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Abstract
Indexing of high-dimensional data is essential for building

applications such as multimedia retrieval, data mining, and
spatial databases. Traditional index structures rely on central-
ized processing. This approach does not scale with the rapidly
increasing amount of application data available on massively
distributed systems like the Internet.

In this paper, we propose a distributed high-dimensional
index structure based on peer-to-peer overlay routing. A new
routing scheme is used to lookup data keys in the distributed
index, which guarantees logarithmic lookup and maintenance
cost, even in the face of skewed datasets. We propose a novel
nearest neighbor (NN) query scheme that can substantially re-
duce search cost by sacrificing a small amount of precision.
We propose a load-balancing mechanism that partitions the
high dimensional search space in a balanced manner. We then
analyze the performance of our proposed using a variety of
metrics with simulation as well as a functional PlanetLab im-
plementation.

1 Introduction
The relentless growth of storage density and improvements
in broad-band network connectivity has fueled the increasing
popularity of massive and distributed data collections. These
include multimedia data (music, images, and video), data col-
lected by sensor networks and various types of surveillance
devices, various types of scientific data, and medical data.
Many of these data sets can be of such massive scale that
even their index can easily overwhelm the storage or process-
ing capacity of single nodes. Consequently, distributing the
storage and querying of this index data across many nodes
becomes necessary. The geographical scale of such distribu-
tion can range from tightly coupled cluster systems connected
by system-area networks in a machine room to peer-to-peer
storage systems encompassing many users across a continent.
Regardless the distribution scale, we need efficient ways of
managing the distributed index. Our goal is to develop an
indexing scheme that can meet the following requirements.

Efficient support for similarity-search and range queries
for high-dimensional data. We would like to be able to

�
Princeton University, � chizhang,rywang � @cs.princeton.edu.�
Yale University, arvind@cs.yale.edu.

 25

 30

 35

 40

 45

 50

-120 -110 -100 -90 -80 -70

La
tit

ud
e

Longitude

Figure 1: Geographical Distribution of US ZIP Codes.

quickly find a set of objects that are similar to the target object
specified by a query within a high-dimensional feature space.
We would also like to be able to perform range queries that
find objects that are contained within a high-dimensional re-
gion specified by the query. These operations are widely used
in many applications, including data mining, decision sup-
port, pattern recognition, and even text document retrieval.
Existing solutions, such as distributed hash tables, that use
hashing to perform object location are not suitable for sup-
porting complex queries such as similarity-search and range
queries [15, 10]. Furthermore, even in centralized systems,
high dimensional similarity search is hard due to the well
known phenomenon known as dimensionality curse that lim-
its the performance of these operations.

Support for multiple indexes. The distributed infrastructure
should be able to support multiple data sets, with different
dimensionalities and different distributions. One cannot ex-
pect to have each data set be spread across all the nodes, nor
is it reasonable to have each data set be stored on a separate
node. The system should be able to support a large number of
small data sets, each of which is spread over a small number
of nodes.
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Load-balancing. Each node that stores a partial index
should be responsible for roughly the same number of ob-
jects. The distribution of objects in a high-dimensional fea-
ture space can typically be highly non-uniform, as evidenced
in the example shown in Figure 1. (In this example, the
latitude-longitude coordinates of zip locations constitute the
2D feature space, and the grid patterns superimposed on the
map represent an attempt of partitioning this space in a load-
balanced fashion. We will discuss later why this attempt is
considered not particularly successful.)

Locality. Index data for related or similar objects should
be concentrated on a small number of nodes, allowing the
execution of range queries or approximate queries to limit the
number of affected nodes, while improving the parallelism of
supporting multiple independent queries.

Support for scalable overlay networks. The indexing
scheme should be deployable over a large-scale peer-to-peer
overlay network. Each node should only need to maintain a
small amount of state, while still allowing queries to origi-
nate from any node and to progress rapidly towards the target
nodes that can conclusively answer the queries. Nodes should
be able to freely join and leave from the overlay without dis-
rupting the operation of too many remaining nodes.

Existing indexing schemes cannot meet all the challenges
enumerated above. In this paper, we introduce an indexing
system called SkipIndex. The system includes the following
key mechanisms. (1) The system partitions the search space
in a hierarchical tree manner, and organizes the leaf parti-
tions using a Skip Graph-based [3] distributed data structure.
Even though the underlying Skip Graph only supports one-
dimensional keys, our resulting organization supports high-
dimensional range and similarity queries while requiring only
a logarithmic number of peer pointers and a logarithmic num-
ber of overlay hops. (2) The system provides an approximate
query mechanism, where the user gets to specify the desired
level of search accuracy and the system intelligently controls
the number of nodes interrogated to satisfy the error-bound.
(3) Diverse data sets with differing dimensionalities and dis-
tributions can be stored in the distributed infrastructure at the
same time. (4) The system allows the high-dimensional fea-
ture space to be partitioned dynamically among participating
index nodes in a load-balanced manner. We believe that the
SkipIndex approach satisfies all the requirements enumerated
earlier in this section.

2 Distributed Index Organization
In a distributed index infrastructure, each node maintains the
index for some subset of the keys currently stored in the sys-
tem. Nodes in the system also maintain a small number of
links to other nodes, forming an overlay mesh. Index con-
struction and query processing need to be performed in a
completely decentralized manner with any participating node
having the capability to insert new data points into the in-
dex, perform a query on behalf of a client or a peer node,
and propagate queries to its peers in the overlay network. We
begin by discussing existing alternatives for partitioning the
search space and searching distributed partitions. We show
the inadequacy of existing schemes and outline our design of

SkipIndex.

2.1 Search Space Partitioning Methods
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Figure 2: Partition of Search Space

2.1.1 Content Addressable Networks (CAN)

CAN uses a virtual representation of a � -dimensional Carte-
sian coordinate space to provide distributed hash table (DHT)
functionality [20]. Every processor on the network knows the
zone in space that it “owns.” To join the network, a proces-
sor may simply pick a random point in space and identify the
peer who is responsible for the space that surrounds that point.
The zone currently owned by the peer is split into two equal
halves, with the splitting dimension chosen using a predeter-
mined order. One of the two resulting halves is then assigned
to the new processor. Since the processor joining the sys-
tem picks a random point in the � -dimensional space, CAN
provides probabilistic guarantees on the size of the zones as-
signed to processors.

Keys are then mapped to zones and are stored by processors
that own them. When CAN is used as a traditional DHT, keys
are hashed to points in the � -dimensional space (and stored
in the processors owning the corresponding zones) to provide
probabilistic load-balance guarantees on the number of keys
stored at each processor. When presented with an exact query,
the system applies the same hash function on the queried key
and routes the query to the processor maintaining the zone
surrounding the target point. Each processor maintains a rout-
ing table that comprises of the processors that own adjoining
zones. To route a query, a processor looks in its neighbor
table and determines the peer who is closest in Euclidean dis-
tance to the destination point, and then forwards the request
accordingly. When the � -dimensional space is partitioned
evenly across processors, the average number of neighbors
for a CAN processor is ������� , and the average routing dis-
tance in an � -processor CAN is ���	�



��� . Exact queries are

thus handled efficiently by the system [20].
The hash function, however, destroys the logical integrity

of the keyspace, making it difficult to efficiently support com-
plex similarity searches and range queries [15, 10]. An alter-
native strategy, in order to support complex queries, would
be to refrain from using hash functions for mapping keys to
regions of space, but instead simply map a key to a point in
the coordinate space based on some simple function that pre-
serves the logical ordering of keys. The resulting ability to
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support complex queries however comes at a high price: pro-
cessors that happen to own densely populated zones would
incur high storage costs and be subject to a heavy query load,
while some other processors can be virtually idle.

