
CoDNS : Masking DNS Delays via Cooperative Lookups

KyoungSoo Park, Zhe Wang, Vivek Pai and Larry Peterson
Department of Computer Science

Princeton University

Abstract

The Domain Name System (DNS) is a ubiquitous part of
everyday computing, translating human-friendly machine
names to numeric IP addresses. With its redundant de-
sign, aggressive caching, and widely-assumed reliability,
few suspect its internal failures as a source of delays. We
show, through careful measurement, that the infrastruc-
ture responsible for resolving DNS names often encoun-
ters various failures which then induce delays. A system-
atic examination of the problem shows that the failures are
widespread, uncorrelated, and can be a significant source
of DNS-related delays.

We address this problem via the development of
CoDNS, a cooperative DNS lookup service. It uses a lo-
cality and proximity-aware design to achieve low-latency,
low-overhead name resolution in the presence of local
DNS nameserver delay/failure. We show via repeated
measurement and live traffic that CoDNS is an effective
solution to DNS problems, and eliminates a major source
of delay.

1 Introduction
The Domain Name System (DNS) has become a ubiq-
uitous part of everyday computing due to its effective-
ness, human-friendliness, and scalability. It provides a
distributed lookup service primarily used to convert from
human-readable machine names to Internet Protocol (IP)
addresses. Its existence has permeated much of comput-
ing via the World Wide Web’s near-complete dependence
on it. Thanks in part to its redundant design, aggressive
caching, and flexibility, it has become a ubiquitous part
of everyday computing that most people take for granted.
Given its generally high reliability, few people suspect
simple failures or oversights in deployment for being re-
sponsible for noticeable delays in the Web connections.

DNS employs multiple levels of redundancy and
caching to improve its performance and hide short-term
failures. Beginning with the 13 root nameservers, lower
levels of the hierarchy are responsible for deploying at
least one pair of nameservers so that name lookup queries
can be resolved in the event of failures. Lookup results
also carry explicit time-to-live (TTL) information, to aid

in caching and to reduce load on all levels of the DNS
hierarchy.

DNS “users” can choose to perform lookup manually
by querying each level of the hierarchy in turn until the
complete name has been resolved, but most systems are
configured to delegate this task to a set of local name-
servers. This approach has several performance advan-
tages, since a centralized lookup service may consoli-
date requests and serve replies from its cache. It also
has management advantages, since any updates to root
server information or to the nameserver software are ap-
plied to fewer machines. Given the importance of cen-
tralized lookup nameservers in organizations, several are
often deployed to provide redundancy.

The advent of wide-area distributed testbeds such as
PlanetLab [12] provides a means for a large-scale exami-
nation of DNS performance, and we find a number of sur-
prising behaviors through repeated measurements. These
measurements are taken as part of the CoDeeN Content
Distribution Network [16], and are used to assess the qual-
ity of the PlanetLab nodes on which the CoDeeN software
runs. Part of the monitoring process involves querying
local nameservers for the addresses of long-lived, well-
advertised PlanetLab node names. The observed behav-
iors largely consist of lookup “failures” which are hidden
by the internal redundancy in DNS deployments. How-
ever, the cost for such redundancy is additional delay, and
we find that the delays induced through such failures often
dominate the time spent waiting on DNS lookups.

In addition to diagnosing failures, we also show how
this sort of testbed can be used to augment existing name-
servers, providing a cooperative lookup scheme to mask
the failure-induced local delays. Using such an approach,
PlanetLab nodes can provide an aggregate DNS lookup
performance that is more reliable and consistent than any
individual node’s performance. We term our implemen-
tation CoDNS, and use it to augment the performance of
the CoDeeN CDN.

The rest of this paper is organized as follows: in Sec-
tion 2, we provide evidence of widespread failures in lo-
cal DNS nameservers, analyze their behavior, and show
that the measurements are not an artifact of the PlanetLab
nodes. In Section 3, we propose a model for cooperative

1

 10

 100

 1000

 10000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(a) planetlab1.cs.cornell.edu

 10

 100

 1000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(b) lefthand.eecs.harvard.edu

 10

 100

 1000

 10000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(c) planetlab-1.cmcl.cs.cmu.edu

 10

 100

 1000

 10000

 100000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(d) kupl1.ittc.ku.edu

 10

 100

 1000

 10000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(e) planetlab-1.stanford.edu

 10

 100

 1000

 10000

 100000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(f) planetlab1.cs.ubc.ca

 10

 100

 1000

 10000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(g) planetlab1.eecs.umich.edu

 10

 100

 1000

 10000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

Time

(h) planetlab2.cs.northwestern.edu

Figure 1:12/11 - 12/12, Average Response Time for Repeated Name Lookup Testing of Various CoDeeN Nodes

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Response Time (ms)

ha
cm
st
co
ub
um
no

(a) Percentage of lookups taking< x ms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

W
ei

gh
te

d
C

D
F

Response Time (ms)

ha
cm
st
co
ub
um
no

(b) Percentage of the sum of lookups taking< x ms

Figure 2: 12/11 - 12/12, CDF for distribution of lookups (School names are abbreviated with first two characters)

DNS lookups, analyze the expected performance and as-
sociated overheads, and compare other scenarios. In Sec-
tion 4, we discuss our implementation of such a service,
CoDNS, and we analyze its performance in Section 5.

2 Background & Analysis
Our observation of the variety of local problems associ-
ated with DNS stem from our work on the CoDeeN con-
tent distribution network (CDN). CoDeeN consists of a
network of Web proxy servers that include custom code
to control request forwarding between nodes. When a
CoDeeN node receives an HTTP request, it attempts to
service it locally if the requested object is cached. On
cache misses, requests are forwarded to other CoDeeN
nodes by considering locality, load, and proximity [15].
The CoDeeN node receiving the forwarded request acts
as a reverse proxy for the origin server, and tries to satisfy
the request from its cache. If this node also does not have
the object, the request is sent to the origin server.

