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Abstract in caching and to reduce load on all levels of the DNS
hierarchy.

The Domain Name System (DNS) is a ubiquitous part of DNS “users” can choose to perform lookup manually
everyday computing, translating human-friendly machimg querying each level of the hierarchy in turn until the
names to numeric IP addresses. With its redundant d@mp|ete name has been resolved, but most systems are
sign, aggressive caching, and widely-assumed reliabilignnfigured to delegate this task to a set of local name-
few suspect its internal failures as a source of delays. W&rvers. This approach has several performance advan-
show, through careful measurement, that the infrastrygges, since a centralized lookup service may consoli-
ture responsible for resolving DNS names often encoufate requests and serve replies from its cache. It also
ters various failures which then induce delays. A systemas management advantages, since any updates to root
atic examination of the problem shows that the failures asgrver information or to the nameserver software are ap-
widespread, uncorrelated, and can be a significant soysged to fewer machines. Given the importance of cen-
of DNS-related delays. tralized lookup nameservers in organizations, several are

We address this problem via the development eften deployed to provide redundancy.
CoDNS, a cooperative DNS lookup service. It uses a lo-The advent of wide-area distributed testbeds such as
cality and proximity-aware design to achieve low-latencpjanetLab [12] provides a means for a large-scale exami-
low-overhead name resolution in the presence of log@ltion of DNS performance, and we find a number of sur-
DNS nameserver delay/failure. We show via repeatgglsing behaviors through repeated measurements. These
measurement and live traffic that CoDNS is an effectiyReasurements are taken as part of the CoDeeN Content
solution to DNS problems, and eliminates a major sourpgstribution Network [16], and are used to assess the qual-
of delay. ity of the PlanetLab nodes on which the CoDeeN software

: runs. Part of the monitoring process involves querying

1 Introduction local nameservers for the addresses of long-lived, well-
The Domain Name System (DNS) has become a ubagvertised PlanetLab node names. The observed behav-
uitous part of everyday computing due to its effectivéers largely consist of lookup “failures” which are hidden
ness, human-friendliness, and scalability. It providesby the internal redundancy in DNS deployments. How-
distributed lookup service primarily used to convert frorver, the cost for such redundancy is additional delay, and
human-readable machine names to Internet Protocol (W& find that the delays induced through such failures often
addresses. Its existence has permeated much of comg@atinate the time spent waiting on DNS lookups.
ing via the World Wide Web'’s near-complete dependenceln addition to diagnosing failures, we also show how
on it. Thanks in part to its redundant design, aggressivs sort of testbed can be used to augment existing name-
caching, and flexibility, it has become a ubiquitous paservers, providing a cooperative lookup scheme to mask
of everyday computing that most people take for grantete failure-induced local delays. Using such an approach,
Given its generally high reliability, few people suspedlanetLab nodes can provide an aggregate DNS lookup
simple failures or oversights in deployment for being reggerformance that is more reliable and consistent than any
sponsible for noticeable delays in the Web connectionsindividual node’s performance. We term our implemen-

DNS employs multiple levels of redundancy anthtion CoDNS, and use it to augment the performance of
caching to improve its performance and hide short-tetive CoDeeN CDN.
failures. Beginning with the 13 root nameservers, lower The rest of this paper is organized as follows: in Sec-
levels of the hierarchy are responsible for deploying &n 2, we provide evidence of widespread failures in lo-
least one pair of nameservers so that name lookup queciasDNS nameservers, analyze their behavior, and show
can be resolved in the event of failures. Lookup resuttsat the measurements are not an artifact of the PlanetLab
also carry explicit time-to-live (TTL) information, to aidnodes. In Section 3, we propose a model for cooperative
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Figure 1:12/11 - 12/12, Average Response Time for Repeated Name lpobdsting of Various CoDeeN Nodes
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Figure 2: 12/11 - 12/12, CDF for distribution of lookups (Sohomames are abbreviated with first two characters)

DNS lookups, analyze the expected performance and adur desire to have a standard for comparison across all
sociated overheads, and compare other scenarios. In EmbeeN nodes led us to have a process at each node pe-
tion 4, we discuss our implementation of such a serviag&dically perform name lookups of other CoDeeN nodes,
CoDNS, and we analyze its performance in Section 5. since having the same lookups performed at all nodes
would ensure a standard baseline for comparison. These
2 Background & Ana|ySiS lookups were included as part of an end-to-end test of
) . proxy availability, but we included timing information for
Our observation of the variety of local problems assogiy g separately. Given the small set of CoDeeN nodes
ated with DNS stem from our work on the CoDeeN €Oz qnd 40), their long TTL values, and the fact that most
tent distribution network (CDN). CoDeeN consists of gre hosted on Internet-2 connected sites at US universities,

network of Web proxy servers that include custom cog, exnected that these lookups should have been locally
to control request forwarding between nodes. When.g-hed and would return quickly.

