Puzzle Outsourcing for IP-Level DoS Resistance

Brent R. Waters

Department of Computer Science

Princeton University
bwaters@cs.princeton.edu

Chris Tunnell
ctunnell@cs.princeton.edu

Abstract

We explore the use of cryptographic puzzles as a
countermeasure to low-level denial-of-service (DoS)
attacks, such as IP-layer flooding. In previous
work, puzzles have served mainly as tools for DoS
mitigation in higher protocol layers, for session-
establishment protocols or for applications like e-
mail.

In addition to its applicability to IP-level attacks,
our approach is distinctive in two regards. First,
we illustrate a way in which puzzles serve to pro-
tect public channels of communication for a server,
rather than specific service requests from clients.
We provide a detailed analysis of the resulting qual-
ity of service in different attack scenarios.

Second, we propose simple new techniques that per-
mit the outsourcing of puzzles, meaning their dis-
tribution via a robust external service that we call
a bastion. Many servers can rely on puzzles dis-
tributed by a single bastion. We show how a bas-
tion, somewhat surprisingly, need not know which
servers rely on it for puzzle distribution. Indeed,
in one of our constructions, a bastion may consist
merely of a publicly accessible random data source,
rather than a server.

1 Introduction

Denial-of-service (DoS) attacks present a strong
and well established threat to the Internet and e-

Ari Juels
RSA Laboratories
ajuels@rsasecurity.com

Edward W. Felten
Department of Computer Science
Princeton University
felten@cs.princeton.edu

commerce. One proposed countermeasure requires
clients to commit resources to an interaction by suc-
cessfully solving a computational problem known as
a client puzzle [16, 23] before a server will in turn
provide resources to the client. In this way, an at-
tacker is unable to consume a large portion of the
resources of a targeted server without commanding
and investing considerable resources himself.

While the deployment of client puzzles in attack sce-
narios seems promising, we have found that most
proposed systems of this type have a basic short-
coming. While they help protect higher-level system
resources, such as buffer space for TCP connections
or the computational resources for SSL session es-
tablishment, they remain vulnerable to lower-level
IP-flooding attacks [23, 7, 13].

Low-layer flooding attacks have in fact been the
most common variety to date on the Internet. See,
e.g., [20]. The only plausible basis for defeating such
attacks is a very efficient method of verifying the
validity of each packet. Yet even the computation
of an ordinary hash function such as SHA-1 on a
per-packet basis requires too much computational
effort by a server or router to be practical. Thus,
conventional client-puzzle-based solutions, which re-
quire cryptographic computation for verification of
each puzzle, cannot serve as a ready defense against
packet-flooding and related attacks.

We make two key observations about DoS attacks
and systems based on client puzzles. The first is
that in typical DoS attacks an attacker comman-
deers a cohort of machines on the edge of network,
but generally does not compromise routers in the
middle of the network. Based on this observation,

we consider an attack model that assumes only lim-
ited eavesdropping by the adversary. (This assump-
tion is explored further in Section 5.3.) Our second
observation is that since puzzle distribution itself is
vulnerable to DoS, any viable solution requires a ro-
bust point of puzzle distribution. We address these
observations in two ways.

Previous schemes involve puzzle distribution on a
per-request or per-session basis. We propose a more
coarse-grained approach to puzzle distribution. In
particular, we introduce the idea of protected com-
munication channels. A channel is a virtual traffic
partition (which may be designated simply by la-
belling packets with channel numbers). When at
high risk of DoS attack — or in the midst of an at-
tack — a host in our system accepts communication
only via a restricted collection of channels.

To contact a host through one of these channels,
a client must provide an appropriate token. A to-
ken consists of the solution to a client puzzle associ-
ated with the particular channel during a particular
time interval. Thus, a client may easily attach to-
kens to every packet it transmits. The host can
easily enumerate in advance the set of valid tokens,
so the host (or, by proxy, a router) can verify to-
kens and filter channel traffic very efficiently. The
idea, then, is that an adversary with limited com-
putational resources can successfully attack only a
limited number of channels. The remaining chan-
nels may then support normal communications from
benign clients.

As explained above, puzzle-based DoS solutions pro-
vide a newly attractive DoS target, namely the point
of distribution of puzzles itself. To address this
problem, we propose a novel approach to client-
puzzle distribution. We show how to outsource
puzzle distribution to a independent Web Service
that offers strong robustness, e.g., a highly dis-
tributed content-serving network or well-protected
core server. We refer to this service as a bastion.
A bastion may serve as a leverage point, reducing
the basic robustness requirements needed to defend
a server against DoS. We present three methods for
outsourcing puzzle distribution, each with different
requirements on the bastion and defending servers.

Channels and puzzle outsourcing limit the band-
width over which an adversary is capable of seiz-
ing effective control. A complete solution, however,
must include policies and mechanisms for translat-
ing the adversary’s limitation on access to channels

into a limitation on the adversary’s ability to con-
sume resources and deny them to others. Such a
solution must both be fair and allow for maximum
utilization of server resources. We design a policy
for controlling access to network bandwidth within
our channel framework that restricts the adversary’s
ability to mount an IP flooding attack against the
defending server.

We show our methods to be both theoretically sound
and implementable in practice using existing Inter-
net protocols, with an added client-side component.
(Our method maintains compatibility for unmod-
ified clients, but their traffic does not receive the
benefit of our DoS-resistance mechanisms.) We de-
scribe a first-stage prototype implementation of our
system that is transparent to client and server ap-
plications.

The paper is organized as follows. In Section 2 we
describe related work. We describe the design of
our puzzle construction and distribution methods
in Section 3. In Section 4 we give our policy for
handling IP flooding attacks. In Section 5 we dis-
cuss practical issues that arise in putting out design
into practice. Finally, we describe the details of our
prototype implementation in Section 6 and conclude
in Section 7.

2 Background and Related Work

In the data-security world, the term puzzle com-
monly refers to cryptograms that are solvable with
a moderate level of effort. Most cryptographic sys-
tems rely on computational problems that are so
hard as to be intractable; for example, the (appar-
ently) hard problem of factoring products of large
primes underlies the RSA cryptosystem. Puzzles
may enhance system security by raising a non-trivial
but surmountable barrier to acquisition of some re-
source. This has the effect of making the resource
freely available, while thwarting efforts at unfair or
malicious exploitation.

In this paper, we consider the use of puzzles as a
countermeasure to DoS attack. Dwork and Naor
[16] were the first to propose the use of puzzles for
this purpose — in particular, for mitigating spam.
Briefly stated, successful delivery of a piece of e-
mail in the Dwork and Naor scheme requires that
the sender attach a valid puzzle solution. A would-

be spammer therefore faces the deterrent of a large
and expensive amount of computation.

As computational time costs money (directly or in-
directly), their scheme may be thought of as akin
to a micropayment system for postage. Back [8] in-
dependently devised and implemented a similar sys-
tem known as Hash Cash. Gabber et al. describe an
extension of the idea in which puzzles are used to
establish relationships between corresponding users
so as to permit effective isolation of spam.

The Dwork-Naor and Back systems permit pre-
computation of puzzles, namely the solution of puz-
zles at a time arbitrarily antedating the sending of
the e-mail they are associated with. This achieves
the goal of imposing a computational cost on the
sending of spam. It is problematic, however, for de-
fense again the common form of DoS in which an
attacker seeks to disable a server by overwhelming
its resources during some restricted period of time.
This type of DoS attack, often referred to as a flood-
ing attack, is a common real-world DoS problem. It
is our main focus in this paper.

Juels and Brainard [23] addressed the problem of
puzzle precomputation and thus flooding with an
idea called “client puzzles ”; these are puzzles based
on session-specific parameters, for application to in-
teractive protocols like TCP SYN and SSL. Aura,
Nikander, and Leiwo [7] propose variants aimed
specifically at DoS attacks against authentication
protocols. Dean and Stubblefield [13] focus on the
application of client puzzles to SSL (or TLS), and
investigate the thorny deployment issues it poses.
Wang and Reiter [37] also consider puzzle deploy-
ment for DoS protection in authentication, devising
a system in which clients bid for resources by solving
puzzles of appropriate difficulty.

