” in traceroutes

so that it does not confuse our anomaly confirmation using route change as described in

Section 3.3.2. However, it may mask certain hop differences. For example, we sometimes

see two paths X and Y merge at X1(Y1), and diverge at some later hops before merging

at Xm(Yn) again. This usually occurs between tightly-coupled routers for load balancing

reasons, where a router selects the next hop from several parallel links based on the packet

IP addresses and/or traffic load [71]. In this case, inserting missing hops may eliminate

the different hops between the two traceroutes.

For our purposes, we do not treat such “fluttering” [71] as anomalies because it oc-

curs as a normal practice. We detect fluttering by looking for hops Xi and Yj such that

34

TTL Change Timeout Fwd Timeout
994485 (44%) 754434 (33%) 510669 (23%)

Table 3.3: Breakdown of anomalies reported by MonD

hop(Yj)−hop(Y1) = hop(Xi)−hop(X1) but Xi 6= Yj, and we merge them into the same

hop in all the traceroutes. Note that this could also possibly eliminate the hop difference

caused by path change and lead to underestimating the number of anomalies.

3.3.2 Final Confirmation

After we have processed the traceroutes, we are ready to decide whether an event reported

by MonD is actually an anomaly. We consider an anomaly “confirmed” if any of the

following conditions is met:

Loops: There is a loop in the local traceroute from the local node to the destination,

which means the anomaly is triggered by routing loops.

Route change: The local traceroute disagrees with the baseline traceroute. Note that the

baseline traceroute is no more than 30 minutes old. Given that 91% of the Internet

paths remains stable for more than several hours [71], the anomaly is most likely

caused by path change or path outage.

Partial unreachability: The local traceroute stops before reaching the destination, but

there exist traceroutes from other nodes that reach the destination. This could be

caused by path outages.

Forwarding failures: The local traceroute returns an ICMP destination unreachable mes-

sage, with code of net unreachable, host unreachable, net unknown, or host un-

35

Non-Anomaly Anomaly Undecided
1484518 (66%) 271898 (12%) 503172 (22%)

Table 3.4: Breakdown of reported anomalies using the four confirmation conditions

known. This usually indicates that a router does not know how to reach the desti-

nation because of routing failures [45].

Our confirmation process is very conservative—it is possible that some of the reported

anomalies are real, but do not meet any of the above conditions. However, our goal is to

obtain enough samples of anomalies for our analysis and we do not want our results to be

tainted by false positives. Hence, we choose stricter conditions for confirming anomalies.

Similarly, we confirm a reported anomaly as non-anomaly if the local traceroute does not

contain any loop, agrees with the baseline traceroute, and reaches the destination. For a

confirmed non-anomaly, we do not perform traceroutes at remote ProbeDs, in order to

reduce measurement traffic.

In three months, we have seen a total of 2,259,588 possible anomalies reported, of

which we confirmed 271,898. Table 3.3 shows the number of reported anomalies of

each type. As we can see, TTL change is the most common type of reported anomaly,

accounting for 44% of the reported anomalies. For the remaining anomalies triggered by

timeouts, passive monitoring suggests that 23% are most likely caused by forward path

problems.

Table 3.4 shows the breakdown of anomalies using the 4 confirmation conditions.

The non-anomalies account for 2/3 of the reported anomalies. Among the possible rea-

sons for the occurrence of non-anomalies are: ultrashort anomalies, path-based TTL, and

aggressive consecutive timeout levels. Some anomalies, which we term ultrashort, are so

short that our system is unable to respond in time. Since they often are in the process

36

of being resolved when the forward probes are taking place, the traceroute results may

be inconsistent. Many false alarms from path-based TTL changes are due to NAT boxes.

When clients with different initial TTL values share a NAT box, their interleaved packets

appear to show TTL change. Using flow-based TTL change would reduce these false

alarms, but may miss real TTL changes that occur between flows since any path history

would be lost. Finally, our consecutive timeout conditions may be aggressive for hosts

with short timeout periods. Excluding the non-anomalies, we confirm 271898 (35%) of

the remaining anomalies and probe them from multiple vantage points. We use these

anomalies for our analysis in the remainder of this section.

3.4 Loop-Based Anomalies

This section focuses on analyzing routing loops, which can occur due to inconsistencies

in routing state, misconfiguration, and other causes. We are interested in their frequency,

duration, size, location, and effect on end-to-end performance.

We detect routing loops by observing the same sequence of routers appearing several

times in a traceroute. Since loops in traceroute may reflect upstream routing changes

rather than true routing loops [71], we choose to take a conservative approach and require

that the same sequence appear in a traceroute at least 3 times before we confirm it as a

routing loop.

Using this metric, we identify a total number of 21565 routing loops in our data. If

we relax the loop condition to allow loops that have the same sequence only twice, this

count increases to 119,936, almost six times as many. Using this approach, our overall

confirmed anomaly count would increase 36% to over 370K.

37

Loops are separated into persistent and temporary loops [71] based on whether the

traceroute was ultimately able to exit the loop. If the traceroute stays within the loop un-

til the maximum number of hops (32 in our case), we classify it as persistent, while if the

loop is resolved before the traceroute reaches the maximum hop, it is temporary. Tempo-

rary loops can occur due to the time necessary to propagate updated routing information

to the different parts of the network, while persistent loops can be caused by various rea-

sons, including router misconfiguration [61]. Persistent loops tend to last longer and may

require human intervention to be resolved, so they are considered more harmful. About

83% of the observed loops are persistent, as shown in Table 3.5. Since temporary loops

only exist for a short period, it may be harder to catch them.

We use the reprobes to determine duration of the persistent loops. The reprobes for

some persistent loops are missing, often because the local PlanetLab node failed or re-

booted before all reprobes completed. For those loops, we do not know when the loops

were resolved. We only include the loops having all 4 reprobes in our analysis. There-

fore, we show the percentage of loops in each duration instead of the exact numbers in

Table 3.5. We can see many persistent loops are either resolved quickly (54% terminate

within half an hour) or last for a long time (23% stay for more than 7.5 hours).

Previous research has noted that routing loops are likely to be correlated [71], be-

cause nearby routers usually share routing information very quickly. If some routers

have inconsistent information, such information is likely to be propagated to other nearby

routers and cause those routers to form loops. We observe a similar phenomenon, which

is quantified in Table 3.5. We count the number of distinct loops in traceroutes from other

ProbeDs during the same period. We find that 16% of the temporary loops are accom-

panied by at least one disjoint loop while only 6% of the persistent loops see them. We

suspect the reason is temporary loops are more likely to stem from inconsistent routing

38

Temporary Persistent
Total 3565 (17%) 18000 (83%)
≤ 30min N/A 54%
≤ 1.5 hrs N/A 11%
≤ 3.5 hrs N/A 6%
≤ 7.5 hrs N/A 6%
> 7.5 hrs N/A 23%
Single Loop 3008 (84%) 17007(94%)
Multiple Loops 557 (16%) 993 (6%)
1 AS 3021, (85%) 17895, (99%)
2 ASes 416, (12%) 101, (1%)
3 ASes 106, (3%) 4, (0%)
≥4 ASes 22, (0%) 0, (0%)
Tier-1 AS 510 (15%) 244 (2%)
Tier-2 AS 859 (25%) 789 (6%)
Tier-3 AS 1378(40%) 6263 (46%)
Tier-4 AS 197 (5%) 3899 (29%)
Tier-5 AS 538 (15%) 2401 (17%)
Total 3482 13596

Table 3.5: Summarized breakdown of 21565 loop anomalies. Some counts less than 100%
because some ASes are not in the AS hierarchy mapping.

state while persistent loops are more likely to be caused by other factors which may not

be related to routing inconsistency.

3.4.1 Scope

Besides their frequency, one of the important factors that determines the effect of routing

loops is their scope, including how many routers/ASes are involved in the loop, and

where they are located. We use the term loop length to refer to the number of routers

involved, and we show a breakdown of this metric in Table 3.6. The most noticeable

feature is that temporary loops have much longer lengths than persistent loops. 97% of the

persistent loops consist of only 2 routers, while the ratio is only 50% for temporary loops.

39

2 3 4 5 6+
Persistent/All 97% 2% 1% 0% 0%
Persistent/Core 94% 4% 1% 1% 0%
Persistent/Edge 97% 2% 1% 0% 0%
Temporary/All 51% 29% 11% 7% 2%
Temporary/Core 45% 31% 13% 8% 3%
Temporary/Edge 53% 27% 12% 6% 2%

Table 3.6: Number of hops in loops, as % of loops

Intuitively, the more routers are involved in a loop, the less stable it is. Therefore, most

persistent loops exist between only two routers, while temporary loops span additional

routers as the inconsistent state propagates.

We next examine the number of ASes that are involved in the loops. The breakdown

is shown in Table 3.5, which shows that persistent loops overwhelmingly occur within a

single AS, while 15% of temporary loops span multiple ASes. Ideally, BGP prevents any

inter-AS loops by prohibiting a router from accepting an AS path with its own AS num-

ber in that path. However, BGP allows transient inconsistency, which can arise during

route withdrawals and announcements [37], and this is why we see more temporary loops

spanning multiple ASes. In contrast, persistent loops can occur due to static routing [71]

or router misconfigurations [61]. Given how few persistent loops span multiple ASes, it

appears that BGP’s loop suppression mechanism is effective.

In Table 3.6, we compare the loops in the core network (tiers 1, 2, 3) or the edge

network (tiers 4, 5). As the table shows, both temporary and persistent loops are likely to

involve more hops if occurring in the core network.

40

0%
10%
20%
30%
40%
50%

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Persistent
Temp
Traffic

Figure 3.1: Percentage of loops and traffic in each tier

3.4.2 Distribution

Using the loop data, we can gain some insight into the distribution of the loops. We want

to understand whether loops are more likely to arise in the core of the network or near the

edge. In theory, we could do this by calculating the depth of the loops [25], which would

tell us the minimum number of hops from the routers to the network edge. However,

since we cannot launch probes from the clients, this depth metric could be misleading. If

the loop occurs in an AS that does not lie near any of our ProbeD locations, our probes

have to travel through the network core to reach it, and we would believe it to be very

far from the edge. If we could launch probes from the clients, network depth would be

meaningful.

To avoid this problem, we classify the loops according to the hierarchy of ASes in-

volved. We map loops into tiers by using the tier(s) of the AS(es) involved. A loop can be

mapped to multiple tiers if it involves multiple ASes. Note that we have to also consider

the total amount of traffic of each tier when quantifying the loop distribution. Appar-

ently, we have a higher chance to observe loops in a tier that is traversed more frequently.

41

For this reason, we compute the traffic of a tier as the total number of times that tier is

traversed. Figure 3.1 shows the percentage of loops and traffic occurring in each tier.

Compared with their relative traffic share, tier-1 ASes have very few persistent and tem-

porary loops, possibly because they are better provisioned than smaller ASes. In contrast,

a large number of loops occur in tier-3 (outer core) ASes, which suggests that the paths in

those regional ISPs are less stable. Another interesting thing in Figure 3.1 is tier-5 ASes

seem to have few loops although they are small ASes. One possible explanation is loops

can evolve when routers adapt to failures by exploring alternate paths. Since there is less

path diversity in small networks, loops are less likely to evolve.

We also examine the relative distribution of AS quality by measuring how evenly-

distributed the persistent loops are. Since these loops are largely single-AS, they are very

unlikely to arise from external factors, and may provide some insight into the monitor-

ing/management quality of the AS operators. We use a metric, which we call skew, to

provide some insight into the distribution. We calculate skew as the percentage of per-tier

loops seen by the “worst” 10% of the ASes in that tier. A skew value of 10% indicates

all ASes in the tier are likely to be uniform in the quality, while larger numbers indicate

a wider disparity between the best ASes and the worst.

In tier 1, the top 2 ASes (10% of 22) account for 35% of the loops, while in tier 2,

the top 21 ASes (10% of 215) account for 97% of the loops. This skew may translate

into different reliabilities for the customers they serve. The disparity in traffic must also

be considered when judging how important these skew numbers are. With respect to the

traffic that we observe, we find that these ASes account for 20% of tier 1 traffic and 63%

of tier 2 traffic. The disparity between the loop rates and the traffic for these ASes would

indicate that these ASes appear to be much more problematic than others in their tier.

42

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 fr
ac

tio
n

 loss rate

persistent
temporary

Figure 3.2: CDF of loss rates preceding the loop anomalies

3.4.3 End-to-End Effects

Loops can degrade end-to-end performance in two ways: by overloading routers due to

processing the same packet multiple times [37] (for temporary loops), or by leading to

loss of connectivity between pairs of hosts (for permanent loops). Since MonD monitors

all flows between the node and remote hosts, we can use the network statistics it keeps to

understand end-to-end effects.

When MonD suspects an anomaly, it logs the retransmission rate and RTT leading

up to that point. Retransmission rates are calculated for the last 5 minutes. RTTs are

calculated using an Exponentially Weighted Moving Average (EWMA) with the most

recent value given a weight of 1/8, similar to that used in TCP. Figure 3.2 shows the

CDF of the retransmission rate, and we see that 65% of the temporary loops and 55% of

the persistent loops are preceded by loss rates exceeding 30%. Since the typical Internet

loss rate is less than 5% [72], this higher loss rate will significantly reduce end-user TCP

performance prior to the start of the anomaly.

43

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

 fr
ac

tio
n

 RTT (seconds)

persistent
persistent normal

temporary
temporary normal

Figure 3.3: CDF of RTTs preceding the loop anomalies vs. under normal conditions

In addition to the high loss rates, loop anomalies are also preceded by high latency,

as shown in Figure 3.3. High latency can be caused by queuing due to congestion or

packets repeatedly traversing the same sequence of routers. We compare the RTT right

before loops occur with the RTT measured in the baseline traceroute on the same path. It

is evident that loops can significantly degrade RTTs.

3.5 Building a Reference Path

While loop-based anomalies are relatively simple to identify, they represent a relatively

small fraction of the total confirmed anomalies. Classifying the other anomalies, how-

ever, requires more effort. This section discusses the steps taken to classify the non-loop

anomalies, and the complications involved. The main problem is how to determine that

the anomaly occurs on the forward path from the local node to the destination. Addi-

tionally, we want to characterize the anomaly’s features, such as its pattern, location and

affected routers.

