A Language and System for Composing Security
Policies™

Lujo Bauerf Jay Ligattit David Walker?

Princeton University Technical Report TR-699-04

January 2004

Abstract

We introduce a new language and system that allows security archi-
tects to develop well-structured and easy-to-maintain security policies for
Java applications. In our system, policies are first-class objects. Conse-
quently, programmers can define parameterized meta-policies that act as
policy combinators and policy modifiers, so that complex security policies
can be implemented by composing simple base policies. We demonstrate
the effectiveness of our design by building up a library of powerful pol-
icy combinators and showing how they can be used. We also describe
some issues we encountered while implementing our system and provide
performance results.

1 Introduction

Security architects for large software systems face an enormous challenge: the
larger and more complex their system, the more difficult it is to ensure that
it obeys some security policy. Like any large software problem, the security
problem can only be dealt with by breaking it down into smaller and more
manageable pieces. These smaller-sized problems are easier to understand and
reason about, and their solutions are simpler to implement and verify.

When decomposing the security problem into parts, it is tempting to scatter
access-control checks, resource-monitoring code, and other mechanisms across

*This research was supported in part by DARPA award F30602-99-1-0519, ARDA Grant
no. NBCHCO030106, National Science Foundation CAREER grant No. CCR-0238328, and by
the Army Research Office through grant no. DAAD19-02-1-0389 (Perpetually Available and
Secure Information Systems) to the CyLab at Carnegie Mellon University; this work does not
necessarily reflect the opinion or policy of the federal government and no official endorsement
should be inferred.

fCarnegie Mellon University, 1bauer@ece.cmu.edu

tPrinceton University, jligatti@cs.princeton.edu

§Princeton University, dpw@cs.princeton.edu

the many modules that implement these components. This is especially true
when the enforcement of some property involves several low-level components
drawn from otherwise logically different parts of the system. For instance, in
order to implement a policy concerning data privacy, it may be necessary to
consider the operation of a wide variety of system components including the
file system and the network, as well as printers and other forms of I/O. Un-
fortunately, a scattered implementation of a policy is much more difficult to
understand and verify than a centralized implementation—even finding all the
pieces of a distributed policy can be problematic. Moreover, the distribution of
the security policy and mechanism through a large body of code can make it
more difficult to react to security breaches and vulnerabilities. In the current
security climate, where new viruses can spread across the Internet in minutes,
speedy reaction to vulnerabilities is critical.

This paper describes Polymer, a new language and system that helps engi-
neers enforce centralized security policies at run time by monitoring and mod-
ifying an untrusted Java application’s behavior. Our design focuses on pro-
viding features that allow programmer to develop well-structured and easy-to-
maintain security policies. It facilitates the decomposition of complex security
policies into smaller, simpler parts, provides a convenient way to write the sim-
ple component policies, and supplies tools to combine these components into
more complex and powerful policies.

The Polymer language is designed as a minimal extension to Java to make
it easy for Java programmers to learn and to develop security policies for their
applications. Programmers implement security policies by extending Polymer’s
Policy class, which is given a special interpretation by the underlying run-time
system. Intuitively, it is best to understand Policy objects, which we also call
program monitors, as state machines that operate over the sequence of actions
executed by an untrusted target application. More concretely, each Policy
object contains three elements:

e A specification of the application actions (i.e., method calls) relevant to
security.

e Any necessary security state, which can be used to keep track of the
application’s activity during execution.

e A decision procedure that is invoked each time an application attempts
to execute a security-sensitive action. The decision procedure returns one
of a number of security suggestions that are interpreted by the underlying
system. These suggestions include the suggestion to quietly accept and
execute the action, to suppress the action and raise an exception inside the
application, and to halt the application outright. In addition, a suggestion
may contain effectful code to be executed on behalf of the application.

This structure is highly expressive and serves as an excellent starting point
for an implementation. It is inspired by Schneider’s automata-theoretic char-
acterization of program monitors [21] and is derived more directly from our

own previous theoretical work on edit automata [5, 18], which are formal state
machines that transform application behavior by “editing” the sequence of ap-
plication events through insertions, deletions, and truncation of the sequence.
We have proven that in principle, these automata can enforce a very wide range
of program properties.

In addition, since our program monitors are first-class Java objects, it is pos-
sible for simple policies to serve as arguments to policy combinators. We have
carefully structured the Policy class and developed a programming method-
ology so that simple policies can be composed with each other in a variety of
ways. We have demonstrated the effectiveness of our design by developing a
library of combinators, including a couple different forms of “conjunctive” and
“disjunctive” policies, as well as some application-specific policy combinators
and policy modifiers. One of the major challenges is developing combinators
that make sense in the presence of effects.

One other important aspect of our design is a pattern-matching facility that
allows us to manipulate and query program actions using a convenient and
concise notation. In addition to providing simple patterns that match ordi-
nary, concrete program actions, we provide facilities reminiscent of Wadler’s
views [23] to match against abstract actions. Abstract actions summarize the
security-relevant information that appears in concrete actions and present it in a
standard form. Unlike views, which implement isomorphisms between two rep-
resentations, our abstract actions only implement “half” a view, the injection
into the abstract type. Abstract actions allow programmers to hide the irrel-
evant details of a complex low-level interface and to treat many methods with
similar functionality (such as the dozen or so methods to open a file in the stan-
dard Java libraries) as identical for security purposes. Overall, abstract actions
make it possible to modularize policy design along another axis, orthogonal to
the modularization provided by our combinators.

The rest of this paper proceeds as follows. Section 2 explains the overall pro-
cess involved in building and executing secure programs using Polymer. Section
3 describes the main features of the language, including actions, suggestions,
and policies. It also runs through a series of examples that illustrate how to
write simple policies and policy combinators. Section 4 describes some of the
key elements of our implementation and measures the performance of the main
system components. Finally, Section 5 discusses the relationship between our
work and previous work in this area.

