
Secure Linking: A Logical Framework for

Policy-Enforced Component Composition

Eun-Young Lee

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

January 2004

c© Copyright by Eun-Young Lee, 2003. All rights reserved.

Abstract

In this thesis I propose a flexible way of allowing software component users to specify their

security policies, and to endow digitally signed certificates with more expressive power at

link time. Secure Linking (SL) is more flexible than type-checking or other static checking

mechanisms because it allows users the freedom to specify security policies at link time.

In addition, Secure Linking is more expressive than simple digital signing by restricting

the scope of guarantees made by digitally signed certificates. Secure Linking would not

prevent bugs in a software component, but it gives people signing a software component

finer-grain control of the meaning of their certificates.

The linking logic in the Secure Linking framework is based on Proof-Carrying Authen-

tication (PCA), a distributed authentication/authorization framework. In Secure Linking,

a code consumer establishes a linking policy to protect itself from malicious code from

outside. The policy can include certain properties required by the code consumer for sys-

tem safety, such as software component names, application-specific correctness properties,

version information of software components, and so on. In order for a software component

to run in the system of a code consumer, there must be a machine-checkable proof that

the component has the properties specified in the code consumer’s linking policy. This

proof might be provided by the code provider, or might be produced by an untrusted

proving algorithm that runs on the code consumer’s machine. The proof is formed using

the logic and inference rules of the framework. After being submitted, the proof is checked

by a small trusted proof checker in the code consumer, and if verified, the component is

allowed to be linked to other components in the code consumer.

I demonstrate that the Secure Linking logic is flexible enough to interoperate with

other application-specific and security-concerned logics. I show that the Secure Link-

ing logic is expressive enough to describe real-world linking systems. I also describe a

prototype implementation of Secure Linking for Java components.

iii

Acknowledgments

Many people have helped me finish my dissertation at Princeton with their support,

advice, and care. Most of all, a large part of this credit should go to my advisor Andrew

Appel. He has been a really patient and wise advisor. I have always been impressed

by his sharpness in understanding my ideas on research, and his dependable advice and

encouragement. I feel lucky to be one of his students. I am grateful to my thesis readers

Iliano Cervesato and Ed Felten for their very helpful and insightful comments. I would

like to thank Melissa Lawson, Becci Davies, and the CS staff members to maintain a

wonderful environment for my research.

The research in this dissertation was supported by NSF grants CCR-9870316 and

CCR-9974553, DARPA grant F30602-99-1-0519, and the fellowship from the Korea Foun-

dation for Advanced Studies.

The past five years have been the most challenging period for me. I moved to a foreign

country, to a different culture, to a different academic environment to the one I used to.

All this change was not always exciting, but the people I met here gave me power for me

to go through it. I would also like to thank all the friends who have made my stay at

Princeton so enjoyable.

I owe everything to my family. My parents’ pride and hope in me are the persistent

driving force for my struggles in carrer in life. My husband and best friend, Hyong-Soon

helped me survive all those struggles with his care, sacrifice and confidence in me. The

completion of this dissertation will be a contribution to the family which he and I are

going to build together.

iv

To my husband, Hyong-Soon

v

Contents

Abstract . iii

1 Introduction 1

1.1 Code-Signing Protocols . 1

1.2 Goals . 6

1.3 Related Work . 9

1.3.1 Proof-carrying authentication . 9

1.3.2 Component models . 11

1.3.3 Digital signatures . 11

1.3.4 Security-concerned linking . 13

2 The Design of SL 15

2.1 A Simple Example . 15

2.2 Code Provider . 16

2.3 Code Consumer . 17

2.4 Secure Linking Policies . 18

2.5 Properties . 19

2.6 Property Authorities . 20

2.7 Library . 21

2.8 Key Authorities . 22

2.9 Property Servers . 23

vi

2.10 Linking Decision . 23

3 SL Interface 25

3.1 Component Description Language . 25

3.1.1 Modules . 26

3.1.2 Exports . 28

3.1.3 Imports . 30

3.1.4 Combining component descriptions 31

3.2 Linking Policy Description . 32

3.2.1 Linking policy model . 32

3.2.2 Required properties . 32

3.2.3 Key authorities . 35

3.2.4 Property servers . 35

3.2.5 Library components . 36

4 SL Logic: Syntax 38

4.1 Term Constructors and Predicates . 39

4.1.1 Translating linking policies . 39

4.1.2 Translating component description 43

4.1.3 Formal syntax . 46

4.2 Inference Rules . 49

4.2.1 Building a proof . 50

4.2.2 Linking . 51

4.2.3 Authentication . 53

5 SL Logic: Semantic Model 56

5.1 Syntactic vs. Semantic Approach . 56

5.2 SL Logic Semantics . 60

vii

5.3 Soundness of the SL Logic . 63

6 Tactical Prover 66

6.1 Finding a proof . 67

6.2 Tacticals and Tactics . 68

6.3 Soundness . 72

6.4 Termination . 73

6.5 Completeness . 75

7 Beyond SL logic 80

7.1 Extending the Secure Linking logic . 80

7.2 Interoperating with other logics . 85

7.2.1 Foundational proof-carrying code 85

7.2.2 Public Key Infrastructure . 85

8 Case Study 87

8.1 Overview . 87

8.1.1 Assemblies . 88

8.1.2 Versioning . 89

8.2 Versioning . 90

8.2.1 Version redirection in .NET . 90

8.2.2 Formal specification in the Secure Linking logic 90

8.3 Signing Assemblies . 92

8.4 Discussion . 94

9 Implementation 96

9.1 Java Class Loaders . 96

9.2 Proof Checker . 98

9.3 Certificate Storage . 99

viii

10 Conclusion 100

A Tactical Prover 102

A.1 Tacticals and Tactics . 102

A.2 Termination Checking . 109

A.2.1 Mode Declaration . 109

A.2.2 Termination Declaration . 111

A.3 Conditional Completeness Proof . 113

A.3.1 Group 2: Tacticals with no subgoals 113

A.3.2 Group 3: Tacticals with no recursive calls 113

A.3.3 Group 4: Tacticals with recursive calls 118

B Simple-Gt System 128

C Complete Secure Linking Logic 129

ix

Chapter 1

Introduction

1.1 Code-Signing Protocols

Large software systems are often built from loosely coupled subsystems; a large system

developed by a team is divided into small pieces, and each of the pieces is assigned to a

developer in the team. Some pieces of the large system can be off-the-shelf components

from third-party companies. When composing a system out of software components from

various sources (developers in a project team or software component vendors), the system

composer doesn’t want an imported component to break the whole system. She needs

some guarantee that linking the foreign software component to her system is safe.

