Analyzing polymorphic advice

Daniel S. Dantas Geoffrey Washburn
David Walker Stephanie Weirich
Princeton University University of Pennsylvania
{ddantas, dpw}@cs.princeton.edu {geoffw, sweirich}@cis.upenn.edu

Princeton University Technical Report TR-717-04
December 2004

Abstract

We take one of the first steps towards developing a practical, statically-typed, functional, aspect-
oriented programming language by showing how to integrate polymorphism and type analysis with aspect-
oriented programming features. In particular, we demonstrate how to define type-safe polymorphic advice
using pointcuts that unify a collection of polymorphic join points. We also introduce a new mechanism for
specifying context-sensitive advice that involves pattern matching against the current stack of activation
records, and meshes well with functional programming idioms. We give our language meaning via a
type-directed translation into an expressive, but fairly simple, type-safe intermediate language. Many
complexities of the source language are eliminated in this translation, leading to a modular specification
of its semantics. One of the novelties of the intermediate language is the definition of polymorphic labels
for marking control-flow points. These labels are organized in a tree structure such that a parent in the
tree serves as a representative for the collection of all its children. Type safety requires that the type of
each child is a generic instance of the type of the polymorphic parent. Similarly, when a set of labels is
assembled as a pointcut, the type of each label is an instance of the type of the pointcut.

1 Introduction

Aspect-Oriented Programming Languages (AOPL) allow programmers to independently specify what com-
putations to perform as well as when to perform them. For example, AspectJ [14] makes it easy to implement
a profiler that records statistics concerning the number of calls to each method. The what in this example
is the computation that does the recording and the when is the instant of time just prior to execution of
each method body. In aspect-oriented terminology, the specification of what to do is called advice and the
specification of when to do it is called a point cut. A collection of point cuts and advice organized to perform
a coherent task is called an aspect.

The profiler described above could be implemented without aspects by placing the profiling code into
directly into the body of each method. However, at least four problems arise when the programmer does the
insertion manually. First, it is no longer easy to adjust when the advice should execute, as the programmer
must explicitly extract and relocate calls to profiling functions. Second, there may be some specific convention
concerning how to call the profiling functions, and when calls to these functions are spread throughout the
code base, it may be difficult to maintain these conventions correctly. For example, IBM experimented
with aspects in their middleware product line, finding that aspects aided in the consistent application of
cross-cutting features such as profiling among others [5]. Third, the profiled code becomes “tangled” with
the rest of the code involved in the main computation, potentially obscuring the central algorithm. This
problem gets much worse when code for several different tasks such as profiling, debugging, distribution,
access control and others are mixed together. Fourth, in some situations, one does not have access to the
source code or does not have the right to modify it and consequently manual insertion of function calls is
out of the question.



Although aspects are increasingly popular in object-oriented languages, aside from a couple of toy
projects, they have not yet been incorporated into any statically-typed functional language. One of the
challenges along the way lies in developing a typing discipline appropriate for functional languages that
is safe, yet sufficiently flexible to fit aspect-oriented programming idioms. In some situations, typing is
straightforward. For instance, when a piece of advice advises a single monomorphic function, the type of
the argument to and result of the advice is directly connected to the type of the function being advised.
However, many aspect-oriented programming tasks, including the profiling task mentioned above, are best
handled by a single piece of advice that executes before (or after) any function call, regardless of the type
of the function’s argument (or result). In this case, the type of the advice is not directly connected with
the type of a single function, but with a whole collection of functions. In order to type check advice in such
situations, one must first determine the type for the collection and then link the type of the collection to
the type of the advice. Normally, the type of the collection will be highly polymorphic and the type of each
element will be a generic instance of the collection’s type.

In addition to finding polymorphic types for advice, we wish to allow advice to change its behavior
depending upon the type of the advised function. For instance, our otherwise generic profiling advice might
be specialized so that on any call to a function with an integer argument, it keeps track of the distribution of
calls with particular arguments. This and other similar examples require that the advice be able to determine
the type of the function argument. In AspectJ, where object-orientation is the underlying programming
paradigm, downcasts are used to determine types, but in a functional language, we believe that intentional
type analysis is the appropriate mechanism.and

Finally, in order to emulate the context-sensitive advice found in languages such as AspectJ, we propose a
simple yet general mechanism for analyzing the contents of a stack of polymorphic activation records. Once
again, following the spirit of functional programming, the stack is treated as a functional data structure and
the programmer may use recursive functions and pattern matching to determine its contents.

In this paper, we analyze these programming features and develop a simple language that contains the
essential elements of a polymorphic functional programming language with before and after advice. The
language we define is a true aspect-oriented language according to the definition given by Filman and
Friedman [11] as it is oblivious. In order to specify the semantics of our language, we give a type-directed
translation from the source into a type-safe intermediate language, following previous work by Walker,
Zdancewic and Ligatti (WZL) [19], who define the semantics of a monomorphic language in this way.!
This translation helps to modularize the semantics for the source and could be used as the first step in a
compilation strategy.

The core language, though it builds directly on WZL, is itself an important contribution of our work. One
of the novelties of the core language are its first-class, polymorphic labels, which can be used to mark any
control-flow point in a program. Unlike in WZL, where the labels are monomorphic, polymorphism allows
us to structure the labels in a tree-shaped hierarchy. Intuitively, each internal node in the tree represents
a group of control-flow points whereas the leaves represent single control-flow points. Depending upon how
these labels are used, there could be groups for all points just before execution of the function or just after;
groups for getting or setting references; groups for raising or catching exceptions, etc. Polymorphism is
crucial for defining these groups as the type of each member of a group (i.e., child of an internal tree node)
is a polymorphic instance of the type of the parent. In addition, polymorphism is used in conjunction with
many other features of the language: point cuts, which assemble sets of labels, advice, and functions. Overall,
we have worked hard to gives a clean semantics to each feature in this language, and to separate unrelated
concerns. We believe this will faciltate further exploration and extension of language.

2 Programming with aspects in PolyAML

The language PolyAML (Figure 1) contains the essential features of a polymorphic aspect-oriented functional
language. For clarity in the examples below, we add language features, such as recursion and I/0, and elide

1The intermediate language is not oblivious. This does not detract from the properties of the source in any way, and after
all, any oblivious language is always compiled into a non-oblivious language.



(polytypes) s u= foralla.t

(monotypes) t = a|unit|string| stack|t; ->t;
(terms) e x| O|£f[t] [eje2|dse

stkcase e (p=>e |_=> e3)
typecase a (t=>e |_=>e)
nil|x|_::p|pt(x:t,n)::p

.| let f (x:t71):t2 =e inds

time pt(x:t,s,n) =e inds

(patterns) P
(declarations) ds

(point cut designators) pt {f} | any
(trigger time) time := Dbefore | after
(programs) prog = dse

Figure 1: Syntax of PolyAML

some type information. Although PolyAML is explicitly typed, we restrict polymorphism to be predicative,
merely to simplify type inference.

An aspect in PolyAML is composed of several pieces of advice. Advice in PolyAML is second-class and
includes two parts: the body which specifies what to do, and a point-cut designation, which specifies when
to do it. A point-cut designation may either be a set of function names, which triggers the advice before
or after any of the functions in the set are called, or it may be any, which is triggers the advice when any
function is called. For uniformity, all functions in PolyAML must be named.