2.1.2 Sampled CAN

To overcome the load-balance problem associated with stor-
ing unhashed keys in CAN, pSearch [25] uses the following
sampling-based method to assign regions of space to proces-
sors. A joining processor, instead of picking a random point
in space, chooses the key of some sampled object that cur-
rently exists in the system. It then obtains a region as before
by locating the peer that stores the chosen key and splitting the
peer’s region into two halves. By choosing the key of an ex-
isting object, densely populated regions are more likely to be
partitioned by joining processors, and the resulting data distri-
bution will be more balanced than that obtained by choosing a
random point. However, this sampling technique has its lim-
itations. The joining processor uses only one sampled key,
which may not accurately reflect the overall key distribution.
Also, as the system accumulates more keys, the data distribu-
tion could change, resulting in load imbalances. The grids in
Figure 1 are generated using a sampled partitioning. The load
imbalance is visible in many grids cells.

2.1.3 Balanced Region Allocation

pSearch’s sampling technique improves load-balance, but its
effectiveness is hobbled by the fact that the zones are parti-
tioned at join time using just one sample. We next consider a
technique that strives to achieve better load balance.

Initially, there is only one processor in the system, which
controls the entire keyspace. As we add more keys into the
system and once the storage exceeds the threshold of the num-
ber of objects to be allocated to each processor in the sys-
tem, the initial processor splits the keyspace along one of the
dimensions into two non-overlapping regions containing an
equal number of keys and hands over one of the regions to
an idle processor. The dimension with the maximum span
is chosen as the splitting dimension. The partitioning process
continues to form a binary tree. Figure 2(a) shows an example
where a 2D space is partitioned across six processors.

The above scheme is clearly over-simplified for a dynamic
peer-to-peer setting, as it relies on static notion of load thresh-
old and an idealized pool of idle nodes. Appropriate run-time
refinements to the space partitions are required for a dynamic
setting. We address such issues in Section 4.2, where we build
on this basic scheme. We can however use the simplified ver-
sion proposed here to understand the implications of load-
balanced CAN systems.

2.1.4 Comparisons and Discussions

Figure 3 (a) graphs the load distribution of a sample dataset
under the partitioning strategies discussed above. The dataset
used for this experiment is a 20-dimension color histogram
data described in Section 5. Both CAN and sampled-CAN
strategies exhibit worst-case loads that are one to two or-
ders of magnitude higher than the balanced region allocation
scheme.

We also evaluate the different techniques in terms of the
amount of routing state maintained by each processor as the
means to measure scalability. A scalable peer-to-peer system
must be able to operate without global knowledge regarding
many other nodes and their data partitions. The number of
neighbors maintained by each processor reflects the cost of
periodical peer probing and routing repairs when processors
join and leave the system. As node joins, departures, and fail-
ures are routine events in a large peer-to-peer system, limiting
the number of neighbors becomes an essential requirement.
The amount of routing and query processing load is also pro-
portional to the number of neighbors. The “hub” processors
with high neighbor counts not only incur high maintenance
cost, but could also exhibit high routing and query load and
limit the throughput of the system. Thus we also use the max-
imum number of neighbors maintained by some processor as
a scalability metric for the systems.

CAN, with its random choice of a point for joining proces-
sors and even splitting of node space, achieves an almost uni-
form distribution of space across processors, thereby limiting
the maximum neighbor count. As we try to improve its load-
balancing with sampling and balanced partitioning, the vari-
ants show significant problems in the number of peers. The
reason is that the load-balanced schemes partition the space
according to application key distribution, which can be highly
skewed. The hyper-rectangles that result from such uneven
partitions are highly likely to interleave with each other, thus
breaking CAN’s promise of ��� � � number of neighbors.

We have now run into a fundamental conflict between load-
balance and neighborhood state for CAN-based schemes. We
will show in the experimental results section that both load-
imbalance and high neighborhood state translate into high
query processing loads on some of the processors in the sys-
tem. We need an indexing mechanism that addresses both
issues simultaneously.

2.2 Hierarchical Partition Organization

Hierarchical multi-dimensional tree structures have received
extensive research in the database community, such as K-
D tree [6], R-tree [9], R*-tree [5], X-tree [8] and many
other structures. These approaches hierarchically partition the
search space and data set into smaller and smaller regions. In-
sertion and search operations navigate the tree from the root
down to appropriate leaf nodes. We examine whether these
hierarchical techniques can be adapted to build efficient dis-
tributed indexing systems.

2.2.1 Distributing Search Trees

One could build a distributed index infrastructure by dis-
tributing portions of a hierarchical search tree data structure
across different processors. Tree nodes, representing regions
of space, would be distributed objects containing pointers
to other tree nodes. Non-local pointers of the tree structure
would have to be represented as generalized global addresses
that specify both the processor ID and the local address of the
tree node within the processor. Navigating the tree structure
in order to perform insertions or queries would require inter-
processor messages.
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Figure 3: Storage and Routing State Balancing in Different Partition Schemes

The fundamental manner in which distributed search trees
differ from CAN-like system is how routing is performed to
insert or query objects. In a distributed search tree, all oper-
ations follow the hierarchical tree pointers to reach the target
tree node. CAN-like systems instead perform cartesian coor-
dinate routing to find the target region. This means that the
routing state (or the neighborhood information) maintained
by a distributed search tree is strictly a function of the out-
degree of tree nodes, which is bounded in all of the hierarchi-
cal schemes, and is not dependent on the data distribution.

However, binding tree nodes to global addresses signifi-
cantly limits the ability to perform load balancing and pro-
vide fault-tolerant execution. Assigning tree nodes to pro-
cessors and modifying the assignments when data items are
inserted dynamically are not easy tasks any more. Virtualiz-
ing the global addresses using a DHT can partially alleviate
such problems.

2.2.2 Distributing Search Trees using a DHT

A distributed hash table (DHT) disperses objects in a load-
balanced fashion and allows efficient lookup by their IDs.
Using a DHT to access the nodes of a search tree would re-
quire the system to refer to tree objects by some unique ID
rather than a global address. Tree objects can be transpar-
ently moved from one processor to another, in order to pro-
vide load-balance and handle processor churn.

Ratnasamy et.al. [21] outline an approach to support range
queries on a one-dimensional keyspace by organizing the keys
into a Prefix Hash Tree, and distributing the tree nodes us-
ing a DHT. Awerbuch and Scheideler [4] propose the general
mechanism of combining two orthogonal data structures to
provide a load-balanced, range-queriable structure. One data
structure supports range query operation over the data keys in
the system. The other data structure, which can be any DHT,
maps the objects of the first data structure to some processor
in the distributed system.

2.2.3 Discussions

Hierarchical search trees result in structures with bounded de-
gree and, in some cases, bounded depth. There are, however,
many challenges in deploying them in distributed settings.
The tree has to be searched top-down from the root (except
for [4]), with each step resulting in a network communication
or even a DHT lookup. The processor maintaining the root

tends to become a performance bottleneck and is also a sin-
gle point of failure. In an unbalanced tree, like K-D tree, the
search path can be very long, further degrading the search effi-
ciency. Also, care should be taken so that concurrent updates
to the tree data structure are performed safely and correctly.
The maintenance of a balanced tree, such as an R-tree, could
further complicate the concurrency issues associated with dis-
tributed updates.

