
A Low-level Typed Assembly Language

with a Machine-checkable Soundness

Proof

Juan Chen

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

June 2004

c© Copyright by Juan Chen, 2004. All rights reserved.

Abstract

To reason about mobile machine code safety, Proof-Carrying Code framework re-

quires machine code accompanied by a proof of safety. Typed assembly languages

provide a way to automatically generate such safety proofs. But the soundness

proofs of most existing typed assembly languages are hand-written and cannot be

machine-checked, which is worrisome for such large calculi.

In this dissertation I will explain a low-level typed assembly language (LTAL)

with a semantic model that proves LTAL’s soundness with a machine-checkable

proof. Compared to existing typed assembly languages, LTAL is more scalable

and more secure; it has no macro instructions that hinder low-level optimizations

such as instruction scheduling; its type constructors are expressive enough to cap-

ture dataflow information, support the compiler’s choice of data representations

and permit typed position-independent code; and its type-checking algorithm is

completely syntax-directed.

I will also explain a prototype system that uses LTAL to compile core ML to

Sparc code and generate safety proofs. I will show how we were able to build

type-preserving back end based on an untyped one, without restricting low-level

optimizations and without knowledge of any type system pervading the instruction

selector and register allocator.

iii

Acknowledgments

First of all I would like to thank my advisor Professor Andrew W. Appel, who has

given tremendous help and support during my stay at Princeton. He is always a

source of advice and guidance when I need it. Thanks also to the two readers David

Walker and Zhong Shao who spent so much time on reading my thesis and gave me

very insightful suggestions, and to the two non-readers David August and Sharad

Malik for their constructive comments.

I have benefited greatly from working and talking with the other SIP group

members, Amal Ahmed, Neophytos Michael, Xinming Ou, Kedar Swadi, Gang Tan,

and Dinghao Wu. Thanks to Hai Fang who implemented the translation from

FLINT to NFLINT in the compiler.

I am also grateful to all the professors, staff members and graduate students

who make the computer science department cozy and nourish.

Thanks to DARPA grant F30602-99-1-0519 and NSF grant CCR-9974553 for

providing financial support.

Last I would thank my parents and my husband for their love and understanding,

and my baby twin girls who have brought endless joy to my life.

iv

To my husband Hua and my twin girls Amy and Amanda

v

Contents

Abstract . iii

1 Introduction 1

1.1 Code Safety . 2

1.2 Traditional Approaches . 3

1.3 Language-based Security . 5

1.3.1 Safe Languages . 5

1.3.2 Java Verification . 5

1.3.3 Inlined Reference Monitor 6

1.3.4 Proof-Carrying Code . 8

1.3.5 Typed Assembly Language 10

1.3.6 Foundational Proof-Carrying Code 12

1.3.7 FPCC-ML Compiler . 15

1.3.8 Checker . 16

1.4 Overview of the thesis . 17

2 Low-level Typed Assembly Language 20

2.1 LTAL Features . 21

2.2 Syntax . 23

vi

2.2.1 Kinds . 24

2.2.2 Types . 25

2.2.3 Condition Codes . 28

2.2.4 Values . 29

2.2.5 Coercions . 29

2.2.6 Instructions . 33

2.2.7 Functions . 38

2.2.8 Environments . 40

2.2.9 Programs . 41

2.3 Type-Checking . 41

2.3.1 Instruction decoding . 43

2.4 An Example . 44

2.5 Implementation . 47

3 Soundness of the LTAL Type System 48

3.1 Soundness of Type Systems . 48

3.2 Modeling Machine Instructions . 50

3.3 Modeling Types . 51

3.4 Program Safety . 53

3.4.1 Basic Block Rules . 55

3.4.2 Instruction Rules . 55

3.5 TML Abstraction . 55

4 Heap Allocation 58

4.1 Heap Model . 58

4.2 Untyped Allocation . 60

vii

4.2.1 Record Allocation . 60

4.2.2 Known-length Array Allocation 62

4.2.3 Unknown-length Array Allocation 63

4.3 Macro Instructions . 65

4.3.1 DTAL . 65

4.3.2 TALx86 . 65

4.3.3 TALT . 66

4.3.4 Orderly Lambda Calculus 66

4.3.5 Problems with Macro Instructions 67

4.4 LTAL Heap Allocation . 68

4.4.1 Testing for Heap Exhaustion 70

4.4.2 Record Allocation . 74

4.4.3 Known-length Array Allocation 78

4.4.4 Unknown-length Array Allocation 81

4.4.5 Discussion . 88

5 User-defined Datatypes 90

5.1 Untyped Representation and Discrimination 90

5.1.1 Datatype Representation . 91

5.1.2 Sum Value Discrimination 92

5.2 Type-checking Tag Discrimination 96

5.2.1 Solution 1: Macro Instructions 97

5.2.2 Solution 2: Dependent Types 97

5.3 LTAL Approach . 98

5.3.1 Sum Type Representation 99

viii

5.3.2 Creating Sum Values . 101

5.3.3 Eliminating Sum Values . 102

5.3.4 Discussion . 111

6 Position-independent Code 112

6.1 Untyped Position-independent Code 113

6.1.1 Escaping Functions . 114

6.1.2 Known Functions . 116

6.2 LTAL Instructions . 117

6.3 Type-checking Position-independent Code 117

6.3.1 Moving Labels to Registers 117

6.3.2 Calling External Functions 118

6.3.3 Making Closures . 120

6.4 Related Work . 122

6.4.1 PC-relative Addressing in TALT 122

7 Certifying Compiler 125

7.1 SML/NJ . 125

7.2 Overview of FPCC-ML . 128

7.3 Typed Intermediate Language NFLINT 131

7.3.1 Syntax . 131

7.3.2 CPS- and Closure Conversion 132

7.4 Transformations from NFLINT to Machine-independent LTAL . . . 133

7.5 Typed Back End . 134

7.5.1 Annotate MLRISC with LTAL 135

7.5.2 Basic Blocks . 135

ix

7.5.3 Hooks . 136

7.5.4 Switch Operands . 137

7.5.5 Load Large Integers . 137

7.5.6 Spilling . 138

7.6 Measurements . 139

7.6.1 Performance . 140

8 Summary and Future Work 142

8.1 Summary of Contributions . 142

8.2 Future Work . 143

A Formal Semantics 145

A.1 Kinding Rules . 146

A.2 Branch to a Function . 147

A.3 Value Rules . 147

A.4 Coercion Rules . 147

A.5 Typing Rules for Instructions . 149

B Tag Discrimination Example 153

Bibliography 157

x

List of Figures

1.1 Reference Monitor . 7

1.2 Proof-Carrying Code Framework 9

1.3 Typed Assembly Language Framework 11

1.4 Foundational PCC Framework . 15

2.1 Comparison of typed assembly languages 23

2.2 LTAL Syntax-types and coercions. 24

2.3 Selected coercion rules . 32

2.4 LTAL Syntax-instructions. Marked ? operators are specific to setting

and branching on condition codes. 34

2.5 LTAL Syntax-programs. 38

2.6 An Example . 45

3.1 Model for Types . 52

3.2 Model for Environments . 52

3.3 TML Syntax . 56

4.1 Heap Model . 59

4.2 Untyped Record Allocation . 61

4.3 Heap Status during Record Allocation 61

xi

4.4 Known-length Array Allocation . 62

4.5 Unknown-length Array Allocation 64

4.6 Un-optimized and Optimized Allocation Sequences 68

4.7 Typing Rules for Testing Instructions 72

4.8 Rules for Record Allocation Instructions 75

4.9 Record Allocation Example . 76

4.10 Checking Record Allocation . 77

4.11 Rules for Array Allocation Instructions 79

4.12 LTAL Instruction Sequence for Known-length Array Example . . . 81

4.13 Checking Known-length Array Allocation 82

4.14 Rules for cmpr and ifinitA Instructions 84

4.15 Array Allocation Example . 85

4.16 Type-checking Array Allocation . 86

4.17 Alias Example . 89

5.1 Data Representation of Intlist . 91

5.2 Data Representation of mylist . 92

5.3 Untyped Discrimination of Mylist 95

5.4 Typing Rules of cinj1 and cfold . 101

5.5 LTAL Instruction Sequence for Discriminating Intlist1 104

5.6 Typing Rules for cunfold, csum2hastag, open and iftag 105

5.7 Type-checking Discrimination of Intlist1 107

5.8 LTAL Instruction Sequence for Discriminating Intlist3 108

5.9 Typing Rules for Testbox and Ifboxed 110

5.10 Type-checking Discrimination of Intlist3 111

xii

6.1 Position-independence Transformation 115

6.2 Position-independence Example . 117

6.3 Type-checking Compilation Unit One 119

6.4 LTAL Instructions for Compilation Unit Two 120

6.5 Type-checking Compilation Unit Two 121

6.6 Create a Closure . 122

7.1 Pipeline of SML/NJ . 126

7.2 Pipeline of FPCC-ML . 129

7.3 NFLINT Syntax . 132

B.1 LTAL Instruction Sequence for Discriminating Mylist 154

B.2 Type-checking Discrimination of Mylist 156

xiii

Chapter 1

Introduction

The explosive growth of the Internet brings us a globally connected computing

environment. It makes possible very large-scale and complex software systems, since

we can share resources and information. But at the same time, we become more

vulnerable to attacks. First, it is much easier to attack a connected network than

an isolated host (physical access is not a necessity). Second, the damage spreads

fast and widely. In March 1999, the Computer Emergency Response Team (CERT)

received reports from about 300 organizations that more than 100,000 individual

hosts were infected by Melissa virus over a weekend [3]. One site reported receiving

32,000 copies of infected messages within 45 minutes. Third, system failures and

malicious attacks cause more disastrous damages, as we are more dependent on the

Internet. Think about what it would be like if the banks, flight control systems, or

the defense systems have to shut down because of attacks. The security problems

of the Internet impose great challenges on the research community. In this thesis, I

will address one important topic—how to verify that the code we run is safe. Part

of this thesis work has been described in a paper [19].

1

1.1 Code Safety

When we get a piece of code, before running it on local machines, we would like

some safety guarantees about the code. For example, it does not delete important

files, or send private data to outsiders.

Given the size and complexity of modern software, verifying code safety is a

very challenging problem. There are many software products from various vendors

running even on a single PC, some of which are huge. The Windows XP operating

system has about 40 million lines of code. Such large and complicated software

products certainly contain bugs. Recently Microsoft has issued quite a few patches

to prevent bugs in the Windows operating system from being utilized to attack

the machines. It is even more difficult for the end users to verify the executables

because they normally don’t have the source code.

The situation gets worse with the wide usage of mobile code. There are many

forms of mobile code, including Java applets, web script, and ActiveX. They play

important roles in e-commence and e-business. For example, many online shopping

website requires clients use Java-enabled browsers. A browser can download Java

applets from a remote server and run them on the local machine, sometimes even

without the awareness of the users.

Mobile code provides convenience, flexibility, and efficiency. First, we can share

code. Second, most mobile code can run in heterogeneous systems, so porting it

to various environments is not an issue. Next, we can easily add or replace mobile

components to extend a system. Last, we can improve performance by properly

distributing computation. For instance, communication between cellular phones

and servers is expensive and unreliable. It is sometimes beneficial to download

2

small applications to cellular phones and run them locally to reduce communication

with servers.

Since we cannot avoid using these software products, we need mechanisms to

provide some assurance about their safety. What is safe may have different meanings

depending on the systems and applications. It is formally defined by a safety policy

in a specific setting. Security mechanisms should provide support for specifying

safety policies and enforcing them.

The Trusted Computing Base (TCB) is the totality of the system parts that are

responsible for enforcing security policies. In order for the TCB to enforce correctly

a security policy, the TCB should not contain bugs that could lead to security holes.

Therefore, a smaller and simpler TCB is generally better, since it is easier to test

and reason about.

1.2 Traditional Approaches

Traditional approaches to ensure code safety include:

Code Signing Cryptography provides a method for identification. The code

writer can digitally sign his code before distributing it. After receiving the code,

the code user verifies whether it comes from a trusted entity and it is not altered

during transmission. If so, the code is run as trusted. Microsoft’s Authenticode

provides utilities to sign and check codes [1].

The disadvantages of code signing are: first, code signing only tells us the origin

of the code, but does not guarantee that the code is safe; second, it needs a complex

hierarchy of certification authorities and key distribution.

3

Virus Scanning Many commercial tools (such as those provided by McAfee and

Norton) can scan for viruses or suspicious code, by looking for “signatures” (often

specific bit patterns). But these tools only scan for known viruses, not even unknown

variants or disguises of existing viruses.

Firewall Firewalls define the boundary of an “internal network”. They examine

everything that comes into the internal network, and decide access according to its

identity. A complex system might use many firewalls, and it is very difficult to

verify that the firewalls really implement a safety policy, and that bypassing the

firewalls is impossible. Sometimes a system administrator needs special analysis

tools to analyze firewall configurations [39, 2].

All the above techniques examine surface-level code properties. They cannot

provide strong enough guarantees about the code behavior. Another traditional

approach—hardware and OS protection—does a better job.

Hardware-OS Protection Hardware and operating system protection might be

one of the most widely used approaches. To protect memory, each process has its

own address space, and has no access to the memory used by others. The mapping

from each process’s address space to physical memory is managed by the kernel.

Furthermore, by separating system mode from user mode, only through specific

interfaces (system calls) can a user program access kernel-protected resources.

This protection is very effective on system resources such as memory, files, and

I/O devices, but its disadvantages are obvious: the safety policies that can be

enforced are limited (it only protects those resources accessed through system calls);

context switch between different processes is very expensive.

4

Recently, language-based security has attracted more and more attention be-

cause it is based more on the code semantics than traditional approaches, thus it

provides more flexibility and stronger safety guarantees.

1.3 Language-based Security

Schneider et al. defined language-based security as “mechanisms based on program-

ming analysis and modification” [53]. The advantage of language-based security is

that it checks the intrinsic properties of untrusted code, and it could support more

fine-grained controls than traditional approaches.

1.3.1 Safe Languages

There are many type-safe languages, such as Java, ML, and Modula-3 [29, 41,

48]. The dynamic semantics of a safe language specifies explicitly desired behaviors

and undesired ones. Type safety guarantees that well-typed programs do not have

specific undesired behaviors. As one application of type safety, the SPIN extensible

operating system allows kernel extensions written with Modula-3 and compiled by

a trusted compiler [15]. The result of the compiler can be trusted to be safe and run

in the kernel. This approach relies on the assumption that the compiler compiles a

safe source program to a safe target program, which is often broken because of the

size and the complexity of the compiler.

1.3.2 Java Verification

Java enforces its security model through the Java Virtual Machine (JVM): the

bytecode verifier allows only valid bytecode to pass; the class loader defines separate

5

name spaces for trusted classes and for untrusted ones, so that they don’t interfere

with each other; the security manager checks and restricts access to crucial system

resources, such as disk and network connections. This model ensures type safety

and memory safety.

After bytecode is verified, a Just-In-Time (JIT) compiler or an interpreter trans-

lates it to native code for execution. Since this translation is after security verifi-

cation, the JIT compiler or the interpreter needs to be trusted, as do the runtime

system and core libraries that are necessary to run the program. Any bugs in these

components might be taken advantage of by a malicious attacker to translate safe

bytecode to unsafe native code.

Therefore, the JIT compiler is in the TCB, which could make the TCB size more

than 100,000 lines of code [13]. Such a large-scale software is very likely to contain

bugs. To make things worse, there are no complete formal proofs proving that the

Java security model does not have any bugs in the design1. As a matter of fact,

many security bugs have been found [22].

1.3.3 Inlined Reference Monitor

A reference monitor runs in parallel with a program, observes the program’s be-

havior, and stops the program when the program is about to violate the security

policy [52]. The framework is shown in Figure 1.1. During the execution of a pro-

gram, each security “sensitive” operation is checked by the reference monitor before

it is executed. The program continues to run if the operation is valid. Otherwise,

it terminates.

1There are several proofs of the soundness of the Java type system [23, 59, 49], but they reason
about only subsets of Java.

6

Monitored Program Reference Monitor

OK

Read

Figure 1.1: Reference Monitor

When the reference monitor and the monitored program are in separate address

spaces, an expensive context switch is involved when control transfers between them

before and after security checks.

To remove the performance cost, we can inline the reference monitor: let it

share the same address space with the monitored program. Before executing a

program, we can rewrite it to insert code that implements a monitor. The result

program is guaranteed not to violate the security policy. Software Fault Isolation

(SFI) uses this approach to ensure memory safety [64]. New code is inserted before

each memory operation in a program. The inserted code checks at run time that

the memory operation accesses only certain predefined memory regions.

Schneider extended SFI to enforce safety policies that could be specified as

security automata (finite-state automata) [24, 25]. An inlined reference monitor is

implemented as an automaton simulation, and merged into the monitored program

by a rewriter. The automaton simulation could be simplified by program analysis.

Schneider’s automata can express a subset of safety properties (bad things will

not happen), but not liveness properties (good things will eventually happen) [52].

7

Bauer et al. added more functionality to security automata, so that they can

specify more safety properties [14, 37].

IRM performs checks at run time. The run time overhead could be substantial

(amount to 20% in some cases for SFI [64]).

1.3.4 Proof-Carrying Code

Necula and Lee proposed Proof-Carrying Code (PCC) to guarantee the safety of

untrusted code [47, 46]. The key idea is to accompany a piece of native code with

a safety proof. A code consumer, where untrusted code runs, specifies safety rules;

a code producer, who provides the code, generates a formal proof that proves the

code obeys the safety rules. The code consumer gets both the code and the safety

proof, and checks the proof before executing the code.

Checking the compiler output makes it unnecessary to trust the compiler any

more. Imagine how complicated a production-quality optimizing compiler could be;

it is much easier to check the output than to verify the compiler itself.

Necula and Lee’s PCC framework is shown in Figure 1.2. The compiler compiles

Java bytecode to native code (annotated with type information), and generates a

safety proof as well. A Verification Condition Generator (VCGen) extracts from

the annotated native code a Verification Condition (VC, a predicate in first-order

predicate logic). A proof checker checks whether the safety proof proves VC. VC has

the property that if it holds, the native code is safe. VCGen examines a machine-

code program instruction by instruction and calculates the weakest preconditions

for each instruction in Hoare-logic style.

The proofs are encoded and checked in Logical Framework (LF) [31]. Predicates

are presented as types in LF, and proofs as expressions. Proof checking is type

8

Native Code
Bytecode

Axioms
and

Typing
Rules

Verification Condition

Safety Proof

Compiler

Generator

Condition

Verification

OK
Execute

Proof Checker

Figure 1.2: Proof-Carrying Code Framework

checking in LF: to check whether a proof pf proves a predicate P, we only need to

check whether the type of the representation of pf is the representation of P.

PCC is a very appealing framework for statically reasoning about code safety:

• PCC is a general framework. The code consumer does not care about how

the proofs are generated. It even accepts hand-written proofs.

• PCC is tamper-proof. If the code and/or the safety proof are modified acci-

dentally or maliciously, the proof checker either rejects the safety proof, or the

modified code is still safe to run. Neither case will harm the code consumer.

• The code producer normally has more knowledge about program safety than

the code consumer. The work of the code consumer is dramatically reduced

since it only does simple and fast proof-checking.

• There is no runtime cost. The proof is checked before the code is executed.

We can run the code as many times as we want after checking.

9

The TCB consists of the VCGen, which has to generate the right VC (safety

theorem), the proof checker, which should only allow valid proofs, and the axioms

and typing rules, which are the base of the proofing system.

This VC-based verification builds the type system and machine instruction se-

mantics into the algorithm for formulating the safety predicate. As a result, first,

it restricts the languages the code producer can use; second, the type system needs

to be trusted, but it does not have a formal soundness proof; third, VCGen must

be trusted to generate the right formula, but it is a large program (23,000 lines of

C code [13]), thus difficult to trust as bug-free.

1.3.5 Typed Assembly Language

Compilers that translate source programs to target language and construct safety

proofs are called “certifying compilers”. Typed Assembly Language (TAL) proposed

by Morrisett et al. is an instance of certifying compilation that constructs type-

safety proofs [45].

The key idea of typed assembly language is to preserve type information through-

out compilation. Traditional untyped compilers throw away types after type-checking

source programs. Today some compilers translate source programs to statically

typed intermediate languages, and uses type information to guide optimizations [54,

62, 38, 34, 35]. But these compilers do not preserve types to the target languages.

At some stage, type information is gone. In contrast, typed assembly languages

keep type information to the assembly level. The compiler translates a well-typed

source program to a well-typed assembly program (see Figure 1.3).

Type-preserving compilation has been proved to be very beneficial: first, it

enables many optimizations in the compiler, such as unboxing and tag-free garbage

10

Type Checker

Assembler

Execute
OK

Typed IL2

Typed IL1

Source

TAL
TAL Code

Compiler

Figure 1.3: Typed Assembly Language Framework

collection; second, type checking each intermediate language and target language

provides a way to debug compiler transformations and optimizations; third, a typed

target-language program translated from untrusted code can serve as a type-safety

proof of itself. Well-typedness of the target-language program can guarantee that

it does not violate abstractions enforced by the type system. And the compiler

generates this safety proof automatically.

The first TAL was based on a conventional RISC assembly language, from a

very simple source language with polymorphism, functions and records [45]. There

were many extensions after that. Morrisett et al. added stack-allocation, linking,

higher-order constructors to support compilation from safe C-based source language

Popcorn to Intel IA32-based assembly language TALx86 [43]. To reason about

optimizations such as array bounds checking, Xi and Pfenning provided in the type

system dependent types and integer arithmetic [69]. Hamid et al. proposed a

feather-weight TAL with a machine-checkable syntactic soundness proof [30]. Crary

extended the syntactic approach with machine-checked soundness proof [21].

11

Like Necula and Lee’s PCC system, TALs rely on the soundness of their type

systems. Some previous work has informally proved the soundness of some typed as-

sembly languages as a metatheorem [44, 43, 69]. It is hard to manage the soundness

proofs and avoid errors when scaling up to realistic type systems for real compilers.

Another problem with many TAL extensions is “macro instructions”. Each

macro instruction will be expanded to a sequence of machine instructions after type

checking. The sequence is like a “black box” to the type checker. Therefore, the

intermediate states during executing the sequence can not be modeled, and the type

system can not reason about optimizations performed on these sequences, such as

instruction scheduling.

1.3.6 Foundational Proof-Carrying Code

The motivation of Foundational Proof-Carrying Code (FPCC) is to make the TCB

as small as possible, without committing to any specific type system. We believe

that the smaller the TCB, the more confidence PCC users can have. The TCB of the

FPCC system consists of the specification of the safety policy, machine instruction

semantics, and the proof checker. In the current implementation, it is less than

2,700 lines of code [12, 68], of which more than half is the specification of the Sparc

instruction set. To make the TCB minimal, FPCC uses Church’s higher-order logic

with a few axioms of arithmetic, gives types a semantic model to move the type

system out of the TCB, and models machine instructions by a step relation between

machine states; a VCGen is avoided entirely [9].

In order to support contravariant recursive datatypes and mutable fields, FPCC

models types as predicates on states, approximation indices [11], and type levels

[6]. There is an abstraction layer, Typed Machine Language (TML) [58], to hide

12

the complex semantic models for types. TML provides a rich set of constructors for

types, type maps, instructions, and an orthogonal set of primitive type constructors

such as union, intersection, existential and universal quantification, and so on. TML

is so expressive that type checking for it is undecidable; it is more a logic than a

type system. However, it is very useful for building semantic models of higher-level,

application-specific type systems such as LTAL: LTAL constructors have a semantic

model in terms of TML.

The FPCC system follows a TAL approach for automatic proof generation. Part

of this thesis work is the design of a low-level typed assembly language (LTAL).

LTAL is the interface between the compiler and the checker: the compiler compiles

a source program to machine code annotated by an LTAL program.

FPCC needs its own typed assembly language because it intends to generate

safety proofs of machine code, with as much flexibility as possible for an optimizing

compiler. Thus, even part-way through a sequence of instructions that allocates on

the heap or that does datatype-tag discrimination, the type system must be able to

describe the machine state. That is, LTAL has no “macro” instructions: each LTAL

instruction corresponds to one Sparc instruction (or is a coercion with no runtime

effect). Because no sequence of instructions is unbreakable, low-level optimizations

such as instruction scheduling are permissible (however, at present LTAL does not

accommodate the filling of branch-delay slots on the Sparc). Macro instructions in

other TALs (such as malloc and test-and-branch) that expand to a fixed sequence

of machine instructions, interfere with low-level optimization.

The soundness of LTAL typing rules is being proved not by a metatheorem as in

TAL, but by their semantic model [58, 60], bottom up: first use higher-order logic

with axioms for arithmetic to prove lemmas about machine instructions and types,

13

then prove the TML typing rules based on these lemmas, then prove the soundness

of LTAL typing rules in the TML model. Each typing rule is represented as a

derived lemma in the logic. The soundness proof is nearing completion. We have

not seen intrinsic difficulties in the unfinished part, only some engineering work.

LTAL benefits from its semantic model in many aspects: first, it is more scalable.

Adding new rules that can be described in the semantic model generally does not

affect the soundness of existing rules, which from our experience was proved very

convenient in evolving the design. Second, it is more secure because the TCB is

smaller without the typing rules in it. Third, TML connects LTAL to real machine

instruction semantics, thus bridges the gap between typed assembly language and

machine language.

The FPCC framework is shown in Figure 1.4. A source program is compiled into

a machine-code program and an LTAL program. The “code consumer” receives the

LTAL rules, along with their soundness proof; checks the soundness proof [12, 68];

and then runs the LTAL checker, which is a simple computation (like Prolog but

without backtracking and with only a very limited form of unification).

LTAL is not intended as a universal TAL. Instead, it is extensible. The se-

mantic modeling technique is very modular. New operators can be added to LTAL

(and proved sound) without disturbing the soundness proofs for existing operators,

as long as the new operators conform to the assumptions in the semantic model.

The first version of the semantic model was very simple [9]. Adding contravariant

recursive types [11] and mutable record fields [6] did violate previous assumptions

and require nonmodular rewrites. But now the model is very powerful and general:

none of the existing LTAL soundness proofs will need to be touched when more op-

erators are necessary to handle extensible sums, various kinds of exception handling

14

OK!

Program

ML program

LTAL
Code

Machine

FLINT

MLRISC

Typed back

end

Typed closure
conversion

C
O

M
P

IL
A

T
IO

N

Checker
|C

o
m

p
o
n

en
ts

 d
es

cr
ib

ed
 i

n
 t

h
is

 t
h

es
is

|

TML rules

recursive

model of

Indexed

model of

LTAL rules

proofs of LTAL rules

Machine−checked

S
T

A
T

IC
 P

R
O

O
F

S

Machine−checked
proofs of TML rules

types

Model of

register

conventions

TCB Axioms & Architecture Spec

Stratified

fields

mutable

Figure 1.4: Foundational PCC Framework

mechanisms, various kinds of multidimensional arrays (with or without pointer indi-

rections), or arbitrary predicates on scalar values. However, a more powerful model

might be required to suppport Java objects.

1.3.7 FPCC-ML Compiler

The FPCC-ML compiler transforms core ML (ML without the module system) into

Sparc code with LTAL annotations. At present it omits exceptions and strings. The

compiler was built based on the Standard ML of New Jersey system.

There are several stages: the compiler reuses the front end of SML/NJ to trans-

late source ML programs to FLINT (a typed intermediate language based on Fω)

[54]. The newly built typed CPS-conversion and closure conversion phases gener-

15

ate NFLINT (a typed intermediate language like Morrisett’s λC [45]). The next

few phases break down complex instructions, build basic blocks, and insert coer-

cions to get machine-independent LTAL programs. The back end takes machine-

independent LTAL, and produces machine code with machine-specific LTAL an-

notations and some auxiliary information, such as mapping from labels to their

addresses.