When before advice is triggered, the body of the advice receives the argument of the function, the name
of the function that was called as a string, and a reification of the execution stack. (The call that triggers
the advice is at the top of the stack.) Likewise, when after advice is triggered by the return of a function,
the body receives the result of the function, as well as the name of the function that triggered the advice
and the current stack.

One of the simplest uses of aspect-oriented programming is to add tracing information to functions—
statements that are executed whenever a function is called or returns. For example, we can advise the
program below to display messages before any function is called and after the functions £ and g return.

let £ (x:int) = x + 1 in

let g (x:bool) = if x then f 1 else f O in

let h (x:a) = (x,x) in

before any (x:a, s:stack, n:string) =
print "entering"; println n; x

after { f,g }(x:a, s:stack, n:string) =
print "leaving"; println n; x

h (g true)

Even though some of the functions in this example are monomorphic, polymorphism is essential. Because
the advice can be triggered by any of the these functions and they have different types, the advice must be
polymorphic. Moreover, since the result type of functions £ and g have no type structure in common, the
argument x of the after advice must be completely abstract.? If, on the other hand, the result types of both
functions were pairs, say (int*bool) and (bool*bool), the type of the after advice argument x could be the
more specific type (a*bool). In general, the type of the advice argument may be the most specific type T
such that all functions referenced in the point cut are instances of 7.3

We might also want the tracing routine to print not only the name of the function that is called, but also
its argument. Therefore, PolyAML allows the programmer to specify many different pieces of advice that

2We indicate this by annotating x with type variable a, which is implicitly quantified.
3Unless the programmer intends to define type-analyzing advice as explained in the next paragraph. In this case, the type
annotating the argument may be more specific.



are triggered based on the specific type of the argument. (For simplicity, all advice that is applicable to a
program point is triggered in the order in which it is declared.)

before any (x:a, s:stack, n:string) =

print "entering "; print n; x
before any (x:int, s:stack, n:string) =
print " with arg "; println (itos x); x

before any (x:bool, s:stack, n:string) =
print " with arg "; println (if b then "true" else "false"); x

This ability to conditionally trigger advice based on the type of the argument means that polymorphism is
not parametric in PolyAML—programmers can analyze the types of values at run-time. However, without
this ability we cannot implement this tracing aspect. Because of this example and many others, a polymor-
phic aspect-oriented programming language is of limited use without type analysis. For further flexibility,
PolyAML also includes a typecase construct to analyze type variables directly.

When advice is triggered, often not only is the argument to the function important, but also the context
in which it was called. This context is provided to all advice, and PolyAML includes constructs for analyzing
this context. For example, below we augment the tracing aspect so that it displays debugging information
for the function £ when it is called directly from the context of g and g’s argument is the boolean true.

before { f } (x:a, s:stack, n:string) =
(stkcase s of
_:: { g }(y:bool, m:string) :: s’ =>
if y then print "entering f from g" else ()
[ _=> O); x

A more sophisticated example of context analysis is to use an aspect to implement a stack-inspection-like se-
curity monitor for the program. If the program tries to call an operation that has not been enabled by the cur-
rent context, the security monitor terminates the program. Below, assume the function enables:string ->
string -> bool determines whether the first argument (a function name) provides the capability for the
second argument (another function name) to execute.

before any (x:a, s:stack, n:string) =
let rec walk s =
stkcase s of
nil => abort ()
| any (y:a, nf:string) :: s’ =>
if enables nf n then () else walk s’
in walk s; X

As mentioned in the introduction, the semantics of PolyAML is given the translation into an expressive
polymorphic core language. In the next two sections, we describe the semantics of Fa in detail. In Section 5,
we describe the translation from PolyAML into the core.

3 The core language and polymorphism

The core language F is an extension of the core language from WZL with polymorphic labels, polymorphic
advice, and run-time type analysis. It also improves upon the semantics of context analysis. One of the
features of the language is the fact that all constructs are defined orthogonally to one another. One advantage
of this design is that we can easily experiment with the language, adding new features to scale the language
up or removing features to improve reasoning power. For instance, by removing the single type analysis
construct, we recover a language with parametric polymorphism. Due to lack of space, the complete semantics
FA appears in Appendix A.



3.1 The semantics of explicit join points

For exposition, to describe the semantics of Fa we start here with a simple version similar to WZL and
extend it in the following sections. The syntax of this language is summarized below.

s= 1 string |11 2 T2 | T1 X ... X 7Tn | &| Vot | T label | T pc | advice
e == ()ls|x|ATeleres]| (€ |let (X)=ejine,
| Acxelet|[linewt<el|ellle] | ftel{er.x:t— e}

For simplicity, the base language is chosen to be the A-calculus with unit, strings and n-tuples. If € is
a vector of expressions eq,ez,...ey for n > 2, then (€) creates a tuple. The expression let (X) = e; in e;
binds the contents of a tuple to a vector of variables X in the scope of e>. Unlike WZL, we add impredicative
polymorphism to the core language, including type abstraction (Ax.e) and type application (e[t]). We write
() for the unit value and s for string constants.

As in WZL, Labeled join points £[][e] are the essential mechanism of 5. The labels, drawn from some
infinite set of identifiers, serve two purposes: They mark program points where advice may be triggered and
they provide markers for contextual analysis. For example, in the expression vy + {[][e2], after e; has been
evaluated to a value v;, evaluation of the resulting subterm £[][v,] causes any advice associated with £ to be
triggered. to New labels may be generated at run time, with the expression new t < e. (We describe the
role of e in Section 4.1.) In this way, scoping may be used to reason about what advice may be triggered at
a particular location, when the label is unknown.

Advice is a computation that exchanges data with a particular join point, and so is similar to a function.
The advice {€.x:int — e} is triggered when control flow reaches a join point labeled with €. The variable x
is bound to the the data at that point and evaluation proceeds into the body of the advice. For example, if
this advice has been installed in the program’s dynamic environment, vi + £[][v2] evaluates to vi + e[v,/x].

Advice is installed into the run-time environment with the expression {I e. Multiple pieces of advice
may apply to the same control flow point, so the order advice is installed in the run-time environment is
important. WZL included mechanisms for installing advice both before or after currently installed advice,
for simplicity Fa only allows advice to be installed after.

Operational Semantics. The operational semantics must keep track of both the labels that have been
generated and the advice that has been installed. An allocation-style semantics keeps track of a set L of
labels (and their associated types) and A, an ordered list of installed advice. The abstract machine states
of the operational semantics are triples £; A;e.

We use evaluation contexts, E, to give the core aspect calculus a call-by-value, left-to-right evaluation
order, but that choice is orthogonal to the design of the language. Auxiliary rules give the primitive (-
reductions for this calculus that describe how terms evaluate in context.

L Ajep XA e
Y:A;E[e] — Z; A Ele’]

ev:beta

The B-reductions for functions, type abstractions and pairs are standard. We discuss the rules for label
creation and point cuts in the next section.

Type system. The type system of Fa maintains the connection between labels, join points and advice.
Because it is necessary to pass information back and forth between the join point of interest and the advice,
the advice and control flow points must agree about type of data that will be exchanged.

The judgement A;T e : T indicates that the term e can be given the type T, where free type variables
appear in A and the types of term variables and labels appear in I'. Unit, string, tuple, function and
polymorphic term typing are standard.