When CoDeeN must forward requests to the origin
server, it performs a DNS lookup to convert the server’s
name into an IP address, and our attempt to ensure that
this process was successful brought the DNS problems to
our attention. The CoDeeN node that receives the request
originally needs to ensure that whichever peer node re-
ceives the request is capable of handling it in a timely
manner. CoDeeN runs on PlanetLab, a worldwide net-
work testbed for large-scale services, and Planetlab nodes
are hosted by various universities, companies, and other
groups. Each node is configured to use local nameservers,
so a local DNS nameserver failure/delay at the peer node
would render it a poor candidate for handling requests. To
avoid these nodes, we include information about the local
DNS performance in our intra-CoDeeN health messages.

Our desire to have a standard for comparison across all
CoDeeN nodes led us to have a process at each node pe-
riodically perform name lookups of other CoDeeN nodes,
since having the same lookups performed at all nodes
would ensure a standard baseline for comparison. These
lookups were included as part of an end-to-end test of
proxy availability, but we included timing information for
DNS separately. Given the small set of CoDeeN nodes
(around 40), their long TTL values, and the fact that most
are hosted on Internet-2 connected sites at US universities,
we expected that these lookups should have been locally
cached and would return quickly.

2.1 Name Lookups of CoDeeN Nodes
Our measurements showed that local DNS lookup times
were generally good, but would often degrade dramati-
cally, and that this instability behavior was widespread
and frequent. The heartbeat monitoring process in
CoDeeN performs one lookup per second of another
CoDeeN node name, and given that CoDeeN runs on ap-
proximately 40 nodes, each name is queried roughly once
every 40 seconds. These nodes have stable TTL values,
with over half being one day or more, one quarter at six
hours or longer, and none below an hour. So, most of
these name lookups are highly cacheable, and given that
local nameservers should be on the same campus as the
CoDeeN node, we would expect most lookups to take a
few milliseconds.

To illustrate the widespread nature of the problem and
its magnitude, Figure 1 shows the lookup behavior over
a recent two-day period across roughly one-fifth of the
CoDeeN nodes. Each point indicates the average response
time of the name lookups performed every minute. All the
nodes in the graph show some sort of problems in DNS
lookups for the period.

3

Node Avg Low High T-Low T-High
cornell 531.7ms 82.4% 12.9% 0.5% 99.2%
harvard 99.4ms 92.3% 3.3% 0.7% 97.9%

cmu 24.0ms 81.9% 3.2% 8.3% 71.0%
ku 53.1ms 94.6% 1.8% 2.9% 95.0%

stanford 21.5ms 95.7% 1.3% 5.3% 89.5%
ubc 88.8ms 76.0% 7.6% 2.4% 91.2%

umich 43.6ms 96.7% 1.3% 2.4% 96.1%
northwestern 43.1ms 98.5% 0.5% 4.5% 94.8%

Table 1:Statistics over two days, Avg = Average, Low = Per-
centage of lookups< 10 ms, High = Percentage of lookups>

100 ms, T-Low = Percentage of total low time, T-High = Per-
centage of total high time

The types of problems indicated in these graphs are not
consistent with simple configuration problems, but ap-
pear to be usage-induced or triggered by activity on the
nameserver nodes. The Cornell node consistently shows
DNS problems, with more than 20% of lookups show-
ing high lookup times of over five seconds. We classify
these lookups as failures, since five seconds is the time re-
solvers use to retry a request to another nameserver. The
redundancy of the local nameserver configuration masks
the failure of the first nameserver to respond. The 20%
rate indicates that the first nameserver works most of the
time, so its failure pattern is not consistent with a complete
misconfiguration. Very often throughout the day, it simply
stops responding, driving the per-minute average lookup
time close to 5 seconds. The Harvard node also displays
generally bad behavior. Further investigation discloses
that most of the lookups are fine, but almost every minute,
a couple of 5 seconds of delays appeared, which substan-
tially influenced the per-minute average. The Stanford
node shows periodic big spikes roughly every three hours.
This phenomenon has persisted for the past few weeks,
and we suspect the nameserver is being affected by heavy
cron jobs. Lengthy DNS malfunction is noticed on the U-
Michigan node, which lasted from 9:00 am to 10:30 am on
Dec 12, indicating more than 1 second of average delay.

Although Figure 1 shows dramatic variation in DNS la-
tency over time, the number of requests which fail and
require retries is small. Figure 2(a) displays the cumu-
lative distribution function (CDF) of name lookup times
over the same two days. With the exception of the Cor-
nell node, 90% of all requests take less than 100ms on
all nodes, indicating that caching is effective and that la-
tencies are quite low in the average case. On the Cornell
node, over 80% of lookups are resolved within 6ms, also
indicating that it works well most of the time.

However, Figure 2(b) shows the same data, but mea-
sured by the fraction of the total lookup time, instead of
just the total number of lookups, and it indicates thata
small percentage of failure cases dominates the total
time. This weighted CDF shows, for example, that none

Ping-response Contribution(%)
No packet loss 88.9

Lose all packets 9.9
Lose one packet 1.1

Other 0.1

Table 2:Study of local nameserver status by ICMP ping

of the nodes crosses the 0.5 value before 1000ms, indi-
cating that more than 50% of the lookup time is spent
on lookups taking more than 1000ms. The total lookup
time is dominated by failure. If we assume that a well-
behaving local nameserver can serve cached responses in
100ms, then the figures are even more dramatic. This data
is shown in Table 1, and shows that most nodes have total
times dominated by these slower lookups.