CoDeeN node receives an HTTP request, it attempts to
service it locally if the requested object is cached. Ghl Name Lookups of CoDeeN Nodes
cache misses, requests are forwarded to other CoDe@iN measurements showed that local DNS lookup times
nodes by considering locality, load, and proximity [15}vere generally good, but would often degrade dramati-
The CoDeeN node receiving the forwarded request actdly, and that this instability behavior was widespread
as a reverse proxy for the origin server, and tries to satisfiyd frequent. The heartbeat monitoring process in
the request from its cache. If this node also does not haieDeeN performs one lookup per second of another
the object, the request is sent to the origin server. CoDeeN node name, and given that CoDeeN runs on ap-
When CoDeeN must forward requests to the origjsroximately 40 nodes, each name is queried roughly once
server, it performs a DNS lookup to convert the serveeyery 40 seconds. These nodes have stable TTL values,
name into an IP address, and our attempt to ensure thih over half being one day or more, one quarter at six
this process was successful brought the DNS probleméiaurs or longer, and none below an hour. So, most of
our attention. The CoDeeN node that receives the requifisise name lookups are highly cacheable, and given that
originally needs to ensure that whichever peer node ftecal nameservers should be on the same campus as the
ceives the request is capable of handling it in a time§oDeeN node, we would expect most lookups to take a
manner. CoDeeN runs on PlanetLab, a worldwide néew milliseconds.
work testbed for large-scale services, and Planetlab node®o illustrate the widespread nature of the problem and
are hosted by various universities, companies, and otlisrmagnitude, Figure 1 shows the lookup behavior over
groups. Each node is configured to use local nameservarsecent two-day period across roughly one-fifth of the
so a local DNS nameserver failure/delay at the peer nddeDeeN nodes. Each point indicates the average response
would render it a poor candidate for handling requests. fime of the name lookups performed every minute. All the
avoid these nodes, we include information about the locaddes in the graph show some sort of problems in DNS
DNS performance in our intra-CoDeeN health messagdsokups for the period.



Node Avg Low High | T-Low | T-High Ping-response | Contribution(%)
cornell 531.7ms| 82.4% | 12.9% 0.5% | 99.2% No packet loss 88.9
harvard 99.4ms | 92.3% | 3.3% 0.7% | 97.9% Lose all packets 9.9
cmu 24.0ms | 81.9% 3.2% 83% | 71.0% Lose one packef 1.1
ku 53.1ms| 94.6% | 1.8% | 2.9% | 95.0% Other 0.1
stanford 215ms| 95.7% | 13% | 53% | 89.9% Table 2:Study of local nameserver status by ICMP ping
ubc 88.8ms | 76.0% 7.6% 24% | 91.2%
umich 43.6ms | 96.7% 1.3% 24% | 96.1%
northwestern| 43.1ms| 98.5% 0.5% 4.5% | 94.8%

Table 1: Statistics over two days, Avg = Average, Low = Pelst the nodes crosses the 0.5 value before 1000ms, indi-
centage of lookups: 10 ms, High = Percentage of Iqokups cating that more than 50% of the lookup time is spent
100 ms, T-Low = Percentage of total low time, T-High = Per- .
centage of total high time on Io_okups ftaklng more_than 1000ms. The total lookup
time is dominated by failure. If we assume that a well-
behaving local nameserver can serve cached responses in
100ms, then the figures are even more dramatic. This data
The types of problems indicated in these graphs are i®shown in Table 1, and shows that most nodes have total
consistent with simple configuration problems, but afimes dominated by these slower lookups.
pear to be usage-induced or triggered by activity on theThe implications of these measurements is significant —
nameserver nodes. The Cornell node consistently shafuge can reduce the amount of time spent on these longer
DNS problems, with more than 20% of lookups shoveases, particular in the failures that require the local re-
ing high lookup times of over five seconds. We classif§olver to retry the request, we can dramatically reduce the
these lookups as failures, since five seconds is the timettgal lookup times. Furthermore, given the sharp differ-
solvers use to retry a request to another nameserver. ghee between “good” and “bad” lookups, we may also be
redundancy of the local nameserver configuration mashsie to ensure a more predictable (and hence less annoy-
the failure of the first nameserver to respond. The 20%g) user experience.
rate indicates that the first nameserver works most of thedne might assume this behavior stems from the node
time, so its failure pattern is not consistent with a complgserforming the measurement rather than the name service
misconfiguration. Very often throughoutthe day, it simplyself, but by comparing multiple nodes using the same
stops responding, driving the per-minute average lookkgmeserver, we can see if the observed behavior is con-
time close to 5 seconds. The Harvard node also displayent. Figure 3 and Figure 4 show the average times
generally bad behavior. Further investigation disclosgad failure rates for two pairs of nodes at two different
that most of the lookups are fine, but almost every minutlanetLab sites. Nodes within each pair use the same
a couple of 5 seconds of delays appeared, which subsi@meserver, and as we can see, they see roughly the same
tially influenced the per-minute average. The Stanfopghavior, including average lookup times, average failure
node shows periodic big spikes roughly every three hoursgtes, and timings of spikes/anomalies. We have noticed
This phenomenon has persisted for the past few weekgilar behavior on all sites we have tested, which sug-
and we suspect the nameserver is being affected by hegayts that the problem lies in the name service itself.
cron jobs. Lengthy DNS malfunction is noticed on the U- . . .
Michigan node, which lasted from 9:00 am to 10:30am ¢r 2 Failure characterization
Dec 12, indicating more than 1 second of average delayo better understand the nature of these failures, we can
Although Figure 1 shows dramatic variation in DNS leemploy techniques to investigate if other factors are in-
tency over time, the number of requests which fail anblved, and if the failures present any behavior we can
require retries is small. Figure 2(a) displays the cumexploit in designing a system to address them.
lative distribution function (CDF) of name lookup times One possible cause for these failures is network packet
over the same two days. With the exception of the Cdoss from the local node to the nameserver, since our
nell node, 90% of all requests take less than 100ms queries are UDP-based, and packet loss would require
all nodes, indicating that caching is effective and that lapplication-generated retransmission. In order to test the
tencies are quite low in the average case. On the Corratrelation between packet loss and DNS failure, we per-
node, over 80% of lookups are resolved within 6ms, aléerm an ICMP ping with 5 ping packets to the local name-
indicating that it works well most of the time. server after every DNS lookup failure across all the nodes
However, Figure 2(b) shows the same data, but mdar 12 hours. We show the result of 9471 such ping in-
sured by the fraction of the total lookup time, instead @bcations due to DNS lookup failures in table 2. From
just the total number of lookups, and it indicates thattable 2, we can see that most of the time when the nodes
small percentage of failure cases dominates the totalhave local DNS lookup failures, they can reach the lo-
time. This weighted CDF shows, for example, that noreal name server without network packet loss. Sometimes
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the local nameserver is completely unreachable by ICMBused by local nameserver malfunctioning or extended
ping, but some of these are due to filtering of ICMP pingserloading.

