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Abstract

This paper describes an assembly-language type system capable of ensuring memory safety in the presence of
both heap and stack allocation. The type system uses linear logic and a set of domain-specific predicates to specify
invariants about the shape of the store. Part of the model for our logic is a tree of “stack tags” that tracks the
evolution of the stack over time. To demonstrate the expressiveness of the type system, we define Micro-CLI, a
simple imperative language that captures the essence of stack allocation in the Common Language Infrastructure. We
show how to compile well-typed Micro-CLI into well-typed assembly.

1 Introduction
The grand challenge for the proof-carrying code paradigm is twofold: to develop an expressive logic for easily speci-
fying and proving properties of low-level programs, and to develop certifying-compiler technology that automatically
generates such proofs from the information embedded in high-level programs. Over the last eight years, tremen-
dous progress has been made, but finding general-purpose logics for specifying memory-management properties and
developing certifying-compiler technology targeting them continues to be problematic.

In this paper, we develop a low-level memory model that treats pointers to heap and stack locations uniformly in
the presence of aliased data structures. Our type system extends previous work on the development of typed assembly
languages [15, 14, 2] by using linear logic and domain-specific predicates to specify preconditions for assembly code.
These preconditions describe the contents and shape of the stack and heap, and provide a safe but flexible way to
allocate, deallocate, reference, and reuse data on the stack. The typing discipline is powerful enough to represent
general stack pointers including pointers that might point into the heap or into the stack.

Defining an expressive type system and testing it on some ad hoc examples does not demonstrate that it is useful
for certifying compilation. It is equally necessary to show that there is an algorithm for generating type-safe low-level
code from type-safe high-level code. To demonstrate that our system does indeed form a foundation for certifying
compilation in the presence of complex and important memory invariants, we define a high-level language called
Micro-CLI, which captures the stack-allocation features found in the Common Language Infrastructure (CLI) [6, 9],
and we give a translation of well-typed Micro-CLI into well-typed assembly code.

This is the first paper (1) to develop a unified low-level memory model for the heap and the stack in the presence
of aliasing, and (2) to give an algorithm for a type-preserving compilation from a language with both heap and stack
allocation to our typed assembly language. Previous work has either developed type (or proof) systems that are too
restrictive to handle important, realistic invariants such as those present in the CLI, or it has not demonstrated any sort
of compiler strategy for generating stack-based proof-carrying code.

1.1 Background and Related Work
Most earlier work on typed assembly language [14] and proof-carrying code [4] allows reasoning about data allocated
in the current stack frame, but not much more. STAL [14] allows pointers deep into the stack, supporting a particular
implementation of exceptions, but its type system is not very polymorphic: STAL distinguishes between stack and
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heap pointers and tracks the exact ordering of the stack pointers into the stack. Consequently STAL does not support
general stack allocation.

The logic we develop in this paper unifies a number of independent ideas in the literature. The first idea, which
appears in O’Hearn, Reynolds, and Yang’s separation logic [12, 16, 17, 18], is to use a substructural logic to describe
memory as a collection of disjoint pieces. Guaranteed disjointness allows us to write “strong update” rules—in a
type system, this means that the same piece of memory (say, a stack slot) can have different types at different times.
In earlier work [2, 1], we attempted to use this idea alone to build a general system for assembly-level memory
management. Unfortunately, while the logic is sound and quite flexible, we were unable to use it as a target for
certifying compilation since we could not find a general translation for the types of aliased data structures into the
logic.

Closely related to the work on separation logic is earlier work on alias types [19]. In alias types [19], the capabilities
of locations can be either linear (unaliased) or non-linear (aliased any number of times); strong updates are allowed
only on linear capabilities; invariant updates are allowed on non-linear capabilities. Alias types and separation logic
are incomparable in power as alias types include formulas for aliased memory whereas separation logic contains
implication, disjunction, and other connectives. This paper brings the power of both together in a single system.

In concurrent work, Morrisett et al. [13] have extended alias types in a different direction. They have studied
methods for temporarily breaking the invariant associated with aliased data. Other research along the same line
includes Foster et al.’s restrict primitive [8] and DeLine and Fähndrich’s adoption and focus [7]. All of these efforts
are carried out in a high-level language and do not concern themselves with presenting a uniform model of stack and
heap memory.

A third area of related work includes region-based memory management [20, 3, 5, 11]. In region systems, types are
tagged with the name of the region in which they are allocated. The type system tracks the regions that are currently
live and disallows access to data structures that live in dead regions. Our assembly language employs a variant of
the region idea by tagging descriptions of memory with version numbers, and keeping track of the valid versions.
We do not allow programs to reason about memory using out-of-date descriptions. A crucial difference between our
system and previous region-based systems is that we unify the idea of regions with a low-level model of stack and
heap allocation and aliasing invariants. In order to do so, we use a more elaborate structure, a tag tree, in our memory
model to keep track of the live “version numbers”.

The richest source-level type-safe memory management system we are aware of is Grossman et al.’s Cyclone
language [11, 10]. Cyclone allows data to be allocated on the stack. It uses a region-based type system including an
outlives relation on regions. We can define this outlives relation within our logic, but we need to do more research to
determine if we can compile all aspects of Cyclone’s stack allocation discipline into our assembly language.

2 Informal Development
In this section, we summarize the major technical components that comprise our memory logic.

2.1 The Basic Setup
The first step in our development is to choose a simple way to describe the contents of individual memory locations,
regardless of whether they are on the heap or on the stack. Since the type of the stack changes as the program
progresses, we must use per-program point types for the stack. To unify stack and heap pointers into one framework,
we need per-program point types for the heap as well. The general approach that we will use is to describe the whole
state of the machine with formulas in a substructural logic.

One crucial operator in these logics is the multiplicative conjunction (“star” in the logic of bunched implications,
also called tensor in this paper). The formula F1 ⊗ F2 describes a state that can be partitioned into two disjoint parts,
one described by F1 and one described by F2. The formula (` ⇒ τ ) describes a store consisting of a single location `
that contains a value of type τ ; it is also called a linear capability for `. Before any dereference/assignment operation
on location `, (` ⇒ τ ) must be proven, so that we know that the location exists, and for dereference, what its type is.
If the state before an assignment to ` is described by (` ⇒ τ1) ⊗ F , then the state after the assignment is described
by (` ⇒ τ2) ⊗ F where τ2 is the type of the value stored. We can use this as the basis for a typing rule for store
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instructions, and this type of rule is usually called a strong-update rule, as the old type τ1 is ignored and completely
replaced by τ2.

2.2 Aliasing of Heap Locations
Formulas involving (` ⇒ τ ) and ⊗ are very precise, but inflexible. Consider a function that takes two integer pointers
as arguments. It might be described with the type ∀`1, `2.( (`1 ⇒ int) ⊗ (`2 ⇒ int) ) → · · ·. Now if it is called with the
same pointer, say `, for both parameters, then it must be called in a state described by (` ⇒ int) ⊗ (` ⇒ int) . This
formula is impossible to satisfy as it requires partitioning memory into two disjoint pieces that both have a location `
in their domain.

To solve this problem, we adapt the idea of non-linear capabilities from alias types [19] and L3 [13]. We add
a new predicate (frzn ` τ ), called a frozen or unrestricted capability, which is similar to the linear capability that
describes a location ` of type τ . We partition the state into linear and frozen memory. Linear capabilities describe
locations in the linear memory; frozen capabilities describe locations in the frozen memory. The tensor operation
partitions the linear memory between its subformulas, but shares the frozen memory to both subformulas. Thus,
(frzn ` τ ) ⊗ (frzn ` τ ) holds of a state whose frozen memory contains a location ` of type τ . The function above can be
given type ∀`1, `2.((frzn `1 int)⊗ (frzn `2 int)) → · · · and be called with the same pointer for both arguments. To make
unrestricted capabilities safe, we must use an invariant update rule. This rule allows a store to location ` in a state
(frzn ` τ )⊗ F if the value being stored has type τ , but it does not allow the type of ` to be changed. To get unrestricted
capabilities, there is a freezing operation that transfers a location from the linear memory to the frozen memory, and it
takes a state described by (` ⇒ τ ) ⊗ F to one described by (frzn ` τ ) ⊗ F . Once frozen a location stays frozen and its
type cannot change for the remainder of execution.

One technicality is worth noting. Unrestricted capabilities can be duplicated and dropped and thus act like the
unrestricted formula ! F in linear logic. Since several of our domain-specific predicates have similar properties, we
wrap all of these predicates in the unrestricted connective ( ! ). The duplication and weakening rules for unrestricted
formulas in linear logic take care of the duplicating and dropping of these predicates. So the function above actually
has type ∀`1, `2.( ! (frzn `1 int)⊗ ! (frzn `2 int)) → · · ·.

Using unrestricted capabilities and existential quantification, we can express pointer types if we arrange all pointed-
to locations to be in the frozen memory. A pointer to τ is expressed as ∃`.(S(`)⊗ ! (frzn ` τ )) where S(·) is the singleton
type constructor. This type states both that the value is some location and that the location contains a τ . Note that in
our logic, we use more expressive formulas than just basic types to describe values. Only formulas that do not refer to
linear memory can be used to describe values. We call them pure formulas and denote them by G. In Section 3, we
will introduce the formal syntax of pure formulas.

2.3 Version Numbers for Stack Locations
Unfortunately the idea of unrestricted capabilities cannot be applied to both stacks and heaps in a uniform way. The
problem is that freezing constrains the type of a location for the remainder of execution, but stack frames, in general,
have shorter lifetimes than the rest of execution and are reused. The mechanisms described so far do not allow reuse
of frozen memory.

Consider the operation of allocating an integer cell on the top of the stack. This operation results in memory
described by (rsp ⇒ S(`)) ⊗ (` ⇒ int) ⊗ . . . where rsp is a register holding the stack pointer. The top of the stack can
be frozen and then passed to a function. In this case, the memory typing becomes (rsp ⇒ S(`)) ⊗ ! (frzn ` int) ⊗ . . ..
Now imagine that the function terminates and returns to its caller. The caller would like to reuse the stack and put a
different value into location `. However, the logic described so far does not allow anything other than integers in ` for
the remainder of execution. We need the flexibility to freeze a location for some amount of time, but later reuse it in
any way we desire. To achieve this discipline, we introduce a sort of “version numbering” scheme for our locations
that is somewhat reminiscent of region-based type systems.

First, we assume a countably-infinite set of tags ranged over by k. These tags name versions of locations. When a
location is used for the first time or is reused, a new tag is chosen to name that use. The machine state includes a tag
tree that keeps track of all these tags. This tag tree is only used for typing purposes and can be erased in forming an
underlying untyped machine state.
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Figure 1: Example Memory Stack Tag Tree

These tags form a tree due to the LIFO nature of the stack. In the current work, heap cells are not versioned in the
same way that stack cells are, and we assign the special tag H to all heap locations. The bottom (in the sense of the
stacking discipline, often the highest address) of the stack goes through a sequence of versions that we can think of
as the ordered children of H . The second to bottom location goes through a sequence of versions that exist entirely
within the lifetime of the first version of the bottom of the stack, then a sequence of versions that exist entirely within
the lifetime of the second version of the bottom of the stack, and so on. We can think of these versions as the ordered
children of the respective version of the bottom of the stack. In this way, the versions of locations that make up the
stack during program execution form a tree. The right-most spine of the tree contains the tags of the current versions
of locations. In addition, one of these tags is marked as the current top of the stack. When the stack is popped, this
marker is moved to its parent. When the stack is pushed, a fresh tag is selected and is added to the tag tree as the last
child of the current top of the stack, and it becomes the current top of the stack. Figure 1 displays the transformation
of the tag tree and stack during a sequence of push and pop operations. A stack pop occurs between Figure 1(a) and
Figure 1(b). A stack push occurs between Figure 1(b) and Figure 1(c).