The implications of these measurements is significant –
if we can reduce the amount of time spent on these longer
cases, particular in the failures that require the local re-
solver to retry the request, we can dramatically reduce the
total lookup times. Furthermore, given the sharp differ-
ence between “good” and “bad” lookups, we may also be
able to ensure a more predictable (and hence less annoy-
ing) user experience.

One might assume this behavior stems from the node
performing the measurement rather than the name service
itself, but by comparing multiple nodes using the same
nameserver, we can see if the observed behavior is con-
sistent. Figure 3 and Figure 4 show the average times
and failure rates for two pairs of nodes at two different
PlanetLab sites. Nodes within each pair use the same
nameserver, and as we can see, they see roughly the same
behavior, including average lookup times, average failure
rates, and timings of spikes/anomalies. We have noticed
similar behavior on all sites we have tested, which sug-
gests that the problem lies in the name service itself.

2.2 Failure characterization
To better understand the nature of these failures, we can
employ techniques to investigate if other factors are in-
volved, and if the failures present any behavior we can
exploit in designing a system to address them.

One possible cause for these failures is network packet
loss from the local node to the nameserver, since our
queries are UDP-based, and packet loss would require
application-generated retransmission. In order to test the
correlation between packet loss and DNS failure, we per-
form an ICMP ping with 5 ping packets to the local name-
server after every DNS lookup failure across all the nodes
for 12 hours. We show the result of 9471 such ping in-
vocations due to DNS lookup failures in table 2. From
table 2, we can see that most of the time when the nodes
have local DNS lookup failures, they can reach the lo-
cal name server without network packet loss. Sometimes

4

 0

 100

 200

 300

 400

 500

 600

 700

 800

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

se
c)

Time (11/23)

(a) purdue1

 0

 100

 200

 300

 400

 500

 600

 700

 800

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

se
c)

Time (11/23)

(b) purdue2

Figure 3: 11/23, Average Response Time of Two Nodes Sharing the Same Nameservers, planetlab1.cs.purdue.edu, planet-
lab2.cs.purdue.edu

 0

 5

 10

 15

 20

 25

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

D
N

S
 F

ai
lu

re
 R

at
e

(%
)

Time (10/30)

(a) harvard1

 0

 5

 10

 15

 20

 25

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

D
N

S
 F

ai
lu

re
 R

at
e

(%
)

Time (10/30)

(b) harvard2

Figure 4: 10/30, Failure Rates of Two Nodes Sharing the Same Nameservers, lefthand.eecs.harvard.edu, right-
hand.eecs.harvard.edu

the local nameserver is completely unreachable by ICMP
ping, but some of these are due to filtering of ICMP pings
at some sites. The low local network packet drop rate (<

1.2% during periods of DNS failures) suggests that packet
loss plays an insignificant role in the local DNS lookup
failures in our environment. The fact that we have a non-
trivial amount of DNS lookup failures leads us to believe
that the local nameserver is the one which has the prob-
lem.
From the failures shown in figure 1, we can see that there
are three kinds of failures:
1. Periodic failures: The regularity of these failures sug-
gests that they are possibly caused by cron jobs running
on the local nameserver. We can see them in the Stanford
and Northwestern graphs.
2. Long lasting continuous failures: They are possibly

caused by local nameserver malfunctioning or extended
overloading.
3. Sporadic short failures: They are likely caused by tem-
porary overloading of the local name server.

To further understand how long the failures typically
last, we conduct tests on 188 nodes on PlanetLab, in-
cluding nodes not involved with CoDeeN. We perform a
DNS lookup every second on every node, and recorded
the DNS failure rate for every 30 seconds. The failure rate
is a decaying average of about past 100 DNS lookups. We
record all the periods which have failure rate greater than
1% and examine how long each failure period lasts. The
data collected in the month of November 2003 is shown
in Figure 5, where graph (a) is a CDF of durations counts,
while (b) is a CDF of the total time spent in failure peri-
ods. We can see from the Figure 5 that although most of

5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F

Continuous fail durations (minute)

(a) CDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000 100000

W
ei

gh
te

d
C

D
F

Continuous fail durations (minute)

(b) Weighted CDF

Figure 5:CDF for distribution of failure duration

the failures have short duration, the longer failures dom-
inate the total time of all the failures. This suggests that
we need to be responsive to short time failures in order to
be effective, but that we may also be able to perform opti-
mizations to handle longer-term failures more effectively.

The measurements can also be used to answer the ques-
tion of whether our deployment of CoDeeN on mostly
US university sites generates representative DNS perfor-
mance. The graphs in Figure 6 break down the 188 nodes
by type, including US universities (edu), US companies
(com), European PlanetLab sites, Asian PlanetLab sites,
and others. We find that all categories show similar short-
term failure behavior, with some differences in the lengths
of longer-term failures. Interestingly, the US university
sites have generally better performance, with much less
time spent in longer-term DNS failure periods.

2.3 Correlation of the DNS lookup failures
While we have confirmed that nodes at the same site see
similar DNS properties, given the global nature of Plan-
etLab and the number of multi-node experiments, another
possible source of failure is the existence of experiments
running across many nodes. To investigate this possibil-
ity, we study the correlation of DNS lookup failures over
all the nodes we have. For every 30 seconds interval, we
record how many nodes are “healthy” in terms of DNS
performance. We define healthy as having a failure rate
less than 1%, or less than 1.25 times the global average
failure rate. The reason for the second test is that we have
observed some of the DNS sites have problems with the
authoritative servers resolving their names, so when these
sites “disappear,” all nodes experience DNS failure for
those sites. Using the same 30 seconds failure rate data
collected in the month of November 2003, we group by 1
hour intervals, and record the minimum, average and max-

Software PlanetLab Packetfactory TLD
BIND-4.9.3+/8 31.1% 36.4% 55.9%

BIND 9 48.9% 25.1% 34.0%
Other 20.0% 38.5% 10.1%

Table 3:Comparison of nameserver software used by planetlab,
packetfactory survey and TLD survey

imum number of nodes available within every hour. The
percentage of healthy nodes (as a fraction of live nodes)
is shown in Figure 7.