2.3 SkipIndex: Organizing Regions into a Skip Graph

We now outline our approach for storing a multi-dimensional
index. We maintain a hierarchical partitioning of space that
is constantly refined based on the current set of objects main-
tained by the system. The partitioning of space can be de-
scribed by what we refer to as the region tree, as depicted in
Figure 2 (b). We then associate a one-dimensional key with
each region in the system in order to obtain a total order on the
regions. This key captures the hierarchical manner in which
the region was created. The keys are then used to store the
leaf regions in a searchable Skip Graph, or equivalently Skip
Nets, which supports insertion and lookup based on a one-
dimensional key. These structures were chosen because they
do not use hashing and therefore preserve the logical integrity
of the keyspace. Furthermore, given a data point and a leaf
region, we can decide whether the region containing the point
appears before or after the leaf region in the total order. In
order to locate a region containing a data point, the query is
routed through the Skip Graph in a manner such that the dis-
tance to the target region, measured in terms of the total or-
der, is probabilistically halved in every routing step. The re-
gion tree is therefore not used for navigation purposes; instead
each processor maintains a partial view of the region tree to
aid query processing and to determine the ordering between
a region and the destination point. Furthermore, we leverage
a number of useful properties of the Skip Graph, such as its
ability to perform routing while requiring only a logarithmic
number of neighbors even for skewed data distributions. We
formalize our approach, which we will refer to as SkipIndex,
in the following subsections.

2.3.1 Background: Skip Graphs

Our routing scheme is based on Skip Graphs [3], which is a
generalization of Skip Lists [19, 17, 16] for one-dimensional
range queries. A Skip List offers a randomized alternative to
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Figure 4: Skip Graph

the more complex balanced-tree data structures, such as red-
black trees or b-trees. Each element in a Skip List participates
in several levels of linked lists (or “rings”). The lowest level
list consists of all elements ordered by their keys. Each key
that appears in the list at Level

�
, would also appear in the list

at Level
�����

with some probability � . At each level, a key
stores pointers to its left and right neighbors. To locate a key,
one searches the highest level (which might have just a few
keys), dropping down to the more densely-populated lower
levels if needed. There are, on average, �����	��

� � levels in
the system, meaning that a search will traverse ��������
�� � keys
until it reaches its destination.

Skip Graphs extend Skip Lists for distributed environments
by adding redundant connectivity and multiple handles into
the data structure. It is equivalent to a collection of up to �
Skip Lists (where � is the number of elements in the lowest
level) with each element participating in exactly one list at
each level and some of the lower levels shared across many
Skip Lists. The increased connectivity provides greater fault-
tolerance and avoids hot-spots as any element could be lo-
cated using any one of the top-level elements of the different
Skip Lists.

2.3.2 Formal Description of SkipIndex Routing

Before we describe the details, we define some terms that we
use in the description.

� Regions: A region stands for a node in the region tree
tree (Figure 2 b). Each region is a hyper-rectangle in the
search space. Intermediate regions generate two child
regions when split along one of the dimensions. Leaf
regions are associated with physical machines that are
responsible for managing that portion of the index.

� Split history of a region represents the path in the re-
gion tree from the root to the region. It is a list of tuples������������� �� "!$#&%(' ����� �	 $)

with each element specifying the di-
mension and position of a split.

� Region code is a string of 0s and 1s that represents how
a region is generated by the splitting process. When we
split a region into two pieces, the region code for the left
child (which is the region with smaller coordinates in

the splitting dimension) is generated by appending “0”
to the end of the region code of the parent region. The
right child’s region code is obtained by appending “1”
to the parent’s region code. We represent the code in a
binary fraction format, with a decimal point to the left
of the most significant bit. The ordering imposed by
the region codes corresponds to the in-order (or “left-to-
right”) traversal of the region tree. When combined with
the split history, the region code completely describes
the coordinates of a region.

� Ordering of a region * and a point � : Let *,+ be the
leaf region covering the point � . If - %���. ��*/+ � is known,
then one can use the following simple checks to deter-
mine the ordering between * and � . If * encloses */+ ,
i.e., - %0��. ��* � is a prefix of - %���. ��*,+ � , we have �213* .
Otherwise, if - %0��. ��* �546- %0��. ��*,+ � , then we can say
that *748� , else �94:* . However, if - %0��. �;*,+ � is not
currently known, we need to use the split history of *
to determine where the point � appears in relationship to
the various region splits that had occurred to generate * .

for
�
th tuple < �=��� ����� �	 !>#?%�' ����� �� A@ in B �C'"D$%�E"F �AG � do

c H �
th bit in - %���. �;G �

if ( IKJML & �N< �=��������� �� @PO #?%�' ����� �� 
) then

return (�RQ9* )
else if ( ISJ �

& �N< � �UTWV +YX[Z[\ @ 4]�_^=` V +"X�Z[\ ) then
return (�R49* )

return (�R1W* )

We now describe the details of our routing algorithm and
the neighborhood state maintained by each processor in the
system.

We organize the leaf regions into a Skip Graph using their
region codes as the keys. Figure 4 illustrates the region codes
assigned to the regions depicted in Figure 2 and the result-
ing Skip Graph organization of the regions. A node respon-
sible for a leaf region maintains the following neighbor state
that is used during routing queries: a) For each level of the
Skip Graph, a node owning a region maintains the identity
of nodes that own adjacent regions. b) For each level of the
Skip Graph, a node owning a region also maintains the split
histories and region codes of adjacent regions.

When a node owning region a is posed with a query to
locate the leaf region enclosing a target point � , it performs
the following routing actions:

Algorithm 1 SkipIndex Routing
if ( �R1Wa ) then

A is the destination region
else if ( �RQba ) then

/* move right */
for

�
= max-level down to L do

if ( !
E"�[c0deD E�.Uc���%�f < � @ Qg� ) then

forward to
E"�[c0deD fh.Y�[c(d?ij%�E < � @

else /* move left, omitted */

In other words, the node owning region a examines its
neighboring regions, starting with the highest level of the Skip
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Graph, and routes the query to its farthest neighbor with-
out overshooting the destination point. As the query nears
the destination point, the routing algorithm uses progressively
lower levels of the Skip Graph. The routing distance and the
number of peer links are both bounded as ��������
 ��� in an � -
node Skip Graph. These bounds are independent of the data
distribution and can be achieved even when the region sizes
are highly skewed (as supported by the experimental results
shown in Figure 3 (b), (c)).

In addition to being able to achieve efficient routing and
low neighborhood state, the SkipIndex approach has other
useful properties that makes it suitable for performing near-
est neighbor queries. Note that all the leaf regions obtained
from recursively splitting a single intermediate region are
contiguous in the lowest level of the Skip Graph. This prox-
imity enable us to broadcast a query to all leaf regions ob-
tained from a single intermediate region. Later we will use
this operation for performing range queries and nearest neigh-
bor queries.

We use a dynamic version of balanced region allocation in
SkipIndex. A node brings an idle node to offload its region
when overload is detected. The details of how to decide over-
load and how to generate an idle node is discussed in Sec-
tion 4.2. The new node obtains from the splitting node both
the split history and the portion of the data keys that are to be
assigned to the new node. After the split, both nodes modify
their split histories and region codes. Specifically, the split-
ting node retains the lower half of the original region and adds
a “0” to its region code, while the new node obtains the upper
half and appends “1” to its region code. Since we organize
the Skip Graph based on the binary fraction value of region
codes, the splitting node does not change its key value during
this process, and the new node becomes its right neighbor in
the lowest level of the Skip Graph. The new node joins the
Skip Graph with its region code. We detail the join process in
Section 4.4. After insertion, the splitting node also notifies its
peers about changes to its split history and region code.

2.4 Discussion
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Figure 5: Routing distance changes as the dimensionality in-
creases

Figure 5 shows the routing distance for varying dimension-
ality. CAN and Sampled CAN only achieves performance

comparable to SkipIndex when dimension is above 8. Fig-
ure 3 (b), (c) compare the number of peers used by these sys-
tems. We compare these systems again in the experimental
results section regarding measures such as the distribution of
query processing loads.