In the past couple of years, researchers have pro-
posed a few variants on basic puzzle constructions.
Abadi et al. [1] describe a new puzzle construction
aiming at a levelling effect among computational
platforms, i.e., at permitting more equal resource al-
location among fast and slow machines. The puzzles
they propose rely primarily on the resource of fast-
access memory, which tends to be more equally dis-
tributed among computing platforms than raw com-
putational power. Dwork et al. [15] propose some
improved constructions in follow-up work. Finally,
CAPTCHAS [36] are a kind of puzzle that depend
upon human work, rather than machine computa-
tion for their solution. All of these puzzle variants

may be adapted to our proposal in this paper.

A scheme that we draw on directly for one of our
proposed puzzle constructions here is the time-lock
puzzle construction of Rivest, Shamir, and Wagner
[30]. The goal of RSW was to create a kind of time
capsule for data. In particular, they wished to con-
struct a cryptogram that would be solvable only at
a distant future date — say, in the year 2025. To do
so, they proposed use of Moore’s Law to estimate
future computing power. They show how to craft
a puzzle whose solution relies strictly on sequential
computation and therefore on raw advances in com-
putational speed, rather than on parallelization.

We do not in fact draw on the functional characteris-
tics designed by RSW for their scheme. Instead, we
draw on an incidental algebraic property. An RSW
puzzle has the unusual characteristic of being deriv-
able from an entirely random bitstring and a public
key. At the same time it offers a shortcut solution
to the holder of the corresponding private key. We
explain our use of these features in section 3.5.

We omit discussion here of many cryptographic and
other uses of puzzles apart from combatting DoS
[6, 17, 19, 22, 26].

2.1 Approaches to IP-layer DoS

Puzzles, of course, represent only one approach
to DoS mitigation, and have previously seen use
mainly at the application or session-establishment
level, rather than at lower protocol levels. A goal of
our proposal is to address low-level, e.g., IP-layer,
attacks.

One of the best known existing approaches to ad-
dressing IP-layer attacks is referred to as trace-
back. This involves supplementation of packet data
so as to permit tracing of the origins of an attack
[3, 10, 12, 31, 34]. Pushback [25] and Path Identi-
fication (Pi) [38] are related IP-level approaches to
DoS. A drawback to these approaches is that they
require modifications to the routing infrastructure.
A Dbenefit is that they facilitate gathering of forensic
data. Anomaly detection [9, 21] is another actively
researched approach to IP-level DoS that involves
classification and suppression of suspicious network
traffic.

A very practical approach to attacks against certain

protocols, and used in real-world systems to protect
the TCP SYN protocol, is known as a syncookie. In
order to validate the claimed IP address of a client,
a server transmits a (cryptographically computed)
cookie to the address. The client must transmit this
cookie to the server in order to have its service re-
quest completed. Thus, while not aimed at IP-layer
DoS, syncookies exploit low-level network services
to achieve their protection.

An important emerging thread of research on DoS
that underlies our work here involves redirection of
potentially hostile traffic to robust loci capable of
withstanding attack and providing filtering services,
as in Stone [35], Andersen [4], and Keromytis et
al. [24]. Recently Adkins, Lakshminarayanan, Per-
rig, and Stoica [2] show how to combine this ap-
proach with puzzles; among other ideas, they advo-
cate leveraging the (proposed) Internet Indirection
Infrastructure (i3) in such a way that a challenge
puzzle is issued for each connection request. Our
proposal is similar in flavor, but more lightweight
and consequently coarser in nature. A key differ-
ence is that we advocate outsourcing from a defend-
ing server only of the process of puzzle distribution,
rather than broad management of incoming traffic.

In this respect, our proposal is similar to that of
Anderson, Roscoe, and Wetherall [5]. They propose
that a client use a token in order to validate a path
to a server; this token serves as a packet-level nonce
employable for purposes of filtering by “verification
points.” A token in the ARW approach serves essen-
tially the same function as a puzzle solution in our
own. The security model is similar as well: Ander-
son et al. assume that adversaries do not eavesdrop
extensively on network links. A key difference is
the way in which tokens are distributed. ARW pro-
pose incremental deployment of an infrastructure of
“Request-to-Send” (RTS) servers (and do not detail
the critical policy question of how transmitters are
authorized to obtain tokens from RTS servers). Bas-
tions in our proposal are analogous to RTS servers.
Indeed, our proposal may be viewed as a more prac-
tical alternative to RTS servers: Bastions dispose of
the need both for an infrastructure of actively in-
tercommunicating servers and for explicit policies
around token distribution.

2.2 Ouwur work

Most previous puzzle-based approaches to DoS (as
well as other ideas like syncookies) have sought to
defend against application-layer attacks. As such,
they operate under the assumption that a defending
server can dispense puzzles effectively even in the
course of a DoS attack. What is assumed to be in
jeopardy is the ability to provide resource-intensive
services such as SSL connections.

As explained, however, most real-world DoS attacks
to date have occurred at the IP layer. With this in
mind, our proposal aims to provide DoS protection
down to the lowest protocol layers, and in the face
of attacks that obstruct all effective outbound com-
munication. In order to accomplish this, we cannot
take for granted the ability of the defending server
to dispense puzzles.

It is for this reason that we instead adopt the ap-
proach of outsourcing the process of puzzle distri-
bution to a robust external service. Viewed another
way, our goal is to enable a defending server to lever-
age the strong robustness of a bastion. We wish to
accomplish this in a lightweight manner. In our so-
lution, the bastion only assumes responsibility for
distributing puzzles, and not for performing any ser-
vices or other content distribution on behalf of de-
fending servers. This is important in rendering our
solution practical and flexible. (In practice, a bas-
tion might be furnished by a highly distributed and
robust content server such as Akamai, or a core In-
ternet service like DNS.) If the bastion timestamps
and digitally signs puzzles, then puzzles may in prin-
ciple be redistributed from any point on the Inter-
net.

In contrast to most previous solutions applicable at
the IP layer, like traceback, ours does not require
changes to the routing infrastructure. There is a
tradeoff, however. Our solution does require soft-
ware deployment of some kind at the client, like
most puzzle-based solutions, an issue that we ex-
plore in this paper.

3 Puzzle Construction

In this section, we give detailed descriptions of
puzzle constructions geared at the type of puzzle-

outsourcing our scheme requires, along with very
informal discussion of their functional and crypto-
graphic properties.

We emphasize that lack of space forbids our includ-
ing formal definitions and security proofs here; thus
what is presented are construction sketches only and
heuristic hardness claims. This is not to discount
the importance of a formal model here. On the con-
trary, formal definitions for puzzle hardness [22, 15]
are only incipient in the literature, and would nat-
urally require extension to the outsourcing scenario
as a prerequisite for security analysis. This is simply
beyond the scope of our investigation here.

Let us introduce some notation. Let fi : {0,1}* —
{0, 1}* be a one-way hash function whose range con-
sists of k-bit strings. It is convenient to model f as a
random oracle. The value k is a security parameter;
we drop this subscript where appropriate for visual
clarity. A parameter [serves to govern the hardness
of the puzzle constructions we describe.

For a channel ¢ and timeslot 7 and defending server
ID, let mrp,,r denote a published puzzle. Let
01D,¢,r denote the corresponding solution (which we
assume to be unique).

We let y;p denote the public key associated with a
particular defending server ID, while z;p denotes
the corresponding private key; we let y and z be
the respective keys of the bastion. We omit the
subscript I D where context makes it clear.

3.1 Hash-function-inversion puzzle con-
struction

It is possible to perform outsourcing by means of
partial hash-function inversion problems like those
employed in previous puzzle-based approaches to
DoS, e.g., [2, 23].1 The idea, briefly stated, is as
follows. Let 0., be the j-bit secret key for j > I.
A puzzle is computed as f(o.,-). To calibrate the
hardness of the problem so as to require 2/~! hash-
function computations on average, all but [bits of
oc,r are revealed. Thus, for instance, a puzzle might
take the form 7., = (f(oc,), 0,), where o con-
sists of all but the first { bits of o ;.

INote that a related inversion-based puzzle construction is
employed in [18]. That construction does not in general have
a unique solution for a given puzzle, and therefore cannot be
used conveniently for our purposes, as explained below.