Enriched content of web pages is also a source of foreign software components. Web

pages consist of downloadable controls as well as traditional static data (such as text or

images), and web surfers are asked to download the controls and to plug in the control

components to their web browsers to fully enjoy the content of the pages they encounter.

The surfers don’t want the downloaded components to crash their systems or read their

private or security-sensitive data.

Awareness of the importance of system security has increased, and diverse research

areas in system security have been studied. This thesis focuses on preserving system

1

CHAPTER 1. INTRODUCTION 2

security when composing components.

The one of the most popular ways to assure the system security at component level is

code signing. Code signing enables software developers and/or venders to include infor-

mation about themselves with their code. When users buy or download digitally signed

software, they can be assured:

• that the software really comes from the publisher who signed it, and

• that the software has not been altered or corrupted since it was signed.

Users benefit from this software accountability because they know who published the

software and that the code hasn’t been tampered with. In the extreme case that software

performs unacceptable or malicious activity on their computers, users can also pursue

recourse against the publisher. This accountability and potential recourse serve as a

strong deterrent to the distribution of harmful code.

Java of Sun Microsystems provides a mechanism with which users sign their own code

[46, 45, 36, 47]. Sun Java Signing relies on industry-standard cryptographic technique

such X.509 v3 Code Signing IDs and Public Key Cryptography Standards (PKCS) #7

(for encrypted key specification) and PKCS #10 (for certificate request formats) signature

standards. A JAR file in Java is signed with the private key of the creator of the JAR file

and the signature is verified by the recipient of the JAR file with the public key in the

pair. JAR signer is a command line tool for signing and verifying the signature on JAR

files, and keystore is a command line tool for managing key certificates.

Internet Explorer (IE) of Microsoft uses Authenticode technology to help users sign

their own code [27, 28, 25]. Authenticode also identifies the publisher of signed software

and verifies the code’s integrity. Authenticode relies on digital certificates and is based

on specifications that have been used in the industry for some time, including PKCS #7,

PKCS #10, X.509 (for certificate specification), and Secure Hash Algorithm (SHA) and

MD5 hash algorithms.

CHAPTER 1. INTRODUCTION 3

When Internet Explorer downloads potentially dangerous content, it checks to see

whether the code is digitally signed by a trusted publisher. In addition to verifying

digital signatures of code, Internet Explorer has another mechanism called the kill bit.

The kill bit is a method by which an ActiveX control can be prevented from ever being

invoked via Internet Explorer, even if it’s present on the system or even if it has a valid

digital signature.

Although it is popular in the industry, code signing has a critical weakness. It is not

clear what a signature on code guarantee except for identifying the signer. The following

real example shows that a security hole caused by a weak code signing protocol at link

time might lead to a system vulnerability. In November 2002, Microsoft put an article

on their Security Bulletin, warning about Window’s system vulnerability due to a buffer

overrun in some versions of Microsoft Data Access Components (MDAC), one of the

ActiveX control components [29].

The article strongly recommends customers using Microsoft Windows, particularly

those who operate web sites or browse the Internet to download a patch Microsoft de-

veloped and apply it immediately. The article also says that this vulnerability is critical

because if the security hole is exploited by an attacker, it will result in running arbitrary

code of the attacker’s choice.

The solution of this critical problem looks quite straightforward: get a patch and

apply it to the hole. The article, however, contains an important caveat associated with

the patch Microsoft provides. The caveat says:

What caveats are associated with the patch?

Although the patch does address the vulnerability, there is a niche scenario

through which a patched system could, under unusual conditions, be made vul-

nerable again. This scenario results because it is not possible to set the kill bit

used by one of the vulnerable components.

CHAPTER 1. INTRODUCTION 4

Why isn’t it feasible to set the kill bit in this case?

The ActiveX control involved in these vulnerabilities is used in many applica-

tions and web pages to access data. Many applications, including third-party

applications, contain hard-coded references to it; if the patch set the kill bit,

the web pages would no longer function at all even with the new, corrected ver-

sion. As a result, the patch updates the control to remove the vulnerabilities,

but does not provide a brand-new control and set the kill bit on the old one.

A warning message is generated whenever there’s an error associated with

a digital signature or the signer isn’t trusted. But in this case, the digital

signature on the old version of the control is still valid, and the signer is

Microsoft and depending on the circumstances, many users may have chosen

to trust this particular Microsoft certificate (since it is used to sign a number

of different Microsoft ActiveX controls). Because of this, many users would

not see a warning message of any kind if the old control was re-introduced.

Why not revoke the certificate that was used to sign the control?

The certificate that was used to sign the control is still valid?

The problem lies in the control, not the certificate. In addition, a number of

controls have been signed using the same certificate, and revoking the certificate

would cause all of them to become invalid.

What steps could I follow to prevent the control from being silently

re-introduced onto my system?

The simplest way is to make sure you have no trusted publishers, including

Microsoft. If you do that, any attempt by either a web page or an HTML mail

to download an ActiveX control will generate a warning message. . . . The best

criterion to use is whether you trust the web site or the sender of the HTML

mail. If you don’t trust the web site offering the control, cancel the download.

CHAPTER 1. INTRODUCTION 5

Microsoft was faced with the two choices: setting a kill bit so that no browser would run

the control—thereby disabling thousands of websites, even ones containing no security-

critical data, or not setting the bit—thereby continuing to endorse the product and run

the risk.