44

To deal with these two problems, we need a reference path from the local node to the

destination, which represents the path before the anomaly occurs. Then we can compare it

against the local traceroute during the anomaly. This comparison serves three purposes:

First, it can help us distinguish between forward-path and reverse-path anomalies. If

the local path during the anomaly is different from the reference path, the route change

usually indicates that the anomaly is on the forward path. Second, it can be used to

quantify the scope of the anomaly. By examining which routers overlap between the

local path and the reference path, we can estimate which routers are potentially affected

by the anomaly. It can also be used to determine the location of the anomaly, in terms of

the number of the router hops between the anomaly and the end hosts. Third, it is used to

classify the anomalies. Based on whether the local traceroute reaches the last hop of the

reference path, we can classify it as either path change or path outage.

Ideally, we could simply use the baseline traceroute as the reference path, if it suc-

cessfully reaches the destination. If the local traceroute during an anomaly stops at some

intermediate hop, we know it is an outage. If the local traceroute is different, but reaches

the destination, we know it is a routing change. However, the baseline traceroute may not

reach the destination for a variety reasons. Some of these include:

• The destination is behind a firewall which filters traceroutes. In this case, we still

want to use it as the reference path, which can be compared with local traceroute

to analyze anomalies.

• Some intermediate routers filter traceroutes. In this case, we do not have enough

information about the hops after the last known hop on the forward path. When an

outage occurs, we cannot quantify where it occurs since the anomaly may occur

after the last known hop.

45

• The baseline traceroute is also affected by the anomaly and fails to reach the des-

tination. In this case, we cannot use it as a reference because it usually does not

provide more useful information than the local traceroute.

The rest of this section focuses on deciding whether the baseline traceroute can be used

as the reference path when it does not reach the destination. If a baseline path S stops

at hop Sx, we try to guess if Sx is a firewall using some heuristics. Sx must meet the

following four requirements before we consider it a firewall:

1. From MonD’s passive data, we know the client is able to send and receive TCP

packets with the local node. Therefore, the path is working when the baseline

traceroute is being calculated.

2. S does not return an ICMP destination unreachable message, which usually indi-

cates that the traceroute encounters routing problems at Sx [45].

3. Sx and the destination are in the same AS. We assume that a firewall and its pro-

tected clients should belong to the same organization.

4. Sx is within n hops (close) to the destination.

The first three requirements are easy to verify, so we focus on the last requirement. Let

RevHop(h) be the number of hops from hop h to the local node on the reverse path. We

first want to check if 0 < RevHop(dst) − RevHop(Sx) ≤ n. From MonD, we know

RevTTL(dst), the TTL of a packet when it arrives at the local node from the destination.

If the TTL is initialized to InitTTL(dst) by the destination, we have InitTTL(dst) −

RevTTL(dst) = RevHop(dst) because the TTL is decremented at each hop along the

reverse path. The issue is how to determine InitTTL(dst). The initial TTL values differ

46

Type Number Percentage
Path Change 120,283 48%
Forward Outage 23,921 10%
Other Outage 62,107 24%
Temporary 44,022 18%
Total 250,333 100%

Table 3.7: Non-loop anomalies breakdown

by OS, but are generally one of the following: 32 (Win 95/98/ME), 64 (Linux, Tru64),

128 (Win NT/2000/XP), or 255 (Solaris). Because most Internet paths have less than 32

hops, we can simply try these 4 possible initial TTL values and see which one, when

subtracted by RevTTL(dst), gives a RevHop(dst) that is less than 32 hops. We will use

that as InitTTL(dst) to calculate RevHop(dst). Similarly, from the traceroute, we can

also calculate RevHop(Sx) using RevTTL(Sx).

Although inter-AS routing can be asymmetric, intra-AS paths are usually symmet-

ric [71]. Since Sx and the destination are in the same AS, their forward hop count differ-

ence should be the same as their reverse hop count difference, which we are able compute

as described above.

Choosing an appropriate n for all settings is difficult, as there may be one or more

hops between a firewall and its protected hosts. We conservatively choose n = 1, which

means we consider S as a valid reference path only when Sx is one hop away from the

destination. This will minimize the possibility that a real path outage is interpreted as

a traceroute being blocked by a firewall. However, it leads to bias against large organi-

zations, where end hosts are multiple hops behind a firewall. In such cases, we cannot

determine if the anomalies are due to path outage or blocking at a firewall. Therefore, we

do not further analyze these anomalies.

47

3.6 Classifying Non-loop Anomalies

In this section, we discuss classifying anomalies by comparing the reference path R with

the local path L. There are three possibilities when we compare L and R:

1. L reaches the last hop of R. In this case, L must differ from R in some intermediate

hops, or else we would not have confirmed it as an anomaly. This case corresponds

to a path change, which will be discussed in Section 3.6.1.

2. If L stops at some intermediate hop of R, it could be due to path outage on the

forward path or reverse path failure. We will describe how to distinguish between

them in Section 3.6.2.

3. If L diverges from R after some hops and stops before merging into R, we consider

it as a path outage although it is accompanied by a route change. We will also

discuss this case in Section 3.6.2.

We observe a total of 250333 non-loop anomalies, with their breakdown shown in Ta-

ble 3.7. About half of them are path changes, and 10% are forward path outages. For the

24% that are classified as other outages, we cannot infer whether they are on the forward

or reverse paths. The remaining 18% are temporary anomalies. In these cases, the first lo-

cal traceroute does not match the reference path, but the second local traceroute matches.

In these cases, the recovery has taken place before we can gather the results of the re-

mote probes, making characterization impossible. While it is possible that some remote

probes may see the anomaly, the rapidly-changing state is sure to cause inconsistencies

if we were to analyze them. To be conservative, we do not perform any further analysis

of these anomalies, and focus only on path changes and forward outages. These tempo-

rary anomalies are different from the ultrashort anomalies in that the ultrashort anomalies

48

R
L

I
r i r j k lr r

dst

Figure 3.4: Narrowing the scope of path change

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14

 fr
ac

tio
n

 number of hops

path change
path change in core

path change at edge
path outage

path outage in core
path outage at edge

Figure 3.5: Scope of path changes and forward outages in number of hops

were already in the repair process during the first probe. So, while we choose not to

analyze temporary anomalies further, we can at least inarguably confirm their existence,

which is not the case with the ultrashort anomalies.

3.6.1 Path Changes

We first consider path changes, in which the local path L diverges from the reference path

R after some hops, then merges back into R and successfully terminates at the last hop

of R. This kind of anomaly is shown in Figure 3.4.

49

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10

 fr
ac

tio
n

 number of hops

path change
path outage

Figure 3.6: Distance of path changes and forward outages to the end hosts in number of hops

Scope and End-to-End Effects

As discussed in Section 1.2, it is usually very difficult to locate the origin of path anoma-

lies purely from end-to-end measurement [28]. However, even if the precise origin cannot

be determined, we may be able to narrow the scope of the anomaly. We define the scope

of a path change as the number of hops on R which possibly change their next hop value.

Flows through these routers may all have their paths changed. In Figure 3.4, L diverges

from R at ri and merges into R at rl. All the hops before ri or after rl (including rl) follow

the same next hop towards the destination. So the hops which are possibly influenced by

the path change and have different next hops are ri, rj and rk.

In some cases, we may be able to use remote traceroutes to narrow the scope even

further. For example, in Figure 3.4, if I , a traceroute from another ProbeD merges into

R at rk, a hop that is before rl, we can eliminate rk from the scope of the path change

anomaly, since we know rk has the same next hop value as it did in the reference path. We

call I the intercept path. This method may still overestimate the scope of path change: it

50

is possible, for example, that rj’s next hop value is unaffected, but we cannot know this

unless some traceroute merges into R at rj.

Performing traceroute from multiple geographically diverse vantage points increases

our chances of finding an intercept path. Our ability of narrowing the scope is affected by

the location of the anomaly. If it is closer to the destination, we have a better chance of

obtaining intercept paths by launching many forward traceroutes, and thus successfully

reducing the scope of the anomaly. In contrast, if the anomaly is nearer our source, the

chance of another traceroute merging into the reference path early is low.

Figure 3.5 shows the CDF of path change scope, measured in hop count. We can

confine the scope of 68% of the path changes to within 4 hops. We do not count fluttering

as path changes, since these would appear as a large number of path change anomalies,

each with a very small scope. We also examine how many ASes the path change scope

spans, shown in Table 3.8. Again, we can confine the scope of 57% of the path changes

to within two ASes and 82% of them to within three ASes.

To gain some insight into the location of the anomalies, we also study whether the

path change occurs near end hosts or in the middle of the path [25]. We measure the

distance of a path change to the end host by averaging the distances of all the routers

within the path change scope. The distance of a router is defined as the minimum number

of hops to either the source or the destination. Figure 3.6 plots the CDF of path change

distances. As we can see, 60% of the path changes occur within 5 hops to the end hosts.

Similar to Section 3.4.2, we use AS tiers to characterize distribution of the anomalies.

We map the routers within anomaly scopes to ASes and AS tiers. The breakdown of

possibly affected routers by their AS tiers is shown in Figure 3.7. Compared with their

relative traffic share, the ASes in Tier-3 are most likely to be affected by path changes.

51

0%

10%

20%

30%

40%

50%

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Change
Outage
Traffic

Figure 3.7: Percentage of forward anomalies and traffic in each tier

They account for nearly half of the total. By comparison, the ASes in tier-1 are rather

stable.

In Figure 3.5, we see that path changes in the core network have narrower scope than

those in the edge. This is probably because the paths in the core network are likely to be

traversed by traceroutes from many vantage points to reach the destination. In contrast,

if a route change occurs near a local node, we have less chance of finding an intercept

path that happens to merge into the reference path early. As a result, the anomaly scope

in these cases is more loosely confined.

Since path change is a dynamic process and anomaly scopes may evolve over time,

a measured anomaly scope should be viewed as a snapshot of which routers are affected

when the traceroutes reach them. In Table 3.8, we show how many path changes have

changed scope between the first and second sets of forward probes. We find that only 4%

of them have changed during that period (mostly within one minute). In addition, 66% of

the scope changes are due to local path changes instead of intercept path changes.

52

Change Fwd Outage
Total 120283 12740
No Ref Path N/A 11181
1 AS 24418 (20%) 6534 (51%)
2 ASes 43909 (37%) 3413 (27%)
3 ASes 29426 (25%) 1321 (10%)
4 ASes 12603 (10%) 856 (7%)
5 ASes 6322 (5%) 411 (3%)
6 ASes 3605 (3%) 205 (2%)
Guessed Last Hop N/A 1055
Scope Changed 4292 (4%) 1225 (10%)
Tier-1 AS 12374 (6%) 2746 (15%)
Tier-2 AS 43104 (23%) 3255 (18%)
Tier-3 AS 88959 (47%) 4638 (26%)
Tier-4 AS 8015 (4%) 3501 (19%)
Tier-5 AS 38313 (20%) 3838 (21%)
Total 190765 17978

Table 3.8: Summary of path change and forward outage. Some counts exceed 100% due
to multiple classification.

We now examine the effect of path changes on end-to-end performance. The effect

of path changes on RTTs is relatively mild, as can be seen in Figure 3.10. The RTTs

measured during path changes are only slightly worse than the RTTs measured in baseline

traceroutes. But the loss rates during path changes can be very high. Nearly 45% of the

path changes cause loss rates higher than 30%, which can significantly degrade TCP

throughput.

3.6.2 Path Outage

We now focus on path outages and describe how to distinguish between forward and re-

verse path outages. In Figure 3.8, the local path L stops at ri, which is an intermediate

hop on the reference path R. At first glance, one might conclude that a failure has oc-

53

R

I
r i r j kr

dstL

Figure 3.8: Narrowing the scope of forward outage

curred after ri on the forward path, which prevents the packets from going through; but

other possibilities also exist—because Internet paths could be asymmetric, a failure on

the reverse path may produce the same results. For example, if a shared link on the re-

verse paths from all the hops beyond ri to the source has failed, none of the ICMP packets

from those hops can return. Consequently, we will not see the hops after ri.

If we have control of the destination, we can simply distinguish between forward and

reverse path outages using ping [25]. However, since our clients are outside of Planet-

Lab and not under our control, we cannot perform pings in both directions, and must

use other information to disambiguate forward path outages from reverse path failures.

Specifically, we can infer that the outage is on the forward path using the following rules:

• There is a route change on the forward path in addition to the outage.

• The local traceroute returns an ICMP destination unreachable message.

• The anomaly is reported as timeouts on the forward path. As described in Sec-

tion 3.2.4, MonD will report this type of anomaly when it infers ACK losses on the

forward path from the local node to the client.

Table 3.9 shows the number of forward path outages inferred from each rule. As we

can see, all three rules are useful in identifying forward outages. More than half of the

outages are accompanied by route changes, as the failure information is propagated and

54

Route change Unreachable Fwd Timeout
12822 (54%) 2751 (11%) 8348 (35%)

Table 3.9: Breakdown of reasons for inferring forward outage

some routers try to bypass the failure using other routes. Forward timeouts help us infer

one-third of the forward outages. This demonstrates the benefit of combining passive

monitoring with active probing, since we would not have been able to disambiguate them

otherwise.

Scope

To characterize the scope of path outages, we use a technique similar to the one we

used to characterize the scope of path change. We define a path outage scope as the num-

ber of hops in a path that cannot forward packets to their next hop towards the destination.

In Figure 3.8, R is the reference path and L is the local path. L stops at ri, which is an

intermediate hop of R. Hence, all the hops after ri (including ri) are possibly influenced

by the outage and may not be able to forward packets to the next hops towards the des-

tination. However, when we can find another intercept path, we can narrow the scope.

For example, if I merges into R at rk and reaches the destination, then only ri and rj can

possibly be influenced by the outage. Again, this method might overestimate the scope of

a path outage, for the same reasons described earlier on estimating a path change scope.

Note that unlike previous work [21, 25], we use a set of routers to quantify the effect

of path outages instead of just using the last hop where the traceroute stops. Since outage

information is usually propagated to many routers, using only one router does not give us

a sense of how many routers may have been affected by the outage.

In some cases, we may not have a complete baseline path which reaches the des-

tination or the penultimate router. In these cases, we can not estimate the scope of the

55

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 fr
ac

tio
n

 loss rate

path change
path outage

Figure 3.9: CDF of loss rates preceding path changes and forward outages

forward outage because we do not know the exact number of hops between the last hop of

the baseline path and the destination. We only know that the anomaly occurs somewhere

on the forward path. Among all the outages, about 47% have no complete reference path.