To outsource the construction of such puzzles, we
simply let zrp be shared between the defending
server and bastion (The secret zyp might be com-
puted as a function of y and y;p via D-H key agree-
ment). Then, we let orpc, = f(c,7,2rp). With
this approach, the defending server can quickly com-
pute the set of solutions to puzzles for a given times-
lot 7, and can do so without communicating with
the bastion.

3.2 Some requirements for our scheme

The simple hash-inversion puzzle just described is a
practical one with a well explored basis in the lit-
erature. Puzzle outsourcing for our purposes, how-
ever, introduces a new set of constraints and require-
ments.

To begin with, recall that every timeslot and chan-
nel in our solution has only one associated puzzle.
Hence for any given timeslot the total number of
puzzles is equal to the number of valid channels —
perhaps on the order of thousands, according to the
parameterizations we envision and describe below.
In strict contrast to previous puzzle-based DoS sys-
tems, the defending server in our scheme can af-
ford to invest fairly considerable computational re-
sources in puzzle construction and solution. Even
the computation of a modular exponentiation per
puzzle would be acceptable. We therefore have the
flexibility to introduce puzzle constructions based
on public-key cryptography in our scheme.

At the same time, however, outsourcing imposes a
new set of requirements on puzzle construction. We
enumerate the most important of these here:

1. Unique puzzle solutions: The practicality
of our solution depends on the ability of a de-
fending server to precompute puzzle solutions
prior to their associated timeslot, and subse-
quently to check their correctness via a table
lookup. As a result, it is important that puz-
zles have unique solutions (or at least a fairly
small number of correct ones).

2. Per-channel puzzle distribution: It is de-
sirable for the bastion to be able to compute
and disseminate puzzle information on a per-
channel basis. In other words, the bastion
should be able to publish information for a par-
ticular channel number ¢ that may be used to

deduce the corresponding puzzle for any de-
fending server. (Different servers should have
different puzzle solutions, though, so that one
server’s ability to enumerate its own puzzle so-
lutions does not open other servers up to at-
tack.)

With this property, the bastion need not even
know which defending servers are relying on its
services. This reduces the amount of informa-
tion the bastion must compute and publish, as
well as the need for explicit relationships or co-
ordination between defending servers and bas-
tions.

. Per-channel puzzle solution: Another de-
sirable property that is for the work done by
a client to apply on a per-channel basis, rather
than a per-puzzle basis. In particular, we would
like a client that has solved a puzzle for a par-
ticular channel to be easily able to compute
the token for the same channel number on any
server.

As noted above, this does not mean that to-
kens should be identical across servers — only
that there should be considerable overlap in the
brute-force computation need to solve the puz-
zle for a given channel-number across servers.
In particular, it is not desirable for one server
to be able to use its shortcut to compute the
tokens associated with another server, as this
would result in a diffusion of trust across all
participating servers, rather than in the bas-
tion alone.

The per-channel puzzle solution property is
useful because it allows a client to begin solv-
ing puzzles before the user decides which server
will be visited.

. Random-beacon property: It is possible
to achieve a property even stronger than per-
channel puzzle distribution. Ideally, puzzles
would not require explicit calculation and pub-
lication by a particular bastion. They might
instead be derived from the emissions of a ran-
dom beacon.

We use the term random beacon to refer to a
data source that is: (1) Unpredictable, i.e., de-
pendent on a fresh source of randomness; (2)
Highly robust, i.e., not subject to manipula-
tion or disruption; and (3) Easily accessible on
the Internet. A puzzle construction based on a
random beacon would eliminate the need for an
explicit bastion service. (Apart from the archi-
tectural advantages, this could have the benefit

in some circumstances of eliminating any point
of legal liability for reliable puzzle distribu-
tion.) Hashes of financial-market data, which
are broadcast from multiple sources, or even of
highly robust Internet news sources would be
candidate random beacons.

Note that not only would the bastion (random
beacon) here not have to know what defending
servers are relying on its services, it wouldn’t
even have to know that its data are being used
to construct puzzles!

5. Identity-based key distribution: When
puzzles are based on the public key of a de-
fending server, the public key itself must be
distributed via a robust directory. A desirable
alternative is identity-based distribution, i.e.,
the ability to derive the public-key of a partic-
ular defending server from the server name and
a master key that is common to all defending
servers. This is very closely analogous to the
well-known primitive of identity-based encryp-
tion [11].

6. Forward security: A final desirable property
is that of forward security. By this we mean
that time-limited passive compromise of a bas-
tion should not undermine the DoS protection
it confers.

3.3 A Diffie-Hellman-based construc-
tion

We now describe a puzzle construction based on
Diffie-Hellman key agreement [14]. It possesses all
of the properties above except the random-beacon
property, i.e., it has properties 1,2,3,5 and 6.

Let G be a group of (prime) order q. Let g be a
published generator for the group, and ! be a pa-
rameter denoting the hardness of puzzles for this
construction. (As we explain below, we require a
strong, generic-group assumption on G.)

We propose a simple solution in which the bastion
selects a random integer ., €r Z; and a second,
random integer ac, €g [r¢,r, (Te,r +1) mod g]. (Re-
call that [is the hardness parameter for the puzzle.)
Let f' in this case be a one-way permutation on Z,,
and let g, , = g/ (@),

The intuition here is as follows. The value g, may
be viewed as an ephemeral Diffie-Hellman public

key. A puzzle solution for defending server ID is
the D-H key that derives from its public key yrp
and the ephemeral key g. .. Solving a puzzle means
solving the associated D-H problem. So as to ren-
der the problem tractable via brute force, the bas-
tion specifies a small range [rc ,, (7. + !) mod g
of seed values from which its ephemeral key is de-
rived. In other words, the bastion publishes pub-
lishes mc.r = (ge,rsTe,r)-

For a client (or attacker) to solve the puzzle re-
quires brute-force testing of all of the seed values.
In particular, for a given candidate value o', the
client tests whether g., = gf (@) For a particular
defending server ID, the solution to the puzzle is
oip = yip’ (@er).

A defending server, of course, can use its private key
z1p as a shortcut to the solution of the puzzle. The
defending server can compute o;yp = yIDf "(ac,r) =
ge,r 7P . In other words, it essentially computes a
Diffie-Hellman key. Thus, for a defending server, so-
lution of a puzzle requires essentially just one mod-
ular exponentiation.

On average, solution of a puzzle by a client (or at-
tacker) requires !/2 modular exponentiations over

G.

Because of the need for very precise characteriza-
tion of puzzle hardness, we believe that any con-
crete computational hardness claim would have to
depend, in addition to a random-oracle assumption
on f' on a generic-model assumption for the un-
derlying group G [32]. It is therefore important to
choose G appropriately. (Several common types of
algebraic groups are presently believed to have the
ideal properties associated with the generic model,
e.g., most elliptic curves and the order-q subgroup
G of the multiplicative group Z7, where p = kq + 1
for small & [32].)

Remark on application of f': Applying f' in
the computation of ephemeral key g, = g’ "ac,7) ig
a requirement to break algebraic structure among
seed-to-key mappings. If we chose g., = g%, for
example, then it would be possible to cycle through
candidate seed values by computing g"=~ and re-
peatedly multiplying by g.

3.4 Identity-based distribution of pub-
lic keys

We very briefly and very informally sketch here a
technique for distribution of the public keys {yrp}
of defending servers in an identity-based manner. In
other words, we show how yrp may derive from a
string representing the identity ID (e.g., a domain
name) and a master key.

Employing the notation of [11] (with which we must
assume familiarity here for the sake of brevity), let
where G and G’ are two groups of large prime order
q. Let é : GXG — G’ be an admissible bilinear map-
ping in the sense defined by Boneh and Franklin.
For G suitably chosen as a subgroup of the additive
group of points of an elliptic curve E/F), for prime p,
€ may be constructed using the Weil pairing. Recall
that when the system is correctly parameterized, it
is believed that the Bilinear (Computational) Diffie-
Hellman (BCDH) Assumption holds, an essential
hardness property for our proposal here. Roughly
stated, given P €g G and points aP, bP, and cP for
a,b,c €r Z,, it is hard to compute é(P, P)®°.

Let ' be the private key of the trusted dealer, and
let y' = z'g be an associated public key. Finally, let
d:{0,1}* — G be an appropriate one-way function
mapping identifier strings to group elements in G.