Second, unrestricted and linear capabilities include both a tag and a location. For example, ! (frzn k.` τ ) says that
version k of location ` is frozen at type τ ; similarly, (k.` ⇒ τ ) holds if location ` currently has version k and holds a
value of type τ . A formula can include unrestricted capabilities with old tags; these formulas describe previous states
of the location but not the current one.

Third, a frozen capability can be used to load from or store into a location only if the tag is the current version
of the location. Even though unrestricted capabilities with old tags still exist in the formula, they cannot be used to
access the locations.

Fourth, our logic includes formulas to reason about which tags are current. In particular, we have the two formulas
first(k) and !(k2=k1+n). The formula first(k) holds if the current top of the stack in the tag tree is k. The formula
!(k2=k1+n) holds if k2 appears in the tree as the n-th ancestor of k1. Together, first(k1) and !(k2=k1+n) mean that k2

is on the right spine of the tag tree and therefore that it is a current tag.
Using these predicates and existential quantification, we are able to describe data structures that point deep into the

stack. For example, if location k.` contains location k1.`1 which is deeper in the stack, and k1.`1 contains an integer,
then formula (frzn k.` (∃xk∃x`∃n.S(xk .x`)⊗!(xk=k+n)⊗ ! (frzn xk .x` int))) describes location k.`, where k1.`1 and
some natural number are the witnesses of the existential package.

To summarize, we have a logic that describes memories and tag trees. This logic includes linear logic to express
separation and aliasing of memory parts, linear location types, frozen location types, and currency of tags.

Comments The tree appears to be a fairly heavyweight component in the memory model. We retain the complete tree
structure in our model, even though parts of the tree are dead, because it facilitates the proof of certain monotonicity
properties of our logic. More specifically, once a formula that relates tags such as !(k2=k1+n) are satisfied by a
particular model, we can prove that they are satisfied by all future models that may be generated as the program
executes. Without the tree structure to describe the relationships between past tags, it would be more difficult to obtain
this critical property.

The “tags” resemble the region names in the Capability Calculus [5]. Each stack location can be treated as a region
containing only that location. We might be able to solve part of the problem by using some of the techniques in the
Capability Calculus. However, our work focuses on developing a logic which provides a unified description of heap
and stack locations in a low-level memory model. The Capability Calculus does not have such view of the memory
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model.

3 A Formal Memory Model
In this section we formalize the logic that was informally described in Section 2. After introducing all the syntactic
constructs, we will focus on the semantics of the logic. The semantic judgments give meanings to formulas in terms of
memory layout and typing information, which is important to specify the memory safety policy of assembly programs.
Section 4 will use this logic as the basis for a type system for assembly language. At the end of this section, we will
give an example to show how various semantic judgments are used to decide if a memory satisfies a certain formula.
The complete set of deduction rules is given in Figure 2.

3.1 Syntax
The syntactic constructs in our logic are given below; i ranges over integers, iω over integer and infinity (written ∞), `
over locations, sk over tags for stack locations, and k over stack tags and the heap tag (written H). We use xi to range
over integer variables, xiω over infinite integer variables, x` over location variables, xk over tag variables, xt over
type variables, and xf over formula variables. We consider all syntactic constructs equivalent up to alpha conversion.

Int Expr ei ::= xi | i | ei1 + ei2 | −ei
Infinite Int Expr eiω ::= xiω | iω | eiω1 + eiω2 | −eiω
Location Expr e` ::= x` | ` | e` + ei
Tags ek ::= xk | H | sk
General Loc g ::= ek.e` | r
Types τ ::= xt | S(ei) | S(ek.e`) | (F ) → 0
Bindings b ::= xi :I | xiω:Iω | x`:L | xk :TG | xt :T | xf :F
Predicates P ::= τ | (g ⇒ G) | ek2=ek1+eiω

| first(ek) | frzn ek.e` G | eiω ≥ 0
| more

←(e`) | more
→(e`)

Pure Formula G ::= τ | 1 | G1 ⊗ G2 | G1 ( G2 | G1 ⊕ G2

| G1 & G2 | ! F | ∃b.G
Formula F ::= xf | P | 1 | F1 ⊗ F2 | F1 ( F2 | >

| F1 & F2 | 0 | F1 ⊕ F2 | ! F | ∃b.F

We assume that locations come with an operation `+ i that intuitively returns the location i locations away from `.
Infinity is used in ek2=ek1+eiω to express the difference in levels between a stack tag and the heap tag. In particular,
H=sk+∞ holds for any stack tag sk in the tag tree.

A general location is either a tagged location ek.e` or a register r. Basic types τ consist of type variables, singleton
types, and codes type (F ) → 0. As we explained briefly in the previous section, a syntactic category of pure formulas
includes all the formulas that can be used to describe a value. A pure formula G can be a basic type, or 1, or an
unrestricted formula ! F , or it can be constructed using connectives: ⊗, (, &, ⊕, ∃b from pure sub-formulas.

Models in our logic are pairs of a memory m and a tag tree t. The semantic judgments define which memory and
tag tree pairs satisfy a formula. To precisely define the semantic judgments, we define a number of auxiliary judgments
that are connected by contexts. The syntax for all these constructs is defined below.

A store value is an integer, a tagged location, or a code location c. A tag tree t is a quadruple (H, T, sk, fst)
consisting of the heap tag H , the tree proper T , the stack tag of the top of the stack sk, and a witness fst for the
predicate first(k) to indicate whether the top of the stack is known. A tree T consists of a root stack tag and an ordered
list of subtrees. The code context Ψ maps each code label c to its type; the frozen memory type context Π maps a
frozen location k.` to the describing formula G of the value that location ` contains at version number k.
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Θ ‖ Γ; ∆ ` F

Θ ‖ Γ; u:F ` F
Hyp (L)

Θ ‖ Γ, u:F ; · ` F
Hyp (U)

Θ ‖ Γ; · ` 1 1I
Θ ‖ Γ; ∆ ` 1 Θ ‖ Γ; ∆′ ` C

Θ ‖ Γ; ∆, ∆′ ` C
1E

Θ ‖ Γ; ∆1 ` F1 Θ ‖ Γ; ∆2 ` F2

Θ ‖ Γ; ∆1, ∆2 ` F1 ⊗ F2

⊗I

Θ ‖ Γ; ∆ ` F1 ⊗ F2 Θ ‖ Γ; ∆′, u1:F1, u2:F2 ` C

Θ ‖ Γ; ∆, ∆′ ` C
⊗E

Θ ‖ Γ; ∆, u:F1 ` F2

Θ ‖ Γ; ∆ ` F1 ( F2

( I
Θ ‖ Γ; ∆ ` F1 ( F2 Θ ‖ Γ; ∆1 ` F1

Θ ‖ Γ; ∆, ∆1 ` F2

( E

Θ ‖ Γ; ∆ ` >
>I

Θ ‖ Γ; ∆ ` F1 Θ ‖ Γ; ∆ ` F2

Θ ‖ Γ; ∆ ` F1 & F2

&I

Θ ‖ Γ; ∆ ` F1 & F2

Θ ‖ Γ; ∆ ` F1

&E1
Θ ‖ Γ; ∆ ` F1 & F2

Θ ‖ Γ; ∆ ` F2

&E2

Θ ‖ Γ; ∆ ` F [a/x] a ∈ K

Θ ‖ Γ; ∆ ` ∃x:K.F
∃I

Θ ‖ Γ; ∆ ` ∃x:K.F Θ, x:K ‖ Γ; u:F ` C

Θ ‖ Γ; ∆ ` C
∃E

Θ ‖ Γ; · ` F

Θ ‖ Γ; · ` ! F
! I

Θ ‖ Γ; ∆ ` ! F Θ ‖ Γ, u:F ; ∆′ ` C

Θ ‖ Γ; ∆, ∆′ ` C
! E

F1 ≡ F2

Θ ‖ Γ; F1 ` F2

Equiv
· ‖ Γ; F2 ` F1

· ‖ Γ; (F1) → 0 ` (F2) → 0
Code

Θ ‖ Γ; F1 ` F2

Θ ‖ Γ; (r ⇒ F1) ` (r ⇒ F2)
Reg

Θ ‖ Γ; · ` ! (ek = ek − 0) ⊗ >
O-Reflex

Θ ‖ Γ; · ` ! (ek = H − ∞) ⊗ >
O-Heap

Θ ‖ Γ; ∆1 ` ! (ek1 = ek2 − eiω1) Θ ‖ Γ; ∆2 ` ! (ek2 = ek3 − eiω2)

Θ ‖ Γ; ∆1, ∆2 ` ! (ek1 = ek3 − (eiω1 + eiω2))
O-Trans

Figure 2: Logical Deduction Rules
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Store Value sv ::= i | k.` | c
Memory m ∈ Loc ∪ Reg ⇀ Sval
Tree T ::= (sk; T1, T2 · · · , Tn)
Hasfirst fst ::= absent | present
Tag Tree t ::= (H, T, sk, fst)

Code Contexts Ψ ::= · | Ψ, c : (F ) → 0
Frozen Memory Typing Π ::= · | Π, k.` : F

Operations on Memories To specify the semantics of our logic, we need some notation and operations on various
components of our model.

• g denotes the untagged location: r = r and ek.e` = e`.

• m(g) denotes the store value stored at location g.

• m [ g := sv ] denotes a memory m′ in which g maps to sv but is otherwise the same as m.

• m1 ] m2 denotes the union of disjoint memories. It is undefined if the memories are not disjoint.

Operations on Trees A tag tree t = (H, T, sk, fst) is well formed (wf(t)) if sk is on the right spine of T . The live
tags of a tag tree t = (H, T, sk, fst) (Live (t)) are the right spine of T up to sk, and also H .

Lastly, we define newFirst and delFirst operations. Operation newFirst(t, k) adds k as the last child of the current
stack top and makes k the stack top. Operation delFirst(t) moves the stack top up one level.