SML/NJ’s back end uses the untyped MLRISC retargetable instruction selec-

tion, register allocation, and low-level optimization software [26]. The difficulty

is to make MLRISC preserve and manipulate type information, without rewriting

the MLRISC or making it dependent on the particular type system. Fortunately,

MLRISC already had some support for an annotation mechanism [36] that permits

“comments” on the instructions; the FPCC-ML compiler generalized this mecha-

nism and used it to propagate types.

1.3.8 Checker

The checker has two main components. First, it uses a simple LF type checker

to check a proof, in higher-order logic, of the soundness of the LTAL typing rules

[12, 68]. The checker reviews these LTAL rules as a set of lemmas.

On the other hand, the LTAL rules can be regarded as a set of Prolog-like

clauses. Because these rules are syntax-directed, the checker can run a very simple

subset Prolog interpreter (without backtracking) on these rules to type-check the

machine-language program.

The LTAL program is only an untrusted hint so that the checker can take ad-

vantage of type and dataflow information from the compiler in proving the safety of

the machine code. The process of running the checker on a machine code and the

16

corresponding LTAL program is like type-checking the machine code according to

structural information from the LTAL program. The overall goal of the checker is

judge_prog H P where P is the binary code (a sequence of instruction words) and

H is the corresponding LTAL program. The predicate judge prog characterizes

well-typedness. The checker solves this goal according to the structure of H . The

underlying semantic model can prove that well-typedness implies safety:

judge_prog H P -> safe_program P.

The predicate safe program is the machine-level safety policy. When the checker

succeeds on the goal judge prog H P, it applies this lemma to get a proof of

safe program P.

1.4 Overview of the thesis

The main contribution of this work is:

• The design of LTAL—a syntactic low-level typed assembly language whose

soundness is backed up by a semantic model with a machine-checkable proof;

• The implementation of FPCC-ML—a certifying compiler that transforms core

ML programs to Sparc code as well as LTAL annotations. The safety proofs

for the Sparc programs are constructed based on the LTAL annotations.

The semantic model and soundness proof of LTAL is other people’s work. I will

explain only the basic ideas and will not present any formal proofs. The features in

core ML that we haven’t supported yet include exceptions, strings, floating point

numbers, references and mutally recursive datatypes. I speculate that LTAL does

not need a significant change to support these features.

17

The rest of the thesis is organized as follows:

Chapter 2 explains the features, syntax and typing rules of LTAL. The key

difficulty (and achievement) in designing LTAL is to make LTAL very expressive,

yet keep type checking simple and efficient.

Chapter 3 explains the semantic model of LTAL types and typing rules. The

model provides a semantic approach to prove the soundness of the LTAL type

system. Types are translated to predicates in the underlying logic and typing rules

are lemmas. All the proofs can be machine-checked.

Chapter 4 describes memory allocation in LTAL. During heap allocation, the

type checker needs to keep track of the status of the heap and the structures being

initialized. Modeling each step of allocation enables several optimizations macro

instructions do not allow. I will explain allocation of both records and arrays.

Chapter 5 addresses user-defined datatypes. The compiler uses tagged unions

to represent datatypes. When the compiler does tag discrimination, it needs to

“remember” the connection between tags and their associated values even after

fetching tags. Also, to be able to refine types after checking tags, the type checker

needs some data-flow analysis. I will show how to encode the connection and data-

flow analysis in the type system.

Chapter 6 demonstrates how position-independent code is achieved in LTAL.

Position-independent code leaves the linker out of the TCB. I present the transfor-

mation and the typing rules.

Chapter 7 gives an overview of the certifying compiler that generates Sparc code

and LTAL programs from core ML programs. The emphasis is building the typed

back end based on an existing untyped one.

18

Finally, Chapter 8 summarizes the contributions of the thesis, and discusses

some related work and future directions.

19

Chapter 2

Low-level Typed Assembly

Language

As shown in Chapter 1, FPCC generates safety proofs automatically by type-

preserving compilation that translates well-typed source programs to well-typed

assembly programs and rejects ill-typed source programs. The typed assembly lan-

guage should be capable of expressing the source language core ML (with higher-

order functions, polymorphism and user-defined datatypes), low-level compiler op-

timizations (such as instruction scheduling), and target architecture Sparc (with

condition codes). It needs to reason about (type-check) each single operation of

the Sparc architecture, which makes the type system complicated. But the type-

checking should still be simple and efficient to make it practical. None of the

previous typed assembly languages have all these features. In this chapter, I ex-

plain Low-level Typed Assembly Language (LTAL), the typed assembly language

used in FPCC with all the desired features. I briefly describe the syntax and the

type-checking. More details will be explained later in the thesis.

20

2.1 LTAL Features

LTAL design and implementation has the following desirable properties, some of

which are shared by some other TAL and PCC systems:

Compiles a “real” source language. LTAL handles almost all of core ML—

a full-scale source language with polymorphic higher-order functions, disjoint-sum

recursive datatypes, and so on.

Compiles to a real target machine. The compiler generates high-quality

Sparc code.

Foundational specification. The logical specification of the safety property

guaranteed by the system is concise and independent of any type system: the pro-

totype system guarantees memory safety and that only a certain subset of Sparc

instructions will be executed [8]. Furthermore, the specification relates to the actual

machine language to be executed—not assembly language— instruction encodings

are modeled and checked explicitly.

Machine-checked proof. LTAL has a machine-checked soundness proof (mostly

finished)—that is, if an LTAL program type-checks, the corresponding machine code

is safe. Unlike any other TAL or PCC system, this proof is with respect to a minimal

set of axioms, the largest part of which is a specification (in logic) of the instruction

set architecture of the Sparc processor.

Minimal checker. Just in case you are worried about bugs (or Trojan horses)

in proof checkers, the soundness proof is checkable in a very minimal logic: the

trusted base of the system (including axioms, machine specification, and a C pro-

gram implementing LF checking) is less than 2700 lines of code [12, 68], an order

of magnitude smaller than other systems.

21

Atomicity. Some other TALs have “macro” instruction sequences (or even

worse, calls to the runtime system) for compare-and-branch, or datatype tag dis-

crimination, or memory allocation. This inhibits optimizations such as hoisting and

scheduling.1 Each of the LTAL instructions corresponds to at most one machine

instruction.

Compiler can choose data representations. For data structures such as

tagged disjoint sums, a compiler may want to exercise discretion in choosing data

layouts, unhampered by assumptions built into a typed assembly language. LTAL

permits this flexibility; some other TALs do not.

Dataflow & induction analysis. LTAL includes existential and singleton

types that are powerful enough to permit dataflow-based safety proofs of optimized

machine code (though the prototype compiler does not exploit all of this power yet).

Position-independent code. To avoid the need to trust a linker, the compiler

generates and checks typed position-independent code—even in the presence of

long jumps and of operations that move code addresses into pointer variables and

closures2.

Basic blocks. LTAL groups instructions into basic blocks, making it easy for

an optimizing compiler to reorder blocks to optimize cache placement or shorten

span-dependent instructions, and making type-checking a bit more efficient.

Syntax-directed. Type-checking LTAL is syntax-directed; that way, if a com-

piler generates a well-typed LTAL program it doesn’t have to worry about whether

the checking algorithm will be smart enough to find a proof.

1In other systems, these optimizations can be done by a trusted assembler, but need to be
trusted bug-free, whereas the FPCC system does not need to trust either the assembler or the
optimizer.

2As in SML/NJ, compilation units in FPCC-ML link to each other by using closures.

22

Key:
◦ partially
◦· nearly
• com-
pletely C

om
p
il
es

“r
ea

l”
so

u
rc

e
la

n
gu

ag
e

C
om

p
il
es

to
re

al
ta

rg
et

m
ac

h
in

e
F
ou

n
d
at

io
n
al

sp
ec

ifi
ca

ti
on

M
ac

h
in

e-
ch

ec
ke

d
so

u
n
d
n
es

s
p
ro

of
M

in
im

al
ch

ec
ke

r
A

to
m

ic
it
y

C
om

p
il
er

ca
n

ch
o
os

e
d
at

a
re

p
rs

.
D

at
afl

ow
an

al
y
si

s
P
os

it
io

n
-i
n
d
ep

en
d
en

t
co

d
e

B
as

ic
b
lo

ck
s

S
y
n
ta

x
-d

ir
ec

te
d

ch
ec

k
in

g

1 2 3 4 5 6 7 8 9 10 11

SpecialJ [20] • • ◦ •
TALx86 [45] ◦· • ◦ • • • ◦
DTAL [69] •
FTAL [30] ◦· • •
TALT [21] • ◦· ◦· • • ◦
Our LTAL ◦· • • ◦· • ◦· • • • • •

Figure 2.1: Comparison of typed assembly languages

Table 2.1 shows the comparison of LTAL to other TALs with regard to the

implementation of these features. This table lists only those features we need most.

Of course there are other features for which some other TALs have better support

than LTAL. In this sense the comparison is incomplete. I don’t claim that LTAL is

better than all other TALs, but that LTAL is more suitable for our system.

2.2 Syntax

LTAL is a calculus with conventional features such as variable names and scoping

rules. The LTAL syntax is shown in Figures 2.2, 2.4 and 2.5.

23

κ ::= Ω | ΩN Kinds

τ ::= α | int | ∃α : κ.τ | µα : κ.τ | boxed Types

| n | τ1 + τ2 | freem

| field i τ | τ1 ∩ τ2 | τ1 ∪ τ2 | intπ τ | range[τ1, τ2]

| codeptr[α1 : κ1, . . . , αj : κj](m, cc, v1 : τ1, . . . , vn : τn)

| addr l | diff(l1, l2) | def k | array(τ1, τ2) | offset i τ

π ::= = | 6= | > | ≥ | < | ≤ Arith. Compares

cc ::= cc cmp(τ1, τ2) ConditionCodes

| cc testbox τ | cc none

v ::= x | i | l | c(v) | vdiff(l1, l2) Values

c ::= cid | c1 ◦ c2 | cpack(τ1, τ2) Coercions

| cfold[τ] | cunfold | crange[n1, n2]

| cinj1 [τ] | cinj2 [τ] | cproj1 | cproj2 | c2inters(c1, c2)

| cname | cdef k

| c2int32 | cptapp[τ] | coffset0 | c2offset0

| caddr2code | csum2hastag

Figure 2.2: LTAL Syntax-types and coercions.

2.2.1 Kinds

LTAL supports first-order kinds; it has only limited support for higher-order kinds,

since TML does not model higher-order kinds in full generality. For core ML, this

is enough.

• ΩN is the kind of singleton integer types.

• Ω is for all other types. Types of any value or expression in a program should

be of kind Ω.

LTAL does not have a sub-kinding relation. ΩN is not considered a sub-kind of

Ω, that is, type τ of kind ΩN does not mean that τ is of kind Ω. LTAL has type

constructors that coerce types of kind ΩN to types of kind Ω.

24

2.2.2 Types

LTAL has a set of expressive type constructors:

• Type variables α, β, . . .3 are treated abstractly in LTAL. LTAL does not sup-

port intensional analysis of type variables as Harper and Morrisett did [32].

Two type variables are equal if and only if they are the same.

• Currently, int is for 32-bit integers.

• LTAL uses existential types ∃α : κ.τ to represent function closures, tagged

sum values, position-independent code, and so on.

• Recursive types µα : κ.τ are used for user-defined recursive datatypes.

• Type boxed describes pointers pointing to heap values. The boxed type does

not specify the content of the heap value the pointer points to.

• Singleton integer literal types n are introduced for data flow analysis. They

help in reasoning about integer arithmetic at the type level.

• Types τ1 + τ2 are used for singleton integer arithmetic. Both τ1 and τ2 should

be of kind ΩN .

• Type freem describes the currently available free space on the heap.

• field type describes a field of a record. Value v has type field i τ means the

word located at memory address v + i has type τ .

3The implementation uses de Bruijn indices, but in this presentation I will show named vari-
ables.

25

• Intersection types are like “AND”. Value v has type τ1 ∩ τ2 means v has type

τ1 and v has type τ2.

LTAL uses intersection types and field types to describe records. A record

type [τ0, τ1, . . . , τn−1] is represented in LTAL as (field 0 τ0)∩ (field 4 τ1)∩ . . .∩

(field (4n − 4) τn−1)
4.

• Union types are like “OR”. Value v has type τ1 ∪ τ2 means v has type τ1 or v

has type τ2. It is natural to represent user-defined datatypes with union types

(see Chapter 5 for details).

• Integer predicates intπ τ refine the integer type. The subscript π is an integer

comparison operator such as = or ≤. Type τ should be of kind ΩN .

Value i has type intπ n means i π n is true. For example, 3 has type int= 3,

and it also has type int< 6.

• Type range[n1, n2] is an abbreviation for (int≥ n̄1) ∩ (int< n̄2). Integer i has

type range[n̄1, n̄2] when n1 ≤ i < n2.

• Polymorphic “code pointer” type codeptr[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn)

models basic blocks (with their live variables) and functions (with their formal

parameters), where ~α : ~κ is a list of type variables, m is the available memory

size guaranteed at this point, cc is the condition code requirement, and vi : τi

are the formal parameters.

• Type addr l describes the beginning address of basic block l.

4In this thesis I assume that the word size is 4.

26

• Type diff(l1, l2) means the difference between beginning addresses of basic

blocks l1 and l2. LTAL cannot use only integers for addresses because of

position-independent code.

Types addr and diff are introduced for label arithmetic, which will be ex-

plained in Chapter 6.

• Type def refers to a type expression by a name k; in the implementation,

names are just integers. Each program can have a sequence of type abbre-

viations that give names to type expressions. This mechanism makes LTAL

programs concise, and saves the checker some work. The checker expands a

name to the type expression it stands for only when such expansion is needed.

Otherwise, the checker simply passes the name around, which is more efficient

than passing the type expression.

• Type array(τ1, τ2) describes a τ2 array of size τ1. The size specifies how much

space the array occupies. With size in the array type, it is possible to break

apart the “allocArray” macro instruction and to reason about array bounds

checking.

Reference type ref τ can be expressed with array type array(4, τ), since the

space one word occupies is 4 bytes.

• Value v has type offset i τ means v + i has type τ . Offset types are used for

address arithmetic.

27

2.2.3 Condition Codes

LTAL has a special category cc to capture the condition code status (on machines

with condition codes):

• cc cmp(τ1, τ2) represents the condition codes set by comparing two integers

of types int= τ1 and int= τ2 respectively. Both τ1 and τ2 should be of kind ΩN .

• cc testbox τ represents the condition codes set by comparing a sum value

(whose type is τ) with a magic number that the compiler uses to differentiate

pointers from small integers. The FPCC-ML compiler has the convention

that all pointers are greater than or equal to 256. It represents constant

data constructors as integers less than 256, and value-carrying constructors

as pointers. Thus, comparing a sum value with 256 tells us whether the value

is a constant constructor or a value-carrying one.

• cc none is for arbitrary condition code status. It is used to describe condition

codes that are unknown or that we don’t care about.

The type-check can refine types by keeping track of the condition code status.

Normally, when a comparison is followed by a conditional branch, we can get more

information about the two operands of the comparison according to whether it

branches or not. The type-checker could use the information to refine the types of

the operands. For example, if we compare variable v of type int with integer 5 and

then do a branch-if-equal. If the control transfers to another block, we know v = 5.

Otherwise, v 6= 4. Either way, v’s type can be refined.

The type refinement happens only at the conditional branch, and it needs the

information about the two operands passed from the comparison. This information

28

is carried by the condition code status in LTAL. The comparison instruction sets

the condition code status and the conditional branch consumes it and refines types.

2.2.4 Values

A value can be a variable x, an integer i, a label l, a coerced value c(v), or a vdiff

value. Vdiff values represent the difference between two labels, and are used only

for typed position-independent code.

Variables track aliases of registers. Different variables with different types can

be assigned the same register, indicating different views of the same register to the

type-checker.

2.2.5 Coercions

A coercion changes only the static type of a value; it has no runtime effect, as it

follows subtyping relations in the underlying model. A coercion c defines a type

transformation function fc. Applying c to value v of type τ results in another value

c(v) of type fc(τ). Type τ and fc(τ) should be compatible; more accurately, it

should be provable in the underlying model that τ is a subtype of fc(τ). Coercions

simplify type-checking by telling the checker, in effect, where to apply subtyping.

However, this can significantly increase the size of the LTAL code.

LTAL has the following coercions:

• cid is the identity coercion. It transforms type τ to τ .

• Coercion c2 ◦ c1 composes two coercions. It transforms type τ0 to τ2, if c1

transforms τ0 to τ1 and c2 transforms τ1 to τ2. Like a standard function

composition representation, the right coercion is applied first.

29

• cpack(τ1, τ2) creates existential types. Type τ2 should be an existential type,

of format ∃α : κ.τf . This coercion transforms type τ to τ2, if τ1 has kind κ,

and τ = τf [τ1/α]. τf [τ1/α] means replacing every appearance of α in τf with

τ1.

• cfold[τ] creates recursive types. Type τ should be a recursive type, of format

µα : κ.τ ′. This coercion transforms type τ0 to τ , if τ0 = τ ′[τ/α], the unfolded

type of τ .

• cunfold unfolds a recursive type. It transforms type µα : κ.τ to its unfolded

type τ [(µα : κ.τ)/α].

• crange[n1, n2] transforms type n to range[n̄1, n̄2], if n1 ≤ n < n2.

• cinj1[τ1 ∪ τ2] transforms type τ1 to union type τ1 ∪ τ2.

• cinj2[τ1 ∪ τ2] transforms type τ2 to union type τ1 ∪ τ2.

• cproj1 projects the first conjunct of an intersection type. It transforms τ1∩τ2

to τ1.

• cproj2 projects the second conjunct of an intersection type. It transforms

τ1 ∩ τ2 to τ2.

• c2inters(c1, c2) creates an intersection type. It transforms type τ to τ1 ∩ τ2,

if c1 transforms τ to τ1 and c2 transforms τ to τ2.

• cname expands a type abbreviation name to the type expression the name

stands for. It transforms type def k to τ , if k is declared to be an abbreviation

of τ .

30

• cdef k is the opposite to cname. It transforms τ to def k, if k is declared to

be an abbreviation of τ .

• c2int32 transforms a refined integer type (or a range type) to type int.

• cptapp[τ] partially instantiates a polymorphic function. When applied to a

codeptr type, it replaces every appearance of the first type variable in the

codeptr type with τ .

• coffset0 transforms type (offset 0 τ) to τ .

• c2offset0 transforms type τ to (offset 0 τ).

• caddr2code transforms type int= (addr l), which is the type of the beginning

address of function l, to codeptr[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn), if there is a

function declaration:

l[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn) = ι1; . . . ; ιk

This coercion indicates the equivalence of the base address of function l and

the code pointer l.

• csum2hastag transforms type τ to ∃α : ΩN .(field 0 (int= α)) ∩ τ . It should

be applied to a union type, each disjunct of which has format (field 0 int= i)∩

. . ., meaning it is tagged i.

I list some coercion rules in Figure 2.3. Other rules will be shown in later

chapters when they are used. The coercion typing judgment ρ; LRT `c τ
C
↪→ τ ′

means that under kind environment ρ and maps LRT (explained in Section 2.2.8),

coercion C changes τ to τ ′.

31

ρ; LRT `c τ1 ∩ τ2

cproj1
↪→ τ1

ρ; LRT `c τ1 ∩ τ2

cproj2
↪→ τ2

ρ; LRT `c τ
c1
↪→ τ ′ ρ; LRT `c τ ′

c2
↪→ τ ′′

ρ; LRT `c τ
c2 ◦ c1
↪→ τ ′′

Figure 2.3: Selected coercion rules

The cproj1 rule is justified by a semantic model containing the subtyping rule

τ1 ∩ τ2 ⊂ τ1. And the cproj2 rule is by τ1 ∩ τ2 ⊂ τ2. The composition rule is the

transitivity of subtyping.

Sometimes after applying a coercion we need to use the value both at its old

type and its new type. This has been a difficulty in some previous TALs, which

assign types to registers: they have to emit a mov instruction to handle this case.

LTAL solves this problem by assigning types to variables, not to registers: a

variable has only one type, but different variables can be assigned the same reg-

ister. A move-with-coercion creates a new variable (in the same register) without

executing an instruction. In effect, the variable name in an LTAL instruction tells

the checker which type to use.

This means that when we “kill” a variable (by assigning a new value to its

underlying register), we must also kill all the other variables bound to that register.

When adding a new type binding v : τ , the type-checker examines each binding

v′ : τ ′ in the current value binding environment Φ and removes it from Φ if v′ is

assigned the same register as v, which means v′ should no longer be live. Notation

(Φ\v), v : τ is used to represent this operation; it can be seen in premise (9) of the

big rule in Section 2.3. When there is no ambiguity, (Φ\v), v : τ is abbreviated to

32

Φ, v : τ . Note that \ is not an LTAL operator. It is a meta notation used by the

type-checker.

On the other hand, a move-with-coercion such as v = c(v′) does not require the

application of the \v operator; other aliases of v continue to be active.

2.2.6 Instructions

LTAL has a machine-independent core and a machine-dependent extension. Each

target machine requires the addition of machine-specific operators and rules. LTAL

has the following instructions:

• Open is essentially a coercion that transforms an existential type to a non-

existential one. Instruction (α, v′) = open(v) binds a new type variable α (the

hidden part in the existential type) and a new variable v′ (coerced from v).

The open instruction ”expands” to zero Sparc instructions. It is designed as

an instruction (instead of an ordinary coercion) because it binds a new type

variable.

• The move instruction v′ = v expands to a Sparc move instruction, if the source

v and the target v′ are not assigned the same register.

• The move-with-coercion instruction v′ = v corresponds to zero Sparc instruc-

tions, if v and v′ are assigned the same register.

• ALU instructions v = v1 op v2 expand to Sparc ALU instructions. Operator

+i is specialized for singleton integer addition. Instruction v = v1 +i v2 gives

v type int= (n1 + n2) if v1 has type int= n1 and v2 has type int= n2. Other

operators are for normal integer arithmetic.

33

op ::= + | +i | − | ∗ | / Arith. Ops

Instructions
ι ::= (α, v′) = open(v) no instruction

| v′ = v move R(v) 6= R(v′)
| v′ = v no instruction R(v) = R(v′)
| v = v1 op v2 ALU instructions
| v = sethi(n) sethi
| store(vi, v) store
| v = record move
| inc alloc(v) add
| v = load(v1, v2) load
| v = addradd(v1, v2) add
| arrStart[τ] no instruction
| storeA(vi, v) store
| v = sub(va, vi) load
| update(va, vi, v) store
| call(v, [τ1, . . . , τn]) jump
| calln(l, [τ1, . . . , τn]) fall through

? | cmp(v1, v2) subcc
? | cmpr(v1, v2) subcc
? | (α, v′) = testbox(v) subcc
? | testAvail subcc
? | testFull(v) subcc
? | if(π) then l1 else l2 branch
? | ifinitA then (l1) else (l2) ”
? | iffull then l1 else l2 ”
? | ifboxed{v} then (v1, l1) else (v2, l2) ”
? | iftag(π){v} then (v1, l1) else (v2, l2) ”

Figure 2.4: LTAL Syntax-instructions. Marked ? operators are specific to setting
and branching on condition codes.

34

• Instruction v = sethi(n) loads 32-bit integer n to v.

• store initializes a field of the record currently being initialized. Instruction

store(vi, v) writes v to the field at offset vi from the beginning of the record.

• record assigns an allocated and initialized structure (record or array) to a

variable. Instruction v = record makes v point to the newly allocated structure

on the heap.

• inc alloc updates heap status at the end of allocation. Instruction inc alloc(v)

increases by v the allocptr, which defines the boundary between the allocated

and the unallocated area.

• load loads a field of a record to a variable. Instruction v = load(v1, v2) loads

the memory word at address v1 + v2 to v. Variable v1 points to the beginning

of the record, and v2 is the offset of the field to be loaded.

• addradd is used for address arithmetic. Instruction v = addradd(v1, v2)

assigns v1 + v2 to v, where v1 is a label value and v2 is an integer.

• arrStart [τ] sets up the allocation environment before allocating a τ array.

• storeA initializes an element of the array currently being initialized. Instruc-

tion storeA(vi, v) stores value v to the array element at offset vi.

• sub is the array subscript operator. Instruction v = sub(va, vi) loads the

memory word at address va + vi to v. Variable va points to the beginning of

the array, and vi is the offset of the element to be loaded.

• update (va, vi, v) updates an array element at address va + vi with v.

35

• call(v, [τ1, . . . , τn]) jumps to function v, with v’s type variables instantiated

by τ1, . . . , τn. Passing of value parameters (as distinguished from type param-

eters) is explained in Section 2.2.7.

• calln(l, [τ1, . . . , τn]) is used for “call by fall-through,” which generates no code.

This instruction should be followed by the declaration of block l.

• cmp(v1, v2) compares two integers v1 and v2, and sets condition code cc none.

The types of v1 and v2 are int, and there is no need for type refinement. This

comparison is useful when the user cares about the control flow (which branch

to take), but the checker does not need to track it for safety.

• cmpr(v1, v2) compares two singleton integers v1 and v2, and sets condition

code cc cmp(n1, n2) if v1 has type int= n1 and v2 has type int= n2. Later v1’s

type could be refined according to the result of the comparison.

• Instruction (α, v′) = testbox(v) compares a sum value v with a number set

by the compiler that differentiates small integers and pointers (256 in the

implementation), rebinds v to v′, and sets condition codes. Variable v′ is

assigned the same register as v. The only difference between v′ and v is the

types. The testbox instruction is explained in Section 5.3.3.

• testAvail calculates the available heap space and assigns it to a reserved

register ral.

• testFull tests to see if there is sufficient heap space for allocation. Instruction

testFull(v) compares the available heap space (register ral) with the required

space v for allocation, and sets condition codes.

36

• Instruction if(π) then l1 else l2 is the normal conditional branch without type

refinement. It branches to l1 if the condition codes satisfy π. The other target

l2 is the fall-through case. For example, if(>) will be mapped to the Sparc

branch if greater than instruction.

• ifinitA then l1 else l2 is translated to the Sparc bge (branch if greater or

equal) instruction. It is used to branch when an array is completely initialized.

See Section 4.4.4 for details.

• iffull tests whether there is enough space for allocation and sets up the al-

location environment if there is enough space for allocation on the heap. In-

struction iffull then l1 else l2 falls through to l2 if there is enough space.

• ifboxed refines a sum value’s type according to whether it is a constant con-

structor (represented as a small integer) or a value-carrying constructor (rep-

resented as a pointer). Instruction ifboxed{v} then (v1, l1) else (v2, l2) checks

the condition codes set by comparing sum value v with 256, rebinds v to v1

in branch l1 when v ≥ 256 (v is a pointer). Otherwise it rebinds v to v2 in the

fall-through case l2 (v is a small integer). Both v1 and v2 have types refined

from v’s type.

• iftag specializes type refinement for datatype tag discrimination. Instruc-

tion iftag(π){v} then (v1, l1) else (v2, l2) checks the condition codes set by tag-

checking, and rebinds v to new variables v1 and v2 with refined types in l1 and

l2 respectively.

Each LTAL instruction maps to at most one Sparc instruction. Several LTAL

instructions with different typing rules may map to the same Sparc instruction.

37

Basic block

B ::= l[α1 : κ1, . . . , αj : κj](m, cc, v1 : τ1, . . . , vn : τn) = ι1; . . . ; ιk

LRT ::= (L, R, T) Environments

L ::= {l1 7→ a1, . . . , ln 7→ an} label map

R ::= {x1 7→ r1, . . . , xn 7→ rn} register map

T ::= {k1 7→ τ1, . . . , kn 7→ τn} type abbrev. map

P ::= (LRT, ~B) Program

Figure 2.5: LTAL Syntax-programs.