The old buggy control could be re-introduced by an attacker even after the patch

was installed, because Microsoft signed a number of different Microsoft ActiveX controls

including the buggy component with one certificate, and if a user chose to trust any of

those ActiveX controls, it results in trusting the buggy control too.

Microsoft recommended that users who desired a secure system should remove Mi-

crosoft from Internet Explorer’s Trusted Publisher List. Microsoft Internet Explorer

provides a way of maintaining digital certificates for clients and certification authorities

(CAs),1 and a Trusted Publisher List is a list of publishers (people, companies, or orga-

nizations) whose content (webpages and/or controlling code) can be downloaded without

user intervention. So, if a software company is listed in the Trusted Publisher List of a

user, the user would not see a warning message of any kind when the browser downloads

a piece of code from the software company.

After getting rid of Microsoft from the Trusted Publisher List, users will see a pop-up

dialog box asking whether they are going to trust components to be downloaded which are

signed by Microsoft. It might give a warning to users, but it doesn’t solve the problem. If

a user decides to download any of the ActiveX controls which share the same certificate

with the badly coded ActiveX control, it will immediately open a security hole to attackers

explained above.

This critical situation is caused because Microsoft’s code-signing protocol is insuffi-

ciently expressive, and because Microsoft does not have a way of telling a component from

another component which has the same name, but different version.

1 A certification authority (CA) is a trusted organization that issues a public key certificate.

CHAPTER 1. INTRODUCTION 6

1.2 Goals

The example of Section 1.1 demonstrates the need for a more expressive way to guarantee

security at link time. The most widely used methods for ensuring safe linking are type

checking and code signing. Checking the type of the interfaces between two software com-

ponents ensures that two components agree on the types they are using. Although type

checking (also called sandboxing) is quite strong and easy to use, it doesn’t guarantee that

the code will behave in an expected way. Different static checking mechanisms have been

suggested to address specific security properties of programs: a security-sensitive type

system [18, 32, 42], and wrappers which encapsulate untrusted programs and implement

security-concerned properties [43, 44]. They give the users better facilities to address

security properties than typical type-checking does, but they still suffer from a lack of

expressiveness since their security or linking policies are fixed and encoded in their type-

or logic systems.

Code signing ensures that someone trustworthy trusts the code. It, however, is not

always enough to guarantee system safety since trusted software companies or software

developers unintentionally make mistakes. Software signed by trusted companies can still

leave security holes in users’ systems.

We propose a flexible way of allowing users of software components to specify their

security policies, and to endow digitally signed certificates with more expressive power

at link time. Secure Linking is more flexible than type-checking by allowing informally

specified properties, but by providing a way of reasoning about combinations of those

properties in a formal way. In addition, Secure Linking is more expressive than simple

digital signing by restricting the scope of guarantee made by digitally signed certificates.

Secure Linking would not prevent bugs in a software component, but it would give people

signing a software component finer-grain control of the meaning of their certificates.

Figure 1.1 compares the mechanisms for link-time security with respect to flexibility

CHAPTER 1. INTRODUCTION 7

Flexibility

Correctness
 type-based
security systems

 traditional
code signing

Secure Linking

Figure 1.1: Different Static Checking Mechnisms

and correctness. The term flexibility is used for describing the degree of freedom estab-

lishing a security policy. Suppose that a user has a human-oriented security policy such

as “a foreign component must not pop up a misleading dialog box.” This policy can be

guaranteed for a software component if someone investigates the component and makes

an assurance. However, we don’t know how to specify this property in formal logic. The

term correctness is used for describing how complete an assurance made by a security

system is. For example, if a type system makes an assurance that “this component never

accesses the memory outside the memory protection barrier.” after type checking, a user

will know there will be no memory access violation while running the component.

Traditional code signing provides high flexibility, but weak correctness guarantees.

For example, suppose that users purchase software components digitally signed by a big

software vender. After verifying the digital signature, users get to know that the software

component is coming from a trusted source and to expect the components to behave in

a good way without causing any harm to their system. The property code signing could

guarantee is implicit and very informal. The software components, however, could have

CHAPTER 1. INTRODUCTION 8

bugs due to the mistakes of trusted software developers, and these bugs could result in

security holes. Secure Linking lies between type-based approaches and traditional code

signing. SL gains more flexibility than type-checking by providing a way of establishing

users’ own security policies, and gains more correctness than traditional code signing by

providing a way of clarifying what is guaranteed by a signed certificate.

We have developed a logical framework for Secure Linking providing stronger sup-

port for system safety and security, and we have implemented a prototype system using

the framework. The linking logic in the Secure Linking framework is based on Proof-

Carrying Authentication (PCA), a distributed authentication/authorization framework

[3]. In Secure Linking, a code consumer establishes a linking policy to protect itself from

malicious code from outside. The policy can include certain properties required by the

code consumer for system safety, such as software component names, application-specific

correctness properties, version information of software components, and so on. In order for

a software component to run in the system of a code consumer, there must be a machine-

checkable proof that the component has the properties specified in the code consumer’s

linking policy. This proof might be provided by the code provider, or might be produced

by an untrusted proving algorithm that runs on the code consumer’s machine. The proof

is formed using the logic and inference rules of the framework. After being submitted, the

proof is checked by a small trusted proof checker in the code consumer, and if verified,

the component is allowed to be linked to other components in the code consumer.

Going back to the problem addressed in Section 1.1, a couple of remedies can be

suggested for resolving this problem:

• Users adopt a linking system in which the identity of a software component in-

cludes its version information, and allows users to indicate which version of a given

component should be run at an application level or a user’s machine level.

• Otherwise, users can feel safe if a trusted authority, after inspecting a software

CHAPTER 1. INTRODUCTION 9

component to be downloaded, makes an assurance that the software component is

not at all using the badly coded ActiveX control, or an assurance that the component

does not do any things harmful though it calls the buggy ActiveX control. That is,

legitimate use of the buggy ActiveX control is still allowed as long as the call to the

buggy ActiveX control does not exploit the known security hole maliciously.