at some sites. The low local network packet drop rate 3. Sporadic short failures: They are likely caused by tem-
1.2% during periods of DNS failures) suggests that packetrary overloading of the local name server.

loss plays an insignificant role in the local DNS lookup 1q further understand how long the failures typically
failures in our environment. The fact that we have a NOfst we conduct tests on 188 nodes on PlanetLab, in-
trivial amount of DNS lookup failures leads us to believgyding nodes not involved with CoDeeN. We perform a
that the local nameserver is the one which has the prefiyg lookup every second on every node, and recorded

lem. ) o the DNS failure rate for every 30 seconds. The failure rate
From the failures shown in figure 1, we can see that th¢&g, decaying average of about past 100 DNS lookups. We
are three kinds of failures: record all the periods which have failure rate greater than

1. Periodic failures: The regularity of these failures sugoq and examine how long each failure period lasts. The
gests that they are possibly caused by cron jobs runniiga collected in the month of November 2003 is shown
on the local nameserver. We can see them in the Stanfmrﬁigure 5, where graph (a) is a CDF of durations counts,
and Northwestern graphs. _ while (b) is a CDF of the total time spent in failure peri-

2. Long lasting continuous failures: They are possiblyys \We can see from the Figure 5 that although most of
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the failures have short duration, the longer failures dom- = ,\ISSZW:? - Plagitli;b PaCket;%ng 5?55/
. . . . -4.9.3+ 1% 470 .97/0
inate the total time of a_lll the fallurgs. Thl_s suggests that BIND 9 A6.5% >E 105 T 34.0%
we need to be responsive to short time failures in order to Other 50.0% 38.59 | 10.1%

be effective, but that we may also be able to perform opfiap|e 3:Comparison of nameserver software used by planetiab,
mizations to handle longer-term failures more effectivelyacketfactory survey and TLD survey

The measurements can also be used to answer the ques-
tion of whether our deployment of CoDeeN on mostly
US university sites generates representative DNS perfor- _ o
mance. The graphs in Figure 6 break down the 188 nodf@¢m number of nodes available within every hour. The
by type, including US universities (edu), US compani&ercemage qf healthy nodes (as a fraction of live nodes)
(com), European PlanetLab sites, Asian PlanetLab sitsShown in Figure 7.
and others. We find that all categories show similar short-From this graph, we can see some minor correlation
term failure behavior, with some differences in the length failures, shown as downward spikes in the percent-
of longer-term failures. Interestingly, the US universitge of available nodes, but most of the variation in avail-

sites have generally better performance, with much |edglity seems largely uncorrelated. An investigation into
time spent in longer-term DNS failure periods. the spikes reveals that many nodes on PlanetLab have