2.2.7 Functions

The function declaration

l[α1 : κ1, . . . , αj : κj](m, cc, v1 : τ1, . . . , vn : τn) = ι1; . . . ; ιk

defines a function (basic block) with label l, type parameters α1, . . . , αj which are

of kind κ1, . . . , κj respectively, formal parameters v1 : τ1, . . . , vn : τn, and function

body ι1 . . . ιk which is a sequence of LTAL instructions. The number m specifies

how much memory is guaranteed to be available when the function is called. If a

function specifies m words and allocates no more than m words, there is no need to

test the memory availability. Otherwise, it has to check explicitly whether there is

enough memory. The condition-code requirement cc specifies the status of condition

codes when the function is called. The function label l is assigned a code pointer

type codeptr[α1 : κ1, . . . , αj : κj](m, cc, v1 : τ1, . . . , vn : τn). Each function is closed

in the sense that there are no free type variables or value variables. LTAL uses

continuation-passing style, thus functions never return.

When the above function l is called, the caller has to satisfy all l’s requirements.

It has to instantiate all l’s type variables with types of the right kind, make sure

38

there is at least m free space on the heap, set up proper condition codes, and pass

the actual paramters to formals.

Suppose the formal parameters v1, v2, . . . , vn of l are assigned registers r1, r2, . . . , rn

respectively, and the actual paramters v′
1, v

′
2, . . . , v

′
n are in register r′

1, r
′
2, . . . , r

′
n cor-

respondingly. When l is called, before the control transfers to l, we must first do

register marshalling to move r′
1, r

′
2, . . . , r

′
n to r1, r2, . . . , rn respectively. The mar-

shalling is completed by a sequence of move instructions (and store and load in-

struction when spilling is necessary). For example, the following Sparc instructions

arrange registers before calling l, suppose there is no spilling and no register depen-

dency between the formals and the actuals.

. . .

mv r′
1, r1

mv r′
2, r2

. . .

mv r′
n, rn

ba l

To make the correspondence between LTAL and Sparc, we cannot let the call

instruction handle marshalling, nor use a single instruction to move all registers.

Therefore, the calling convention of LTAL requires that the register marshalling

be done by a sequence of explicit LTAL move instructions before a function is

called. These LTAL move instructions correspond to the Sparc instructions that

move actuals to formals. But LTAL uses variables, not registers. What should

be the destination of the LTAL move instructions, and how does the type-checker

know the actuals are moved to the right registers? The compiler moves the actuals

39

to local variables that have the same names as the callee’s formal parameters, and

the register allocator assigns the same register to variables with the same name,

regardless of their scopes. As a result, the LTAL move instructions arrange that

the actuals are moved to the right registers.

For example, the following LTAL instructions complete a call to l with actual

parameters v′
1, v

′
2, . . . , v

′
n, suppose there is no spilling and no dependency between

the registers used by the formals and the actuals. Note that v1, v2, . . . , vn are local

variables in the caller. Their scopes are disjoint with l’s formals v1, v2, . . . , vn. They

only have same names, thus are assigned the same registers by the register allocator.

LTAL Sparc

.

v1 = v′
1 mv r′

1, r1

v2 = v′
2 mv r′

2, r2

.

vn = v′
n mv r′

n, rn

call(l, []) ba l

2.2.8 Environments

Triple LRT represents three environments that keep auxiliary information for type-

checking: label environment L maps labels to addresses (offset from the beginning

of the program); register environment R maps variables to temporaries (registers or

spill locations); type abbreviation environment T maps type abbreviations to their

expansions.

40

2.2.9 Programs

An LTAL program consists of the above environments and a set of function decla-

rations. The entry point of a program is the first declared function.

2.3 Type-Checking

The low-level type and term constructors in LTAL make the type system expressive.

Yet LTAL needs a decidable and simple type-checking algorithm so that proof gen-

eration can be done without a complicated decision procedure or constraint solver.

To this end, LTAL has been made completely syntax-directed. There are no sub-

typing rules; instead, LTAL uses coercions to avoid nondeterministic choices during

type-checking. I explain various typing judgments, and then show a sample typing

rule in this section. More rules are shown later.

The typing judgment for values LRT ; ρ; Φ ` v : τ means value v has type τ under

environment LRT ; ρ; Φ. Triple LRT is part of the program (see Figure 2.5). Kind

environment ρ maps type variables bound so far to their kinds (the implementation

uses de Bruijn numbers, so ρ is just a list of kinds). Value environment Φ maps

variables to their types.

The judgment LRT ` (ρ; ~; Φ; cc) {ι} (ρ′; ~′; Φ′; cc′) means after instruction ι is

executed, environment (ρ; ~; Φ; cc) becomes (ρ′; ~′; Φ′; cc′). The construction Φ, v : τ

augments Φ with a new binding v : τ and keeps the bindings other than v unchanged.

The heap-allocation environment ~ is explained in Chapter 4. Environment cc

specifies the current status of condition codes.

As an example I will show a simplified rule for an LTAL add instruction. In

Chapter 6 I will show another typed version of add. These two different typed

41

versions of add expand to the same Sparc machine instruction. The first rule I show

here is useful for compiling a source-language add for which no dataflow tracking

is needed to prove safety; the second is useful for compiling address arithmetic.

Having multiple LTAL instructions for the same machine instruction simplifies type-

checking.

LRT ; ρ; Φ ` x : int LRT ; ρ; Φ ` y : int

LRT ` (ρ; ~; Φ; cc) {z = x + y} (ρ; ~; Φ, z : int; cc)

In fact, this rule is dramatically simplified for clarity. The full version looks like

this:

(1) LRT ; ρ; Φ ` x : int32 (2) LRT ; ρ; Φ ` y : int32

(3) `′ = ` + 4

(4) rmap(LRT)(z) = tz (5) rmap(LRT)(x) = tx

(6) realreg(tz) = rz (7) realreg(tx) = rx

(8) ym = match reg or imm(y)

(9) Φ′ = {z : int32} ∩ (Φ\z)

(10) decode list ` `′P P ′ i ADD(rx, ym, rz)

LRT ; Γ ` (`; ρ; ~; Φ; cc; P){z = x + y}(`′; ρ; ~; Φ′; cc; P ′)

Premises (1) and (2) state that both x and y have type int32, the 32-bit integer

type. Address ` is the location of current instruction z = x + y; `′ is the location of

the next instruction. Premise (3) specifies that the length of the add instruction is

4 bytes.

Premises (4) and (5) relate variables z and x to their temporary numbers, and

premises (6) and (7) map temporaries to registers; this rule would not be appli-

42

cable to operands represented in spill locations (but of course that’s true of the

actual Sparc add instruction too). There are about 1000 temporaries (after regis-

ter allocation); the first 20 are registers, and the remainder are in the spill area.

The per-program rmap—the R component of LRT—maps variables to temporaries;

the program-independent relations realreg and memtemp relate temporaries to their

machine representation.

Value y can be either a register or an immediate. The checker uses a predi-

cate match reg or imm in premise (8) to match either case. So ym can be either

(rmode ry) for some register ry or (imode i) for some integer constant i.

Premise (9) states the relation between the value typing context before and after

execution of the current instruction. Before the type of variable z is added into the

context, all aliases of z should be killed since they are not live anymore, which is

what Φ\z does.

Premise (10) will be explained in the next subsection.

The conclusion is like a Hoare-logic judgment. In environment LRT , the in-

struction z = x + y is at location `; the length of the instruction is `′ − `; this

instruction does not affect type contexts ρ or heap allocation environment ~; value

context Φ becomes Φ′ after execution; the machine code at location `′ is P ′.

2.3.1 Instruction decoding

The decode list relation in premise (10) maps an instruction word to a higher-level

instruction with semantic meaning. Specifically, it says that the instruction word at

the beginning of P with length `′ − ` is an add instruction

i ADD(rx, ym, rz). Instruction encoding is checked with rules such as the follow-

ing:

43

1 0 Z 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 Y

32 30 25 19 14 13 5 0

32 · 2 + Z = X9 64 · X9 + 0 = X7

32 · X7 + X = X6 2 · X6 + 0 = X4

256 · X4 + 0 = X1 32 · X1 + Y = W

decode(i ADD(X, rmode(Y), Z), W)

This rule is not an axiom of the system, it is a lemma derived from a more concise

and readable definition of instruction encodings [40]. The predicate A · B + C = D

shown here is a simplification of an actual predicate that also checks that C < A

and that A, B, C, D are natural numbers.

2.4 An Example

Figure 2.6 shows a slightly simplified LTAL function compiled from ML source:

fun f x = x + 1

The right column is the corresponding Sparc instructions.

The function is labeled l. The head declaration means:

• []: it does not have any type variables (not polymorphic).

• 0: it does not allocate on the heap.

• cc none: it does not care about condition codes when called.

• parameters: it has three formal parameters:

44

LTAL Sparc

l : [], 0, cc none, l :

v1 : int= (addr l),

v2 : ∃α : ΩN .((int= α) ∩ (codeptr[](0, cc none, [v4 : int= α,

v5 : int]))),

v3 : int

(1)v6 = v3 + 1 add r3, 1, r0

(2)(β, v7) = open v2

(3)v8 = cproj1(v7)

(4)v9 = cproj2(v7)

(5)v4 = v8

(6)v5 = v6

(7)call(v9, []) jmp r2

Figure 2.6: An Example

– v1: the start address, which points to the beginning of l (the first in-

struction of l).

– v2: continuation, which consumes the result x + 1 (parameter v5)5.

– v3: the integer x to be incremented.

To make position-independent code, each function takes one parameter—the

start address of itself, which points to its first instruction. When a value v is a

function pointer, v is its start address. The address v should be passed as one of

the arguments of the function v, when v is called. The type of the continuation v2

guarantees that exactly v2 is passed when v2 is called. This is further explained in

Chapter 6.

5The compiler uses continuation-passing style [7], which abstracts the rest of computation
within a continuation function.

45

In the body of the function,

• Instruction (1) increments v3 and assigns the result to v6.

• Instruction (2) opens the continuation package.

• Instructions (3) and (4) coerce the continuation to get two views: the start

address and the function pointer.

• Instruction (5) and (6) assign actual parameters to formal parameters of func-

tion pointer v9.

• Instruction (7) calls the continuation function pointer v9.

Only (1) and (7) have corresponding Sparc instructions. Variables v2, v4, v7, v8, v9

are assigned the same register r2, thus, no Sparc instructions are needed for (2)-(5).

For the same reason, instruction (6) has no corresponding Sparc instructions.

Type-checking this LTAL function goes as follows: first, the type-checker initial-

izes the value environment with the bindings of the formals v1, v2 and v3. Instruction

(1) assigns v6 type int. Instruction (2) opens v2, binds new type variable β of kind

ΩN , and creates a new variable v7 of type (int= β) ∩ (codeptr[](0, cc none, [v4 :

int= β, v5 : int])). Instruction (3) gives v8 type int= β, the first conjunct of v7’s

type, and instruction (4) gives v9 codeptr[](0, cc none, [v4 : int= β, v5 : int]), the

second conjunct. Value v4 gets v8’s type after instruction (5), and v5 gets v6’s after

instruction (6). When v9 is called in instruction (7), the checker checks that: a) v9

is of codeptr type codeptr[](0, cc none, [v4 : int= β, v5 : int]); b) the local variable

v4 is of type int= β; and c) the local variable v5 is of type int.

46

2.5 Implementation

The LTAL calculus is a large engineering artifact, just like the compiler that pro-

duces it and the Sparc machine that consumes it. It comprises (at the current

state of implementation) approximately 1200 operators and rules, including 196

machine-language Sparc instruction constructors (many of which are not used by

the compiler and could be deleted from the checker), 263 Sparc instruction decoding

rules, 30 coercion operators and 49 coercion rules, 48 explicit-substitution operators

and reduction rules, 41 types and constructors for such things as label-maps and

register-maps, 27 type operators (union, intersection, field, etc.), 69 rules for type

refinement, 98 rules for wellformedness of types, 73 operators and rules for local en-

vironment management, 44 operators and rules for static arithmetic calculations, 38

rules for parsing the label, register, and type maps, 50 structural matching heuris-

tics for type expressions, 51 LTAL instruction constructors, and 53 typing rules for

instructions.

A typical large rule, such as the one shown in Section 2.3, is quantified over a

dozen variables and has a dozen premises. In all, the current LTAL type-checker is

3900 lines of (non-blank, non-comment) Prolog-like source code. It is almost certain

that such a large calcus has bugs, and that the non-machine checkable soundness

proof of the type system has bugs. Therefore, it is very important to have a machine

checkable soundness proof. The machine-checked proof of the soundness of all the

LTAL rules (which is nearing completion) is over 133,000 lines of higher-order logic

as represented in the Twelf system. The axioms comprise 1850 lines, almost all of

which is the specification of the Sparc instruction set.

47

Chapter 3

Soundness of the LTAL Type

System

In this chapter, I briefly explain the semantic model for LTAL types and typing

rules and how to prove program safety based on the semantic model. This is not

my work, but the work of other people in the FPCC project. The purpose of this

chapter is only to give a flavor of our semantic approach. Many details are omitted.

Readers could refer to a paper [60] and a thesis [58] for more explanation.

3.1 Soundness of Type Systems

A sound type system has the desirable guarantee that well-typed programs do not

go wrong, that is, if a program type-checks with respect to the typing rules of the

type system, it will not have undesired behaviors when executed. Which behaviors

are undesired is defined by the safety policy, in terms of the dynamic semantics of

the language.

48

Traditionally, the soundness of a type system is proved by a syntactic ap-

proach [66]. In order to prove that a type system is sound, we need to prove two

properties—progress and preservation. Progress means if a program is well-typed,

it can continue to execute one more step. Preservation means if a program P is

well-typed, and it executes one more step to another program P ′, then P ′ is well-

typed. By progress and preservation, we can conclude that a program can safely

continue executing (until it stops at a desired state, for example, it evaluates to a

value). An ill-typed program will get stuck at some place where it can not take one

step further.

Most TALs have syntactic soundness proofs that are not machine-checkable.

We need to trust that these proofs contain no bugs. For a full-scale typed assembly

language as LTAL, we need stronger guarantee.

While it might be possible to produce machine-checkable soundness proof uses

syntactic soundness proofs [30, 21], our machine-checkable soundness proof uses a

semantic approach. We give a semantic model to its types and typing rules. Types

are modeled as predicates and typing rules are modeled as lemmas in the underlying

higher-order logic. Also the soundness guarantee—well-typed programs do not go

wrong—is proved as a theorem in the logic. All the proofs are with respect to a

minimal set of axioms of the higher-order logic, arithmetic and machine instruction

semantics, and all can be machine-checked. The LTAL type system is totally out

of the TCB.

Before I explain the semantic model of types and typing rules, I will first describe

the semantics of machine instructions, since ultimately LTAL instructions will be

mapped to machine instructions, and proving LTAL typing rules is based on the

instruction semantics.

49

3.2 Modeling Machine Instructions

Sparc machine instructions are modeled as step relations between machine states [40].

A machine state (r, m) consists of the register bank r and the memory m. Both r

and m are functions from numbers to numbers: r maps register indices to register

contents, and m maps addresses to memory contents. An instruction is a relation

between machine states before and after executing the instruction.

For example, the Sparc add instruction is modeled as:

add rj , rk, ri = λr.λm.λr′.λm′.m = m′ ∧ r′(i) = r(j)+ r(k)∧∀x 6= i r′(x) = r(x)

The machine state before execution is (r, m), and the one after execution is

(r′, m′). The memory is not changed since the add instruction does not touch the

memory (m = m′). After instruction add ri = rj +rk, the value of register i becomes

the sum of register j and k (r′(i) = r(j) + r(k)). All other registers are the same

(∀x 6= i. r′(x) = r(x)).

The Sparc load instruction can be modeled as:

ld [rj , k], ri = λr.λm.λr′.λm.m = m′ ∧ readable(r(j) + k)

∧r(i) = m(r(j) + k) ∧ ∀x 6= i r(x) = r(x)

Load instruction does not change the memory either. It requires that the address

r(j) + k be readable (readable(r(j) + k)). After load instruction, register i has the

same contents as the memory word at address r(j)+k (r(i) = m(r(j)+k)). All other

registers are unchanged. Notice that the relation specified by load instruction is

partial: if the state before execution does not satisfy the condition readable(r(j)+k),

there is no next state. This property prevents a program from reading memory it

does not have access to.

50

The step relation between machine states 7→ contains two parts : syntax and

semantics of machine instructions. The syntax part is instruction decodings. The

semantics part is the transition of machine states, as in examples add and load.

(r, m) 7→ (r′, m′) is true if the memory word the program counter points to decodes

to some instruction ι, and (r, m) steps to (r′, m′) according to the semantics of ι.

Zero or more steps are represented by 7→∗. An informal definition of 7→ is as follows

(each disjunct represents a machine instruction):

(r, m) 7→ (r′, m′) = (∃w, i, j, k.

m(r(PC)) = w

∧r′(PC) = r(PC) + 4

∧w decodes to add ri, rj, rk

∧(add ri, rj, rk)(r, m, r′, m′))

∨(load . . .) ∨ (store . . .) ∨ . . .

A machine state (r, m) is stuck if there exists no state (r′, m′) such that (r, m) 7→

(r′, m′).

3.3 Modeling Types

A type is a predicate on indexed values 〈k, m, v〉, where m is the memory, v is the

root pointer (start address of a value), and k is an index. Predicate 〈m, v〉 :k τ is a

syntactic sugar for τ k m v, which means value 〈m, v〉 k-approximately has type τ ,

that is, if 〈m, v〉 is put into a place where a value of type τ is required, we cannot

observe any difference within k steps of execution. We use the notation 〈m, v〉 : τ

if 〈m, v〉 :k τ for any k.

51

int ≡ λk.λm.λv.true
int= n ≡ λk.λm.λv.v = n

field i τ ≡ λk.λm.λv.(v + i) ∈ dom(m) ∧ readable(v + i) ∧ τ (k − 1) m (v + i)
codeptr(φ) ≡ λk.λm.λv.∀j, r. j < k ∧ r(pc) = v ∧ (m, r) :j φ ⇒ safen(j, r, m)

Figure 3.1: Model for Types

{n : τ} ≡ λk.λm.λ~v.(m,~v(n)) :k τ
φ1 ∩ φ2 ≡ λk.λm.λ~v.(m,~v) :k φ1 ∧ (m,~v) :k φ2

Figure 3.2: Model for Environments

The definitions of some types are shown in Figure 3.1.

Since every value in a Sparc register can be treated as an integer, applying int

to any value is true. The model of int= n makes sure only constant n has this type.

〈m, v〉 :k field i τ means the address v+i should be readable and 〈m, m(v+i)〉 :k−1 τ .

The index is k − 1 because there should be a load instruction that loads m(v + i).

〈m, l〉 :k codeptr(φ) means if the control goes to location l, for any index j < k

and any register bank r, if the machine state (m, r) j-approximately satisfies the

precondition φ, it would be safe to run j steps from l (what safen(j, r, m) means).

Thus, if 〈m, l〉 : codeptr(φ), it is safe to run any number of steps from l if φ is

satisfied.

Type environments are modeled in the same way as types, except that the

root pointer v in the model of types becomes a vector (a function from indices to

contents). (m,~x) :k φ means for each binding n : τ in φ, (m,~x(n)) :k τ . Figure 3.2

shows the definitions of some type environments.

Singleton type environment {n : τ} means the nth slot of the vector has type

τ . Intersection of type environments φ1 ∩ φ2 specifies multiply slots of the vector.

{n1 : τ1}∩{n2 : τ2}∩. . .∩{ni : τi} is often represented as {n1 : τ1, n2 : τ2, . . . , ni : τi}.

52

3.4 Program Safety

The guideline of designing the semantic model of LTAL typing rules is to make these

rules, and the program safety theorem provable. First, I explain what program

safety means in the FPCC system.

The safety theorem says a program is safe if, wherever it is loaded in the memory,

when the precondition is satisfied and the program counter points to the beginning

of the program, it can safely execute any number of steps without getting stuck1.

To simplify the notation, in this section, I assume each program starts at memory

address 0. Thus, the program safety theorem is

safe prog(C) = ∀r, m.(loaded(m, C) ∧ r(PC) = 0 ∧ (m, r) : φ0)

⇒ (∀r′, m′.(r, m) 7→∗ (r′, m′) ⇒ ∃r′′, m′′.(r′, m′) 7→ (r′′, m′′))

FPCC-ML compiles a source program to a machine-instruction program C with

type annotation Γ. C is a list of integers (machine instructions), {0 : i1, 4 :

i1, . . . , 4m : im}. Γ is the collection of preconditions of labels in the program,

{l0 : codeptr(φ0), l1 : codeptr(φ1), . . . , ln : codeptr(φn)} (l0, l1, . . . , ln are labels).

From the definition of codeptr type, we know l : codeptr(φ) means if the program

counter is at location l and the precondition φ is satisfied, it is safe to run any number

of steps (without getting stuck). Thus, we only need to prove 0 : codeptr(φ0)

to guarantee the safety of a program C annotated by invariants Γ = {l0(= 0) :

codeptr(φ0), l1 : codeptr(φ1), . . . , ln : codeptr(φn)}. 0 : codeptr(φ0) is part of Γ. So

1Here we reason about programs that infinitely loop. ”Getting stuck” means that the next
instruction would violate the memory safety specification. Every program could be transformed
to this style with continuations.

53

if we could prove the stronger guarantee that program C respects the invariants Γ

(formalized as C ⊂ Γ), we can guarantee 0 : codeptr(φ0) and then the program C

is safe. The proof tree is roughly as follows:

C ⊂ Γ Γ ⊂ {0 : codeptr(φ0)}

C ⊂ {0 : codeptr(φ0)}
(2)

safe prog(C)
(1)

Step (1) comes from the definition of codeptr type. Step (2) uses the transitivity

of the subtype relation.

The well-typedness of a program C is given a semantic model C ⊂ Γ. The

process of type-checking C, in effect, builds a proof tree of C ⊂ Γ: every typing

construct (typing judgement, type environment) is given a semantic model in the

logic, and every application of typing rules could be regarded as applying the corre-

sponding lemmas. The typing derivation becomes a machine-checkable safety proof

of the program.

The theorem C ⊂ Γ is proved by induction over the number of safe execution

steps from labels l0, l1, . . . , ln in Γ.

The base case is trivial, since it is safe to run 0 steps from any label.

The inductive case is proved by inspecting instructions in each block. Assume

that each label is safe for k steps given that its precondition is satisfied. Take a

block li of ni instructions with precondition φi and postcondition (the precondition

of its target) φj. Suppose we can prove that it is safe to execute ni instructions in l0

given φi, and φj is satisfied at the end of the block, from the induction hypothesis,

it is safe to execute k steps from lj , thus it is safe to execute ni + k steps from li.

We assume each block has at least one instruction, therefore, ni + k ≥ k + 1, and

the inductive case is proved. LTAL can also handle empty basic blocks, or basic

54

blocks containing only coercions that have no runtime effect by using subtyping. I

won’t discuss it here.

3.4.1 Basic Block Rules

Based on the inductive technique of proving program safety, the well-typedness of

a block B has a semantic model that: it is safe to execute k + 1 steps from labels

defined in B given it is safe to execute k steps from each label in the program.

3.4.2 Instruction Rules

Typing rules of instructions are given a semantic model similar to basic blocks. For

example, if there is an add instruction at location l, and the precondition and the

postcondition are φ and φ′ respectively, then the typing judgement Γ; l ` {φ}ri =

rj + rk{φ′} means that when φ is satisfied, it is safe to execute k + 1 steps from l

given that it is safe to run k steps from l + 4 and other labels in Γ.

The proof of each typing rule consists of two parts: first, prove that it is safe

to execute the instruction if the precondition is satisfied; second, after execution

of the instruction, the postcondition is satisfied. Both parts are derived from the

semantics of the corresponding machine instruction.

3.5 TML Abstraction

The semantic model is rather involved in order to express recursive types and mu-

table references [11, 6]. We add another abstraction, Typed Machine Language

(TML), to hide the details of the semantic model from LTAL and to make proofs

55

modular [58]. TML defines a rich set of syntactic type constructors and subtyping

rules. All syntactic rules in TML have machine-checked proofs.

The syntax of TML is shown in Figure 3.3.

Types

τ, φ, Γ ::= > | ⊥ top, bottom
| codeptr(φ) first-order continuation
| offset(n, τ) address arithmetic
| id(τ) identity
| box(τ) immutable reference
| ref(τ) mutable reference
| rec τ recursive type
| τ ∩ τ ′ | τ ∪ τ ′ intersection, union
| ∀ τ | ∃ τ kinded universal and existential

| {n : τ} singleton type map
| φ\n restricted type map

| intπ n refined integer
| n1 op n2 singleton integer arithmetic

| n type variable index

Instructions

ι ::= instr(Γ, φ, φ′) instruction constructor

Figure 3.3: TML Syntax

TML serves as a semantic basis for LTAL: LTAL types and environments are

translated to TML types, LTAL coercions are translated to TML subtyping rules,

and LTAL instructions are translated to TML instructions. TML instructions ab-

stract the semantics of machine instructions and explicitly give preconditions and

postconditions. For example, the TML load instruction is defined roughly as:

tml-load(i, j, c) = ∀Γ, φ.instr(Γ, φ ∩ j : field(c, τ), φ ∩ i : τ)

56

Type instr means if a machine state (r, m) satisfies φ1, and the current instruc-

tion has type instr(Γ, φ1, φ2), then the next machine state after executing the in-

struction satisfies φ2. Γ is used for jump instructions. For example, in the TML load

instruction, the precondition specifies that j should have a field type (the definition

of field type is in Figure 3.1), and the postcondition specifies that after m(j + c) is

loaded to i, i would have type τ . TML instructions capture the preservation prop-

erty of machine instructions, and are used to prove the soundness of LTAL typing

rules.

57

Chapter 4

Heap Allocation

In this chapter, I explain how to allocate a record or an array on the heap without

macro instructions. LTAL provides a set of primitive instructions that model every

allocation step. Each of these instructions is simple enough to be mapped to at most

one Sparc instruction. Type-checking these instructions requires some bookkeeping,

because the type-checker needs to model intermediate states during allocation. The

LTAL type-checker uses an allocation environment to keep track of the heap status

and the partially initialized structure.

4.1 Heap Model

Like SML/NJ, FPCC-ML compiler allocates closures, records, and arrays in regis-

ters or on the heap. At present, the LTAL type system (like most TALs) does not

accommodate reasoning about garbage collection. So I will not reason about any

information in a record or an array that is used to support garbage collection, for

example, the head descriptors specifying which field is a pointer. In the future, we

58

headroom = 4096

Memory

Heap

limitptr

allocptr

Figure 4.1: Heap Model

intend to handle stacks and GC with a unified theory of stack and heap deallocation

(probably based on a region calculus [65]).

As in SML/NJ, with so much heap allocation the compiler needs extremely

efficient, in-line allocation of heap values. The allocable heap memory is modeled

as a large contiguous region bounded by two pointers, the allocptr and the limitptr.

Heap allocation is broken into two steps: first, test whether there is enough memory

for allocation; second, initialize memory in order and bump the allocptr.

Before the runtime system starts executing a program, it reserves a chunk of

memory as the heap, and sets the allocptr to the lowest address of the memory

chunk, and the limitptr the highest address (minus a constant headroom = 4096)

(see Figure 4.1). GC should be invoked when the available space on the heap is less

then headroom. The cushion between the limitptr and the real heap limit makes

allocation of small structures more efficient.

59

When the program needs n space, and n ≤ headroom, testing whether there

is enough space can be accomplished by a single instruction that compares the

limitptr and the allocptr. If limitptr ≥ allocptr, at least n space must be available.