In summary, the issues of balancing storage and query load,
minimizing the size of the routing table, and lowering the cost
of maintaining the overlay, are important in a massively dis-
tributed system. These properties are not easy to achieve si-
multaneously in CAN-style systems. SkipIndex exhibits log-
arithmic bounds on routing state and routing distance. These
bounds are independent of data distribution and dimensional-
ity, making it superior to CAN routing and its variants.

3 Distributed Query Processing
SkipIndex supports several types of queries: point query,
range query, and � -nearest neighbor query. Point query is
equivalent to routing the query to the node owning the en-
closing region (which was discussed in the previous section)
and performing a local search. In this section, we therefore
focus on the other two types of queries.

Range query can be defined as returning all of the data
points falling within a given hyper-rectangular or hyper-
spherical region. The query range can also be specified by
other shapes, such as hyperellipsoids that result from us-
ing a distance metric with different weights for different di-
mensions. These queries can be supported efficiently with
a range-limited “multicast” operation, which dispatches the
query to all the nodes whose regions intersect the query range.
In SkipIndex, the multicast operation can be implemented in
a logarithmic number of steps even when a large number of
nodes maintain regions that intersect with the specified range.

3.1 Range Query by Multicasting

In a centralized index tree, like K-D-Tree or R-Tree, a range
query is implemented using a top-down tree traversal. Start-
ing from the root of the index tree, the algorithm recursively
visits every sub-tree whose bounding region intersects the
query range. SkipIndex performs tree traversal in a similar
but distributed manner, without requiring any node to main-
tain the complete view of the index structure.

Each node maintains a partial view of the region tree. The
partial tree view or local tree view of a node comprises of
the split histories of its local region and that of the regions
maintained by its Skip Graph peers, where each split history
provides information about the path from the tree root to a
leaf region (as discussed in the previous section). Figures 6
(b)-(d) illustrate the partial views of three index nodes.1

There are three types of “leaves” in the partial tree view of
a node: the local region of the node itself, the regions of its
peers, and the “obscured” regions corresponding to unknown
parts of the region tree. We call the latter two types remote
regions. Note that an obscured region can be either a single
leaf region or a group of leaf regions; the local node does not

1In order to simplify the illustrations, we draw only those peer nodes that
are adjacent in the bottom-level Skip Graph (shown in Figure 6 (a)). Partial
views actually contain the split histories of all neighboring regions that are
adjacent to the node in any one of the levels of the Skip Graph.
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Figure 6: Partial tree views of different nodes

have sufficiently detailed information regarding these regions.
For example, the structure of regions C, E, and F are not vis-
ible to the node maintaining region B; instead they appear
collectively as a single obscured region.

The range query starts by routing to the center of the query
range, qrange. The node enclosing the center does a local
range query, then traverses its partial tree view to find out
which other regions intersect qrange. This is equivalent to
the tree traversal performed on a centralized index tree, ex-
cept that it returns a set of regions to be searched on remote
machines. Then the query is multicasted to each region in the
set to continue the search.

For an obscured destination region, dregion, we route a
message to some node that indexes at least a portion of dre-
gion. This node can, if necessary, further decompose dre-
gion into finer regions and forward a message to the appro-
priate nodes. The messages includes both qrange, the orig-
inal query range, and dregion, the region which the receiv-
ing node should further decompose to forward the message.
When a node forwards the message to other nodes, it speci-
fies non-overlapping dregion values in order to ensure that no
duplicate messages are generated for a given query.

A more formal description of the multicast process is de-
scribed below. We use ����� E��=f c . to denote the check as to
whether region � intersects the query range, and �! #"$�&% to
denote the check for region enclosure.

Although we use the analogy of region tree traversal in our
informal descriptions, the multicast process detailed above

Algorithm 2 Range-Limited Multicast

Upon � ^ �(' receiving query
� � E��=f c .=!(��E�.Uc���%�f ) :

if ) %&*+� ) E .Ac���%�f � fh%���. �," ��E�.Uc���%�f
then

perform local query (qrange)
for all remote regions * in partial tree view do

if *-" ��E�.Uc���%�f
and *.�/� E���f c�. then

forward query
� � E��=f c .=! * ) to *

does not descend the tree sequentially, but rather “jumps” into
subtrees of the region tree. The depth of multicast, i.e., the
maximum number of hops to reach a leaf region that belongs
to the target area, does not depend on the height of the region
tree, which can be ��� ��� in the worst cast. Instead, in order
to multicast a query to a given region, the multicast process
forwards the message using links in the Skip Graph, and each
step of this forwarding process achieves one of the following
two goals: a) The distance to the set of nodes representing the
region is halved, or b) the destination region is decomposed
into subregions, each of which is at most half the size of the
destination region. This intuition is formalized in Theorem 1
in Appendix. When the query range is small, i.e., only a few
neighboring regions are involved, multicast depth is typically
O(1), as those regions are already included in the partial tree
view of the initial node.

3.2 Nearest Neighbor Query Algorithm

� -nearest neighbor search is similar to a spherical range
query, except that the radius of the query ball is not pre-
specified but is instead determined dynamically during the
search. Our � -nearest neighbor algorithm is therefore based
on the range query algorithm, which is enhanced with a
demand-driven process for determining which regions to
query.

As the first step, we route the � -nearest neighbor search to
the node a owning the region that contains the query point 0 .a then executes a local query to determine an initial candi-
date set of � -nearest neighbors, denoted by 1325464 . The max-
imum distance from 0 to points in 17284!4 is the initial value
for the KNN query radius, *928464 . If the size of 1:25464 is
less than � , then *928464 is set to a value that covers the en-
tire � -dimensional space. a also maintains a priority queue,; �=<?>=@?ACB

, of regions to be searched, ordered by their minimum
distances to the query point. The initial contents of

; �=<C>=@DACB
is

determined by traversing a ’s partial tree view and finding all
regions that intersect with the current query ball

� 0 ! * 284!4 ) .
The algorithm queries the regions in

; �E<?>=@?A?B
in increasing

order of distance. In each step, a extracts the minimum dis-
tance region, * , from the queue and sends a query message� 0 ! * 28464 ! * ) towards region * . When this message is re-
ceived by a node, which could have more detailed information
about * , the search region is refined based on the node’s par-
tial tree view and forwarded towards the sub-region of * that
is closest to 0 . When the search region is eventually refined
to a leaf region and received by the corresponding node, a lo-
cal query is performed to determine points contained in the
region that are closer than the current KNN distance estimate
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* 28464 . The results are reported back to a along with the newly
discovered sub-regions that intersect with the query ball. a
then updates 1 28464 and * 28464 , and inserts sub-regions found
during the step into

; V �������	� . a repeats the query step un-
til there are no regions left in

; V ���
���	� within distance * 28464 .
Algorithm 3 provides the formal description.