We define newFirst(t, k) using an auxiliary function newFirst ′(T , sk , k) which which takes three arguments: the
tree of stack tags T , the tag of the top of the stack sk, and the new tag k we would like to insert. It returns the new tree
of stack tags with k inserted. If sk is the root of T , then we insert (k, ·) as the rightmost child as of sk, otherwise, we
recursively call newFirst ′ on the rightmost child of T .

newFirst ′((sk; T1, . . . , Tn), sk, k) = (sk; T1, . . . , Tn, (k; · ))

T ′ = newFirst ′(Tn, sk, k) sk 6= sk′

newFirst ′((sk′; T1, . . . , Tn), sk, k) = (sk′; T1, . . . , Tn−1, T
′)

T ′ = newFirst ′(T, sk, k)

newFirst((H, T, sk, fst), k) = (H, T ′, k, fst)

We define delFirst(t) using an auxiliary function delFirst ′ that takes as arguments: the parent tag of T sk′, the
current tag of the top of the stack sk, and T , and returns the new tag of the top of the stack. If sk is the root of T , we
return sk′, otherwise, we recursively call delFirst ′ on the root node of T , sk, and the rightmost child of T .

delFirst ′(sk′, sk, (sk; T1, . . . , Tn)) = sk′

sk1 = delFirst ′(sk′′, sk, Tn) sk′ 6= sk′′

delFirst ′(sk′, sk, (sk′′; T1, . . . , Tn)) = sk1

sk′′ = delFirst ′(sk′, sk, Tn) T = (sk′; T1, . . . , Tn)

delFirst(H, T, sk, fst) = (H, T, sk′′, fst)
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The semantics of tensor (⊗) is to disjointly partition the linear parts of the model between the sub-formulas. The
linear parts of the model are the linear memory and the stack top. To formalize this partitioning, we overload the merge
operators(]) to merge two disjoint tag trees.

fst ] absent def
= fst absent ] fst def

= fst

(H, T, sk, fst1) ] (H, T, sk, fst2)
def
= (H, T, sk, fst1 ] fst2)

Abbreviations We define the following commonly used abbreviations.

int
def
= ∃xi :I.S(xi)

ns
def
= ∃xf :F.xf

ek1 outlives ek2

def
= ∃xiω:Iω. ek1=ek2+xiω ⊗ ! (xiω ≥ 0)

live (ek)
def
= ∃xk :TG. first(xk) ⊗ ! ( ek outlives xk)

3.2 Semantics
There are six semantic judgments:

m, t �Ψ F at p overall model m, t satisfy F
Πold; t �Ψ m : Π frozen memory m has type Π
Πold; Π; m; t �Ψ F at p linear state satisfies F
�Ψ sv : τ store value sv has type τ
F1 �Ψ F2 F2 is a semantic consequence F1

F1 ≡ F2 F1 and F2 are equivalent

The place p at the end of the first and third judgment is either root ∗ or a location g—the latter is used to specify the
semantics of (g ⇒ G) .

Context Πold contains all the frozen type bindings of stack locations that were popped off. Each judgment and its
rules are explained in the following sections.

Overall Judgment A model satisfies a formula if it can be split into a frozen part and a linear part such that the frozen
part satisfies the frozen judgment, the linear part satisfies the linear judgment, and the two judgments are connected
by the same contexts.

(m, t) �Ψ F at p overall
iff exists m1, m2, t1, t2, Π, Πold

such that m = m1 ] m2, t = t1 ] t2, Πold; Π; m1; t1 �Ψ F at p,
Πold; t2 �Ψ m2 : Π, and ∀k.` ∈ dom(Πold ∪ Π) : k ∈ Live (t) iff k.` ∈ dom(Π)

Context Πold contains the typing information of all the frozen locations that were popped off the stack and Π
contains typing information about all the live frozen locations. It is necessary that for any tagged location k.` that
belongs to the domain of Π, the version number k is current.

Frozen Judgment The second judgment checks that a frozen memory has a given frozen-memory typing.

(Πold; t) �Ψ m : Π iff for all k.` ∈ dom(Π) Πold; Π; ` → m(`); t �Ψ Π(k.`) at k.`

The two frozen-memory typing contexts are recursively used to check that a frozen memory has a given frozen-
memory typing. For each location k.` in the domain of Π, the piece of memory it points to should linearly satisfy the
formula given by the frozen-memory typing.
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• Πold; Π; m; t �Ψ τ at p iff p 6= ∗ and t.fst = absent, and dom(m) = p and m(p) = sv, �Ψ sv : τ .

• Πold; Π; m; t �Ψ (g ⇒ G) at p, iff dom(m) = g, if g = k.` then k ∈ Live (t), and Πold; Π;m; t �Ψ G at g.

• Πold; Π; m; t �Ψ k2=k1+iω at p iff dom(m) = ∅, t.fst = absent, and one of the following holds: iω = n ≥ 0 and k2

is the nth ancestor of k1 in tree t; iω = −n < 0 and k1 is the nth ancestor of k2 in tree t; iω = +∞ and k2 = H; or
iω = −∞ and k1 = H .

• Πold; Π; m; t �Ψ first(k) at p iff dom(m) = ∅, and t = (H,T, k, present).

• Πold; Π; m; t �Ψ frzn k.` G at p iff dom(m) = ∅, t.fst = absent, (Πold ∪ Π)(k.`) = G′, and G ≡ G′.

• Πold; Π; m; t �Ψ eiω ≥ 0 at p iff eiω ≥ 0.

• Πold; Π; m; t �Ψ
more

←(`)at p iff t.fst = absent, and dom(m) = {` − n|n ∈ Nat}.

• Πold; Π; m; t �Ψ
more

→(`)at p iff t.fst = absent, and dom(m) = {` + n|n ∈ Nat}.

• Πold; Π; m; t �Ψ 1 at p iff t.fst = absent, and dom(m) = ∅

• Πold; Π; m; t �Ψ F1 ⊗F2 at p iff m = m1 ]m2, t = t1 ] t2, Πold; Π;m1; t1 �Ψ F1 at p, and Πold; Π; m2; t2 �Ψ F2 at p.

• Πold; Π; m; t �Ψ F1 ( F2 at p iff t.fst = absent, for all memory m′, tree t′ and t′.fst = absent, Πold; Π;m′; t′ �Ψ F1 at p
implies Πold; Π;m ] m′; t ] t′ �Ψ F2 at p.

• Πold; Π; m; t �Ψ >at p, it is true for all memory models.

• Πold; Π; m; t �Ψ F1 &F2 at p iff Πold; Π; m; t �Ψ F1 at p, and Πold; Π; m; t �Ψ F2 at p.

• Πold; Π; m; t �Ψ 0 at p, no memory satisfies 0.

• Πold; Π; m; t �Ψ F1 ⊕ F2 at p iff Πold; Π;m; t �Ψ F1 at p, or Πold; Π; m; t �Ψ F2 at p.

• Πold; Π; m; t �Ψ ! F at p iff t.fst = absent, and dom(m) = ∅, and Πold; Π; m; t �Ψ F at p.

• Πold; Π; m; t �Ψ ∃x:K.F ′ at p iff there exists some a ∈ K such that Πold; Π;m; t �Ψ F [a/x] at p.

Figure 3: The Semantics of Formulas

Linear Judgment The main semantic judgment is the linear satisfaction judgment. It is defined in Figure 3. The set
of pure formulas G is a subset of the set of formulas F , so the semantic judgments of G are also defined in Figure 3,
if we substitute G for F .

The interesting clauses are the ones for our domain-specific predicates. Predicate τ holds at p if the memory
contains only one location p and its content has type τ . Predicate (g ⇒ G) holds if memory contains only location
g, g is live, and G holds at g. Predicate k2=k1+iω holds if the two tags are related by iω number of levels, positive
means that k2 is the ancestor, negative means that k1 is the ancestor, and ∞ means the ancestor is H . Predicate
first(k) holds if fst is present and the stack top is k in the tag tree; note that the other base predicates require fst to be
absent. Predicate (frzn k.` G) holds if one of the two frozen-memory contexts maps k.` to a formula equivalent to
G. Predicates more

←(`) and more
→(`) describe the continuous unallocated space; they require the linear memory to

contain the locations at and below (respectively above) `. Note that the base predicates, which describe the properties
of the tag tree, require the linear memory to be empty. The other connectives are those of linear logic, and the semantics
are standard except that tensor uses the merge operators defined in the previous section on the linear parts of the model.

Semantics for Types Types have the expected semantics:

�Ψ
i : S(i)

int
�Ψ k.` : S(k.`)

loc

Ψ(c) = (F ′) → 0 F �Ψ F ′

�Ψ c : (F ) → 0
code

Semantic Entailment F1 �Ψ F2 iff for all m and t, (m, t) �Ψ F1 at p overall implies (m, t) �Ψ F2 at p overall.
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Equivalence Equivalence of formulas, F1 ≡ F2, is reflexive, symmetric, transitive, congruent, and includes some
rules for our domain-specific predicates. The most important domain specific rule involves the relationship between the
heap tag H and the stack tags. Intuitively, if we know that xk outlives H , then xk must be H itself. Therefore if tag xk

is a free variable in F1 and F2, and F1[H/xk ] ≡ F2[H/xk ] then F1[H/xk ] is equivalent to ∃xk :TG.F2⊗ !(xk outlives H).

F ≡ F

F2 ≡ F1

F1 ≡ F2

F1 ≡ F2 F2 ≡ F3

F1 ≡ F3

F1 ≡ F ′1 F2 ≡ F ′2
F1 & F2 ≡ F ′1 & F ′2

F1 ≡ F ′1 F2 ≡ F ′2
F1 ⊗ F2 ≡ F ′1 ⊗ F ′2

F1 ≡ F ′1 F2 ≡ F ′2
F1 ⊕ F2 ≡ F ′1 ⊕ F ′2

F1 ≡ F2

∃x:K.F1 ≡ ∃x:K.F2

F1 ≡ F2

(ek.e` ⇒ F1) ≡ (ek.e` ⇒ F2)

F1 ≡ F2

frzn ek.e` F1 ≡ frzn ek.e` F2

F1[H/xk ] ≡ F2[H/xk ]

F1[H/xk ] ≡ ∃xk :TG.F2⊗ !(xk outlivesH)

k19

k17

k5

k3

k10

first

l7

l6

l5

. 

. 

.

k15

l101

l100

. 

. 

.
4

3

k10.l6

H.l100

H.l100

stack heapT

Figure 4: Example Memory

Example For this example, we consider just memory and not the registers. The memory m in Figure 4 consists of a
linear part m1 which contains all the unallocated locations; a frozen part m2 which contains the five locations shown
in the figure (dom(m2) = {`7, `6, `5, `100, `101}). It satisfies the following formula:

F = more
←(`4) ⊗ more

→(`102) ⊗ first(k17)
⊗ !(k3=k5+1) ⊗ !(k10=k15+1) ⊗ !(k3=k10+1)
⊗ !(k10=k17+1) ⊗ !(k17=k19+1)
⊗ ! (frzn k3.`7 F4)⊗ ! (frzn k10.`6 int)⊗ ! (frzn k17.`5 F5)
⊗ ! (frzn H.`100 int)⊗ ! (frzn H.`101 F4)

where
F4 = ∃x`:L.S(H.x`)⊗ ! (frzn H.x` int)
F5 = ∃xk :TG.∃x`:L.S(xk .x`)⊗ ! (frzn xk .x` int)

⊗ ! ( xk outlives k17)

The overall semantic judgment is: m, (H,T, k17, present) �Ψ F at ∗ overall. To check this judgment is valid, we
must show:

1. Πold; Π; m1; (H, T, k17, present) �Ψ F at ∗

2. Πold; (H, T, k17, absent) �Ψ m2 : Π

10



where
Πold = (k5.`6:F1), (k15.`5:F2), (k19.`4:F3)
Π = (k3.`7:F4), (k10.`6:int), (k17.`5:F5),

(H.`100:int), (H.`101:F4)
The first judgment is the linear semantic judgment. The tensor operators distribute the unallocated stack space

to more
←(`4), the unallocated heap space to more

→(`102), the stack top to first(k17) , and empty linear state to the
remaining formulas. Each of the predicates is easily verified.

The second judgment type checks the frozen memory. We need to verify that for each location ` in Π, Π(`) de-
scribes the piece of memory that ` points to. For example, for location k3.`7 we need to verify the following judgment:
Πold; Π; `7 7→ H.`100; (H,T, k17, absent) �Ψ F4 at k3.`7, which is true with `100 as the witness of the existential.

3.3 Semantics of Contexts and Soundness
Before we define the semantics of logical contexts, we introduce the definition of !Γ. It converts the unrestricted
context Γ into a formula by wrapping a ! around each formula in Γ and tensor them together. We define

⊗
(∆) as the

result of tensoring all the formulas in ∆ together.