Then the n words right after the allocptr are initialized word by word. Finally the

allocptr is increased by n, pointing to the next available location.

When n > headroom or n is unknown at compile time, testing out-of-heap is a

bit more complicated. Two instructions are needed: first, calculate the difference

avail = limitptr − allocptr; then compare whether avail ≥ n. There is enough

memory on the heap if avail ≥ n.

4.2 Untyped Allocation

Before I describe the LTAL instructions and typing rules for heap allocation, I

use three examples to illustrate how allocation is implemented in Sparc assembly

instructions.

4.2.1 Record Allocation

Figure 4.2 shows a code segment that allocates a three-field record [r0, r1, r2] and

assigns the record to register r.

The heap status during the allocation process is illustrated in Figure 4.3.

Block l0 tests whether there is enough space on the heap. Since the space needed

to allocate the record is 12 (3 words), which is smaller than the headroom 4096,

we only need to test whether limitptr − allocptr < 0. Instruction (1) compares the

limitptr with the allocptr, and instruction (2) branches to block l1 if limitptr −

allocptr < 0 (no enough memory), otherwise it falls through to block l2.

60

l0 :
(1) subcc limitptr, allocptr, ral % ral = limitptr − allocptr
(2) bl l1 % if limitptr − allocptr < 0, goto l1

l2 :
(3) st r0, [allocptr + 0] % M [allocptr + 0] = r0

(4) st r1, [allocptr + 4] % M [allocptr + 4] = r1

(5) st r2, [allocptr + 8] % M [allocptr + 8] = r2

(6) mov allocptr, r % r = allocptr
(7) add allocptr, 12, allocptr % allocptr = allocptr + 12

. . .
l1 : . . . % memory not enough for allocation

Figure 4.2: Untyped Record Allocation

1

000

00

limitptrlimitptr

limitptr limitptr

allocptrallocptr

headroom

allocptr

headroom

headroom
limitptr

headroom

allocptr

headroom

allocptr

limitptr
headroom

1
r

r

r

r

r

r

r

r

r

r

rr

Before Allocation

After (7)After (6)After (5)

After (4)After (3)

allocptr

r
r

2

1

2

1

2

Figure 4.3: Heap Status during Record Allocation

61

l0 :
(1) subcc limitptr, allocptr, ral % ral = limitptr − allocptr
(2) bl l1 % if limitptr − allocptr < 0, goto l1

l2 :
(3) st r0, [allocptr + 0] % M [allocptr + 0] = r0

(4) st r0, [allocptr + 4] % M [allocptr + 4] = r0

(5) st r0, [allocptr + 8] % M [allocptr + 8] = r0

(6) mov allocptr, r % r = allocptr
(7) add allocptr, 12, allocptr % allocptr = allocptr + 12

. . .
l1 : . . .

Figure 4.4: Known-length Array Allocation

Block l2 initializes the record field by field. The new record occupies three words

right after the allocptr. Instruction (3) stores r0 in the first field at address allocptr+

0, and instruction (4) stores r1 in the second field at address allocptr + 4, and

instruction (5) stores r2 in the third field at address allocptr + 8. Then instruction

(6) assigns the allocptr to register r. As a result, r points to the beginning of the

new record. Instruction (7) increases the allocptr by 12, the size of the new record.

After (7) the allocptr points to the next available free space on the heap and this

allocation is finished.

4.2.2 Known-length Array Allocation

Allocating a known-length array could be done in a similar way to allocating a

record, by first testing out-of-heap and then initializing element by element.

Figure 4.4 shows an instruction sequence that allocates a three-element array

with initial value r0. It is very similar to the instruction sequence in Figure 4.2.

Block l0 tests whether there is enough space for a three-element array by compar-

ing the limitptr and the allocptr. If there is enough space, block l2 then initializes

62

three elements and adjusts the allocptr in the end. The only difference between

the instruction sequences in Figure 4.4 and Figure 4.2 is that the initialization in

Figure 4.4 uses the same initial value for each element.

We could use an initialization instruction to initialize each element of a known-

length array, therefore, n store instructions to initialize an n-element array. But for

a large array, for example, an array with hundreds or thousands of elements, this

initialization style would be very tedious. An alternative is to use a loop. For an

unknown-size array, a loop for initialization is not an alternative, but a necessity.

4.2.3 Unknown-length Array Allocation

Figure 4.5 shows how to allocate an array of size rl with initial value r0, where rl

is not known at compile time. Here rl is not the number of elements in the array,

but 4 (the word size) times the element number, that is, the size of the memory the

array occupies1.

Block l0 tests for heap exhaustion. Since whether the required space is less than

the headroom or not is unknown, simply comparing the limitptr and the allocptr is

not enough. We need to compare the free space on the heap with the required space.

Instruction (1) calculates the free space on the heap limitptr−allocptr. Instruction

(2) compares limitptr−allocptr with the required space rl. If limitptr−allocptr ≥

rl, there is enough space for allocation, and the control falls through to block l2;

otherwise, instruction (3) branches to block l1.

Initializing each element in the array requires a loop. The loop index is the

offset of the array element to be initialized next. It goes from 0 to rl − 4, and is

1We assume each element in the array is a single word, such as an integer or a pointer to a
boxed data structure.

63

l0 :
(1) subcc limitptr, allocptr, ral % ral = limitptr − allocptr
(2) cmp ral, rl % compare ral and the array size rl

(3) bl l1 % if ral < rl, goto l1
l2 :

(4) mov ri, 0 % initialize loop index ri with 0
test :

(5) subcc ri, rl, %g0 % compare loop index ri and size rl

(6) bge done % if ri ≥ rl, goto done
loop : % not all elements are initialized

(7) st r0, [allocptr + ri] % M [allocptr + ri] = r0

(8) add ri, 4, ri % increment ri with 4, the word size
(9) ba test % goto test

done : % all elements are initialized
(10) mov allocptr, ra % ra = allocptr
(11) add allocptr, rl, allocptr % increase the allocptr by rl

. . .
l1 : . . . % memory not enough for allocation

Figure 4.5: Unknown-length Array Allocation

incremented by 4 each time, since the first element of the new array is at address

allocptr + 0, the second at allocptr + 4, and the last at allocptr + rl − 4. The

termination condition is ri ≥ rl.

Block l2 initializes the loop index ri with 0 (instruction (4)).

Block test tests whether the loop is done. Instruction (5) compares the loop

index ri with the array size rl. If ri ≥ rl, every element has been initialized, then

the control goes to done. Otherwise it falls through to loop.

Block loop runs an iteration of the initialization loop. Instruction (7) initializes

the array element at address allocptr + ri. Instruction (8) increases the loop index

by 4. Instruction (9) jumps back to test.

When the control arrives at block done, the array has been completely initialized.

Instruction (10) assigns the allocptr to ra and ra points to the beginning of the new

64

array. Instruction (11) adds rl to the allocptr and the allocptr points to the next

free space.

4.3 Macro Instructions

4.3.1 DTAL

Dependently Typed Assembly Language has a macro instruction newarray for ar-

ray allocation [69]. Instruction newarray[τ] r, l, v0 creates an τ array of length l,

initializes each element with v0 (of type τ) and assigns the array to r. This instruc-

tion does all allocation steps in one macro, and gives the new array type τ array(l),

read as an τ array of length l. After type-checking and before execution, the macro

expands to a bunch of instructions that test the heap and initialize.

4.3.2 TALx86

When allocating a record, TALx86 first reserves space on the heap and then initial-

izes each field [43]. The first step is done by a macro instruction malloc that calls

a runtime routine, and the second by a sequence of initialization instructions.

TALx86 uses initialization flags to indicate which field has been initialized and

which has not. The malloc macro specifies explicitly the type of the target record,

with all flags cleared. After one field is initialized, the corresponding flag in the

record type is set.

The following TALx86 instruction sequence allocates a two-field record. The

right side is the type of the new record.

65

malloc 8, 〈B4, B4〉 [B4u, B4u]

mov [r + 0], 3 [B4rw, B4u]

mov [r + 4], 4 [B4rw, B4rw]

Instruction malloc reserves two words on the heap, and puts a pointer to the

new space into a register. The next two mov instructions initialize the two fields

respectively. Type B4 means 4-byte integers. The superscripts of B4 are initializa-

tion flags: u stands for uninitialized and rw stands for readable and writable. The

malloc instruction specifies the record’s type. The flag for each field is u at this

point. After a field is initialized, the corresponding flag is changed from u to rw,

indicating it can be read or written. The type-checker does not allow reading or

writing uninitialized fields.

TALx86 also allocates and initializes arrays with macro instructions.

4.3.3 TALT

Like TALx86, TALT also allocates space with a macro instruction malloc and ini-

tializes a new record field by field [21]. But it does not use initialization flags,

thus requires that the initialization instruction sequence be uninterrupted. The

type-checker enters a special state after malloc, and it returns to normal state after

initialization is finished. No other instructions are allowed during allocation.

4.3.4 Orderly Lambda Calculus

Peterson et al. proposed an orderly lambda calculus to express the memory layout in

great details [50]. The heap is modeled as a contiguous block of memory bounded by

66

allocation pointer and limit pointer, just like the LTAL heap model. The allocation

process is also divided into reservation, initialization and heap status update. The

reservation is done by a macro instruction reserve similar to malloc. The type-

checker uses an ordered context (an ordered list of bindings from heap allocations

to types) to describe the memory region of the new record that is currently being

initialized.

With the power of orderly linear logic, the calculus could express memory adja-

cency, size preservation and pointer indirection, but one limitation of this work is

that it lacks the ability to express array allocation because the type-checker needs

to know the size of an object to be allocated.

4.3.5 Problems with Macro Instructions

With the existence of macro instructions, no optimizations could propagate to the

sequences these instructions expand to, such as constant propagation. Furthermore,

the instruction scheduler cannot insert other instructions into the sequences. When

creating a record with many fields, unbreakable allocation sequences will increase the

register pressure. We have to compute all the fields and put them in registers before

the allocation starts. An alternative is to let the instruction scheduler optimize the

allocation by computing and initializing one field at a time. Figure 4.3.5 shows two

pseudocode sequences for allocating record r = [x0+y0, x1+y1, . . . , xn−1+yn−1]. The

left allocation cannot be interrupted and requires that registers r0, r1, . . . , rn−1 be all

live during the allocation. The right one is optimized by interleaving computation

with initialization, and uses only r0 for computation.

The problem with macro instructions lies in the fact that the type system is not

expressive enough to describe each step of allocation.

67

Unbreakable Allocation Optimized Allocation
r0 = x0 + y0 r0 = x0 + y0

r1 = x1 + y1 r[0] = r0

r2 = x2 + y2 r0 = x1 + y1

r3 = x3 + y3 r[1] = r0

.
rn−1 = xn−1 + yn−1 . . .
r[0] = r0 . . .
r[1] = r1 . . .
.
r[n − 2] = rn−2 r0 = xn−1 + yn−1

r[n − 1] = rn−1 r[n − 1] = r0

Figure 4.6: Un-optimized and Optimized Allocation Sequences

In order to give the compiler as much flexibility as possible to optimize the

generated code, LTAL chooses not to use macro instructions, but to make explicitly

each allocation step, and it has an expressive type system to type-check each step.

Therefore, LTAL instruction sequence for allocation is not fixed. The instruction

scheduler can shuffle the allocation instructions with others.

The FPCC-ML compiler can (and does) optimize by coalescing multiple tests

for out-of-heap. It makes one test cover the sequential allocation of several differ-

ent records (and known-length arrays) in a control-flow path that covers several

basic blocks. This optimization can only be done when the tests are explicit; it is

imposible with macro instructions.

4.4 LTAL Heap Allocation

To express each allocation step, at term level, LTAL has a set of allocation in-

structions. As I described in Section 4.1, the allocptr and the limitptr play very

68

important roles in allocation and appear in machine instructions. But in LTAL they

are implicit—they do not appear in LTAL programs. LTAL allocation instructions

implicitly manipulate them and update heap status. The status of these two reg-

isters are kept in the allocation environment. Therefore, the type-checker can get

their status easily.

At type level, LTAL needs to keep track of the available space on the heap and

the type of the partial structure being initialized.

The LTAL type-checker uses an allocation environment ~ to check heap alloca-

tion, both for records and for arrays. The allocation environment consists of three

parts (τ1, τ2, τ): τ1 is the size of the space guaranteed to be available on the heap; τ2

is the size of the space initialized so far for the partial structure being allocated; and

τ is the type of the partial structure. Both τ1 and τ2 are types instead of integers

to accommodate allocation of unknown-size structures (arrays). Both should be of

kind ΩN . The type-checking does not need the initialization flags used in TALx86

[45].

In the underlying semantic model, a virtual register boundary points to the

frontier of allocation. Before allocation, boundary is the same as the allocptr. After

each initialization instruction, boundary is bumped by 4. After record instruction,

the allocptr meets boundary. Another virtual register limit points to the real limit

of the heap (limit = limitptr + 4096).

The semantic model uses existential types for allocation environment. LTAL al-

location environment (m, n, τ) is represented as TML type environment {limitptr−

allocptr ≥ m, boundary − allocptr = n, allocptr : τ, limit − limitptr = 4096, . . .}2.

limitptr − allocptr ≥ m guarantees at least m free space between the allocptr

2For clarity, I use equations in the environment, not the same as notations used in TML.

69

and the limitptr. boundary − allocptr = n indicates n space is initialized, and

allocptr : τ means the partial structure has type τ .

The rest of this section explains LTAL allocation instructions and their typing

rules, grouped by their functionality.

4.4.1 Testing for Heap Exhaustion

Instructions

We have seen in the untyped allocation examples instructions that test whether

there is enough space on the heap:

• an instruction that compares the limitptr with the allocptr (instruction (1)

in Figures 4.2, 4.4 and 4.5)

• an instruction that compares limitptr − allocptr with the required space (in-

struction (2) in Figure 4.5)

• an instruction that does conditional branch in case of no enough memory

(instruction (2) in Figure 4.2 and 4.4, instruction (3) in Figure 4.5).

LTAL has three instructions that correspond to them respectively.

• Instruction testAvail computes the difference between the limitptr and the

allocptr, assigns the result to a reserved register ral, and sets condition codes.

Instead of reserving register ral for limitptr−allocptr, an alternative approach

is to assign the result to a variable and treat the variable the same as any other

variable in register allocation. Now limitptr − allocptr is accessible from a

variable in the program, and it should be invalidated after each allocation since

70

the allocptr is changed after each allocation. The type-checker should prevent

the program from preserving limitptr − allocptr at some point (store it into

memory or hide it using existential types), and using it later when the heap

status has changed. This requires more complicated syntax and semantics;

therefore, LTAL simply reserves a register for testAvail, and LTAL programs

cannot manipulate the register directly since programs use variables instead

of registers and no variables can be assigned register ral.

• Instruction testFull(v) compares register ral (limitptr−allocptr) with v (the

required space), and sets condition codes. If ral ≥ v, there is enough memory.

Instruction testFull should always follow instruction testAvail, as in Figure 4.5,

because testFull uses register ral which can only be set by testAvail. I will

explain how the type-checker makes sure of this order next.

• Instruction iffull then l1 else l2 branches according to the condition codes set

by testing out-of-heap.

Typing Rules

The main point of the typing rules for testing instructions is: when there is enough

space on the heap, the type-checker should set up an allocation environment that

allows initializations that follow.

Figure 4.7 shows the typing rules for the three testing instructions. The judge-

ment LRT ; ρ; ~; Φ; cc `` l states that the current environment matches the signature

of block l (see Appendix A for its complete typing rule). If this judgement holds, it

is safe to jump to block l. Type freem represents limitptr − allocptr.

71

~ = (τ, 0, boxed)

LRT ` (ρ; ~; Φ; cc) {testAvail} (ρ; ~; Φ; cc cmp(freem, 0))

LRT ; ρ; Φ ` v : int= τn

LRT ` (ρ; (τ, 0, boxed); Φ; cc cmp(freem, 0)) {testFull(v)}
(ρ; (τ, 0, boxed); Φ; cc cmp(freem, τn))

cc = cc cmp(freem, τn) LRT ; ρ; (τ, 0, boxed); Φ; cc `` l1
LRT ; ρ; (τn + 4096, 0, boxed); Φ; cc `` l2

LRT ` (ρ; (τ, 0, boxed); Φ; cc) {iffull then l1 else l2} (ρ; (τ, 0, boxed); Φ; cc)

Figure 4.7: Typing Rules for Testing Instructions

Instructions testAvail, testFull, and iffull establish the allocation environment

in which the initialization instructions type-check.

Instruction testAvail is translated to Sparc instruction subcc limitptr, allocptr, ral.

It sets condition code cc cmp(freem, 0). Once limitptr ≥ allocptr, there is at least

4096 space available. TestAvail can not appear during an on-going allocation, as

enforced by the requirement in the typing rule that the second type of the allocation

environment be 0 and the third be boxed. This means no allocation can start until

the previous structure is finished.

Instruction testFull(v) maps to the Sparc instruction subcc ral, rv, %g0 if v is

assigned register rv. It is used for allocating large (greater than headroom) or size-

unknown structures. This instruction sets condition codes cc cmp(freem, n) where

n is the value of v (normally the required space for allocation).

Instruction testFull uses register ral, thus when testFull is executed ral should

contain the desired value limitptr − allocptr. Only instruction testAvail can assign

this value to ral. We should guarantee that a testFull instruction always follows

a testAvail instruction. The typing rule of testFull enforces this by requiring the

72

condition code cc cmp(freem, 0) in the precondition. This condition code can ulti-

mately only come from testAvail3.

Instruction iffull consumes the condition codes cc cmp(freem, τn) set by a

testAvail or a testFull instruction. If the condition codes are not satisfied (freem

≥ τn), it establishes the guaranteed available space τn + 4096 in the allocation

environment for l2 where initialization happens .

In TML, the condition codes cc cmp(freem, τ) could be specified as the type of

virtual register CC in the type environment {d = limitptr − allocptr, ral = d, CC :

cmp(d, τ), . . .}.

Using the semantics, the above three typing rules could be reasoned about as

follows:

testAvail: TestAvail is mapped to TML instruction tml subcc(limitptr, allocptr, ral).

Suppose in the precondition the allocptr has type int= ma and the limitptr has

type int= ml, this TML instruction tml subcc would give the virtual register

CC a type cmp(ml, ma), which is the same as cmp(ml − ma, 0).

testFull: TestFull(v) is mapped to TML instruction tml subcc(ral, r, %g0). Sup-

pose in the precondition ral has type int= d and r has type int= τn. The TML

instruction would give CC type cmp(d, τn).

iffull: If the precondition φ says {d = limitptr−allocptr, ral = d, limit−limitptr =

4096, CC : cmp(d, τn)}, and iffull branches to label l1, we need to prove that

φ[CC 7→ cmp(d, τn)∩ge] satisfies the precondition of l1. The type cmp(d, τn)∩

3Instruction testFull(0) also generates condition code status cc cmp(freem, 0), but its precon-
dition still requires cc cmp(freem, 0). Only testAvail instruction “generates” this condition code
status.

73

ge implies d ≥ τn. Along with the judgements of the allocptr, the limitptr,

ral and limit, we could prove that limit − allocptr ≥ τn + 4096.

4.4.2 Record Allocation

Instructions

As shown in Figure 4.2, allocating a record is completed by initializing each field

(instructions (3) - (5)), followed by assigning the allocptr to the destination register

(instruction (6)), then followed by increasing the allocptr (instruction (7)). LTAL

has the following corresponding instructions:

• Instruction store(vi, v) stores value v to the memory word at address allocptr+

vi. It initializes the field at offset vi of the record being allocated.

• Instruction v = record assigns the allocptr to v. At this point, every field of

the new structure should be completely initialized. The allocptr is unchanged

during initialization. Therefore, it points to the beginning of the initialized

structure when the ”record” instruction is executed. After the record instruc-

tion, v points to the initialized structure. The allocptr moves on afterwards

by instruction incAlloc.

• Instruction incAlloc(v) adds v to the allocptr. It should follow a record

instruction. The value v should be the size of the structure that is just ini-

tialized. After incAlloc, the allocptr points to the next available word on the

heap.

74

LRT ; ρ; Φ ` v′ : int= i LRT ; ρ; Φ ` v : ti t′ = t ∩ (field i ti)

LRT ` (ρ; (τm, τn, t); Φ; cc) {store(v′, v)} (ρ; (τm, τn + 4, t′); Φ; cc)

LRT ` (ρ; (τm, τn, τ); Φ; cc) {v = record} (ρ; (τm, τn, τ); Φ, v :τ ; cc)

LRT ; ρ; Φ ` v : int= τn

LRT ` (ρ; (τm, τn, τ); Φ; cc cmp(freem, k)) {incAlloc v}
(ρ; (τm − τn, 0, boxed); Φ; cc none)

LRT ; ρ; Φ ` v : int= τn

LRT ` (ρ; (τm, τn, τ); Φ; cc) {incAlloc v}
(ρ; (τm − τn, 0, boxed); Φ; cc)

Figure 4.8: Rules for Record Allocation Instructions

Typing Rules

When type-checking these instructions, the most important thing that the type-

checker does is to update the heap status in the allocation environment. The typing

rules for the record allocation instructions are shown in Figure 4.8.

When a field of the current partial record is initialized by a store instruction,

the initialized space (second part of the allocation environment) is increased by 4,

and one more conjunct (a field type) is added into the type of the partial record

(third part of the allocation environment).

After initialization, the allocptr is copied to a variable (with the desired record

type) by instruction v = record, and then the allocptr is adjusted to point to the

next available memory word by instruction incAlloc. After instruction incAlloc,

the type-checker subtracts the allocated space from the first part of the allocation

environment—the available space, resets the second part to 0, and resets the third

part to the empty record, i.e. ”boxed”. Instruction incAlloc invalidates the condi-

tion codes set by testAvail and testFull because the allocptr has been changed. So

75

LTAL Sparc
l0 : l0 :

testAvail subcc limitptr, allocptr, ral

iffull then l1 else l2 bl l1
l2 : l2 :

store(0, v0) st r0, [allocptr + 0]
store(4, v1) st r1, [allocptr + 4]
store(8, v2) st r2, [allocptr + 8]
v = record mov allocptr, r
incAlloc 12 add allocptr, 12, allocptr
.

l1 : . . . l1 : . . .

Figure 4.9: Record Allocation Example

if before incAlloc, the condition-code status is cc cmp(freem, k) which can set only

by testAvail or testFull, it is reset to cc none afterwards.

The LTAL store instruction is mapped to the Sparc store instruction, the LTAL

record instruction to the Sparc move instruction, and the LTAL incAlloc instruction

to the Sparc add instruction. The typing rules in Figure 4.8 could be proved from

the semantics of the corresponding machine instructions.

Instruction v = record can be used to create aliases during the initialization of

a record. But the uses of those aliases may be restricted, because we don’t track

alias information which many TALs including TALx86 do not track either. See

Section 4.4.5 for discussion about aliases.

Type-checking the Record Allocation Example

Figure 4.9 shows an LTAL instruction sequence that corresponds to the Sparc se-

quence in Figure 4.2. Variables v, v0, v1, v2 are assigned registers r, r0, r1, r2

respectively.

76

LTAL Allocation Environment
l0 : (τm, 0, boxed)

testAvail
(τm, 0, boxed)

iffull then l1 else l2
(τm, 0, boxed)

l2 : (4096, 0, boxed)
store(0, v0)

(4096, 4, field 0 τ0)
store(4, v1)

(4096, 8, (field 0 τ0) ∩ (field 4 τ1))
store(8, v2)

(4096, 12, (field 0 τ0) ∩ (field 4 τ1) ∩ (field 8 τ2))
v = record

(4096, 12, (field 0 τ0) ∩ (field 4 τ1) ∩ (field 8 τ2))
incAlloc 12

(4084, 0, boxed)
. . .

l1 : . . .

Figure 4.10: Checking Record Allocation

In block l0, instruction testAvail assigns limitptr−allocptr to ral and sets condi-

tion codes. Then the branch instruction iffull “consumes” the condition codes, and

branches to l1 if there is no enough memory on the heap for the record. Otherwise

it falls-through to l2.

Block l2 initializes the new record. Instruction store(i, vi) initializes the word at

address allocptr + i with vi. Three store instructions initialize three fields with v0,

v1, and v2 respectively. Instruction v = record copies the allocptr to v. Instruction

incAlloc 12 increases the allocptr by 12.

Figure 4.10 shows how the allocation environment changes during type-checking

this sequence. Variables v0, v1, v2 are of type τ0, τ1, τ2 respectively.

77

In block l0, instruction testAvail sets the condition codes cc cmp(freem, 0). In-

struction iffull sets an allocation environment that statically guarantees 4096 space

for the fall-through case l2.

At the beginning of l2, the allocation environment (4096, 0, boxed)indicates that:

4096 space is guaranteed, none of it is initialized, and the type of the record is boxed.

After each store instruction, one more field type is added as a conjunct to the record

type. The original boxed type disappears after the first field type is added, because

field type implies boxed type. More precisely, field type is a subtype of boxed type

in the underlying model. After the three store instructions, the record has type

(field 0 τ0) ∩ (field 4 τ1) ∩ (field 8 τ2) . The record instruction assigns this type

to v. The incAlloc instruction resets the allocation environment. It deducts the

allocated space 12 from the available space 4096. Now the available space becomes

4084.

4.4.3 Known-length Array Allocation

The Sparc instruction sequences in Figures 4.2 and 4.4 are very similar, but type-

checking these two sequences is different. This is because LTAL uses the same

set of instructions for allocating known-length arrays and unknown-length ones.

Using intersection types for partial arrays in type-checking is unacceptable, since

the type-checker does not know how many conjuncts an unknown-size array would

have.

Notice that the type of each array element is the same. The only thing that needs

to keep track of in the type of the partial array is how much has been initialized.

LTAL uses a fixed format array(τi, τ) for the type of the partial array, where τi is

the space of initialized elements, and τ is the type of elements. At the beginning of

78

LRT ` (ρ; (τm, 0, boxed); Φ; cc) {arrStart[τ]} (ρ; (τm, 0, array(0, τ)); Φ; cc)

LRT ; ρ; Φ ` vi : int= τn τ ′
n = τn + 4 LRT ; ρ; Φ ` v : τ

LRT ` (ρ; (τm, τn, array(τn, τ)); Φ; cc) {storeA(vi, v)}
(ρ; (τm, τ ′

n, array(τ ′
n, τ)); Φ; cc)

Figure 4.11: Rules for Array Allocation Instructions

array allocation, the initialized space is 0, thus the partial array has type array(0, τ).

Then after one more element is initialized, τi is increased by 4, until in the end τi is

the same as the desired size. Assigning the allocptr to the destination register and

increasing the allocptr are the same as record allocation.

To set the initial array type array(0, τ), LTAL has an instruction arrStart that

maps to no Sparc instruction. Initializing an element of an array is implemented

by an LTAL instruction storeA, which has a different typing rule from the store

instruction used for record initialization.

Instructions

• Instruction arrStart[τ] sets up the initial array type in the allocation envi-

ronment before initializing a τ array.

• Instruction storeA(vi, v) stores value v to the memory word whose address is

allocptr + vi. It initializes the element at offset vi of the array.

Typing Rules

The typing rules for arrStart and storeA are shown in Figure 4.11. The instruc-

tions testing for heap exhaustion sets up an allocation environment (n, 0, boxed)

79

when there is at least n space on the heap (see Figure 4.7). Before initializing an

array, instruction arrStart[τ] coerces the array type (third type in the allocation

environment) from boxed to array(0, τ). When an element is initialized by a storeA

instruction, the type of the array changes from array(n, τ) to array(n + 4, τ).