Algorithm 3 Basic KNN query algorithm
a does a local KNN search and initializes 1 28464 and * 28464
based on the resultsa traverses its partial tree view and initializes

; �E<?>=@?A?B
with

all regions * , such that
� ��f_�=�C'jD �;G ! � � � * 28464

while (
; �=<C>=@DACB

not empty ) do*�H extract min(
; �=<?>=@?ACB

)
forward query

� 0 ! *928464 ! * ) to *
receive result

� 1 '�
A+ ! 1 '�
�� )
insert regions in 1 '�
�� into

; �E<?>=@?A?B
update 1:284!4 and * 28464 with 1 '�
A+
prune

; V ���
���	� with new * 25464
return 1:28464
Upon node � receiving the query

� 0 ! * 28464 ! * ) :
if ( ) %&*+� ) E�.Uc���%�f ��� �
J JM* ) then
1 '�
 + H�� nearest points within * 28464
1 '�
 � H leaf regions inside * from local tree view
reply to a the results

� 1 '�
 + ! 1 '�
 � )
else

find the leaf * X in local tree view with minimum� ��fh���C'"D ��� ! G �
forward query

� 0 ! *928464 ! * ) to */X
This algorithm sequentially queries leaf regions in ascend-

ing order of their minimum distances to the query point. Thus,
it is optimal in the number of machines searched. In fact, our
distributed algorithm is inspired by the BBKK local query al-
gorithm proposed by Berchtold et al. [7], which minimizes
the number of index pages visited during a nearest neighbor
query on a centralized index. However, the sequential nature
of this query may result in higher latencies. This drawback
could be addressed by initiating searches on the � closest re-
gions at a time, instead of searching just one region in each
step, thereby increasing the amount of parallelism. This im-
proves the search latency at the expense of making some un-
necessary queries.

3.3 Approximate Search

It is difficult to limit the scope of nearest neighbor searches
for high-dimensional datasets. Many previous studies [26, 7]
have shown that as the dimensionality is increased, more and
more of the bounding regions in index structures intersect
with the query sphere, eventually degrading the search into
scanning the whole data set. This is referred to as the dimen-
sionality curse.

For many applications, the dimensionality curse can often
be alleviated by using approximate search due to the follow-
ing reasons.

First, many applications, such as content-based retrieval

q

E

D

CB

Figure 7: Intersection of Query Sphere and Regions

of multimedia datatypes, can tolerate small inaccuracies in
query results. Furthermore, most distance metrics used in
these applications are of heuristic nature in the first place, and
providing slightly inaccurate results might not have serious
ill-effects.

Second, though the distance to the � nearest neighbor, and
hence the query radius, increases steadily with dimensional-
ity, the volume of the query sphere typically does not increase.
A majority of the bounding regions intersect the query sphere
with only one of their corners. These intersections are, there-
fore, typically negligible in volume. If the data points are uni-
formly distributed within the local range of the query, these
tiny regions of intersection could be omitted as they hold lit-
tle chance of yielding data points.
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Figure 8: CDF of intersection volumes of searched regions
and their minimal distances to the query point.

Based on these observations, we propose a method to meet
a precision bound for queries that is based on the volume of
the searched region. Once the volume of the explored region
within the query sphere exceeds the desired precision, the
search is to be terminated. Figure 7 shows a query sphere cen-
tered at point 0 intersecting four rectangular regions. Since
the intersection of the sphere with � is of negligible volume,
we can skip querying � without sacrificing search accuracy.

To characterize the importance of this optimization, we ex-
amine the distribution of the intersection volumes while per-
forming a 10-NN query on the PHOTO dataset (which is de-
scribed in the experimental results section). Figure 8 shows
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the cumulative intersection volume from regions intersecting
a query ball. Although the total number of intersecting re-
gions is large, a majority of these regions share negligible in-
tersection volumes with the query sphere.

Another approach to approximation is provided by the � -
approximate nearest neighbor search [2, 13], which returns
points within � � � � � distance of the exact nearest neigh-
bors. We do not use this scheme in our system because of
the following property of high-dimensional rectangles: A cor-
ner of a high-dimensional rectangle could encroach signif-
icantly into the query sphere, but the corresponding inter-
section could still be negligible. The � -approximate near-
est neighbor search methods would have to query these low-
overlap regions. This effect is also illustrated in Figure 8,
where a gradual increase in distance actually corresponds to
a dramatic decrease in intersection volume. Distance-based
approximations are therefore likely to be too conservative to
significantly reduce the number of queried regions.

3.3.1 Estimating Intersection Volume

It is, however, quite challenging to calculate the intersection
volume of a hypercube and a hypersphere in high dimensional
space. We take a conservative approach that calculates the up-
per bound on the intersection volume. Consider the intersec-
tion of � with the query sphere in Figure 7 and a rectangular
bounding box (BB) that encloses the intersection. The ratio
of the volume of the intersection volume to the volume of its
bounding box is upper-bounded by the ratio of the volume of
the entire sphere to the volume of the sphere’s bounding box.
Since the bounding box of a sphere with radius * has volume
� � * � � , we get the following volume bound:

� ���� <?@A�=<?A$ � � ��� B&<C@D<
� � * 25464 � ��� �	�
�

� ��� B&<?@?<
is simply a function of * and � .

� �
�
can be com-

puted by determining the points of intersection of the hyper-
cube and the hypersphere. It is therefore possible to use the
bound to calculate the upper-bound on

� ���� <?@U�E<?A$ 
. The proof

can be found in Appendix, Corollary 1.
The intersection of the sphere with regions � and � are a

bit more complex to bound, as they do not meet the premise
of our upper bound. These regions overlap with more than
one quadrant of the query sphere. In such cases, we extend
the region so that its corners do not lie inside the sphere,
break up the extended region into different pieces so that each
piece intersects with the query sphere in exactly one quad-
rant, and then use the upper bound given above to calculate
the intersection volume generated by each one of the pieces.
(In Figure 7, region � is extended to form the dashed box
that encroaches into region � and then broken down into two
pieces.)

3.3.2 Early Termination of Approximate Search

Assume that each nearest neighbor query specifies an error
bound � . The query is then said to tolerate results where up to
� fraction of the reported nearest neighbors are non-optimal.
Assuming uniform data distribution around the query point,
we are allowed to disregard � fraction of the query sphere.

We modify the nearest neighbor algorithm to keep track, for
each region in

; V ���
���	� , the extended bounding box of the in-
tersection of the region with the query sphere. The search
termination condition is then modified to:



� �����
�����������

� ��� �
� � �"! � 4#� � � � * 28464 � �

3.4 Optimizations

Many of the traditional optimization techniques used by cen-
tralized indexes could also be applied to SkipIndex. For ex-
ample, we could use the minimum bounding rectangle of all
points stored in a node as its region, instead of the whole
subspace generated by splitting its parent region. This can
improve the estimation of both the minimum distance to a
query point and the intersection volume, thus reducing un-
necessary queries. To fully exploit this optimization, there
needs to be some background exchange of bounding box in-
formation amongst peers.

An even more aggressive background preprocessing is pro-
posed in pSearch [25], to allow a node to sample some points
stored in its neighbors that are closest to its region and store
them locally. Such a scheme could be integrated with data
replication strategies that are designed to improve availabil-
ity. The data on a node can be replicated on its close buddies
(discussed in Section 4.5). The replicas may answer queries
on behalf of the original nodes, in order to reduce communi-
cation costs.

4 Building an Index Service
In this section, we discuss how to use SkipIndex to build a
scalable and robust index service for peer-to-peer platforms.
We address the problems of index diversity, dynamic load bal-
ancing, network proximity and maintenance. We also briefly
discuss our prototype implementation developed on Planet-
Lab.

4.1 Accommodating Diversified Indexes

$"$$"$
$"$
%"%%"%
%"%

&"&&"&'"''"'

("("(("("()")"))")") *"*"*"**"*"*"*+"+"+"++"+"+"+

Figure 9: Partitioning a Forest of Indexes

Till now, we have been focusing on the organization of a
single index dataset. In practice, it is hardly the case that
one monolithic data set is indexed across a widely distributed
system. The underlying peer-to-peer structure implies the ac-
commodation of numerous indexes highly diversified in their
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scale, dimension, distribution and query patterns. Distribut-
ing each index to all the nodes with separated routing struc-
ture is certainly out of the question, as the amount of routing
state will be linear to the number of indexes. Partitioning the
nodes for each index is possible. But then one needs to de-
velop algorithms for partitioning, and might also introduce a
level of indirection to locate the node set for each index.