In this scheme, the public key of defending server
with identifying string ID is computed simply as
yip = d(ID). The associated private key, com-
putable by the trusted dealer, is z'yrp.

As before, we let ac; €g [re,r, (Te,r +1) mod ¢]. The
ephemeral key computed by the bastion assumes the
form g.r = f'(ac,r)g. The bastion publishes ., =
(ge,rsTe,r), just as it does in the D-H puzzle.

The difference for the identity-based variant lies in
the form of the puzzle solution. This is defined here
to be orp.cr = é(yID,g)mlfl(“c)f). (This solution
may be hashed for compactness.) After solving for
Gc,r, a client may compute this as é(yID,y’)f'(“c”).
The defending server may use its knowledge of z;p

as a shortcut. In particular, agTD) = é(Zrp,Ye,r) =

é(yrp,g)” ¥ ().

By analogy with our D-H construction, the work for
brute-force solution here is on average [/2 multipli-
cations over the elliptic-curve based group G.

3.5 Puzzle construction using time-lock
puzzles

We now propose a puzzle construction that has
properties 1,2,4,6 above. It achieves the random-
beacon property. It has the disadvantage, though,
of lacking an identity-based variant and the per-
channel puzzle solution property. Thus, it requires
explicit distribution of public keys for defending
servers and the client cannot start solving puzzles
for a server until it knows which one to target.

This construction is a simple adaptation of the time-
lock puzzle scheme proposed by Rivest, Shamir, and
Wagner [30]. A public key yrp consists of an n-
bit RSA modulus Nyp. (See [30] for discussion of
restrictions on the choice of N.)

In the original RSW construction, a random value
a €r Z, serves as a basis for the puzzle. The pre-
scribed task for solution of the puzzle is the com-
putation of a secret value b = a2 mod n for some
appropriate [. The value b serves essentially as a key
to the puzzle. The parameter [governs the hardness
of the puzzle; in particular, a solver must perform /
modular squarings in order to compute b and “un-
lock” the puzzle.

Knowledge of the factorization of n, however, pro-
vides a shortcut in the computation of the secret b.
In particular, when [is sufficiently large, it is con-
siderably more efficient to compute e = 2! mod ¢(n)
and then a® mod n.

As explained above, the original RSW construction
aims at creating a kind of digital time-capsule, that
is, a cryptogram solvable only in the distant fu-
ture thanks to advances in computing power. RSW
propose that the puzzle constructor determine how
hard the puzzle should be, use the shortcut in or-
der to create an encryption key associated with the
puzzle, and then erase all data associated with the
shortcut, thereby sealing the time-capsule.

The main goal in the RSW design was to render
the solution process difficult to parallelize, so that
the ability to unlock the puzzle would truly depend
upon raw advances in computing power. This prop-
erty is achieved thanks to the sequential nature of
the modular squarings required for the solution. (A
puzzle based on hash-function inversion, for exam-
ple, would not achieve this goal, as it could be di-
vided among many different computing devices.)

We exploit an altogether different property of the
RSW construction (one probably not explicitly de-
signed by its inventors). We observe that a time-
lock puzzle may be derived very simply from a ran-
dom string (used to derive a) and an RSA modulus.
In particular, no explicit computation by the bas-
tion is required to create a valid time-lock puzzle.
This is very different from the case, for instance,
with our D-H solution above, which requires com-
putation of an ephemeral D-H key, or from a hash-
function-inversion puzzle, which requires the hash-
ing of a secret value.

Given this observation, the puzzle construction is
quite simple. Let r, be a suitably long random
string emitted by a random beacon in timestep 7
(say, n + k bits in length for security parameter
k ~ 128). We let ripcr = foee(ID,c,7,7;). We
then compute 7rpc,r = @c,r = T1D,c,r mod Nyp.

The solution orp.r to this puzzle is simply
(aw)Ql mod Nyp. A client (or attacker) must com-
pute this by repeated squarings. It may be com-
puted by the defending server in the obvious way
using its shortcut.

Note that from a single random value, puzzles may
be computed for an arbitrarily large number of
channels. The security parameter [may be set by
a defending server as desired. For the defending
server, the work to solve a puzzle only requires a
modular reduction (whose size is parameterized by
l) and an RSA exponentiation. For a client (or at-
tacker), solving the puzzle requires [modular squar-
ings.

4 Policy

Now that we have mechanisms in place to create
and solve puzzles, and to verify puzzle solutions ef-
ficiently, we must devise a policy for deciding how
to use puzzles and their solutions to regulate access
to network servers. In this section we construct a
policy for regulating bandwidth to the server. How-
ever, the channel mechanisms we create can also be
used to create policies to protect higher layer pro-
tocols in the server.

4.1 Model

We begin by presenting a model for workloads and
policies. We will associate one channel with each
valid puzzle, and we say a packet is “on” a channel
when the packet is tagged with the solution to the
corresponding puzzle.

We represent a channel ¢ as a pair (s, b.), where s
is the solution to the channel’s puzzle, and b, > 0 is
the rate of arrival (at the server) of packets on the
channel. A workload is a pair (C, M), where C'is a
set of channels, and M is the maximum bandwidth
that the server can handle.

A policy is a function that decides how many pack-
ets per second to accept on each channel. In other
words, given a workload W = (C, M) and a channel
¢ € C, the policy P allows P(W,b.) packets per sec-
ond to reach the server on channel ¢. For brevity,
we will sometimes write (P, c) to mean (P,b.); for a
set of channels C, we will sometimes write P(W, C)
to mean) .~ P(W,c).

Definition 1 A policy P is feasible if, for all
workloads W = (C, M), P(W,C) < M and for all
ceC,0< P(W,b.) < be.

A feasible policy is one that blocks some (possibly
empty) subset of the packets on each channel, and
blocks enough packets that the total number of ac-
cepted packets does not exceed the server’s capacity
M.

Definition 2 A policy P is fair if P is feasible
and there is a function Tp(W) such that for all
workloads W and constants b, Tp(W) > 0 and
P(W,b) = min(b, Tp(W)).

Intuitively, this definition imposes a “cap” on the
bandwidth that can be used by any single channel.
Channels that do not exceed the cap are left alone,
but channels that try to exceed the cap have their
traffic reduced so that they stay within the cap.

Definition 3 A policy P is maximal if P is fair,
and if, for all fair policies Q, all workloads W =
(C,M), and all channels c € C, P(W,c) > Q(W,¢).

A policy is maximal if it gives every channel the
maximum possible bandwidth, consistent with fair-
ness. Lemma 5 in Appendix A shows that a maxi-
mal policy exists.

4.2 An Example

A simple example will help to justify our definitions.
We consider two sets of channels: the channels in L
are used by legitimate clients, and those in A are
used by an adversary. We assume the legitimate
clients’ channels all desire the same amount of band-
width, br. The adversary can send as many packets
as he likes. How much of the legitimate clients’ traf-
fic can the adversary displace?

Theorem 1 Let by, be a constant, and let W =
(L,M) and W' = (LU A, M) be workloads, such
that for all c € C, b, = by. Let P be a fair, maxi-
mal policy. Then

POW', L) > — 1

= _pw,L).
IL| + |A|

(A proof appears in Appendix A.) This theorem tells
us that under the assumed conditions, if the ad-
versary wants to take a fraction f of the available
bandwidth away from the legitimate clients, he has
to do at least a fraction f of the total puzzle-solving
work. For example, to displace half of the legitimate
clients’ traffic, the adversary has to do at least as
much puzzle-solving work as all of the legitimate
clients put together.

One desirable consequence of this result is that the
more popular a site is, the harder it is to attack.
More popular sites have a larger number of legiti-
mate clients, so the adversary has to do more puzzle-
solving work to displace the same fraction of traffic.
These results hold regardless of how many packets
the adversary tries to send.

4.3 Randomly Chosen Puzzles

In practice, clients are not divided evenly among
channels. Instead, each client will choose a channel
at random. In particular, we assume a total of n
channels. We assume there are k clients, and each

client chooses one of the channels at random and
solves that channel’s puzzle. The attacker chooses
a channels at random, and solves those channels’
puzzles. Those channels are assumed to be totally
controlled by the attacker, so that legitimate clients
who happen to choose a channel that the attacker
chose will get no bandwidth at all. To be specific,
we define a randomized function Rg(n, k,a), which
returns a set of n — a channels, produced by the
following procedure:

1. Create n channels, each with offered bandwidth
of zero.

2. Divide k clients randomly among the chan-
nels, where each client makes an independent,
uniform random choice among the n channels.
Whenever a client chooses a channel, increase
that channel’s offered bandwidth by a constant

8.