The semantic model of LTAL type array(τn, τ) is based on the TML type boxed∩

∀i∈[0,τn)offset(i, τ), meaning if a value v has type array(τn, τ), then m(v + i) : τ for

any 0 ≤ i < τn. Therefore, the arrStart rule could be proved by TML subtyping

boxed ⊂ array(0, τ) for any τ .

The storeA instruction is mapped to TML’s store instruction. The storeA

rule is proved by the semantics of machine instruction store and the fact that

∀i∈[0,τn)offset(i, τ) ∩ offset(τn + 4, τ) ⊂ ∀i∈[0,τn+4)offset(i, τ).

Type-checking the Known-length Array Example

Figure 4.12 shows the LTAL instruction sequence that corresponds to the Sparc

code segment in Figure 4.4. LTAL variables v0 and a are assigned registers r0 and

ra respectively. Variable v0 has type τ .

In block l2, instruction arrStart first sets up the initial array type. Then the

three storeA instructions initialize the three elements. Instruction record lets a

point to the beginning of the new array, and finally the allocptr is increased by 12

(the size of the new array) by instruction incAlloc.

Figure 4.13 shows the change of the allocation environment during type-checking.

Similar to the record allocation example, block l1 sets up an allocation environ-

ment (4096, 0, boxed) for block l2.

In block l2, the first instruction arrStart coerces the allocation environment to

(4096, 0, array(0, τ)). After instruction storeA(0, v0), the allocation environment

80

LTAL Sparc
l0 : l0 :

testAvail subcc limitptr, allocptr, ral

iffull then l1 else l2 bl l1
l2 : l2 :

arrStart[τ]
storeA(0, v0) st r0, [allocptr + 0]
storeA(4, v0) st r0, [allocptr + 4]
storeA(8, v0) st r0, [allocptr + 8]
a = record mv allocptr, ra

incAlloc 12 add allocptr, 12, allocptr
l1 : . . . l1 : . . .

Figure 4.12: LTAL Instruction Sequence for Known-length Array Example

becomes (4096, 4, array(4, τ)), meaning the first element of the array is initial-

ized. After the next two storeA instructions, the allocation environment becomes

(4096, 12, array(12, τ)). The next record instruction assigns a type array(12, τ), an

τ array of size 12 (three elements). The incAlloc instruction subtracts 12 from the

available space 4096, and resets the other two parts of the allocation environment.

4.4.4 Unknown-length Array Allocation

Type-checking unknown-length array allocation is more complicated because array

initialization is completed by a loop.

To model the unknown size of the array, LTAL uses polymorphism over the size:

the size is represented as a type variable in the initialization function.

Modeling the initialized space needs another type variable because its value

changes during each loop iteration. Since array elements are initialized sequentially,

the value of the loop index is equal to the initialized space. Therefore, the LTAL

checker uses a single type variable to indicate the value of the loop index and the

81

LTAL Allocation Environment
l0 : (τm, 0, boxed)

testAvail
(τm, 0, boxed)

iffull then l1 else l2
(τm, 0, boxed)

l2 : (4096, 0, boxed)
arrStart[τ]

(4096, 0, array(0, τ))
storeA(0, v0)

(4096, 4, array(4, τ))
storeA(4, v0)

(4096, 8, array(8, τ))
storeA(8, v0)

(4096, 12, array(12, τ))
a = record

(4096, 12, array(12, τ))
incAlloc 12

(4084, 0, boxed)
. . .

l1 : . . .

Figure 4.13: Checking Known-length Array Allocation

82

initialized space in the allocation environment. Each time an element is initialized

and the loop index is increased, the partial array type in the allocation environ-

ment changes accordingly. If τn space is initialized, the array should have type

array(τn, τ). This array type is refined to an array type with desired size when the

loop is finished. The type refinement is done by a new LTAL instruction ifinitA.

Instructions

• Instruction ifinitA then l1 else l2 is translated to Sparc bge instruction. It

branches to l1 with the allocation environment coerced, if the array initializa-

tion is finished (indicated by the loop index ≥ the array size).

Typing Rules

The typing rules of cmpr and ifinitA are shown in Figure 4.14.

Instruction cmpr is used for singleton integer comparison. It sets condition codes

cc cmp(τ1, τ2) when comparing two values of type int= τ1 and int= τ2 respectively.

In a typical use, τ1 is a type variable and τ2 is a singleton literal such as 0. The

comparison result will be used to refine the type variable.

Instruction ifinitA should follow an instruction that compares the loop index i

and the array size l. Suppose i has type int= τn and l has type int= τl. The com-

parison sets condition codes cc cmp(τn, τl). After instruction ifinitA then l1 else l2,

the allocation environment (τm, τn, array(τn, τ)) is coerced to (τm, τl, array(τl, τ)) in

l1 when τn ≥ τl .

If branch ifinitA is taken, the condition codes would imply τn ≥ τl, and then we

could prove that array(τn, τ) ⊂ array(τl, τ).

83

LRT ; ρ; Φ ` v1 : int= τ1 LRT ; ρ; Φ ` v2 : int= τ2

LRT ` (ρ; ~; Φ; cc) {cmpr(v1, v2)} (ρ; ~; Φ; cc cmp(τ1, τ2))

cc = cc cmp(int= τn, int= τl) LRT ; ρ; (τm, τl, array(τl, τ)); Φ; cc `` l1
LRT ; ρ; (τm, τn, array(τn, τ)); Φ; cc `` l2

LRT ` (ρ; (τm, τn, array(τn, τ)); Φ; cc) {ifinitA then l1 else l2}
(ρ; (τm, τn, array(τn, τ)); Φ; cc)

Figure 4.14: Rules for cmpr and ifinitA Instructions

Type-checking the Unknown-length Array Example

Figure 4.15 shows an LTAL instruction sequence that corresponds to the instruction

sequence in Figure 4.5, which creates an array of size l, initializes each element with

v and assigns the array to a. The size l and the initial value v are both parameters.

The LTAL instructions are polymorphic over the type of v (type variable α) and l

(type variable β).

Figure 4.16 shows the condition code status and the allocation environment

during type-checking the instruction sequence in Figure 4.15. Postconditions of

branch/call instructions are not shown because they are the same as preconditions.

Block l0 tests whether there is enough memory on the heap for the unknown-

length array. It is a polymorphic function with two type variables: α is the type of

array elements, and β is the desired size of the array. This block requires no space

guarantees on the heap, since it would test by itself. It takes two parameters: v of

type α is the initial value for elements, and l of type int= β is the size of the array.

Type variable β is of kind ΩN , which cannot be assigned to value l directly. Type

constructor int= transforms β to a singleton type of kind Ω.

Instruction testAvail assigns limitptr − allocptr to the reserved register ral and

sets condition codes cc cmp(freem, 0). Instruction testFull(l) compares ral and l,

84

LTAL Sparc
l0 : [α : Ω, β : ΩN], 0, cc none, l0 :

[v : α, l : int= β]
testAvail subcc limitptr, allocptr, ral

testFull(l) cmp ral, rl

iffull then l1 else l2 bl l1
l2 : [α : Ω, β : ΩN], β, cc none, l2 :

[v : α, l : int= β]
i = 0 mov ri, 0
arrStart[α]
calln(test, [α, β, 0])

test : [α : Ω, β : ΩN , γ : ΩN], β, cc none, test :
[v : α, l : int= β, i : int= γ]
cmpr(i, l) subcc ri, rl, %g0
ifinitA then done else loop bge done

loop : [α : Ω, β : ΩN , γ : ΩN], β, cc none, loop :
[v : α, l : int= β, i : int= γ]
storeA(i, v) st rv, [allocptr + ri]
i = i +i 4 add ri, 4, ri

call(test, [α, β, γ + 4]) ba test
done : [α : Ω, β : ΩN], β, cc none, [l : int= β] done :

a = record mov allocptr, ra

incAlloc l add allocptr, rl, allocptr
.

l1 : . . . l1 : . . .

Figure 4.15: Array Allocation Example

and sets condition codes cc cmp(freem, β). Instruction iffull guarantees β on the

heap in the fall-through case l2
4.

Block l2 initializes the loop index i and the allocation environment. It has

the same type variables and value parameters as l0, but requires β space available

on the heap. Instruction i = 0 sets loop index i to 0 and gives i type int= 0.

Instruction arrStart[α] corresponds to no Sparc instruction. It only coerces the

4Instruction iffull guarantees β + 4096 space in l2, which is more than l2’s requirement β.

85

LTAL Cond. Codes Alloc. Env.
l0 : [α : Ω, β : ΩN], 0, cc none, cc (τm, 0, boxed)

[v : α, l : int= β]
testAvail

cc cmp(freem, 0) (τm, 0, boxed)
testFull(l)

cc cmp(freem, β) (τm, 0, boxed)
iffull then l1 else l2

l2 : [α : Ω, β : ΩN], β, cc none, cc none (β, 0, boxed)
[v : α, l : int= β]

i = 0
cc none (β, 0, boxed)

arrStart[α]
cc none (β, 0, array(0, α))

calln(test, [α, β, 0])

test : [α : Ω, β : ΩN , γ : ΩN], cc none (β, γ, array(γ, α))
β, cc none,
[v : α, l : int= β, i : int= γ]

cmpr(i, l)
cc cmp(γ, β) (β, γ, array(γ, α))

ifinitA then done else loop

loop : [α : Ω, β : ΩN , γ : ΩN], cc none (β, γ, array(γ, α))
β, cc none,
[v : α, l : int= β, i : int= γ]

storeA(i, v)
cc none (β, γ + 4, array(γ + 4, α))

i = i +i 4
cc none (β, γ + 4, array(γ + 4, α))

call(test, [α, β, γ + 4])

done : [α : Ω, β : ΩN], cc none (β, β, array(β, α))
β, cc none, [l : int= β]

a = record
cc none (β, β, array(β, α))

incAlloc l
cc none (0, 0, boxed)

Figure 4.16: Type-checking Array Allocation
86

boxed type in the allocation environment to array(0, α) which is desired by type-

checking initialization. Then it falls through to block test.

Block test tests whether initialization is done. It has one more type variable γ,

the initialized space, and one more value parameter i of type int= γ, the loop index.

The allocation environment should be (β, γ, array(γ, α)).

The first instruction cmpr compares the loop index i with the size l, and sets

the condition codes cc cmp(γ, β). The next instruction ifinitA checks the condition

codes. When γ ≥ β, it goes to block done, and coerces the allocation environment

from (β, γ, array(γ, α)) to (β, β, array(β, α)). Otherwise, it falls through to block

loop.

Block loop initializes one element and increases the loop index. It has the same

signature as test. When one more element is initialized by a storeA instruction, the

allocation environment changes from (β, γ, array(γ, α)) to (β, γ +4, array(γ +4, α)).

After i is increased by 4, i has type γ + 4 (+i is a specialized operator for singleton

integer addition). The control goes back to test, and instantiates the type variable

γ of test with γ + 4. The type variable γ abstracts the value of the loop index, so

that each iteration of the loop can be type-checked uniformly.

Block done assigns the initialized array to a and updates the allocptr. At the

beginning of done, the allocation environment should be (β, β, array(β, α)), meaning

the whole array has been initialized.

Instruction a = record assigns the allocptr to a, and gives a type array(β, α),

meaning an α array of size β. Instruction incAlloc adds l to the allocptr, and resets

the allocation environment to (0, 0, boxed).

87

4.4.5 Discussion

To simplify the type-checking, LTAL initializes records and arrays sequentially. The

type-checker could allow record initialization in arbitrary order by slightly changing

the typing rules for allocation instructions. Since the type of the part record is an

intersection of each field’s type, and the checker can accept any order of the con-

juncts, no matter which order the fields are initialized, the allocation environment

can track the record type. The checker just needs some checks to make sure the

initialization is in valid space. More specificly, when m space is guaranteed, at every

store(i, v) instruction, the type-checker should check whether i < m, and whether

the ith field has been initialized by checking whether the third part of the alloca-

tion environment already has a conjunct ”field i τ”. The type-checker could either

reject duplicate initializition or replace the first initialization with the new one. At

instruction incAlloc n, the checker should check whether n is big enough so that

every initialized field is in the new record. The checker could allow uninitialized

fields as long as they are not accessed.

The typing rules in Figures 4.8, 4.11 and 4.14 do not allow arbitrary aliasing of

heap-allocated structures. For example, the following instruction sequence is safe,

since both v0 and v1 point to a two-field record [0, 1] (Figure 4.17), and fetching

the second field of v0 should return 1. But the LTAL type-checker will reject the

fetching because when v0 is assigned by instruction v0 = record, the checker thinks

v0 is a one-field record, and does not change v0’s type even it knows v1 has two

fields. The checker lacks the ability to track that v0 and v1 are actually aliases, thus

they should have the same type.

88

limitptr

allocptr

1v
0v

1
0

Figure 4.17: Alias Example

store(0, 0)

v0 = record

store(4, 1)

v1 = record

incAlloc(8)

v = load(v0, 4)

The alias type system by Smith, Walker and Morrisett might provide a solution

since it is able to track alias information in the type system [57]. Furthermore, it

permits reasoning about safe deallocation of memory.

89

Chapter 5

User-defined Datatypes

In this chapter, I explain how LTAL handles user-defined datatypes. LTAL’s low-

level type constructors provide support for various data representations, and ex-

tracting and checking tags. The type-checker can check the connection between a

sum value and its tag, and refine the type of the sum value after tag-checking. LTAL

provides flexibility for the compiler writer to choose her preferred style of datatype

representation. The representations described in this chapter are not new, but the

point is type-checking each aspect of their construction and destruction.

For simplicity, I use the notation [τ0, τ1, . . . , τn−1] for record types in this chapter,

instead of (field 0 τ0) ∩ (field 4 τ1) ∩ . . . ∩ (field (4n − 4) τn−1).

5.1 Untyped Representation and Discrimination

First, I describe the conventional (untyped) datatype representation and tag dis-

crimination.

90

0

intlist1 intlist2

0A 0

intlist1
int

int

0

intlist3

intlist2

intlist3 int
B 1

Figure 5.1: Data Representation of Intlist

5.1.1 Datatype Representation

There are many different data representations that a compiler can choose from for

user-defined datatypes such as intlist :

datatype intlist = nil | cons of int ∗ intlist ,

including the three representations shown in Figure 5.1:

intlist1 The most straightforward representation is to tag each constructor with a

small integer, that is, to represent the constructor as a record, with the tag in

the first field. Nil is tagged 0, and cons is tagged 1. Nil does not carry any

value, thus it is a record with only one field—the tag 0. Cons is a two-field

record, the first field being the tag 1 and the second field being the carried

value (a record of an integer and a list).

intlist2 Assuming that small integers can be distinguished from pointers, the com-

piler can use small integers to represent constant data constructors, and use

pointers for value-carrying constructors: nil is represented as an unboxed in-

teger 0, instead of a one-field record of 0; cons is a two-field record of tag 0

and the carried value.

91

mylist

int

1

int

010

DCBA

Figure 5.2: Data Representation of mylist

intlist3 A datatype with only one value-carrying constructor can be optimized

further. If the value-carrying constructor carries an always boxed value, it

need not be tagged, since only this constructor is represented as a pointer,

and all other constructors are represented as small integers. Cons carries a

record, which is always boxed, thus its tag can be removed and cons has the

same representation as the record it carries.

Assuming small integers can be distinguished from pointers, for the user-defined

datatype mylist = A | B | C of int | D of int ∗ mylist , constant constructors A

and B can be represented as unboxed integers 0 and 1 respectively. Value-carrying

constructors C and D can be tagged with 0 and 1 respectively. Here I choose a

flattened representation for D (shown in Figure 5.2). It is a three-field record, whose

first field is tag 1 and the rest two fields are the carried value. This representation

saves an extra indirection compared with boxing the carried value.

5.1.2 Sum Value Discrimination

To determine which case a sum value belongs to, we need to check the sum value

and its tag (if it is tagged).

92

Discriminating intlist1

To check whether a value v of intlist1 is nil or cons, we need to check whether the

tag of v is 0 or 1, since nil is tagged 0 and cons is tagged 1. Thus we could fetch

the first field of v to some register t, and then test t. The following pseudo code

implements the discrimination:

l : v : intlist1

t = v[0] % fetch the tag of v to t

cmp t, 0 % test whether t is 0

beq lnil % if t is 0, goto lnil

lcons : . . . % t is 1, and v is cons

lnil : . . . % v is nil

The type-checker can figure out that the tag t is an integer. A stronger type

system with singleton and union types can specify that t is either 0 or 1. Then t

is compared with 0, followed by the branch-if-equal instruction. The type-checker

can refine the type of t according to whether the control transfers: if yes, t = 0;

otherwise, t 6= 0.

However, this refinement is not what we want. We want to refine the type of v,

so that we can access v’s fields. When t 6= 0, v is cons. The type-checker should be

able to refind v’s type and indicate that v is a two-field record, such that reading

v’s second field (the carried value) is valid. When t = 0, the type-checker should

inhibit reading v’s second field.

The problem here is: we want to refine v’s type based on the result of checking

t. The connection between v and t is lost after tag-fetching.

93

Discriminating intlist3

Checking whether a value v of intlist3 is nil or cons does not need tag-checking,

because neither case is tagged. It can be done by checking whether v is a small

integer or a pointer. A small integer means nil, and a pointer means cons. Normally

a compiler sets up a boundary between small integers and pointers. No pointers are

less than the boundary. Therefore, if v is less than the boundary, it is nil, otherwise

it is cons.

The following code tests whether value v of type intlist3 is nil or cons by com-

paring v with 256, the boundary between small integers and pointers used in the

FPCC-ML compiler. The FPCC-ML compiler arranges that no pointer points to

the first 256 space in the memory.

l :

v : intlist3

cmp v, 256 % compare v with the boundary

bge lnil % if v ≥ 256 goto lcons

lnil : . . . % v is nil

lcons : . . . % v is a pointer, and v is cons

Of course in this discrimination case we could also directly check whether v is 0

(nil), since there are only two cases here.

Discriminating mylist

Checking which case a value v of mylist is would need both checks in the previous

two examples. First, we check whether v is a small integer to differentiate the

unboxed cases A and B and the boxed cases C and D. If v is unboxed, we further

94

l :
v : mylist
cmp v, 256 % compare v and the boundary
bge lCD % if v is greater than or equal to the boundary, goto lCD

lAB : % v is a small integer, and v is either A or B
cmp v, 0 % test whether v is 0
beq lA % if v is 0, goto lA

lB : . . . % v is 1 (case B)
lA : . . . % v is 0 (case A)
lCD : % v is a pointer, and v is either C or D

t = v[0] % fetch the tag of v to t
cmp t, 0 % test whether t is 0
beq lC % if t is 0, goto lC

lD : . . . % t is 1 and v is case D
lC : . . . % t is 0 and v is case C

Figure 5.3: Untyped Discrimination of Mylist

test whether v is 0 (A) or 1 (B). If v is boxed, we then need to fetch the tag of v

and check the tag. Tag 0 means C and tag 1 means D. Figure 5.1.2 illustrates the

discrimination process.

First, block l tests whether v is a pointer by comparing v with the boundary

256. If v ≥ 256, v is either C or D, and the control goes to block lCD. Otherwise v

is either A or B, and the control falls through to block lAB.

Block lAB further tests whether v is A or B. Since A is represented as unboxed

integer 0 and B is unboxed integer 1, v is case A if v = 0, otherwise v is B. The first

instruction compares v with 0, and the second branch instruction goes to block lA

if v = 0, otherwise it goes to block lB.

In block lCD, we know v is boxed and tagged, either C or D. Value v is tagged

0 if it is C, and it is tagged 1 if it is D. The first instruction fetches the tag of v

to t, then the second instruction compares the tag t with 0. If t = 0, we know v is

95

case C, and the control goes to block lC by the conditional branch instruction beq.

Otherwise we know v is case D, and the control falls through to block lD.

In block lC , we know that v is a two-field record, and the second field is an

integer. In block lD, we know that v is a three-field record, and it is safe to access the

second and the third fields. Therefore, tag discrimination should be done correctly

in order to safely access the memory: if in the comparison instruction of block lCD

0 is changed to 1, fetching the third field in block lD would violate memory safety.

The type-checker should detect such errors. In order to do this, the checker should

refine the type of the sum value according to the result of tag-checking. Instructions

cmp t, 0 and cmp t, 1 would result in different refined types of the sum value v in

block lD, thus the checker could inhibit the unsafe memory access.

5.2 Type-checking Tag Discrimination

Consider the example that discriminates mylist. Tag discrimination for the sum

value v is done by first fetching the tag into t, then comparing t with integer 0, and

then doing a conditional branch on the comparison result. The type-checker should

use the result of comparing t with 0 to refine v’s type. In block lC , v should have

type [int= 0, int]. In block lD, v should have type [int= 1, int, intlist], so that fetching

the third field of v is valid. The reader may remember the problem of refining v’s

type according to the result of checking t (in Section 5.1.2).

Previous TALs used either macro instructions or dependent types to deal with

this problem.

96

5.2.1 Solution 1: Macro Instructions

Most TALs use macro instructions that does fetching tags and comparison and con-

ditional branch all in one instruction. For example, in TALT, tag discrimination is

implemented by instruction cmpjcc [21]. Instruction cmpjcc o1, o2, k, o3 is actually

a macro for two instructions: cmp o1, o2; jcc k, o3. The first instruction compares

o1 with o2, and the second instruction branches to o3 if condition codes set by the

comparison satisfy condition k. Normally in tag discrimination, o1 is of format

M(s, r, 0), meaning the value at memory address r + 0 (of size s)—the tag of r if r

is a tagged sum value, and operand o2 is an integer. For example, given that v is a

tagged sum value, instruction cmpjcc M(W, r, 0), 0, eq, o means comparing the tag

of r with 0, and jumping to o if they are equal.

TALT uses singleton integers and dataflow analysis to type-check cmpjcc in-

structions. The memory mode of Intel x86 allows the tag to be kept in the memory,

instead of fetched to a register. Format M(s, r, 0) connects the tag of r and sum

value r itself. When checking the cmpjcc M(s, r, 0), i, k, o instruction, the checker

rewrites r’s type to τ1 ∪ τ2, where r[0] k i holds in τ1 but not in τ2. The checker

refines r’s type to τ1 in target o and τ2 in the fall-through case.

5.2.2 Solution 2: Dependent Types

Dependently Typed Assembly Language (DTAL) uses a restricted form of dependent

types all the way through the source language DML (ML + dependent types) to

the target assembly language DTAL. The programmer gives integer specifications

(for example, the length of an array) in terms of types, and the compiler translates

these specifications to low-level dependent types and integer constraints. The type-

97

checker decides whether the specifications are satisfied with the help of a constraint

solver. Dependent types make it possible to specify and enforce more invariants

such as that the length function returns n given an array of length n.

DTAL uses existential types and singleton types to connect a value and its tag.

Type µα.(∃a : natn.int(a) ∗ choose(a, unit, int ∗ α)) in DTAL could represent the

sum type intlist1, both constructors tagged. Index variable a states the value of

the tag. The sum value is a two-field record, with the first field being the tag and

the second field being the carried value. The tag has value a, as specified by its

singleton integer type int(a). The second field has type choose(a, unit, int ∗ α),

which means unit if a is 0 and int ∗ α if a is 1. The tag t fetched from a value v

of type τ = µα.(∃a : natn.int(a) ∗ choose(a, unit, int ∗ α)) would have type int(a).

Branching on the tag t would add one more constraint a k 0 to the constraint set of

the branch target, and a k′ 0 to the fall-through case (k is the condition used in the

branch, and k′ is the opposite of k). With this new constraint about a, the checker

could use subtyping to refine type choose(a, unit, int ∗ τ) to either unit or int ∗ τ .

The constraint solver allows DTAL to express and check many integer invariants,

but it makes type-checking complicated and even hard to reason about.

5.3 LTAL Approach

LTAL adopts the dependent type approach of DTAL. It uses existential types to

connect sum values and their tags and uses singleton integer types to track the

implicit data flow to refine types. But the LTAL type-checker is simpler than DTAL

in the sense that it totally avoids a constraint solver. Another difference (also one

important feature of LTAL) is that LTAL has no macros for datatype discrimination.

98

Sparc does not have a memory addressing mode, or branch on registers. Tag-

fetching, tag-checking and branch should be implemented by individual instructions.

LTAL has explicit instructions for each of them.

5.3.1 Sum Type Representation

First, I will explain how sum types are represented in LTAL.

LTAL has a set of low-level constructors for describing datatypes. Singleton

integer literals are used for constant constructors represented as integers and for

tags. Union types are used for combining the cases of sum types. Recursive types are

used for datatypes with recursive definitions (the datatype appears in the definition

of itself).

The representation of intlist1 can be expressed as LTAL type:

intlist1 = µα : Ω.[int= 0] ∪ [int= 1, [int, α]]

Intlist is a recursive type, since the cons case contains intlist in the definition.

That is what the outmost constructor µ is for. The body of the recursive type is a

union type, meaning a value of intlist1 is either nil or cons. Nil is represented as

[int= 0], a record with only one field (the tag). The tag should be 0 as indicated

by singleton type int= 0. Cons is represented as [int= 1, [int, α]], a record with two

fields: the tag and the carried value. Singleton type int= 1 means the tag is 1 and

record type [int, α] means cons carries a record of an integer (head) and another

intlist1 (tail).

Intlist2 can be expressed in LTAL as

99

intlist2 = µα : Ω.int= 0 ∪ [int= 0, [int, α]]

Nil is represented as int= 0, an unboxed integer 0. Cons has two fields: tag 0

and the carried value.

Intlist3 can be expressed in LTAL as

intlist3 = µα : Ω.int= 0 ∪ [int, α]

Nil is represented as 0. Cons is an untagged record, which has the same repre-

sentation as the carried value.

Mylist can be expressed in LTAL as

mylist = µα : Ω.int= 0 ∪ int= 1 ∪ [int= 0, int] ∪ [int= 1, int, α].

Four disjuncts in the body of the recursive type indicate the four cases: either

constant constructor A represented as unboxed integer 0 (int= 0), or constant con-

structor B represented as unboxed integer 1 (int= 1), or constructor C with tag 0

([int= 0, int]), or constructor D with tag 1 ([int= 1, int, α]).

With these low-level type constructors, the compiler can explain to the proving

system the data representation it uses. Therefore, the compiler writer has much

flexibility to choose the representation he wants, even the freedom to choose differ-

ent representations for different datatypes, as long as the representation for each

datatype is consistent.

100

ρ; LRT `c τ1

cinj1[τ1∪τ2]
↪→ τ1 ∪ τ2

ρ; LRT `c τ [µα : κ.τ/α]
cfold[µα:κ.τ]

↪→ µα : κ.τ

Figure 5.4: Typing Rules of cinj1 and cfold

5.3.2 Creating Sum Values

An empty list of intlist1 could be built from a 1-field record v0 = [0]:

LTAL Sparc

v0 : [int= 0]

(1) v1 = cinj1 ([int= 0] ∪ [int= 1, [int, intlist1]])(v0)

v1 : [int= 0] ∪ [int= 1, [int, intlist1]]

(2) v2 = cfold[intlist1](v1)

v2 : intlist1

The only difference between v0, v1 and v2 is coercions. They are assigned the

same register, so no Sparc instruction is emitted for the above LTAL instructions.

By inserting coercions, the type-checker can easily tell that value v0 can be

coerced to be of type intlist1. It simply checks: (1) whether the type of v0 is

the first part of union type [int= 0] ∪ [int= 1, [int, intlist1]] (by the rule of coercion

cinj1); (2) whether the type of v1 is exactly the same as intlist1 with type variable

α replaced by intlist1 (coercion cfold).

The typing rules of coercions cinj1 and cfold are shown in Figure 5.4.

The cinj1 rule can be easily proved by the TML subtyping rule in τ1 ⊂ τ1 ∪ τ2.

The cfold rule could be proved by the subtyping rule fold in TML.