The type system assigns the type T label to labels, which describes the type of expressions they may label
at join points. As point cuts are merely labels in this simple calculus, any expression of type T label may be
considered to have type T pc. In Section 4 we will generalize the definition of point cuts.



Advice associated with a point cut of type T pc is constructed from code that expects a variable of type
T. The body of advice must produce a result suitable for returning to the point from which the advice was
triggered. Thus, the body of the advice must itself be of type 1. The expression ' e, which installs advice
in the run-time environment has type 1 when e has type advice.

We have shown that Fa (including extensions discussed below) is type sound through the usual Progress
and Preservation theorems.

Theorem 3.1 (Progress). If+ (X;A;e) ok then either the configuration is finished, or there exists another
configuration £'; A’; e’ such that L;A;e— L'; A’ e’.

Theorem 3.2 (Preservation). IfF (X;A;e) ok and Z;A;e— L/; A’ e, then &7 and A’ extend X and A
such that = (L';A’;e’) ok.

3.2 Polymorphic labels and advice

Although we have based our core language on a polymorphic A-calculus, the language discussed above is not
flexible enough to encode the examples in Section 2. Advice can only apply to program points with the same
type. We make advice more flexible by generalizing the type of point cuts, as shown in the syntax below, to
include a vector of type variables, bound within the type of point cut.

T == .. | (e7) label | (&.1) pc
e == .. |{eg.axt— ez} | new Tt <ele[tlesl

Advice that is triggered by such a point cut must abstract those type variables in its argument and return
type.

AT Hep: (x.T) pc A Txthey:T )
wft:advice

A;T F{ey.®x:T — ez} : advice

Likewise, because point cuts are just labels, we similarly generalize the label type. When labels are attached
to program points, these type arguments must be instantiated.

AT Eep: (&T) label AF T AT Eep: 1T/«
AT eq[tllez] : tlt/«

wft:cut

Intuitively, when the join point £[T][v] triggers the advice {{.&x:T — e}, T will replace ® and v will replace
x in the body of the advice. (In section 4.1, where we generalize point cuts this process becomes more
complicated.)

This modification to the point cut type provides flexibility in the use of advice. For example, the following
code creates a new label, installs advice for this label (that is an identity function) and then uses this label
to mark three join points in the program, one of which is located in a polymorphic function.

let l=new x.a <U in
let .= {l.ax:x — x} in
(ABA:R.UBIXD, Uintl[3], lbool][true])

There are several issues that arose leading to this design. The first is in seeing why standard polymorphism
is not enough for the above code. For example, it is not immediately clear why we cannot use types such as
(Vo.ot) label, Vo (o label), or even (in calculus with existential types) (Jx.o) label instead.

However, the type (Va.«) label does not allow « to be bound in the body of advice that is triggered by
this label. This label can only mark point cuts of type Va.x. The type Vo. (o« label) must create a new label
whenever it is instantiated, because the type of label to use is not known until then. It also does not allow
advice to be polymorphic. Finally, the existential type (Jx.x) label requires that the labeled expression
evaluate to an existential package. If all join points must have an abstract types, it will significantly restrict
the locations of a program that may be labeled.



Another issue that arose in our design was keeping run-time type analysis orthogonal from join points and
advice. We wanted the only mechanism that could analyze run-time type information to be the typecase
term, described below. However, this means that we could not allow advice to be conditionally triggered
by the type of the join point. More subtly, we had to ensure that polymorphic point cuts were instantiated
only at join points, so that we could rule out the following type-analyzing code:

let l=new x.axc < U in
let _ = 1 {(l[string]).x:string — print x;x} in
ABAx:B.1PBIIX]

Therefore, typecase is the only mechanism in Fa that allows for dynamic pattern matching against
types. The semantics of this operator is fairly standard. The typing rule for typecase is below.

A kT AT A =FTV(13) AN TFeq[t3/al i T[t3/a] AT Hep T
A;T Ftypecase[a.t1] T2 (T3 = e1,x = ez) : T1[12/c]

wft:tcase

A typecase expression consists of a type T2 to match against a type pattern t3. The type matches a
pattern if there is some substitution for the free variables in the pattern that makes it equal to T2. In the
case of a match, e is executed, otherwise execution continues with e;. The «.T; annotation is used for type
checking and describes the type of the branches. In the branch e; we know that T, is equal to T3, so we can
let the result type of this branch mention T3 instead of T;.

4 Extensions

WZL investigated two generalizations of the basic aspect framework. First, they allowed advice to be
triggered by multiple labels, using label sets as point cuts. Second, they permitted run-time inspection of
the labels appearing in the call stack. Both of these extensions are necessary to support the PolyAML as
described in Section 2, so we describe how these extensions interact with polymorphism. In doing so, we
make two new contributions to these extensions.

4.1 Generalizing point cuts

In PolyAML, advice may be triggered by a set of function names. To support this mechanism in Fa we
must generalize point cuts from single labels to sets of labels. Advice may then be triggered by any label
in the set. To do so, we extend the syntax of the language with expressions to create a set of labels and a
union operation for sets.

e = ...|{ellerUey

In WZL, labels grouped together must have the same type, because any of the labels could trigger the advice.
With polymorphic advice we can be more flexible in label set formation. Label sets may be composed of
labels with different types if we can find some type that is more polymorphic than the types of the constituent
labels. In the typing rule below, we use the instance relation A - T; < T2 to mean that T, is more specific than
T1. This instance relation (defined below) is similar to that used in Hindley-Damas-Milner type inference [6].

AT Heyg: (ai."fi) label A B.T ~< . Ti
A;TH{e}: (B.1) pc

wft:pc

AT ABFT AF Ty Frnt/x =1
AFw®T < E.Tz

gen

For example, given labels {7 of type (1 x 1) label and £, of type (1 x bool) label, a label set containing
them can be given the type («.1 X &) pc because this type can be instantiated to that of either of the labels.
The formation rule for the union operation, e; U ez, also employs this instance relation.



Polymorphic advice enables another generalization of point cuts, not considered by WZL; we can arrange
all labels into single hierarchy, or tree structure. With such a hierarchy, a join point £[T][e] triggers advice
{¢/.@x:t" — e} if the label { is lower in the hierarchy than the label £’.

With this extension, we can use a point cut to refer to all labels lower in the tree, without specifying each
such label individually. This mechanism is essential to support PolyAML advice that should be triggered on
entry to any function. The advice cannot create this set—mnot all labels that mark the beginnings functions
may be in scope where the advice is specified. With a label hierarchy, we can refer to all such labels if they
all descend from a single label, Upesore-

The label hierarchy is extended when labels are created with new «.T < e. The argument e becomes
the parent of the new label. For soundness, there must be a connection between the type of the new label
and the type of the parent label. As above, the new label must have a more specific type than its parent.

A;THe: (B.12) label  AF BT <&y

— — wft:new
AT Hnew (at) <e:(xTq) label

For completeness, F o includes a start label U that is the ancestor of all labels and has the most polymorphic
label type, .o label.