In the following, we use only those with complete reference paths in the scope analysis.

In Figure 3.5, we plot the CDF of the number of hops in the forward outage scope.

Compared with path change, we can confine the outage scope more tightly. Nearly 60%

of the outages can be confined to within 1 hop and 75% of them can be confined to 4

hops.

We suspect that such tight confinement is due to last hop failures. In Figure 3.6, we

plot the distances of forward outages to the end hosts. The distance of an outage is defined

as the average distance of the routers within the outage scope to the end hosts, similar to

the definition used for path change in Section 3.6.1. As we can see, 44% of the outages

do occur at the last hop, allowing us to confine their scopes to 1 hop. This observation

explains why the outages in the edge network are confined more tightly than those in core

networks, as shown in Figure 3.5.

56

Excluding last hop failures, we can only confine 14% of the outages to one hop, a

result that is slightly better than that for path changes. In general, the scopes of path

outages tend to be smaller than those of path changes. Compared with path changes in

Figure 3.6, path outages tend to occur much closer to the end hosts. More than 70% of

the outages occur within 4 hops to the end hosts.

Table 3.8 gives the number of ASes that the outages span. Compared with path

changes, we can confine a much higher percentage of outages (78%) within two ASes.

If we examine the AS tiers where the affected routers are located, outages are spread out

more evenly across tiers than path changes are. Paths in tier-1 ASes are the most stable

and those in tier-3 ASes are most unstable. If we look at both Table 3.5 and Table 3.8,

we note that paths in tier-3 ASes are most likely to be affected by all types of anomalies.

They account for 40% of temporary loops, 46% of persistent loops, 47% of path changes

and 26% of forward outages. In contrast, paths in tier-1 ASes are most stable.

Finally, in Table 3.8, we find that the scopes of 10% of the forward outages might

have changed between the first and second set of forward probes, mostly due to local path

changes. Another 8% of the forward outages have reference paths that do not terminate at

the destinations. These last hops are considered firewalls based on the heuristic described

in Section 3.5.

End-to-End Effect

We also study how path outages influence end-to-end performance. Not surprisingly,

forward outages can be preceded by very high loss rates, which are slightly worse than

those generated by path changes. The comparisons are shown in Figure 3.9. Similarly,

outages tend to be preceded by much worse RTTs than path changes, as shown in Fig-

ure 3.10: 23% of the outages experience RTTs that are over one second, while only 7%

57

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

 fr
ac

tio
n

 RTT (seconds)

path change
path change normal

path outage
path outage normal

Figure 3.10: CDF of RTTs preceding path changes and forward outages vs. under normal con-
ditions

do when there is no outage. The RTT variances can also be very high: 17% of them

exceed 0.5 seconds.

3.7 Discussion

3.7.1 Bypassing Anomalies

In addition to characterizing anomalies, one of the goals of PlanetSeer is to provide bene-

fits to the hosts running it. One possible approach is using the wide-area service nodes as

an overlay, to bypass path failures. Existing systems, such as RON [5], bypass path fail-

ures by indirectly routing through intermediate nodes before reaching the destinations.

Their published results show that around 50% of the failures on a 31-node testbed can

be bypassed [25]. PlanetSeer differs in size and scope, since we are interested in serving

thousands of clients that are not participants in the overlay, and we have a much higher

AS-level coverage.

58

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

 fr
ac

tio
n

 bypass ratio

Figure 3.11: CDF of latency ratio of overlay paths to direct paths

Determining how many failures can be bypassed in our model is more complicated,

since we have no control over the clients. Clients that are behind firewalls and filter pings

and traceroutes may be reachable from other overlay nodes, but we may not be able to

confirm this scenario. As a result, we focus only on those destinations that are reachable

in the baseline probes, since we can confirm their reachability during normal operation.

For this group of clients, we have a total of 62815 reachability failures, due to anoma-

lies like path outages or loops. Of these failures, we find that some nodes in PlanetSeer

are able to reach the destinations in 27263 cases, indicating that one-hop indirection is

effective in finding a bypass path for 43% of the failures.

In addition to improving the reachability of clients using overlay paths, the other

issue is their relative performance during failures. We calculate a bypass ratio as the

ratio between the minimum RTT of any of the bypass paths and the RTT of the baseline

path. These results are shown in Figure 3.11, and we see that the results are moderately

promising – 68% of the bypass paths suffer less than a factor of two in increased latency.

In fact, 23% of the new paths actually see a latency improvement, suggesting that the

59

overlay could be used for improving route performance in addition to failure resiliency.

However, some paths see much worse latency degradation, with the worst 5% seeing

more than a factor of 18 worse latency. While these paths may bypass the anomaly, the

performance degradation will be very noticeable, perhaps to the point of unusability.

3.7.2 Reducing Measurement Overhead

While PlanetSeer’s combination of passive monitoring and distributed active probing is

very effective at finding anomalies, particularly the short-lived ones, the probing traffic

can be aggressive, and can come as a surprise to low-traffic sites that suddenly see a burst

of traceroutes coming from around the world. Therefore, we are interested in reducing

the measurement overhead while not losing the accuracy and flexibility of our approach.

For example, we can use a single traceroute to confirm loops, and then decide if we

want distributed traceroutes to test for the presence of correlated loops. Similarly, for

path changes and outages, we can reduce the number of distributed traceroutes if we are

willing to tolerate some inaccuracy in characterizing their scope. In Figure 3.12, we plot

the CDF of the number of the probes from other vantages points we have to examine

before we find the intercept traceroutes that can successfully narrow the scopes of the

anomalies. Using only 15 vantage points, we achieve the same results as when using all

30 vantage points in 80% of the cases. We are interested in studying this issue further, so

that we can determine which vantage points we need to achieve good results.

3.8 Summary

In this chapter, we have introduced what we believe to be an important new type of diag-

nostic tool, one that passively monitors network communication watching for anomalies,

60

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35

 fr
ac

tio
n

 number of probes

Figure 3.12: CDF of number of path examined before finding the intercept path

and then engages widely-distributed probing machinery when suspicious events occur.

Although much work can still be done to improve the tool—e.g., reducing the active

probes required, possibly by integrating static topology information and BGP updates—

the observations we have been able to make in a short time are dramatic.

• Passive monitoring allows us to detect more anomalies in less time: we have con-

firmed nearly 272,000 anomalies in three months. This is roughly 3,000 a day, and

is 10 to 100 times more than reported previously. We also see a qualitative change,

such as large numbers of ultrashort and temporary anomalies that last less than one

minute.

• Due to our wide coverage, we see new failure distribution and location properties.

Failures are heavily skewed, rather than pervasively distributed: Tier 3 seems to be

the most problematic, accounting for almost half of the loops, path changes, and

path outages that we see. Tier 1 ASes are generally the most stable.

61

• We provide some new measurements about routing loop behavior. Temporary loops

have much longer lengths than persistent loops. 97% of the persistent loops consist

of only 2 routers, but only 50% of temporary loops do. Many temporary loops span

4 routers. This makes sense since the more routers are involved in a loop, the less

stable it is. Persistent loops are either resolved in a relative short time (54% last

less than 30 minute) or continue for an extended period of time (23% last more than

7.5 hours). Our results confirm Paxson’s findings that routing loops are correlated.

• Path changes exhibit different characteristics than outages. Outages appear closer

to the edge of the network: 63% of outages occur within 3 hops to end hosts while

the figure is 20% for path changes. Path changes tend to have wider impact: 57%

of path changes can be confined to two ASes and 50% of them can be confined to

within three hops, while the respective figures are 78% and 70% for outages. Path

changes have a much milder effect on RTTs than outages while they both can incur

high loss rates.

• Our measurements suggest less opportunity for indirection-based resiliency than

previous studies: alternative routes are available only 43% of the time, and a sig-

nificant fraction of them suffer from high latency inflation. These results stem from

most outages occurring nearer the edge of the network than the core; redundancy

is less available, and less practical when it is available.

We have shown that PlanetSeer provides an effective means to detect large numbers

of anomalies with broad coverage, especially in the case of wide-area services that can-

not rely on cooperation from one endpoint. In addition to the detection rate, the short

delay between emergence and detection allows us to capture anomaly behavior more ef-

fectively, and our distributed framework provides improved characterization.

62

Chapter 4

mTCP: Robust Transport Layer

Protocol Using Redundant Paths

In the previous chapter, we have introduced PlanetSeer, a large-scale distributed sys-

tem for routing anomaly detection and diagnosis. Although PlanetSeer can help us gain

a better understanding of routing anomalies and improve the long-term stability of the

Internet, it has little immediate impact on increasing the reliability of an individual end-

to-end connection. In this chapter, we describe mTCP, a novel transport-layer protocol

that can quickly react to performance degradations and minimize their negative effect on

end users

4.1 Introduction

Recent work on Internet measurement and overlay networks has shown that redundant

paths are common between pairs of hosts [78]. One can often achieve better end-to-

end performance by adaptively choosing an alternate path other than the direct Internet

63

path [5]. At the same time, stub networks are increasingly resorting to multihoming

to improve the reliability of their network connectivity [2]. The reliability is usually

achieved by having sufficiently disjoint paths to the destinations of interest. Moreover,

with the rapid growth of wireless coverage, mobile users can often have access to multiple

communication channels simultaneously [39, 59]. All of the above indicates redundant

paths are quite common between pairs of hosts.

Our goal is to design a transport layer protocol, called mTCP, which can enhance

the robustness of end-to-end communications during performance anomalies by taking

advantage of the redundant paths. Compared with conventional single-path TCP flows,

mTCP stripes a flow’s packets across several paths. It can be viewed as a group of single-

path subflows, with each subflow going through a separate path. mTCP can aggregate the

bandwidth of several paths in parallel. As a result, even if one or more paths encounter

performance problems, mTCP can still utilize the bandwidth on other good paths. A

number of challenges arise when one attempts to develop such a transport layer protocol:

First, the traditional congestion control mechanism in TCP needs to be modified in

order to fully exploit the aggregate bandwidth of the multiple paths. If one were to use

the traditional congestion control mechanism on the whole flow (wherein the congestion

window for the entire flow is halved for every packet loss), the mTCP connection would

remain under-utilized in the following scenario. Assume that one of the sub-flows is

using an anomalous path, i.e. a heavily congested path. Severe packet losses on that path

will result in repeated shrinkage of the window, resulting in sub-optimal use of the other

normal subflows. mTCP therefore needs to perform congestion control on each subflow

independently so as to minimize the negative impact of anomalous subflows.

64

Second, paths may fail during data transmission. mTCP should not stall as long as

there exists one operational path. It should be able to quickly detect failed paths and

continue sending or retransmitting packets on other live paths.

Third, when subflows of a mTCP flow share congested links, the whole flow can

obtain an unfairly larger share of bandwidth than other single-path TCP flows since each

subflow behaves as a single-path TCP flow. To alleviate this aggressiveness problem, we

integrate a shared congestion detection mechanism into our system so as to identify and

suppress subflows that traverse the same set of congested links.

Finally, there might exist many alternate paths between a pair of source and destina-

tion nodes. We want to select a small number of candidate paths for mTCP flows since it

is impractical to use all the paths simultaneously. We use a heuristic to identify and select

disjoint paths using traceroute. This can minimize the possibility of shared congestion

and concurrent path failures.

We note that mTCP provides performance benefits only when there are multiple paths

that do not share congested physical links. Although in today’s Internet, many congested

or bottleneck links may lie at the edge of the network and limit the performance benefits

of mTCP, this is likely to change with the growing popularity of high speed Internet

access. Akella, Seshan and Shaikh [3] measured a diverse set of paths traversing ISPs in

Tiers 1 to 4. They discovered that approximately 50% of the paths have bottleneck links

that are located within ISPs or between neighboring ISPs. The available capacity of those

bottleneck links are less than 50Mbps, well below the 100Mbps Ethernet speed that could

be attained within local area networks. In such situations, mTCP is likely to find multiple

paths that are not constrained by the bandwidths attainable at the edge of the network.

Other scenarios where mTCP could find an useful set of disjoint paths to transmit data

include multi-homed clients [2].

65

We also note that our focus is on improving the performance and robustness for large

data transfers. Although most flows on the Internet are small, most of the traffic on the

Internet is contributed by a small percentage of large flows [95, 28]. Therefore, improving

the performance of such large flows is important. Additionally, while small flows might

not necessarily benefit from throughput aggregation, they might still benefit from mTCP’s

robustness that would enable them to quickly detect and recover from path failures.

To the best of our knowledge, we are the first to implement and evaluate a transport

layer protocol that can utilize redundant paths concurrently in real systems. We try to

provide a comprehensive design that addresses the inter-related issues of sub-flow con-

gestion control, unfair use of congested links, path selection, and recovery from path

failures. We believe that it is beneficial to tackle all of these issues in a single tightly-

coupled system. For instance, suboptimal decisions from the path selection mechanism

could be corrected by a mechanism that detects the use of shared congested links. Alter-

nately, shared congestion could be detected easily by monitoring TCP events (such as fast

retransmits) without requiring separate probe messages. Furthermore, the system could

quickly recover from performance anomalies by maintaining and transmitting along mul-

tiple paths. Finally, an mTCP flow can passively monitor the performance of several

paths in parallel and estimate their available bandwidths. The bandwidth estimates are

typically more accurate than the estimates provided by the underlying overlay routing

mechanisms. This, in turn, can help select better paths.

The rest of this chapter is organized as follows: Section 4.2 will discuss the specific

design problems of mTCP in detail. Section 4.3 briefly describes the implementation of

our system. Section 4.4 demonstrates the results from experiments conducted on Planet-

Lab [73] and Emulab [24]. Finally, Section 4.5 concludes.

66

4.2 Design

The design of our system seeks to satisfy three goals. First, given several paths, mTCP

should be able to make full use of the available bandwidth on those paths. Second, when

mTCP uses paths with shared congested links, it should be able to alleviate the aggres-

siveness problem by suppressing some of the paths. Third, when some paths fail, mTCP

should quickly detect and recover from the failures.

4.2.1 Transport Layer Protocol

mTCP provides the same semantics to applications as TCP. It preserves properties such

as reliability and congestion control. Because mTCP uses several paths in parallel, it has

to decide how to stripe packets across the paths and how to manage congestion control

for each subflow.