101

The following two LTAL instructions create an empty list of intlist3 by coercing

integer 0 to be of type intlist3.

v1 = cinj1[int= 0 ∪ [int, intlist3]](0) mov 0, d1

v1 : int= 0 ∪ [int, intlist3]

v2 = cfold[intlist3](v1)

v2 : intlist3

Value 0 has type int= 0. It is coerced by cinj1 to v1 of type [int= 0∪ [int, intlist3]],

then v1 is coerced to v2 of type intlist3 by cfold. Again, v1 and v2 are assigned the

same register. No Sparc instruction is needed for coercion from v1 to v2.

5.3.3 Eliminating Sum Values

In this section, I show how the previous three discrimination examples are imple-

mented and type-checked in LTAL.

Discriminating Intlist1

From Section 5.1.2 we know discriminating a value of intlist1 is done by tag-checking.

Section 5.3.1 shows the representation of intlist1:

intlist1 = µα : Ω.[int= 0] ∪ [int= 1, [int, α]].

The discrimination is completed by the following steps in LTAL:

1. Before tag-checking, a value v of type intlist1 should be unfolded to another

value v0 of non-recursive type [int= 0] ∪ [int= 1, [int, intlist1]].

102

2. From the representation of intlist1, we know that v0 is tagged, but do not

know the tag yet. LTAL uses an existential type ∃α : ΩN .field 0 (int= α) to

represent this. Type variable α represents the value of the tag. It is of kind

ΩN .

Also v0 has the union type [int= 0] ∪ [int= 1, [int, α]], therefore, the sum value

has type ∃α : ΩN .field 0 (int= α) ∩ ([int= 0] ∪ [int= 1, [int, intlist1]]). LTAL

uses coercion csum2hastag to coerce v0 to value v1 and make v1 have type

∃α : ΩN .field 0 (int= α) ∩ ([int= 0] ∪ [int= 1, [int, intlist1]])
1.

3. v1 has an existential type. Next v1 is opened to v2 of type field 0 (int= β) ∩

([int= 0]∪[int= 1, [int, intlist1]]), with the new bound type variable β addressing

the tag value.

4. Now v2’s tag is explicit in its type. We fetch v2’s tag to t, and assign type

int= β to t. Notice that the same type variable β appears both in the type

of the tag t and in the type of the sum value v2. It indicates the connection

between t and v2, because only by fetching the first field of v2 can we get a

value whose type has β in it.

5. Next is tag-checking, comparing the tag t with 0.

6. If t = 0, v2 is nil, and the control jumps to some label lnil, with v2 coerced

to a new value vnil of type [int= 0]. Otherwise v2 is cons, and the control

fall-through to lcons with v2 coerced to vcons of type [int= 1, [int, intlist1]].

The above steps 1-6 are implemented by LTAL instructions (1)-(6) in Figure 5.5

respectively. The corresponding Sparc instructions are on the right side of the table.

1Type variable α does not appear in the union type, so the ∃ quantifier can be lifted to the
outmost level.

103

LTAL Sparc
l : l :

(1) v0 = cunfold(v)
(2) v1 = csum2hastag(v0)
(3) (β, v2) = open(v1)
(4) t = v2[0] ld [r], rt

(5) cmpr(t, 0) cmp rt, 0
(6) iftag(=){v2} then (vnil, lnil) beq lnil

else (vcons, lcons)
lcons : . . . lcons : . . .
lnil : . . . lnil : . . .

Figure 5.5: LTAL Instruction Sequence for Discriminating Intlist1

Variables v0, v1, v2, vnil and vcons are all coerced values from v. They are assigned

the same register as v. Therefore, instructions (1)-(3) map to no Sparc instructions,

and no Sparc instructions are needed to move v2 to vnil or vcons in instruction (6).

Instruction iftag makes explicit the sum value v2 whose type will be refined.

Figure 5.6 shows typing rules for coercions cunfold and csum2hastag, and in-

structions open and iftag.

The cunfold rule can be proved by subtyping rule µα : κ.τ ⊂ τ [µα : κ.τ/α].

Proving the csum2hastag rule can be done as follows:

1. field 0 int= ti ⊂ ∃α : ΩN .field 0 int= α by existential-introduction rule.

2. field 0 int= ti ∩ τ ′
i ⊂ field 0 int= ti ⊂ ∃α : ΩN .field 0 int= α for any τ ′

i , by

subtyping rule τ ∩ τ ′ ⊂ τ , 1 and the transitivity of the subtyping relation.

Thus for all 1 ≤ i ≤ n, τi ⊂ ∃α : ΩN .field 0 int= α.

3. τ1 ∪ τ2 ∪ . . . ∪ τn ⊂ ∃α : ΩN .field 0 int= α, by 2 and subtyping rule

τ1 ⊂ τ τ2 ⊂ τ
τ1 ∪ τ2 ⊂ τ

104

ρ; LRT `c µα : κ.τ
cunfold

↪→ τ [µα : κ.τ/α]

α is a fresh type variable
τ = τ1 ∪ τ2 ∪ . . . ∪ τn

τi = field 0 int= ti ∩ τ ′
i ∀ 1 ≤ i ≤ n

ρ; LRT `c τ
csum2hastag

↪→ ∃α : ΩN .(field 0 int= α) ∩ τ

LRT ; ρ; Φ ` v : ∃α : κ.τ

LRT ` (ρ; ~; Φ; cc) {(α, v0) = open(v)} (ρ, α : κ; ~; Φ, v0 : τ ; cc)

cc = cc cmp(τα, i) LRT ; ρ; Φ ` v : (field 0 int= τα) ∩ τ
τ = τ1 ∪ τ2 ∪ . . . ∪ τn τi = field 0 int= ti ∩ τ ′

i ∀ 1 ≤ i ≤ n
τt = ∪{τj |1 ≤ j ≤ n, tj π i 6= false}

τf = ∪{τj |1 ≤ j ≤ n, tj π i 6= true}
LRT ; ρ; ~; Φ, v1 : (field 0 int= τα) ∩ τt; cc `` l1
LRT ; ρ; ~; Φ, v2 : (field 0 int= τα) ∩ τf ; cc `` l2

LRT ` (ρ; ~; Φ; cc) {iftag(π){v} then (v1, l1) else (v2, l2)} (ρ; ~; Φ; cc)

Figure 5.6: Typing Rules for cunfold, csum2hastag, open and iftag

105

4. τ1 ∪ τ2 ∪ . . . ∪ τn ⊂ (∃α : ΩN .field 0 int= α) ∩ (τ1 ∪ τ2 ∪ . . . ∪ τn), by 3 and

subtyping rules

τ ⊂ τ
τ ⊂ τ1 τ ⊂ τ2

τ ⊂ τ1 ∩ τ2

5. τ1 ∪ τ2 ∪ . . . ∪ τn ⊂ ∃α : ΩN .(field 0 int= α ∩ (τ1 ∪ τ2 ∪ . . . ∪ τn)), by (4) and the

fact that α is a fresh type variable and α does not appear in τ1 ∪ τ2 . . . ∪ τn.

The open rule is proved by the corresponding subtyping rule in TML.

Instruction iftag(π){v} then (v1, l1) else (v2, l2) does tag discrimination. It should

follow a cmpr instruction that compares the tag of v with an integer. The type-

checker checks in iftag instruction that: cc is cc cmp(τα, i), the result of comparing

the tag (of type int= τα) with i (of type int= i), v is of type (field 0 τα)∩τ ; and it re-

fines the types of v1 and v2 to (field 0 τα)∩τt and (field 0 τα)∩τf , respectively. This

refinement rules out disjuncts by the result of comparing the tag with an integer.

Type τt is a refinement of τ with no disjuncts in τ that conflict with the condition

codes. Type τf is the opposite case. For example, if the condition codes are set by

comparing v’s tag with 0, and π is ”equal”, τt would be the only disjunct with tag 0

(or bottom type in case there is no disjunct with tag 0), and τf would be the union

of the rest of the disjuncts. A constraint solver as in DTAL [69] is overkill for this

purpose.

Figure 5.7 shows the types of each variable during type-checking. Instruction

(1) unfolds v to v0. v0’s type is created by replacing the type variable α in the body

of the recursive type of v with intlist1 (cunfold rule). Instruction (2) coerces v0 to v1

and makes v1’s tag explicit in its type, indicated by type variable α′ (csum2hastag

rule). Instruction (3) opens v1 and binds a new type variable β for the tag. Every

106

l : v : µα : Ω.[int= 0] ∪ [int= 1, [int, α]]
(1) v0 = cunfold(v)

v0 : [int= 0] ∪ [int= 1, [int, intlist1]]
(2) v1 = csum2hastag(v0)

v1 : ∃α′ : ΩN .field 0 (int= α′) ∩ ([int= 0] ∪ [int= 1, [int, intlist1]])
(3) (β, v2) = open(v1)

v2 : field 0 (int= β) ∩ ([int= 0] ∪ [int= 1, [int, intlist1]])
(4) t = v2[0]

t : int= β
(5) cmpr(t, 0)

condition codes: cc cmp(β, 0)
(6) iftag(=){v2} then (vnil, lnil) else (vcons, lcons)

lcons : vcons : field 0 int= β ∩ [int= 1, [int, intlist1]]
. . .

lnil : vnil : field 0 int= β ∩ [int= 0]
. . .

Figure 5.7: Type-checking Discrimination of Intlist1

appearance of α′ in v1’s type is replaced by β (open rule). Then instruction (4)

fetches the tag to t and gives t type int= β, since v2 has type field 0 int= β. Then

instruction (5) compares the tag t and 0 and sets condition codes cc cmp(β, 0). In-

struction (6) rebinds v2 to vnil in lnil where condition codes are satisfied, and refines

vnil’s type to be (field 0 int= β)∩[int= 0] since the other disjunct [int= 1, [int, intlist1]]

conflicts with the fact that β = 0. Similarly, in lcons, v2 is coerced to vcons of type

(field 0 int= β) ∩ [int= 1, [int, intlist1]].

The connection between a tagged value (such as v2) and its tag (such as t)

is established by existential types and type variables, since every time we open a

variable of type ∃α : ΩN .field 0 int= α ∩ τ and assign it to some variable v, we get

a fresh type variable α′, and only v’s type field 0 int= α′ ∩ τ contains the new type

variable α′, and only by instruction load(v, 0) can we get a variable of type int= α′.

107

LTAL Sparc
v′ = cunfold(v)
(α, v′′) = testbox(v′) cmp r, 256
ifboxed{v′′} then (vcons, lcons) bge lcons

else (vnil, lnil)
lnil : . . . lnil : . . .
lcons : . . . lcons : . . .

Figure 5.8: LTAL Instruction Sequence for Discriminating Intlist3

Discriminating Intlist3

Tag-checking in discriminating Intlist3 is unnecessary, since neither constructor is

tagged. We only need to test whether a value is a pointer or not. A pointer means

cons and a small integer means nil.

Testing whether value v of type intlist3 is boxed could be done by comparing v

with the boundary between pointers and small integers. LTAL instruction testbox

does this comparison. Then a condition branch instruction ifboxed consumes the

condition codes set by testbox. From the assumption that no pointers point to the

first 256 space in the memory, if v ≥ 256 v is cons and we could rebind v to vcons of

type [int, Intlist3]. Otherwise, v is nil and we could rebind v to vnil of type int= 0.

As in the branch instruction iftag, vnil and vcons are assigned the same register as

v. We don’t need move instructions to move v to vnil or vcons.

The LTAL instructions for discriminating intlist3 are shown in Figure 5.8.

Like iftag, instruction ifboxed indicates the value whose type will be refined.

Since the type refinement is based on the result of testbox, the type-checker should

make sure the value used in ifbox is the same as the value in testbox. Otherwise,

there could be unsoundness. For example, in the following instruction sequence,

vc is cons and vn is nil. Instruction testbox tests whether vc is boxed. Instruction

108

ifboxed consumes the condition codes, but refines vn. The condition codes are

satisfied, thus the control goes to lcons and vcons coerced from vn is treated as if it

is cons, which would allow illegal access of two fields of vn (in fact vn is an unboxed

integer 0).

testbox(vc)

ifboxed{vn} then (vcons, lcons) else (vnil, lnil)

To prevent this unsoundness instruction testbox(v) binds a new type variable α

and rebinds v to v′. The meaning of α is the actual value of v. Again, v′ is just

an alias of v. They are in the same register. If v has type τ , then after instruction

(α, v′) = testbox(v), v′ has type int= α ∩ τ , and the condition codes would be

cc testbox(α), which is the same as cc cmp(α, 256). Type variable α ties the value

v′ and the condition codes from testbox(v). The checker will check in ifbox that α

both appears in the type of the sum value and the condition codes, which guarantees

the value we refine is the value we test, since α introduced by testbox only appears

in the type of v′ and the condition codes.

Instruction ifboxed{v} then (v1, l1) else (v2, l2) consumes the condition codes set

by testbox, and rebinds v of type int= 0 ∪ int= 1 ∪ . . . ∪ int= n − 1 ∪ τ to v1 of type

τ when v is boxed, or rebinds v to v2 of type range[0, n] when v is unboxed.

Typing rules for instructions testbox and ifboxed are in Figure 5.9.

The testbox rule could be considered as a syntactic sugar for the following steps:

(1) coerce v0 to v′
0 of type ∃β.int= β ∩ τ

(2) (α, v1) = open(v′
0)

(3) cmpr(v1, 256)

109

LRT ; ρ; Φ ` v : τ

LRT ` (ρ; ~; Φ; cc) {(α, v′) = testbox(v)} (ρ; ~; Φ, v′ : int= α ∩ τ ; cc testbox α)

cc = cc testbox τα

LRT ; ρ; Φ ` v : int= τα ∩ (int= 0 ∪ int= 1 ∪ . . . ∪ int= n − 1 ∪ τ ′)
τ ′ = τ1 ∪ τ2 ∪ . . . ∪ τm τi = (field 0 int= ti) ∩ τ ′

i ∀1 ≤ i ≤ m
LRT ; ρ; ~; Φ, v1 : τ ′; cc `` l1 LRT ; ρ; ~; Φ, v2 : range[0, n]; cc `` l2

LRT ` (ρ; ~; Φ; cc) {ifboxed{v} then (v1, l1) else (v2, l2)} (ρ; ~; Φ; cc)

Figure 5.9: Typing Rules for Testbox and Ifboxed

In the ifboxed rule, from the condition codes cc testbox(τα), in the true branch

we could reason that τα ≥ 256, and all disjuncts int= 0, int= 1, int= n − 1 could be

eliminated since they combined with int= τα do not satisfy τα ≥ 256. In the false

branch, all disjuncts with field 0 int= ti could be eliminated since field types imply

no less than 256.

Types of the variables during type-checking are listed in Figure 5.10. By cunfold

rule v is unfolded to v′ of type int= 0∪[int, intlist3]. Then instruction testbox coerces

v′ to v′′ of type int= β ∩ (int= 0 ∪ [int, intlist3]), with new bound type variable β in

it, and testbox also sets condition codes cc cmp(β, 0). Instruction ifboxed coerces

v′′ to vcons of type [int, intlist3] in lcons, and coerces v′′ to vnil of type int= 0 in lnil.

Discriminating Mylist

Discriminating mylist is done by boxing-checking followed by tag-checking. I will

show the details in Appendix B.

110

l :
v : µα : Ω.(int= 0 ∪ [int, α])

v′ = cunfold(v)
v′ : int= 0 ∪ [int, intlist3]

(β, v′′) = testbox(v′)
v′′ : int= β ∩ (int= 0 ∪ [int, intlist3])
condition codes: cc cmp(β, 0)

ifboxed{v′′} then (vcons, lcons) else (vnil, lnil)
lcons : vcons : [int, intlist3]
. . .
lnil : vnil : int= 0
. . .

Figure 5.10: Type-checking Discrimination of Intlist3

5.3.4 Discussion

No macro instructions for LTAL tag-discrimination means that the tag-checking

instructions can be mixed with unrelated ones by a scheduler for optimizations.

For simplicity the implementation uses linear search. LTAL also permits binary

search. To do an indexed jump would need extending LTAL, but the underlying

semantic model will permit this in a modular way. A jump table T for boxed

constructors C and D in the above example could be represented as a record [lC , lD]

of type (field 0 codeptr(ΦC)) ∩ (field 4 codeptr(ΦD)), where ΦC and ΦD are the

preconditions for lC and lD respectively. Tag discrimination is implemented by first

fetching tag t, then jumping to the entry indexed by t in table T. Checking the

jumping instruction might need case analysis to make sure every case is safe.

111

Chapter 6

Position-independent Code

In this chapter, I explain how the compiler generates position-independent code and

how the type-checker checks it. Why is position-independence necessary? Many

compilers do not generate position-independent code, but output object code with

symbols that stand for addresses in it. Later, right before execution, a link-editor

would replace the symbols with absolute addresses, and transform the object code

to executables. We need to trust the link-editor that it transforms safe object code

to safe executables.

To achieve the goal of FPCC—minimal TCB—a link-editor should be avoided

if possible. FPCC-ML compiler arranges that each compilation unit needs no link-

editing, and links to others using closures, in the style of SML/NJ [16, §3]. Code gen-

erated by the compiler can execute no matter where it is loaded. Thus a link-editor

is completely unnecessary, and the proving system does not need to reason about

any possible bugs in the link-editor. FPCC describes this position-independence in

its safety policy as, “a program is safe if, no matter where we load it in memory, it

will never access an illegal address or execute an illegal instruction” [8].

112

Another advantage of position-independent code is that it can be shared directly.

In order to reduce resource usage of many copies of common library routines, shared

libraries are often dynamically linked. If the libraries are position-independent,

sharing is more convenient [27].

For many programs the performance overhead of position-independent code is

negligible. The cost is about 3% in benchmarks measured by Tarditi and Diwan [61].

LTAL uses ideas from SML/NJ to achieve position-independence. But more

importantly, it provides a way to type-check position-independent code with no

PC-relative addressing, even in the setting of separate compilation. SML/NJ does

not have typed position-independent code.

6.1 Untyped Position-independent Code

Position-independent code must use relative addresses instead of absolute ones.

Relative jumps are not enough to achieve this. The problem arises when we move a

label into a register or store it in memory, which is needed to make a function-pointer

or a closure. The value of the label depends on where the code is loaded.

For an architecture with PC-relative addressing, such as Intel x86, absolute ad-

dresses can be transformed to relative ones very easily (see Section 6.4.1). But for

architectures without a PC-relative addressing mode, such as Sparc, the transfor-

mation is more involved.

LTAL adopts the solution used in SML/NJ. The basic idea is to transform

absolute addresses to relative ones that are relative to a “base” register. Each

function takes an extra “base” parameter, which is assigned the base register. When

the function is called, the caller puts an appropriate address into the base register.

113

The base register points to the beginning of a program when the program starts

executing.

6.1.1 Escaping Functions

When a function name appears in a non-application place, we call the function

escaping. The function name might be held in a register or in the memory, and

loaded later at arbitrary points; or it might be used in another compilation unit.

We cannot know statically all the call-sites of escaping functions.

What should the base parameter of an escaping function mean? What value

should be passed to the base parameter when the function is called?

Let us first look at what happens when an escaping function f is called by an

compilation unit C2 other than the unit C1 where f is defined. The caller in C2

needs to give the base register of f a proper value (some address in C1), but it knows

no addresses in C1 except the function pointer f , which points to the beginning of

the function’s machine code in the memory. Thus it is natural to make the escaping

function take its own start address as its base parameter, and let the caller pass the

function pointer to the base parameter.

This is exactly how LTAL is designed. An escaping function f takes a base

parameter, which means the base address of the function. The base address is

kept in a reserved register, and does not change during the execution of f . In the

body of f , the address of another label g is calculated from the base address and the

difference between g and f . When f is called, f is passed as its own base parameter.

Figure 6.1 illustrates position-independence transformation.

Three functions f , g and h are defined in the compilation unit 1. In function g

label f is moved to register r. Function h calls f .

114

Position-dependent Code Position-independent Code Sparc

(Compilation Unit 1)
f : [x, y, . . .] f : [basef(= f), x, y, . . .] f : (rb = f)

.

g : [. . .] g : [baseg(= g), . . .] g : (rb = g)

r = f r = baseg + (f − g) add rb, (f − g), r
.

h : [. . .] h : [baseh(= h), . . .] h : (rb = h)

basef = baseh + (f − h) add rb, (f − h), rb

call(f) call(f) ba f

(Compilation Unit 2)

l : [vf , . . .] l : [basel, vf , . . .] l : [rf , . . .]

.

(extract v′
f from vf) (extract v′

f from vf) (extract r′
f from rf)

basev = v′
f mov r′

f , rb

call(v′
f) call(v′

f) ba r′
f

Figure 6.1: Position-independence Transformation

After position-independence transformation, each function k would take an extra

parameter basek, whose value is the same as label k and is kept in a reserved register

rb. In function g, the address f is computed by adding baseg (in register rb) and

f − g (difference between f and g, a constant calculated by the compiler). Both

operands are independent of where the code is loaded. In function h before the

control transfers to f , h puts the address f in register rb. Like in g, f is calculated

from the base register (which now keeps the value of h) and the difference between

f and h. The transformed code is totally position-independent.

In unit 2, function l calls an external function closure vf . The linkage to the

compilation unit that defines vf is achieved by making vf a parameter of l. Closure

vf is a record that contains a function pointer and its free variables. Function l first

115

extracts the function pointer v′
f (kept in register r′

f) from closure vf , and puts v′
f

in the base register rb, and then calls v′
f .

6.1.2 Known Functions

A function whose name only appears in application position is a known function.

Its call-sites are all known when the compiler compiles the unit where the function

is defined.

As an important optimization, when a “known” function is called, it does not

need its own base argument—it can use the base of one of its known callers. This

avoids an instruction to assign the base register in local loops and branches. For

example, in the following table, function k is a known function and it uses its caller

f ’s base argument. When f falls through to k, no instruction is needed to give the

base register a new value since it is already in place.

LTAL Sparc

f : [basef , . . .] f :

.

k : [basef , . . .] k :

.

Function k will never be put into a register or in a closure, nor will it be called

externally. There is no need to build a closure for k.

116

LTAL Sparc

(Compilation Unit 1)

f : [basef , . . .] f :

.

g : [baseg, . . .] g :

v = addradd(baseg, vdiff(f, g)) add rb, Cfg, rv

.
h : [baseh, . . .] h :

basef = addradd(baseh, vdiff(f, h)) add rb, Cfh, rb

call(f)[basef , . . .] ba f

Figure 6.2: Position-independence Example

6.2 LTAL Instructions

The difference between two labels l1 and l2 is actually a number. But LTAL could

not simply use a number for l1 − l2, because the type-checker needs to know the two

labels. Thus, LTAL uses a value constructor vdiff(l1, l2) to express l1 − l2.

Adding the base register with a vdiff value is performed in LTAL by instruction

addradd. The LTAL instruction addradd(v1, v2) is actually v1 + v2, and is mapped

to the Sparc add instruction. But addradd is specialized for address arithmetic. It

has a different typing rule than the normal integer arithmetic instruction.

Figure 6.2 shows the LTAL instructions for unit one in Figure 6.1.

6.3 Type-checking Position-independent Code

6.3.1 Moving Labels to Registers

To type-check position-independent code, LTAL introduces new type constructors

addr and diff. The former gives a type to the base address of a label, and the

117

latter gives a type to the difference between two labels. For example, the base

parameter basef of function f is given type addr(f), and value vdiff(l1, l2) is given

type diff(l1, l2).

The typing rule of instruction v = addradd(basef , vdiff(g, f)) checks that vari-

able basef has type addr(f) and value vdiff(g, f) has type diff(g, f), and assigns

type addr(g) to v.

The typing rules for the vdiff value and the addradd instruction are as follows.

LRT ; ρ; Φ ` vdiff(g, f) : diff(g, f)

LRT ; ρ; Φ ` v1 : addr(f) LRT ; ρ; Φ ` v2 : diff(g, f)

LRT ` (ρ; ~; Φ; cc) {v = addradd(v1, v2)} (ρ; ~; Φ, v : addr(g); cc)

The semantic model of addr(l) would be the program start address plus the

offset of l. Type diff(l1, l2) is modeled as l1 − l2. The addradd rule could be derived

from the semantics of add instruction.

The types of variables during type-checking functions in compilation unit one in

Figure 6.2 are shown in Figure 6.3.

6.3.2 Calling External Functions

Position-independence transformation changes the types of function closures. In the

definition of a function f , the base parameter has type addr(f). But when f is called

in a compilation unit other than where it is defined, its label is (statically) unknown

at the call site. Then the type of its base cannot be addr type. LTAL uses existential

types: the type of f becomes ∃β : ΩN .codeptr[~α : ~κ](m, cc, [base : int= β, . . .]). The

type variable β stands for the base address of f .

118

(Compilation Unit 1)

f : [basef : addr(f), . . .]

. . .

g : [baseg : addr(g), . . .]

v = addradd(baseg, vdiff(f, g))
v : addr(f)

. . .
h : [baseh : addr(h), . . .]

basef = addradd(baseh, vdiff(f, h))

basef : addr(f)

call(f)[basef , . . .]

Figure 6.3: Type-checking Compilation Unit One

In compilation unit two, the type of the extern function pointer v′
f would be like

∃β : ΩN .codeptr[~α : ~κ](m, cc, [base : int= β, . . .]).

To make sure that an extern function pointer v′
f itself is passed to its base when

v′
f is called, β is “anded” to the body of the existential type, thus v′

f is made to have

type ∃β : ΩN .(int= β ∩ codeptr[~α : ~κ](m, cc, [base : int= β, . . .])). Before v′
f is called,

it is opened to v′′
f of type int= β ′∩codeptr[~α : ~κ](m, cc, [base : int= β ′, . . .]), with new

type variable β ′. Then v′′
f is coerced to v1 (the base address of f) and v2 (the function

pointer). v1 has type int= β ′ and v2 has type codeptr[~α : ~κ](m, cc, [base : int= β ′, . . .])

(see Figure 2.3 for cproj rules). Then v1 is passed to the base parameter of v2. β ′ is

an abstract type variable, and only value v1 coerced from the function pointer has

type β ′ and can be passed to the function pointer v2.

The LTAL instructions for compilation unit two in Figure 6.1 are shown in

Figure 6.4. Type-checking unit two is shown in Figure 6.5.

119

LTAL Sparc

(Compilation Unit 2)

l : [basel, vf , . . .] l :

.

(extract v′
f from vf) (ld . . . , rf)

(β ′, v′′
f) = open(v′

f)

v1 = cproj1(v′′
f)

v2 = cproj2(v′′
f)

base = v1 mov rf , rb

call(v2) jmp [rf]

Figure 6.4: LTAL Instructions for Compilation Unit Two

6.3.3 Making Closures

To make a function closure, we need a function pointer of a codeptr type without any

label in it, because it might be called in other compilation units. Each compilation

unit knows only the labels defined within itself. Coercion addr2code would coerce

v of type addr(l) to a codeptr type codeptr[~α : ~κ](m, cc, base : addr l, ~v : ~τ), if there

is such a function declaration

l[~α : ~κ](m, cc, base : addrl, ~v : ~τ) = . . .

Coercion c2inters(cid, caddr2code) transforms type addr(l) to intersection type

addr(l) ∩ codeptr[~α : ~κ](m, cc, base : addr(l), ~v : ~τ), where the first conjunct is the

result of applying cid to addr(l) and the second conjunct is applying caddr2code to

addr(l). It is proved by subtyping rule

τ ⊂ τ1 τ ⊂ τ2

τ ⊂ τ1 ∩ τ2

120

(Compilation Unit 2)

l : [basel : addr(l), vf : . . . , . . .] l :

.

(extract v′
f from vf) (ld . . . , rf)

v′
f : ∃β : ΩN .(int= β ∩ codeptr[~α : ~κ](m, cc, [base : int= β, . . .]))