2 Polymer System Overview

The Polymer system is composed of two main tools. The first tool is a policy
compiler that compiles program monitors defined in Polymer the language into
plain Java and then into Java bytecode. The second tool is a bytecode rewriting
tool (RW) that processes ordinary bytecode, inserting calls to the monitor in
all the necessary places. In order to construct a secure executable using these
tools, programmers must perform the following series of steps.

1. Write the action declaration file (ADF). This specification lists all possible
program actions that might have an impact on system security. The ADF
indicates to RW which methods require code insertions to transfer control
from the application to the monitor.

2. Instrument the system libraries using RW. RW reads in the system li-
braries and inserts calls to monitoring code in all the places described by
the ADF. This step may be performed before the the details of the security
policy implementation are set and need not be repeated before executing
a target application. The libraries must be instrumented before the JVM
starts up since the default JVM security constraints prevent many libraries
from being modified or reloaded once the JVM is running.

3. Write the security policy and compile it with the policy compiler. The
policy compiler translates the Polymer program into ordinary Java and
then invokes a Java compiler to translate it to bytecode.

4. Start the JVM with the modified libraries.

5. Load the target application. During this loading, our specialized class
loader uses RW to rewrite the target code in the same way we rewrote the
library code in step 2.

6. Execute the secured application.

Figure 1 contains a picture of the end result of the process. In this picture,
instrumented target and library code run inside the JVM. Whenever this code
is about to invoke a security-sensitive method, control is redirected through a
generic policy manager, which queries the current policy. The current policy
will return a suggestion that is interpreted by the policy manager. It is possible
to inline the policy manager into the application code, and doing so might
result in a performance improvement. However, we have chosen to maintain this
level of indirection to make it possible to dynamically update policies without
bringing the virtual machine down. We have not experimented extensively with
dynamic policy updates yet, but in principle, this decision makes it possible to
react to security vulnerabilities quickly, even in servers and other long-running
applications. Moreover, the security updates can be completely invisible to users
who, if threatened with interruptions in service, might choose not to comply with
security recommendations.

3 Polymer Language

In this section, we describe the core features of the Polymer language. We begin
with the basic concepts and show how to program simple policies. Then, we
demonstrate how to create a more complete policy by applying policy combina-
tors to our simple base policies.

Target application Java core classes

oo O 0
' 0.00
N

Interpreter of highest-level
policy's suggestions

[

@)

f ‘\’ Policy
O O

Figure 1: A secure Polymer application

3.1 Core Concepts

Polymer introduces three central new abstractions: actions, suggestions, and
policies. Policies analyze actions and convey their decisions by means of sug-
gestions.

Actions Monitors intercept and reason about how to react to security-sensitive
method invocations. Action objects contain all of the information relevant to
such invocations: static information such as the method signature, and dynamic
information like the calling object and the method’s parameters.

For convenient manipulation of actions, Polymer allows them to be matched
against action patterns (Figure 2). An Action object matches an action pattern
when the action’s signature matches the one specified in the pattern. Patterns
can also use wildcards: * matches any one constraint (e.g., any return type or
any single parameter type), and .. matches zero or more parameter types. For
example, the pattern

<public void java.io.*.<init>(int, ..)>

matches all public constructors in all classes in the java.io package whose first
parameter is an int. In place of <init>, which refers to a constructor, we
could have used an identifier that refers to a particular method.

Action patterns appear in three places. First, the action declaration file
(ADF) is a set of action patterns. During the instrumentation process, every
action that matches an action pattern in the ADF is instrumented. Second,
every monitor uses action patterns to declare the set of actions that it regulates.
An individual monitor only ever has to reason about actions in this set. Third,
monitors use action patterns in aswitch statements to determine which security-
sensitive action they are dealing with. aswitch statements are similar to Java’s
switch statements.

aswitch(a) {
case <void System.exit(int status)>: E;

If Action a represents an invocation of System.exit, this statement eval-
uates expression E with the variable status bound to the the value of the
method’s single parameter.

ActPat: < [Mod] RetTy [ID =] Name (Params) >
Mod: public | protected | package | private
| abs | WildCard
RetTy: void | Type | WildCard
Name: ((ID | WildCard) .)+ (<init> | ID | WildCard)

Params: .. | Param [, Params]
Param: WildCard | Type [ID]
WildCard: *

1D: Any Java identifier
Type: Any Java type

Figure 2: Syntax of action patterns. Square brackets around an item indicate at
most one occurrence of that item, while a plus indicates one or more occurrences.
Categories are in an italic font; literals are bold. The abs modifier is described
in Section 3.3.

Suggestions Whenever the untrusted application attempts to execute a security-
relevant action, the monitor suggests a way to handle this action (which we often
call a trigger action because it triggers the monitor into making such a sugges-
tion). There are four main types of suggestions a monitor can generate. If
the target is attempting to execute an action that could not possibly violate
the monitor’s security policy, the monitor suggests that this action be quietly
accepted. If, on the other hand, the action causes (or may cause) a policy vio-
lation, the monitor has three basic choices. It may halt the target altogether; it
may ignore the target’s request but allow the target to continue executing; or
it may do any of the above after executing some auxiliary code that attempts
to recover from the potential violation or performs bookkeeping or other tasks.

The monitor’s decision about a particular trigger action is conveyed using a
Suggestion object. Polymer supplies a subclass of Suggestion for each type
of suggestion listed above:

e An OKSuggestion suggests the trigger action should execute uncondition-
ally.

e A HaltSuggestion suggests the action should not be executed and the
target should be halted.

public abstract class Policy {
public abstract ActionSet getActions();
public abstract Suggestion query(Action a);
public void finish(Suggestion sug,
Object result, boolean wasExnThn) { };

Figure 3: The parent class of all policies

e A SupSuggestion suggests the action should not be executed but the tar-
get should be allowed to continue. Whenever following a SupSuggestion,
Polymer notifies the target that its attempt at invoking the trigger action
has been denied by throwing a SuppressException that the target can
catch before continuing execution.

e An InsSuggestion suggests that making a final decision about the target
action be deferred until after some auxiliary code is executed and its effects
are evaluated.