Microsoft tackles the problem with the first approach; it introduced a version infor-

mation as a part of component identity in the .NET framework. This approach could be

overkill since it excludes all the code making unharmful use of the buggy ActiveX control.

The second approach is more expressive than the first one in that it doesn’t exclude the

safe use of the old version, and more general in that assurances from trusted authori-

ties can describe much more various kinds of software behavioral properties than simple

version information. Secure Linking can express and enforce either of these policies.

I will explain the fundamental ideas of Secure Linking in Chapter 2 by describing

how Secure Linking implements the second solution. Later I will also show that Secure

Linking is expressive enough to implement the first solution of the example as a case study

in Chapter 8. The premilinary result of this thesis can be found in [21], and an extended

abstract of part of this thesis was published in [22].

1.3 Related Work

1.3.1 Proof-carrying authentication

Proof-Carrying Authentication (PCA) is a distributed authentication/authorization frame-

work based on proof-carrying mechanism, introduced by Appel and Felten [3]. PCA is

different from previously existing authentication frameworks in two ways:

• it uses a higher-order logic that makes PCA more general and more flexible, and

• a server need not execute a complicated decision procedure to grant a client’s request.

CHAPTER 1. INTRODUCTION 10

A client is responsible for proving her capability of access.

Authentication frameworks and protocols have been described using formal logic [1],

for example in the Taos distributed operating system [48]. Taos has a logic of authenti-

cation on top of propositional calculus, which are proved to be sound.

In Taos, a code consumer given an access request has to decide whether to grant

the request. Wobber et al. [48] chose to implement only a decidable subset of their

authentication logic since they want a decision procedure (i.e. a finite algorithm) to be

able to decide whether to grant a request. Decidable logics are weaker than general logics,

so this makes the authentication logic less flexible. If a user wants to extend the Taos’

authentication logic for his specific system, some application-specific rules should be added

to a given set of basic inference rules. But it makes the soundness proof of the Taos’ logic

invalid, therefore the soundness of the extended logic should be proved again.

PCA gains more flexibility by allowing quantification over predicates. Therefore the

authentication framework has only one set of inference rules and all application-specific

rules are proved as lemmas. To describe an application-specific security policy, a program-

mer only needs to pick an application-specific decidable subset of the underlying general

logic of PCA.

Since all the application-specific logics are expressed using the same general inference

rules, they can interoperate with each other easily. This makes PCA more general than

other previous authentication logic. However, finding a proof for a request is not always

possible because higher-order logic is not decidable. To get around this problem, PCA

puts the burden of constructing proofs on the client and on the contrary the server simply

checks that proof. This is in analogy with proof-carrying code [31]. Even in an undecidable

logic, proof checking (not proving!) can be simple and efficient. Bauer, Schneider and

Felten developed an infrastructure for distributed authorization based on the ideas of

PCA [8].

CHAPTER 1. INTRODUCTION 11

1.3.2 Component models

A fundamental principle of software engineering is to divide a large-scale program into rel-

atively independent and small subprograms. With this strategy, communication between

the subprograms and seamless integration of them becomes important in order to protect

each subprogram from malicious attack or inadvertent misuse of other subprograms, and

eventually in order to make the large program work. Traditionally, each program protects

itself while communicating with other programs through abstract data types (ADT) or

information hiding.

Some languages, for example Standard ML and its associated Compilation Manager

(CM) [9], support more facilities than simple ADTs by making it possible to structure

modules hierarchically. Rather than having a flat and simple space of modules, CM makes

it possible to build a hierarchy of modules by describing the relationship between them

with its own descriptive language. Furthermore, it provides the facility of restricting view

of modules and the facility to be able to see modules through a richer interface. Within

the module hierarchy, modules in lower levels can communicate across more expressive in-

terfaces, and modules in higher levels can enforce more restrictive ones. Bauer, Appel and

Felten extended the Java package mechanism and developed a linking system supporting

hierarchical modularity similar to that of Standard ML and CM [7].

1.3.3 Digital signatures

A digital signature scheme consists of a signature algorithm and a verification algorithm.

A digital signature of a document is a value depending on the contents of the document

and on some secret only known to the signer, i.e., a private signature key, that associates

the document with an entity, i.e., a public verification key. The verification algorithm

usually takes the document and the public verification key as input, but in exceptional

cases the document - or parts of the document - can be recovered from the signature

and the document does not have to be provided signature verification. The property that

CHAPTER 1. INTRODUCTION 12

a third party can resolve the validity of a digital signature without having the signer’s

private key is called the verifiability property of digital signatures.

Digital signatures support nonrepudiation. Public-key cryptography is a natural source

for digital signature schemes. In such a scheme, it is computationally infeasible to de-

rive the signature key from the verification key. Despite the similarities in the underly-

ing mathematical techniques cause confusion between two schemes, these schemes have

fundamentally different purposes. Encryption protects the confidentiality of a message

and has to be reversible. Digital signatures provide data origin authentication and non-

repudiation. The El Gamal signature scheme [15] and one of its successful successors,

the digital signature algorithm (DSA) [33] demonstrate that signing does not have to be

encryption with a private key. These schemes sign on a message with a private signature

key without encrypting the whole message or a part of the message. In contrast, another

widely used digital signature scheme, the RSA algorithm [41] allows users to use the same

algorithms for signing and for encryption.

Another important topic in digital signatures is to guarantee the authenticity of public

keys. How do verifiers know that the public verification key they are using to check

signatures indeed correspond to the right party? There has to be a reliable source that

links ’identities’ with cryptographic keys. This trusted source of key binding is called a

certification authority (CA). CAs guarantee the link between user and cryptographic key

by a signing a document (called a certificate) that contains user name, key, name of the

CA, expiry date, etc. There exist several proposals specifying the precise format of a

certificate, most notably the certificates used in the X.509 Directory Framework [11]. To

verify a certificate, verifiers need a public verification key to check the CA’s signature, and

the key can be guaranteed by another CA; then it forms a chain of certification. Public

verification keys can be obtained by a chain of certificates, but in any case, verifiers must

know at least one public key, whose authenticity is proved by some other way, for example,

by being sent from an authorized company, or by being obtained in person.