(β ′, v′′
f) = open(v′

f)

v′′
f : int= β ′ ∩ codeptr[~α : ~κ](m, cc, [base : int= β ′, . . .])

v1 = cproj1(v′′
f)

v1 : int= β ′

v2 = cproj2(v′′
f)

v2 : codeptr[~α : ~κ](m, cc, [base : int= β ′, . . .])

base = v1 mov rf , rb

base : int= β ′

call(v2) jmp [rf]

Figure 6.5: Type-checking Compilation Unit Two

Coercion cpack can be used to hide the addr type of the base parameter in

the codeptr type, and create an existential type desired for a function pointer in a

closure. This rule could be proved by the introduction rule of existential types.

The typing rules of caddr2code, c2inters and cpack are shown as follows.

l is declared as: [~α : ~κ](m, cc, ~v : ~τ) = . . .

ρ; LRT `c addr(l)
caddr2code

↪→ codeptr[~α : ~κ](m, cc, ~v : ~τ)

ρ; LRT `c τ
c1
↪→ τ1 ρ; LRT `c τ

c2
↪→ τ2

ρ; LRT `c τ
c2inters(c1,c2)

↪→ τ1, τ2

τ1 is of kind κ

ρ; LRT `c cpack[τ1, ∃α : κ.τ2]
τ2[τ1/α]

↪→ ∃α : κ.τ2

121

LTAL Sparc

v : int= addr(f)
v′ = c2inter(cid, caddr2code)(v)
v′ : int= addr(f) ∩ codeptr[~α : ~κ](m, cc, base : int= addr(f), . . .)
vf = pack[addr(f),

∃α : ΩN .int= α ∩ codeptr[~α : ~κ](m, cc, base : int= α, . . .)](v′)
vf : ∃α : ΩN .int= α ∩ codeptr[~α : ~κ](m, cc, base : int= α, . . .)

Figure 6.6: Create a Closure

Figure 6.6 shows LTAL instructions that create a function pointer that could be

stored in the closure of function f from a variable of type int= addr(f).

6.4 Related Work

6.4.1 PC-relative Addressing in TALT

Crary’s TALT supports PC-relative addressing [21]. Reasoning about PC-relative

addressing would make the type system complicated, because the types of PC-

relative addresses depend on physical locations. To avoid this complication, TALT

introduces a transformation called delocalization. Each code block takes a start

address in its code pointer type. Delocalization transforms each PC-relative address

to an absolute address calculated from the start address and the relative address.

Code is always type-checked after delocalization. Thus there is no need to give

typing rules to relative addresses. The following typing rule from the paper explains

the idea:

∆ ` Γ ∆; Ψ; Γ ` [v]a

∆; Ψ ` v : code(a, Γ)

122

It means a code block v has type code(a, Γ) if the precondition Γ is valid (∆ ` Γ)

and the delocalized block type-checks under Γ (∆; Ψ; Γ ` [v]a). The address a in

the code type is the start address. Value v consists of a sequence of instructions.

The transformation [v]a applies delocalization to each instruction in v.

Position-independent code can be implemented by PC-relative addressing. Ac-

tually the start address in TALT is almost the same as that of LTAL for escaping

functions. For example, moving a label l to a variable v could be implemented by

relative addressing:

f : code(f, Γ)

v = pcrel(l − f)

. . .

l : . . .

Operator pcrel(n) computes PC +n. Since it appears in the first instruction of

f , when executing this instruction, PC should be the same as f . Thus pcrel(l − f)

is equal to the start address of l.

The above sequence with relative addressing would be translated to the following

one after delocalization:

f : code(f, Γ)

v = l

. . .

l : . . .

The delocalization phase computes (f + (l − f)) and puts the result l directly

in the code.

123

Notice that the type-checker checks only the transformed sequence, instead of

the original one.

The difference between TALT’s PC-relative addressing and LTAL’s approach is:

• in TALT, all relative addresses are with respect to PC. But in LTAL, they

are relative to the base register rb since Sparc architecture does not provide

PC-relative address mode. The program makes sure the base register has a

correct value.

• TALT does not type-check the position-independent code to be executed, but

the transformed code after delocalization. Thus the delocalization phase must

be trusted. LTAL type-checks position-independent code directly. It does not

need a trusted transformation like delocalization.

124

Chapter 7

Certifying Compiler

In this chapter I will explain the certifying compiler FPCC-ML. It translates core

ML programs to Sparc machine code and a machine-dependent LTAL program

through type-preserving compilation. Both the machine-code program and the

LTAL program will be sent to a checker and the checker “type-checks” the machine-

code program with the guidance of the LTAL program.

FPCC-ML is based on the SML/NJ compiler. We reuse SML/NJ’s front end,

we have built a new ”middle end”, and we have constructed a typed back end based

on the untyped back end of SML/NJ.

7.1 SML/NJ

SML/NJ is an industrial-strength compiler that compiles Standard ML programs

to machine code of many architectures, including Sparc, Mips, Intel x86 and Al-

pha [10, 56]. It was first developed by Appel and MacQueen, and then expanded

and modified by many other people.

125

FLINT

AlphaIntel X86Mips

MLRISC

CPS

 CPS−Conversion
Closure Conversion

Optimizations

FLINT

Front End

SML Source

Sparc

Figure 7.1: Pipeline of SML/NJ

The pipeline of SML/NJ is shown in Figure 7.1. The front end translates a

source program to intermediate representation FLINT through parsing and type-

checking. The middle end performs some optimizations on FLINT. After CPS- and

closure conversion, most type information has been lost from the program. The

back end MLRISC takes the untyped result of CPS- and closure conversion, does

instruction selection and register allocation, and emits machine code.

The front end first parses SML source programs and builds abstract syntax trees,

then it performs type inference and type-checking, followed by the elaboration of

the abstract syntax trees to the strongly typed intermediate language FLINT.

During the front end, modules are translated to structures, and higher-order

modules are translated to (polymorphic) functions. The front end handles the

module system. Later phases only need to deal with the core language constructors.

126

FLINT is based on a predicative variant of polymorphic calculus Fω [51, 28]. It

is designed as a common intermediate representation for various source languages

and various architectures. It is expressive and efficient. Several techniques such

as hash consing and memoization are used to reduce the cost of representing and

manipulating types during compilation.

The middle end performs several conventional optimizations that translate FLINT

to FLINT, including optimizations based on control and dataflow analysis, lambda-

based reductions, and type specialization that reduces polymorphism.

The CPS-conversion transforms typed FLINT to an untyped representation,

CPS. The control flow is made explicit by continuations. Then closure conversion

transforms each CPS function so that the free variables of each function are now

parameters of the function. The closure representation is optimized to be space

efficient [55]. More conventional dataflow optimizations are carried out at this

stage.

The back end MLRISC was developed mainly by George and Leung [26]. ML-

RISC is aimed to be a generic framework for compiler back ends. It is customiz-

able and retargetable: it can be customized to compile various source languages

to various architectures. Most back end modules, including the instruction selec-

tion, register allocation, and instruction scheduling, are parameterized over machine

specifications so that they can be reused for multiple architectures. To generate a

compiler back end, users specialize these modules for their target machine. ML-

RISC has been used in many compiler projects including SML/NJ for years, and

generates high-performance code.

The untyped CPS representation is first translated to MLTree, a machine-

independent representation used by MLRISC as an interface for users. Then an

127

instruction selection module (specialized for the target architecture) creates a flow

graph of the target machine instructions from MLTree. The register allocation

module assigns physical registers to temporaries. Last the emitter emits machine

code.

The whole back end is untyped, including the intermediate representation ML-

Tree and the flowgraph.

MLRISC has an annotation mechanism [36]. Annotations in MLRISC are like

comments; in fact, they are emitted as comments in assembly code. They have

no runtime effect. One can annotate cells (pseudoregisters that will be mapped

to physical registers or memory words), instructions, code blocks, and compilation

units. Each annotation describes a property of the construct it annotates, and

a construct can have many annotations addressing different properties. MLRISC

provides ways to create, append, extract and remove annotations.

Originally MLRISC developers added this mechanism to propagate type infor-

mation to code optimization phases. Annotations have been used extensively in

MLRISC to pass information through the back end without changing existing data

structures. Data abstraction hides the representation of client annotations from

MLRISC’s register allocator and instruction selector.

7.2 Overview of FPCC-ML

The pipeline of FPCC-ML is shown in Figure 7.2.

The FPCC-ML compiler borrows the front end of SML/NJ to translate core

ML source programs to FLINT. Then typed CPS- and closure conversion convert

FLINT to another typed intermediate language NFLINT. Next, NFLINT is trans-

128

SparcSparc+ LTAL

NFLINT

Break down instructions

Add cocersions

Machine−independent LTAL

Typed back end

MLRISC

Front end

Typed closure conversion

Typed CPS−conversion

FLINT

SML Source

Figure 7.2: Pipeline of FPCC-ML

129

lated to machine-independent LTAL: complex instructions are broken into sequences

of LTAL simple instructions, and coercions are inserted to indicate subtyping rela-

tions. Last, the typed back end built on top of MLRISC generates Sparc machine

code and an LTAL program that has the same semantics as the machine-code pro-

gram. The Sparc code could be executed by the FPCC runtime system.

Machine-independent LTAL is actually a different language from LTALSparc ,

but they have many common constructs. The only difference between the two is

that machine-independent LTAL is more abstract. One machine-independent LTAL

instruction might correspond to several LTALSparc instructions (and several Sparc

instructions). Also machine-independent LTAL programs don’t have the full LRT

environments since L and R are only available after the back end. The type-checker

of machine-independent LTAL doesn’t rely on these two mappings.

The FPCC-ML compiler differs from SML/NJ in several aspects:

• The FPCC-ML compiler preserves type information from the source language

all the way down to the machine language. Each compilation stage transforms

types along with programs. Each of the intermediate representations FLINT,

NFLINT and LTAL is strongly typed, and every intermediate compilation

result can be type-checked. The type-preserving compilation was very helpful

in finding bugs during the development of the compiler. Many bugs were

manifested as type errors and were caught by the type-checker of the result

language. Therefore I could pinpoint the very stage where the errors occurred.

• The FPCC-ML compiler serves as a front end of our FPCC system. The

emphasis is to generate enough type information so that the proving sys-

tem could construct machine-checkable safety proofs from machine programs.

130

Thus I have not paid much attention to performance at this time. FPCC-ML

has not included many optimizations in SML/NJ. It could not compete with

SML/NJ where many people have made effort to improve the compilation and

code generation. But I speculate that FPCC-ML could accommodate many

optimizations in SML/NJ and make its performance competitive. Preserv-

ing type information during these optimizations should not be a big problem

because of the low-level type constructors in LTAL and LTAL’s extensibility.

• FPCC-ML does not deal with module system yet, because higher-order mod-

ules require higher-order kinds, which the underlying semantic model has not

supported yet.

7.3 Typed Intermediate Language NFLINT

The transformation from FLINT to NFLINT was implemented by Hai Fang at

Yale University. NFLINT is a simplified version of FLINT, with higher-order kinds

removed.

7.3.1 Syntax

Figure 7.3 shows NFLINT syntax. Notice that the types and instructions of NFLINT

are standard. Some NFLINT constructors are abstract: they do not specify low-

level implementation details. For example, the sum type sum(m, τ1, τ2, . . . , τn)

means m unboxed constructors and n boxed constructors which carry values of

type τ1, τ2, . . . , τn respectively. It does not specify whether these carried values are

grouped in a record or flattened. In the former case, a boxed sum value would

131

τ ::= α | def k | int | n | array(τ1, τ2) | ref(τ) Types

| µα.τ | sum(m, τ1, τ2, . . . , τn) | [τ1, τ2, . . . , τn] | ∃α.τ

| code(~α)[τ1, τ2, . . . , τn]

v ::= x | i | l Values

op ::= + | − | ∗ | / Arith. Ops

ι ::= x = pack(τ1, τ, v) | (α, v′) = open(v) Instructions

| x = record(v1, v2, . . . , vn) | x = select(v, vi)

| x = fold[τ](v) | x = unfold(v)

| x = mkarray(vl, v0) | x = sub(va, vi) | update(va, vi, v)

| x = ref(v) | x =!(v) | v := v′

| x = v | x = v1opv2 | x = inj[τ](v)

| switch(v)[(e1, e2, . . . , em), ((x1, e
′
1), (x2, e

′
2), . . . , (xm, e′

m))]

| if(π, v1, v2) then e1 else e2

| call(v)[τ1, τ2, . . . , τn][v1, v2, . . . , vm]

| x = ptapp(v)[τ1, τ2, . . . , τn]

Figure 7.3: NFLINT Syntax

always be represented as a two-field record: the tag and a pointer to the carried

value. The latter case might have boxed sum values represented as records of more

than two fields. The implementation could do either way. NFLINT does not reason

about position-independence either.

Some NFLINT instructions are complex, such as record, mkarray and switch.

They will be expanded to multiple machine instructions.

7.3.2 CPS- and Closure Conversion

FLINT programs are translated to NFLINT by typed CPS- and closure conversion

in the style of TAL [44]. FPCC-ML does not have an intermediate language between

these two transformations as λk in TAL.

132

In the CPS-conversion, each function has one more parameter, the continuation

(the rest of the program). A function does not return. At the end of a function,

its continuation is invoked, and the result computed by the function is passed as

a parameter to the continuation. The topmost function returns to the operating

system. Thus no stack is needed.

A conventional closure conversion creates for each function a closure, a record of

the function pointer and the free variables used in the function. The free variables

are passed as parameters to the function. Every function is closed after closure

conversion.

The typed closure conversion used in FPCC-ML is simpler than the one proposed

by Minamide et al. [42]. It adopts type-erasure semantics instead of type-passing.

A polymorphic function does not need to create another environment for free type

variables, nor does the type system need abstract kinds or translucent types for

type environments.

7.4 Transformations from NFLINT to Machine-

independent LTAL

NFLINT is not low-level enough for assembly languages. NFLINT is translated to

machine-independent LTAL by several steps:

• First, complex NFLINT instructions are broken into sequences of LTAL in-

structions. For example, NFLINT record and mkarray instructions are trans-

lated to sequences of LTAL allocation instructions, with an LTAL instruction

for each allocation step.

133

The compiler also needs to choose representations for datatypes, since in LTAL

data representations are made explicit. Also tagging and tag-fetching are

made explicit and implemented by LTAL instructions when creating and dis-

criminating sum values.

• Next, coercions are added to LTAL programs. This is done through type-

unification during type-checking the LTAL program translated from NFLINT.

Since the NFLINT program has been type-checked before being translated to

LTAL, the LTAL program should also type-check. This stage figures out

subtyping and inserts corresponding coercions as hints of subtyping to the

LTAL checker.

• The next transformation generates position-independent LTAL code, as ex-

plained in Chapter 6.

• Next, functions in a program are reordered to get maximum number of fall-

throughs. No Sparc instruction is needed for fall-through. If a function has

only one caller, it will be put immediately after the caller, and the call in-

struction at the end of the caller will become an LTAL calln instruction.

7.5 Typed Back End

We did not originally intend to take advantage of MLRISC, because MLRISC is

totally untyped while we need type-preserving transformations. When we learned

of MLRISC’s annotation mechanism, we tried using annotations to connect the

typed representation we need and the untyped one MLRISC uses. The experiment

turned out to be rewarding: reusing MLRISC this way is much less work than

134

writing a back end from scratch, and has the advantages that MLRISC provides,

such as generating code with good performance and being retargetable.

7.5.1 Annotate MLRISC with LTAL

When an LTAL program is transformed to MLTree, the MLRISC interface language,

the compiler annotates the MLTree program with the LTAL program. Later the

LTAL annotations are carried through the back end optimizations.

Cells are annotated with variables, MLRISC instructions with LTAL instruc-

tions, code blocks with function signatures, and compilation units with type defini-

tions. LTAL programs correspond to MLRISC programs very closely.

However, MLRISC does not take care to maintain annotations through every

program transformation. For example, sometimes MLRISC removes annotations of

instructions, or creates new instructions without annotations because it does not

know what annotations to give them. So the main difficulty in reusing MLRISC is

how to restore the missing annotations.

7.5.2 Basic Blocks

Part of the solution to missing annotations is to design LTAL to provide annotations

when MLRISC rewrites instructions.

At first LTAL used extended basic blocks: conditional branch instructions such

as if(v) then(l, σ) else(l′, σ′) could appear in the middle of a function body. To

avoid long jumps, MLRISC would create a new block for the fall-through case and

change the “jump” block to be the fall-through case. In the following example,

the neq case has more than 221 instructions, but the eq case does not. MLRISC

135

simply switches the two cases, changing the code in the left column to the one in

the right. Label l3 is for illustration purpose. It does not exist before MLRISC

switches branches.

l1 : . . . l1 : . . .

be l2 (else l3) bne l3 (else l2)

(l3 :)neq case (l2 :)eq case

l2 : eq case l3 : neq case

Newly created block l3 needed to be annotated with an LTAL function signa-

ture, which MLRISC could not provide since there was no LTAL function that

corresponds to this new block. So in the final design LTAL makes each basic block

a function. Thus in the above example, when MLRISC moves blocks, the LTAL

function signature for l3 is already there.

The important lesson here is that a good TAL should serve not only as an inter-

face between a compiler and a checker, but also as a useful intermediate language in

the back-end phases of the compiler itself. By using basic blocks instead of extended

basic blocks, LTAL becomes useful as such an intermediate language.

7.5.3 Hooks

The annotation approach to preserve types needs tight connection between machine

code and LTAL annotations. It causes problems when MLRISC breaks annotations.

For example, MLRISC transformed instruction d1 = 3+ d2 to d1 = d2 +3 (thus one

Sparc instruction suffices), and annotated the new instruction with the annotation

of the old one. The LTAL annotation of d1 = 3+d2 would be like v1 = 3+v2 where

v1 and v2 are assigned registers d1 and d2 respectively. This annotation is invalid

136

for d1 = d2 + 3. The checker will try to map 3 to d2 and v2 to 3, and fail because

it cannot match an LTAL immediate and a register, or an LTAL variable and an

immediate operand.

This problem results from the fact that MLRISC does not know the meaning

of annotations or the connection between annotations and code, thus could not

preserve them. Yet MLRISC should not understand annotations because different

users give different annotations. The solution of FPCC-ML is that MLRISC users

provide hooks (functions) that manipulate annotations, and MLRISC calls those

hooks when it transforms the code.

7.5.4 Switch Operands

The commuting transformation (shown above) will call a function of type annotation →

annotation to restore annotations before it exchanges the two operands. This func-

tion takes the old instruction’s annotation—an LTAL instruction, and rewrites it

to fit the new instruction.

Before Switching After Switching

LTAL Annotation v1 = 3 + v2 v1 = v2 + 3

MLRISC Instruction d1 = 3 + d2 d1 = d2 + 3

7.5.5 Load Large Integers

Another case in which MLRISC breaks LTAL annotations is when it splits an in-

struction into several ones. For example, pseudo-instruction d = 4097 is split into

two instructions, d = sethi 4 and d = d or 1, where the first instruction loads the

high 22 bits of constant 4097 to the high 22 bits of register d, and the second in-

137

struction loads the low 10 bits. In the modified back end, MLRISC calls a function

to generate the annotations for the two new instructions.

Before Transformation After Transformation

LTAL Annotation v = 4097 v = sethi 4

v = v + 1

MLRISC Instruction d = 4097 d = sethi 4

(v maps to d) d = d or 1

7.5.6 Spilling

In case of not enough registers, the register allocator will spill some registers into

the spilled area (in the memory), and load them back to registers when needed.

This transformation generates new instructions, therefore new LTAL annotations

are needed.

Register to Memory

When a register is spilled into the memory, MLRISC calls a hook that creates a new

LTAL variable corresponding to the spilled location. A new LTAL move instruction

from the variable that maps to the register to the new LTAL variable is generated

for the MLRISC store instruction.

138

Before Transformation After Transformation

LTAL Annotation v = . . . v = . . .

v′ = v

MLRISC Instruction d = . . . d = . . .

(v maps to d and v′ to s) st d, s

Memory to Register

Before using a spilled word, it must be first loaded back to a register. Similar to the

spilling phase, a hook creates a new LTAL variable for the register. A new LTAL

move instruction annotates the MLRISC load instruction.

Before Transformation After Transformation

LTAL Annotation v = v′

. . . v v . . .

MLRISC Instruction ld s, d

(v maps to d and v′ to s) . . . d d . . .

7.6 Measurements

The compiler from core ML to LTAL+machine code is written in ML; its size

(including blank lines and comments) is 50k lines of the Standard ML of New

Jersey (110.35) front end (unmodified); 1.8k lines of code copied and modified from

the implementation of the SML/NJ interactive top-level loop; 2.7k lines to translate

139

FLINT to NFLINT; 7.8k lines to translate NFLINT to LTAL; 1.2k lines to interface

of MLRISC; and approximately 50k lines of the MLRISC system1 itself, of which

400 lines are new or modified to support our more-general annotation interface.

7.6.1 Performance

We2 compared our performance3 to that of SML/NJ 110.35 on two small bench-

marks: Life (adapted from the Standard ML benchmark suite) and RedBlack, which

uses balanced trees to do queries on integer sets.

Benchmark redblack life

SML/NJ Compile time 0.300 0.490 sec.

SML/NJ Run time 0.013 0.262

FPCC Compile time 0.955 2.998

Safety check time 0.183 0.432

FPCC Run time 0.014 0.407

FPCC/SMLNJ slowdown 1.036 1.555

Sparc instrs. 870 1816

LTAL tokens 34278 57670

Coercion tokens 17% 23%

Our compile time is not competitive (2.998 seconds to compile Life compared

to 0.49 seconds for the production release of SML/NJ); we have not engineered our

compiler algorithms as necessary for a production compiler.

1The MLRISC software has several other analyses, optimizations, and target machine specifi-
cations that are not used and counted here.

2In this section I use “we” to represent Dinghao Wu and I. Dinghao Wu has implemented an
LTAL checker in Twelf and SICStus Prolog.

3Measured on Sun UltraSparc E250, 400 MHz.

140

Run time is almost as good as SML/NJ. We do not garbage collect; SML/NJ

spends 0.02% of its time garbage-collecting on these benchmarks. SML/NJ’s better

performance is probably because it has more sophisticated liveness-based closure

conversion and fills branch-delay slots.

To measure Safety check time, we translate our lemmas into Prolog rules and

time the execution in SICStus Prolog. As an alternative, we have built a minimal-

size interpreter Flit for syntax-directed lemmas; it is much simpler than Prolog

because it doesn’t require backtracking or full unification; checking in Flit is about

five times slower than SICStus, but it makes the TCB much smaller since we don’t

have to trust the Prolog compiler and interpreter [68].

Simple encodings should be able to represent LTAL in a few bits per token, so the

LTAL expression should not be significantly bigger than the machine-language pro-

gram. Eliminating the coercions—thus requiring some backtracking in the checker—

could save about 20% in LTAL size. The builders of SpecialJ [20] and TALx86 [43]

have devoted substantial effort to reducing proof size—not just removing coercions

but getting the checker to reconstruct other data as well. Clearly, there is some

engineering to be done in this respect, although we would not want to complicate

any part of the checker that is in the trusted base.

141

Chapter 8

Summary and Future Work

In summary, this thesis explains the typed assembly language LTAL used in FPCC

to reason about code safety. The FPCC-ML compiler compiles a core ML source

program to Sparc machine code and an LTAL program through type-preserving

compilation, and with the guidance of the LTAL program, the prover constructs for

the machine code a safety proof that is machine-checkable in a simple logic from

minimal axioms.

8.1 Summary of Contributions

A weakness of previous PCC systems is that the proof-checking infrastructure is

too complex to prove sound. LTAL is a syntactic low-level typed assembly language

with a semantic model that backs up its soundness with a machine-checkable proof.

The semantic modeling technique makes LTAL easily and safely extensible. My

thesis work did not include the LTAL soundness proof, which is being done by

others in the FPCC project, but it does include the design of the LTAL language.

142

LTAL is closer than other TALs to machine language that is actually executed,

in the sense that it provides more primitive instructions each of which maps to at

most one machine instruction. To type-check these primitive instructions, LTAL

needs an expressive type system to describe the low-level machine details, yet the

type-checking is still decidable and simple.

Also because of these primitive instructions, LTAL instructions are more schedu-

lable than other TALs using macro instructions. The design goal is to give the

scheduler as much flexibility as possible.

I have implemented a prototype compiler that transforms core ML programs to

Sparc code annotated with LTAL programs. In the compiler an untyped back end

preserves types by annotations and hooks.

At this stage, the LTAL language is almost stable for the purpose of compiling

core ML to Sparc machine code, but the development of the FPCC-ML compiler is

still undergoing. Many features and optimization could be accommodated.

8.2 Future Work

Array Bounds Checking Elimination Currently the LTAL type system pro-

vides sufficient support for reasoning about array bound checking elimination, but

the compiler has not yet fully implemented this optimization.

The elimination requires that the compiler figure out the variables whose values

should be tracked and refine their types using singleton types. One possible way

is to let the programmer specify this as in DTAL. Another way is by data flow

analysis. All variables whose values will affect an array index will be tracked. This

analysis is easier to be done before LTAL since LTAL is too low-level.

143

Furthermore, reasoning about whether array indices are in range would introduce

integer constraint solving. The type-checker should stay simple and decidable and

avoid a constraint solver. Thus, the optimizations that LTAL allows are likely to

be weaker than that of DTAL.

Garbage Collection To keep the TCB minimal, we would like the garbage col-

lector to be out of the TCB, thus we need to reason about the safety of garbage

collection. To support this, we need to extend LTAL, probably adding into LTAL

a set of primitive constructors to represent storage. Region-based calculus seems

very promising [63, 65, 5].

Other Source Languages LTAL targets ML-like functional programming lan-

guages. It provides support for polymorphism, ML-style user-defined datatypes, and

closures (to deal with higher-order functions). For other languages such as Java, this

is not enough. There is very significant research work on representing classes and

objects in a type calculus, mostly typed intermediate language [4, 17, 18, 67, 20, 33].

But there is not yet one calculus that could express machine code and whose sound-

ness proof could be machine-checked. Thus they could not be used in FPCC directly.

Also, it could be interesting to investigate how the proving system adapts to the

change of source language.

144

145

Appendix A

Formal Semantics

A.1 Kinding Rules

T ; ρ ` α : ρ(α) T ; ρ ` int : Ω T ; ρ ` boxed : Ω

T ; ρ, α : κ ` τ : Ω

T ; ρ ` ∃α : κ.τ : Ω

T ; ρ, α : κ ` τ : Ω

T ; ρ ` µα : κ.τ : Ω

T ; ρ ` τ1 : ΩN T ; ρ ` τ2 : ΩN

T ; ρ ` τ1 + τ2 : ΩN T ; ρ ` freem : ΩN

T ; ρ ` n : ΩN

T ; ρ ` τ : ΩN

T ; ρ ` intπ τ : Ω

T ; ρ ` τ : Ω

T ; ρ ` field i τ : Ω

T ; ρ ` τ1 : Ω T ; ρ ` τ2 : Ω

T ; ρ ` τ1 ∩ τ2 : Ω

T ; ρ ` τ1 : Ω T ; ρ ` τ2 : Ω

T ; ρ ` τ1 ∪ τ2 : Ω

ρ′ = ρ, α1 : κ1, . . . , αj : κj T ; ρ′ ` m : ΩN

T ; ρ′ `cc cc T ; ρ′ ` τi : Ωi = 1, . . . , n

T ; ρ ` codeptr[α1 : κ1, . . . , αj : κj](m, cc, v1 : τ1, . . . , vn : τn) : Ω

146

T ; ρ ` addr(l) : ΩN T ; ρ ` diff(l1, l2) : ΩN

T ; ρ ` T (k) : κ

T ; ρ ` def k : κ

T ; ρ ` τ1 : ΩN T ; ρ ` τ2 : Ω

T ; ρ ` array(τ1, τ2) : Ω

T ; ρ ` τ : Ω

T ; ρ ` offset i τ : Ω

T ; ρ ` τ1 : Ω T ; ρ ` τ2 : Ω

T ; ρ ` range[τ1, τ2] : Ω

A.2 Branch to a Function

l is declared as l[α1 : κ1, . . . , αj : κj](m, cc, v1 : τ1, . . . , vn : τn) = ι1; . . . ; ιk

n1 ≥ m cc′ = cc or cc = cc none LRT ; ρ; Φ ` vi : τi ∀ 1 ≤ i ≤ n

LRT ; ρ; (n1, n2, τ); Φ; cc′ `` l

A.3 Value Rules

LRT ; ρ; Φ ` i : int= i LRT ; ρ; Φ ` vdiff(g, f) : diff(g, f)

LRT ; ρ; Φ ` x : Φ(x)

l is declared as: l[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn) = . . .