/etc/resolv.conf configured to use the same set of name-
2.3 Correlation of the DNS lookup failures  servers, especially those colocated at Internet2 facilities
While we have confirmed that nodes at the same site §8et to be confused with Internet2-connected university
similar DNS properties, given the global nature of Plagites). When these nameservers experience problems, the
etLab and the number of multi-node experiments, anott§@frelation appears large due to the number of nodes af-
possible source of failure is the existence of experimeff@sted.
running across many nodes. To investigate this possibilMore important, however, is the observation that the
ity, we study the correlation of DNS lookup failures ovefraction of healthy nameservers is always quite high, gen-
all the nodes we have. For every 30 seconds interval, a/@lly above 90%.This observation provides the key
record how many nodes are “healthy” in terms of DN@sight for CoODNS — as long as we have a reasonable
performance. We define healthy as having a failure ratember of healthy nameservers, we can use them to
less than 1%, or less than 1.25 times the global averagask locally-observed delays
failure rate. The reason for the second test is that we hav&Ve also survey the software running on the local name-
observed some of the DNS sites have problems with thervers used by the PlanetLab nodes (135 unique name-
authoritative servers resolving their names, so when thesevers) with “chaos” class queries [11]. We find that they
sites “disappear,” all nodes experience DNS failure fare mostly running a variety of BIND. We observe 11 dif-
those sites. Using the same 30 seconds failure rate datant BIND 9 version strings, 13 different BIND 8 ver-
collected in the month of November 2003, we group byslon strings and a number of humorous strings (which are
hour intervals, and record the minimum, average and maxeluded in “other”) apparently set by the nameserver ad-
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Figure 6:CDF for distribution of failure duration for different cafery

3.1 CoDNS

98%

96% | The main idea behind CoDNS is to forward name lookup

gueries to peer nodes when the local name service is ex-
periencing a problem. Essentially, this strategy is apply-
ing a CDN approach to DNS — spreading the load among
| | peers can improve the size and performance of the “global
| i cache”. Many of the same considerations used in CDN
8% I i . systems apply in this environment. We need to consider
[avg —— . the proximity and availability of a node as well as the
82% : : : : : : locality of the queries. A different consideration is that
° 10 joo 300 490 500 600 700 we need to decide when it is desirable to send remote
ourly statistics in Nov, 2003 . |
gueries. Given the fact that most name lookups are fast
Figure 7: Hourly min/avg/max percentage of nodes witf the local nameserver, simply spreading the requests to
good NS peers might generate unnecessary traffic with no gain in
latency. Worse, the extra load may cause marginal DNS
nameservers to become overloaded. We investigate con-
ministrators. We compare the nameserver software usatkerations for deciding when to send remote queries, how
in our test environment and other surveys in table 3 to gnany peers to involve, and what sorts of gains to expect.
sure that the_ proble_ms we observe on PlanetLab are nof, precisely determine the effects of locality, load,
tied to a particular piece of software. The surveys we Usgq proximity is difficult, since we have no control over
for comparison are a global survey of 20,405 respondigigy nameservers and have little information about their
nameservers done by packetfactory in early 2003 [13] ajfkioads, configurations, etc. Given the fact that most
a survey of TLD DNS software done by Brad Knowles igopeeN nodes are connected via Internet2, we believe
2002 [8]. We find PlanetLab’s diversity of nameservers jfat proximity is less of a factor for us than other envi-
reasonable and generally in line with other measuremeRtiments, due to the low round-trip times we experience
We conclude that t_he failures are not likely to be specifinyeen nodes. As long as we use relatively close nodes
to PlanetLab’s choices of nameserver software. as peers, we should have reasonable behavior. We have
3 Design observed cqast-to-_coast _rouno_l-trip ping times of 80rr_15 in
CoDeeN, with regional times in the 20ms range. Like-
In this section, we discuss the design of a system whiefise, locality is less of a factor in CoDNS than regular
allows us to have a highly reliable and available nan@DN systems, since we only use remote servers when
lookup service while minimizing the extra overhead. Waur local server is experiencing problems. By process of
discuss alternative approaches as well and compare @¢hmination, the most interesting factor is the policy for
tradeoffs. determining when to begin using remote servers, and how

94%

92%

90%

88% |

Percentage of healthy nodes

84%




1000 The results of this experiment are shown in Figure 8,

where the average response time is shown as a function of
800 the number of peers performing lookups in parallel. We
A use an initial delay of 200ms for this figure which means
E 600 that we will send out a DNS query to remote peer only if
s the local DNS lookup does not finish within 200ms. The
é 400 X axis shows the total number of nodes queried (includ-
@ \\\\ ing the local nameserver) when we need to do a remote
200 sm— DNS lookup; the Y axis is the average response time in
ms. This figure tells us that even if we ask just one peer
0 5 4 s 6 32 oz (X = 2) when we need to issue a remote DNS query, we
Total Peering Nodes can reduce the average DNS lookup time more than half.