We extend the SkipIndex described above to accommodate
multiple indexes. Figure 9 illustrates the basic idea. The in-
dexes are ordered by their ID. So their region trees form a for-
est. Now we can use SkipIndex to organize the leaf regions
in the forest order, with the keys generalized to a two-tuple
comprising of

� � � � '�� � � ! 
D� ' '(IY^ �(' ) . With large number of
indexes, we combine neighboring tree or branches into one
node, as depicted by the dashed rectangles in Figure 9. The
key of each node is given by the key of the left-most leaf
maintained by the node, which is shown as a shaded region.

Several properties of this scheme are worth noting
here:� The routing distance and the amount of routing state are

independent of the number of indexes. They only depend
on the number of nodes.� Dimensionality of an individual index is irrelevant to the
routing structure.� Moving a part of index on one node across boundary to
its neighbor changes the key of this node, but does not
change the Skip Graph structure.� Removing a node will shift its responsibility to the left
neighbor.

The first property ensures the scalability of SkipIndex. The
second provides the diversity of data sets. The last two prop-
erties aid the load balancing and failure recovery mechanisms
of SkipIndex. In the next section, we present a dynamic load
balancing scheme to complement the balanced region alloca-
tion scheme for SkipIndex.

4.2 Dynamic Load Balancing

In Section 2.1, we introduced the notion of overload-triggered
splits as a means of balanced region allocation among SkipIn-
dex nodes. In a real index system, there are two dynamic is-
sues to be addressed in the partitioning: how to decide the
overload threshold in a distributed fashion and how to find
idle nodes.

We do not consider the approaches using centralized man-
agement or global consensus protocols for the obvious rea-
sons of scalability and availability. Our solution exploits pair-
wise gossiping to spread information about overloaded and
underloaded nodes. Then each node makes their own decision
on how to split. The idle nodes are created by a combination
of node virtualization and compaction.

SkipIndex nodes keep coarse load information about other
nodes. Periodically, a node talks to its neighbors about its cur-
rent load and the � highest and lowest loaded nodes it knows.
The load gossips comes with a timestamp from the original
host to control consistency. Upon receiving a gossip mes-
sage, a node remembers the entries with timestamps newer
than local versions. If an entry bears an obsolete timestamp,

the current value will be fed back to the sender in the next
gossip exchange. Our gossip protocol relies on the fact that
Skip Graphs have a high expansion ratio [3] and information
regarding load can be quickly propagated through the Skip
Graph links.

The overload threshold is locally decided by each node as:
MAX � � -th highest load, � -th lowest load*C, T � , where T
is a fixed threshold as a lower bound for overload, and C is a
stabilizing constant greater than 1.

When a node detects that its load is above the threshold for
a sustained time period, it invokes the partitioning procedure.
The node to which it will offload data is chosen as follows:� If one of the closest neighbors is underloaded, choose it.� Else if there is an idle node in local view, choose it.� Else if there is an underloaded physical node with less

than V virtual nodes, create a virtual node there.� Otherwise, pick an underloaded node, make it idle by
moving its data to its neighbor (compaction).

The choice of creating a virtual node or compacting an ex-
isting node depends on the amount of routing state allowed
per physical node. A machine with many virtual nodes can
harbor a large number of peer connections, increasing the cost
of peer maintenance and danger of disconnection during node
failures. Compaction, on the other hand, incurs a higher la-
tency to transfer objects. In practice, compaction can be done
proactively in background to maintain a pool of idle nodes at
any time.

4.3 Physical Proximity

A major concern for peer-to-peer systems is the performance
of multi-hop routing. Several DHT schemes [22, 20, 11] ad-
dress this problem by taking advantage of physical network
proximity. We use a similar heuristic to improve SkipIndex
routing locality. When a node splits, it picks the physically
closest one from the top � lightly-loaded nodes. The physical
network distance can be measured using direct ICMP pings
or landmarks [20].

The implication of this heuristics is that lower levels of
Skip Graph peers tend to be close to each other as a result of
proximity-aware splitting. Higher level peers are more ran-
domly distributed as they are decided by random membership
codes.2 Query operations benefit from this proximity as they
crawl the neighboring regions around a query point, which
are often found to be contiguous in level-0 SkipIndex routing
table. Insertion operations benefit less as most of the hops
are through higher level links. Simulation results on Internet
topology (Figure 18) confirms this observation.

4.4 Node Join

A new node joins a SkipIndex in two steps. First it “attaches”
to some existing active nodes as an idle node. The active
nodes can publish such attached idle nodes as having zero
load in their peer-wise gossips. Later, an overloaded active

2Pastry and Tapestry display similar characteristics with the first few hops
corresponding to highly local links, while the latter hops degenerate into
higher latency connections.
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node draws the idle node into active service through an atomic
join protocol.

The first attaching step does not involve any consistency is-
sues. The new node randomly picks some random Skip Graph
ring membership codes, and routes Attach requests to nodes
having longest prefix match with these codes (as in [11]). We
use membership codes instead of Skip Graph key because the
latter is not uniformly randomly distributed. The nodes ac-
cepting the idle node are responsible for publishing gossips
about this node, and periodically checking its liveness.

Inserting an idle node into active skip graph can be tricky
when we have to deal with concurrent joins as well as other
routing activities. Our insertion algorithm is similar to that in
[3]. Insertion starts at level 0 by routing a � ^ � � message to
the node with region code closest to the new node. In case of
SkipIndex node split, the splitting node is the starting point
because the newly spawned region is to the right of the split-
ting node in the region tree. This node forwards the join re-
quest to other nodes in the level that should be peer with the
newcomer. After level 0 peers are established, the joining
node traverses the level 0 ring to find out level 1 peers. This
process continues until it reaches the highest level where there
is no other nodes in the ring. It has been shown in [3, 11]
that the joining process takes expected �����	��
 ��� steps and
��������
 ��� messages.

When nodes join concurrently, their messages may com-
pete to set the peer links of an existing node. The one arriving
first sets the peer in the routing table, which may later be re-
placed by another closer node. In this case, the joining node
will send a message to the earlier requester as it should peer
with it on the other side.

We augment the above insertion algorithm with an atomic
protocol similar to two-phase commit. The purpose is to avoid
interference to normal routing in case of race conditions and
failures during the insertion process. The active nodes record
the joining party, but do not use it for normal routing until
receiving signal of successful commit from the joining node.
If the joining node fails before finishing its join, the record
expires eventually. The node can send the success signal as
soon as the two closest level 0 peers are established success-
fully, since Skip Graph routing is fully functional with just
first level pointers.

4.5 Failure Recovery

We consider several cases of routing repairs in our system:
a) a node quits voluntarily, b) it fails without warning due to
node crash or network disconnection, or c) the network link
connecting two peers fails.

In order to repair the index structure after a node disap-
pears, we maintain a set of “backup” nodes for each machine.
The backups are chosen from the closest nodes in the Skip
Graph and are referred to as close buddies. In the prototype,
we use a dense routing table [11], so the first level peers are
sufficient for choosing close buddies. A background opera-
tion replicates data among nearby buddies. The replicas not
only improve availability in case of failure, but also help to re-
duce query delay as an idle node can serve queries pertaining
to its busy buddy.

When a node leaves voluntarily, it transfers its region to
the closest buddy, and then informs all of its peers about its
departure. Failure or disconnection of a node is detected by
periodic gossip messages. When a peer continuously misses
several gossips, the node diagnoses whether it is a link fault or
a node failure by routing several probes through other peers.
If any of the redirected messages reaches the destination, the
link is labeled as path failure and any later communication
will go through the detour.