!(· ) = 1 !(F, Γ) = ! F⊗!Γ.
N

(· ) = 1
N

(F, ∆) = F ⊗
N

∆.

We define the semantics of contexts as follows:

(m, t) �Ψ (Γ; ∆) at p iff (m, t) �Ψ (!(Γ) ⊗ (
N

∆))at p

We proved that the logical deduction is sound with regard to our semantics.

Lemma 1 (Soundness of logical deduction)
1. If Πold; Π; m; t �Ψ σ(Γ; ∆) at p, where σ is a substitution for Θ,

and Θ ‖ Γ; ∆ ` F , then Πold; Π; m; t �Ψ σF at p.

2. If m; t �Ψ σ(Γ; ∆) at p and Θ ‖ Γ; ∆ ` F then m; t �Ψ σ(F ) at p.

Proof 1
By induction on the structure of the logical derivation Θ ‖ Γ; ∆ ` F .

4 Assembly Language
In this section, we use the memory logic that we formalized in Section 3 as the basis for the type system of a simple
assembly language. The type system is powerful enough to specify sound strong and invariant updates of both stack
and heap locations. The expressiveness of our typed assembly language exceeds the previous TAL systems because
they cannot deal with general stack allocation. In Section 5, we demonstrate a type-preserving translation from a
source language that has flexible data allocation on both the stack and the heap down to our assembly language.

4.1 Syntax
The language is very similar to previous TALs. The novel parts are the inclusion of tag trees in machine states and the
two instructions stackgrow and stackcut . These two instructions only update the tag tree and are erased in forming
an underlying untyped machine code. They tell the type system to increase or decrease the stack by one location. Any
stack pointer register that tracks the top of the stack must be adjusted by a separate instruction. The syntax of our
assembly language is:
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Operands v ::= sv | r
Instructions ι ::= add rd, rs, v | sub rd, rs, v | mov rd, v

| bz r, v | ld rd, rs | st rd, rs

| stackgrow | stackcut
Blocks B ::= halt | jmp v | ι; B
Code Regions C ::= · | C, c 7→ B
Machine States Σ ::= (C, m, t, B)

4.2 Operational Semantics
The operational semantics is given in Figure 5. We use Σ 7−→ Σ′ to denote the small step relation between two
machine states Σ and Σ′. We use m̂(v) to convert an operand to a store value. In particular, m̂(r) is the value
contained in the register r.

m̂(i) = i m̂(c) = c m̂(e`) = e` m̂(r) = m(r)

(C, m, t, B) 7−→ Σ where
If B = then Σ =
add rd, rs, v; B′ (C, m [ rd := (m(rs) + m̂(v)) ], t, B′)
sub rd, rs, v; B′ (C, m [ rd := (m(rs) − m̂(v)) ], t, B′)
bz r, v; B′ (C, m, t, B′) and m(r) 6= 0

bz r, v; B′
(C, m, t, B′′) m(r) = 0
where C(m̂(v)) = B′′

mov rd, v; B′ (C, m [ rd := m̂(v) ], t, B′)

ld rd, rs; B
′ (C, m [ rd := m(m(rs)) ], t, B′)

st rd, rs; B
′ (C, m [ m(rd) := m(rs) ], B′)

jmp v (C, m, t, B′′) where C(m̂(v)) = B′′

stackgrow ; B′
(C, m, t′, B′), k is fresh
where t′ = newFirst(t, k)

stackcut ; B′ (C, m, t′, B′) where t′ = delFirst(t)

Figure 5: Operational Semantics

We overload the add and sub instructions to perform both arithmetic operations on integers and tagged locations.
We formally define the arithmetic of tagged locations as follows:

0 ≤ i < ∞ sk.e` + i = sk′.(e` + i) where sk′ is an ancestor of sk in t
and the distance between sk and sk′ is i

H.e` + i = H.(e` + i)
sk.e` − i = sk′.(e` − i) where sk′ is the rightmost child of sk in t

and the distance between sk and sk′ is i
H.e` − i = H.(e` − i)

Due to the tree structure of the tags the choices for the result of ek − i is not unique, however only the live one is
of interest to us.

Most operational semantics rules are straight forward. Only the last two rules for instruction stackgrow and
stackcut worth some explanation. The instruction stackgrow always precedes an addr-sub operation on rsp to
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complete a stack allocation operation. Operationally, it generates a fresh new stack tag sk, and adds sk to the tag tree t.
Similar to stackgrow , instruction stackcut succeeds a addr-add operation on rsp to complete a stack deallocation
operation. It moves the first marker in tag tree t up to its parent thus disposes the tag associated with the location that
is just deallocated. Both of these instructions do not have any effect on the memory m, so our assembly language
could be easily mapped to another one that doesn’t have these two instructions.

4.3 Typing Rules
The type system consists of the following judgments:

Θ ‖ Γ; ∆ `Ψ F Logical rules
Θ ‖ F `Ψ v : τ Operand v has type τ

Θ ‖ F `Ψ ι : F ′ The precondition of instruction ι is F ,
and the postcondition is F ′

Θ ‖ F `Ψ B ok Block B is type checked with the context Θ ‖ F
` C : Ψ Coderegion C has type Ψ

`Ψ Σ ok The abstract machine state Σ is well-formed

We use Θ to contain the free variables, Γ as the unrestricted context, and ∆ as the linear context. For simplicity,
we omit the code context Ψ from the typing judgments.

Operations on Formulas
The notation (F [ g := G ])Θ to denotes the result of “updating” formula F at location g by G. More precisely,

(F [ g := G ])Θ = F1 ⊗ (g ⇒ G) iff Θ ‖ · ; F ` F1 ⊗ (g ⇒ G′) where all the free variables are in Θ.
The following lemmas state that formula update operations are sound with respect to the semantics.

Lemma 2 (Formula Copy)
1. If Πold; Π; m; t �Ψ G at g then dom(m) = g or dom(m) = ∅

2. If Πold; Π; ∅; t �Ψ G at g then Πold; Π; ∅; t �Ψ G at g′

3. If Πold; Π; g 7→ sv; t �Ψ G at g then Πold; Π; g′ 7→ sv; t �Ψ G at g′

Proof 2
By induction on the structure of G.

Lemma 3 (Formula Update)
If σ is a substitution for Θ and Πold; Π; σ(g 7→ sv); t �Ψ σ (g ⇒ G) at p and Πold; Π; m; t �Ψ σ(F ) at p

then Πold; Π; m[σ(g := sv)]; t �Ψ σ(F [ g := G ]Θ) at p

Proof 3
By the Soundness of Logical deduction lemma and Lemma 2.

Operand Typing: Θ ‖ F `Ψ v : τ
The typing rules for operands extend the typing rules for store values to include typing rules for registers. The type

of register r is obtained by looking up the its type in the formula F that currently describes the memory.
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Θ ‖ F `Ψ i : S(i)
int

Θ ‖ F `Ψ k.` : S(k.`)
loc

Ψ(c) = (F ′) → 0 · ‖ · ; u : F ` F ′

Θ ‖ F `Ψ c : (F ) → 0
code

Θ ‖ · ; F ` (r ⇒ τ) ⊗ >

Θ ‖ F `Ψ r : τ
reg

Figure 6: Operand Typing

Θ ‖ F ` rs : int Θ ‖ F ` v : int

Θ ‖ F ` add rd, rs, v : F [ rd := int ]
(add)

Θ ‖ F ` rs : int Θ ‖ F ` v : int

Θ ‖ F ` sub rd, rs, v : F [ rd := int ]
(sub)

Θ ‖ F ` v :τ

Θ ‖ F ` mov rd, v : F [ rd := τ ]
(mov)

Θ ‖ F ` r : int Θ ‖ F ` v : (F ′) → 0 Θ ‖ u:F ` F ′

Θ ‖ F ` bz r, v : F
(bz)

Θ ‖ F ` rs : S(ek.e`) Θ ‖ ·; F ` (ek.e` ⇒ G) ⊗ >

Θ ‖ F ` ld rd, rs : F [ rd := G ]
(ld)

Θ ‖ F ` rd : S(ek.e`) Θ ‖ ·; F ` (rs ⇒ G) ⊗ >

Θ ‖ F ` st rd, rs : F [ ek.e` := G ]
(st)

Θ ‖ F ` rs : S(ek.e`) Θ ‖ ·; F ` frzn ek.e` G ⊗ > Θ ‖ ·; F ` live (ek) ⊗ >

Θ ‖ F ` ld rd, rs : F [ rd := G ]
(ld-inv)

Θ ‖ F ` rd : S(ek.e`) Θ ‖ ·; F ` (rs ⇒ G) ⊗ > Θ ‖ ·; F ` frzn ek.e` G ⊗ > Θ ‖ ·; F ` live (ek) ⊗ >

Θ ‖ F ` st rd, rs : F
(st-inv)

Θ ‖ F ` rs : S(ek.e`) Θ ‖ F ` v : S(i) Θ ‖ ·; F ` !(ek′=ek+i) ⊗ >

Θ ‖ F ` add rd, rs, v : F [ rd := S(ek′.(e` + i)) ]
(addr-add)

Θ ‖ F ` rs : S(ek.e`) Θ ‖ F ` v : S(i) Θ ‖ F ` !(ek=ek′+i) ⊗ >

Θ ‖ F ` add rd, rs, v : F [ rd := S(ek′.(e` − i)) ]
(addr-sub)

Θ ‖ · ; F ` F ′ ⊗ more
←(e`) ⊗ first(ek)

Θ ‖ F ` stackgrow : F ′ ⊗ more
←(e` − 1) ⊗ (∃xk :TG. first(xk) ⊗ !(ek=xk+1) ⊗ (xk .e` ⇒ ns) )

(stackgrow)

Θ ‖ · ; F ` more
←(e` − 1) ⊗ first(ek) ⊗ !(ek′=ek+1) ⊗ ( (ek.e` ⇒ G) ⊕ frzn ek.e` G) ⊗ F ′

Θ ‖ F ` stackcut : more
←(e`) ⊗ first(ek′) ⊗ !(ek′=ek+1) ⊗ F ′

(stackcut)

Figure 7: Instruction Typing

Instruction Typing: Θ ‖ F `Ψ ι : F ′

The typing judgments for instructions resemble Hoare logic. The formula on the left hand side of the turnstile
describes the precondition of the instruction, and the formula on the right hand side describes the memory state after
the execution of the instruction.

The typing judgments for instruction add , sub , and mov are straight forward. The typing rule for branch instruc-
tion bz requires that register r is of type int, so that it can be compared with 0; and the second operand is a code value
where the instruction might branch to; and the current state satisfies the precondition of the code that the instruction
might branch to so that the branch is safe.

There are two sets of typing rules of load and store instructions. The first set of rules requires linear capabilities for
the locations that we load from and store into. The rule for ld checks that the source register holds a location, looks up
the describing formula for this location, and updates the destination register to be described by this formula. The st
instruction checks that the destination register holds a location, gets the describing formula of the source register, and
updates the location’s describing formula. Note that the update formulas use linear typing of the register or location
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and just replace the old type with the new one—a strong update rule.
The second set of typing rules requires unrestricted capabilities for the locations we operate on. The rule for ld-inv

checks that the tag ek is live to make sure that the unrestricted capability is valid. The rule for st-inv checks that
the destination register holds a location ek.e`, and the describing formula of the source register is the same as the
describing formula of location ek.e`, given by the unrestricted capability (frzn ek.e` G), and the tag associated with
the unrestricted capability is live. The postcondition is the same as the precondition, since we update the location with
a value that has the same describing formula —an invariant update.