We have found that breaking down the possible actions of a monitor into
these four orthogonal categories provides great flexibility and also makes monitor
semantics relatively easy to understand. In addition, this breakdown simplifies
our job tremendously when it comes to controlling monitor effects and building
combinators that put monitors together in sensible ways (see section 3.4).

By default, any actions declared security sensitive by a monitor will be pro-
cessed by that monitor, even if these actions are executed by other collaborating
monitors or the monitor itself.! In other words, by default, our system adheres
to the principal of complete mediation, which states that every access to a re-
source should be monitored. This design helps to prevent situations in which
a malicious program fools a privileged security component into executing un-
monitored, yet security-sensitive, actions on its behalf. In addition, this design
makes it straightforward to write monitors that monitor the activity of other
monitors.

Policies Programmers encode a run-time monitor in Polymer by extending
the base Policy class (Figure 3). A new policy must provide implementations
of the getActions and query methods, and may optionally override the finish
method.

e getActions returns the set of actions the policy considers security-sensitive;
any action that is not an element of this set cannot trigger the monitor.

e query analyzes a trigger action and returns a suggestion indicating how
to deal with it.

L1f desired, it is possible to change this behavior and guard against its misuse by defining
the right sort of policy combinator.

e finish is called after a policy’s suggestion is followed. If a suggestion
forces the target to be halted or a SuppressException to be raised,
finish is called immediately before halting the target or raising the ex-
ception. The three arguments to finish are the original suggestion the
policy returned, the return value of the trigger action or inserted action
(this will be null if no action was executed or its return type was void,
and will be an Exception value if the action completed abnormally), and
a flag indicating whether the action completed abnormally.

The existence of query and finish methods in policies is fundamental to
the design of Polymer. We can compose policies by writing policy combinators
that query other policies and combine their suggestions. In combining sugges-
tions, a combinator may choose not to follow the suggestions of some of the
queried policies. Thus, query methods must not assume that their suggestions
will be followed and should be free of effects such as state updates and 1/0
operations. All policies should obey the design principle that query methods be
pure. There are two places where effects may occur: an effectful computation
can be encapsulated in an insertion suggestion, or an effectful computation can
execute in the finish method. Updates to the policy state should generally
happen in the finish method because only at this point can a policy be sure
that its suggestion has been executed successfully. This design provides fine-
grained control over exactly when effects occur and makes it possible to build
powerful policy combinators with precise and comprehensible semantics.

3.2 Simple Policies

To give a feel for how to write Polymer policies, we define four simple examples
in this section; in Section 3.4, we will build more powerful policies by combining
the basic policies presented here using a collection of policy combinators.

We begin by considering the most permissive policy possible: one that al-
lows everything. The Polymer code for this policy is given in Figure 4. The
getActions method in A11Policy returns a set of actions constructed from a
one-element array of action patterns. The single element in this array matches
every action; therefore, A11Policy considers every action security-relevant. Be-
cause the query method of Al1Policy always returns an 0KSuggestion, it
allows all trigger actions to execute unconditionally. To enable convenient pro-
cessing of suggestions, every Suggestion constructor has at least one argument,
the Policy making the Suggestion.

For our second example, we consider a slightly more useful policy that only
allows network connections to hosts on the same local network as the monitored
system. Specifically, our policy examines method calls that create network sock-
ets. Whenever the policy is queried concerning the creation of a Socket object, it
invokes a utility function to determine whether the application is creating a local
connection or not. If it is, the policy allows the connection to proceed; otherwise,
the policy considers the attempt at remote connection an intolerable security
violation and halts the target’s execution by returning a HaltSuggestion. The

public class AllPolicy extends Policy {
private ActionSet actions =
new ActionSet(new ActionPattern[] { <* x.x(..)> });
public ActionSet getActions() { return actiomns; }
public Suggestion query(Action a)
{ return new OKSuggestion(this); }

Figure 4: Policy that allows everything

public class OnlyLocalHosts extends Policy {
private ActionSet actions =
new ActionSet(new ActionPattern[] {
<void java.net.Socket.<init>(String, ..)> });
public ActionSet getActions() { return actiomns; }
public Suggestion query(Action a) {
aswitch(a) {
case <void java.net.Socket.<init>(String s, ..)>:
if (AddrUtilities.isHostLocal(s))
return new OKSuggestion(this);

}

return new HaltSuggestion(this);

}
}

Figure 5: Policy that allows network connections only to hosts on the local
network

Polymer code to implement this policy is shown in Figure 5.

Our third policy (shown in Figure 6), attempts to prevent a simple denial-
of-service attack by restricting the number of files that an untrusted target may
have open at any time. This policy examines calls that open and close files while
maintaining a variable that contains a count of the number of files the target has
open. It allows all trigger actions to proceed normally except for the opening
of a file that would send the count of open files over its limit (which is set in
the policy’s constructor). In this disallowed case, the monitor signals to the
target that its attempted file opening creates a security violation by returning a
SupSuggestion. After an allowed trigger action has been successfully executed,
the finish method updates the numFilesOpen variable appropriately. Trigger
actions are passed to the Suggestion constructors in the query method so that
the finish method has access to them.