Involving more peers in parallel provides only diminish-
Figure 8: Average response time vs. number of nodag returns.
queried (200ms initial delay) Another issue is the amount of extra DNS overhead
needed to get good DNS response time. Since we want to
minimize CoDNS'’s overhead, we want to have minimal
many to involve. amount of extra DNS lookups while maintaining reason-

To understand the relationship between CoDNS r@ble response time performance. In Figure 9, we show
sponse times, the number of peers involved, and the pdiidual Y axes graph with both the average response time
cies for determining when requests should be sent féld average DNS lookups with regard to the initial delay.
motely, we collected live data from CoDeeN and use The X axis shows the different initial delay used for send-
to simulate various policies and their effects. Using oried the first remote DNS query, the dual Y axes show the
day’s HTTP traffic on CoDeeN, we extract the 44488verage response time and the average number of DNS
unique hostnames requested by our users. We then re}giup done per request by CoDNS. This graph shows
this traffic usingget host byname() , starting requeststhat we can control the amount of extra DNS lookups by
at the same time of day in the original logs. The repl&hanging the initial delay for sending remote DNS query
happened one month after the data collections to avéfdPeers. If we send the first remote query after a 500ms
local nameserver caches which could skew the data. W@lay, we can still reduce the average DNS lookup time
perform this replay at 77 PlanetLab nodes with differef2 about half while causing only about 15% extra DNS
nameservers. During this time, we also use applicatidAokups to be done compared with not using any peers.
level heartbeat measurements between all pairs of no8e2 Other Approaches

to determine all-pairs rOUnd'trip latencies. Since all of thﬂe bneﬂy describe other approaches to avoid local name-
nodes are doing DNS lookups at about the same time,ddfver failure issues, and compare them with the CODNS
adding the time spent iget host bynanme() at peerY concept. One approach is to add the recursive DNS query
to the time spent for the heartbeat from peerXto peerY, Wgility into every local node. In the case of local name-
will get the response time peerX can get if it asks peeggrver failure, the local node will contact the root name-

for a remote DNS lookup for the same hostname. servers directly and try to resolve the hostname lookups
itself. is approach, compared to Co , has sev-
by itself. Th h d to CoDNS, h
800 2 eral disadvantages:
700 1 T g 1. This reduces the caching effectiveness because each
__ 600 >< 15 g node will be doing DNS lookups individually when
) © .
E 500 0y 8 the local nameserver fails. It defeats the purpose of
[} » . .
£ N e S S NS S N T N ., £ using shared nameservers to allow caching among
@ 5 . . .
g ﬁz/ % different local nodes. This approach will also cause
g = 5 more pressure on the global domain name system be-
200 o5 § cause of low cache utilization.
[
>
100 < L . .
response_time —+— 2. This increases the configuration efforts and also
o a\/‘eraggiDN‘Siloo‘kups‘ o o
0 500 100015002000 2500300035004000450050005500 CaUS.eS .eXtra managem.ent prOblems' InStead Of Only
Initial delay for remote DNS query (ms) configuring and managing a couple of local name-

_ _ o servers, the sysadmin will need to manage the name
Figure 9: Response time and DNS lookups vs initial delay  resolution subsystem on each individual node.



3. This will use more resources on each node. Sinoe where it originated. Preference for idle slaves is given
the name lookup service running on individual nodés locally-originated requests over remote queries.
are not the only services running, it will cause vis- The master process records each request’s arrival time
ible problems when other programs cause memdrgm local clients and sends a UDP name lookup query
pressure for the name lookup service. Best practidesa peer node when the response from the slave has not
suggests that name service is better run alone aseturned within a certain period. This delay is used as a
dedicated service. boundary for deciding if the local nameserver is slow. In
the event that neither the local nameserver or the remote
Another possible solution is to make the resolver liode has responded, CoDNS doubles the delay value be-
brary on the local node act more aggressively. Insteadigfe sending the next remote query to another peer. In
trying the second local name server after a 5 seconds timgs process, whichever result that comes first will be de-
out, it will use a shorter timeout value. We can also maligere as the response for the name lookup to the client.
the resolver library smart enough to detect the compl@gers may silently drop remote queries if they are over-
failure of the first nameserver and use the second loglded. and remote queries that fail to resolve are also
nameserver immediately. This solution has some disgflscarded. Slaves may also intentionally add delay if they
vantages as well compare to CoDNS approach: receive a locally-generated request that fails to resolve,

1. Many failures observed are caused by overload ratl“‘&h the hope that remote nodes may be able to resolve
'ﬂbch names.

than network packet loss between the local node a o .
local nameserver. With a more aggressive resolverditl ~Remote query initiation & retries
will only aggravate the overload problem on the locdlhe initial delay before sending the first remote query is
nameserver. dynamically adjusted based on the recent performance of
o ) ~local name servers and peer responses. The guiding con-
2. By switching to the second nameserver immediatelypt is that when the local nameserver performs well, we
in case of first nameserver overload will not solve thcrease the delay so that fewer remote queries are sent.
problem completely since second nameserver Wiljhen most remote answers beat the local ones, we re-
be overloaded as a result. The fact that most DN§ce the delay preferring the remote source. Specifically,
lookups currently succeeded at the second namjgen the past 32 name lookups are all resolved locally
servers is because they are not overloaded in the gxhout using any remote queries, then the initial delay
isting scheme. Once we aggressively shift the loaditoset to 200 ms. Considering the fact that the average
second nameserver when the first one is overloadpégponse time on a well-functioning node is about 130 -
the second nameserver will be overloaded as well.50 ms. 200 ms delay should respond fast when the tem-
3. The correlation graph in Figure 7 shows that tkP‘%oral instability kicks_in, while wasting minimal arr_lount
problems are local, not global. We should try 19 extra remote queries. I_—|owever, to respond qwckly to
. . . ocal nameserver failure, if the remote query wins more
spread the load if possible rather than adding mot ean 50% of the last 16 requests, then the delay is set to
load to the local nameservers. : " : !
0 ms. That is, the remote query is sent immediately as
) the request arrives. Our test result shows it is rare not
4 |mp|ementat|0n to have failure when more than 8 out of 16 requests take