3. Now choose a of the channels (randomly and
uniformly), and remove the chosen channels.

4. Return a set containing the remaining channels.

Given these assumptions, the number of clients in
any given channel is binomially distributed, accord-
ing to a distribution function 2 f:

o= B (-2)

We will analyze the impact of these random dis-
tributions by proving a general theorem, and then
analyzing two special cases, one where the number
of clients is small, and another where it is very large.

We first present the general theorem, whose proof
appears in Appendix A.

Theorem 2 Let P be a maximal policy. Let b, p, n,
and a be constants. Let W = (L, M) be a workload,
chosen by some randomized process such that |L| =
n—a and for all c € L, Prob(b. > b) > p. Let W' =
(LU A, M) be another workload such that |A| = a.

/ p’(n—a)®
Assume nb < M. Then E[P(W',L)] > a+p(n_a)b.

2The distributions for various channels are not indepen-
dent, but this will not be a problem, because our proofs will
not require independence.

4.3.1 Small Number of Clients

Next, we will analyze the case where there are rel-
atively few clients. In this case, most clients will
have a channel to themselves, but some collisions
will occur. The following theorem tells us how much
bandwidth the few legitimate clients retain when the
system is attacked.

Theorem 3 Let P be a mazximal policy, and let
W = (L,M) be a workload, where L is generated
according to Rg(n,k,a). Let W' = (LU A, M) be
another workload, where |A| = a. Assume k < n
and nf < M. Then

s ny> F2EE (1o (1),

(A proof appears in Appendix A.) When there are
very few clients, many channels will be empty, and
the nonempty channels will mostly contain a sin-
gle client. The adversary can displace legitimate
bandwidth in one of two ways. First, he can cap-
ture a channel that is being used by a legitimate
client; a given channel is captured with probability
+. Second, having captured a set of channels, the
adversary can send many packets on those channels,
thereby causing the policy to impose an equal cap
on all channels, in the hope that the cap will im-
pact the channels being used by legitimate clients.
Nevertheless, an adversary who wants to displace a
large fraction of the clients must control a signifi-
cant number of channels, and therefore must solve
a significant number of puzzles.

4.3.2 Large Number of Clients

Theorem 4 Let P be a mazximal policy, and let
W = (L,M) be a workload, where L is generated
according to Rg(n,k,a). Let W' = (LU A, M) be
another workload, where |A| = a. Assume 8 =
and k > n. Then

E[P(W',L)] > (1 - (%)%)3 (1 - E)2M.

(A proof appears in Appendix A.) This theorem
gives a lower bound on the legitimate clients’ band-
width, in the case where there are more legitimate

clients than channels. When there are far more
clients than channels, the first factor on the right-
hand side approaches 1. This factor represents the
effect of the number of clients being imbalanced be-
tween channels, and the effect of this random imbal-
ance becomes smaller as the number of clients per
channel grows. The theorem shows that the adver-
sary must do a very substantial amount of work to
displace a large amount of legitimate traffic.

5 Practical Considerations

Putting our design into practice requires us to deal
with several practical issues.

5.1 Approximating a maximal policy

Our goal in implementing a policy is to approxi-
mate, as nearly as possible, a fair, maximal policy
for allocating bandwidth between channels. We do
this by adaptively computing a threshold 7', and
then capping the bandwidth of each channel ¢ at T.

Bandwidth caps are implemented using the stan-
dard leaky bucket algorithm [28], with the time con-
stant (that is, the time required for a full bucket to
drain) set to one second.

We choose T adaptively. We divide time into one-
second intervals, and in each interval we measure
Najiow, the number of arriving packets that are al-
lowed by the current policy, and Ngepy, the number
of arriving packets that were disallowed by the cur-
rent policy. We also use N,,qz, which is the maxi-
mum number of packets per second that the server
can handle.

If Naiow > Nmgz, then the policy allowed more
packets than the server can handle, so we conclude
that T is too large, and we multiply T' by 0.75.

If Nattow < Nmaz and Ngeny > 0, then the policy
rejected some packets that it could have accepted

safely, so we conclude that T is too small, and we
multiply 7" by 1.05.

During times when the server has adequate band-
width, our policy will increase T' until the server is
accepting all of the offered traffic. When the offered

traffic exceeds the server’s capacity, T will converge
to a value that is about right to keep the traffic
within the server’s capacity, while maintaining fair-
ness between channels.

Clients are not notified directly of the current pol-
icy. However, if a client using TCP exceeds its al-
location, the resulting dropped packets will be in-
terpreted by the client’s TCP stack as congestion,
causing the client to slow down. TCP’s congestion
control algorithm will tend to adjust the client’s
sending rate to match its allocation.

5.2 Backward compatibility

Our method asks clients to attach a token to every
packet they send. Since we can’t ask every client to
adopt our method simultaneously, we must be able
to cope with clients that don’t use our method. To
do this, we create an imaginary channel, and assign
all of the non-compliant traffic to it. We can treat
this as the equivalent of many channels if we like,
so that the artificial channel gets a bandwidth cap
of, say, 20T.

Of course, an attacker can easily flood this chan-
nel with traffic without having to solve any puzzles,
so the attack-resistance benefits of our method will
apply only to compliant clients.

The backward compatibility mode will also serve
clients that have just booted up and have not yet
had time to solve any puzzles. Until it solves its
first puzzle, a client can simply send packets with-
out tokens, and that traffic will be accepted via the
backward compatibility mechanism.

5.3 Eavesdropping attacks

As stated in the introduction we use an attack model
where we assume that eavesdropping on the Inter-
net is difficult for typical DoS attackers. However,
it is still useful to consider what happens if eaves-
dropping occurs, in what situations it might occur,
and measures that can be used by a client to prevent
being eavesdropped upon.

If an attacker is able to eavesdrop on packets sent
by a client to the server under attack then he es-
sentially is able to convert the client into a drone

that will solve puzzles for him. This will have two
repercussions. First, the attacker will be able to get
another channel and consume more resources on the
system as a whole. Second, the attacker will occupy
the same channel as the client from which he stole
the token from and that client will be likely shut
out of that channel. Therefore, there is a special
incentive for a client not to have his own particular
tokens eavesdropped upon.

If core routers on the Internet are difficult to com-
promise, then the most likely source for eavesdrop-
ping attacks are on the edge of the Internet such as
alocal LAN. If a client suspects that his packets are
being eavesdropped upon, then it could send them
securely to some part of the net that it believes to
be uncorrupted. One way of doing this is to tunnel
packets through IPSec [33]. We do not recommend
for the server itself (or a nearby router) to act as an
endpoint for such a tunnel, as the IPSec protocol
could become a DoS vulnerability itself.

5.4 Number of channels

An important resource in our system is the number
of channels. If there are too few channels a well
equipped adversary can deny service to many users
by a colliding with them on the same channel. We
want to be able to resist an attacker who controls a
few thousand zombie machines.

There are two limitations on the number of chan-
nels. The first is on the amount of memory at the
edge router protecting the service. The token and
bandwidth control data will take about 20 bytes
each, therefore an edge router with 100MB of mem-
ory has enough space for about 5 million channels.

The second limitation on the number of channels
comes from the ability of the server to calculate all
the solutions to puzzles (using its shortcut). At the
beginning of each time cycle the bastion will publish
the puzzles using one of the methods of Section 3.
During this time cycle a server machine (using the
shortcut) will solve for the tokens of every channel
it maintains and the clients will solve for a token.
These tokens will then be valid on the next cycle.

To be concrete we examine the Diffie-Hellman puz-
zle method of Section 3.3. If the server has one ma-
chine dedicated to solving tokens for its puzzles then
it will be able to solve about 200 puzzles per second

if we take the time for an exponentiation operation
to be dms. Suppose that each legitimate client has
the same computing power as an adversary and that
we want each legitimate client to be guaranteed to
solve one puzzle in the time cycle. Then we need to
set the average difficulty of the puzzle to be half of
a time cycle and a 5,000 machine strong adversary
will solve approximately 10,000 puzzles each cycle.
If we want the adversary to be able to displace at
most 5 percent of the clients by collision that means
we must have 200,000 channels. The server will then
need a time period of a little under 17 minutes for
one machine to solve all the tokens for all of these
channels.