Congestion Control

In mTCP, all subflows share the same send/receive buffer. Packets are assigned sequence

numbers in the same way as in TCP. But it does congestion control independently on

each subflow. Each subflow maintains a congestion window as in TCP. The congestion

window changes independently as the subflow adapts to the network state. When there are

no packet losses in the subflow, its congestion window linearly increases. Upon detecting

packet losses, its congestion window is halved. When timeout occurs, the congestion

window is reset to one and the subflow enters slow-start.

mTCP strives to keep all subflows independent from each other. Suppose we had

used only one global congestion window for the entire flow that limits the total amount

of outstanding data across all subflows. The packet losses on any one of the paths will

67

cause the global congestion window to be halved. If one subflow happens to traverse a

heavily congested path, it can keep the global congestion window small, and the other

subflows will not be able to utilize the available bandwidth on other good paths. In fact,

this can sometimes decrease the throughput of the whole flow to be even lower than that

of a single-path TCP flow on a single good path. This phenomenon was also studied

in [38].

Estimating Outstanding Packets

TCP uses (sndnxt - snduna) to estimate the number of outstanding packets in the network.

(For convenience, we assume packets are of the same size and use packets instead of bytes

for discussion.) Here sndnxt is the next packet to be sent and snduna is the next packet

for which an ACK is expected. The difference should be no more than the congestion

window (cwnd). In mTCP, since packets are striped across different paths, we need to

keep track of how many outstanding packets are in each path to ensure that the number

does not exceed the cwnd of that path.

Our mTCP is based on TCP SACK [63], which is an extension of TCP Reno. In

Reno, the receiver only reports the greatest packet number that arrives in-order. But in

mTCP, different paths have different latencies. Many packets can arrive at the receiver

out of order. We want to accurately know which packets have been received, irrespec-

tive of whether or not they arrived in-order. This helps us to compute the number of

outstanding packets on each path, which is essential for performing congestion control

separately on each subflow. In SACK, the sender maintains a scoreboard data structure

to keep track of which packets have or have not been received. An acknowledgment

(ACK) packet may carry several SACK blocks, where each SACK block reports a non-

contiguous set of packets that has been received. The first SACK block reports the most

68

recently received packet and additional SACK blocks repeat the most recently reported

SACK blocks. The SACK blocks allows the sender to identify what packets have been

newly received irrespective of whether or not the data packets arrive in-order.

We augment the scoreboard data structure so that it records the path over which each

packet is transmitted or retransmitted. For each pathi, we maintain a pipei to represent

the number of outstanding packets on pathi. pipei is incremented by 1 when the sender

either sends or retransmits a packet over pathi. It is decremented when an incoming

ACK indicates that a packet previously sent on pathi has been received. New packets

are allowed to be sent over pathi only when pipei < cwndi. Retransmitted packets

require special handling. Suppose the original packet is sent over pathi and the retrans-

mitted packet is sent over pathj . When the retransmitted packet is ACKed, the sender

decrements both pipei and pipej by 1, because it represents two packets having left the

network: the original one on pathi, which is assumed to be lost, and the retransmitted

one on pathj , which has been received. We want to emphasize that the original and re-

transmitted packets do not have to be sent over the same path. We will discuss this in

more detail in Section 4.2.1. Finally, if pathi times-out, pipei will be reset to 0.

Fast Retransmit

Since mTCP sends packets along several paths with different latencies, packets can arrive

at the receiver out-of-order. In traditional TCP, duplicate acknowledgments (dupack) are

associated with packet losses, and dupacks typically trigger fast retransmits. In mTCP,

since some of the dupacks are caused by packet reorderings, the system should be careful

in using fast retransmits.

Although packets sent through different paths may be received out-of-order, packets

within each subflow will still mostly arrive in-order. Each pathi therefore maintains the

69

following path-specific state: sndunai, the next packet requiring an ACK over the given

path, and dupacki, the number of dupacks received for that path. If an incoming ACK

indicates the receipt of a packet sent through pathi and if that packet is sndunai, this

packet is considered to be in-order within that subflow. If that packet is greater than

sndunai, dupacki is incremented by 1. When dupacki reaches dupthresh = 3, pathi

will enter fast retransmit and fast recovery.

Sending Packets

mTCP separates the decisions of when to send a packet, which packet to send, and which

path to use to send the packet. The sender is allowed to send a new packet when there

exists at least one pathi satisfying pipei < cwndi. The packet to send is usually deter-

mined by sndnxt, which represents the next packet to send as in TCP. But if there is a

pathi with packets to retransmit, i.e. pathi is in fast recovery, the sender has to retransmit

those packets inferred to be lost before sending any new data packets. Once again the

scoreboard is consulted to determine whether there are any such packets that need to be

retransmitted. Otherwise, a new data packet determined by sndnxt will be sent.

Next, the sender needs to decide the path over which the packet will be sent. There

may be several candidate paths. We associate a score of pipei/cwndi with each pathi. We

choose the path with the minimum score. This form of proportional scheduling results in

a fair striping of packets and avoids sending a burst of packets on one path.

Because mTCP separates the decisions about when to send, which to send and which

path to use for sending, it has more flexibility in striping packets. By postponing the

decision about which path to use until just before sending out the packet, it can quickly

adapt to dynamic variations in path characteristics. If a path encounters congestion or

fails, its cwnd will be reduced. mTCP does not have to wait for the re-opening of the

70

cwnd on that path to retransmit the outstanding packets. It can instead retransmit the

packets on other paths. We want to emphasize that, unlike the re-striping scheme used

in pTCP [38], our scheme will not retransmit packets that have already been received,

because we can precisely infer missing packets from the scoreboard data structure.

Single Reverse Path

In our design, despite the fact that data packets are striped over several paths, all ACKs

return over the same path. There are two advantages of using a single path for conveying

ACKs. First, it preserves the ACK ordering for all the subflows. If ACKs are conveyed

through different paths, this may introduce ACK reorderings even within one subflow,

which will increase the burstiness of the sender. Second, striping ACKs across different

paths makes our system more complicated. The receiver has to maintain additional state

about which ACKs are sent through which paths. We instead keep the receiver side as

simple as possible, following the design principle of TCP.

The advantage of using multiple reverse paths is that it is more robust to congestion

or failure. Note however that ACKs are typically small and are less likely to cause con-

gestion than data packets. In addition to this, we try to avoid congestion by selecting the

best path among all the candidate paths as the reverse path for sending ACKs. This will

be discussed in Section 4.2.3. Recovering from failures of the single reverse path is a

little more complicated. If we stripe ACKs across multiple paths, although the scheme

is more robust to failures, we have to constantly suffer from ACK reorderings. Since

failures generally will not occur very often, by using a single reverse path, we trade-off

a performance degradation during failure recovery for better performance during normal

operation. In Section 4.2.5, we show that the failure recovery time of mTCP is reasonably

small even though it uses a single reverse path.

71

Comparison with Multiple TCP sockets

We could have avoided much of mTCP’s complexity by opening separate TCP sockets

for each path and then striping packets at the application layer [80]. But this approach

has limitations that can prevent us from efficiently aggregating the bandwidth of multiple

paths. To fully utilize the bandwidth of multiple paths, we must ensure that the amount

of data striped over a path is proportional to the bandwidth of that path. This can be

very difficult to achieve in Internet-like settings where the path conditions could vary.

Modifying TCP directly gives us more flexibility on striping data streams over multiple

paths. We can decide, for each packet, an appropriate path the packet should traverse,

and this decision is made just before the packet is sent out. This is especially useful for

migrating the outstanding packets on bad paths to good paths when the quality of paths

changes dynamically or during path failures. Striping at the application layer cannot adapt

to changes in path quality responsively. The pTCP study [38] has shown in simulations

that such a scheme cannot fully utilize multiple paths when the number of paths exceeds

two.

4.2.2 Shared Congestion Detection

When mTCP uses paths that are not completely disjoint and if some of the shared physical

links are congested, the whole mTCP flow will obtain more bandwidth than other single-

path TCP flows along those congested links, since each of the subflows behaves as a TCP

flow. mTCP tries to alleviate the aggressiveness problem by detecting shared congestion

among its subflows and suppressing some of them. Previous work [77, 36, 49, 92] on

shared congestion detection is based on the observation that if two single-path flows share

congestion, packets from two flows traversing a congested link at about the same time

72

are likely to be either dropped or delayed. Rubenstein et al. [77] actively inject probing

packets through the two paths to compute the correlation of packet losses or packet delays

and thereby identify shared congestions.

We could certainly use one of the approaches mentioned above in our system since

shared congestion detection is independent from other parts of the system. We however

take a simpler approach based on the following observations. mTCP transmits a steady

stream of packets through different paths. In this setting, there is no need to send probing

packets. Instead, one can passively monitor the subflows by studying the behavior of

the data packets.Furthermore, since individual packet drops will result in fast retransmits

along the corresponding subflows, the sender can detect shared congestions by examining

the correlations between the fast retransmit times of the subflows. Since data packets also

double as probe packets and since there are a large number of data packets transmitted

through a subflow, our passive monitoring strategy requires little overhead and generates

a continuous stream of information resulting in fast detection of shared congestion.

Detecting Shared Congestion using Fast Retransmits

Let us focus on detecting shared congestion between a pair of subflows. For more than

two subflows, we need to detect shared congestion between every pair of them. In the

following discussion, we say that two subflows are correlated if the corresponding paths

share congestion; otherwise, they are independent. We first assume that two paths have

the same latency so that we do not have to worry about the time synchronization problem

between them. Later, we will extend our algorithm so that it can deal with paths with

different latencies.

Each time that a subflow enters fast retransmit, the sender records a timestamp in the

subflow’s list of fast retransmit events. After some time, we have two lists of timestamps,

73

S and T , from two flows: (s1, s2, ..., sm) and (t1, t2, ..., tn). Each timestamp represents

a fast retransmit event. Then we try to match a timestamp si in S with tj in T . If

|si − tj| < interval, we call (si, tj) a match. Intuitively, a match means the two subflows

enter fast retransmit around the same time. This also means packets from the two flows

are dropped at about the same time, so it is likely they share the same congested link. We

define match(S, T) to be the maximum number of pairs (si, tj), such that si matches tj .

Please note that each si cannot be matched with multiple tj. Finally, two subflows are

considered to be correlated if:

ratio =
Match(S, T)

min(m, n)
> δ

ratio is intended to identify what fraction of fast retransmits occur at about the same

time in the two subflows. Since some of the fast retransmits are due to congestion on

disjoint links, ratio reflects the level of shared congestion. We consider two subflows to

be correlated when ratio is greater than some threshold δ.

Our method uses fast retransmits instead of individual packet losses to infer shared

congestion. This is because when a data flow encounters congestion, there normally will

be a burst of packet losses. All these losses are caused by one congestion period at some

link. Therefore, a fast retransmit corresponds more directly to a congestion period, much

more so than any individual packet loss. We would like to declare (si, tj) to be a match

only when packets from two subflows are dropped at one link during the same congestion

period. So interval cannot be too small, otherwise even if si and tj occur in the same

congestion period, the system will not detect the match. On the other hand, interval

cannot be too large, otherwise the system would consider (si, tj) to be a match even

when they are not due to shared congestion. Although the shared congestion detection

74

may not work well under active queue management schemes, most routers on today’s

Internet use drop-tail queues, which lead to periods of bursty losses during congestion.

In [96], the authors find that 95% of the duration of bursty losses are less than 220ms.

So interval should be on that time scale. We will study how to choose interval and δ in

more detail in Section 4.4.4.

Estimating Convergence Time

We need to emphasize that our goal is to suppress correlated subflows in order to alleviate

the aggressiveness problem. We need to detect shared congestion as quickly as possible.

Other efforts focus more on the accuracy of shared congestion detection, and they may

take several hundred seconds to reach a decision. This does not work well for our purpose,

because a mTCP flow could have ended before shared congestion is detected.

Our algorithm works as follows. After some number of fast retransmit events have

been observed, we will check for shared congestion between the two subflows. If there

is shared congestion, we can suppress one of them. Otherwise, we will wait until the

occurrence of the next fast retransmit to check for shared congestion again. The question

we now address is determining the number of fast retransmit events that we need to

observe before we start checking for shared congestion.

We use a heuristic to estimate the probability of two fast retransmit events from two

independent flows accidentally occurring within a small period of time. Suppose the

fast retransmit events of two subflows, S and T, are completely independent when two

subflows are independent, we compute the average interval of two consecutive fast re-

transmit events in S: intervals = now
m

, where now is the current time when shared

congestion detection is invoked. intervalt is computed in a similar way. Then we de-

fine p = 2×interval
min(intervals ,intervalt)

. Suppose n ≥ m, we have intervalt ≤ intervals, and

75

interval = p

2
× intervalt. For each si, if there exists a match tj , si must be in the

(tj − interval, tj + interval). Because we assume si and tj are independent events, the

probability that si matches some tj is roughly p. So the total expected number of matches

is roughly E(Match(S, T)) = pm. Because min(m, n) = m, we will misinterpret S

and T to share congestion if Match(S, T) > δm. According to the Chernoff bound [17]:

ζ = Prob[(Match(S, T) > δm] < e−mD(δ||p),

where D(δ||p) = δ ln δ
p

+ (1 − δ) ln 1−δ
1−p

. So we need to wait for m = − ln ζ

D(δ||p)
fast

retransmit events to ensure that the probability of a false positive is less than ζ . We will

see in Section 4.4.4 the convergence time is mostly within 15 seconds in our Emulab and

PlanetLab experiments. We want to emphasize that even if a false positive does occur, it

will only degrade a mTCP flow into a single-path flow.

This heuristic might encounter problems when min(intervals, intervalt) ≤ 2 ×

interval. Because interval is small (200ms in our experiments), this can only occur

when a path is so heavily congested that fast retransmit happens almost every 400ms.

The mTCP flows will try to suppress such paths, because using them will not bring much

benefit. This is discussed in Section 4.2.4.

Finally, when two paths have different latencies, there is a time-lag, L, between

them. We estimate L by shifting one sequence, say T , by dt in time and calculating

Matchdt(S, T) on sequences (s1, s2, ..., sm) and (t1 + dt, t2 + dt, ..., tn + dt) as de-

scribed before. Because the L between two paths can be at most one RTT (where RTT

is the larger round trip time of the two paths), we go through all possible value dt in

(−RTT, RTT) incrementally using some fundamental step x, then choose dt that max-

76

imizes Matchdt(S, T) as L. This is similar to calculating the correlation between two

signals.