We give separate typing rules for address add/sub operations because they involve determining the correct tags for
the addresses.

The two stack instructions stackgrow and stackcut change the shape of the formula to reflect the changes
to the tag tree due to stack allocation and deallocation respectively. The stackgrow instruction takes one location
out of more

←(e`) and results in more
←(e` − 1) ⊗ (xk .e` ⇒ ns) . A fresh tag xk is chosen (the existential achieves

the freshness), and is declared the new stack top first(xk) and a direct child of the old stack top !(ek=xk+1) . The
stackcut instruction determines the stack top’s tag first(ek) and parent’s tag !(ek′=ek+1) , and returns the stack top
to the unallocated stack taking more

←(e`−1)⊗ ( (ek.e` ⇒ G) ⊕ ! (frzn ek.e` G)) to more
←(e`). It also makes the parent

tag the new stack top first(ek′) .

Block Typing: Θ ‖ F `Ψ B ok

The block typing rules check the well-formedness of a code block with the context Θ ‖ F .

Θ ‖ F ` rsp :S(ek.e`) Θ ‖ ·; F ` (ek.e` ⇒ int) ⊗ >

Θ ‖ F ` halt ok
(b-halt)

Θ ‖ F ` v : (F ′) → 0 Θ ‖ · ; u:F ` F ′

Θ ‖ F ` jmp v ok
(b-jmp)

Θ ‖ F ` ι :F ′ Θ ‖ F ′ ` B ok

Θ ‖ F ` ι; B ok
(b-instr)

Θ ‖ more
→(e` + 1) ⊗ (H.e` ⇒ ns) ⊗ F ` B ok

Θ ‖ more
→(e`) ⊗ F ` B ok

(b-heapgrow)
Θ ‖ ! (frzn ek.e` G) ⊗ F ` B ok

Θ ‖ (ek.e` ⇒ G) ⊗ F ` B ok
(b-freeze)

Θ, b ‖ F ′ ` B ok

Θ ‖ ∃b.F ′ ` B ok
(b-unpack1)

Θ, b ‖ (g ⇒ G) ⊗ F ` B ok

Θ ‖ (g ⇒ ∃b.G) ⊗ F ` B ok
(b-unpack2)

Θ, b ‖ (g ⇒ ∃b.G) ⊗ F ` B ok

Θ, b ‖ (g ⇒ G) ⊗ F ` B ok
(b-pack)

Θ ‖ (g ⇒ G1) ⊗ ! G2 ⊗ F ` B ok

Θ ‖ (g ⇒ G1⊗ ! G2) ⊗ F ` B ok
(b-bang1)

Θ ‖ (g ⇒ G1⊗ ! G2)) ⊗ F ` B ok

Θ ‖ (g ⇒ G1) ⊗ ! G2 ⊗ F ` B ok
(b-bang2)

Θ ‖ · ; u:F ` F ′ Θ ‖ F ′ ` B ok

Θ ‖ F ` B ok
(b-weaken)

Figure 8: Block Typing

There are standard typing rules for instructions, halt, and jmp, as well as type manipulation rules including
growing the heap (for heap allocation) and freezing locations.

The rule b-freeze deals with the process of converting a linear capability, to an unrestricted capability.

Lemma 4 (Soundness of the Block Typing Rules)
1. If there exists a substitution σ for Θ,

and (m, t) �Ψ σ(more
→(e`) ⊗ F ) at ∗ overall

then (m, t) �Ψ σ(more
→(e` + 1) ⊗ (H.e` ⇒ ns) ⊗ F ) at ∗ overall.

2. If there exists a substitution σ for Θ,
and (m, t) �Ψ σ(F ⊗ (ek.e` ⇒ F1) ) at ∗ overall,
then(m, t) �Ψ σ(F⊗ ! (frzn ek.e` F1)) at ∗ overall.
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3. If there exists a substitution σ for Θ, and (m, t) �Ψ σ(∃x:K.F ′) at ∗ overall
then there exists a substitution a ∈ K for x such that (m, t) �Ψ (σ, a/x)(F ′) at ∗ overall.

4. If there exists a substitution σ for Θ, and (m, t) �Ψ σ( (g ⇒ ∃b.G) ⊗ F ) at ∗ overall
then there exists a substitution a ∈ K for x
such that (m, t) �Ψ (σ, a/x)( (g ⇒ G) ⊗ F ) at ∗ overall.

5. If there exists a substitution σ for Θ,
and (m, t) �Ψ σ( (g ⇒ G) ⊗ F ) at ∗ overall,
then(m, t) �Ψ σ( (g ⇒ ∃b.G ⊗ F ) ) at ∗ overall.

6. If there exists a substitution σ for Θ,
and (m, t) �Ψ σ( (g ⇒ G1⊗ ! G2) ⊗ F ) at ∗ overall,
then(m, t) �Ψ σ( (g ⇒ G1) ⊗ ! G2 ⊗ F ) at ∗ overall.

7. If there exists a substitution σ for Θ,
and (m, t) �Ψ σ( (g ⇒ G1) ⊗ ! G2 ⊗ F ) at ∗ overall,
then(m, t) �Ψ σ( (g ⇒ G1⊗ ! G2)) ⊗ F ) at ∗ overall.

Proof 4
By inspection of the semantics of formulas.

Code Typing: ` C : Ψ
The code region C has type Ψ if their domains are equal and for each label c in the domain, the code of c is well

formed in the context assigned to c by Ψ.

dom(C) = dom(Ψ)

∀c ∈ dom(C). Ψ(c) = (F ) → 0 implies · ‖ F `Ψ C(c) ok

` C : Ψ
(codergn)

Figure 9: Code Typing

State Typing: ` Σ ok

A machine state (C, m, t, B) is well formed if there is a Ψ and F such that C has type Ψ, m and t satisfy F , B is
well formed under F , and the tag tree is well formed.

` C : Ψ (m, t) �Ψ F at ∗ overall
wf(t) · ‖ F `Ψ B ok

` (C, m, t, B) ok
(state)

Figure 10: State Typing

4.4 Type Safety
Our type system is provably safe. The execution of the program is defined in terms of the small step relation between
abstract machine states which is denoted by Σ 7−→ Σ′. We proved the standard progress and preservation theorems
for our assembly language. The theorem states that a well-formed machine state is either a terminal state, or it can
make a step into another well-formed state.
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Theorem 5 (Type Safety)
If `Ψ (C, m, t, B) ok then:

1. Either B = halt and m(rsp) = k.` and m(`) = sv and �Ψ sv : int or exists Σ such that (C, m, t, B) 7−→ Σ.

2. If (C, m, t, B) 7−→ Σ then ` Σ ok.

Proof 5
By induction the tying derivation, inspection of the small step operational semantic rules, and Lemma 4.

5 Translation
To show how our logic can be used in a certifying compilation framework, in this section we sketch the translation
from a simple language with stack and heap allocation to our assembly language.

5.1 Micro-CLI
The key features we want to capture are the stack-allocation operations of CLI [6, 9]. CLI includes the concepts of
references and managed pointers. Managed pointers can point to local variables on the stack and also to fields of
objects in the heap, but they cannot (in verifiable code) be returned from methods nor stored into fields of objects.
References always point to objects in the heap and their use is unrestricted. We abstract CLI into Micro-CLI, a simple
imperative language with integers and pointers. The type τ ∗S contains pointers to stack or heap cells of type τ , and
has the above restrictions on its use; we also disallow updating a stack pointer if it points to another stack pointer. It
has a subtype τ ∗H that contains just pointers into the heap, and this type is unrestricted.

Figure 11 gives the grammar for Micro-CLI. While the grammar is slightly more complicated than necessary to
express the structure of the language, it is structured to facilitate the translation.

The declaration τ ∗S x = newS v allocates a new cell on the stack with initial value v of type τ and places a
pointer to the cell into x; τ ∗H x = newH v is similar but allocates on the heap. The statement x = v updates the
variable x with the value v. The statement x = ! v dereferences the pointer v and updates x with the contents, and the
statement v1 := v2 updates the contents of the pointer v1 with the value v2. The other statements are straightforward.

The typing rules for Micro-CLI are shown in Figures 12 and 13. The main rules of interest are the rules which
involve restricting pointers: the judgment for return blocks Γ `τ rb ok ensures that stack pointers are not returned
from functions, and the judgment for local declarations Γ ` ld : Γ′ allows stack locations to point to older stack
locations (that are already in scope) and any location to point to a heap location or an integer, but does not allow heap
locations to point to stack locations. We use the notation Γ[x : τ ] to mean Γ extended so that x maps to τ .
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qualifiers q ::= S | H
types τ ::= int | τ ∗q

values v ::= n | x

program p ::= fds rb

function decls fds ::= · | fd fds
function decl fd ::= τ f(ads) rb

argument decls ads ::= ad | ad, ads
argument decl ad ::= τ x

return block rb ::= {lds; ss; return v}

local decls lds ::= · | ld; lds
local decl ld ::= τ x = v | τ x = newq v

statement list ss ::= · | s; ss
statement s ::= if v then ss else ss | x = v | x = v1+v2 | x = v1−v2

| x = f(avs) | x = ! v | v1 := v2

argument values avs ::= av | av avs
argument value av ::= v

Figure 11: The syntax of Micro-CLI used in the translation.
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` p ok

· ` fds : Γ Γ `int rb ok

` fds rb ok
(p-ok)

Γ ` fds : Γ′

Γ ` · : Γ
(fds-·)

Γ ` fd : Γ′′ Γ′′ ` fds : Γ′

Γ ` fd fds : Γ′
(fds)

Γ ` fd : Γ′

Γ ` ads : (Γ′, τ list) Γ′[f : τlist → τ ] `τ rb ok

Γ ` τ f(ads) rb : Γ[f : τlist → τ ]
(fd)

Γ ` ads : (Γ, τ list)

Γ ` · : (Γ,[])
(ads-·)

Γ ` ad : (Γ′′, τ) Γ′′ ` ads : (Γ′, τ list)

Γ ` ad ads : (Γ′, τ :: τlist)
(ads)

Γ ` ad : (Γ, τ)

Γ ` τ x : (Γ[x : τ ], τ)
(ad)

Γ `τ rb ok

Γ ` lds : Γ′ Γ′ ` ss ok Γ′ ` v : τ (τ 6= τ ′ ∗S)

Γ `τ {lds; ss; return v} ok
(rb-ok)

Γ ` lds : Γ′

Γ ` · : Γ
(lds-·) Γ ` ld : Γ′′ Γ′′ ` lds : Γ′

Γ ` ld lds : Γ′
(lds)

Γ ` ld : Γ′

Γ ` v : τ
Γ ` τ x = v : Γ[x : τ ]

(ld-val)
Γ ` v : τ ′ ∗H (τ = τ ′ ∗H ∗q)

Γ ` τ x = newq v : Γ[x : τ ]
(ld-q-to-h)

Γ ` v : τ ′ ∗S (τ = τ ′ ∗S ∗S)

Γ ` τ x = newS v : Γ[x : τ ]
(ld-s-to-s)

Γ ` v : int (τ = int ∗q)

Γ ` τ x = newq v : Γ[x : τ ]
(ld-int-ref)

Figure 12: The typing rules for Micro-CLI (1 of 2).
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Γ; τlist ` avs ok

Γ;[] ` · ok
(avs-·-ok)

Γ ` av : τ Γ; τlist ` avs ok

Γ; τ :: τlist ` av avs ok
(avs-ok)