A seventeen-minute cycle will force each client to
operate in backward-compatibility mode for the first
eight minutes it is up, on average. In this mode it
may find itself unable at first to access any hosts
that are under attack. However, once it has solved
its first puzzle, it can ensure that every subsequent
puzzle is solved before the solution is needed.

Clients benefit when they use a puzzle construction
that allows a single puzzle-solving step to be used
to access any server, as with our Diffie-Hellman and
IBE constructions. Because of this property, a client
can solve puzzles in advance, without needing to
know in advance which servers it will be interact-
ing with. Of course, this same property applies to
attackers too, but it will do little good as attack-
ers rarely need to decide on the spur of the moment
which target to attack. (Because puzzles last only
for one or two time intervals, the attacker cannot
stockpile puzzle solutions.) Admittedly, the adver-
sary will be able to use its work to launch concurrent
denial-of-service attacks. However, any one server is
still protected and an adversary’s ability to launch a
denial-of-service attack on the several sites at once
will be limited by other factors.

Using different variants will alter the parameters of
our system. A server machine using an identity-
based distribution will require a time cycle of about
10 times longer (or more machines) due to the
computation required to calculate the bilinear map.

The hash-function-inversion method a machine
working for the server can calculate the solutions
(with its shortcut) quickly enough so that the time-
cycle will be determined by other factors such as
how frequently the bastion can change without caus-
ing synchronization problems.

Finally, a client solving puzzles of the time-lock form
will not be able to use his work across servers so a
user will experience a time-lag every time he moves
to a new site under DoS attack.

We point out for comparison that other work us-
ing the client puzzle paradigm considers adversaries
consisting of a much smaller number of zombie ma-
chines [23]. The user latency observed in other sys-
tems with an attacker of 5,000 zombie machines will
be much larger than that given their analysis.

5.5 A user’s view

Now that we have explored likely system parameters
for our scheme we are able to describe our system
from the perspective of a user. Suppose we are using
the D-H variant of our scheme and a user is brows-
ing the web and none of the sites visited so far have
been under attack. During this time the user’s ma-
chine has been solving puzzles for channels during
its idle cycles as a precaution against encountering
servers that are under attack. Suppose now that the
user switches to a site that is under attack. (When
poor performance is observed the client machine can
guess that a site is under attack and attach tokens.
If this guess is incorrect the tokens will just be ig-
nored.) The user’s machine will already have solved
a puzzle that can lead to a channel for that site and
the user can immediately use that solution. This
proactive approach to solving puzzles leads to min-
imal latency observed by the user.

If the time-lock variant is used a client’s machine
will not know which puzzles to solve until a user in-
dicates she is interested in a site that is under attack.
In this case the experienced user latency could be
around the time cycle period for publishing puzzles.
We believe that 30 seconds might be an appropriate
value. If only one server machine is dedicated to
solving puzzles then an attacker of approximately
150 machines can cause a 5 percent collision rate.
Once a user indicates that she is interested in a site,
she will need to wait for his machine to solve the
first puzzle. However, the user’s machine will con-
tinue to solve puzzles until the user is finished and
there will only be one upfront delay experienced by
the user.

6 Implementation

We now describe our prototype implementation of
our system. Our puzzle construction is one based
on the hash-function inversion technique described
in Section 3.1. We use SHA-1 as our one-way hash
function.

The bastion is currently implemented as a simple
content server from which a client will download and
solve a puzzle from. (Currently, the puzzle solver is
manually invoked by the user.)

The solution to a puzzle is a 64-bit token that
will be attached as an IP option [29] onto
each outgoing packet to the server under at-
tack. We use the Iptables [27] tool of the Net-
filter framework to implement this. (See Fig-
ure 1.) Suppose the server under attack is
at IP address 168.200.55.123. Then the client
will execute the command iptables -A OUTPUT -4
168.200.55.123/32 -j QUEUE. This command will
cause all packets destined for 168.200.55.123 to be
sent to a userspace program. The user space pro-
gram is able to interface with the queue using Netfil-
ter’s libipq API. This program will receive the cur-
rent token solutions from the client puzzle solver and
append these to each caught packet before sending
it back to the routing layer.

On the server side of our implementation a router
sits between the server and the network. We again
use the Netfilter framework to implement our mech-
anism. A userspace program will receive all packets
destined for the server and check to make sure a
valid token exists in the IP option field. Packets
which have a valid token will be accepted and those
that do not will be dropped. Valid tokens are com-
municated by a server side program. Additionally,
the token is left on as an IP option so that the server
has the ability to use it to protect other layers of the
protocol stack.

We tested our system over the network and found
that users were indeed able to access the server using
our prototype implementation. The primary goal of
the prototype was to test the feasibility of our so-
lution using available technology. We note that our
solution does actually require any changes to the
network nor any kernel modifications to Linux as-
suming the netfilter toolkit is installed. In practice
we expect that a more efficient mechanism than us-
ing libipq will be used at least for the server side.

Internet

.Token Payload

Valid

Edge Eouter
T Token

Figure 1: The client attaches a the solved token onto the header of each packet as an IP option. The edge
router before the server will check each packet for a valid token on its token list. If one exists the packet is

passed on to the server otherwise it is dropped.

Additionally, the policy mechanisms described in
Section 4 will be applied in any industrial imple-
mentation.

We are currently implementing the D-H variant of
puzzle distribution and this will be completed in
time for the final paper deadline. In the final paper,
we intend to include a URL from which readers can
download the source code for our prototype.

7 Conclusion

We have examined the problem of defending a server
against IP-level denial-of-service attacks using client
puzzles. We observe that since puzzle distribution
itself can be subject to attack, any viable system
must have a robust method of puzzle distribution.
We developed a new model for puzzle distribution
using a robust service that we call a bastion. The
bastion distributes puzzles and solutions to the puz-
zles allow clients access to communication chan-
nels. Within this model we develop different cryp-
tographic techniques for puzzle dispersement. Ad-
ditionally, we develop a policy mechanism for al-
locating bandwidth amongst channels. Finally, we
implemented a prototype of our system that works
on today’s Internet with minimal additions to stan-
dard clients.

References

[1] M. Abadi, M. Burrows, M. Manasse, and
T. Wobber. Moderately hard, memory-bound
functions. In NDSS ’03, pages 107-121. Inter-
net Society, 2003.

[2] D. Adkins, K. Lakshminarayanan, A. Perrig,
and I. Stoica. Taming IP packet flooding at-

tacks. In HotNets-1I. ACM Press, 2003. To
appear.
[3] M. Adler. Tradeoffs in probabilistic packet

marking for IP traceback. In STOC 02, pages
407-418. ACM Press, 2002.

[4] D. G. Andersen. Mayday: Distributed filter-
ing for Internet services. In USENIX Sym-
posium on Internet Technologies and Systems
(USITS), 2003. To appear.

[5] T. Anderson, T. Roscoe, and D. Wetherall.
Preventing Internet denial-of-service with ca-
pabilities. In HotNets-II. ACM Press, 2003. To
appear.

[6] S. Ar and J. Cai. Reliable benchmarks us-
ing numerical instability. In Proceedings of the
1993 ACM Symposium on Discrete Algorithms
(SODA), pages 34-43, 1993.

[7] T. Aura, P. Nikander, and J. Leiwo. DoS-
resistant authentication with client puzzles. In
8th International Workshop on Security Pro-
tocols, pages 170-181. Springer-Verlag, 2000.
LNCS no. 2133.

[8] A. Back. Hashcash - a denial-of-service coun-
termeasure, 2002. Original system devel-
oped in 1997. Manuscript. Referenced 2004 at
http://www.hashcash.org/hashcash.pdf.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

P. Barford, J. Kline, D. Plonka, and A. Ron. A
signal analysis of network traffic anomalies. In
Internet Measurement Workshop, 2002.