Finally, we consider a policy that requires a warning to be displayed be-
fore creating the first network socket after having opened a file. The Polymer
code for this policy is shown in Figure 7. WarnBeforeConnect inserts an ac-
tion to display a warning whenever a socket is created after a file has been
opened. The inserted Action is constructed by supplying a caller (in this case,

public class LimitFilesOpen extends Policy {
private int maxOpen, numFilesOpen = O;
private ActionSet actions =
new ActionSet(new ActionPattern[] {
<* java.io.FileInputStream.<init>(String)>,
<* java.io.FileQutputStream.<init>(String, ..)>,
<x java.io.FileInputStream.close()>,
<* java.io.FileOutputStream.close()> });
public ActionSet getActions() { return actioms; }
public LimitFilesOpen(int maxOpen)
{ this.maxOpen = maxOpen; }
public Suggestion query(Action a) {
aswitch(a) {
case <* *.close()>:

}

if (numFilesOpen < maxOpen)
return new OKSuggestion(this, a);
return new SupSuggestion(this, a);
}
public void finish(Suggestion sug, Object result,
boolean wasExnThn) {

return new OKSuggestion(this, a);

if (wasExnThn || sug.isSuppress()) return;
aswitch(sug.getTrigger()) {
case <* *.close()>: numFilesOpen--; return;
default: numFilesOpen++;
}

}
}

Figure 6: Policy that limits the number of open files

null, because the inserted action is static), a fully qualified method name (here,
examples.Warnings.warn), and parameters to the inserted method packed in
an array of Objects. After the inserted action is executed, the policy will again
be asked to decide whether opening a socket is allowed; since this second at-
tempt will occur after a warning has been displayed, the policy will simply allow
the socket to be opened.

3.3 Abstract Actions

Thus far we have assumed that a target application will open files only by call-
ing particular FileInputStream and FileOutputStream constructors. In prac-
tice, several other methods also open files; for example, other FileInputStream
and FileOutputStream constructors, RandomAccessFile constructors, File.
createNewFile and File.createTempFile methods, java.util.zip.ZipFile
constructors, and Runtime methods for executing system commands. It can be

10

public class WarnBeforeConnect extends Policy {
private boolean haveFilesBeenOpened = false;
private boolean haveWarned = false;
private ActionSet actions =
new ActionSet(new ActionPattern[] {
<* java.io.FileInputStream.<init>(String)>,
<* java.io.FileQutputStream.<init>(String, ..)>,
<* java.net.Socket.<init>(String, ..)> });
public ActionSet getActions() { return actioms; }
public Suggestion query(Action a) {
aswitch(a) {
case <* java.net.Socket.<init>(String s, ..)>:
if (haveFilesBeenOpened && !'haveWarned) {
Action insAct = new Action(null,
"examples.Warnings.warn", new Object[1{
"Connecting to "+s+" after opening files"});
return new InsSuggestion(this, a, insAct);
} //else fall through
case <* java.io.FileInputStream.<init>(*)>:
case <x java.io.FileOutputStream.<init>(..)>:
return new OKSuggestion(this, a);
}

return new HaltSuggestion(this, a);

}

public void finish(Suggestion sug, Object result,
boolean wasExnThn) {
if (wasExnThn || sug==null) return;
if (sug.getTrigger() .isInsertion()) haveWarned=true;
aswitch(sug.getTrigger()) {
case <* java.io.FileInputStream.<init>(*)>:
case <* java.io.FileOutputStream.<init>(..)>:
haveFilesBeenOpened = true;

Figure 7: Policy that displays a warning when a socket is created after files have
been opened

cumbersome and redundant to have to enumerate all these methods in a policy,
so Polymer makes it possible to group them into abstract actions. Abstract ac-
tions enhance the power of action patterns; for example, instead of using a series
of action patterns to capture each of the possible actions that will open a file,
a policy can use a single action pattern that references the abstract FileOpen
action.

Abstract actions allow a policy to reason about security-relevant actions at a
different level of granularity than is offered by the Java core API. They permit
policies to focus on regulating particular behaviors, say, the opening of files,

11

public class FileOpen extends AbsAction {
public String paraml; //The name of the file to be opened
public boolean matches(Action a) {
aswitch(a) {
case <boolean java.io.File.createNewFile()>:
paraml = ((java.io.File) (a.getCaller())).getName();
return true;

case <void java.util.zip.ZipFile.<init>(String name)>:
paraml = name; return true;

}

return false;

}
}

Figure 8: FileOpen abstract action definition

rather than forcing them to individually regulate each of the actions that cause
this behavior. This makes it easier to write more concise, modular policies. The
use of abstract actions also makes it possible to write platform-independent
policies. The set of actions that cause a file to be opened may not be the
same on every system, but as long as the abstract FileOpen action is adjusted
accordingly, the same policy for regulating file access can be used everywhere.

To illustrate the usefulness of abstract actions, we will use them to simplify
the WarnBeforeConnect policy (Figure 7). First, however, we need to define
abstract actions for opening files and network connections. An abbreviated def-
inition of the FileOpen abstract action is shown in Figure 8. The NetSockOpen
abstract action is defined similarly.

An abstract action has two main tasks: one is to determine whether it
encompasses a particular concrete action; the other is to provide a consistent
interface to all the concrete actions it represents.

To solve the first task, each abstract action has to implement a matches
method. This method takes as its argument a particular concrete action and
returns true if the action is one of the abstract action’s constituents. An ab-
stract action may not match every instance of a particular concrete action. For
example, a nonTmpFileOpen abstract action may represent the attempt to open
any file not in the /tmp directory. The matches method has access to the con-
crete action’s run-time parameters and is thus able to see whether the file being
opened is in the /tmp directory and make its decision accordingly.

The second task of an abstract action is to present a policy with a consistent
interface to the set of concrete actions. The signature of the FileOpen abstract
action, for example, could be written as void FileOpen(String filename).
Not all methods that open a file take a String as an argument, however.
File.createNewFile takes no arguments; to make it fit the abstract action sig-
nature, the matches method must compute the name of the file being opened.
Each of the abstract action’s parameters is represented by a field (parami,

12

public class WarnBeforeConnect extends Policy {
private ActionSet actions =
new ActionSet(new ActionPattern[] {
<abs * examples.FileOpen(String)>,
<abs * examples.NetSockOpen(String, ..)> });
public Suggestion query(Action a) {
aswitch(a) {
case <abs * examples.NetSockOpen(String s, ..)>:
if (haveFilesBeenOpened && 'haveWarned) {
Action insAct = new Action(null,
"examples.Warnings.warn", new Object[1{
"Connecting to "+s+" after opening files"});
return new InsSuggestion(this, a, insAct);
} //else fall through
case <abs * examples.FileOpen(String)>:
return new OKSuggestion(this, a);

}

return new HaltSuggestion(this, a);

}

Figure 9: Version of WarnBeforeConnect policy that uses abstract actions

param2, etc.). Once the matches method determines the value of the parameter
(in this case, the name of the file) it assigns it to the appropriate field (parami).
Policies use abstract actions just as they do concrete actions, except that
abstract action patterns are prefaced by the keyword abs. Figure 9 shows the
WarnBeforeConnect policy, now modified to use abstract actions.