We have built a prototype of CoDNS and have been rufiore than 300ms to resolve, so we think it is reasonable
ning it on all nodes on PlanetLab for roughly one monttP believe the local nameserver is having a problem in that

During that time, we have been directing the CoDecffse: Once the immedi_ate query is sent, the delay is set to
CDN to use CoDNS for the name resolution. the average response time of remote query responses plus
CoDNS consists of a stand-alone daemon running 8A¢ standarq dIeV|at|0n. ) o
each node, accessible via UDP for remote queries, #h@ Proximity, Locality and Availability
loopback TCP for locally-originated name lookups. Thgach CoDNS node gathers and manages a set of neighbor
daemon is event-driven, and is implemented as a nomwdes within a reasonable latency boundary. Among these
blocking master process and many (blocking) slave pmeighbor nodes, one peer is chosen using HRW [15] for
cesses. The master receives hame lookup requests feath remote name lookup. Liveness of peer nodes is pe-
local clients and remote peers, and hands them overitalically checked to see if the service is available. When
one of its idle slaves. The slave process resolves th@sEDNS starts, it sends a heartbeat to each node in the
names by callingiet host byname() and sends the re-node list every second. The heartbeat response contains
sult back to the master. Then, the master sends the fithe round trip time and average response time of the local
result to either a local client or a remote peer dependib§iS at the peer node. Currently, if the sum of these is less
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than 90 ms, it is chosen as a neighbor. As soon as CoD$ifdilar to the one used in CoDeeN [15]. By consistently
fills up 30 such nodes, it stops scanning the list and ordijoosing the same node for the same name, we can expect
monitors the nodes in the neighbor set from then on. dfcertain amount of request locality.

it couldn’t find enough neighbors, the latency boundary j

increased a little bit and scanning is repeated. The defadlt Results

latency boundary and the number of minimum neighbofg gayge the effectiveness of CODNS, we compare its
are configurable according to the distribution of nodes. yahavior with local DNS on the CoDeeN traffic using a
Given that neighbors are relatively “soft” state, CoDN@ariety of metrics. To eliminate the caching effect on a
does not expend excessive effort guaranteeing their avadmeserver from other users sharing the same server, we
ability. After having found enough neighbors, it monitormeasure both times only in CoDNS, using the slaves to
the liveness of each node by sending the heartbeat eviadicate local DNS performance. By comparing the lo-
30 seconds. If the heartbeat does not arrive within a shoat name lookups versus all CoDNS responses, we iso-
time period, then the node is excluded in the next remdaége the effects the name lookup process without involving
query selection. Periodically, the dead nodes are updatteel other machinery of CoDeeN. To separate the informa-
with fresh ones by partial scanning of the node list. Thi®n on real traffic versus the heartbeat traffic generated by
node selection is done in the neighbor set by a sche@@DeeN, we modify the CoDeeN proxies to indicate the

10



4000

_ a0k ‘ ‘ ‘ ‘ " Locdi DNS - ] ! Moo BNS \
2 3000 ] 0.9 CoDNS g
g 2500 4 0.8
= 2000 1
g 1500 1 ) -7 ; -
2 1000 , o 06
< 500 B os
4000 (A s f
2 3500 B s 04 ,
S 3000 B = 0.3 /
£ 2500 ] .
= 2000 J
g 1500 f 0.2
=, 1000 1 0.1 e
< 508 MMMM sl & O T TR WY I 0 ==
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 1 10 100 1000 10000 100000
Time(12/04) - planetlab-1.cmcl.cs.cmu.edu Response Time (ms)
(a) Average Response time (b) Percentage of the sum of all lookups taking« ms
Figure 12:12/04, Real Traffic on planetlab-1.cmcl.cs.cmu.edu
512 ‘ ‘ 1600 ‘ ‘
Local DNS Local DNS -
L CoDNS CoDNS
256 o ,(-g 1400 o o
. 128 M A > 1200 I
[%) ©
E & il 1 S 1000 1
>
g 32 B 1 S
e " i E 800 .
) 16 ol | >
g | | 8 600 1
g 8 - u g B 4
< L
4 — =1 g 400 SN
2 H @ 200 8
1 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Nodes Sorted by Longitude Nodes Sorted by Longitude
(a) Average Response Time over 12/11 (b) Standard Deviation over 12/11
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intent of the lookup for measurement purposes. non-existent took about 20 seconds in each case. We have

For both real lookups and CoDeeN heartbeat lookupdserved three types of failures that prevent CoDNS from
we observe that CoDNS effectively flattens out tharoviding benefit:
spikes and produces response time comparable to a well- ) )
functioning local nameserver. The (a) graphs in Figure 1d- The name is non-existent.
and Figure 11 show the average response times for eaczh If the local nameserver is bad at the start phase of
case on planetlabl.cs.cornell.edu on Dec 12, 2003. Av- . . .