If none of the probes are successful, the node is declared
dead and removed from the routing table. Any later messages
toward the region of the failed node will fall to its closest
buddy on its left side. So this node naturally takes over the
responsibility. This is simpler than the recovery scheme in
CAN, which creates a virtual node to take over the fault zone
and establishes new peer links as it uses zone neighbors in
routing.

4.6 SkipIndex Prototype

We implemented SkipIndex and deployed the prototype on
Planet-Lab [18]. We use the dense routing table design pro-
posed by Skip Nets [11]. Instead of just storing two (left
and right) peers per level of routing table, this design stores� � ��� � � closest peers continuous in the ring. Overall, the
routing distance is improved to ��������
 2 ��� . Current imple-
mentation includes features of similarity search, range mul-
ticast, peer-wise heart-beat and gossiping of load informa-
tion, dynamic partitioning and support for concurrent node
joins. Continued work includes failure recovery and network
proximity-aware partitioning.

5 Experimental Results
We have performed extensive experiments to evaluate the
query performance of SkipIndex and other schemes. We
now present results obtained using a data set called PHOTO,
which contains 32-dimension color histogram vectors ex-
tracted from one million color images downloaded from on-
line photography sites. We perform a dimension reduction
transform (PCA) on the raw feature vectors to generate keys
whose dimensionality is varied from two to twenty in our ex-
periments. We also tested the system with another large data
set (SOUND) containing two million short-duration sound
frames obtained from a library of sound-effects used by
moviemakers. This dataset is indexed using keys compris-
ing of 29 features. The results for this dataset showed trends
similar to that of the PHOTO data. Without specific note, all
results reported here are generated with the PHOTO dataset.

We implemented the various algorithms described in this
paper within a simulator and a real implementation. We sim-
ulated the routing and query algorithms with up to 25,000
nodes using our simulator. We also report on the results from
the SkipIndex prototype deployed on Planet-Lab, utilizing up
to 105 nodes distributed in North America. We also simu-
lated a 314 nodes ISP topology generated by RocketFuel [23],
to make measurements on query latency for larger realistic
topologies. We measured various performance metrics, such
as the query/insertion latency, number of nodes visited during
a query, the number of queries handled by each node, and the
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Figure 10: Maximal query load per node.

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1

Q
ue

ry
 L

oa
d 

Le
ve

l

Percentile of Nodes

CAN
Sampled CAN

SkipIndex
SkipIndex 99% Approx.
SkipIndex 90% Approx.

Figure 11: Distribution of query load.

accuracy of results returned by approximate queries.
We evaluate the performance of the following four systems:

CAN, Sampled CAN, SkipIndex and SkipIndex Approx..
The query algorithm used for CAN, and Sampled CAN is
a modified version of the neighbor walking algorithm used
in the pSearch system [25]. We modify the algorithm so
that it returns the exact nearest neighbors and is also opti-
mal in the number of machines searched. SkipIndex Ap-
prox. uses the approximate search algorithm described in 3.3.
We measure the accuracy of approximate results by compar-
ing them to the exact search results. The accuracy is defined
as a,IYI�� ��� I�� J � � �	� ����
	� � ��
�
���� �� , where 1 ��� ��� \ and 1 � +j+�� �
are the sets of results returned by the exact and approximate
queries.

Figure 10 presents the maximum load experienced by an
index node for various schemes in order to identify whether
the scheme suffers from throughput bottlenecks. This metric
reflects a system’s ability to balance objects across different
nodes as well as its ability to avoid routing hot-spots. The
SkipIndex-based schemes perform best. Figure 11 depicts the
query load distribution on the nodes. CAN shows extremely
unbalanced load: ��L�� of the nodes get negligible workload,
while most of the queries are handled by

� L�� of the nodes.
Sampled-CAN performs marginally better.

Figure 12 depicts the number of nodes visited by a query
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Figure 12: Increase in the number of searched nodes as the system
is scaled.
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Figure 13: Change in query cost as dimensionality increases.

(also referred to as the query span) as the system scales. CAN
exhibits very low query span, because its load distribution is
highly skewed. A small fraction of CAN nodes host most of
the index data and serve most of the queries, as documented
by Figure 10 and 11. Amongst the exact search algorithms,
Sampled CAN shows a slightly higher span than SkipIndex.

Figure 12 also demonstrates the importance of approximate
search for a scalable system. As the system size increases,
exact query schemes exhibit much steeper increase in query
span than approximate ones. With 14,400 nodes, a ��L�� ap-
proximation search visits about 100 nodes, almost an order of
magnitude better than the query span for an exact SkipIndex
search.

Figure 13 depicts the query span as we increase the dimen-
sionality of the dataset from 2 to 20. Both SkipIndex and
sampled CAN exhibit high query spans for high dimensional-
ity data. However, the query span of sampled CAN increases
faster than that of SkipIndex, suggesting that the SkipIndex
scheme is more suitable as dimensionality increases.

We next evaluate the approximate query mechanism and
study its accuracy. Figure 14 illustrates the improvement in
accuracy as we search more nodes in the decreasing order of
their intersection volumes with the query sphere. The error
ratio decreases sharply after the search has covered a small
number of nodes. Figure 15 depicts the relationship between
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error ratio and the unsearched volume. The volume metric
closely bounds the search error rate.

Figure 16 reports the query costs for the SOUND data set.
This data set has higher dimensionality and a less clustered
distribution. Thus the exact queries incur significantly higher
costs and flood

��� � to
��� � of index nodes. Approximate

search substantially reduces this cost.
Figure 17 reports the prototype performance running on

105 Planet-Lab machines. Though the nodes are widely dis-
tributed, we achieved 200-300 milli-second query response
time with � ��� approximation. This latency can be further re-
duced with the proximity heuristics described in Section 4.3.
This is shown by simulations with topologies generated by
RocketFuel (see Figure 18).

6 Related Work
The basic problem that this paper addresses – indexing and
querying high dimensional data – has received extensive at-
tention from the database research community [6, 9, 5, 8].
Most of the existing work focuses on centralized indices. But
the basic approach of partitioning the search space to sup-
port efficient similarity search is applicable to distributed im-
plementations. Specifically, we draw inspiration from K-D-
Tree [6] with regards to partitioning the search space.

Distributed Hash Tables (DHTs), like CAN [20],
Chord [24], Pastry [22] and Tapestry [28], achieve scalabil-
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Figure 16: 10 NN query results of SOUND data set

ity and resilience by building self-organizing overlays to lo-
cate resources in peer-to-peer systems. Such systems exhibit a
slew of desirable features, such as scalability, fault-tolerance
and self-organization. But since these systems use hashing
to achieve load-balance, they are not suitable for performing
range and nearest neighbor queries.

There has been work on supporting range queries by
utilizing distributed replicated B-trees [14], space-filling
curves [1], and so on. Huebsch et. al. have proposed schemes
for providing database query functionality, such as the join
operation, in a peer-to-peer system [12].

Our work is most closely related to pSearch [25], which is a
peer-to-peer document retrieval system based on a distributed
index of high dimensional semantic vectors. Our work dif-
fers from pSearch in several ways. We leverage a new high-
dimensional routing scheme that exhibits logarithmic routing
state and routing distance regardless of data distribution and
dimensionality. We use an overload-triggered space partition-
ing scheme that can achieve better load balance. pSearch
only provides best effort search without a bound on accuracy.
Our system provides both exact nearest neighbor query and
bounded-error approximate search.

Our distributed index utilizes Skip Graphs [3] as the rout-
ing facility. Skip Graphs provide the ability to perform one
dimensional range queries using a highly resilient and load-
balanced structure. We combine it with our space parti-
tioning scheme and extend it to perform routing over high-
dimensional space.