Now that we have described label sets and the label hierarchy we can precisely specify the operational
semantics for when advice is triggered. When a join point is reached in -reduction, an auxiliary judgement,
Z; A;L; T = v/, examines the installed advice to create a function v’ to apply to the value of the join point.

txt<l eX LA LT/ = v
LAV —p I AV v

evb:cut

This judgment (advice composition) is described by three rules. The first rule returns the identity
function when no advice is available. The other rules examine the advice at the head of the advice heap. If
the label £ descends from one of the labels in the label set, then that advice is triggered. The head advice is
composed with the function produced from examining the rest of the advice in the list. Not only does advice
composition determine if £ is lower in the hierarchy than some label in the label set, but it also determines
the substitution for the abstract types & in the body of the advice. The typing rules ensure that if the advice
is triggered, this substitution will always exist, so the execution of this rule does not require run-time type
information.

adv:empt
o lT = AiTx Py

LALT = v > ¢ <{; for some 1 It =71 [T/«]
A {0 wxeT — el 1 = At (e[t/a])

LALT =SV THLLY
LA {Daxt —eh =V,

adv:consl

adv:cons2

4.2 Context analysis

Languages such as AspectJ include pointcut operators such cflow to enable advice to be triggered in a
context-sensitive fashion. In our language, we provide direct access to the run-time stack as a functional data
structure and we allow programmers to pattern match against this data structure, in much the same way that
one pattern matches against a list. WZL’s monomorphic core language also contained the ability to query
the stack, but the stack was not first-class and the queries had to be formulated as regular expressions. Our
pattern matching facilities are simpler and therefore easier to use and describe. Moreover, they fit perfectly
within the functional programming idiom, and overall are a substantial improvement over previous work.



Below are the necessary new additions to the syntax of the language for storing type and value information
on the stack, capturing and representing the current stack as a data structure, and analyzing a reified stack.

T == ... |stack

e ... | stack | e | £[T][vi]::v2 | store ej[T][ez] in e;3
stkcase e; (p = ez, x = e3)

o | e[alyl:t:p [ x| 2:p

p

The operation store e;[T][ez] in e3 allows the programmer to store data e; marked by the label e; in the
evaluation context of the expression e3. Because this label may be polymorphic, it must be instantiated with
type arguments T. In the operational semantics, the term stack captures this data stored in the execution
context as a first-class data structure.

data(E) =v
2 A E[stack] — Z; A EV]

This context is converted, using the auxiliary function data(-), into an ordered list represented by the
stack nil e and stack cons :: terms. The type of the returned value is stack. A list of stored stack information
may be analyzed with the pattern matching term stkcase e; (p = e2,x = e3). This term attempts to
match the pattern p against e;, a reified stack. Note that stack patterns, p, include first-class point cuts so
they must be evaluated to pattern values, @, to resolve these point cuts before matching.

If, after evaluation, the pattern value successfully matches the stack, then the expression e, evaluates,
with its pattern variables replaced with the corresponding part of the stack. Otherwise execution continues
with e3. The following two {3-rules encode this operation. These rules rely on the stack matching relation
Y F v~ >0 that compares a stack pattern value ¢ with a reified stack v to produce a substitution ©.

ev:stk

v~ oer>0
L;Asstkecase v (¢ = e, x = e2) —p L; A;O(eq)

evb:scasel

v eor>0
L;A;stkcase v (@ = e1,x = e2) —p L; Asex[v/x]

evb:scase2

The typing rule for stack analysis requires that e; be a first-class stack. It also determines the free
variables in the pattern p, with the relation A;T F p 4 A’;T’, and binds them in the branch e;.
A;T ey :stack
A;THpAAT! I'", A’ linear AN TT Fey:t A;T x:stack Fesz: T
A;TFstkcase ey (p= ey, x=e3):T

wft:scase

5 Translation

We give a semantics to well-typed PolyAML programs by defining a type-directed translation into the Fa
language. This translation is defined by the following mutually recursive judgments for over terms, types,
patterns, declarations and point cut designators.

At 2 Injection of source types into target types
AT Hpt s e;a.t Translation of point cut designators to target
point cuts and their types
pat

ATEp = p1A;T;® Translation of stack patterns, producing a

mapping between source and target variables
exp

ATHe:t = e Translation of terms
A;THdsje:t doct e Translation of declarations
ATHdse:t Z2£e Translation of programs



a=FTV(t1,t2)—A Aakt; =1
Aatkt, gfré AT, f:forall a.t; >ty Hds;er:t dece e) AgTxtiFer:t =R e}

= tds:let
A;THlet £ (x:t1):t2 =eg inds;er :t —
let fpefore : (X.T] X stack X string) label =
new (&.1; x stack x string) < Upesore i
let farrer @ (X TS X stack x string) label =
new (.1} x stack x string) < Uaerer in
let fouy @ (X.T7 X string) label =
new (a.1) x string) < Ugey in
let f:Va.1) — 15 =
ATACT) store fo @ [(x, “07)] in
let (x, -, -) = Tesore (X, stack, “f”)] in
let (x,, ) = fasser [&[(e7, stack, “/7)] in x
in e}

ATHds;es ity 28 e, ATHpt ZE8el;ats  JFttst/al=t; A =FTV(t)

t t
ANt 221 Aat ty = 1} A AT x:t1, sistack, n:string F e : t] —> e}

= tds:ad
A;T F time pt(x:ty,s,n) =ej inds;ey:t) =
let _: 1 = {e'.ax:t; — let (x,s,n) =x in
(typecasely.y — vl 15 (17 = MxiTi.e],y = Axry.x))x}
ine}

Figure 2: Translation of function and advice declarations

The translation was significantly inspired by those in found in WZL [19] and Dantas and Walker [8]. Much of
the translation is straightforward so we only sketch it here. The complete translation appears in Appendix C.

The basic idea of the translation is that join points must be made explicit in the source language.
Therefore, we translate functions so that that they include explicitly labeled join points at their entry and
exit and so that they store information on the stack as they execute. More specifically, for each function we
create three labels fpefore, fafter and fgyy for these join points. So that source language programs can refer
to the entry point of any function all labels fyefore are derived from a distinguished label Upesore. Likewise,
Uasrer and Usyr are the parents of farrer and fgox.

The most interesting part of the encoding is the translation of function and advice declarations, shown
in Figure 2. The translation of functions first proceeds recursively on the various pieces of the declaration.
Then the labels, fpefore; farter; and fsy, are created. Inside the body of the translated function, a store
statement marks the function’s stack frame. Labeled join points are wrapped around the function’s input
and body respectively to implement for before and after advice. Because PolyAML advice expects the
current stack and a string of the function name, we also insert stacks and string constants into the join
points.

The biggest difference between advice in PolyAML and F 5 is that PolyAML advice may pattern match
on the type of its argument to decide whether to execute, but Fa advice may not. In the translation, a
typecase expression in the body of the advice determines if the type matches and defaults to an identity
function if it does not. The translation also splits the input into the three arguments that PolyAML expects
and immediately installs the advice.

We have proved that the translation always produces well-formed F5 programs.

Theorem 5.1 (Program translation type soundness). If ;- F ds e : t B¢ e then ;- F e : T where
-Ft tép? T.

10



Furthermore, because we know that [F o is a type safe language, PolyAMUL inherits safety as a consequence.

Theorem 5.2 (PolyAML safety). Suppose ;- - ds e: t B¢ e then either e fails to terminate or there
exists a sequence of reductions -;-;e —* L: A;e’ to a finished configuration.

6 Related work

Over the last several years, researchers have begun to build semantic foundations for aspect-oriented pro-
gramming paradigms [20, 9, 4, 12, 13, 16, 19, 10, 3]. As mentioned earlier, our work builds upon the
framework proposed by Walker et al. [19], but extends it with polymorphic versions of functions, labels,
label sets, stacks, pattern matching, advice and the auxiliary mechanisms to define the meaning of each of
these constructs.