LRT ; ρ; Φ ` l : codeptr[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn)

A.4 Coercion Rules

ρ; LRT `c τ
cid
↪→ τ

n1 ≤ n < n2

ρ; LRT `c n
crange[n1,n2]

↪→ range[n1, n2]

ρ; LRT `c def k
cname

↪→ T (k) ρ; LRT `c T (k)
cdef k

↪→ def k

ρ; LRT `c n
c2int32

↪→ int ρ; LRT `c range[n1, n2]
c2int32

↪→ int

147

ρ; LRT `c offset 0 τ
coffset0

↪→ τ ρ; LRT `c τ
c2offset0

↪→ offset 0 τ

ρ; LRT `c τ1 ∩ τ2

cproj1
↪→ τ1 ρ; LRT `c τ1 ∩ τ2

cproj2
↪→ τ2

ρ; LRT `c τ
c1
↪→ τ ′ ρ; LRT `c τ ′

c2
↪→ τ ′′

ρ; LRT `c τ
c2 ◦ c1
↪→ τ ′′

ρ; LRT `c τ
c1
↪→ τ1 ρ; LRT `c τ

c2
↪→ τ2

ρ; LRT `c τ
c2inters(c1,c2)

↪→ τ1, τ2

ρ; LRT `c τ1

cinj1[τ1∪τ2]
↪→ τ1 ∪ τ2 ρ; LRT `c τ2

cinj2[τ1∪τ2]
↪→ τ1 ∪ τ2

ρ; LRT `c τ [µα : κ.τ/α]
cfold[µα:κ.τ]

↪→ µα : κ.τ

ρ; LRT `c µα : κ.τ
cunfold

↪→ τ [µα : κ.τ/α]

α is a fresh type variable τ = τ1 ∪ τ2 ∪ . . . ∪ τn

τi = field 0 int= ti ∩ τ ′
i ∀ 1 ≤ i ≤ n

ρ; LRT `c τ
csum2hastag

↪→ ∃α : ΩN .(field 0 int= α) ∩ τ

l is declared as: [~α : ~κ](m, cc, ~v : ~τ) = . . .

ρ; LRT `c addr(l)
caddr2code

↪→ codeptr[~α : ~κ](m, cc, ~v : ~τ)

τ1 is of kind κ

ρ; LRT `c τ2[τ1/α]
cpack[τ1,∃α:κ.τ2]

↪→ ∃α : κ.τ2

148

A.5 Typing Rules for Instructions

LRT ; ρ; Φ ` v : τ

LRT ` (ρ; ~; Φ; cc) {v = v′} (ρ; ~; Φ, v : τ ; cc)

LRT ; ρ; Φ ` v1 : int LRT ; ρ; Φ ` v2 : int op 6= +i

LRT ` (ρ; ~; Φ; cc) {v = v1 op v2} (ρ; ~; Φ, v : int; cc)

LRT ; ρ; Φ ` v1 : int= n1 LRT ; ρ; Φ ` v2 : int= n2

LRT ` (ρ; ~; Φ; cc) {v = v1 +i v2} (ρ; ~; Φ, v : int= n1 + n2; cc)

LRT ; ρ; Φ ` v1 : addr(f) LRT ; ρ; Φ ` v2 : diff(g, f)

LRT ` (ρ; ~; Φ; cc) {v = addradd(v1, v2)} (ρ; ~; Φ, v : addr(g); cc)

LRT ` (ρ; ~; Φ; cc) {v = sethi(n)} (ρ; ~; Φ, v : int= n ∗ 4096; cc)

LRT ; ρ; Φ ` v1 : field i τ LRT ; ρ; Φ ` v2 : int= i

LRT ` (ρ; ~; Φ; cc) {v = load(v1, v2)} (ρ; ~; Φ, v : τ ; cc)

LRT ; ρ; Φ ` v1 : array(τl, τ) LRT ; ρ; Φ ` v2 : int≥ 0 ∩ int< τl

LRT ` (ρ; ~; Φ; cc) {v = sub(v1, v2)} (ρ; ~; Φ, v : τ ; cc)

LRT ; ρ; Φ ` va : array(τl, τ) LRT ; ρ; Φ ` vi : int≥ 0 ∩ int< τl LRT ; ρ; Φ ` v : τ

LRT ` (ρ; ~; Φ; cc) {update(va, vi, v)} (ρ; ~; Φ; cc)

~ = (n1, n2, τ) n1 ≥ m

LRT ; ρ; Φ ` v : codeptr[α1 : κ1, . . . , αj : κj](m, cc′, v1 : τ ′
1, . . . , vn : τ ′

n)

sub = (τ1/α1, . . . , τj/αj), cc = cc[sub] or cc = cc none

LRT ; ρ; Φ ` vi : τ ′
i [sub] ∀ 1 ≤ i ≤ n

LRT ` (ρ; ~; Φ; cc) {call(v, [τ1, . . . , τj])} (ρ; ~; Φ; cc)

149

~ = (n1, n2, τ) n1 ≥ m

l is declared as l[α1 : κ1, . . . , αj : κj](m, cc′, v1 : τ ′
1, . . . , vn : τ ′

n) = ι1; . . . ; ιk

sub = (τ1/α1, . . . , τj/αj), cc = cc[sub] or cc = cc none

LRT ; ρ; Φ ` vi : τ ′
i [sub] ∀ 1 ≤ i ≤ n

LRT ` (ρ; ~; Φ; cc) {calln(l, [τ1, . . . , τj])} (ρ; ~; Φ; cc)

~ = (τ, 0, boxed)

LRT ` (ρ; ~; Φ; cc) {testAvail} (ρ; ~; Φ; cc cmp(freem, 0))

LRT ; ρ; Φ ` v : int= τn

LRT ` (ρ; (τ, 0, boxed); Φ; cc cmp(freem, 0)) {testFull(v)}

(ρ; (τ, 0, boxed); Φ; cc cmp(freem, τn))

LRT ; ρ; ~; Φ; cc `` l1

LRT ; ρ; ~; Φ; cc `` l2

LRT ` (ρ; ~; Φ; cc) {if(π) then l1 else l2} (ρ; ~; Φ; cc)

cc = cc cmp(freem, τn) LRT ; ρ; (τ, 0, boxed); Φ; cc `` l1

LRT ; ρ; (τn + 4096, 0, boxed); Φ; cc `` l2

LRT ` (ρ; (τ, 0, boxed); Φ; cc) {iffull then l1 else l2} (ρ; (τ, 0, boxed); Φ; cc)

LRT ; ρ; Φ ` v′ : int= i LRT ; ρ; Φ ` v : ti t′ = t ∩ (field i ti)

LRT ` (ρ; (τm, τn, t); Φ; cc) {store(v′, v)} (ρ; (τm, τn + 4, t′); Φ; cc)

LRT ` (ρ; (τm, τn, τ); Φ; cc) {v = record} (ρ; (τm, τn, τ); Φ, v :τ ; cc)

150

LRT ; ρ; Φ ` v : int= τn

LRT ` (ρ; (τm, τn, τ); Φ; cc cmp(freem, k)) {incAlloc v}

(ρ; (τm − τn, 0, boxed); Φ; cc none)

LRT ; ρ; Φ ` v : int= τn

LRT ` (ρ; (τm, τn, τ); Φ; cc) {incAlloc v}

(ρ; (τm − τn, 0, boxed); Φ; cc)

LRT ` (ρ; (τm, 0, boxed); Φ; cc) {arrStart[τ]} (ρ; (τm, 0, array(0, τ)); Φ; cc)

LRT ; ρ; Φ ` vi : int= τn τ ′
n = τn + 4 LRT ; ρ; Φ ` v : τ

LRT ` (ρ; (τm, τn, array(τn, τ)); Φ; cc) {storeA(vi, v)}

(ρ; (τm, τ ′
n, array(τ ′

n, τ)); Φ; cc)

LRT ; ρ; Φ ` v1 : int LRT ; ρ; Φ ` v2 : int

LRT ` (ρ; ~; Φ; cc) {cmp(v1, v2)} (ρ; ~; Φ; cc none)

LRT ; ρ; Φ ` v1 : int= τ1 LRT ; ρ; Φ ` v2 : int= τ2

LRT ` (ρ; ~; Φ; cc) {cmpr(v1, v2)} (ρ; ~; Φ; cc cmp(τ1, τ2))

cc = cc cmp(int= τn, int= τl) LRT ; ρ; (τm, τl, array(τl, τ)); Φ; cc `` l1

LRT ; ρ; (τm, τn, array(τn, τ)); Φ; cc `` l2

LRT ` (ρ; (τm, τn, array(τn, τ)); Φ; cc) {ifinitA then l1 else l2}

(ρ; (τm, τn, array(τn, τ)); Φ; cc)

LRT ; ρ; Φ ` v : ∃α : κ.τ

LRT ` (ρ; ~; Φ; cc) {(α, v0) = open(v)} (ρ, α : κ; ~; Φ, v0 : τ ; cc)

151

LRT ; ρ; Φ ` v : τ cc′ = cc testbox α

LRT ` (ρ; ~; Φ; cc) {(α, v′) = testbox(v)} (ρ; ~; Φ, v′ : int= α ∩ τ ; cc′)

cc = cc testbox τα

LRT ; ρ; Φ ` v : int= τα ∩ (int= 0 ∪ int= 1 ∪ . . . ∪ int= n − 1 ∪ τ ′)

τ ′ = τ1 ∪ τ2 ∪ . . . ∪ τm τi = (field 0 int= ti) ∩ τ ′
i ∀1 ≤ i ≤ m

LRT ; ρ; ~; Φ, v1 : τ ′; cc `` l1 LRT ; ρ; ~; Φ, v2 : range[0, n]; cc `` l2

LRT ` (ρ; ~; Φ; cc) {ifboxed{v} then (v1, l1) else (v2, l2)} (ρ; ~; Φ; cc)

cc = cc cmp(τα, i) LRT ; ρ; Φ ` v : (field 0 int= τα) ∩ τ

τ = τ1 ∪ τ2 ∪ . . . ∪ τn τi = field 0 int= ti ∩ τ ′
i ∀ 1 ≤ i ≤ n

τt = ∪{τj |1 ≤ j ≤ n, tj π i 6= false}

τf = ∪{τj |1 ≤ j ≤ n, tj π i 6= true}

LRT ; ρ; ~; Φ, v1 : (field 0 int= τα) ∩ τt; cc `` l1

LRT ; ρ; ~; Φ, v2 : (field 0 int= τα) ∩ τf ; cc `` l2

LRT ` (ρ; ~; Φ; cc) {iftag(π){v} then (v1, l1) else (v2, l2)} (ρ; ~; Φ; cc)

152

Appendix B

Tag Discrimination Example

The LTAL and Sparc instruction sequences for the example in Figure 5.1.2 is shown

in Figure B.1. Variables v, v0, v
′
0, vCD, vAB, v1, v2, vC , vD are all assigned register r,

and variable t is assigned rt.

Block l tests whether v is a boxed value (a pointer). If v is a small integer (less

than 256), then it is either A or B, otherwise it is C or D. Instruction (1) unfolds v to

v0. Instruction (2) performs the test for pointers, rebinds v0 to v′
0 and sets condition

codes. Instruction (3) examines the condition codes and rebinds two fresh variables

vCD and vAB with refined types for boxed and unboxed cases respectively.

The unboxed case lAB tests whether vAB is 0 or 1. Instruction (4) compares vAB

with 0. If vAB is 0, the control goes to lA after instruction (5). Otherwise, it falls

through to lB. Here instruction (5) is a normal conditional branch without type

refinement, since type refinement is not necessary to guarantee safety in this case.

The boxed case lCD tests the tag of vCD. First vCD is coerced to v1 with an

existential type by coercion csum2hastag. Variable v1 hides the type of its tag

within the existential type. Then instruction (7) opens v1 to v2 and binds a brand

153

LTAL Sparc
l : l :

(1) v0 = cunfold(v)
(2) (β, v′

0) = testbox(v0) subcc r, 256
(3) ifboxed{v′

0} then (vCD, lCD)
else (vAB, lAB) bge lCD

lAB : lAB :
(4) cmp(vAB, 0) subcc r, 0
(5) if = then lA else lB be lA

lB : . . . lB : . . .
lA : . . . lA : . . .
lCD : lCD :

(6) v1 = csum2hastag(vCD)
(7) (α1, v2) = open(v1)
(8) t = load(v2, 0) ld [r], rt

(9) cmpr(t, 0) subcc rt, 0, %g0
(10) iftag(=){v2} then (vC , lC)

else (vD, lD) be lC
lD : . . . lD : . . .
lC : . . . lC : . . .

Figure B.1: LTAL Instruction Sequence for Discriminating Mylist

new type variable α1 for the unknown tag. Instruction (8) extracts the tag t (the

first field) from v2 . Then instruction (9) checks whether tag t is 0 and sets condition

codes. Instruction (10) checks condition codes set by (9), rebinds two new variables

vC and vD as aliases of v2 and does conditional branch. The types of vC and vD

are refined to indicate that vC is tagged 0 and vD is tagged 1. Instruction (10) is a

specialized conditional branch that refines types according to the value of the tag.

Type-checking the LTAL sequence in Figure B.1 goes as follows:

At the beginning of block l, v has type

mylist = µα : Ω .int= 0 ∪ int= 1 ∪ [int= 0, int] ∪ [int= 1, int, α].

154

Variable v is unfolded to v0 of type int= 0∪int= 1∪[int= 0, int] ∪ [int= 1, int,mylist]

by instruction (1). Instruction (2) rebinds v0 to v′
0 and adds a conjunct int= β to

v0’s type. v0 has type int= β ∩ (int= 0 ∪ int= 1 ∪ [int= 0, int] ∪ [int= 1, int,mylist]).

Instruction (2) also sets condition codes cc testbox β. Instruction ifboxed rebinds

v′
0 to vCD in the boxed cases, and to vAB in the unboxed cases. Variable vCD has

type [int= 0, int]∪[int= 1, int,mylist], Variable vAB has type range(0, 2), which means

integer 0 (case A) or 1 (case B).

In block lAB, the type of vAB is range(0, 2), and is not refined further.

In block lCD, instruction (6) first coerces vCD to v1, and uses a type variable to

indicate the tag in an existential type. Then instruction (7) opens v1 to v2. Variable

v2 has type field 0 int= α1 ∩ ([int= 0, int] ∪ [int= 1, int,mylist]). Instruction (8) loads

the tag of v2 to t, which is assigned type int= α1.

Instruction (9) compares t with 0 and sets condition code status cc cmp(α1, 0).

Instruction (10) rebinds v2 to vC of type field 0 int= α1 ∩ [int= 0, int] in lC , since the

other disjunct shows tag 1 and thus is not compatible with the condition codes. And

v2 will be vD of type field 0 int= α1 ∩ [int= 1, int,mylist] in lD for similar reasons.

155

l : v : mylist
(1) v0 = cunfold(v)

v0 : int= 0 ∪ int= 1 ∪ [int= 0, int] ∪ [int= 1, int,mylist]
(2) (β, v′

0) = testbox(v0)
v′
0 : int= β ∩ (int= 0 ∪ int= 1 ∪ [int= 0, int] ∪ [int= 1, int,mylist])

(3) ifboxed{v′
0} then (vCD, lCD)

else (vAB, lAB)
lAB : vAB : int= 0 ∪ int= 1

(4) cmpr(vAB, 0)
(5) if = then lA

else lB
lB : vAB : int= 0 ∪ int= 1
. . .
lA : vAB : int= 0 ∪ int= 1
. . .
lCD : vCD : [int= 0, int] ∪ [int= 1, int,mylist]

(6) v1 = csum2hastag(vCD)
v1 : ∃α : ΩN .(field 0 int= α) ∩ ([int= 0, int] ∪ [int= 1, int,mylist])

(7) (α1, v2) = open(v1)
v3 : (field 0 int= α1) ∩ ([int= 0, int] ∪ [int= 1, int,mylist])

(8) t = load(v2, 0)
t : int= α1

(9) cmpr(t, 0)
condition codes: cc cmp(α1, 0)

(10) iftag(=){v2} then (vC , lC)
else (vD, lD)

lD : vD : field 0 int= α1 ∩ [int= 1, int,mylist]
. . .
lC : vC : field 0 int= α1 ∩ [int= 0, int]
. . .

Figure B.2: Type-checking Discrimination of Mylist

156

Bibliography

[1] Authenticode. http://www.microsoft.com/ie/ie40/features/ sec-
authenticode.htm.

[2] Smart firewall. http://govt.argreenhouse.com/SmartFirewalls/.

[3] Cert advisory ca-1999-04 melissa macro virus, Mar. 1999.
http://www.cert.org/advisories/CA-1999-04.html.

[4] M. Abadi, L. Cardelli, and R. Viswanathan. An interpretation of objects and
object types. In ACM Symposium on Principles of Programming Languages
(POPL), pages 396–409, St. Petersburg Beach, Florida, 1996.

[5] A. Ahmed, L. Jia, and D. Walker. Reasoning about hierarchical storage. In
IEEE Symposium on Logic in Computer Science, pages 33–44, Ottawa, Canada,
June 2003.

[6] A. J. Ahmed, A. W. Appel, and R. Virga. A stratified semantics of general
references embeddable in higher-order logic. In 17th Annual IEEE Symposium
on Logic in Computer Science (LICS 2002), pages 75–86. IEEE, June 2001.

[7] A. W. Appel. Compiling with Continuations. Cambridge University Press,
Cambridge, England, 1992.

[8] A. W. Appel. Foundational proof-carrying code. In Symposium on Logic in
Computer Science (LICS ’01), pages 247–258. IEEE, 2001.

[9] A. W. Appel and A. P. Felty. A semantic model of types and machine in-
structions for proof-carrying code. In POPL ’00: The 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 243–253.
ACM Press, Jan. 2000.

[10] A. W. Appel and D. B. MacQueen. Standard ML of new jersey. In
J. Maluszyński and M. Wirsing, editors, Proceedings of the Third International
Symposium on Programming Language Implementation and Logic Program-
ming, number 528, pages 1–13. Springer Verlag, 1991.

157

[11] A. W. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. Prog. Lang. Syst., 23(5):657–
683, Sept. 2001.

[12] A. W. Appel, N. Michael, A. Stump, and R. Virga. A trustworthy proof checker.
In I. Cervesato, editor, Foundations of Computer Security workshop, pages
37–48. DIKU, July 2002. diku.dk/publikationer/tekniske.rapporter/2002/02-
12.pdf.

[13] A. W. Appel and D. C. Wang. JVM TCB: Measurements of the trusted comput-
ing base of Java virtual machines. Technical Report CS-TR-647-02, Princeton
University, Apr. 2002.

[14] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In
Foundations of Computer Security ’02 (associated with LICS ’02), Copenhagen,
Denmark, July 2002.

[15] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. B. C.
Chambers, and S. Eggers. Extensibility, safety and performance in the spin
operating system. In Proceedings of the 15th Symposium on Operating System
Principles, pages 267–284. ACM Press, Dec. 1995.

[16] M. Blume and A. W. Appel. Lambda-splitting: A higher-order approach to
cross-module optimizations. In Proc. ACM SIGPLAN International Conference
on Functional Programming (ICFP ’97), pages 112–124, New York, June 1997.
ACM Press.

[17] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. In
Theoretical Aspects of Computer Software, pages 415–438, 1997.

[18] P. Canning, W. Cook, W. Hill, W. Olthoff, , and J. C. Mitchell. F-bounded
quantification for object-oriented programming. In Fourth International Con-
ference on Functional Programming Languages and Computer Architecture,
pages 273–280, 1989.

[19] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL for back
end optimization. In Proceedings of the 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’03). ACM Press,
June 2003.

[20] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and M. Plesko. A certifying
compiler for Java. In Proceedings of the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’00). ACM Press,
June 2000.

158

[21] K. Crary. Toward a foundational typed assembly language. In POPL ’03:
The 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 198–212. ACM Press, Jan. 2003.

[22] D. Dean, E. W. Felten, and D. S. Wallach. Java security: From HotJava to
Netscape and beyond. In Proceedings of 1996 IEEE Symposium on Security
and Privacy, May 1996.

[23] S. Drossopoulou, S. Eisenbach, and S. Khurshid. Is the java type system sound?
Theory and Practice of Object Systems, 5(1):3–24, 1999.

[24] Erlingsson and Schneider. SASI enforcement of security policies: A retrospec-
tive. In WNSP: New Security Paradigms Workshop. ACM Press, 2000.

[25] U. Erlingsson and F. B. Schneider. IRM enforcement of java stack inspection.
In IEEE Symposium on Security and Privacy, pages 246–255, 2000.

[26] L. George. MLRISC: Customizable and reusable code generators. Technical
report, Bell Laboratories, May 1997.

[27] R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks. Shared libraries in sunOS.
Proceedings of the USENIX 1987 Summer Conference, pages 131–145, 1987.

[28] J.-Y. Girard. Interpretation fonctionnelle et elimination des coupures dans
l’arithmetique d’ordre superieur. PhD thesis, Universite de Paris VII, 1972.

[29] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
(2nd edition). Addison-Wesley Pub Co, 2000.

[30] N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach
to foundational proof-carrying code. In Proc. 17th Annual IEEE Symposium
on Logic in Computer Science (LICS’02), pages 89–100, July 2002.

[31] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, Jan. 1993.

[32] R. Harper and G. Morrisett. Compiling polymorphism using intensional type
analysis. In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 130–141, San Fran-
cisco, California, 1995.

[33] C. League, Z. Shao, and V. Trifonov. Representing Java classes in a typed
intermediate language. In Proc. Int’l Conf. Functional Programming, pages
183–196, Paris, September 1999. ACM.

159

[34] C. League, V. Trifonov, and Z. Shao. Type-preserving compilation of Feath-
erweight Java. In Proc. Int’l Workshop on Foundations of Object-Oriented
Languages, London, January 2001.

[35] X. Leroy. Unboxed objects and polymorphic typing. In 19th Annual ACM
Symp. on Principles of Prog. Languages, pages 177–188, New York, January
1992. ACM Press.

[36] A. Leung and L. George. MLRISC Annotations. http://cm.bell-
labs.com/cm/cs/what/smlnj/compiler-notes/annotations.ps.

[37] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security,
2003.

[38] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1999.

[39] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In 2000
IEEE Symposium on Security and Privacy, pages 177–187, California, May
2000.

[40] N. G. Michael and A. W. Appel. Machine instruction syntax and semantics in
higher-order logic. In CADE-17: 17th International Conference on Automated
Deduction, pages 7–24. Springer-Verlag, June 2000. LNAI 1831.

[41] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, Cambridge, MA, 1997.

[42] Y. Minamide, J. G. Morrisett, and R. Harper. Typed closure conversion. In
Symposium on Principles of Programming Languages, pages 271–283, 1996.

[43] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. TALx86: A realistic typed assembly
language. In Second ACM SIGPLAN Workshop on Compiler Support for Sys-
tem Software, pages 25–35, Atlanta, GA, 1999. INRIA Technical Report 0288,
March 1999.

[44] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language. In POPL ’98: 25th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 85–97. ACM Press,
Jan. 1998.

[45] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language. ACM Trans. Prog. Lang. Syst., 21(3):527–568, May 1999.

160

[46] G. Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 106–119, New York, Jan. 1997.
ACM Press.

[47] G. Necula and P. Lee. Safe kernel extensions without runtime checking. In 2nd
USENIX symposium on Operating System Design and Implementation, Seattle,
Oct. 1996.

[48] G. Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, Engle-
wood Cliffs, NJ, 1991.

[49] T. Nipkow and D. von Oheimb. Java-light is type-safe — definitely. In
L. Cardelli, editor, Conference Record of the 25th Symposium on Principles
of Programming Languages (POPL’98), pages 161–170, San Diego, California,
1998. ACM Press.

[50] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A type theory for memory
allocation and data layout. In POPL ’03: The 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 172–184. ACM
Press, Jan. 2003.

[51] J. C. Reynolds. Towards a theory of type structure. In Coll. sur la Program-
mation, Lecture Notes in Computer Science, volume 19. Springer-Verlag, 1974.

[52] F. B. Schneider. Enforceable security policies. Information and System Secu-
rity, 3(1):30–50, 2000.

[53] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to
security. Lecture Notes in Computer Science, 2000:86–101, 2001.

[54] Z. Shao. An overview of the FLINT/ML compiler. In Proc. 1997 ACM SIG-
PLAN Workshop on Types in Compilation, June 1997.

[55] Z. Shao and A. W. Appel. Space-efficient closure representations. In LISP and
Functional Programming, pages 150–161, 1994.

[56] Z. Shao and A. W. Appel. A type-based compiler for standard ML. In Proc.
ACM SIGPLAN ’95 Conference on Programming Language Design and Imple-
mentation, pages 116–129, La Jolla, CA, 1995.

[57] F. Smith, D. Walker, and G. Morrisett. Alias types. Lecture Notes in Computer
Science, 1782:366+, 2000.

[58] K. N. Swadi. Typed Machine Language. PhD thesis, Princeton University, 2003.

161

[59] D. Syme. Proving java type soundness. In Formal Syntax and Semantics of
Java, pages 83–118, 1999.

[60] G. Tan, A. W. Appel, K. N. Swadi, and D. Wu. Construction of a semantic
model for a typed assembly language. Aug. 2003.

[61] D. Tarditi and A. Diwan. The full cost of a generational copying garbage
collection implementation. In OOPSLA Workshop on Memory Management
and Garbage Collection, 1993.

[62] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL:
A type-directed optimizing compiler for ML. In Proc. ACM SIGPLAN ’96
Conference on Programming Language Design and Implementation, pages 181–
192, 1996.

[63] M. Tofte and J.-P. Talpin. Region-based memory management. Information
and Computation, 1997.

[64] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based
fault isolation. In Proc. 14th ACM Symposium on Operating System Principles,
pages 203–216, New York, 1993. ACM Press.

[65] D. C. Wang and A. W. Appel. Type-preserving garbage collectors. In POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 166–178. ACM Press, Jan. 2001.

[66] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. In-
formation and Computation, 115(1):38–94, 1994.

[67] A. K. Wright, S. Jagannathan, C. Ungureanu, and A. Hertzmann. Compiling
Java to a typed lambda-calculus: A preliminary report. In Types in Compila-
tion, pages 9–27, 1998.

[68] D. Wu, A. W. Appel, and A. Stump. Foundational proof checkers with small
witnesses. In PPDP ’03: The Fifth ACM SIGPLAN Internation Conference
on Principles and Practice of Declarative Programming, Aug. 2003.

[69] H. Xi and R. Harper. A dependently typed assembly language. In 2001 ACM
SIGPLAN International Conference on Functional Programming, pages 169–
180. ACM Press, Sept. 2001.

162