. : . gathering neighbor list.

erage response time is calculated for each minute and
displayed as one point as before. The daily average re3. \when network problems prevent CoDNS from con-
sponse time was reduced from 554 ms in local DNS t0  tacting the peer node.
21 ms in CoDNS for CoDeeN host name lookups, and
from 1095 ms to 79 ms for real traffic. However, itWhere CoDNS wins is where the local nameserver fails,
the real traffic graph, CoDNS also shows a few spikesamd its demonstrated benefits are quite considerable. The
the response time. In particular, at 05:10 and 12:31, tf§ and (c) graphs in the both figures show CDFs and
per-minute average in CoDNS exceeds 1 second. Butirighted CDFs for name lookups. In both cases, name
both cases, there came a few non-existent name lookogkups taking more than 100ms dominate the total
requests which skewed the average. Finding the narteskup time. The CoDNS CDFs show a much smoother
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transition after 100ms, which is due to the peer nodes pro- 20000

Win by 3+ queriés —

viding replies when the local nameserver is failing. In the Win by 2 queries ===
Win by 1 qtﬁw —

local nameserver, replies tend to be bimodal — either ver%
quick or very slow. The weighted versions reveals draf‘é
matic difference in total amount of time spent on lookupsg
Because most resolvable failures are effectively removegl 10000
in CoDNS, the time spent for lookups 1000ms is less &
than 10% of total time, whereas in the local nameserve@,

these consume more than 90% of the time.

15000

5000 H

CoD|

5.1 Average response time and Standard
Deviation

Nodes Sorted by Longitude

The benefits of CoDNS are noticed on most CoDeeN Figure 15:Analysis for multiple remote DNS queries

nodes. Figure 12 show the similar result measured on an-
other CoDeeN node in case of the real traffic. Despi,ée .

having much better initial behavior than the Cornell nod ;2 Analysis of CODNS results

even it sees substantial savings in total lookup times. We study the effectiveness of our CODNS strategy, par-

A similar graph for every CoDeeN node would C|ear|§jcular|y the conditions in which it beats the local DNS
require too much space, but we can observe the bendfgneserver, using one week of log gathered through the
by comparing the average response times and their st traffic CODNS deployment. The traffic is generated
dard deviations across nodes. This data for one day’s tf&@m the normal daily CoDeeN HTTP traffic. We find that
fic is shown in Figure 13 and Figure 14. Included is tHénder real traffic, CODNS uses the remote peers 18.9% of
real lookup traffic as well as CoDeeN'’s heartbeat traffigll l0okups. For the rest of the time, local DNS is fast
Generally, the graph shows CoDNS gives reliable serviggough so that CODNS does not send any remote queries.
over time, much smaller variation than local DNS naménd for all the remote queries sent, 34.6% of the remote
servers. The average of all nodes in CoDNS is 7 ms fd{eries “win” by returning a valid DNS response faster
CoDeeN node names, and 84 ms for real traffic, in coftan the local DNS lookup.
trast to 37 ms and 237 ms, respectively, using local DNS.We further study the effect of querying multiple remote
Especially in real traffic, the performance of CoDNS igeers in CoDNS retransmission. In Figure 15, we see the
stable over the CoDeeN nodes regardless of local nardistribution of “winning” the local DNS lookups by send-
server fluctuation. Also, standard deviations range frang out one remote query, two remote queries and three
16% to 75% lower than that of local DNS, implying muclor more remote queries. From the figure, we can see that
less fluctuations in response time. in most of the cases, the CoDNS strategy will win within
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two remote queries if it eventually wins. 7 Related work

5.3 Overhead Ever since the seminal study of DNS measurement in

There are two types of overheads involved in the desigjlr%92 by Danzig [2], the performance of DNS has been

1. Extra DNS lookups done per user requests in copig&eatly improved and the implementation bugs have been

system as compared to the original system. From tqgg€ly reduced [9]. However, recent measurements show
analysis done in Section 3.1, we have shown that the eX{}&r€ iS still much room for improvement. Wills [17] in-

amount of DNS lookups can be controlled by settir@Cates 29% of DNS lookups take over 2 seconds, and
different initial delay time. By setting the initial delay ohen [3] shows 10% of lookups exceed more than 3 sec-

time to 500ms, extra amount of DNS lookups woul@nds. Jung [6] also presents data indicating 23% of all

be reduced to only 10% of all user requests. In tH&Me lookups end_up with receiv?ng no results, identi-
real CODNS deployment, we find that we only send olfing improper configurations and incorrect nameservers

about 18.9% of extra traffic even when we are using a8 culprits. It further describes that the effectiveness of
aggressive algorithm to optimize the response time. caching is limited by the long-tailed nature of the name