From this graph, we can see some minor correlation
in failures, shown as downward spikes in the percent-
age of available nodes, but most of the variation in avail-
ability seems largely uncorrelated. An investigation into
the spikes reveals that many nodes on PlanetLab have
/etc/resolv.conf configured to use the same set of name-
servers, especially those colocated at Internet2 facilities
(not to be confused with Internet2-connected university
sites). When these nameservers experience problems, the
correlation appears large due to the number of nodes af-
fected.

More important, however, is the observation that the
fraction of healthy nameservers is always quite high, gen-
erally above 90%.This observation provides the key
insight for CoDNS – as long as we have a reasonable
number of healthy nameservers, we can use them to
mask locally-observed delays.

We also survey the software running on the local name-
servers used by the PlanetLab nodes (135 unique name-
servers) with “chaos” class queries [11]. We find that they
are mostly running a variety of BIND. We observe 11 dif-
ferent BIND 9 version strings, 13 different BIND 8 ver-
sion strings and a number of humorous strings (which are
included in “other”) apparently set by the nameserver ad-

6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F

Continuous fail durations (minute)

other
europe

edu
com
asia

(a) CDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000 100000

W
ei

gh
te

d
C

D
F

Continuous fail durations (minute)

other
europe

edu
com
asia

(b) Weighted CDF

Figure 6:CDF for distribution of failure duration for different category

82%

84%

86%

88%

90%

92%

94%

96%

98%

 0 100 200 300 400 500 600 700

P
er

ce
nt

ag
e

of
 h

ea
lth

y
no

de
s

Hourly statistics in Nov, 2003

max
avg
min

Figure 7: Hourly min/avg/max percentage of nodes with
good NS

ministrators. We compare the nameserver software used
in our test environment and other surveys in table 3 to en-
sure that the problems we observe on PlanetLab are not
tied to a particular piece of software. The surveys we use
for comparison are a global survey of 20,405 responding
nameservers done by packetfactory in early 2003 [13] and
a survey of TLD DNS software done by Brad Knowles in
2002 [8]. We find PlanetLab’s diversity of nameservers is
reasonable and generally in line with other measurements.
We conclude that the failures are not likely to be specific
to PlanetLab’s choices of nameserver software.

3 Design
In this section, we discuss the design of a system which
allows us to have a highly reliable and available name
lookup service while minimizing the extra overhead. We
discuss alternative approaches as well and compare the
tradeoffs.

3.1 CoDNS

The main idea behind CoDNS is to forward name lookup
queries to peer nodes when the local name service is ex-
periencing a problem. Essentially, this strategy is apply-
ing a CDN approach to DNS – spreading the load among
peers can improve the size and performance of the “global
cache”. Many of the same considerations used in CDN
systems apply in this environment. We need to consider
the proximity and availability of a node as well as the
locality of the queries. A different consideration is that
we need to decide when it is desirable to send remote
queries. Given the fact that most name lookups are fast
in the local nameserver, simply spreading the requests to
peers might generate unnecessary traffic with no gain in
latency. Worse, the extra load may cause marginal DNS
nameservers to become overloaded. We investigate con-
siderations for deciding when to send remote queries, how
many peers to involve, and what sorts of gains to expect.

To precisely determine the effects of locality, load,
and proximity is difficult, since we have no control over
the nameservers and have little information about their
workloads, configurations, etc. Given the fact that most
CoDeeN nodes are connected via Internet2, we believe
that proximity is less of a factor for us than other envi-
ronments, due to the low round-trip times we experience
between nodes. As long as we use relatively close nodes
as peers, we should have reasonable behavior. We have
observed coast-to-coast round-trip ping times of 80ms in
CoDeeN, with regional times in the 20ms range. Like-
wise, locality is less of a factor in CoDNS than regular
CDN systems, since we only use remote servers when
our local server is experiencing problems. By process of
elimination, the most interesting factor is the policy for
determining when to begin using remote servers, and how

7

 0

 200

 400

 600

 800

 1000

 1 2 4 8 16 32 64

R
es

po
ns

e
tim

e(
m

s)

Total Peering Nodes

Figure 8: Average response time vs. number of nodes
queried (200ms initial delay)

many to involve.
To understand the relationship between CoDNS re-

sponse times, the number of peers involved, and the poli-
cies for determining when requests should be sent re-
motely, we collected live data from CoDeeN and use it
to simulate various policies and their effects. Using one
day’s HTTP traffic on CoDeeN, we extract the 44486
unique hostnames requested by our users. We then replay
this traffic usinggethostbyname(), starting requests
at the same time of day in the original logs. The replay
happened one month after the data collections to avoid
local nameserver caches which could skew the data. We
perform this replay at 77 PlanetLab nodes with different
nameservers. During this time, we also use application-
level heartbeat measurements between all pairs of nodes
to determine all-pairs round-trip latencies. Since all of the
nodes are doing DNS lookups at about the same time, by
adding the time spent ingethostbyname() at peerY
to the time spent for the heartbeat from peerX to peerY, we
will get the response time peerX can get if it asks peerY
for a remote DNS lookup for the same hostname.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
 0

 0.5

 1

 1.5

 2

R
es

po
ns

e
tim

e
(m

s)