S. Bellovin, M. Leech, and T. Taylor. ICMP
traceback messages, 2003. Internet Draft.

D. Boneh and M. Franklin. Identity based en-
cryption from the Weil pairing. SIAM J. of
Computing, 32(3):586-615, 2003.

D. Dean, M. Franklin, and A. Stubblefield. An
algebraic approach to IP traceback. Informa-
tion and System Security, 5(2):99-137, 2002.

D. Dean and A. Stubblefield. Using client puz-
zles to protect TLS. In 10th USENIX Security
Symposium, pages 1-8, 2001.

W. Diffie and M.E. Hellman. New directions in
cryptography. IEEE Transactions on Informa-
tion Theory, 22:644—654, 1976.

C. Dwork, A. Goldberg, and M. Naor. On
memory-bound functions for fighting spam. In
D. Boneh, editor, CRYPTO °’03, pages 426—
444. Springer-Verlag, 2003. LNCS no. 2729.

C. Dwork and M. Naor. Pricing via processing
or combatting junk mail. In Ernest F. Brickell,
editor, CRYPTO 92, pages 139-147. Springer-
Verlag, 1992. LNCS no. 740.

M.K. Franklin and D. Malkhi. Auditable
metering with lightweight security. In
R. Hirschfeld, editor, Financial Cryptogra-
phy ’97, pages 151-160. Springer-Verlag, 1997.
LNCS no. 1318.

E. Gabber, M. Jakobsson, Y. Matias, and
A. Mayer. Curbing junk e-mail via secure clas-
sification. In R. Hirschfeld, editor, Financial
Cryptography ’98. Springer-Verlag, 1998.

D. Goldschlag and S. Stubblebine. Publicly ver-
ifiable lotteries: Applications of delaying func-
tions. In R. Hirschfeld, editor, Financial Cryp-
tography ’98. Springer-Verlag, 1998.

A. Harrison. The denial-of-service aftermath.
CNN.com, 14 February 2000.

A. Hussain, J. Heidemann, and C. Pap-
dopolous. A framework for classifying denial-
of-service attacks. In ACM SIGCOMM, 2003.

M. Jakobsson and A. Juels. Proofs of work
and bread pudding protocols. In Communica-
tions and Multimedia Security, pages 258—-272.
Kluwer Academic, 1999.

[27] The Netfilter/Iptables Project.

[33] IP Security Protocol Charter.

[23] A. Juels and J. Brainard. Client puzzles: A

cryptographic countermeasure against connec-
tion depletion attacks. In Proceedings of the
1999 ISOC Network and Distributed System
Security Symposium, pages 151-165, 1999.

[24] A.D. Keromytis, V. Misra, and D. Rubenstein.

SOS: Secure overlay services. In ACM SIG-
COMM, pages 61-72. ACM Press, 2002.

[25] R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioan-

nidis, V. Paxons, and S. Shenker. Control-
ling high bandwidth aggregates in the net-
work. ACM Computer Communication Review,
32(3):62-73, 2002.

[26] R. Merkle. Secure communications over inse-

cure channels. Communications of the ACM,
21(8):294-299, April 1978.

Web site at
http://www.netfilter.org.

[28] Larry L. Peterson and Bruce S. Davie. Com-

puter Networks: A Systems Approach. Morgan
Kaufmann Publishers, San Fransico, CA, first
edition, 1996.

[29] J. Postel. RFC 791: Internet Protocol, Septem-

ber 1981.

[30] R.L. Rivest, A. Shamir, and D. Wagner. Time-

lock puzzles and timed-release crypto. Techni-
cal Report MIT/LCS/TR-684, MIT, 1996.

[31] S Savage, D. Wetherall, A. Karlin, and T. An-

derson. Practical network support for IP trace-
back. In ACM SIGCOMM 2000, pages 295—
306, 2000.

[32] C.-P. Schnorr and M. Jakobsson. Security of

discrete log cryptosystems in the random ora-
cle and generic model. In The Mathematics of
Public-Key Cryptography. The Fields Institute,
1999.

Web site
at http://www.ietf.org/html.charters/ipsec-
charter.html.

[34] D. X. Song and A. Perrig. Advanced and au-

thenticated marking schemes for IP traceback.
In IEEE INFOCOM, pages 878-886, 2001.

[35] R. Stone. CenterTrack: An IP overlay network

for tracking DoS floods. In USENIX Security
’00, 2000.

[36] L. von Ahn, M. Blum, N.J. Hopper, and
J. Langford. CAPTCHA: Using hard AI prob-
lems for security. In E. Biham, editor, Fu-
rocrypt ’03, pages 294-311. Springer-Verlag,
2003. LNCS no. 2656.

[37] X. Wang and M. K. Reiter. Defending against
denial-of-service attacks with puzzle auctions.
In IEEFE Symposium on Security and Privacy,
pages 78-92, 2003.

[38] A. Yaar, A. Perrig, and D. Song. Pi: A path
identification mechanism to defend against
DdoS attacks. In IEEE Symposium on Secu-
rity and Privacy, pages 93-109, 2003.

Appendix A: Proofs

This appendix contains proofs for the theorems that
appear in the main text of the paper. Each “Theo-
rem” in this appendix is duplicated from the main
text, with the proof added here. Anything labelled
“Lemma” appears only in this appendix.

For convenience, we repeat here the definitions from
the main paper.

Definition 1 A policy P is feasible if, for all work-
loads W = (C,M), P(W,C) < M and for allc € C,
0 < P(W,b.) < be.

Definition 2 A policy P is fair if P is feasible
and there is a function Tp(W) such that for all
workloads W and all constants b, Tp(W) > 0 and
P(W,b) = min(b, Tp(W)).

Definition 3 A policy P is maximal if P is
fair, and if, for all fair policies @, all workloads
W = (C,M), and all channels c € C, P(W,c) >
QW,c).

Lemma 1 If P and @ are fair policies, W =
(C,M) is a workload, v € C, and P(W,vy) >
Q(W,v), then for all ¢ € C, P(W,c) > Q(W,c).

Proof: Since P and @ are fair, they have threshold
functions Tp and T respectively. By assumption,

min(by, Tp(W)) > min(b,, To(W)).

Since the left-hand side is at most b, the right-hand
side must be less than b, so it follows that the right-
hand side is not equal to b,. Thus we have

min(b,, Tp(W)) > To(W).
The left-hand side is at most Tp(W), giving
Tp(W) > To(W).
From this, given any ¢ € C, we can easily derive
min(b,, Tp(W)) > min(b., To(W)),

which completes the proof.

Lemma 2 Let P be a maximal policy and W =
(C,M) be a valid workload. If there exists v € C
such that P(W,~) < by, then P(W,C) = M.

Proof: By contradiction. Assume the contrary:
P(W,5y) < by and P(W,C) < M and P is maxi-
mal. Since P is fair, there is some function Tp such
that P(W,b) = min(b, Tp(W)). Define Q(W,b) =
min(b,Tp(W)%). Note that @ is fair. By
assumption, P(W,v) < by, so P(W,v) = T(W).
Since P(W,C) < M, it follows that P(W,v) <
min(bW,Tp(W)%). Applying the definition of
Q, we get P(W,~) < Q(W,~), which contradicts the
assumption that P is maximal.

Lemma 3 There exists a fair policy.

Proof: The policy P((C, M),b) = &£ is fair.

Lemma 4 Let F' be the set of fair policies, and let
P*(W,¢) = maxpecr P(W,c). Then for any work-
load W = (C, M), there exists a fair policy Pw such
that for all c € C, P*(W,¢) = Pw(W,c¢).

Proof of lemma: By contradiction. Assume
the contrary: for all fair policies P, there exists
cp € C such that P*(W,cp) > P(W,cp). Let Q
be a fair policy such that for all fair policies R,
QW,C) > R(W,C). (Clearly there must be at
least one such policy.) By assumption, there is some
cg € C such that P*(W,cqg) > P(W,cq). By the
definition of P*, there is some fair policy S such
that S(W,cq) = P*(W,cq) > P(W,cg). But now
Lemma 1 implies that S(W,C) > P(W, C), so () was
chosen incorrectly, which is a contradiction. There-
fore the lemma is true.

Lemma 5 Let F' be the set of fair policies, and let
P*(W,c) = maxper P(W,c). Then P* is mazimal.