4.2.3 Path Selection

In the previous sections, we assumed that flows have a number of candidate paths. Now

we describe how to obtain such information. We use Resilient Overlay Networks (RON) [5]

as our underlying routing layer. RON is an application-layer overlay.When mTCP starts,

it queries RON to obtain multiple paths between a source-destination pair. For each pair,

RON provides the direct Internet path and alternate single-hop indirect paths through

other RON nodes. With a RON of n nodes, there are m = n − 1 paths between each

pair. RON uses a score to represent the quality of each path based on latency, loss rate or

throughput. RON can effectively bypass performance failure or path faults by using an

alternate path with higher score. In the following, we only use the throughput score.

Since m can be large (greater than 10 in our experiments), mTCP will only select at

most k (5 in our experiments) paths from them. A single-path flow will normally select

the path with the best score, which we call the RON path. mTCP could select the k best

paths. But this simple strategy may select paths with many overlapping physical links.

This leads to two disadvantages: First, paths are more likely to fail simultaneously, which

is bad for the robustness. Second, paths are more likely to share congestion, which is bad

for performance. To avoid these problems, we want to select sufficiently disjoint paths.

We use a heuristic based on traceroute to estimate the disjointness of paths. Using

traceroute, we can obtain the IPs of the routers along a path and the latency of each phys-

ical link. Due to IP aliases, the same router might have different IPs in different paths.

We use “Ally”, a tool from Rocketfuel [83], to resolve IP aliases and assign a unique

IP to each router. Although some routers may not respond to traceroute probes and the

77

alias resolution may not be completely accurate, we only use the traceroute information

as a hint to estimate path disjointness and eliminate many of the significantly overlapping

paths. We also rely on the techniques described in Section 4.2.2 to further detect shared

congestion.

After alias resolution, suppose we have the IPs of two paths X = (x0, x1, ..., xm)

and Y = (y0, y1, ..., yn). Let L be the set of overlapping links of X and Y , we define

the overlapping between X and Y as: Overlapping(X, Y) =
∑

l∈L latency(l). An

alternative is to use the size of L to quantify the degree of overlap. We use latency instead

because we hope to distinguish among different types of link. Most nodes on PlanetLab

are connected through ethernet links to backbones. Those ethernet links usually have

smaller latency than backbone links. Because the sharing of the local ethernet links are

almost unavoidable, we focus on finding disjoint paths that traverse different backbone

links. By using link latencies, Overlapping(X, Y) will be mostly determined by the

shared backbone links instead of ethernet links. This argument might not be true if nodes

are connected through modem or wireless links that have high latency. Using traceroute

to find disjoint paths is only suitable for small-scale overlay networks. As the number of

nodes increases, we need a more scalable way to discover disjoint paths. In [64], Nakao,

Peterson and Bavier propose to use BGP information to find disjoint Autonomous System

(AS) paths, which incur little cost. Although disjoint AS paths are not as fine-grained as

disjoint router-level paths, it would greatly simplify disjoint path search by providing a

small set of promising candidate paths which we can further verify using traceroute.

Finally, we estimate the disjointness of X and Y by:

Disjoint(X, Y) = 1 −
Overlapping(X, Y)

Min(Latency(X), Latency(Y))

78

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20

pe
rc

en
ta

ge
 o

f n
od

e-
pa

irs

number of disjoint paths

0.8
0.7
0.5

Figure 4.1: CDF of number of disjoint paths between node-pairs

We say that X and Y are disjoint if Disjoint(X, Y) > β. Using the disjointness

metric between each pair of paths, we select at most k paths from m paths using a greedy

algorithm as follows: (1) Initialize the set of selected paths to be empty. (2) Pick the

path with the highest score from the set of m paths and check if it is disjoint from all the

previously selected paths. (3) If so, select this path, otherwise pick the path with the next

highest score and repeat step (2) until we find k paths or we have tried all m paths. The

first selected forward path and the reverse path will always be the RON path, which is

optimized for throughput in RON.

Figure 4.1 plots the cumulative distribution function (CDF) of the number of disjoint

paths between 630 node pairs based on traceroute among 36 PlanetLab nodes that are

used in our experiments. When β decreases, the number of disjoint paths between node-

pairs increases. We want a β such that there are sufficient number of disjoint paths which

we can choose from while eliminating most significantly overlapping paths. When β =

0.5 (the value used in our experiments), 90% of node-pairs have more than 4 disjoint

paths but less than 16 disjoint paths. If we use a larger β, many node pairs will not have

enough candidate disjoint paths.

79

4.2.4 Path Management

Path Suppression

In mTCP, a subflow fi on pathi may be suppressed because of one of three reasons:

First, fi shares congestion with another subflow fj and its throughput T (fi) is lower than

T (fj). This is because we do not want mTCP to be too aggressive to other single-path

TCP flows. Second, suppose fj has the highest throughput among all the subflows and

if T (fi) <
T (fj)

ω
(for some constant ω > 1), then fi may be suppressed. This is because

pathi is too poor and using it does not bring much benefit. Third, pathi fails.

We define a family of mTCP flows, called MPd flows. An MPd flow will try to use

at least d (d ≥ 1) paths, which means we will not suppress any path because of shared

congestion when the number of paths being used is less than or equal to d. The value of d

is a tradeoff between performance/robustness and friendliness. With a larger d, mTCP can

obtain more bandwidth because it uses more paths. And it is more reliable because the

probability that d paths fail simultaneously gets smaller as d increases. But it can be more

aggressive to single-path flows under shared congestion. The aggressiveness problem

can be alleviated by suppressing some subflows. But when there are only d subflows, no

subflow would be suppressed. The actual value of d should be decided by the application.

Applications that want higher performance and more reliability should choose a larger

d. Applications that care more about friendliness should choose a smaller d. In our

experiments, we choose d = 1 to demonstrate how much performance improvement

mTCP can obtain without being too aggressive to other TCP flows.

80

Path Addition

An MPd flow can dynamically add new paths because of two reasons: First, some paths

that are not being used become better than those paths that are being used. Second, it

is using less than d paths because some paths were suppressed. mTCP will periodically

update the information about all the paths by querying RON. If an unused path has a

much higher score than a path being used, it can start using the new path. Then it runs the

path suppression algorithm on all the paths to suppress any paths with shared congestion.

By doing this, mTCP can gradually replace bad paths with good ones. This is especially

useful for long-lived flows.

4.2.5 Path Failure Detection and Recovery

Failure Detection

mTCP may encounter path failures during transmission. If all the paths fail simultane-

ously, we call it a fatal path failure, otherwise we call it a partial path failure. We will

focus on partial failures in this section. To recover from fatal failures, mTCP relies on the

routing layer to establish new paths just like single-path flows.

When a path fails, the data packets sent over it will no longer be acknowledged

(ACKed) because the packets have been dropped. We maintain one failure detection

timer, timeri, for each pathi. When a data packet sent over pathi is ACKed, timeri is

reset. pathi is considered to have failed when timeri expires.

We need to decide a timeout value Ii for timeri. On one hand, we want a small

Ii so that failures can be detected quickly. On the other hand, Ii cannot be too small,

otherwise it may misinterpret a good path to have failed. The retransmission timeout

(RTOi) provides a good base for computing Ii. First, during timeout, the sender will go

81

into idling and no packets will be ACKed in that period. So Ii should be at least greater

than RTOi. Second, several consecutive timeouts means either the path has failed or

it is heavily congested. In either case, we would like to abandon pathi. So we choose

Ii = χRTOi. Here χ reflects how many consecutive retransmission timeouts mTCP is

willing to tolerate before it consider a path to have failed. In our experiments, we choose

χ = 2, because we have observed that consecutive retransmission timeouts rarely occur

on good paths. We should emphasize that even if a good path is misinterpreted as a failed

one, it will only degrade the performance of mTCP to that of a single-path flow in the

worst case. The path addition technique described in Section 4.2.4 allows us to reclaim a

path if it had been previously misinterpreted to be a failed path.

Failure Recovery

We now describe how to recover from failure after timeri expires. Since all ACKs return

over the same path, we call that path a primary path. The other paths are auxiliary paths.

We need to distinguish between primary and auxiliary path failures. When an auxiliary

pathi fails, the sender will mark pathi as failed and retransmit the outstanding packets

of pathi over other paths. When a primary path fails, the situation is more complicated.

Because all the ACKs are lost, it may appear to the sender that all paths have failed. To

deal with this problem, sender records the time πi when pathi is detected to have failed.

Suppose at time now, the primary pathp is also detected to have failed and let the timeout

of timerp be Ip. We know that pathp must have failed at some point between now − Ip

and now. For an auxiliary pathi, if now−Ip ≤ πi, its failure is possibly due to the failure

of pathp. In this case, we will change the status of pathi to be active and the status of

pathp to be failed. After doing this for all the paths, the sender starts to send packets over

all active paths. During this period, these data packets serve as “probing” packets that

82

solicit ACKs from the receiver. All timers are stopped to prevent any auxiliary path from

being misinterpreted as failed due to the lack of an active primary path during this period.

The receiver will also detect the primary path failure because it no longer receives any

data packets over that path. Then it elects a new primary path and sends ACKs along that

path in response to those “probing” packets from sender. It chooses the best path (based

on the path score in RON) among all the active paths to be the new primary path. Later,

when the sender receives the ACKs and knows that a new primary path has been elected,

it restarts all the timers and proceeds as normal.

Typically, RTOi is one second, therefore Ii is two seconds. The total detection and

recovery time will be between two and three seconds in most cases. The interruption due

to partial path failures will be fairly short. Furthermore, partial path failure does not cause

mTCP to stall since packets will continue to be transmitted through active paths. Since

mTCP uses several paths concurrently and since it typically employs disjoint paths, the

probability of fatal path failures is much lower than that of single-path failure. mTCP is

therefore more robust than single-path flows.

4.3 Implementation

Our system is implemented at the user-level and is composed of a Portable User-Level

TCP/IP stack (PULTI) and an overlay router/forwarder modified from RON. RON is an

application-layer overlay on top of the Internet. PULTI and RON run in two separate

processes. We modified RON so that it can communicate with PULTI using UDP sockets

and export the multiple paths between a source-destination pair. The whole system does

not require any root privilege, and hence it can be easily deployed on shared distributed

platforms such as PlanetLab. Currently, it runs on Linux, NetBSD and FreeBSD. Note

83

that although our system in build on top of overlay networks, it will work in a non-overlay

setting as well. The only requirement of our system is that there exists an underlying

routing system that can provide multiple paths between a source-destination pair and let

us select paths for sending packets. RON is just one of such systems. Our system will

also work in other Internet settings, such as multi-homed hosts.

PULTI is a full user-level TCP/IP stack based on FreeBSD 4.6.2. We extract the

network-related code from the kernel source and wrap it with some basic kernel environ-

ment support, such as timing, synchronization and memory allocation. We do not modify

any network-related code. Because FreeBSD 4.6 does not support SACK, we also add

SACK-related code in PULTI which is required by our system. OS dependent informa-

tion is hidden by device drivers. With different device drivers, PULTI can send or receive

through a UDP socket, IP QUEUE in Linux or a divert socket in FreeBSD. PULTI pro-

vides standard socket interface and supports multiple applications through multithread-

ing. It can query RON to learn about multiple paths between a source-destination pair.

The mTCP code only affects a few files in PULTI. It can be easily moved into FreeBSD

kernel.

4.4 Evaluation

4.4.1 Methodology

In this section, we validate our protocol in both emulation and real-world deployment.

The emulations are run on Emulab [24], which is a time- and space-shared network em-

ulator. Emulab consists of several hundred PCs, which can be configured to emulate

different network scenarios. Users can specify parameters such as packet loss rate, la-

tency, and bandwidth. While an experiment is running, the experiment gets exclusive use

84

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M

b

3
m
s

1
0
0
M

b

3
m
s

1
0
0
M
b

3
m
s

1
0

0
M

b

3
m

s
 1
0
0
M
b
3
m
s

1
0
0
M
b
3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
6
M
b
1
0
0
m
s

1
6
M
b

8
0
m
s

1
6
M
b

4
0
m
s

1
6
M

b

2
0
m
s

1
6

M

b

6
0

m

s

1
0
0
M
b

3
m
s

H
5

H
0

H
4

H
3
H
2

H
1
 R
5

R
1
 R
2
 R
3
 R
4

R
0

R
8
 R
9

R
6
 R
7

Figure 4.2: Topology of multiple independent paths on Emulab

of the assigned machines. While Emulab provides a controlled environment for our ex-

periments, we further conduct experiments on PlanetLab, a wide-area distributed testbed

for running large-scale network services [73]. The experiments on the PlanetLab allow

us to study our protocol for Internet settings, where latency, bandwidth and background

traffic are more realistic and unpredictable.

4.4.2 Utilizing Multiple Independent Paths

In this experiment, we study whether mTCP can obtain the total available bandwidth

over multiple independent paths. We use the topology in Figure 4.2 on Emulab. Be-

cause each PC in Emulab has four Ethernet cards, each node can have at most four links.

There are six endhosts (Hi) and ten routers (Rj). RON is running on the six endhosts

to construct an overlay network. All routers have drop-tail queues. The source and

85

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5

M
B/

s

Combined
Separate
N x single-path flow

Figure 4.3: Throughput of mTCP flows with combined or separate congestion control as
number of paths increases from 1 to 5

destination nodes are H0 and H5 respectively. Each of the remaining endhosts pro-

vides an alternate path. For example, we can use H1 to construct an alternate path

(H0, R0, R6, R1, H1, R1, R8, R5, H5). So the topology contains five independent paths,

which include one direct path and four alternate paths. We use the direct path as the re-

verse path for ACKs. The capacity of all the paths is 16Mbps and their RTTs vary from

52-147ms. The figure annotates each link with its corresponding bandwidth and latency.

The arrows represent background flows. We use Iperf [43] to generate 25 TCP and 25

1Mbps UDP flows as background traffic, with 5 TCP and 5 UDP flows on each path. Each

experiment runs for 40 seconds and the results are obtained by averaging three runs.