A
ve

ra
ge

 D
N

S
 lo

ok
up

s
pe

r c
lie

nt
 re

q

Initial delay for remote DNS query (ms)

response_time
average_DNS_lookups

Figure 9: Response time and DNS lookups vs initial delay

The results of this experiment are shown in Figure 8,
where the average response time is shown as a function of
the number of peers performing lookups in parallel. We
use an initial delay of 200ms for this figure which means
that we will send out a DNS query to remote peer only if
the local DNS lookup does not finish within 200ms. The
X axis shows the total number of nodes queried (includ-
ing the local nameserver) when we need to do a remote
DNS lookup; the Y axis is the average response time in
ms. This figure tells us that even if we ask just one peer
(X = 2) when we need to issue a remote DNS query, we
can reduce the average DNS lookup time more than half.
Involving more peers in parallel provides only diminish-
ing returns.

Another issue is the amount of extra DNS overhead
needed to get good DNS response time. Since we want to
minimize CoDNS’s overhead, we want to have minimal
amount of extra DNS lookups while maintaining reason-
able response time performance. In Figure 9, we show
a dual Y axes graph with both the average response time
and average DNS lookups with regard to the initial delay.
The X axis shows the different initial delay used for send-
ing the first remote DNS query, the dual Y axes show the
average response time and the average number of DNS
lookup done per request by CoDNS. This graph shows
that we can control the amount of extra DNS lookups by
changing the initial delay for sending remote DNS query
to peers. If we send the first remote query after a 500ms
delay, we can still reduce the average DNS lookup time
to about half while causing only about 15% extra DNS
lookups to be done compared with not using any peers.

3.2 Other Approaches
We briefly describe other approaches to avoid local name-
server failure issues, and compare them with the CoDNS
concept. One approach is to add the recursive DNS query
ability into every local node. In the case of local name-
server failure, the local node will contact the root name-
servers directly and try to resolve the hostname lookups
by itself. This approach, compared to CoDNS, has sev-
eral disadvantages:

1. This reduces the caching effectiveness because each
node will be doing DNS lookups individually when
the local nameserver fails. It defeats the purpose of
using shared nameservers to allow caching among
different local nodes. This approach will also cause
more pressure on the global domain name system be-
cause of low cache utilization.

2. This increases the configuration efforts and also
causes extra management problems. Instead of only
configuring and managing a couple of local name-
servers, the sysadmin will need to manage the name
resolution subsystem on each individual node.

8

3. This will use more resources on each node. Since
the name lookup service running on individual nodes
are not the only services running, it will cause vis-
ible problems when other programs cause memory
pressure for the name lookup service. Best practices
suggests that name service is better run alone as a
dedicated service.

Another possible solution is to make the resolver li-
brary on the local node act more aggressively. Instead of
trying the second local name server after a 5 seconds time-
out, it will use a shorter timeout value. We can also make
the resolver library smart enough to detect the complete
failure of the first nameserver and use the second local
nameserver immediately. This solution has some disad-
vantages as well compare to CoDNS approach:

1. Many failures observed are caused by overload rather
than network packet loss between the local node and
local nameserver. With a more aggressive resolver, it
will only aggravate the overload problem on the local
nameserver.

2. By switching to the second nameserver immediately
in case of first nameserver overload will not solve the
problem completely since second nameserver will
be overloaded as a result. The fact that most DNS
lookups currently succeeded at the second name-
servers is because they are not overloaded in the ex-
isting scheme. Once we aggressively shift the load to
second nameserver when the first one is overloaded,
the second nameserver will be overloaded as well.

3. The correlation graph in Figure 7 shows that the
problems are local, not global. We should try to
spread the load if possible rather than adding more
load to the local nameservers.

4 Implementation
We have built a prototype of CoDNS and have been run-
ning it on all nodes on PlanetLab for roughly one month.
During that time, we have been directing the CoDeeN
CDN to use CoDNS for the name resolution.

CoDNS consists of a stand-alone daemon running on
each node, accessible via UDP for remote queries, and
loopback TCP for locally-originated name lookups. The
daemon is event-driven, and is implemented as a non-
blocking master process and many (blocking) slave pro-
cesses. The master receives name lookup requests from
local clients and remote peers, and hands them over to
one of its idle slaves. The slave process resolves those
names by callinggethostbyname() and sends the re-
sult back to the master. Then, the master sends the final
result to either a local client or a remote peer depending

on where it originated. Preference for idle slaves is given
to locally-originated requests over remote queries.

The master process records each request’s arrival time
from local clients and sends a UDP name lookup query
to a peer node when the response from the slave has not
returned within a certain period. This delay is used as a
boundary for deciding if the local nameserver is slow. In
the event that neither the local nameserver or the remote
node has responded, CoDNS doubles the delay value be-
fore sending the next remote query to another peer. In
the process, whichever result that comes first will be de-
livered as the response for the name lookup to the client.
Peers may silently drop remote queries if they are over-
loaded, and remote queries that fail to resolve are also
discarded. Slaves may also intentionally add delay if they
receive a locally-generated request that fails to resolve,
with the hope that remote nodes may be able to resolve
such names.