To our knowledge, the only previous study of the interaction between polymorphism and aspect-oriented
programming features has occurred in the context of Lieberherr, Lorenz and Ovlinger’s Aspectual Collabo-
rations [15, 17]. They extend a variant of AspectJ with a form of module that allows programmers to choose
the join points (i.e., control-flow points) that are exposed to external aspects. Aspectual Collaborations
has parameterized aspects that resemble the parameterized classes of Generic Java. When a parameterized
aspect is linked into a module, concrete class names replace the parameters. Since types are merely names,
the sort of polymorphism necessary is much simpler (at least in certain ways) than required by a functional
programming language. For instance, there is no need to develop a generalization relation and type analysis
may be replaced by conventional object-oriented down-casts. Overall, the differences between functional
and object-oriented language structure have caused our two groups to find quite different solutions to the
problem of constructing generic advice.

Closely related to Aspectual Collaborations is Aldrich’s notion of Open Modules [2]. The central novelty of
this proposal is a special module sealing operator that hides internal control-flow points from external advice.
Aldrich used logical relations to show that sealed modules have a powerful implementation-independence
property [1]. In earlier work [7], we suggested augmenting these proposals with access-control specifications
in the module interfaces that allow programmers to specify whether or not data at join points may be read
or written. Neither of these proposals consider polymorphic types or modules that can hide type definitions.
Building on concurrent work by Washburn and Weirich [21] and Dantas and Walker [8], we are working
on extending the language defined in this paper to include abstract types and protection mechanisms that
ensure abstractions are respected, even in the presence of type analyzing advice.

Tucker and Krishnamurthi [18] developed a variant of Scheme with aspect-oriented features. They demon-
strate the pleasures of programming with point-cuts and advice as first-class objects. For simplicity’s sake,
PolyAML only has second-class point cuts and advice. We believe it is straightforward to make these
features first-class since they are first-class in our core language.

7 Conclusion

This paper demonstrates the synergy between polymorphism and aspect-oriented programming—the combi-
nation is clearly more expressive than the sum of its parts. At the simplest level, this extension permit join
points to be located in polymorphic code. More importantly, because polymorphic aspects may be triggered
by join points in many more contexts than monomorphic aspects, we have been able to significantly increase
the flexibility of point-cut designation. For example, our label hierarchy, which allows us to form groups of
related control flow points, wouldn’t be definable with only monomorphic labels. Also, explicit label sets
may refer to join points of many different types.

Furthermore, we make an additional contribution with respect to stack pattern matching. Our version is
more flexible, simpler semantically and easier for programmers to use than the initial proposition by WZL.
Moreover, it is a perfect fit with standard data-driven functional programming idioms.

11



Acknowledgements

This research was supported in part by ARDA Grant no. NBCHC030106, National Science Foundation
grants CCR-0238328 and CCR-0208601 and an Alfred P. Sloan Fellowship. This work does not necessarily

reflect the opinions or policy of the federal government or Sloan foundation and no official endorsement
should be inferred.

References

[1] J. Aldrich. Open modules: A proposal for modular reasoning in aspect-oriented programming. In
Workshop on foundations of aspect-oriented languages, Mar. 2004.

[2] J. Aldrich. Open modules: Reconciling extensibility and information hiding. In Proceedings of the
Software Engineering Properties of Languages for Aspect Technologies, Mar. 2004.

[3] G. Bruns, R. Jagadeesan, A. S. A. Jeffrey, and J. Riely. muABC: A minimal aspect calculus. In Concur,
pages 209-224, Apr. 2004.

[4] C. Clifton and G. T. Leavens. Assistants and observers: A proposal for modular aspect-oriented rea-
soning. In Foundations of Aspect Languages, Apr. 2002.

[5] A. Colyer and A. Clement. Large-scale aosd for middleware. In Proceedings of the 3rd international
conference on Aspect-oriented software development, pages 56—65. ACM Press, 2004.

[6] L. Damas and R. Milner. Principal type schemes for functional programs. In ACM Symposium on
Principles of Programming Languages, Albuquerque, New Mexico, pages 207-212, 1982.

[7] D.S. Dantas and D. Walker. Aspects, information hiding and modularity. Technical Report TR-696-04,
Princeton University, Nov. 2003.

[8] D. S. Dantas and D. Walker. Harmless advice, 2004. Submitted for publication, September 2004.

[9] R. Douence, O. Motelet, and M. Siidholt. A formal definition of crosscuts. In Third International
Conference on Metalevel architectures and separation of crosscutting concerns, volume 2192 of Lecture
Notes in Computer Science, pages 170-186, Berlin, Sept. 2001. Springer-Verlag.

[10] R. Douence, O. Motelet, and M. Siidholt. Composition, reuse and interaction analysis of stateful aspects.
In Conference on Aspect-Oriented Software Development, pages 141-150, Mar. 2004.

[11] R. E. Filman and D. P. Friedman. Aspect-Oriented Software Development, chapter Aspect-Oriented
Programming is Quantification and Obliviousness. Addison-Wesley, 2005.

[12] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of typed aspect-oriented programs. Unpublished
manuscript., 2003.

[13] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-oriented programs. In European
Conference on Object-Oriented Programming, Darmstadt, Germany, July 2003.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview of AspectJ.
In European Conference on Object-oriented Programming. Springer-Verlag, 2001.

[15] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual collaborations — combining modules and aspects.
The Computer Journal, 46(5):542-565, September 2003.

[16] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics of aspect-oriented programs. In

G. T. Leavens and R. Cytron, editors, Foundations of Aspect-Oriented Languages Workshop, pages
17-25, Apr. 2002.

12



[17] J. Ovlinger. Modular Programming with Aspectual Collaborations. PhD thesis, Northeastern University,
2003.

[18] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-order languages. In Proceedings of
the 2nd International Conference on Aspect-Oriented Software Development, pages 158-167, 2003.

[19] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In ACM International Conference on
Functional Programming, Uppsala, Sweden, Aug. 2003.

[20] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic join points in aspect-
oriented programming. TOPLAS, 2003.

[21] G. Washburn and S. Weirich. Generalizing parametricity using information flow. Available at http:
//www.cis.upenn.edu/ sweirich/, July 2004.