Figure 4.3 shows the results when the number of paths used by mTCP increases from

1 to 5. In this figure, “combined” represents mTCP flows with congestion control per-

formed on the entire flow, “separate” represents regular mTCP flows with congestion

86

Path Intermediate node RTT(ms)
0 direct path 80.165
1 planetlab1.nbgisp.com 112.503
2 planet2.berkeley.intel-research.net 71.639
3 planet2.pittsburgh.intel-research.net 96.641
4 planet2.seattle.intel-research.net 90.305

Table 4.1: Independent paths between Princeton and Berkeley nodes on PlanetLab.

control performed separately on each subflow, and “NxSingle-path flow” is the through-

put of a single-path flow on one path multiplied by the number of paths. Because each

path has the same available bandwidth, “NxSingle-path” throughput represents the ideal

throughput of a mTCP flow. The results verify that mTCP can effectively aggregate the

available bandwidth on multiple independent paths. The results also show that higher

throughput can be achieved only when congestion control is performed for each subflow

separately.

We conduct similar experiments on PlanetLab. We use one node in Princeton and one

node in Berkeley as source and destination nodes. As shown in Table 4.1, the four Intel

nodes serve as intermediate nodes for the alternate paths. We only use the four alternate

paths in this experiment, because they do not share any congestion links. To verify this,

we examined the traceroute data to find that any pair of the alternate paths only share

the initial and final hops, which are unavoidable. The capacity of these two links are

100Mbps, which is far greater than the total throughput of the single-path TCP flows on

these four paths. Therefore, we conclude that the initial and final hops are not congested

and the four alternate paths are independent.

Each experiment measures the throughput of flows lasting for 60 seconds. The av-

erage throughput of three runs is reported. For convenience, we use T (i) to denote

the throughput of a single-path flow on pathi. Similarly, T (i, j) denotes the through-

87

Figure 4.4: Throughput percentage of individual flows

put of a mTCP flow using pathi and pathj . In Figure 4.4, (i,j) on the x-axis means

pathi and pathj are used in that experiment. We first run single-path flows on pathi

and pathj respectively, then run a mTCP flow on both paths simultaneously. The cor-

responding column compares the percentage that the throughput of an individual flow,

T (i), T (j) or T (i, j), contributes to the total throughput of these flows. Ideally, we ex-

pect T (i, j) = T (i) + T (j), so the percentage of T (i, j) should be around 50%. With the

exception of the experiment involving path2 and path4, which suffered from unexpected

bandwidth variations, the rest of the experiments indeed provide the expected through-

puts. The last column in Figure 4.4 shows the result of the experiment using path2,

path3, and path4. Again, the net throughput of T (2, 3, 4) is close to the sum of T (2),

T (3) and T (4). We have conducted experiments between different source-destination

pairs on PlanetLab. The results are similar. We omit them due to space constraints.

88

Path Intermediate node RTT(ms)
0 direct path 80.165
1 planetlab02.cs.washington.edu 102.890

Table 4.2: Paths used in the failure recovery experiment.

0

50

100

150

200

250

300

350

400

0 7.5 15 22.5 30 37.5 45 52.5 60

se
gm

en
t

second

cwnd
ssthresh

fast retransmit
timeout

Figure 4.5: cwnd of primary path, primary path fails

0

50

100

150

200

250

300

350

400

0 7.5 15 22.5 30 37.5 45 52.5 60

se
gm

en
t

second

cwnd
ssthresh

fast retransmit
timeout

Figure 4.6: cwnd of auxiliary path, primary path fails

89

4.4.3 Recovering from Partial Path Failures

Now we will study whether mTCP can quickly recover from partial path failures using

experiments on PlanetLab. Because path failures on the Internet are unpredictable, we

intentionally introduce failures by killing the appropriate RON agent. The source and

destination nodes are still the Princeton and Berkeley nodes. The paths are shown in

Table 4.2.

The two graphs in Figure 4.6 show how the congestion window (cwnd) of the primary

and auxiliary paths changes over time. As shown in the first graph in Figure 4.6, the

primary path fails at about 20s. It is quickly detected so that the cwnd of the subflow

on this path is reduced to 0. At the same time, the cwnd of the subflow on the auxiliary

path also decreases to 0, because the auxiliary path was misinterpreted to have failed

(as explained in Section 4.2.5). But a few seconds later, the subflow on the auxiliary

path recovers from this false decision by restoring its cwnd to the previous value with

slow start. Finally the auxiliary path becomes the new primary path and the whole flow

proceeds using only one path. The behavior of mTCP during auxiliary path failures is

similar, and we omit the corresponding results.

The total recovery time of mTCP during partial path failures is only about 3s, which

is negligible for most applications. In contrast, a TCP flow will completely stall when

its path fails, and it typically takes about 18s for RON to establish a new path. RON is

optimized for quickly recovering from path failures. On wide area network that uses BGP

to detect failures, recovery could take several minutes. Hence, mTCP is more responsive

and robust than single-path flows.

90

8
0
M
b

2
0
m
s

8
0
M
b

2
5
m
s

1
0
0
M
b

3
m
s

6
0
M
b

2
0
m
s

6
0
M
b
2
0
m
s
 1
0

0
M

b

3
m

s

8
0
M

b

1
0
m
s
1
0
0
M

b

3
m
s

8
0

M

b

5
m

s

R
2

R
3
 R
5

R
4

R
0

R
1

H
0
 H
2

H
1

Figure 4.7: Two independent paths used in shared congestion detection

8
0

M
b

1
0

m
s

8
0
M
b
1
0
m
s

8
0
M
b

1
0
m
s

8
0
M
b
1
0
m
s

1
0
0
M
b

1
0
m
s

1
0
0
M
b

3
0
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M

b

1
0
m
s

R
2

R
1

R
5

R
4

R
3

R
0
 H
2

H
1

H
0

Figure 4.8: Two paths that completely share congestion

91

4.4.4 Detecting Shared Congestion

In this section, we will evaluate shared congestion detection. We first use experiments on

Emulab to study the behavior of our algorithm with different parameters in a controlled

environment. Then we further validate it using experiments on PlanetLab. The topologies

for the Emulab experiments are shown in Figures 4.7 and 4.8. Between the source node

H0 and the destination node H2, there is one direct path and one alternate path through

the intermediate node H1.

In Figure 4.7, The two paths only share the initial and final hops with link capacities

of 100Mbps. We generate 12 TCP flows and 18 1Mbps UDP flows as background traffic,

with 2 TCP flows and 3 UDP flows on each link between each pair of neighboring routers.

With this scheme, we ensure that congestion only occurs on the links between pairs of

routers and not on the links between endhosts and routers. As a result, the two paths

(H0, H2) and (H0, H1, H2) are independent.

In Figure 4.8, The two paths share the four links between H0 and R5. We generate 8

TCP flows and 8 1Mbps UDP flows as background traffic, with 2 TCP and 2 UDP flows

on each of the four shared links. By doing this, we ensure that congestion only occurs on

the four shared links. As a result, paths (H0, H2) and (H0, H1, H2) share congested links.

We run mTCP flows for 300s using the two paths in Figure 4.8. The results in Fig-

ure 4.9 compare the estimated ratio of shared congestion with different interval values

of 5ms, 10ms, 25ms, 50ms, 100ms, 200ms, and 400ms. Each data point represents the av-

erage of five runs. As interval increases from 5 to 100ms, ratio increases quickly from

0.4 to 0.8 as expected. When interval increases beyond 100ms, ratio only increases

slightly. When interval is 400ms, ratio reaches 0.96. The ideal ratio is 1 because the

two paths share all the congestion.

92

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ra
tio

interval(second)

Figure 4.9: On two paths with shared congestion, ratio increases as interval increases

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

ra
tio

second

interval=0.005s
interval=0.025s
interval=0.100s
interval=0.200s
interval=0.400s

Figure 4.10: On two independent paths, ratio decreases faster when interval is smaller

93

We next run mTCP flows for 300s on the two paths in Figure 4.7. The results are

shown in Figure 4.10, which plots ratio over time for different interval values of 5ms,

25ms, 100ms, 200ms and 400ms. As explained in Section 4.2.2, a smaller interval will

lead to smaller estimated values of ratio. At the end of the experiments, ratio drops

quickly from 0.39 to 0.28 when interval decreases from 400 to 200ms. When interval

deceases further, ratio drops more slowly until it reaches 0.14 when interval = 5ms.

The ideal ratio is 0 because the 2 paths are independent. We also notice that the ratio

curve for a smaller interval value decreases faster than that for a larger interval.

According to the above experiment results, an interval value between 100 and 200ms

seems to balance the goal of minimizing both false negatives and false positives. Con-

sequently, the ratio threshold δ should fall between 0.3 and 0.8. If it is less than 0.3,

it is very likely to cause false positives when the interval is 200ms. If it is greater

than 0.8, it can easily cause false negatives when the interval is 100ms. By setting

interval = 200ms and δ = 0.5, we successfully detect shared congestion between the

two paths in all five runs for the topology in Figure 4.8. For the topology in Figure 4.7,

no shared congestion is detected and the two paths are determined to be independent as

expected.

Next, we go on to evaluate the shared congestion detection on PlanetLab. As ex-

plained in Section 4.2.2, by setting interval to be no less than the congestion period

during which bursty losses occur, we can avoid false negatives. In [96], the authors find

that 95% of the duration of bursty losses on the Internet are very short-lived (less than

220ms). By choosing an interval around that value, we should be able to avoid most

false negatives. At the same time, the average time between consecutive fast retransmits

is mostly on the order of several seconds or more, much greater than 220ms. (Otherwise,

mTCP will suppress such path because the path is too lossy.) Therefore, this interval

94

Path Run 1 Run 2 Run 3
1 2 No No No
1 3 No No No
1 4 No No No
2 3 No No No
2 4 N/A Yes No
3 4 No No No

Table 4.3: Shared congestion detection for independent paths.

value will also allow us to avoid most false positives, as long as we wait for enough

number of fast retransmits. In the following experiments, we report the results using

interval = 200ms and δ = 0.5.

We first need to choose paths such that we can be reasonably sure as to whether they

share congestion or not. Then, we can compare the measured results with the expected

results. We conduct two sets of experiments. The mTCP flow is running on a pair of

paths for 60 seconds in each experiment. As explained in Section 4.2.2, the probability

of false positive decreases very fast as the number of fast retransmit increases. We find

that a 60 second period is long enough for our algorithm to converge. Each experiment is

repeated three times. We use the Princeton and Berkeley nodes as source and destination

in all experiments, but we choose different pairs of paths in different sets of experiments.

In the first set of experiments, we use the four alternate paths in Table 4.1, where we

know that all these paths are independent. The results are in Table 4.3. The first column

shows the pairs of paths used by the mTCP flows. The remaining three columns show the

results. A No means two paths are independent, a Yes means they share congestion, and

N/A means one of the subflows is suppressed because its throughput is much lower than

the other subflow before the end of the experiment. All the results in Table 4.1 conform

to our expectation except the one false positive for using path2 and path4. As explained

95

Path Intermediate node RTT(ms)
0 direct path 80.165
1 planetlab2.cs.duke.edu 96.138
2 planetlab2.cs.cornell.edu 100.382
3 vn2.cs.wustl.edu 92.267

Table 4.4: Paths with shared congestion on PlanetLab.

Path Run 1 Run 2 Run 3 Average
0 1 7.000 9.975 4.266 7.080
0 2 4.276 3.223 6.011 4.503
0 3 6.847 3.263 14.214 8.108
1 2 12.184 8.906 16.804 12.631
1 3 4.478 10.101 13.131 9.237
2 3 12.380 9.873 17.845 13.366

Table 4.5: Shared congestion detection for correlated flows.

before, a false positive will only degrade the performance of the mTCP flow to that of a

single-path flow.

The second set of experiments use the paths in Table 4.4. From traceroute, we know

the underlying physical links of any pair of these paths are mostly overlapping, so they

should share congested links. The results are shown in Table 4.5. The first column gives

the pairs of paths used in the experiments. The following three columns give the time

in seconds when shared congestion is detected in each run. The last column gives the

average detection time. Shared congestion is correctly detected in all cases.

Unlike other shared congestion detection algorithms, our algorithm seeks to mini-

mize the detection time while maintaining a low false positive rate. In the second set of

experiments, shared congestion is correctly detected mostly within 15 seconds. At the

same time, such early decisions do not cause too many false positives in the first set of

experiments.

96

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

5
0
M
b

2
0
m
s

5
0
M
b

2
0
m
s
 5
0
M

b

1
0
m
s

1
0
0
M
b
3
m
s
1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s

1
0
0
M
b

3
m
s
1
0
0
M
b

3
m
s

1
0
0
M
b
3
m
s
1
0

0
M

b

3
m

s

1
0
0
M
b
3
m
s
1
0
0
M
b

3
m
s

R
5
R
9
R
7

R
3

R
4

R
8
R
0

R
1

R
2

R
6

H
5

H
1
 H
3

H
0

H
2

H
4

Figure 4.11: All paths share congestion in this topology

4.4.5 Alleviating Aggressiveness with Path Suppression

In this section, we demonstrate mTCP can be more friendly to other single-path flows by

suppressing its subflows that share congestion. We construct the topology of Figure 4.11

on Emulab. The source and destination nodes are H0 and H5. There are one direct path

and four alternate paths provided by the remaining four endhosts. Their RTTs are from

124ms to 133ms and they share the three links between R8 and H5. We generate 12

1Mbps UDP flows as background traffic, with 4 UDP flows on each of the three shared

links. By doing this, we ensure that all five paths share congestion. Each experiment runs

for 300 seconds and the results are obtained by averaging three runs.

In Figure 4.12, the first five columns give the throughput of the flows when the num-

ber of paths being used increases from one to five. The first column is the throughput

of single-path TCP flows. Under shared congestion, the mTCP flows become more ag-

gressive as they use more paths. The sixth column shows the throughput of the mTCP

flow with path suppression. Although it uses five paths in the beginning, it quickly de-

tects shared congestion and suppresses all but one path. So its throughput is very close

to that of a single-path flow and less aggressive than the flow using all five paths without

suppression.