Γ ` av : τ

Γ ` v : τ
Γ ` v : τ

(av)

Γ ` ss ok

Γ ` · ok
(ss-·-ok) Γ ` s ok Γ ` ss ok

Γ ` ss ok
(ss-ok)

Γ ` s ok

Γ ` x : τ Γ ` v : τ (τ 6= τ ′ ∗S)

Γ ` x = v ok
(s-val)

Γ ` x : int Γ ` v1 : int Γ ` v2 : int

Γ ` x = v1 + v2 ok
(s-add)

Γ ` x : int Γ ` v1 : int Γ ` v2 : int

Γ ` x = v1 − v2 ok
(s-sub)

Γ ` x : τ Γ ` v : τ ∗q (τ 6= τ ′ ∗S)

Γ ` x = ! v ok
(s-deref)

Γ ` v1 : τ ∗q Γ ` v2 : τ (τ 6= τ ′ ∗S)

Γ ` v1 := v2 ok
(s-update)

Γ ` v : int Γ ` ss1 ok Γ ` ss2 ok

Γ ` if v then ss1 else ss2 ok
(s-if)

Γ ` f : τlist → τ Γ ` x : τ
Γ; τlist ` avs ok

Γ ` x = f(avs) ok
(s-funcall)

Γ ` v : τ

Γ(x) = τ

Γ ` x : τ
(v-var)

Γ ` n : int
(v-int)

Γ ` v : τ ′ τ ′ ≤ τ

Γ ` v : τ
(v-subtype)

τ ≤ τ ′

τ ≤ τ
(sub-reflex)

τ ′ ≤ τ

τ ′ ∗H ≤ τ ∗S
(sub-h-s)

Figure 13: The typing rules for Micro-CLI (2 of 2).
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5.2 Type Translation
The type translation, shown in Figure 14, has the form [[τ ]]τ ek where τ is the type to translate and ek is a tag expression
for the current top of stack. The latter is used in the translation of stack pointers to ensure that the pointer outlives its
target.

The translation of pointer types combines a singleton location type with an unrestricted capability to indicate the
type of the contents of the location. Heap pointers use H to tag the location, stack pointers use an existentially quanti-
fied tag and an additional predicate to state the validity of the tag. Note that the rule we described in the formula equiv-
alence section makes S(H.x`)⊗ !(frzn H.x` F ) equivalent to ∃xk :TG.S(xk .x`)⊗ ! ( xk outlivesH)⊗ !(frzn xk .x` F )
witnessing the subtyping of heap pointers as stack pointers.

The translation of function types is more complicated. Note that polymorphism is expressed as existentials on
the left of → 0. All functions are polymorphic in the locations of the top of the stack and allocation frontier, the
tags of various stack locations, and the caller’s store, which includes its stack, heap, and tag information. The return
address is polymorphic in newly allocated heap space and the tag of the stack location used to pass the return value.
The precondition has a part for memory including the stack and heap, a part for the registers, a statement of the tag
for the top of the stack, an empty thaw set, and the relationships between the various stack tags of relevance. The
postcondition is similar but reflects the state at return rather than call. The calling convention is: arguments are pushed
onto the stack left to right, the callee pops arguments, the result pushed onto the stack, the stack pointer is in rsp, the
return address is in rra, and frontier pointer is in ralloc.

[[int]]τ = int
(trans-int)

[[τ ]]τ H = G

[[τ ∗H ]]τ = ∃x`:L.(S(H.x`) ⊗ !(frzn H.x` G))
(trans-τ ∗H )

[[τ ]]τ xk = G

[[τ ∗S ]]τ ekc = ∃xk :TG, x`:L. (S(xk .x`)⊗ !(xk outlives ekc)⊗ !(frzn xk .x` G))
(trans-τ ∗S)

[[τ1]]τ xka1 = G1 . . . [[τn]]τ xkan = Gn [[τ ]]τ xkret = Gret

[[τ1 ∗ . . . ∗ τn → τ ]]τ =
(∃ x`:L, x`′:L, xk :TG, xka1:TG, . . . , xkan:TG, store:F.
more

←(x`) ⊗ (xkan.x`+1 ⇒ Gn) ⊗ . . . ⊗ (xka1.x`+n ⇒ G1)
⊗ more

→(x`′) ⊗ (ralloc ⇒ S(H.x`′-1)) ⊗ store
⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns) ⊗ (rfp ⇒ ns)
⊗ (rsp ⇒ S(xkan.x`+1))
⊗ (rra ⇒ (∃ x`′′:L, FH:F, xkret:TG.

more
←(x`+n-1) ⊗ (xkret.x`+n ⇒ Fret)

⊗ more
→(x`′′) ⊗ (ralloc ⇒ S(H.x`′′-1)) ⊗ FH ⊗ store

⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns) ⊗ (rfp ⇒ ns) ⊗ (rra ⇒ ns)
⊗ (rsp ⇒ S(xkret.x`+n))
⊗ first(xkret) ⊗ !(xk=xkret+1) ) → 0 )

⊗ first(xkan) ⊗ !(xkan-1=xkan+1) ⊗ . . . ⊗ !(xka1=xka2+1) ⊗ !(xk=xka1+1) ) → 0

(trans-fun)

Figure 14: Type Translation

5.3 Environment Translations
Between each step in the translation, the shape of the memory can be reconstructed from: the variable context Γ, the
variable map V that maps variables in Γ to the offset from the frame pointer at which they appear on the stack, the size
sz that the local declarations use on the stack (which is equivalent to the number of local variables plus the amount of
storage space used for stack allocated data), and the current function label f .
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We assume that Γ is ordered so that we can use it to determine the order in which the arguments and the local
variables were pushed onto the stack. Γ contains all the functions in scope, then all the function arguments, and then
all the local variables. We also use Γ to determine the type of the current function f .

The variable map V needs to be consistent with Γ. In other words, it should map each of the n arguments ai to
n − i (a positive offset) since the arguments are pushed in order (a1 first, and an last) and the frame pointer rfp points
to an. The m local variables are also allocated on the stack, but they are intermixed with space used for allocating
stack data. They will be given negative offsets from the frame pointer.

During the translation of lds, if the local variable is of type τ ′ ∗S then space is pushed onto the stack for the
translation of τ ′. (Since only values can appear in local declarations, we are guaranteed to only need one space for the
data.) And then in all cases space is pushed onto the stack for the local variable. So if a local variable is not a pointer
to a stack location, its offset is one below the offset of the previous local variable. If the variable is a pointer to a stack
location, its data will be stored at an offset one below the previous local variable and its offset will be two below.

Once we have determined that Γ and V are consistent, we can use this to determine how the local declarations
shape the stack. The local declarations use sz space on the stack. For each stack slot j from 1 to sz, we use Γ and V
to determine if the slot contains a local variable (j is in the range of V ) or stack allocated data (j is not in the range of
V , but j − 1 is) and what the type of the slot is.

The translation of the environment [[Γ, V, sz, f ]] is shown in Figure 15. We know that the top sz slots will be
used for the local declarations and the next n slots will contain the arguments. There is some abstract store store
that is unknown. The stack pointer rsp will point to the top of the stack, and the frame pointer rfp will point to the
last argument. The return address in rra will be a function that expects the local declarations and arguments to be
popped off and the return value of the function τ to be pushed on the stack. The temporary registers r1 and r2 contain
nonsense.

[[Γ, V, sz, f, τdone]] is similar, except it represents the shape of memory just before a function call when the first
t of the parameters to the call (with the list of types τdone) have already been pushed on the stack. So the state of
memory is as in [[Γ, V, sz, f ]] except that there are now t new values on top of the stack (with the stack pointer and
adjacency information updated appropriately).
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[[Γ, V, sz, f ]] = (Θ, F ) and [[Γ, V, sz, f, τdone]] = (Θ, F)

j ∈ 1 . . . sz

Fj =

{
(xk j .x` − j ⇒ [[τx]]τ xk j) if ∃x. V (xi) = −j and Γ(x) = τx 6= τ ′ ∗S
!(frzn (xk j .x` − j) ([[τ ]]τ xk j−1)) if ∃x. V (xi) = −j − 1 and Γ(x) = τ ∗S

Fra = (∃ x`′′:L, FH:F, xkret:TG.
more

←(x`+an) ⊗ (xkret.x`+an-1 ⇒ [[τ ]]τ xkret)
⊗ more

→(x`′′) ⊗ (ralloc ⇒ S(H.x`′′-1)) ⊗ FH ⊗ store
⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns) ⊗ (rfp ⇒ ns) ⊗ (rra ⇒ ns)
⊗ (rsp ⇒ S(xkret.x`+an-1))
⊗ first(xkret) ⊗ !(xk=xkret+1) ) → 0 )

[[Γ, V, sz, f ]] , (Θ, F )
where Θ = xk1, . . . , xksz, xka1, . . . , xkan, xk , store

F = more
←(x`-sz-1) ⊗ Fsz ⊗ . . . ⊗ F1

⊗ (xkan.x` ⇒ [[τan]]τ xkan) ⊗ . . . ⊗ (xka1.x`+an-1 ⇒ [[τa1]]τ xka1)
⊗ more

→(x`′) ⊗ (ralloc ⇒ S(H.x`′-1)) ⊗ store
⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns)
⊗ (rfp ⇒ xkan.x`) ⊗ (rsp ⇒ S(xksz.x`-sz)) ⊗ (rra ⇒ Fra)
⊗ first(xksz) ⊗ !(xksz-1=xksz+1) ⊗ . . . ⊗ !(xk1=xk2+1) ⊗ !(xkan=xk1+1)
⊗ !(xkan-1=xkan+1) ⊗ . . . ⊗ !(xka1=xka2+1) ⊗ !(xk=xka1+1)

[[Γ, V, sz, f, [τp1, ...τpt]]] , (Θ, F )
where Θ = xkp1, . . . , xkpt, xkrfp, xkret, xk1, . . . , xksz, xka1, . . . , xkan, xk , store

F = more
←(x`-sz-t-3)

⊗ (xkpt.x`-sz-t-2 ⇒ [[τpt]]τ xkpt) ⊗ . . . ⊗ (xkp1.x`-sz-3 ⇒ [[τp1]]τ xkp1)
⊗ (xkra.x`-sz-2 ⇒ Fra) ⊗ (xkrfp.x`-sz-1 ⇒ S(xkan.x`)) ⊗ Fsz ⊗ . . . ⊗ F1

⊗ (xkan.x` ⇒ [[τan]]τ xkan) ⊗ . . . ⊗ (xka1.x`+an-1 ⇒ [[τa1]]τ xka1)
⊗ more

→(x`′) ⊗ (ralloc ⇒ S(H.x`′-1)) ⊗ store
⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns)
⊗ (rfp ⇒ xkan.x`) ⊗ (rsp ⇒ S(xkpt.x`-sz-t)) ⊗ (rra ⇒ Fra)
⊗ first(xksz) ⊗ !(xkp-1=xkpt+1) ⊗ . . .⊗ !(xkp1=xkp2+1) ⊗ !(xksz=xkp1+1)
⊗ !(xksz-1=xksz+1) ⊗ . . . ⊗ !(xk1=xk2+1) ⊗ !(xkan=xk1+1)
⊗ !(xkan-1=xkan+1) ⊗ . . . ⊗ !(xka1=xka2+1) ⊗ !(xk=xka1+1)

Figure 15: Determining Memory Shape
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5.4 Translating the Micro-CLI Grammar
Each nonterminal in the grammar has its own translation function. We will leave out the cases for accumulators such
as function declarations fds, local declarations lds, statements ss, and argument values avs since this should be clear
from the corresponding single cases.