13



A The Fa language

A.1 Grammar

(types)
T = 1|string| «| T — 12| Vo1 | (%.7T) label | (&.7T) pc
|  advice | stack | T1 X ... X Tn
(terms)
e == ()ls|x|ATe|eer| Ax.e|elt]| (e)|let (X)=e;iney|?¢
| ei[@lex] Inewxt<e| fte]|{e;.ax:T— ez}
| typecaselx.Ti] T2 (T3 = e1,a=ez) |{€}|e1Uez | stack | e
| L[T[vi]::va | store e [Tl[ez] in ez | stkcase e; (p = ez, x = e3)
(values)
v = () |s|Axte|Ace| @) [ L] {vaxTt—e}|{F} ]| o | LTIV]:V
(patterns)
p == ele[dylit:plx]| :p

(pattern values)

o = e|vdlyltie x| e
(evaluation contexts)

E == [ |Ee|vE|E[]](E,...
|  v[AIE]| T E|{Eoax:t — e} | new a.t < E|store E[Tl[e;] ine;
| storev[T][E] ine | storevi[T][vo2] inE | {E,...,e}|{v,...,E}

| EUe|vUE]|stkcase E (p=ej,x = e2)

e) | (v,...,E) | let (x) = E in e | EFI[e]

stkcase v (P = ej,x = e3)

(pattern evaluation contexts)

P =

E@lyl:t::@ | e[a][yl:T::P | ::P

(type variable contexts)

A = A«

(term variable and label contexts)

I = Woo|Lxt|lEwT
(label heap)

Y o= UWoea<U|Z baxt<
(advice heap)

A = -|A{axT— e}
(substitutions)

O == -|0,7/a|0O,e/x

A.2 Static Semantics
A.2.1 Types

x €A AT ATy
wftp:var wftp:unit — X wftp:str wftp:arr
Ao A1 A F string AT —> 1
AabT ATy ATET
— wiftp:all wftp:prod ——F— X  wftp:lab
AR Vot AFTy X ... XTh AF (o.1) label
AxkFrT
——F—  wftp:pc —— wftp:advice ——  wftp:stk
A+ (&) pc A F advice A F stack

14



A.2.2 Generalization

ARFT ABFT.  AbFT

T [T/& =12

AF®T < B.12

A.2.3 Label subsumption

gen

txt<( eX LHEL <L L <13 Lat<l el
——— labsb:refl labsb:trans ————— labsb:def
THL<? XHE <3 T4 <L
A.2.4 Term variable and Label Contexts
AT AET AT AET
— wfc:base —— wfc:cons-var — wfc:cons-lab
AU AT, x:T AFT LT
A.2.5 Label heaps
22:B.T2§£3 cx -FE.Tz%&.T] FX:T
wflh:base — — wflh:cons
F(Uioeoe <U) 2 (Usox.ox) F(Z, 8oty <) (T 4yoty)
A.2.6 Advice heaps
;T v :advice '+ A ok
wfah:base wfah:cons
't ok 'k A,v ok
A.2.7 Terms
xterl ) A;TxtyFe:y AF T4
——  wftvar —— X wft:unit wft:abs
ATEx:T ATE( ATHEAMXTI.e:T) > T2
ATHer T — 12 AT Her T Ayo;THe:T
wft:app wft:tabs
AT Hejer: T AT H Aae Vot
AT Re: Vot AFT ‘ AT Hep 1y o
ot ot
AT Eelr]: vt /al wittapp A;W—(é}:ﬁx...x*tnw upie
A;THep Ty X... X Ty ATxThHey: T xtel
— - wft:let — wft:lab
A;THlet (X)=ejiney: T AT HL: (&) label
AT Heg: (Ri.ﬂ) label AF B.T < . T AT Heyq: (R.Ti) pc A E.T < *.Ti .
— wft:pc — wft:union
AT H{el: (B.1) pc A;THeyUes: (B.T) pc
A;TFe: (B.12) label AF BT < ®Ty
— — wft:new
AT Hnew (1) <e: (&) label
AT Fep: (1) label AF T AT Hep:t[t/al A;T I e : advice .
— — wft:cut ———— wft:adv-inst
AT e [Tlez] : [Tt/ A;THpe: 1
AT Hep: (®T) pe Ax;Txther:T )
wft:advice

AT H{e;.xx:T — ez} : advice

15



A ol T AT, A" =FTV(13) AN T Feqft3/o] 1113/ Ao THep: T ]
tit
A; T+ typecaselx.t1] T2 (T3 = €1, = e2) : 1112/l Wittease
AT F ey : (@) label Ab Ty AT F ey tlT/a] AThes: 1
— - 7 wft:store
A;TF store ej[Tllezx] ines: T

ft:stk ——— wft:stk-nil

A;Fl—stack:stackw ® A;Fl—o:stackw sHen
txterl Al T AT FvytfT/a] A;T vy 2 stack
— wft:stk-cons
A; T H T [vi]:v2 @ stack
A;T F ey :stack
A;THpAA,T! I'", A’ linear AN TT Fey:t A;T x:stack ez : T
wft:scase
A;T+ stkcase e; (p= e, x=e3):T
A.2.8 Patterns
AT AA,T!

wfpt:nil wfpt:var wfpt:wild

A;THeA -

A;TEx - - xistack

ATE pHdATY

AT Fe: (oT) pc A;THpAALT! ]
t:st
AT Fextp A & T x: T Wiptstore
A.2.9 Machine configurations
FX:T ' A ok sThe:T s
F (S Ase) ok wieie
A.3 Dynamic Semantics
A.3.1 Stack Data
data(f]) = e
data(store {[T][v] inE) = data(E)+HL[T][V]

data(E[E"])

16

data(E’) otherwise



A.3.2 fp-reductions

b: b:t
LA (AT.e)v —p L Ajelv/x] cvbapp L A; (Aax.e)[T] =g ;A e[t/af evbitapp
— — —— evb:let — — —— evb:union
LA let (x) = (V) in e ;A5 e[V/X] LA {GTU{G ) —p I A {6
¢’ ¢ dom(X)
— — ; evbinew evb:adv-comp
LAnewxt<{—pg Lot <AL LA v—e LAV ()
SFv~or>0
evb:scasel
I, Asstkecase v (@ = e, x = e2) —p L; A;O(eq)
SFv£er>0O
evb:scase2

L;A;stkcase v (@ = e1,x = e2) —p L;Asex[v/x]

30.cod(®) closed A O(T13) = T2
L;Astypecaselo.Ti] T2 (T3 = e, 0 = e2) —p L;A;0(eq)[12/o

evb:tcasel

—30.cod(0) closed A BO(T13) =13
L;Astypecasela.Ti] T2 (T3 = e, = e2) —p L; A ez[12/A

evb:tcase2

tat<( eX LA GTR/o = v

evb:store

— A — 7 evb:cut
L A;store {[T[vi] in vy —p I A5, L ARV —p I AV Y
A.3.3 Context reductions
data(E) =v y L Asemp XA e .
st ‘bet
LiAsElstack] = LAGEN LAEl o ZGAGER]
A.3.4 Stack matching
- sm:nil
She~ep-

kv, ~p>0 B <t eX >+ </ for some i J6.12[T/B] = t1[6/%]
L LRvilove ~ (O] [x]:Ti9 > O, 6/&, v /X

sm:cons

IFv~e>0 _
— 7 sm:wild sm:var
LAV ~ o> O ShFv~x>0,v/x

17



A.3.5 Advice composition

dv: t
Yool = AiTX adviempty
LALT = v X ¢ <{; for some 1 It =71 [T/A]

= adv:consl
A {€h oty — el 41 = Axatovs (e[T/A])

AT = v THLLY

— adv:cons2
A {{Goaxity —» el it = v)

B The meta-theory of Fx

Lemma B.1 (Inversion). The rules in the following judgments are invertible: well-formed types, general-
ization, variable contexts, label heaps, advice heaps, term typing, patterns, machine configurations, stack data,
B -reductions, context reductions, and stack matching. The rules in the judgements for the label subsumption
and advice composition rules are not invertible.

Proof. By inspection of the rules for each judgement. O

Lemma B.2 (Label subsumption). If-Z:T and Z F {; < {, then {1:o.11 < {] € L and 0GB < el

Proof. Straightforward induction on the structure of X - {; < (5. O

Lemma B.3 (Label generalization). If- X :T and XL+ & < € and {;:x.11 < €] € Z and LB <lex
then -+ B.12 < ®x.17.