3.4 Policy Combinators

Polymer supports policy modularity and code reuse by allowing policies to be
combined with and modified by other policies. In Polymer, a policy is a first-
class Java object, so it may serve as an argument to or result of other policies.
We call a policy parameterized by other policies a policy combinator. When
referring to a complex policy with many policy parts, we call the policy parts
subpolictes and the complex policy a superpolicy. We have written a library
of common combinators; however, security policy architects are always free to
develop new combinators to suit their own specific needs.

Conjunctive combinator It is often useful to restrict an application’s be-
havior by applying several policies at once and enforcing the most restrictive
one. For example, a policy that disallows access to files can be used in combi-
nation with a policy that disallows access to the network; the resulting policy
disallows access to both files and the network. In the general case, the policies

13

being conjoined may reason about overlapping sets of actions. When this is
the case, we must consider what to do when the two subpolicies suggest differ-
ent courses of action. In addition, we must define the order in which effectful
computations are performed.

Our conjunctive combinator composes exactly two policies; we can generalize
this to any number of subpolicies. Our combinator operates as follows.

e If either subpolicy suggest insertions, so does the combinator, with any
insertions by the left-most (first) conjunct occurring prior to insertions by
the right-most conjunct. Following the principle of complete mediation,
the monitor will recursively examine these inserted actions if they are
security-relevant.

e If neither subpolicy suggests insertions, the monitor follows the more re-
strictive suggestion. Halting is more restrictive than suppressing, which is
in turn more restrictive than accepting.

Notice that a sequence of insertions made by one conjunct may have the effect
of changing the state of a second conjunct. In fact, that is quite likely if the
second conjunct considers the inserted actions security-relevant. Consequently,
the second conjunct may make a different suggestion regarding how to handle
an action before the insertions than it does after. For example, in the initial
state, the action might have been OK, but after the intervening insertions, the
monitor might suggest that the application be halted.

An abbreviated version of the conjunctive combinator is shown in Figure 10.
The calls to SugUtils.getNewSug in the query method simply create new sug-
gestions with the same type as the first parameter in these calls. Notice that the
suggestion returned by the combinator includes the suggestions on which the
combinator based its decision. This design makes it possible for the combina-
tor’s finish method to notify the appropriate subpolicies that their suggestions
have been followed.

We can use the conjunctive combinator to instantiate a policy that both
prevents foreign code from opening more than three files and displays a warning
if a network connection is being opened after any files have been accessed.
The parameters passed to the combinator are exactly the policies described
previously (in Section 3.2).

Policy LimitAndWarn = new Conjunction(
new LimitFilesOpen(3), new WarnBeforeConnect())

Precedence combinators We have found the conjunctive policy to be the
most common combinator. However, it is useful on occasion to have a com-
binator that gives precedence to one subpolicy over another. One example is
the TryWith combinator, which queries its first subpolicy, and if that subpolicy
returns an OKSuggestion or an InsSuggestion, it makes the same suggestion.
Otherwise, the combinator defers judgment to the second subpolicy.

14

public class Conjunction extends Policy {
private Policy pl, p2;
private ActionSet actioms;
public Conjunction(Policy pl, Policy p2) {
this.pl = pl; this.p2 = p2;
actions = new ActionSet(pl.getActions(),
p2.getActions());
}

public ActionSet getActions() { return actioms; }
public Suggestion query(Action a) {
Suggestion sl=pl.query(a), s2=p2.query(a);
if(s1.isInsertion()) return SugUtils.getNewSug(
sl, this, a, new Suggestion[1{s1});
if(s2.isInsertion()) return SugUtils.getNewSug/(
s2, this, a, new Suggestion[1{s2});
if(sl.isHalt() && s2.isHalt())
return SugUtils.getNewSug(sl, this, a,
new Suggestion[1{s1,s2});
if(s1l.isHalt()) return SugUtils.getNewSug(
s1, this, a, new Suggestion[1{s1});

}...

public void finish(Suggestion sug, Object result,
boolean wasExnThn) {
//notify subpolicies whose advice was followed
Suggestion[] sa = sug.getSuggestions();
for(int i = 0; i < sa.length; i++) {
sa[i] .getSuggestingPolicy () .finish(
sa[i], result, wasExnThn);

Figure 10: Conjunctive policy combinator

Suppose, for example, that we want to exempt local hosts from the LimitAnd-
Warn policy. One way to implement such a policy is to edit LimitAndWarn di-
rectly. If LimitAndWarn, however, is a useful policy in our library, we may not
wish to change its semantics, as this will impact other policies. Instead, we can
apply a TryWith combinator that combines the OnlyLocalHosts policy with
the LimitAndWarn policy. The overall effect of this combination is to first deter-
mine whether the trigger action is a connection to a local host. If so, the action
is accepted because OnlyLocalHosts accepts it. Otherwise, the LimitAndWarn
policy takes over. Here is the code to create this policy.

Policy LocalOrLimitAndWarn = new TryWith(
new OnlyLocalHosts(), LimitAndWarn)

A similar sort of combinator is the Dominates combinator, which always

15

follows the suggestion of the first conjunct if that conjunct considers the trig-
ger action security-relevant. Otherwise, it follows the suggestion of the second
conjunct.

Selectors Selectors are combinators that choose to enforce exactly one of
their subpolicies. There are two classes of selectors: delayed selectors, which
initially consult both their subpolicies but eventually start using only one; and
immediate selectors, which use the first trigger action to decide which subpolicy
to enforce.