We define seven translation functions:

[[` p]]p = (C ′, Ψ′, B′) Program Translation
[[Γ ` fd : Γ′]]fd C Ψ = (C ′, Ψ′) Function Declaration Translation
[[Γ `τ rb ok]]rb f C0 Ψ1 = (C ′, Ψ′) Return Block Translation
[[Γ ` ld : Γ′]]ld V sz = (V ′, sz′, I ′) Local Declaration Translation
[[Γ ` s ok]]s V sz f C0 Ψ1 cb I = (C ′0, Ψ′1, cb′, I ′) Statement Translation
[[Γ ` v : τ ]]v V sz f F1 r = I ′ Value Translation
[[Γ; v ` τ ]]av V sz f τdone = I ′ Argument Translation

The arguments to the translation functions are summarized below.

C Code Region Function mapping code block labels to blocks of code
Ψ Code Context Function mapping code block labels to code types
B Code Block Sequence of instructions ending with a jump
Γ Variable Context Function mapping variables to types
V Variable Map Function mapping local variables to their offset from the frame pointer
sz Local Declaration Size Number of spaces on the stack needed to store the frame of the current function
cb Code Label Label for the code block that is currently being translated
I Instruction List Sequence of instruction that does not end with a jump
τlist Type List List of types for arguments that have already been pushed on the stack

We use the following abbreviations for commonly used instruction sequences. Note that updatex requires the
value to update x with to be in r1 and will clobber any values in r2.

updatex ≡ mov r2, rfp; add r2, r2, V (x); st r2, r1

push r ≡ stackgrow ; sub rsp, rsp, 1; st rsp, r
pop r ≡ ld r, rsp; add rsp, rsp, 1; stackcut

5.4.1 Program Translation: [[` p]]p = (C ′, Ψ′, B)

The translation of a program p returns the final code region C ′ with type Ψ′ that contains all the blocks of code from
the whole program and the block B′ that jumps to main.

To translate a program p = fds rb, we start with the code region containing a block halt that simply halts the
machine. To halt, memory must be in a basic state where the stack has only the return value, and the contents of all
registers except for rsp are arbitrary. At the start of the assembly program, we first push an integer (so that we are in
the base memory state), set the return location to be halt, and jump to main.

The function declarations fds are translated beginning with this initial code region, accumulating code blocks and
resulting in the code region C with type Ψ. The provided ”main” function to the program is rb and we will map this
using the label main. It begins with the state necessary to jump to halt and will also finish in that state. Using the code
region C containing the function declarations, the main block rb is translated as function ”main”.

Lemma 6 proves that a well typed source program translates into a well typed assembly program.

Lemma 6 (Trans-p)
If [[` p]]p = (C, Ψ, B) and t = (H, (sk; ), sk, fst) and m = {rsp 7→ sk.`, ralloc 7→ H.`′} then `Ψ (C, m, t, B) ok.

Proof 6
By Lemma Trans-fds (similar to Lemma 7) and Lemma 8.
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[[· ` fds : Γ]]fds {halt 7→ halt} {halt 7→ Fhalt} = (C, Ψ)
[[Γ `τ rb ok]]rb main C Ψ[main 7→ Fhalt] = (C ′, Ψ′)

[[` fds rb]]p = (C ′, Ψ′, (push1; mov rra, halt; jmpmain))
(trans-p)

where Fhalt = ∃x`:L, x`′:L, xk :TG.
more

←(x`-1) ⊗ (xk .x` ⇒ int) ⊗ (rsp ⇒ S(xk .x`))
⊗ more

→(x`′) ⊗ (ralloc ⇒ S(H.x`′-1)) ⊗ FH
⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns) ⊗ (rfp ⇒ ns) ⊗ (rra ⇒ ns)
⊗ first(xk)

Figure 16: Program Translation

5.4.2 Function Declaration Translation: [[Γ ` fd : Γ′]]fd C Ψ = (C ′, Ψ′)

The translation of a function declaration adds an entry for the translation of the function contents in the code region
C under the label f . The return block rb in the function is translated in a context that already contains the type of the
function f added to the code context Ψ. This is needed to allow the function to be recursive.

Γ ` ads : (Γ′, τ list) [[Γ′[f : τlist → τ ] `τ rb ok]]rb f C Ψ[f : [[τlist → τ ]]τ ] = (C ′, Ψ′)

[[Γ ` τ f(ads) rb : Γ[f : τlist → τ ]]]fd C Ψ = (C ′, Ψ′)
(trans-fd)

Figure 17: Function Declaration Translation

Lemma 7 checks that the given code region C and code context Ψ are consistent and that the values it returns are
also consistent.

Lemma 7 (Trans-fd)
If [[Γ ` fd : Γ′]]fd C Ψ = (C ′, Ψ′) and ` C : Ψ then ` C ′ : Ψ′.

Proof 7
By Lemma 8.

5.4.3 Return Block Translation: [[Γ `τ rb ok]]rb f C0 Ψ1 = (C ′, Ψ′)

The translation of a return block rb translates the code in the block and then adds it to the code region C0 under the
name f .

The translation takes the current code region C0, its type Ψ1, and the label of the current function f . Ψ1 is a step
ahead of C0; it already contains a type for f . This allows a function to be recursive.

The first thing the block does upon entry is to set the frame pointer to be equal to the stack pointer. Then it executes
the code resulting from the translations of lds and ss. Before the return statement, the n arguments and sz of local
declarations and stack allocated data are popped off of the stack. Finally, the return value is pushed onto the stack.

The translation returns the code region C ′ and its type Ψ′. Notice that C ′ and Ψ′ are in step.
Lemma 8 ensures that except for the entry for f , C0 has type Ψ1 and that when the translation of rb is finished, C ′

has type Ψ′.

Lemma 8 (Trans-rb)
If [[Γ `τ rb ok]]rb f C0 Ψ1 = (C ′, Ψ′) and ` C0 : (Ψ1\f) then ` C ′ : Ψ′.
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[[Γ ` lds : Γ′]]lds V 0 = (V ′, sz′, Ilds)
[[Γ′ ` ss ok]]s V ′ sz′ f C0 Ψ1 cb (mov rfp, rsp; Ilds) = (C ′0, Ψ′1, cb′, I ′)

[[Γ′, V ′, sz′, f ]] = (Θ, F ) [[Γ′ ` v : τ ]]v V ′ sz′ f F r1 = Iv

[[Γ `τ {lds; ss; return v} ok]]rb f C0 Ψ1 = (C ′0[cb
′ 7→ I ′′], Ψ′1)

(trans-rb)

where I ′′ = I ′; Iv ; pop r2; . . . pop r2; push r1; jmp rra

Figure 18: Return Block Translation

Proof 8
By Lemma Trans-lds (similar to Lemma 9), Lemma Trans-ss (similar to Lemma 10), and Lemma 12.

5.4.4 Local Declaration Translation: [[Γ ` ld : Γ′]]ld V sz = (V ′, sz′, I ′)

The translation of local declarations allocates space on the stack for each new variable. The translation takes the
variable map V and the size sz allocated so far for the local declaration.

For variables that are initialized to values, space for the local variable is pushed on the stack, and the value is
moved into that stack slot. For declarations involving allocation, space is allocated in the appropriate place, the value
is loaded into the allocated space, and then a space for the local variable is made on the stack, and the pointer to the
newly allocated space is moved into that stack slot.

The translation returns the new variable map V including a mapping for the new variable declared in the local
declaration, the new size sz of the local declarations on the stack (incremented by two if the value allocated stack
space, and incremented by one otherwise), and the sequence of instructions that does the allocation and initialization.

[[Γ ` v : τ ]]v V sz f F r1 = Iv

[[Γ ` τ x = v : Γ[x : τ ]]]ld V sz = (V [x 7→ sz + 1], sz + 1, I ′)
(trans-ld-var)

where I ′ = Iv ; push r1

[[Γ ` v : τ ]]v V sz f F r1 = Iv

[[Γ ` τ x = newS v : Γ[x : τ ]]]ld V sz = (V [x 7→ sz + 2], sz + 2, I ′)
(trans-ld-τ ∗S)

where I ′ = Iv ; push r1; mov r2, rsp; push r2

[[Γ ` v : τ ]]v V sz f F r1 = Iv

[[Γ ` τ x = newH v : Γ′]]ld V sz = (V [x 7→ sz + 1], sz + 1, I ′)
(trans-ld-τ ∗H)

where I ′ = Iv ; add ralloc, 1; st ralloc, r1; push ralloc

Figure 19: Local Declaration Translation

Lemma 9 checks that the instruction sequence I ′ correctly allocates space for the the variable. If a block B is
well-formed in the memory after the declaration, then a block consisting of the instruction sequence I ′ and the block
B should be well-formed in the original memory. In other words, the instruction sequence I ′ takes us from the original
memory shape to the memory shape after the declaration.

Lemma 9 (Trans-ld)
If [[Γ ` ld : Γ′]]ld V sz = (V ′, sz′, I ′) then ∀B. (Θ′ ‖ F ′ ` B ok =⇒ Θ ‖ F ` (I ′; B) ok) where [[Γ, V, sz, f ]] =
(Θ, F ), and [[Γ′, V ′, sz′, f ]] = (Θ′, F ′).
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Proof 9
By cases on the translation.

5.4.5 Statement Translation: [[Γ ` s ok]]s V sz f C0 Ψ1 cb I = (C ′0, Ψ′1, cb′, I ′)

The translation of statements translates each statement into a sequence of assembly instructions. The translation takes
the variable map V , local declaration size sz, function name f , code region C0, code context Ψ1, code label cb of the
block currently being translated, and instruction sequence I of translated instructions so far.

To determine the state of memory we can use Γ, V , sz, and f : [[Γ, V, sz, f ]] = (Θ, F ). The memory state will
be constant between each statement since all allocation is done in lds. The temporary registers r1 and r2 may change
within the translation of a statement, but they are not used across statements, and therefore can be assumed to be ns.

The code region C0 contains all the code blocks already translated. The code context Ψ1 contains the types of all
blocks already translated, and also includes the type of the code block cb, since the block may be recursive. Except for
cb, the domains of C0 and Ψ1 are equal, and for every element x in the joint domain, (Ψ1(x) = ∃Θx.Fx → 0) =⇒
(Θx ‖ Fx ` C0(x) ok).

The code label cb is the name of the current block being translated and I accumulates the instructions that provide
the translation of the previous statements in the block. The translation returns the new code region C ′0, code context
Ψ′1, code label cb′, and sequence of instructions I ′. Except for cb′, the other return values are all either the same as or
extensions of the equivalent inputs. cb′ will either be the same as cb or it will be a fresh code label.

In the simple cases that do not create new code blocks (simple variable assignment, addition, subtraction, variable
dereference, and update), C ′0, Ψ′1, and cb′ are the corresponding inputs and I ′ is the sequence of assembly instructions
that that perform the operation. The cases for function calls and if statements involve control flow, so they create new
code blocks, which means that C ′0 and Ψ′1 are extensions of the corresponding inputs and cb′ is a fresh label.

For function calls x = f(avs), we create a sequence of instructions consisting of the current instructions I ,
instructions to save the frame pointer and return address on the stack, the instructions to push the arguments onto the
stack, and then instructions to call the function f . We add this entire sequence to the code region C0 under the name
cb. Then we begin the next code block cbcont which represents the return point of the function call. The first thing
the code will do when it returns is pop the result off of the stack and store it into the space for x as well as restore the
frame pointer and return address. The translation returns at this point, so the next statement translated will be part of
cbcont.