Weber et al. [26] analyzed the query performance of in-
dex structures and showed quantitatively the difficulty of re-
ducing search cost in high dimensional space. We alleviate
the dimensionality curse with approximate search. Our ap-
proach differs from existing � -Nearest Neighbor search algo-
rithms [2, 13] in that we bound the error with search volume,
which directly relates to the accuracy of search results.

7 Conclusions
In this paper, we present the design and implementation of a
peer-to-peer index service for high dimensional data that is
capable of handling complex queries. We discussed the vari-
ous alternatives for distributed index organization and consid-
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Figure 17: Prototype performance on Planet-Lab
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Figure 18: Performance with RocketFuel Topology

ered the challenges associated with efficient query processing,
dynamic load balancing, and other key issues. In particular,
we make the following contributions in this paper:� We designed a index service for high dimensional data

that achieves logarithmic routing distance and maintains
only a logarithmic number of peer pointers regardless
of data distribution and dimensionality. Our approach
exploits the one-dimensional search capability of Skip
Graphs and enhances it for searching high dimensional re-
gions. The same idea can be used to efficiently distribute
other hierarchical tree structures.� We developed algorithms for performing complex
queries, such as range queries and nearest neighbor
queries, that execute in a completely decentralized man-
ner based on partial local knowledge.� We introduced the concept of using the intersection vol-
ume to bound the error of approximate search. Using
this approximation, we can significantly reduce the search
range based on a user-specified parameter regarding the
desired level of accuracy.� We compared existing schemes that partition high dimen-
sional search space amongst the index machines, and pro-
posed a balanced partitioning scheme with dynamic load
balancing.

� We built a prototype and evaluated it in a real Internet en-
vironment using real world data sets. We also performed
extensive simulations to compare our proposed scheme
with other alternatives.

Our planned future work includes further implementation
and evaluation of the failure recovery mechanisms, and eval-
uation with more dynamic, large-scale platforms and more
diverse application data sets.
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Appendix

A Proof of Logarithmic Multicast Depth

A B
W(r’)d(B, r’)

d(A, r) W(r)

Figure 19: Shrinking of destination region during multicast.

Theorem 1 (Logarithmic Multicast Depth)
In a SkipIndex with � nodes, the maximum number of hops
in a range-limited multicast is �����	��
 ��� .

Proof. Consider forwarding a message from node a to a
remote region � . As the message is forwarded to a neighbor-
ing node � , � decomposes � into smaller sub-regions and
forwards the message to those sub-regions that intersect the
query range. So it suffices to prove that the original destina-
tion region � can be refined into a leaf region in �����	��
 ���
steps.

As we had noted in Section 2.3.2, all leaf regions obtained
from recursively splitting an intermediate region are contigu-
ous in the Skip Graph order. Figure 19 depicts the starting
node a and the destination region � in the ordered list. We
define � � � � as the number of leaves in region � , or the width
of � . Also define � ��a ! � � as the number of leaf nodes be-
tween a and � in the list, or the distance from a to � . If
� ��a ! � ��4�� � � � , there should be a peer of a falling in the
region � , because Skip Lists/Graphs maintain peer pointers at
roughly

��� ! � J � ! � !������ �	��
 � ! distances. There is no such
peer of a because a doesn’t know anything inside � in its
partial tree view. So we have � �;a ! � � O � � � � .

Suppose a routes the query to � , which refines the region
to ��� . From the Skip Graph property, we have � �;a ! � � O
� � � � ! ��� � . So

� �;a ! � � � � � � �
� � � ! � � � � � � � � �

O
	 �
Initially for a query initiated at node A, � ��a ! � � � � � � � �

� . Therefore, within ��������
 ��� steps, the message would be
forwarded to a node X, such that � ��� ! �
� � � � � ��� � becomes
1, which means that �
� is a leaf region owned by node X.

B Intersection of a Query Range with a Region
We consider the intersection of a cube with a quadrant of
sphere in � -dimensional space. A � -dimensional sphere has� �

quadrants. The cube has edge lengths greater than the ra-
dius of the ball, so there is exactly one vertex

�
of the cube

inside the quadrant. The sphere intersects the edges of the
cube at � points, forming � vertices of the bounding box
around the sphere-cube intersection.

Now consider an ellipsoid centered at
�

, with the edge
lengths of the bounding box as the lengths of its axes. A quan-
drant of the ellipsoid is enclosed inside the bounding box,
while its surface is tangential to � surfaces of the bounding
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box. We call this quadrant of the ellipsoid as the bounding el-
lipsoid of the sphere-cube intersection, because of the follow-
ing theorem. Figure 20 and Figure 21 illustrate the cases of
2D and 3D intersections with their bounding ellipse/ellipsoid.

Theorem 2 (Bounding a Sphere-Cube Intersection)
� -dimensional Sphere-Cube intersections of the type de-
scribed above are enclosed by a quadrant of an ellipsoid that
is constructed to be tangential to the bounding box.

Proof. We prove the � -dimensional case with induction
on the dimensionality � .

Figure 20 depicts the base case of 2D intersection. Without
losing generality, we assume that the intersection is within
the first quadrant. At the vertex a of the bounding box, the
ellipse has gradient 0 while the circle has gradient �Y� ���  � L .
At vertex B, the ellipse has gradient ��� while the circle has
gradient � � ����� � L . Since the circle and ellipse can have
only two intersection points in the first quadrant, the ellipse
encloses the circle in the region between A and B.

Now assuming that the statement is true in � -dimensional
space, we look at the case at dimension � �:�

. Figure 21

depicts the cases.
�

is the vertex of the cube inside the sphere.
The thin curves represent the intersection sphere, which is
bounded by the box

� � � �
	 ��� . The thick line represents
the ellipsoid tangential to the bounding box.

For any point 
 on the sphere surface inside the bounding
box, we draw a line

� 
 that intersects the ellipsoid at point;
. The point 
 and the axis

� 	 forms a 2D plane that is
vertical to the � -dimensional hyperplane of

� � � ��� . Plane� �

 ��	 intersects
� � � ��� with a line. Suppose that this

line intersects the sphere surface at point a , and the ellipsoid
at point � . From induction hypothesis, the � -dimensional
intersection

� ��� �Ra � � is enclosed in ellipsoid
� ��� �

� � � . So point a is between point
�

and � .
Now consider the intersection of the sphere with 2D plane� ��
 ��	 . The intersection part is an arc a ��
 ��	 ,

which is enclosed in its bounding ellipse
� � a ��
 � ��	 .� � a ��
 � ��	 is in turn enclosed in ellipse
� � � � ; ��	 ,

since a is between � and
�

. So we have � � 
�� � � � 
 ��� �
� � ; � , i.e., the ellipsoid surface is outside of the intersection
in dimension � � �

.

Corollary 1 Upper Bound of Intersection Volume
The volume of a sphere-cube intersection

�
inside one quad-

rant is bounded as below, where � � � � � is the bounding box
of the intersection, and � � �A` ��� '&� ' � is the cube circumscrib-
ing the entire sphere.

���
� ��� ��� !

� � V + � �	���� ��� � V + � �	��� !
Proof. From Theorem 2, the intersection is enclosed in the

quadrant of an ellipoid, which is also enclosed in the bound-
ing box of the intersection. Thus we get

���
� ��� ��� !

� � � X X[Z + V ��Z �� ��� � � X X[Z + V � Z � !
From the formula for the volume of an ellipsoid and a

sphere in high dimensional space, we have

� � X X[Z + V � Z �� �
� � � X X�Z + V ��Z � ! J
� V + � �	���� �
� � V + � �	��� ! J �

�  
! � T T � � 4 % � � �

where
! � T�T � function is a generalization of the factorial

function (i.e.
! � T T � �#" � � � J$"�% ).
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