Proof: Lemma 4 implies that P* is feasible, for
if it were not then some Py would be infeasible.
The same lemma also implies that P* is fair, (with
Tp« (W) = Tp,, (W)). It remains to show only that
the last clause of the definition of “maximal” holds;
and this follows from the definition of P*, complet-
ing the proof.

Lemma 6 Let W = (C,M) and W' = (C',M) be
workloads, let P be a maximal policy, and let v € C
be a channel. If C C C', then P(W',~) < P(W,~).

Proof: By contradiction. Assume to the contrary
that P(W,~) < P(W',~). It follows that Tp(W) <
Tp(W') < by, so P(W,7) < by. Now Lemma 2 tells
us that

M=PW,y)+ Y min(b,Tp(W)).

ceC—{~}

It follows that

M <P(W,y)+ Y min(b,Tp(W'),

ceC—{~}

M<Y PW,c)< > PW,o).

ceC ceC’

or

This implies that P is not feasible. This contradic-
tion completes the proof.

Theorem 1 Let by, be a constant, and let W =
(L,M) and W' = (LU A, M) be workloads, such
that for all c € C, b, = br,. Let P be a fair, mazimal
policy. Then

L
P(W',L) > |7P(W, L).
IL| + |A]

Proof: If by < Tp(W'), then the result holds triv-
ially, since the bandwidth of channels in L is not
capped. In the alternative case, Lemma 2 tells us
that

M = Zmln bo, Tp(W me by, Tp(W")).
a€A ceEL

It follows that

M <Y Te(W)+) Te(W

a€A ceL
Since P is feasible, P(W,L) < M, which implies

that P(W,L) < (|L| + |A|)Tp(). Rearranging,
we get

= (|A+LNTp(W').

P(W,L)
LI+ A
Since bandwidth of L is capped in W’, we have

=2 Tr(W

ceEL

Tp(W') >

= |LITp(W').

Combining the last two results, we get P(W', L) >

%P(W, L), which completes the proof.

Lemma 7 Let P be a maximal policy. Let W =
(L, M) and W' = (LU A, M) be two workloads. Let
A C L be a set of channels such that for all c € X
P(W',c) < (1— B)P(W,c). Then |A|l > 25|\

Proof: Since P is feasible,

P(W,L) < M. (1)

Since some channels in W' (e.g. the ones in A) have
their bandwidth capped, we know by Lemma, 2 that
all of the bandwidth is allocated in W':

P(W',LUA) =M. (2)
Combining (1) and (2), we get
PW,L) < P(W',LU A).

Breaking each side into its constituent parts, we get

P(W,\)+P(W,L—\) < P(W',\)+P(W', L-\)+P(W', A).

®3)
By Lemma 6,

forallce L: P(W,c) > P(W',c). 4)
It follows that
P(W',L =) < P(W,L -),

so we can substitute on the right side of (3) and
cancel like terms to get

P(W,\) < P(W',\) + P(W', A). (%)
By assumption, P(W',X) < (1 — B)P(W,), so we
can substitute on the left side of (5) to get

1

mP(W’, \) < P(W',\) + P(W', A).

Combining terms yields

%P(W’ A) < P(W' A).
Because P is a fair policy, there must be some
threshold Tp(W'); and because the bandwidth for
each member of A must be capped in W', we can
conclude that P(W',) = |\|Tp(W'). We also know
that P(W', A) is at most |A|Tp(W'), so we deduce
that 5

m|>\|TP(W') < |A|Tp(W"),

which implies that %W < |A|, completing the
proof.

Lemma 8 Let P be a maximal policy, and let W =
(Ly,M) and W' = (LU A, M) be workloads. Let)
be a set of channels such that A C L. Let b,, be
a constant such that for all ¢ € X\, b, > by,. Then

P(W',\) > Ao P(W,bya).

Proof: By contradiction. Assume to the con-
trary that P(W',) < IA‘Iﬂ\AI (W, b,,). Then there
must be some 'y € X such that min(b,, Tp(W')) =

PW',v) < |A|+|/\| P(W,b,,). Since the right-hand
side is less than by, so that b, > by, it must be that
Te(W') < s P(W; bn)-

Now let ¢ be an arbitrary member of A\. Then

P(W',¢) = min(b,, Tp(W")) < Tp(W') <
P +|| ~ P(W,b,,). Since this is true for an arbitrary
member of A, it must be true for all members of .

Now we can apply Lemma 7, with g = AESEY (so

that 1 — 8 = |AI+‘\/\|) to get
IM\A\
BIA AT+
]
[A[+]A]

This contradiction completes the proof.

Lemma 9 Let P be a mazimal policy, and let W =
(Ly,M) and W' = (LU A, M) be workloads. Let
A C L be chosen by some randomized process, such
that E[|A]] > /,L, and that for all ¢ € XA, be > bpy,.

Then E[P(W',\)] > 5 P(W, by).

Proof: By definition,
|Z]

E[P(W',X)] = Y Prob(]A| =)E[P(W',)|(|A| =)]

i=0

Using Lemma 8 to bound the last expectation, we
get

|L| i2
E[P(W',\]>ZProb A —z)l AT P(W',by),
which simplifies to
E[P(W',\)] > P(W',b,,)E [ﬁ] :
T ’ | Al + [l

2 .. .
Because f(z) = AT7z has positive second deriva-

tive, we have
2

N > P(W',by) o

E[P(W', L
L |A] + p

which completes the proof.

Theorem 2 Let P be a mazimal policy. Let b, p, n,
and a be constants. Let W = (L, M) be a workload,
chosen by some randomized process such that |L| =
n —a and for all ¢ € L, Prob(b, > b) > p. Let
W' = (LU A, M) be another workload such that
|A| = a. Then E[P(W',L)] > ;’Jr(p’;n“{op(w b).
Proof: Let A\ = {¢ € L|b, > b}. By linearity of
expectation, E[[A|]] = p(n — a). Using Lemma 9,
we conclude that E[P(W',L)] > "’+(p’zna)a)P(W b),
which completes the proof.

Theorem 3 Let W = (L, M) be a workload, where
L is generated according to Rg(n,k,a). Let W' =
(LU A, M) be another workload, where |A| = a.
Assume k < § and k < M. Then E[P(W',L)] >

Kp(1-2)° k
a+k(1—%) (1 +0 (E))

Proof: Applying Lemma 9, with b = g and p =
1— fnk(0), we get

(1= fupOP (=) ,

E[P(W',L)] > a+ (1= fnr(0)(n—a)

(W, B).
(6)

Evaluating f, x(0), we get

1—fn,k(0)=1_(1_%)'“:%(1“)(%)

Since the right side of (6) decreases when 1— f, 1 (0)
decreases, we can substitute to get

E[P(W',L)] > % W, B) (1 +0 (%)) _

Since k8 < M, it follows that P(W, 8) = 3, so

2 a 2
plpew, o) > 20 =3)

>y (o (2):

which completes the proof.

Theorem 4 Let P be a maximal policy, and let
W = (L,M) be a workload, where L is generated
according to Rg(n, k,a). Let W' = (LUA, M) be an-

other workload, where |A| = a. Assume 8 = 2% and

k>n. Then POW,1) > (1- (%)%)3 (1-2)’ M.

n

Proof: Choose an arbitrary channel ¢ € L.
That channel’s offered bandwidth, b., is dis-
tributed binomially, with expectation % and vari-

ance %22 (1 — £). Applying Chebyshev’s Inequality,

n n
we get

Prob (

where 0 < € < 1. It follows that

Pr0b<b6>ﬂ<ﬁ— E)) >1—e.
n ne

Now we apply Theorem 2 to get

E[P(W',L)] > (1_6)2(”_“)2)P<W,,8<k ﬁ))

be——| >
n en

S kﬂQ(l—%)) _.

a+(1—¢€¢)(n—a n Vne

Since 1 — € < 1, we can replace (1 — €) by 1 in the
denominator, and simplify to get

E[P(W',L)] > WP (W,,B (E _ ﬁ))
n n

ne

Because Sk = M, the P(W,.) term on the right side
is not capped, so that

1 —’(n—a)? (K [k
E[P(W’,L)]Z Mﬁ <__ _) .
n n ne
Choosing € = (%)%, and recalling that M = Sk, we
simplify to get

E[P(W',L)] > (1 - (%)%)3 (1 - E)ZM,

which completes the proof.