Proof. By induction on the structure of X - {; < {,, with use of Lemma B.1 and B.2. O

Lemma B.4 (Generalization transitivity). If A+ &.t; < B.12 and A F .12 < V.73 then A F &1y <
Y.T3.

Proof. Straightforward, with uses of Lemma B.1. O

Lemma B.5 (Point cut match progress). If - L : T and (- l—iﬁj]fign and Lat < {0 € L and
STH{G: (B1!) pc and ZHL <& and (- + T])'SISM then tlT/al = t/[v//Bl.

Proof. Straightforward, with uses of Lemma B.1, B.3 and B.4. O

Lemma B.6 (Cut progress). If - £ : T and T = A {{0}.px:t" — e} ok and T + L[] : T[T/ and
LHEL<{ and (-+ T{)1Si§" then t[T/a) = t'[t'/PB].

Proof. Straightforward use of Lemma B.5, with uses of Lemma B.1. O

Lemma B.7 (Stack-case progress). If- L :T and ;T I- stkcase {[T][vi]::v2 (ORIt p = e2,x =
ez):tand L <{ and (- F T{)1Si§" then t[t/a) = 1'[t"/B].

Proof. Straightforward use of Lemma B.5, with uses of Lemma B.1. O

Lemma B.8 (Canonical forms). Suppose that v : T is a closed, well-formed value and T is a closed,
well-formed type.

o Ift=1, thenv = ).

o If T =string, then v =s.

18



o [fT=11 > T2, then v=Ax:T;.e.

o IfT=Voa.1’, thenv = Ax.e.

o IfT=(w.1’) label, then v = L.

o IfT=(®.1') pc, then v ={V}.

e If T = advice, then v ={v'.ax:t’ — e}.

e If T =stack, then either v = e or {[T/][v/]::v".

o IfT=11 X...X Ty, thenv= (V).

Proof. By induction on the structure of A;T" - v : T, using the fact that v is a value. O

Lemma B.9 (Context decomposition). If- X :T and ;T e: t then e is a value or E[e’] where e’ is
either stack or the left-hand side of one of the B-reduction rules.

Proof. By induction on on the structure of sT'Fe:t O

Lemma B.10 (Progress lemma). If-X:T and '+ A ok and ;T F e : T then either e is a value, or there
exists another configuration L'; A';e’ such that Z;A;e— /3 A’ e’.

Proof. By induction on the structure of A;T"'F e : 1, with uses of Lemma B.1, B.6, B.7, B.8, and B.9. O

Theorem B.11 (Progress). Ift (Z;A;e) ok then either e is a value, or there exists another configuration
Y A’ e’ such that Z; Ase— ;A el

Proof. Straightforward use of Lemma B.10, with uses of Lemma B.1. O

Definition B.12 (I'" extends T'). If dom(T') C dom(I"') and Vx € dom(T'),I'(x) = T'(x), and V1 €
dom(T), (1) =T"(1), then T’ extendsT.

Definition B.13 (X’ extends X). If dom(X) C dom(X’) and V1 € dom(Z),Z(1) = X'(1), then X’ extends
x.

Definition B.14 (A’ extends A). IfVW e A, ve A’ then A’ extends A.
Lemma B.15 (Evaluation context inversion). If A;T"' Ele] : T then A;T Fe: 1.
Proof. By induction on the structure of E, with uses of Lemma B.1. O

Lemma B.16 (Evaluation context substitution). If A;T' - Ele] : Tt and A;TFe: 1t/ and AT Fe' @t/
and T’ extends T then A; T+ Ele’] : 1.

Proof. By induction on the structure of E, with uses of Lemma B.1. O
Lemma B.17 (Data function typing). If ;T Ele] : T and data(E) =v then -;T F v : stack.
Proof. By induction on the structure of the data(E) function, with uses of Lemma B.1 and B.15. O

Lemma B.18 (Pattern matching). If - X : T and T extends T and A F T and A;T v : stack and
ATEpAALT and A/A';TiT Fe:tand ZEv~p>0 then A;T HO(e) : T.

Proof. By induction on the structure of £ v ~ p > 0, with uses of Lemma B.1. O

Lemma B.19 (Advice composition). If- Z:T and '+ A ok and ;T + £ : (&.7) label and Z; A; {; T[T/ =
v and (- 1) 'SYEN then T Fv:1[7/a] — 1[7/A].

19



Proof. By induction on the structure of X; A; {; t[T/&] = v, with uses of Lemma B.1. O

Lemma B.20 (B-redux preservation). If-X:T and ' A ok and ;T Fe:T and I;Aj;e—pg L';A' e’
then =X T and T+ A’ ok and -;T' e’ :1 and T’ extends T.

Proof. By induction on the structure of Z; A;e —pg L'; A’;e’, with uses of Lemma B.1, B.4, B.18, and B.19.
[

Lemma B.21 (Preservation lemma). If- X :T and T+ A ok and 5T Fe: T and L;A;e — L';A' e’
then =X’ :T" and T'F A’ ok and ;T e’ :T.

Proof. By induction on the structure of L;A;e — L’;A’;e’, with uses of Lemma B.1, B.15, B.16, B.17,
and B.20. O

Theorem B.22 (Preservation). If - (X;A;e) ok and Z;A;e — X/;A’se’, then L' and A’ extend ¥ and
A such that - (X';A’;e’) ok.

Proof. Straightforward use of Lemma B.21, with uses of Lemma B.1. O

C Translation

C.1 Polytypes
Aalk t 2 g

type

At forall a.t == Va.t’

tpy:all

C.2 Monotypes

aceA

AFa=— « AFunit =1

ttp:unit ttp:str

Al string B string

t t
At 2l At 2]
ttp:stk ttp:fun

t t
At stack 2= stack Aty >t 1) 51

C.3 Pattern splitting helper

split(-,e) = e
split(D,x — (y,z),e) = split(D,let (y,z) =x in e)

20



C.4 Terms

xtel .
ttm:var ttm:unit
ATHx:t =2 x A;TE QO :unit =% ()
fiforalla.t el  Abt; g
ttm:inst

exp

AT H£[E] : t[E/a) = flr']

ATher it >ty —==e} ATkey:t) = ¢,

exp
A;Fl—e1e2:t2:>e{e§

ttm:app

A;TF e :stack —> e}

ATED EB ol HAGT; @ AT linear  AAGTTi et =Rel  AThey:t=2e) o
m:scase
A;T I stkcase ey (p=>e |_=>e;) 1t ==
stkcase e (p’ = split(®,e’),x = e})
acA ARt
Abt 2B xl A =FTV(t) AA;THeilti/al:tlti/a] =R el AThe:t=Xe¢
ttm:tcase

A;T F typecase a (T=>e |_=>e) 1t =
typecase[a.t] « (T = e/, =€)

ATHds;e:t &2 ¢
A;FFdse:t%e/

ttm:ds

C.5 Point cut designators

time € {before, stk} fi:forall @i.t;; >tz €l AFbt <3t

tpt:set-befstk

time

A; ' {f} = {ftime}; b.t

fi:forall aj.t1 ;3 —> 121 € I AFDb.t < ai.t i

——fior — tpt:set-aft e tpt:any
AT H{E} (farter); D.t AT F any = {Ugige); a.a
C.6 Patterns
pat tpat:nil ys tpat:var
AT hFnil = e -;-;- A;F}—xp:>x—1-;-,x:stack;-
ATEDPES o/ 4 AT @

p— tpat:wild

ATE _sip= _:p/ HA T @
ATFptZE eiat  ATHpES o/ HA,T;® vy fresh

A;TEpt(x:t,n)::p £
e'[adyl::p’ 4 A, a; T/, x:t, n:string; @,y — (x, M)

tpat:cons

21



C.7 Declarations

AThe:t ==X ¢

dec.