A delayed selector can be used, for example, to combine a policy that allows
access only to particular file and GUI methods with a policy that allows access
only to particular network and GUI methods. The resulting policy permits an
application to run unhindered as long as it executes only GUI methods allowed
by both subpolicies. If the application invokes an action permitted by one
subpolicy but not the other, though, the combinator then chooses only to ever
obey the subpolicy that allows this action.

Immediate selectors are useful when it is possible to determine without de-
lay which of the subpolicies should be enforced. We may want to enforce the
LocalOrLimitAndWarn policy, for example, on all applications that do not carry
a trusted digital signature. We can accomplish this by applying an immediate
selector to the LocalOrLimitAndWarn and AllPolicy policies. The selector’s
job is to verify whether the target application is signed and then enforce the
appropriate policy.

Policy AllowSigned = new SignedSelector(
new All1Policy(), LocalOrLimitAndWarn)

Selectors are reminiscent of the Chinese Wall security policy [7]. Initially in a
Chinese Wall, one can access many resources, but as some resources are accessed,
others become unavailable. Here, when a selector chooses one subpolicy, the
others become unavailable.

Unary combinators Unary combinators enforce a single policy while also
performing some other actions. Suppose, for example, that we want to en-
force the AllowSigned policy while logging the actions of the target applica-
tion and the monitor. Figure 11 shows the hierarchy of subpolicies that is
created by applying a LogEverything unary combinator to the AllowSigned
policy. LogEverything handles trigger actions by blindly suggesting whatever
AllowSigned suggests; LogEverything’s finish method simply performs a log-
ging operation before invoking the finish method of AllowSigned.

Another unary combinator is one that controls a policy’s ability to monitor
itself and other policies. In some circumstances, self-monitoring policies can
cause loops that will prevent the target program from continuing (for example,
a policy might react to an action by inserting that same action, which the policy
will then see and react to in the same way again). It is easy to write a unary
combinator to prevent such loops.

16

LogEverything

SignedSelector

LimitFilesOpen WarnBeforeConnect

Figure 11: A foreign code policy hierarchy. Combinators are shown in rectangles
and base policies in ovals.

4 Implementation

The principal requirement for enforcing the run-time policies we are interested in
is that the flow of control of a running program passes to a monitor whenever a
security-relevant method is about to be executed. Two strategies for diverting
control flow can accomplish this: diverting at call sites, the locations where
security-relevant methods are invoked; or diverting at call targets, the actual
method bodies of the security-relevant methods.

Diverting the control flow at call sites at first seems the more straightforward
approach. On the surface, it would seem to involve only rewriting the target
application’s bytecode so that security-relevant method invocations are inter-
cepted by the monitor. The code comprising a running application, however,
also includes all the class libraries that the application uses. A security-relevant
method could be invoked from many places in this code, so it is potentially nec-
essary to instrument a large number of call sites. More importantly, in order to
determine which call sites to rewrite, we must perform a relatively sophisticated
static analysis and, in general, need to determine the precise method that is
invoked dynamically. The reason for the dynamic checks is that the decision to
monitor a method should be based on the behavior of the method, but since
subclasses have arbitrarily different behavior, it is not sufficient to instrument
based on the static type of an object. Consequently, it is simpler and more
efficient to divert control flow within the method body of each security-relevant
method.

Security mechanisms that rely on rewriting must ensure that all possible
ways of invoking a security-relevant method are guarded. If there is even a
single way of sidestepping the added guards, no claims can be made about the
security of the application. Tools that rewrite Java bytecode in order to make
it more secure sometimes struggle to prevent such sidestepping in the presence
of the Java reflection mechanism. Reflection allows, for example, methods to be
invoked at runtime even if their names do not appear in bytecode. It is therefore

17

very difficult to statically ensure that the application will behave correctly with-
out disabling reflection entirely, which is rarely acceptable in practice. Polymer
does not suffer from this shortfall. In fact, we can write a Polymer policy that
prevents a target application from using reflection, custom class loaders, or other
methods to circumvent Polymer. Since this policy can analyze these methods
at runtime, it is able to disallow calls that would breach security while allowing
legal ones. This policy can be viewed as a unary superpolicy that imposes re-
strictions on certain reflective calls but otherwise follows the suggestions of its
subpolicy.

The kind of pre- and post-invocation control-flow modification to bytecode
that we use to implement Polymer can be done by tools like AspectJ [15].
Accordingly, we considered using AspectJ to insert into bytecode hooks that
would trigger our monitor as needed. However, we wanted to retain precise
control over how and where rewriting occurs to be able to make decisions in
the best interests of security, which is not the primary focus of aspect-oriented
languages like AspectJ. Instead, we used the Apache BCEL API [3] to develop
our own bytecode rewriting tool.

4.1 Obstacles and Limitations

Custom class loaders have often been used to modify bytecode before executing
it [2, 4]; we use this technique also. Ideally, we would force untrusted appli-
cations to be loaded using a custom class loader that would modify bytecode
as necessary to consult the monitor before executing security-relevant methods.
Standard Java VMs (such as Sun’s), however, load a number of classes (e.g.,
java.io.File and java.io.BufferedInputStream) before loading a client ap-
plication. These classes are therefore out of reach of a custom class loader; since
many of them (such as java.io.FileOutputStream) could be considered secu-
rity relevant, this is unacceptable.

Several strategies could be employed to combat this problem: we can inte-
grate our class loader more tightly with the Java VM, in effect adding func-
tionality to the system class loader; we could rename all the core Java classes
used by a target application to ensure that they are loaded by our class loader;
or we can preprocess the core Java classes, thus ensuring that even the classes
loaded by the system class loader have the hooks needed to invoke the monitor.
The first approach might result in a cleaner overall system, but would be more
complicated to implement and obviously would not be portable across JVMs.
The second approach, renaming any core classes used by the target applica-
tion, has the advantages of simplicity and portability, but unfortunately it does
not work. Many classes, like java.lang.0bject and java.lang.Throwable,
are treated specially by standard VMs and cannot be renamed; since they
are loaded by the system class loader, they also cannot be modified. Be-
cause these classes, along with any they reference (which includes, for exam-
ple, java.io.FilterOutputStream and java.io.PrintWriter), cannot be re-
named, this implementation strategy prevents the enforcement of many useful
policies. The third approach, rewriting the core classes in a preprocessing phase,

18

is simple, effective, portable, and hence our choice.