CHAPTER 1. INTRODUCTION 13

Due to its simplicity and strengths explained above, the digital signature schemes are

very popular, and widely used. Considering that program code itself is simply a text

before it is interpreted as a list of machine instructions, it is not at all unusual to treat

program code as a document, sign it using one of the digital signature schemes, and

verify the signature. As mobile code and commercial software components are becoming

prevalent, signing code with one of the digital signature schemes play an important role

in giving users some trust in the code. In other words, users can tell whether the code is

coming from someone they can trust or not after verifying the signature of code. Despite

its popularity, code-signing suffers from a critical weakness, the lack of expressiveness.

The example in Section 1.1 illustrated the weakness could cause a security problem in a

real world.

1.3.4 Security-concerned linking

While type theory is a well developed field, there has been relatively little work on the

semantics of linking, and less work where linking is a security-critical operation.

Cardelli addresses type-safety issues with separate compilation and linking [10]. He

introduces a simple language, the simply typed λ-calculus, with a primitive module system

that supports separate compilation. He then informally, but rigorously, proves that his

linking algorithm terminates, and if the algorithm is successful, that the resulting program

will not have a type error. (Here a type error means calling a function with the wrong

number or type(s) of arguments, or using a number as a function.) However, it assumes

that all types are known at link time, and does not address (mutually) recursive modules.

Dean’s work [13] mentions the necessity of handling dynamic linking for secure systems.

Although dynamic linking itself is an old idea (appearing in Multics [34], among other

systems), it has become more important to reason about the behavior (or the semantics)

of dynamic linking as mobile code has gained its popularity. Dean addresses the design of

a type-safe dynamic linking system, and describes how static typing and dynamic linking

CHAPTER 1. INTRODUCTION 14

interact in a security-relevant way. Dean also gives a formal specification of his model

written in PVS [35] to prove his design to be safe.

Zaremski and Wing proposed specification matching of software components [49].

Specification matching is a process of determining if two software components are related

when retrieval (from a software library), reuse, substitution or subtyping of a component

is considered. Two components are compared based on description of the component’s

behaviors as well as their syntax appearances. The behavior of a software component is

formally modeled using pre- and postconditions written as predicates in first-order logic.

They uses the Larch prover [20] for their implementation, because theorem proving is

required to determine match or mismatch of two software components.

Recent practical work for secure systems prefers interposing security code at the op-

erating system boundary to observe and modify the data passing through. For software

component composition, untrusted components are encapsulated in wrapper programs,

and these programs have full control over the interactions between encapsulated compo-

nents and operating systems, or over the interactions among components [14, 43, 44]. The

code of a wrapper can perform access control checks, audit, attempt to detect intruders,

and even monitor covert channels.

Fraser, Badger and Feldman [14] proposed a system in which the body of wrapper

programs are written in a variant of C (called the Wrapper Definition Language) and

the dynamic aspects of creating wrappers and executing components are specified in their

framework (called the Wrapper Life Cycle framework). Sewell and Vitek abstracted infor-

mation flow properties of wrappers in a process calculus [44]. They designed a language

for composing concurrently-executing components, including primitives for encapsulat-

ing components and controlling their interactions. Their language is based on the box-π

calculus [43], focusing on the rigorous formal statement and proofs of information flow

properties.

Chapter 2

The Design of SL

In this chapter, I will describe how Secure Linking works and what SL can guarantee

at link time, with a simple example. The chapter begins with a brief description of a

situation which simplifies the real world problem discussed in Section 1.1. It is followed

by the explanation how SL solves the problem.

2.1 A Simple Example

As an analogy of the real world problem of Microsoft, suppose that a code consumer Bob

has a buggy component sharedCom in his web browser, causing a system hole vulnerable

to security attacks.

Bob finds a seemingly interesting HTML document from Alice’s system, and he is

asked to download a JavaScript program from Alice’s in order to read that document.

Should Bob download and install Alice’s code or not? How does Bob assure that the

code from Alice would not attack his system’s known weakness? Bob might feel safe

with Alice’s code if Bob can get the guarantee that Alice’s code makes safe use of the

buggy component sharedCom. Let’s call this behavioral property of a software component

safeUseOfSharedCom.

15

CHAPTER 2. THE DESIGN OF SL 16

[5] In
spect

 my co
mponent

Code Provider Code Consumer

Property Server Property Authoirty Key Authority

[1] Tell me your linking policy

[2] Property, safeUseOfSharedCom is required

[3] Who is the authority
of the property
safeUseOfSharedCom?

[4] Charlie

[6] O
K! T

his i
s a

 ce
rtif

ica
te

[7] Give me the key cetific
ates of authoritie

s

[8] Signed key certific
ates

[9] component webpageViewer, a linking proof and signed certificates

Figure 2.1: Interaction of principals in Secure Linking

Bob is going to depend on Secure Linking to verify whether or not his download from

Alice is safe. In Secure Linking composing software components is a complicate task in

which many principals and chains of trust are involved, and where they heavily interact

with each other. Figure 2.1 illustrates the interaction among principals involved in Secure

Linking. I’ll explain how a principal who gets a piece of suspicious code verifies the

trustworthiness of the code step by step.

2.2 Code Provider

Alice in this example is called a code provider because Alice is providing code which is

considered suspicious until it is proved to be safe. Alice could be a programmer who

wrote the code for herself, or a software vender who sells the code. Alice could be even a

colleague who is working together on a large software project.

Just as a code provider comes from various sources, suspicious-before-verified code is

CHAPTER 2. THE DESIGN OF SL 17

transferred and linked via various ways to Bob’s system. As in the previous example, code

might be a plug-in module transferred by network for a web browser. Code might also

be a commercial off-the-shelf component purchased from third-party software vendors, or

a software component written by co-workers. The transferred code can be linked either

dynamically (like a web browser’s plug-in module) or statically.