4.1 Remote query initiation & retries
The initial delay before sending the first remote query is
dynamically adjusted based on the recent performance of
local name servers and peer responses. The guiding con-
cept is that when the local nameserver performs well, we
increase the delay so that fewer remote queries are sent.
When most remote answers beat the local ones, we re-
duce the delay preferring the remote source. Specifically,
when the past 32 name lookups are all resolved locally
without using any remote queries, then the initial delay
is set to 200 ms. Considering the fact that the average
response time on a well-functioning node is about 130 -
150 ms, 200 ms delay should respond fast when the tem-
poral instability kicks in, while wasting minimal amount
of extra remote queries. However, to respond quickly to
local nameserver failure, if the remote query wins more
than 50% of the last 16 requests, then the delay is set to
0 ms. That is, the remote query is sent immediately as
the request arrives. Our test result shows it is rare not
to have failure when more than 8 out of 16 requests take
more than 300ms to resolve, so we think it is reasonable
to believe the local nameserver is having a problem in that
case. Once the immediate query is sent, the delay is set to
the average response time of remote query responses plus
one standard deviation.

4.2 Proximity, Locality and Availability
Each CoDNS node gathers and manages a set of neighbor
nodes within a reasonable latency boundary. Among these
neighbor nodes, one peer is chosen using HRW [15] for
each remote name lookup. Liveness of peer nodes is pe-
riodically checked to see if the service is available. When
CoDNS starts, it sends a heartbeat to each node in the
node list every second. The heartbeat response contains
the round trip time and average response time of the local
DNS at the peer node. Currently, if the sum of these is less

9

 0

 1000

 2000

 3000

 4000

 5000

 6000
A

v
g
 r

e
s
p
.
ti
m

e
 (

m
s
) Local DNS

 0
 1000
 2000
 3000
 4000
 5000
 6000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

A
v
g
 r

e
s
p
.
ti
m

e
 (

m
s
)

Time(12/12) - planetlab1.cs.cornell.edu

CoDNS

(a) Average Response Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Response Time (ms)

Local DNS
CoDNS

(b) Percentage of lookups taking< x ms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

W
e
ig

h
te

d
 C

D
F

Response Time (ms)

Local DNS
CoDNS

(c) Percentage of the sum of all lookups
taking< x ms

Figure 10:12/12, Average response time, CDF, Weighted CDF for CoDeeN Host Names Lookup on planetlab1.cs.cornell.edu

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

A
v
g
 r

e
s
p
.
ti
m

e
 (

m
s
) Local DNS

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

A
v
g
 r

e
s
p
.
ti
m

e
 (

m
s
)

Time(12/12) - planetlab1.cs.cornell.edu

CoDNS

(a) Average Response Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Response Time (ms)

Local DNS
CoDNS

(b) Percentage of lookups taking< x ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

W
e
ig

h
te

d
 C

D
F

Response Time (ms)

Local DNS
CoDNS

(c) Percentage of the sum of all lookups
taking< x ms

Figure 11:12/12, Average response time, CDF, Weighted CDF for Real Traffic on planetlab1.cs.cornell.edu

than 90 ms, it is chosen as a neighbor. As soon as CoDNS
fills up 30 such nodes, it stops scanning the list and only
monitors the nodes in the neighbor set from then on. If
it couldn’t find enough neighbors, the latency boundary is
increased a little bit and scanning is repeated. The default
latency boundary and the number of minimum neighbors
are configurable according to the distribution of nodes.

Given that neighbors are relatively “soft” state, CoDNS
does not expend excessive effort guaranteeing their avail-
ability. After having found enough neighbors, it monitors
the liveness of each node by sending the heartbeat every
30 seconds. If the heartbeat does not arrive within a short
time period, then the node is excluded in the next remote
query selection. Periodically, the dead nodes are updated
with fresh ones by partial scanning of the node list. The
node selection is done in the neighbor set by a scheme

similar to the one used in CoDeeN [15]. By consistently
choosing the same node for the same name, we can expect
a certain amount of request locality.

5 Results
To gauge the effectiveness of CoDNS, we compare its
behavior with local DNS on the CoDeeN traffic using a
variety of metrics. To eliminate the caching effect on a
nameserver from other users sharing the same server, we
measure both times only in CoDNS, using the slaves to
indicate local DNS performance. By comparing the lo-
cal name lookups versus all CoDNS responses, we iso-
late the effects the name lookup process without involving
the other machinery of CoDeeN. To separate the informa-
tion on real traffic versus the heartbeat traffic generated by
CoDeeN, we modify the CoDeeN proxies to indicate the

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000
A

vg
 re

sp
. t

im
e

(m
s)

Local DNS

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

A
vg

 re
sp

. t
im

e
(m

s)

Time(12/04) - planetlab-1.cmcl.cs.cmu.edu

CoDNS

(a) Average Response time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

W
ei

gh
te

d
C

D
F

Response Time (ms)

Local DNS
CoDNS

(b) Percentage of the sum of all lookups taking< x ms

Figure 12:12/04, Real Traffic on planetlab-1.cmcl.cs.cmu.edu

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 /
D

ay
 (m

s)

Nodes Sorted by Longitude

Local DNS
CoDNS

(a) Average Response Time over 12/11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35

S
ta

nd
ar

d
D

ev
ia

tio
n

/ D
ay

 (m
s)

Nodes Sorted by Longitude

Local DNS
CoDNS

(b) Standard Deviation over 12/11

Figure 13:Average Response Time and Standard Deviation for CoDeeN Host Names Lookup

intent of the lookup for measurement purposes.
For both real lookups and CoDeeN heartbeat lookups,

we observe that CoDNS effectively flattens out the
spikes and produces response time comparable to a well-
functioning local nameserver. The (a) graphs in Figure 10
and Figure 11 show the average response times for each
case on planetlab1.cs.cornell.edu on Dec 12, 2003. Av-
erage response time is calculated for each minute and
displayed as one point as before. The daily average re-
sponse time was reduced from 554 ms in local DNS to
21 ms in CoDNS for CoDeeN host name lookups, and
from 1095 ms to 79 ms for real traffic. However, in
the real traffic graph, CoDNS also shows a few spikes in
the response time. In particular, at 05:10 and 12:31, the
per-minute average in CoDNS exceeds 1 second. But in
both cases, there came a few non-existent name lookup
requests which skewed the average. Finding the names

non-existent took about 20 seconds in each case. We have
observed three types of failures that prevent CoDNS from
providing benefit:

1. The name is non-existent.

2. If the local nameserver is bad at the start phase of
gathering neighbor list.

3. When network problems prevent CoDNS from con-
tacting the peer node.

Where CoDNS wins is where the local nameserver fails,
and its demonstrated benefits are quite considerable. The
(b) and (c) graphs in the both figures show CDFs and
weighted CDFs for name lookups. In both cases, name
lookups taking more than 100ms dominate the total
lookup time. The CoDNS CDFs show a much smoother

11

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 /
D

ay
 (m

s)

Nodes Sorted by Longitude

Local DNS
CoDNS

(a) Average Response Time over 12/11

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35

S
ta

nd
ar

d
D

ev
ia

tio
n

/ D
ay

 (m
s)

Nodes Sorted by Longitude

Local DNS
CoDNS

(b) Standard Deviation over 12/11

Figure 14:Average Response Time and Standard Deviation for Real Traffic

transition after 100ms, which is due to the peer nodes pro-
viding replies when the local nameserver is failing. In the
local nameserver, replies tend to be bimodal – either very
quick or very slow. The weighted versions reveals dra-
matic difference in total amount of time spent on lookups.
Because most resolvable failures are effectively removed
in CoDNS, the time spent for lookups> 1000ms is less
than 10% of total time, whereas in the local nameserver,
these consume more than 90% of the time.

5.1 Average response time and Standard
Deviation

The benefits of CoDNS are noticed on most CoDeeN
nodes. Figure 12 show the similar result measured on an-
other CoDeeN node in case of the real traffic. Despite
having much better initial behavior than the Cornell node,
even it sees substantial savings in total lookup times.

A similar graph for every CoDeeN node would clearly
require too much space, but we can observe the benefits
by comparing the average response times and their stan-
dard deviations across nodes. This data for one day’s traf-
fic is shown in Figure 13 and Figure 14. Included is the
real lookup traffic as well as CoDeeN’s heartbeat traffic.
Generally, the graph shows CoDNS gives reliable service
over time, much smaller variation than local DNS name-
servers. The average of all nodes in CoDNS is 7 ms for
CoDeeN node names, and 84 ms for real traffic, in con-
trast to 37 ms and 237 ms, respectively, using local DNS.
Especially in real traffic, the performance of CoDNS is
stable over the CoDeeN nodes regardless of local name-
server fluctuation. Also, standard deviations range from
16% to 75% lower than that of local DNS, implying much
less fluctuations in response time.

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

C
oD

N
S

 re
m

ot
e

qu
er

y
re

su
lts

Nodes Sorted by Longitude

Win by 3+ queries
Win by 2 queries

Win by 1 query

Figure 15:Analysis for multiple remote DNS queries

5.2 Analysis of CoDNS results

We study the effectiveness of our CoDNS strategy, par-
ticularly the conditions in which it beats the local DNS
nameserver, using one week of log gathered through the
real traffic CoDNS deployment. The traffic is generated
from the normal daily CoDeeN HTTP traffic. We find that
under real traffic, CoDNS uses the remote peers 18.9% of
all lookups. For the rest of the time, local DNS is fast
enough so that CoDNS does not send any remote queries.
And for all the remote queries sent, 34.6% of the remote
queries “win” by returning a valid DNS response faster
than the local DNS lookup.

We further study the effect of querying multiple remote
peers in CoDNS retransmission. In Figure 15, we see the
distribution of “winning” the local DNS lookups by send-
ing out one remote query, two remote queries and three
or more remote queries. From the figure, we can see that
in most of the cases, the CoDNS strategy will win within

12

two remote queries if it eventually wins.

5.3 Overhead
There are two types of overheads involved in the design:
1. Extra DNS lookups done per user requests in CoDNS
system as compared to the original system. From the
analysis done in Section 3.1, we have shown that the extra
amount of DNS lookups can be controlled by setting
different initial delay time. By setting the initial delay
time to 500ms, extra amount of DNS lookups would
be reduced to only 10% of all user requests. In the
real CoDNS deployment, we find that we only send out
about 18.9% of extra traffic even when we are using an
aggressive algorithm to optimize the response time.
2. Extra network traffic generated for remote DNS
queries and heartbeats between CoDNS peers. For the
amount of network traffic generated, we can compare
the total amount of traffic used by CoDNS with the total
amount of network traffic used by CoDeeN. All the traffic
used by remote peer query and heartbeats only takes
about 520MB per day across all the nodes, while the
daily CoDeeN traffic takes about average of 150GB of
traffic. This is easily explained by the observation that
most server lookups will result in multiple object fetches,
so the cost of each DNS/CoDNS lookup is heavily
amortized. In relative terms, the amount of CoDNS traffic
only add an overhead of 0.3% onto the CoDeeN traffic it
supports.

6 Deployment
CoDNS currently runs as a standalone daemon process
operating across PlanetLab. Its use is not transparent, and
we had to make minimal changes to enable CoDeeN to
use CoDNS for name lookups instead of using regular
DNS servers.

We are currently adding support for automatic CoDNS
use into an existing nameserver, Dan Bernstein’s
DNSCache [5]. This system is believe to be more secure
than BIND, and since we are interested primarily in name
lookups, Bernstein’s approach of splitting lookup and au-
thoritative service into two separate programs is appealing
for us. Our approach involves running a local DNSCache
program which has been modified to use CoDNS. Traf-
fic is automatically directed to this program by adding
an entry for localhost into the /etc/resolv.conf file. The
one complication in this scheme is that the CoDNS slaves
usegethostbyname() to resolve names, which in turn
will use the contents of resolv.conf, causing a loop. We
solve this problem by statically linking the CoDNS slaves
with a modified version ofgethostbyname() that ig-
nores the localhost entry in resolv.conf. We hope to begin
deploying this transparent CoDNS support on PlanetLab
early next year.