2. Extra network traffic generated for remote pnéistribution [1], so having short TTLs does not add much

queries and heartbeats between CODNS peers. For Nfiwork traffic. Liston[10] investigat_es the correlations
amount of network traffic generated, we can compa§een DNS lookups and the locations, and found out
the total amount of traffic used by CoDNS with the totdf!® Mean response time of a name lookup has much vari-
amount of network traffic used by CoDeeN. Al the traffidion depending on the location. However, the difference
used by remote peer query and heartbeats only talQur study from all these is while a!l of them focused
about 520MB per day across all the nodes, while tRg the general D,NS Iookup.process involving other sets
daily CoDeeN traffic takes about average of 150GB §f hameservers in WAN environment, none of them sus-
traffic. This is easily explained by the observation thBECt the problems incurred by the local nameserver and
most server lookups will result in multiple object fetche£N€ LAN environment. Our study shows the possibility of
so the cost of each DNS/CoDNS lookup is heavil')pe name I(_)Qkupnme being greatly skewed by the _tempo-
amortized. In relative terms, the amount of CODNS trafflé"yY instability of the local nameservers and possibly by

only add an overhead of 0.3% onto the CoDeeN traf'ficqfl"er activit.ies affecting the name;grver. ]
supports. Cox [4] investigates the possibility of transforming

DNS into a peer-to-peer system [14] using a distributed

hash table. The idea is to replace the hierarchical DNS

name resolving process with a flat peer-to-peer query
6 Deployment style, in pursuit of load balancing and robustness. With
CoDNS currently runs as a standalone daemon procttss design, the misconfigurations from mistakes by ad-
operating across PlanetLab. Its use is not transparent, amidistrators can be eliminated and the traffic bottleneck
we had to make minimal changes to enable CoDeeNdoncentrating on the root servers are removed so that the
use CoDNS for name lookups instead of using regulaad is distributed over the entities joining the system. The
DNS servers. difference in our approach is to temporarily use function-

We are currently adding support for automatic CoDNi8g nameservers of peer nodes, separate from the issue of

use into an existing nameserver, Dan Bernsteirirgproving the DNS infrastructure itself. We expect that
DNSCache [5]. This system is believe to be more secu#gy benefits in improving the infrastructure “from above”
than BIND, and since we are interested primarily in nanwéll be complementary to our “bottom up” approach. One
lookups, Bernstein's approach of splitting lookup and aadvantage of our system is that misconfigurations can be
thoritative service into two separate programs is appealimgsked without outage of the name service, while trig-
for us. Our approach involves running a local DNSCaclgering an alarm when the misconfiguration is suspected
program which has been modified to use CoDNS. Trafhould leave the minimal work for the administrators to
fic is automatically directed to this program by addingasually examine.
an entry for localhost into the /etc/resolv.conf file. The Kangasharju[7] mentions another approach to reducing
one complication in this scheme is that the CoDNS slavieie DNS lookup latency by replicating DNS information.
useget host bynane() to resolve names, which in turninspired by the fact the entire DNS record database fits
will use the contents of resolv.conf, causing a loop. Vikto the size of a typical hard disk and recent emerging of
solve this problem by statically linking the CoDNS slaveerrestrial multicast and satellite broadcast systems, this
with a modified version ofet host byname() thatig- scheme reduces the need to query the distant nameserver
nores the localhost entry in resolv.conf. We hope to bedig keeping the DNS information up-to-date throughout
deploying this transparent CoDNS support on PlanetLtie world by efficient replication.
early next year.

13



8 Conclusion [14] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hld&aish-
. . o nan. Chord: A scalable peer-to-peer lookup service formeteap-

In this paper we have shown the instability in DNS piications. InProceedings of the 2001 conference on applications,

name lookups is widespread and relatively common. technologies, architectures, and protocols for computer communi-

We demonstrated that the problems are not caused by Calions pages 149-160. ACM Press, 2001.

the nodes performing the lookups but by the local nariél L. \é\(angy V. Péz':: and '—bpetﬂsoan ng'_fffeCt:(Vines_?thﬂﬂmt

service itself. Even though the failure cases are a small Redirecion on CDN Robustness. fnoceedings of the Fifth S

. . ; posiumon Operating Systems Design and Implementation, Boston,
fraction of all lookups, their longer delays result in most  \ya December 2002.

Iookup time being spenton failures. [16] L.Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Riifaand

security in the CoDeeN content distribution network.USENIX
We also showed that these local failures appear to be Annual Technical Conference, 2004.

uncorrelated, and not specific to our test environmeft] C.E. Wills and H. Shang. The contribution of DNS lookugsts to

Using this information, we develop an alternative lookup \Web object retrieval. Technical Report WPI-CS-TR-00-1)@

system, CoDNS, which benefits by harnessing the

reliability of peer nodes. CoDNS reduces the total time

consumption in name lookups as well as improving the

mean latency with minimal extra overhead. It provides

high availability and reduces variability, all while gener-

ating very low levels of overhead.
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