2.3 Code Consumer

Bob in this scenario is called a code consumer. A code consumer is the principal who uses

outside software components in his system, and wants to protect his system by verifying

the components at link time according to his own linking policy.

A code consumer can establish his own linking policy which can be consulted by code

providers and used for component verification at link time. For example, Bob’s linking

policy might say that “my system is going to accept only the outside code making safe use

of sharedCom.” Bob also specifies that he is going to trust a certificate from a principal

Charlie, about a snippet of code, saying that “this code doesn’t call at all sharedCom,” or

“this code makes calls to sharedCom, but doesn’t exploit the security hole maliciously.”

To help code providers build a linking proof, a code consumer specifies some information

other than required properties in his linking policy, such as enumerating a list of names

of trusted authorities, or a list of components in his system, which are visible to a foreign

software component.

A code consumer’s linking policy should be available to code providers to give hints

to build a linking proof in advance; then a code consumer asks code providers to hand in

a proof whenever they send a software component. For example, Bob asks Alice to show

him a proof that her JavaScript program is safe to link other components in his browser.

In other words, Bob requires a proof that Alice’s program has the properties specified in

his linking policy.

CHAPTER 2. THE DESIGN OF SL 18

After getting a linking proof and the code from Alice, Bob checks the proof. If the

proof is verified, Bob will believe that the code is safe and run the code; otherwise, he

will refuse to execute the downloaded code and give up reading the HTML document.

2.4 Secure Linking Policies

A code consumer’s linking policy usually consists of three parts: a list of useful properties

the code consumer requests from outside software components, a list of names of trusted

authorities, and the description of pre-installed library components in his system.

A code consumer could use the Secure Linking framework, in building a system from

components, to specify and enforce policies such as,

• Bob requires all modules must have been mechanically inspected by a virus detector.

• Certificate Authority Alice can vouch for the public key of the virus detector.

• Foreign software components link only to versions of GUI that support any superset

of a particular COM interface.

• Untrusted modules must have been checked by a bytecode verifier to assure that

they respect their interfaces.

• For version 1.6 through 1.9 of GUI it is OK to substitute version 2.4.

On the other hand, a code provider can specify properties expected from imported

library components:

• Game requires (links to) exactly version 1.3 of GUI.

• Compiler requires (links to) any version of SymbolTable that has efficientLookup

property as certified by underwriters laboratories.

• Compiler requires an implementation of SymbolTable that has a property typeSafety.

CHAPTER 2. THE DESIGN OF SL 19

The connection between the code, the property, and the property certifying agent is

made by using cryptographic hashing and public-key encryption, as appropriate.

2.5 Properties

A code consumer requires a software component to have certain properties in order for the

component to be linked to other components in his system. A property of a component

is an assertion of expected behavior from the component. There are generally useful

properties which help systems protect themselves from malicious outside codes, such as

• “this software component is type-checked,”

• “this software component never accesses outside of the memory assigned to it,”

• “this software component doesn’t read any information from or write any informa-

tion to the file system,”

• “this software component never reveals a secret of high-level processes to low-level

processes,” or

• “this software component doesn’t produce any arithmetic overflow or underflow.”

On the other hand, some properties are useful to fix specific problems. For example,

consider the buggy shared component containing an inadvertent security flaw explained

above. That is, a correct implementation of this shared component would permit the safe

execution of untrusted (possibly malicious) JavaScript programs, but the buggy one might

still be safe in connection with nonmalicious (trusted) code. Therefore, the consumer could

establish a security policy that specifies, for this version-number example of the control,

that the JavaScript linked to it must be certified as nonmalicious by a trusted party. In

the above example, Bob specified this requirement in the form of required properties.

CHAPTER 2. THE DESIGN OF SL 20

Note that these properties are meaningful only with the connection of the version-

related problem though properties exemplified in this section address quite general prob-

lems for system security. This demonstrates the strength of Secure Linking over other

traditional linking systems discussed in Section 1.3.4. Since those linking systems has

their own security policies defined in advance, it is very important to determine a set of

policies to support when designing the system. The policies should be general enough to

satisfy the demand of large range of users, and powerful enough to protect the system

from as many security attacks as possible. At the same time, however, those systems

suffer from lack of composability. Because the systems have built-in linking policies, and

are carefully designed to implement those policies, it is not always possible to combine

different linking policies.1 It is probable to build a system guaranteeing noninterference

property of properly signed foreign component, but it will not be straightforward to build

a type system supporting noninterference as well as checking array bounds out of two

already existing type systems.

Secure Linking has an advantage over other security-concerned linking systems in this

aspect. SL allows users to choose useful properties about software component behavior,

and to enforce them at link time. Within SL, any individual property enforced by security-

concerned systems, such as Java type safety, behavior subtyping, memory protection,

array-bound check, or noninterference, can be uniformly treated as a property, and each

system guaranteeing a specific property becomes an authority of that property; now, users

just pick properties they think critical to protect their systems, and establish a Secure

Linking policy out of those properties.

2.6 Property Authorities

Some properties, like the property of being type checked, can be guaranteed by a trusted

compiler, while others cannot be proven easily. But these properties may be accepted
1 to build a system guaranteeing useful properties from different security-concerned linking systems

CHAPTER 2. THE DESIGN OF SL 21

as true if a software component has assurances made by trusted third-party authorities.

The trusted authorities can generate assurances resulting from a software audit or some

other verification processes for software engineering. Such assurances are usually encoded

as digitally signed statements. Those authorities are called property authorities in Secure

Linking, and the signed statements are called certificates. After verifying the digital sig-

natures on the statements, the property certificates made by trusted property authorities

are accepted as true and the components of those statements are considered to have the

properties in those statements.