97

Figure 4.12: MP1 flows are less aggressive than other mTCP flows

4.4.6 Suppressing Bad Paths

In this experiment, we demonstrate that mTCP can effectively aggregate the bandwidth

of multiple paths with sufficiently differing characteristic, and path suppression can help

avoid the penalty from using bad paths. We use the same topology as in Figure 4.2. The

bandwidth of direct path is still 16Mbps. But the bandwidth of four alternate paths is

1/2, 1/4, 1/8 and 1/1000 of the bandwidth of the direct path. In Figure 4.13, (1, 1/n)

on the x-axis means the direct path and alternate path with 1/n bandwidth are used in

that experiment. We first run a single-path flow on each path respectively, then run a

mTCP flow on both paths. The corresponding column compares the percentage that the

throughput of an individual flow contributes to the total throughput of these flows. Ideally,

the throughput percentage of mTCP flows should be 50%. Figure 4.13 shows mTCP can

efficiently utilize the aggregate bandwidth of two paths even when one path has only 1/8

the bandwidth of the other path. The mTCP flows in the last 2 columns use the direct

path and the alternate path with 1/1000 bandwidth. Such a scenario could occur when

98

Figure 4.13: Path suppression helps avoid using bad paths.

a path becomes heavily congested or even temporarily fails. Using such bad paths can

bring no benefit but impair the performance of the whole flow. Because most packets are

lost along that path, it persistently causes timeouts. While packets can still be sent over

the other path for some time, the flow will finally stall when the send/receive buffer is

exhausted. As explained in Section 4.2.4, mTCP will suppress the paths with too low

a throughput to avoid such penalty. (We choose ω = 10 in our experiments.) This is

confirmed by the last two columns which represent the throughput of mTCP flows with

and without suppression.

4.4.7 Comparing with Single-Path Flows

We are going to compare three types of flows: single-path flows using direct Internet path

(INET), single-path flows using RON path optimized for bandwidth (RON) and MP1

flows. MP1 flows will use multiple paths when there is no shared congestion. We use

MP1 flows to demonstrate how much performance improvement mTCP can obtain with-

out being too aggressive to other TCP flows. Table 4.6 shows the 10 nodes that serve as

99

Host Name Host Name
planetlab2.millennium.berkeley.edu planetlab2.postel.org

planetlab02.cs.washington.edu planetlab2.lcs.mit.edu
planetlab-2.cs.princeton.edu planetlab2.cs.ucla.edu
planetlab2.cs.uchicago.edu planet.cc.gt.atl.ga.us

planetlab2.cs.duke.edu pl2.cs.utk.edu

Table 4.6: The 10 endhosts used in the experiments that compare mTCP with single-path
flows.

endhosts in an overlay network for this experiment. (We actually use a total of 24 nodes

to form the overlay network, with the remaining 14 nodes only serving the role of packet

forwarders.) For each source-destination pair, we transfer data for 40 seconds using each

of the three types of flows. Each experiment is repeated three times and we report the

average throughput.

The available bandwidth of the paths between the pairs of endhosts can be very high,

because nine of them are connected to Internet2. We bypass those pairs with very high

available bandwidth on the corresponding direct paths because: First, these paths are

between pairs of nodes that exhibit shared congestion/bottleneck at the initial and/or final

hops. Second, the bandwidth-delay products of the paths between such pairs of nodes are

very large. The maximum send/receive buffer size of our user-level TCP implementation

is 1MB and is not large enough to utilize the bandwidth on other alternate paths besides

the direct path. We estimate the available bandwidth of a direct path between a source-

destination pair by running a TCP flow for 10 seconds. If the measured throughput is less

than 12 Mbps, we will use that pair for our experiments. Among the 90 pairs, we got

15 pairs that satisfy the above condition. We want to emphasize that we are not trying

to study the popularity of independent paths with distinct points of congestion between

node-pairs on the Internet; such topic has been studied by others [3].Instead, we focus on

100

Figure 4.14: mTCP flows achieve better throughput than single-path flows

demonstrating that mTCP can achieve better performance by taking advantage of such

redundant paths.

Among the 15 pairs, MP1 flows achieve significantly higher throughput in 6 pairs, as

shown in Figure 4.14. They achieve 33% to more than a factor of 60 better performance

than single-path flows. We have to mention that MP1 flows only try to aggregate the

available bandwidth on multiple paths when there is no shared congestion. Other MPd

(d ≥ 2) flows would obtain better performance, but they are potentially more aggressive.

The performance improvement of mTCP does not solely come from bandwidth ag-

gregation on multiple paths, it is also because mTCP can help select better paths than

those provided by the routing layer, such as the direct path or the RON path optimized

for throughput. RON estimates the available bandwidth of a path using score =
√

1.5
rtt

√
p
.

Here p is the packet loss rate and rtt is the round trip time, both of which are obtained

by active probing. Although it can help RON distinguish paths with significant perfor-

101

Figure 4.15: Throughput of mTCP and single-path flows is comparable

mance difference and select better alternate path, this estimate may not be accurate; a

path with high score may actually have low available bandwidth [5]. In mTCP, the sender

can monitor the performance of several paths in parallel. The throughput of each subflow

provides a fairly good estimate of the available bandwidth on that path. This does not

require any active probing because the data packets serve as probing packets. This can

help mTCP discover and utilize better paths than the suboptimal RON path or direct path.

We examined the paths in those 6 pairs and found that MP1 flows do take paths different

from either the direct paths or the RON paths. The achieved throughput of on those paths

are higher than that of direct path or RON path.

Figure 4.15 shows the results of the remaining 9 pairs. By examining the paths, we

find that all MP1 flows degrade to single-path flows because of shared congestion, and

the RON/INET/MP1 flows all take the same single path for the whole transfer. Hence, the

throughput of MP1 flows should be comparable to that of INET/RON flows, as shown in

Figure 4.15. In three pairs, MP1 flows obtain slightly lower performance than RON/INET

102

flows, this is because different types of flows are run sequentially and there is minor

fluctuations in the available bandwidth of a path over time.

4.5 Summary

In this chapter, we present mTCP, a transport layer protocol, for improving end-to-end

robustness and performance. mTCP can efficiently aggregate the available bandwidth on

several paths in parallel, even if some paths encounter performance anomalies. mTCP

flows are more robust to path failures than TCP flows, because they will not stall even

when some paths fail. The failure recovery time is within a few seconds. To address

the aggressiveness of mTCP during shared congestion, we integrate a shared congestion

detection mechanism into mTCP so that correlated subflows can be suppressed. We also

propose a heuristic to find disjoint paths based on traceroute. It can help mTCP to min-

imize the chance of concurrent failure or shared congestion. We have implemented our

system on top of overlay networks and evaluated it on PlanetLab and Emulab.

103

Chapter 5

Conclusion and Future Work

5.1 Summary of the Dissertation

The Internet has experienced an exponential growth in recent years, so has its complex-

ity. The increasing complexity can potentially lead to more network-layer instabilities.

When anomalies do occur, users often experience severe performance degradations. In

addition, these performance problems are extremely difficult to debug because of the het-

erogeneity and decentralization of the Internet. What we urgently need today is a better

understanding of these anomalies and more robust network protocols that perform well

during anomalous periods.

This dissertation has addressed two important issues in this area. The first is to build

systems and tools that help understand the Internet’s behavior under routing anomalies.

This is a crucial step for us to be able to diagnose routing anomalies quickly and prevent

similar problems from occurring in the future. The second is to design end-to-end net-

work protocols that are resilient to misbehavior. So when performance problems occur,

their negative impact on end users will be minimized.

104

5.1.1 Internet Path Failure Monitoring and Characterization

Detecting network failures generally requires examining large volumes of traffic data to

find misbehavior. We observe that wide-area services, such as peer-to-peer systems and

content distribution networks, exhibit large traffic volumes, spread over large numbers

of geographically-dispersed endpoints. This makes them ideal candidates for observing

wide-area network behavior. We have built a fault diagnosis system, called PlanetSeer,

that passively monitors traffic generated by wide-area services. When detecting anoma-

lous network behavior, it actively probes the network from multiple nodes to quantify

and characterize the failure. This approach provides several advantages over other tech-

niques: (1) we obtain more complete and finer-grained views of routing anomalies since

the wide-area nodes already provide geographically-diverse vantage points; (2) we incur

limited additional measurement cost since most active probing is initiated when passive

monitoring detects oddities; and (3) we detect anomalies at a much higher rate than other

researchers have reported since the services provide large volumes of traffic to sample.

We have deployed PlanetSeer on PlanetLab, a wide-area network testbed. During a

3-month period in 2004, we have monitored network paths that traversed over 10,000

autonomous systems (ASes), more than half of the total number of ASes on the Internet.

We have confirmed nearly 272,000 routing anomalies, a rate that is 10 to 100 times higher

than reported in previous studies. We have also made several interesting observations

from this study. First, the failure distribution is highly skewed. The core of the Internet is

much more stable than the edges. A small number of service providers (ISPs) contribute

to a disproportionally large number of persistent routing loops. Second, persistent and

temporary loops show different behaviors. Persistent loops span far fewer routers and

ISPs, and they can persist for an extended period of time. Third, path changes and outages

exhibit different characteristics. Outages appear closer to the edges of the network and

105

have narrower scope. Many outages occur at the last hop. Finally, while overlay routing

can circumvent failures between two endpoints by sending data indirectly on an alternate

path through a third computer, the alternate paths often suffer from high latency inflation.

5.1.2 Robust Transport Layer Protocol Using Redundant Paths

TCP is the most commonly used end-to-end protocol on today’s Internet. TCP uses only

one path between two endpoints. When a performance anomaly, such as outage or con-

gestion, occurs on that path, TCP’s performance will be severely degraded or even be-

come completely unusable. Recent work on Internet measurement and overlay networks

has shown that redundant paths are common between pairs of hosts. Based on this ob-

servation, we have designed a transport-layer protocol, called mTCP, that can enhance

the performance and robustness of end-to-end communications when experiencing per-

formance anomalies. mTCP stripes one flow’s packets across several paths so that it effi-

ciently aggregates the bandwidth of several paths in parallel. When some paths encounter

anomalies, mTCP can still utilize the bandwidth on other good paths.

In mTCP, we provide a comprehensive design that addresses the inter-related issues

of congestion control on multiple paths, unfair use of congested links, path selection, and

recovery from path failures. (1) mTCP separates congestion control of different paths so

that it does not suffer from the penalty of using bad paths. (2) mTCP reacts to path failures

quickly; the recovery process takes just a few seconds, much faster than relying on wide-

area routing protocols. (3) Because multipath flows can unfairly obtain a larger share of

bandwidth compared to single-path flows during congestion, mTCP integrates a shared

congestion detection mechanism to ensure fairness to other single-path flows. (4) mTCP

uses a heuristic to discover disjoint paths so as to minimize the chance of concurrent

failures and shared congestion. We have evaluated mTCP using extensive experiments

106

in both local-area and wide-area networks and have observed significant improvement

opportunities.

5.2 Future Work

The overall goal of my research is to improve the performance and resilience of the

Internet infrastructure by building self-diagnosing and self-repairing network protocols

and services. My thesis work on failure monitoring and robust end-to-end protocols is

the first step toward this goal. I intend to pursue my future research in at least three

directions.

5.2.1 Debugging Routing Anomalies

Despite the recent advances in networking research, we still lack the ability to completely

understand the routing behavior of the Internet. Users often experience service disruption

without any insight about why it occurs or how to circumvent it. Debugging these routing

problems is exceptionally hard. This is because the Internet is such a complex system

that the malfunction of any of its components may affect a large portion of the whole

system. Equipment failures, software bugs, and misconfigurations occur more often than

we would like. The failure of an individual component can be propagated to other parts

of the network, which may in turn lead to instabilities in a wider area. Such service

disruptions may take hours or even days to resolve. Complicating matters even further,

the Internet is not owned by a single administrative entity but instead by many service

providers (ISPs); no single entity has a global view of the Internet. Troubleshooting these

routing problems becomes extremely challenging without collaboration among different

ISPs.

107

AS1 AS2 AS3

AS4

AS5

AS6 AS7

Source
Destination
Prefix P

Figure 5.1: Locating the origin of AS-path change

We plan to develop algorithms and techniques for pinpointing routing problems, since

routing instability is one of the major sources of performance problems. Several research

efforts have tried to use interdomain routing (BGP) messages to isolate routing instabil-

ity [29, 14, 16, 55]. In this approach, the basic assumption is that an AS path change

is caused by some instability either on the previous best path or the new best path. By

correlating the BGP updates along time, views, and prefixes, they are able to pinpoint

the instability origin to a set of ASes and their peerings. However, their studies show

BGP information itself is insufficient to reveal the location of instabilities under many

circumstances, because BGP messages only convey AS-level information. For instance

in Figure 5.1, suppose a source node in AS 1 wants to reach a destination prefix P in AS

7, and the AS path changes from “1 2 3 4 6 7” to “1 2 3 5 6 7”. At the first glance, one

might deduce the route change is caused by some instability in AS 3, 4, 5, or 6. However,

this may not be true. An instability in AS 1, 2, or 7, e.g. a hot-potato routing change [86],

can lead to the same phenomenon. Therefore, we cannot exclude AS 1, 2, or 7 from the

set of possible instability origins.

To be able to pinpoint the origins of routing problems, we need to correlate data from

multiple sources. Examining the problems from multiple vantage points will provide us

a more complete view on them, such as which parts of the network are affected or what

108

kind of anomalous events are perceived. Correlating data of different types, e.g. routing

messages, traffic data, and end-to-end probing, will increase the chance of detecting prob-

lems and reduce the chance of raising false alarms. Using a simple example, let us show

how we can improve the accuracy of anomaly diagnosis by combining end-to-end prob-

ing with BGP messages. Again in Figure 5.1, suppose we are able to launch traceroutes

from AS 1 to destination prefix P , this will help us narrow the set of possible instability

origins. For instance, if the traceroutes reveal that there is a hot-potato routing change in

AS 2 that causes the IP-level path to exit AS 2 at a different egress point, we may infer

the instability origin is very likely to be in AS 2. On the contrary, if there is no IP-level

route change in AS 1, 2, or 7, or any of their peerings, it is reasonably safe to infer that

the instability origin is in AS 3, 4, 5, or 6. We plan to develop the right mechanisms for

aggregating the observations across different locations and sources.

5.2.2 Debugging Non-Routing Anomalies

So far, we have been focusing on routing anomaly. However, as we have explained

in Section 1.1, routing anomaly is not the only source of performance degradation on

the Internet. Many performance problems are caused by non-routing anomaly, such as

congestion. To gain a better understanding of network performance problems, we need

to study non-routing anomaly as well.

As described in Section 3.2.3, PlanetSeer detects possible routing anomalies by watch-

ing for consecutive timeout and TTL change in TCP traffic. Besides these two types of

events, it also monitors end-to-end performance metrics, including RTT, RTTVAR, and

loss rate. During the 3-month monitoring period, we often observe end-to-end perfor-

mance degradations, such as high loss rate or high latency, without seeing consecutive

109

timeout or TTL change. These performance degradations could be caused by non-routing

anomalies.