ATE et e

; tds:tm

EZFTV(thtz)—A Aak t g’f{

A,El—tzty;\peﬂré A;T f:forall 3.ty -> tzl—ds;ezztgieﬁ

Az xit) F ey

exp

tr=— e

/
1

A;THlet £ (x:t7):t2 =ej inds;es:t %
let fpesore : (.T] X stack X string) label =
new (.17 X stack x string) < Upesore iN
let farrer : (?0.T) X stack x string) label =
new (®.15 x stack x string) < Uasrer iN
let fouy @ (X.T7 X string) label =
new (@.1] x string) < Ugey in
let f:Va.t; — 15 =
AxAx:Ty.store fop [l [(x, “7)] in

let (x,_, ) = Thesore [ (X, stack, “f”)] in
let (x,, ) = faser @ [(e], stack, “)] in x

in e}

ATHds;es:its 28 e, ATHpt Zel;aty  JFt.t3ft/al =t

type

A = FTV(tq)

t
ANt 21 Aatkt; = T} A, A';T,x:tq, s:stack, nistring F e : t) —» e

A;T F time pt(x:ty,s,n) =e7 in ds;ezztzé
let _: 1 = {e'.ax:t; — let (x,s,n) =x in

(typecasely.y — vl 15 (1] = Axti.el,y = Mxry.x))x}

ine}

C.8 Programs

dec, /

A;THds;e:t e

A;THdse:t B
let Upesore : (0x.o¢ X stack x string) label
new (a.o X stack x string) < U in

tprog

let Uasier : (.o X stack x string) label =

new (.« x stack x string) < U in
let Ugey : (. X string) label =
new (a.o X string) < U in e’

D The meta-theory of the translation

Definition D.1 (Simple abbreviations).

letx:T=ejine; = (Ax:T.ez2)e
Yatr £ VYoi...Von.T
Ade 2 Ax;...Van.e

e[t] % elti]...[tn]

_ x (where x fresh)

22

tds:let

tds:ad



Definition D.2 (Multi-arm stkcase abbreviation).

stkcase e} (p=e,x=¢e}) =

let y:stack = e} in stkcasey (p1 — e

— ...(stkcasey (pn — en )...)
X — e))

(where y fresh)
Definition D.3 (Multi-arm typecase abbreviation).

typecasela.T)] « (T= ¢, a=e') &
typecasela.til & (11 — e
o — ...(typecaselx.Ti]l & (Tn — en )...)

Definition D.4 (Type variable context translation).

Yac A& xeA

A A ttctx

Definition D.5 (Term variable context translation).

A= A’
- tctx:empty
At - = Upesore:(x.cx X stack x string) label, ) type
Uagror:(ot.00 X stack x string) label, AFT=T AFrt=r tebemono
Ugex: (.o X string) label AFTxt =T xT ’

AFT =T AzakFt; 21 AzakFt X4,

AF T f:forall @a.t7 => t) = T, fpesore:(X.T1 X stack x string) label,
fatver:(®.T2 X stack X string) label,
fsex: (. T7 X string) label,
f:va.11 — 12

tctx:poly

Definition D.6 (Splitting context translation).

ATE.- =T’ x & cod(®D)
A;T, x:stack - - = T/, x:stack

tsctx:consl

tsctx:empty

ATE. =T
ATxth- =T’

tsctx:cons2

type

ATHFO =T’ ytel z:string € T AFt=r
ATHO x = (y,z) = I, x:T X string,

tsctx:cons3

Lemma D.7 (Type translation soundness). If A = A’ and

o At s 1 then A+ 1.
o At 1 then A+ .
Proof. By trivial induction on the structure of A+ s DR or Al t 2B O

Lemma D.8 (Type translation and substitution). If A = A’ and

23



type

° A,al—sgfr and AFt' = 1’ z‘[fAl—s[t’/a]gT[T’/oc],

e AaFt ZErand At ZE v/ iff AF tlt!/a) 2 1t /u.

Proof. In the forward direction, by induction over the structure of A,a F s P 1 and Ajal t g T
respectively. In the backward direction, by induction over A F s[t’/a] ee T[t'/] and A F t[t'/a] bee
Tt /. O
Lemma D.9 (Type injection is deterministic and total). Given A and

e FTV(s) C A then there exists a unique derivation At s RS T

e FTV(t) C A then there exists a unique derivation At t gi T.
Proof. By trivial induction on the structure of s or t. O
Lemma D.10 (Linearity preserved).

o If A linear and A => A’ then A’ linear.

o IfT linear and A+T =T’ then T linear.
Proof. Straightforward. O

Lemma D.11 (Generalization commutes with translation). If A = A’ and A F a.t; < b.t, then

AT < BT where Aal t1 225 11 and AbF t) 22 1.

Proof. Straightforward use of Lemmas D.9 and D.8. O

Lemma D.12 (Generalization equivalence). A - %11 < B.12 iff A F &.(T1 % T3) < B.(T2 X T3) and
A T3

Proof. Straightforward. O

Lemma D.13 (Splitting lemma). If Ay Ty = T{ and A1, A, F Ty = Ty and A1, AT F @ = T3,
and AL, AL T TS et then Ay, AT, TS F split(D,e) : T.

Proof. By induction on ©. O

Lemma D.14 (Point cut designator translation safety). If AT =T’ and

o A;THpt"E%° eiat then A/;T I e: (.1 x stack x string) pc

after

e A;THpt e;a.t then A’;T' I e: (&.T x stack x string) pc
e A;THpt 12 e;a.t then A’;T' I e: (&.T X string) pc
Proof. By induction on the structure of A;T" I pt e e;a.t. O

Lemma D.15 (Pattern translation safety). IfAFT = T’ and A;T + p[t/3] 22y p A A" T" @ then
AT p A4 A% T* where A" = A* and A,/A";T" = O® = T* and p = p’[T/&] where A t; ee Ti.

Proof. By induction on the structure of A;T F p[t/a] P p 1A T": ® with uses of Lemma D.14. O

Lemma D.16 (Term and declaration translation safety). If AFT =T’ and

24



type

. A;FI—e[E/E]:tgethenA’;F’l—e:T whereAl—thande:e’[f/&] where A - t; == T5.

e AT + ds[t/aljelt/al : t % ¢ then AT F e 1T where A - t g T and e = e'[T/&] where
A+ ti 2222; Ti.

Proof. By mutal induction over the structure of A;T - ds[t/al;elt/a] : t 4% ¢ and AT Felt/al i t == e,

with uses of Lemmas D.14, D.15, and D.13. O

Theorem D.17 (Program translation safety). If;-Fdse:t B¢ e then ;- F e: T where - F t 2ES

Proof. Straightforward use of Lemma D.16. O

$Id: tech-report.tex,v 1.11 2005/01/19 19:42:21 gaw-aspects Exp $

25