7 Related work
Ever since the seminal study of DNS measurement in
1992 by Danzig [2], the performance of DNS has been
greatly improved and the implementation bugs have been
largely reduced [9]. However, recent measurements show
there is still much room for improvement. Wills [17] in-
dicates 29% of DNS lookups take over 2 seconds, and
Cohen [3] shows 10% of lookups exceed more than 3 sec-
onds. Jung [6] also presents data indicating 23% of all
name lookups end up with receiving no results, identi-
fying improper configurations and incorrect nameservers
as culprits. It further describes that the effectiveness of
caching is limited by the long-tailed nature of the name
distribution [1], so having short TTLs does not add much
network traffic. Liston[10] investigates the correlations
between DNS lookups and the locations, and found out
the mean response time of a name lookup has much vari-
ation depending on the location. However, the difference
in our study from all these is while all of them focused
on the general DNS lookup process involving other sets
of nameservers in WAN environment, none of them sus-
pect the problems incurred by the local nameserver and
the LAN environment. Our study shows the possibility of
the name lookup time being greatly skewed by the tempo-
rary instability of the local nameservers and possibly by
other activities affecting the nameserver.

Cox [4] investigates the possibility of transforming
DNS into a peer-to-peer system [14] using a distributed
hash table. The idea is to replace the hierarchical DNS
name resolving process with a flat peer-to-peer query
style, in pursuit of load balancing and robustness. With
this design, the misconfigurations from mistakes by ad-
ministrators can be eliminated and the traffic bottleneck
concentrating on the root servers are removed so that the
load is distributed over the entities joining the system. The
difference in our approach is to temporarily use function-
ing nameservers of peer nodes, separate from the issue of
improving the DNS infrastructure itself. We expect that
any benefits in improving the infrastructure “from above”
will be complementary to our “bottom up” approach. One
advantage of our system is that misconfigurations can be
masked without outage of the name service, while trig-
gering an alarm when the misconfiguration is suspected
should leave the minimal work for the administrators to
casually examine.

Kangasharju [7] mentions another approach to reducing
the DNS lookup latency by replicating DNS information.
Inspired by the fact the entire DNS record database fits
into the size of a typical hard disk and recent emerging of
terrestrial multicast and satellite broadcast systems, this
scheme reduces the need to query the distant nameserver
by keeping the DNS information up-to-date throughout
the world by efficient replication.

13

8 Conclusion
In this paper we have shown the instability in DNS
name lookups is widespread and relatively common.
We demonstrated that the problems are not caused by
the nodes performing the lookups but by the local name
service itself. Even though the failure cases are a small
fraction of all lookups, their longer delays result in most
lookup time being spent on failures.

We also showed that these local failures appear to be
uncorrelated, and not specific to our test environment.
Using this information, we develop an alternative lookup
system, CoDNS, which benefits by harnessing the
reliability of peer nodes. CoDNS reduces the total time
consumption in name lookups as well as improving the
mean latency with minimal extra overhead. It provides
high availability and reduces variability, all while gener-
ating very low levels of overhead.

References
[1] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web

caching and zipf-like distributions: Evidence and implications. In
Proceedings of INFOCOM ’99, pages 126–134, 1999.

[2] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
and K. J. Worrell. A hierarchical internet object cache. InUSENIX
Annual Technical Conference, pages 153–164, 1996.

[3] E. Cohen and H. Kaplan. Prefetching the means for document
transfer: A new approach for reducing web latency. InProceedings
of INFOCOM ’00, pages 854–863, 2000.

[4] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using
Chord. InProceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS ’02), 2002.

[5] D. J. Bernstein. djbdns. http://tinydns.org/.

[6] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance
and the effectiveness of caching. InProceedings of the ACM SIG-
COMM Internet Measurement Workshop, 2001.

[7] J. Kangasharju and K. W. Ross. A replicated architecturefor the
domain name system. InProceedings of INFOCOM ’00, pages
660–669, 2000.

[8] B. Knowles. Domain Name Server Comparison:
BIND 8 vs. BIND 9 vs. djbdns vs. ???, 2002.
http://www.usenix.org/events/lisa02/tech/presentations/knowlesppt/.

[9] A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. Com-
mon DNS Implementation Errors and Suggested Fixes, October
1993. http://www.faqs.org/rfcs/rfc1536.html.

[10] R. Liston, S. Srinivasan, and E. Zegura. Diversity in DNS Perfor-
mance Measures. InProceedings of the ACM SIGCOMM Internet
Measurement Workshop ’02, 2002.

[11] P. Mockapetris. Domain names - implementation and specifica-
tion, November 1987. http://www.faqs.org/rfcs/rfc1035.html.

[12] PlanetLab. http://www.planet-lab.org.

[13] M. Schiffman. A samping of the security posture of the internet’s
dns servers. http://www.packetfactory.net/papers/DNS-posture/.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet ap-
plications. InProceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer communi-
cations, pages 149–160. ACM Press, 2001.

[15] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Request
Redirecion on CDN Robustness. InProceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[16] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and
security in the CoDeeN content distribution network. InUSENIX
Annual Technical Conference, 2004.

[17] C. E. Wills and H. Shang. The contribution of DNS lookup costs to
Web object retrieval. Technical Report WPI-CS-TR-00-12, 2000.

14