An additional hurdle is that some just-in-time (JIT) compilers assume that
particular methods perform particular functions. The JIT compiler in Sun’s
Java 1.4 SDK, for example, assumes that Math.sqrt calculates the square root,
and produces native code for calculating square roots without actually referring
to the body of the Math.sqrt method. Since we divert control to the monitor
by instrumenting the bodies of security relevant methods, this optimization
interacts poorly with our implementation. To regulate such methods, we would
have to instrument bytecode at the call site; fortunately, these methods are very
few, and, like Math.sqrt, unlikely to be of concern to security policy writers.

Similar difficulties occur with a few other methods that are treated specially
by Sun’s, and probably other, VMs. Sun’s VM will not initialize if the construc-
tor of the Object class, for example, has been modified. It also resists modifica-
tions to Object.finalize, Object.toString, and Class.newInstance. Reg-
ulating these methods, therefore, is outside the scope of our current implemen-
tation.

4.2 Performance

It is instructive to examine the performance costs of enforcing policies using
Polymer. We did not concentrate on making our implementation as efficient as
possible, so there is much room for improvement here. However, the performance
of our implementation does shed some light on the costs of run-time policy
enforcement.

Our system impacts target applications in two phases: before and during
loading, when the application and the class libraries are instrumented by the
bytecode rewriter RW; and during execution. We evaluate each phase sepa-
rately.?

Instrumentation Because Polymer instruments core Java class libraries sep-
arately from non-library code, we measured the performance of these tasks
independently. The total time to instrument every method in all of the stan-
dard Java library packages (i.e., the 28742 methods in the 3948 classes in the
java and javax packages of Sun’s Java API v.1.4.0) was 107 s, or 3.7 ms per
instrumented method. This cost is reasonable because library instrumentation
only needs to be performed once (rather than every time a target application
is executed). The average time to load non-library classes into the JVM with
our specialized class loader, but without instrumenting any methods, was 12ms,
twice as long as the VM’s default class loader required. In addition to this per-
class loading penalty, instrumenting every method in a target class containing
100 methods took 520 ms, or 5.2 ms per method instrumented. The reason for

2The tests were performed on a Dell PowerEdge 2650 with dual Intel Xeon 2.2 GHz CPUs
and 1 GB of RAM, running RedHat Linux 9.0. The times represent real time at low average
load. We performed each test multiple times in sets of 100. The results shown are the average
for the set with the lowest average, after removing outliers.

19

the higher per-method cost in this test, as compared to the library instrumen-
tation test, is that the target methods contained relatively many parameters,
and the instrumenter has to loop through parameter lists to insert code that
wraps arguments of primitive types into Objects so that they can be sent to
the monitor uniformly. These instrumentation timings form a useful basis for
understanding the approximate overhead of Polymer’s bytecode instrumenta-
tion process; there was an approximately 6 ms penalty per class for using the
Polymer class loader, in addition to about 4.5 ms per method instrumented.

Execution The run-time cost of enforcing policies with Polymer falls into
three categories: (1) the cost of passing control to Polymer before and after
processing the body of a security-relevant method, (2) the cost of determining
whether the security-relevant action belongs to the set of actions regulated by
the top-level policy, and (3) the cost of reasoning within a policy about whether a
given method should be allowed or disallowed and potentially taking corrective
action. While (1) is a static cost incurred even if the active policy does not
reason about the current trigger action, both (2) and (3) clearly depend upon
the details of the policy being enforced.

We tested the impact of regulating the ability to open a socket via the
java.net.ServerSocket (int) constructor. The results reveal chiefly the static
costs (1), since we tested with only the simplest policies. The base time to
open a socket when Polymer was not involved (class libraries and the target
application were not instrumented, so Polymer was never consulted) was 35.74
ms. When class libraries and the application were instrumented (so that control
passed to Polymer), but the active policy was not regulating any actions, the
same operation required 36.36 ms. With the class libraries instrumented and
Al1Policy as the active policy, opening the socket took 38.64 ms.

Passing control to Polymer requires a couple of extra method calls. Evaluat-
ing the action takes longer, but this cost depends entirely upon the complexity
of the policy being enforced. Compared to the relatively long execution time of
the ServerSocket (int) constructor, the overhead of using Polymer in this test
was low. In other situations, the method being instrumented might be much
faster (the java.io.FileQutputStream(String) constructor, for example, ex-
ecutes in roughly a millisecond), so the proportion of time spent on enforcing
the security policy would be greater.

5 Related Work

Safe language platforms, such as the Java Virtual Machine (JVM) [19] and
Common Language Runtime (CLR) [20], use stack inspection as the basis of
their program monitoring systems. Unfortunately, while stack inspection can
be effective in many situations, it has some serious drawbacks as well. First,
stack inspection is just one algorithm for implementing access control, and,
as explained by several researchers [21, 11, 13, 1], this algorithm is inherently
partial: A more complete security system would make decisions based on the

20

entire history of a computation and all the code that has had an impact on the
current system state, not just the current control stack. A second important
flaw in the stack inspection model is that operations to enable privileges and
perform access-control checks are scattered throughout the system libraries.
Consequently, in order to understand the policy that is being enforced, one
must read through arbitrary amounts of library code.