We can use this type of performance degradations as an indication of non-routing

anomalies and invoke active probing to diagnose them, just like what we have done with

routing anomalies. We are interested in answering the following questions:

• Where does performance problem occur? Can we locate the link/router that incurs

most losses and delays?

• Why does performance problem occur? Can we identify the cause of losses and

delays? What are the loss/delay patterns exhibited by different types of problems?

• Since routing anomalies can cause heavy losses, can we still assume that most

losses are due to congestion? What is its impact on TCP if this assumption is not

true?

There has been much work on characterizing losses, delays, and congestion on the

Internet [72, 60, 6, 40, 3]. Since this approach has to continuously probe a path under

study, it can only monitor a limited set of network paths which may not be representative

of the Internet. In our approach, since the active probing is triggered by real performance

degradation, we can avoid probing the network needlessly during most time when the

network is under normal condition. As a result, we will be able to study a much broader

set of paths and gain a more complete view of performance problems on the Internet.

5.2.3 Internet Weather Service

Internet measurement has provided techniques to infer network properties from external

observations. Researchers have measured the Internet from many different perspectives,

110

e.g. mapping network topology [48, 33, 83], inferring routing policies [82], and estimat-

ing path bottlenecks [40, 3]. These isolated efforts have yet to be combined to form a

complete picture of the Internet. We plan to build an Internet Weather Service that can

not only track the current status of the Internet but also predict how the Internet will

evolve based on past observations. To some sense, it is like that today’s weather service

can alert us of bad future weather conditions, the Internet Weather Service may be able

to predict which parts of the network are going to experience what types of performance

degradation.

This type of service is exciting because it has great potential for generating impact

both on the society and on the research community. On the one hand, any user may

query the service to understand why she cannot connect to certain websites or why her

downloading speed is slow. On the other hand, network researchers can use this service

to gain historical, real-time, or future information about network behavior. The historical

information can help researchers construct realistic models of the Internet and evaluate

the robustness of their system designs under failures. The real-time or future information

can benefit various systems, such as application-layer multicast [19, 18, 31, 47, 9], over-

lay networks [5], and multi-homing [2]. These systems may use the information to select

better paths or build more robust topologies.

A number of challenges arise when we attempt to build such an open and shared

infrastructure. To obtain a reasonably accurate network status map, we have to decide

where to place the monitoring sensors and what types of information need to be collected.

Since we want to have a good coverage of the Internet, the number of sensors can be very

large and they may produce large volumes of data. We have to develop the right kind of

data abstraction and aggregation mechanism to minimize the overhead on the network.

111

We are also interested in exploring algorithms for predicting network behaviors based on

past observations.

112

Bibliography

[1] H. Adiseshu, G. M. Parulkar, and G. Varghese. A reliable and scalable striping
protocol. In Proceedings of ACM SIGCOMM, 1996.

[2] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman. A measurement-
based analysis of multihoming. ACM SIGCOMM, Aug. 2003.

[3] A. Akella, S. Seshan, and A. Shaikh. An empirical evaluation of wide-area Internet
bottlenecks. In Proceedings of ACM Internet measurement conference, Oct. 2003.

[4] M. Allman, H. Kruse, and S. Ostermann. An application-level solution to TCP’s
satellite inefficiencies. In Proceedings of WOSBIS, Nov. 1996.

[5] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay net-
works. ACM SOSP, Oct. 2001.

[6] D. Andersen, A. Snoeren, and H. Balakrishnan. Best-path vs. multi-path overlay
routing. ACM IMC, Oct. 2003.

[7] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee. On multiple description streaming
with content delivery networks. In Proceedings of IEEE INFOCOM, 2002.

[8] A. Banerjea. Simulation study of the capacity effects of dispersity routing for fault
tolerant realtime channels. Proceedings of ACM SIGCOMM, Aug. 1996.

[9] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer mul-
ticast. ACM SIGCOMM, Aug. 2002.

[10] S. Banerjee, T. G. Griffin, and M. Pias. The interdomain connectivity of PlanetLab
nodes. In Passive and Active Measurement Workshop, April 2004.

[11] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network traffic
anomalies. ACM IMW, Nov. 2002.

[12] A. Basu, C. Ong, A. Rasala, F. Shepherd, and G. Wilfong. Route oscillations in
I-BGP with route reflection. ACM SIGCOMM, Aug. 2002.

113

[13] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Mawrzoniak. Operating system support for planetary-
scale network services. In USENIX/ACM NSDI, Mar. 2004.

[14] M. Caesar, L. Subramanian, and R. H. Katz. Route cause analysis of Internet routing
dynamics. In Tech Report UCB/CSD-04-1302, 2003.

[15] J. Case, M. Fedor, M. Schoffstall, and J. Davin. Simple network management pro-
tocol (SNMP). RFC 1157.

[16] D.-F. Chang, R. Govindan, and J. Heidemann. The temporal and toplogical charac-
teristics of BGP path changes. In IEEE ICNP, Nov. 2003.

[17] B. Chazelle. The discrepancy method: randomness and complexity. Cambridge
University Press, 2000.

[18] Y.-H. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on
the Internet using an overlay multicast architecture. ACM SIGCOMM, Aug. 2001.

[19] Y.-H. Chu, S. Rao, and H. Zhang. A case for end system multicast. ACM SIGMET-
RICS, June 2000.

[20] D. Oran. OSI IS-IS intra-domain routing protocol. RFC 1142.

[21] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end WAN service availabil-
ity. ACM/IEEE Trans. Netw., Apr 2003.

[22] R. Dube. A comparison of scaling techniques for BGP. ACM CCR, July 1999.

[23] J. Duncanson. Inverse multiplexing. In IEEE Communications Magazine, vol-
ume 32, pages 34–41, 1994.

[24] Emulab. http://www.emulab.net.

[25] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek. Measuring the
effects of Internet path faults on reactive routing. In ACM SIGMETRICS, Jun 2003.

[26] N. Feamster and H. Balakrishnan. Towards a logic for wide-area Internet routing.
ACM SIGCOMM Workshop on Future Directions in Network Architecture, Aug.
2003.

[27] N. Feamster, Z. Mao, and J. Rexford. BorderGuard: Detecting cold potatoes from
peers. ACM IMW, Oct. 2004.

[28] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. De-
riving traffic demands for operational IP networks: methodology and experience.
ACM SIGCOMM, Aug. 2000.

114

[29] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs. Locating Internet
routing instabilities. In ACM SIGCOMM, Aug 2004.

[30] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP routing
protocols. IEEE INFOCOM, June 2002.

[31] P. Francis. Yoid: extending the multicast Internet architecture, 1999.
http://www.icir.org/yoid.

[32] G. Huston. BGP reports. http://bgp.pataroo.net.

[33] R. Govindan and H. Tangmunarunkit. Heuristic for Internet map discovery. IEEE
INFOCOM, 2000.

[34] T. Griffin and G. Wilfong. An analysis of BGP convergence. ACM SIGCOMM,
Sept. 1999.

[35] T. Hacker, B. Athey, and B. Noble. The end-to-end performance effects of parallel
TCP sockets on a lossy wide-area network. In Proc. of IPDPS, 2002.

[36] K. Harfoush, A. Bestavros, and J. Byers. Robust identification of shared losses
using end-to-end unicast probes. Proceedings of IEEE ICNP, Oct. 2000.

[37] U. Hengartner, S. Moon, R. Mortier, and C. Diot. Detection and analysis of routing
loops in packet traces. In ACM IMW, 2002.

[38] H. Hsieh and R. Sivakumar. ptcp: An end-to-end transport layer protocol for striped
connections. In Proceedings of IEEE ICNP, 2002.

[39] H. Hsieh and R. Sivakumar. A transport layer approach for achieving aggregate
bandwidths on multi-homed mobile hosts. In Proceedings of ACM MOBICOM,
2002.

[40] N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. Locating Internet bottlenecks:
Algorithms, measurements, and implications. ACM SIGCOMM, Aug. 2004.

[41] IANA. Special-use IPv4 addresses. RFC 3330.

[42] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analysis
of link failures in an IP backbone. In ACM IMW, Nov 2002.

[43] Iperf. http://dast.nlanr.net/Projects/Iperf/.

[44] J. Moy. OSPF version 2. RFC 2328.

[45] J. Postel. Internet control message protocol. RFC 792.

115

[46] M. Jain and C. Dovrolis. End-to-End available bandwidth: measurement methodol-
ogy, dynamics, and relation with TCP throughput. ACM SIGCOMM, Aug. 2002.

[47] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole. Overcast: reliable
multicasting with an overlay network. USENIX OSDI, Oct. 2000.

[48] k claffy, T. Monk, and D. McRobb. Internet tomography. Nature, Jan. 1999.

[49] D. Katabi, I. Bazzi, and X. Yang. An information theoretic approach for shared
bottleneck inference based on end-to-end measurements. In Class Project, MIT
Laboratory for Computer Science, 1999.

[50] A. Khanna and J. Zinky. The revised ARPANET routing metric. ACM SIGCOMM
CCR, Sept. 1989.

[51] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change detection:
Methods, evaluation, and applications. ACM IMW, Oct. 2003.

[52] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing conver-
gence. In ACM SIGCOMM, Sep 2000.

[53] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of Internet stability
and wide-area backbone failures. Technical Report CSE-TR-382-98, University of
Michigan, 1998.

[54] C. Labovitz, G. Malan, and F. Jahanian. Origins of Internet routing instabilities. In
IEEE INFOCOM, 1999.

[55] M. Lad, A. Nanavati, D. Massey, and L. Zhang. An algorithmic approach to identi-
fying link failures. In ACM PRDC, 2004.

[56] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies.
ACM SIGCOMM, Aug. 2004.

[57] J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan, and S. Tuecke.
Applied techniques for high bandwidth data transfers across wide area networks. In
Proceedings of CHEP, Sept. 2001.

[58] Y. Liang, E.G.Steinbach, and B. Girod. Real-time voice communication over the
Internet using packet path diversity. In Proceedings of ACM Multimedia, 2001.

[59] L. Magalhaes and R. Kravets. Transport level mechanisms for bandwidth aggrega-
tion on mobile hosts. In Proceedings of ICNP, Nov. 2001.

[60] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level path diagnosis.
ACM SOSP, Oct. 2003.

116

[61] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP misconfiguration.
In ACM SIGCOMM, 2002.

[62] Z. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an accurate AS-level tracer-
oute tool. In ACM SIGCOMM, 2003.

[63] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledge-
ment options. RFC 2018, Oct. 1996.

[64] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay networks. In
Proceedings of ACM SIGCOMM, Aug. 2003.

[65] NANOG. http://www.nanog.org.

[66] NetFlow. http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.

[67] T. Nguyen and A. Zakhor. Path diversity with forward error correction (PDF) system
for packet switched networks. In Proceedings of IEEE INFOCOM, 2003.

[68] NS. http://www.isi.edu/nsnam/ns.

[69] U. of Oregon RouteViews Project. http://www.routeviews.org.

[70] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A
simple model and its empirical validation. In ACM SIGCOMM, 1998.

[71] V. Paxson. End-to-end routing behavior in the Internet. In ACM SIGCOMM, Aug
1996.

[72] V. Paxson. End-to-end Internet packet dynamics. IEEE/ACM Trans. Netw., 7(3),
1999.

[73] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing
disruptive technology into the Internet. Proceedings of ACM HOTNETS, Oct. 2002.

[74] PlanetLab. http://www.planet-lab.org.

[75] Y. Rekhter and T. Li. A border gateway protocol. RFC 1771.

[76] M. Roughan, T. Griffin, Z. Mao, A. Greenberg, and B. Freeman. IP forwarding
anomalies and improving their detection using multiple data sources. ACM SIG-
COMM Network Troubleshooting Workshop, Aug. 2004.

[77] D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared congestion of flows via
end-to-end measurement. Proceedings of ACM SIGMETRICS, June 2000.

117

[78] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-end effects
of Internet path selection. In ACM SIGCOMM, Aug 1999.

[79] A. Shaikh and A. Greenberg. Experience in black-box OSPF measurement. ACM
IMW, Nov. 2001.

[80] H. Sivakumar, S. Bailey, and R. L. Grossman. PSockets: The case for application-
level network striping for data intensive applications using high speed wide area
networks. In Supercomputing, 2000.

[81] A. Snoeren. Adaptive inverse multiplexing for wide area wireless networks. In
Proc. of IEEE Conference on Global Communications, 1999.

[82] N. Spring, R. Mahajan, and T. Anderson. Quantifying the causes of path inflation.
ACM SIGCOMM, Aug. 2003.

[83] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocket-
fuel. ACM SIGCOMM, Aug. 2002.

[84] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,
M. Kalla, L. Zhang, and V. Paxson. Stream control transmission protocol. In RFC
2960, Oct. 2000.

[85] L. Subrmanian, S. Agarwal, J. Rexford, and R. H. Katz. Characterizing the Internet
hierarchy from multiple vantage points. IEEE INFOCOM, June 2002.

[86] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynamics of hot-potato routing
in IP networks. In ACM SIGMETRICS, Jun 2004.

[87] B. Traw and J. Smith. Striping within the network subsystem. In IEEE Network,
volume 9, pages 22–32, 1995.

[88] V. Paxson and M. Allman. Computing TCP’s retransmission timer. RFC 2988.

[89] K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations in inter-
domain routing. Computer Networks, 2000.

[90] L. Wang, V. Pai, and L. Peterson. The effectiveness of request redirection on CDN
robustness. In OSDI, Dec. 2002.

[91] J. Wu, Z. Mao, J. Rexford, and J. Wang. Finding a needle in a haystack: Pinpointing
significant BGP routing changes in an IP network. USENIX NSDI, May 2005.

[92] O. Younis and S. Fahmy. On efficient on-line grouping of flows with shared bottle-
necks at loaded servers. In Proceedings of IEEE ICNP, Nov. 2002.

118

[93] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A transport layer
approach for improving end-to-end performance and robustness using redundant
paths. USENIX Annual Technical Conference, June 2004.

[94] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. PlanetSeer: Internet path
failure monitoring and characterization in wide-area services. USENIX OSDI, Dec.
2004.

[95] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteristics and origins
of Internet flow rates. Proceedings of ACM SIGCOMM, Aug. 2002.

[96] Y. Zhang, N. Duffield, V. Paxson, and S. Shenkar. On the constancy of Internet path
properties. ACM IMW, Nov. 2001.

119