For if statements if v then ss1 else ss2, we create a sequence of instructions consisting of the current instructions
I and instructions to check the condition v and branch appropriately to either cbtrue or cbfalse. We then translate the
blocks sstrue and ssfalse, using the code labels cbtrue and cbfalse respectively. These translations will each return
a new code region (Ct

0 and Cf
0

), code context (Ψt
1 and Ψf

1
), code label (cbt and cbf ), and instruction sequence (I t

and If ). Each translation may have added an arbitrary number of code blocks, depending on the number of nested if
statements and function calls it contained. The final code region we return contains the union of C t

0 and Cf
0

with the
addition of two blocks to finish the code from each translation and terminate it in a jump to cbcont. The final code
context is the union of Ψt

1 and Ψf
1

with the addition of the type of cbcont. The translation returns with an empty block
with label cbcont that will be the control flow merge point after the if statement.
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[[Γ, V, sz, f ]] = (Θ, F ) Γ ` x : τ
[[Γ ` v : τ ]]v V sz f F r1 = Iv (τ 6= τ ′ ∗S)

[[Γ ` x = v ok]]s V sz f C0 Ψ1 cb I = (C0, Ψ1, cb, (I ; Iv ; updatex))
(trans-s-varassign)

[[Γ, V, sz, f ]] = (Θ, F ) Γ ` x : int

[[Γ ` v1 : int]]v V sz f F r1 = I1 [[Γ ` v2 : int]]v V sz f (F [r1 := int]) r2 = I2

[[Γ ` x = v1 + v2 ok]]s V sz f C0 Ψ1 cb I = (C0, Ψ1, cb, (I ; I1; I2; add r1, r1, r2; updatex))
(trans-s-add)

[[Γ, V, sz, f ]] = (Θ, F ) Γ ` x : int

[[Γ ` v1 : int]]v V sz f F r1 = I1 [[Γ ` v2 : int]]v V sz f (F [r1 := int]) r2 = I2

[[Γ ` x = v1 − v2 ok]]s V sz f C0 Ψ1 cb I = (C0, Ψ1, cb, (I ; I1; I2; sub r1, r1, r2; updatex))
(trans-s-sub)

[[Γ, V, sz, f ]] = (Θ, F ) Γ ` x : τ
[[Γ ` v : τ ∗q]]v V sz f F r1 = Iv (τ 6= τ ′ ∗S)

[[Γ ` x = ! v ok]]s V sz f C0 Ψ1 cb I = (C0, Ψ1, cb, (I ; Iv ; ld r1, r1; updatex))
(trans-s-deref)

[[Γ, V, sz, f ]] = (Θ, F ) Γ ` x : τ (τ 6= τ ′ ∗S)
[[Γ ` v1 : int]]v V sz f F r1 = I1 [[Γ ` v2 : int]]v V sz f (F [r1 := [[τ ]]τ ]) r2 = I2

[[Γ ` v1 := v2 ok]]s V sz f C0 Ψ1 cb I = (C0, Ψ1, cb, (I ; I1; I2; st r1, r2))
(trans-s-update)

[[Γ, V, sz, f ]] = (Θ, F ) [[Γ ` v : int]]v V sz f F r1 = Iv

[[Γ ` ss1 ok]]s V sz f C1 (Ψ1[cbtrue 7→ (∃Θ.F → 0)]) cbtrue ∅ = (Ct
0, Ψt

1, cbt, It)

[[Γ ` ss2 ok]]s V sz f C1 (Ψ1[cbfalse 7→ (∃Θ.F → 0)]) cbfalse ∅ = (Cf
0
, Ψf

1
, cbf , If )

[[Γ ` if v then ss1 else ss2 ok]]s V sz f C0 Ψ1 cb I = (C ′0, Ψ′1, cbcont, ∅)
(trans-s-if)

where C1 = (C0[cb 7→ (I ; Iv ; bz r1, cbfalse; jmp cbtrue)])

C ′0 = (Ct
0 ∪ Cf

0
)[cbt 7→ (It; jmp cbcont)][cb

f 7→ (If ; jmp cbcont)]

Ψ′1 = (Ψt
1 ∪ Ψf

1
)[cbcont 7→ (∃Θ.F → 0)]

Γ ` f : τlist → τ Γ ` x : τ (τ 6= τ ′ ∗S)
[[Γ, V, sz, f ]] = (Θ, F )

[[Γ; τlist ` avs ok]]avs V sz f [] = Iavs

[[Γ ` x = f(avs) ok]]s V sz f C0 Ψ1 cb I = (C1, Ψ2, cbcont, ∅)
(trans-s-funcall)

where F = more
←(x`) ⊗ first(xk) ⊗ (rsp ⇒ S(xk .x`+1)) ⊗ (rfp ⇒ S(xkan.x`+sz)) ⊗ (rra ⇒ Fra) ⊗ Fmem

Fcont = more
←(x`-3) ⊗ (xkret.x`-2 ⇒ [[τ ]]τ xkret) ⊗ (xkra.x`-1 ⇒ Fra)

⊗ (xkrfp.x` ⇒ S(xkan.x`)) ⊗ first(xkret)
⊗ !(xkra=xkret+1) ⊗ !(xkrfp=xkra+1) ⊗ !(xk=xkrfp+1)
⊗ (rsp ⇒ S(xkret.x`-2)) ⊗ (rra ⇒ ns) ⊗ (rfp ⇒ ns)
⊗Fmem

Θcont = Θ, xkret, xkra, xkrfp

C1 = C0[cb 7→ (I ; push rfp; push rra; Iavs; mov rra, cbcont; jmp f)]
Ψ2 = Ψ1[cbcont 7→ (∃Θcont.Fcont → 0)]

Figure 20: Statement Translation
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Lemma 10 ensure that before and after translating the statement, the code region is one step ahead of the code
context and that the instruction sequence preserves the shape of memory. We use the notation (Ψ1\cb) to mean the
function Ψ1 without the mapping for cb.

Lemma 10 (Trans-s)
If [[Γ ` s ok]]s V sz f C0 Ψ1 cb I = (C ′0, Ψ′1, cb′, I ′)
and ` C0 : (Ψ1\cb) and ∀B. (Θ ‖ F ` B ok =⇒ Θcb ‖ Fcb ` (I ; B) ok)
then ` C ′0 : (Ψ′1\cb′) and ∀B. (Θ ‖ F ` B ok =⇒ Θ′cb ‖ F ′cb ` (I ′; B) ok)
where [[Γ, V, sz, f ]] = (Θ, F ), Ψ1(cb) = ∃Θcb.Fcb → 0, and Ψ′1(cb

′) = ∃Θ′cb.F
′

cb → 0.

Proof 10
By cases on the translation using Lemma Trans-ss (similar to Lemma 10) and Lemma 12.

5.4.6 Value Translation: [[Γ ` v : τ ]]v V sz f F1 r = I ′

The translation of a value simply copies the value into the provided register. The translation takes the variable map
V , lds size sz, function name f , current formula F1, and result register r. The first three are used to reconstruct the
state of memory (Θ, F ) between statements. The current formula F1 is the state of memory right before the call to
translate-value.

The memory state is always consistent between sequences of instructions corresponding to distinct statements,
but within the commands for the translation of a statement, the memory state may change because of values in the
temporary registers r1 and r2. So the only possible difference between F and F1 is the values in the temporary register
other than the one that is about to be written into.

The value translation returns the sequence of instructions I’ that move the value into r.

[[Γ ` n : int]]v V sz f F r = mov r, n
(trans-v-int)

Γ(x) = τ

[[Γ ` x : τ ]]v V sz f F r = (mov r, rfp; add r, V (x); ld r, r)
(trans-v-var)

[[Γ ` v : τ ′]]v V sz f F r = Iv τ ≤ τ ′

[[Γ ` v : τ ]]v V sz f F r = Iv

(trans-v-subtype)

Figure 21: Value Translation

Lemma 11 proves that the subtyping relationship between heap and stack pointers exists at the assembly level. In
other words, given two source level types that are subtypes, we can make them look equivalent at the assembly level.

Lemma 11 (Subtype)
If τ ≤ τ ′ then [[τ ′]]τ H ≡ [[τ ]]τ H .

Proof 11
By cases on the subtyping relationship.

Lemma 12 checks that the current formula F1 is just the shape of memory with possibly an updated temporary
register and that the sequence of instructions I ′ terminates in a state where F1 is updated with the translation of value
v in r.
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If the value is not a τ ′ ∗S then the type translation [[τ ]]τ xk is the same whether xk is H or kx. However, in the case
where τ is τ ′ ∗S , we have the option of using a ”real” stack pointer or a heap pointer that is being treated as a stack
pointer (using the subtyping relationship). We only need to prove the lemma holds in one of these cases, but any use
of this lemma may not assume which case we are using unless it has information about the structure of τ .

Lemma 12 (Trans-v)
If [[Γ ` v : τ ]]v V sz f F1 r = I ′

and ∃τ ′.F1 = F [r′ := τ ′]
then ∀B. (Θ ‖ F ′[r := [[τ ]]τ xk ] ` B ok =⇒ Θ′cb ‖ F ′cb ` (I ′; B) ok)
where [[Γ, V, sz, f ]] = (Θ, F ), xk is either H or kx, r is either r1 or r2, and r′ is the other one of r1 or r2.

Proof 12
By cases on the translation and Lemma 11.

5.4.7 Argument Translation: [[Γ; v ` τ ]]av V sz f τdone = I ′

The translation of arguments to a function call pushes the each argument onto to the stack. The translation takes the
variable map V , lds size sz, function name f , and list of translated argument types τdone. It uses this information to
reconstruct the state of memory (Θ, F ) before the current argument is pushed.

The translation returns the sequence of instructions I’ that push the value onto the stack.

[[Γ, V, sz, f ]] = (Θ, F ) [[Γ ` v : τ ′]]v V sz f F r1 = Iv

[[Γ; v ` τ ]]av V sz f τdone = Iv ; push r1

(trans-av)

Figure 22: Argument Translation

Lemma 13 determines what the shape of memory should be before and after pushing the value and then proves
that the instruction sequence I ′ links these two memory states.

Lemma 13 (Trans-av)
If [[Γ; av ` τ ]]av V sz f τdone = I ′

then ∀B. (Θτ ‖ Fτ ` B ok =⇒ Θ ‖ F ` (I ′; B) ok )
where [[Γ, V, sz, f, τdone@[τ ]]] = (Θτ , Fτ ), and [[Γ, V, sz, f, τdone]] = (Θ, F).

Proof 13
By cases on the structure of τ and Lemma 12.

5.5 Proof of Type Preservation
We prove that our translation is type preserving by proving that the translation of a well typed source program is also
well typed.

Theorem 14 (Type Preservation of the Translation)
If [[p]] = (C, Ψ, B) then there exists an initial memory m and initial tag tree t such that `Ψ (C, m, t, B) ok

Proof 14
This follows immediately from Lemma 6.
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6 Conclusion
In this paper we have presented a general logic with domain-specific predicates that is powerful enough to express
general heap and stack allocation. We have demonstrated this expressiveness by defining a translation from a language
that abstracts the important stack allocation features of CLI to our assembly language.

The choice of a tag tree matches well with a stack. We plan to investigate if it generalizes to other schemes that are
not LIFO. The combination of unrestricted capabilities with versioning and a validity scheme for the versions seems
promising as a general logic for memory management.
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