A number of researchers [12, 11, 10, 16, 17, 8] have attempted to improve
software security by developing domain-specific languages for specifying security
properties. The primary point of contact between our work and these others is
the idea that it is possible to centralize a security policy by including specifica-
tions of where security checks should be placed in addition to what the security
checks should be. Our main new contributions with respect to these other
projects are the insights that (1) security monitors may have a variety of re-
sponses (accept, suppress, insert, or halt) to application events, and (2) security
monitors may be elevated to first-class status and explicitly manipulated and
composed. We demonstrate the utility of these ideas by showing how to develop
well-structured security policies built from a library of monitor combinators.

Naccio [12], one of the domain-specific security policy languages that in-
spired our work, does allow policies to be broken down into smaller parts, but
the mechanism by which these parts are put together does not appear to be
fully specified. Since these policy parts usually have effects, the semantics of
the overall policy is unclear. In his thesis [10], Erlingsson develops another se-
curity policy language that provides C-like “include statements” so that policies
may be broken up into multiple files. He specifies that computational effects will
occur in the order that they appear in the text of the overall policy, once the in-
clusions have been processed. This approach eliminates the semantic ambiguity,
but does not provide the power and flexibility of our language.

One other important difference between our language and much of this pre-
vious work on domain-specific security policy languages is that rather than
building a completely new language, our Polymer extensions are conservative
over the rest of Java. This design decision has a number of advantages. First,
it gives programmers familiar with Java fewer concepts to learn, speeding the
adoption path for the product and diminishing the likelihood of policy errors
due to unfamiliarity with the language. Second, it ensures the policy language
has the full power of the application language (and more). This power may be
required to effectively manipulate and constrain an unruly application. Third, it
reduces the chance that there will be a dangerous semantic disconnect between
the policy language and the application language. Any semantic gap between
policy language and application language semantics is a potential security hole.

Our monitor language can also be viewed as an aspect-oriented program-
ming language (AOPL) in the style of AspectJ [15]. However, it is normally
impossible to use a general-purpose aspect-oriented language for security since
an untrusted application can use aspects to disrupt and subvert the security
code. The main high-level difference between our work and previous AOPLs is
the fact that our “aspects” (the program monitors) are first-class values and that
we provide mechanisms to allow programmers to explicitly control the composi-

21

tion of aspects. Several researchers [22, 24, 9] describe functional, as opposed to
object-oriented, AOPLs with first-class aspect-oriented advice. However, they
do not support aspect combinators like the ones we have developed here. In gen-
eral, composing aspects is a known problem for AOPLs, and we hope the ideas
presented here, particularly the idea that aspects may be first-class, composable
objects, will suggest a new design strategy for general-purpose AOPLs.

We currently have no direct language-theoretic model of Polymer the pro-
gramming language. However, in previous work [6], we developed an idealistic
calculus of functional program monitors with a built-in set of combinators. We
are currently working on defining the formal semantics of Polymer as an exten-
sion of Featherweight Java [14].

Acknowledgments

We would like to thank Ulfar Erlingsson for explaining some of the difficulties
in instrumenting Java library classes. We would also like to thank Dawn Song
and Brent Waters for helpful comments about earlier drafts of this paper.

References

[1] M. Abadi and C. Fournet. Access control based on execution history. In 10th
Annual Network and Distributed System Security Symposium, 2003.

[2] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type parameterization to
the Java language. In Object Oriented Programing: Systems, Languages, and
Applications (OOPSLA), Oct. 1997.

[3] Apache Software Foundation. Byte Code Engineering Library, 2003. http://
jakarta.apache.org/bcel/.

[4] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms for secure modular pro-
gramming in Java. Software—Practice and Experience, 33(5):461-480, 2003.

[5] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Foun-
dations of Computer Security, Copenhagen, Denmark, July 2002.

[6] L. Bauer, J. Ligatti, and D. Walker. Types and effects for non-interfering program
monitors. In International Symposium on Software Security, Tokyo, Japan, 2002.

[7] D. Brewer and M. Nash. The Chinese wall security policy. In IEEE Symposium
on Security and Privacy, pages 206214, Oakland, May 1989.

[8] T. Colcombet and P. Fradet. Enforcing trace properties by program transforma-
tion. In Twenty-Seventh ACM Symposium on Principles of Programming Lan-
guages, pages 54-66, Boston, Jan. 2000. ACM Press.

[9] D. Dantas and D. Walker. Aspects, information hiding and modularity. Submitted
for publication, Nov. 2003.

[10] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy FEn-
forcement. PhD thesis, Cornell University, Nov. 2003.

22

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]

U. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection. In
IEEE Symposium on Security and Privacy, Oakland, CA, May 2000.

D. Evans and A. Twyman. Flexible policy-directed code safety. In IEEE Security
and Privacy, Oakland, CA, May 1999.

C. Fournet and A. Gordon. Stack inspection: Theory and variants. In Twenty-
Ninth ACM Symposium on Principles of Programming Languages, Jan. 2002.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java. In ACM conference
on Object-Oriented Programming, Systems, Languages and Applications, pages
132-146, Denver, CO, Aug. 1999.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In European Conference on Object-oriented Programming.
Springer-Verlag, 2001.

M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokolsky.
Formally specified monitoring of temporal properties. In Furopean Conference on
Real-time Systems, York, UK, June 1999.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Run-time assur-
ance based on formal specifications. In International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, NV, June 1999.

J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. Under consideration by the International Journal
of Information Security. Submitted Dec 2002; Revised May 2003. Available as
Princeton Computer Science Department TR-681-03.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

E. Meijer and J. Gough. A technical overview of the Common Language Infras-
tructure. http://research.microsoft.com/~emeijer/Papers/CLR.pdf.

F. B. Schneider. Enforceable security policies. ACM Transactions on Information
and Systems Security, 3(1):30-50, Feb. 2000.

D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-order lan-
guages. In Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development, pages 158-167, 2003.

P. Wadler. Views: a way for pattern matching to cohabit with data abstraction.
In Fourteenth ACM Symposium on Principles of Programming Languages, pages
307-313. ACM Press, Jan. 1987.

D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In ACM Interna-
tional Conference on Functional Programming, Uppsala, Sweden, Aug. 2003.

23