For example, Bob might trust a wide variety of well-known companies to claim “This

module contains no malicious attacks and has been checked for common buffer-overrun

problems,” but might require more assurance for the claim “this module is implemented

sufficiently carefully to be able to withstand linking with software that contains malicious

attacks.” If Bob wants to run a particular JavaScript program in an environment that

has low resistance to attack, and if he trusts Charlie as a property authority for the

nonmalicious property, then he should obtain a signed certificate from Charlie about the

particular JavaScript program he’s about to link and execute.

2.7 Library

Although it is possible to keep a software component self-contained, it is not unusual

for a foreign software component to depend on other underlying, pre-installed software

components2 in a code consumer’s system. The pre-installed components are trusted by

the code consumer, and the foreign component will use the pre-installed components by

importing them. These pre-installed components are called library components in Secure

Linking.

To help a code provider build a proof, a code consumer declares what library compo-

nents he has and what properties are exported by each of those components in his linking
2 Consider software components provided by an operating system, or software components for GUI

CHAPTER 2. THE DESIGN OF SL 22

policy. Code consumers list the visible library components explicitly in their linking pol-

icy; by simply not listing them code consumers can hide some security-critical components

from outside, and thus prohibit security-critical components from being called in a mali-

cious way by a foreign component. At the same time, a foreign component from a code

provider declares what components it imports and what properties are required for each

of the imported components. By addressing required properties as well as its name for an

imported library component, a foreign component gives more detailed information about

its imported library component.

At verification time, Secure Linking checks whether or not all the library components

imported by a foreign component are provided by the code consumer and listed in the

code consumer’s linking policy.

2.8 Key Authorities

Since all certificates from property authorities come with digital signatures, a code con-

sumer must know the signers’ public keys in order to check the validity of the digital

signatures. The code consumer must at least know who can provide the right public keys

for verifying digital signatures and what her public key is. These authorities are called

key authorities (also known as certificate authorities). Key authorities are responsible for

guaranteeing the bindings between a principal’s name and its public key, and key certifi-

cates from a key authority are trusted after being verified with the public key of the key

authority. The public key in the certificate can be used to verify the digital signature of

another key certificate. This results in a chain of key certificates to get a trustable public

key of a given principal as explained in Section 1.3.3.

Diane in Figure 2.1 is a key authority Bob trusts. Alice is responsible for sending

Bob all key certificates needed to verify her linking proof; that means, Alice should get a

key certificate of Charlie from Diane, and send the key certificate with her proof to Bob.

CHAPTER 2. THE DESIGN OF SL 23

When verifying Alice’s proof, Bob gets the public key of Charlie from the accompanying

key certificate, and verifies the digital signature on Charlie’s property certificate.

2.9 Property Servers

Just as a code consumer doesn’t have to know all the public keys of principals, he doesn’t

have to know all the bindings between properties and property authorities. Instead a

code consumer specifies that he trusts a principal as someone who will let him know the

property-authority bindings. Therefore, the code consumer doesn’t have to enumerate

the names of property authorities for every required property in his linking policy, and

it relieves him from modifying the linking policy whenever a property-authority binding

changes.

In the example, Bob trusts Emily as a property server, and specifies it in his linking

policy. Alice, when starting to build a linking proof, might not know who is the authority

who can inspect her code and issue a property certificate about the nonmalicious property.

The first thing she should to do is to consult Emily, the trusted property server, about this

property-authority binding. Suppose that Emily makes a signed statement that a set of

authorities including Charlie can make an assurance of the nonmalicious property. With

this information, then, Alice can proceed to consult Charlie for a property certificate. The

property-authority certificates from Emily are also submitted to Bob as well as a proof

and key certificates from Alice.

2.10 Linking Decision

To decide whether it is safe to link a component coming from outside to other components

in the system, a code consumer must verify whether or not the component provides all

the required properties. A code consumer checks the proof from a code provider with the

certificates by using a trusted proof checker, and if the proof is valid, the code consumer

CHAPTER 2. THE DESIGN OF SL 24

accepts the foreign component to run with other components in his system; otherwise

he rejects the foreign component. Since the certificates a code provider submits are all

digitally signed, digital signatures are verified during the proof-checking time.

For example, Bob checks whether or not the component from Alice has the property

safeUseOfSharedCom specified in his policy. The proof from Alice is verified by a trusted

proof checker with certificates from a property authority Charlie, and other supporting

authorities (such as a key authority Diane and a property server Emily).

Chapter 3

SL Interface

The user interface of the Secure Linking framework consists of two different languages,

one for describing code consumers’ linking policies, and one for describing components.

The user interface languages adopts the XML syntax; therefore they can be parsed by any

XML parser and modified even with a simple text editor. The Secure Linking framework

has XML parsers for each language, producing logical formulas written in the Secure

Linking logic from XML files. Since they must be trusted by users1, the parsers are

included in the TCB of the framework.

In this section, I will give the models of linking policies and components in Secure

Linking, and explain the syntax and the semantics of the two description languages by

way of the example given in Chapter 2.

3.1 Component Description Language

Going back to the example in Chapter 2, a code provider must describe her software

component to a code consumer and to property authorities who are going to inspect her

component. The component description is written down by using the user interface lan-

1Users believe that the logic formulas from the parsers will have adequately represented their linking
policies or component descriptions.

25

CHAPTER 3. SL INTERFACE 26

guage of the Secure Linking framework, whose abstract syntax is illustrated in Figure 3.2.

The result might look like one given in Figure 3.1.

When specifying a software component in the component description language of SL

framework, a pair of XML tags, 〈componentDsc〉 and 〈/componentDsc〉 are used for mark-

ing the beginning of the description and the end of the description. A component de-

scription can be constructed by enumerating all the necessary information for a software

component from the scratch (call it basic component description), or by combining two

existing component descriptions (call it combined component description). In this section,

I will give the model of basic component description with its related language syntax,

followed by the explanation of combined component description.

A basic component description, C, consists of four parts, (N ,M, E , I), where

• N is the name of a software component. A tag, 〈name〉 and its counterpart, 〈/name〉

are used for specifying the name of a software component. A name is a local identifier

of convenience for referring a software component.

• M is a list of modules making up of a software component.

• E describes what a software component makes visible from the outside.

• I enumerates other components which a given software component depends on.

3.1.1 Modules

The module part of the description specifies which code files compose a software compo-

nent. Every entry of this part is given by its file name and the hash code of it.

Secure Linking requires that the cryptographic hash code of every binary file should

be checked during the verification process. It prevents binary files from be tampered

with after a component description and its accompanying proof have been generated;

therefore, given binary files (programs or resources) and a component description, the

CHAPTER 3. SL INTERFACE 27

〈componentDsc〉
〈name〉 webpageViewer 〈/name〉

〈modules〉
〈item hash = “194CA77319” 〉 display.class 〈/item〉
〈item hash = “EF41900142” 〉 userInput.class 〈/item〉 〈/modules〉

〈exports〉
〈type〉
〈item〉 class contentFrame〈/item〉
〈item〉 interface inputForm〈/item〉 〈/type〉

〈property〉
〈item〉 safeUseOfSharedCom 〈/item〉 〈/property〉 〈/exports〉

〈imports〉
〈component〉
〈name〉 sharedCom 〈/name〉
〈required〉
〈type〉
〈item〉 class sharedActiveXControl 〈/item〉 〈/type〉

〈property〉
〈item〉 prpTypeSafety 〈/item〉

〈/property〉 〈/required〉 〈/component〉 〈/imports〉 〈/componentDsc〉

Figure 3.1: An example of component description

CHAPTER 3. SL INTERFACE 28

ComponentDsc ::= componentDsc Name DscBody
Name ::= name NameId
DscBody ::= Modules Exports∗ Imports∗ | CombineExp
CombineExp ::= combine NameId NameId
Modules ::= modules ModuleIdItem+

Exports ::= exports Types∗ Properties∗

Imports ::= imports ImportComponentId∗

ImportComponentId ::= component Name RequiredPrps∗

RequiredPrps ::= required Types∗ Properties∗

NameId ::= String
ModuleIdItem ::= item HashCode ModuleName
ModuleName ::= String
HashCode ::= hash QuotedString
Types ::= type TypeIdItem+

TypeIdItem ::= String
Properties ::= property PropertyIdItem+

PropertyIdItem ::= String
String ::= (0|1| . . . |a|b| . . . |z|A|B| . . . |Z| |)+

QuotedString ::= “String”

Figure 3.2: Abstract syntax of the component description language

Secure Linking framework checks the integrity of those code files by recalculating their

cryptographic hash codes, and comparing with the hash codes stored in the component

description.

A list of modules begin with a tag 〈modules〉, and ends with its counterpart tag

〈/modules〉. A tag 〈item〉 is used for providing the information of each module (that is, a

file name of a binary module and its cryptographic hash code).

The example in Figure 3.1 shows that the component webpageViewer consists of two

code files, named display.class and userInput.class, and their cryptographic hash

codes are also provided in the component description.

3.1.2 Exports

Components can export two kinds of things: type identifiers (such as class names or

function names) and properties. It is typical for a program to call functions, or to use

CHAPTER 3. SL INTERFACE 29

classes or structures outside of its scope, and it has been linkers’ responsibility to find

out what functions, classes, or structures are really referenced. Linkers resolve the type

identifiers by consulting the symbol tables handed to them by compilers.

In Secure Linking, a code provider can export properties as well as mere type identifiers

of a software component. A property of a software component is a high-level description

about the behavior of a software component, and can be enforced and verified at link time

using digitally signed certificates from authorities as explained in Chapter 2.

As for the visibility of type identifiers, programming languages allow a programmer

to control the visibility of identifiers by putting access modifiers in the program. For

example, an ML programmer can hide some internal variables or types from outside view

by defining a signature and binding it to an ML structure implementation. Similarly, with

object-oriented programming languages such as Java or C++, programmers can put access

modifiers on classes, functions or data members. In addition to class-level or structure-

level access control, the Standard ML/Compilation Manager [9] supports a mechanism

for specifying whether a type identifier is visible from outside or not by declaring a list

of visible identifiers in a component2 level. Java’s package lacks this kind of control; it

result in re-exporting all the type identifiers from dependent packages although it is not

desirable.

The Secure Linking framework allows users to control the visibility of properties as

well as the visibility of type identifiers. The export part is marked with a tag 〈exports〉

and its counterpart tag 〈/exports〉. Under the tag 〈exports〉, a tag 〈type〉 is used to

enumerate type identifiers visible from outside, and a tag 〈property〉 is used to enumerate

the properties names exported by a software component. Type identifiers are hidden

from outside of a component if they are not listed in the export part, even if they are

defined within the component or if they are visible from imported components. Imported

properties3 are hidden by default, and will not be exported unless they are listed in the

2It is called a group in SML/CM
3Exported properties from dependent software components

CHAPTER 3. SL INTERFACE 30

export part explicitly.

In the example of Figure 3.1, the component webpageViewer exports a property

safeUseOfSharedCom saying that this component doesn’t call the buggy component

sharedCom at all, or call the component in a safe way. It also exports two type iden-

tifiers, class contentFrame and interface inputForm.

3.1.3 Imports

The import part specifies what other components a component depends on. Every entry

of the import part consists of a brief description of an imported component. The import

component description differs from the complete component description in terms that it

doesn’t have the module information, but only contains the name of a component and an

export part. Note that this enables different implementations of a software component to

be used as long as implementations has the same exporting interface. An import part of

a component description is a list of imported component descriptions. The import part

is marked with a tag 〈imports〉 and its counterpart tag 〈/imports〉 . Under this tag, each

imported component description begins with a tag 〈component〉, and ends with a tag

〈/component〉. Each imported component description consists of

• the name of the imported component

• a list of properties required from the imported component

• a list of required type identifiers

When locating an imported component at link time, the Secure Linking framework

searches and links a software component which has the name specified in the description,

and exports all the required properties and type identifiers. Figure 3.1 shows that the

component webpageViewer depends on a component named sharedCom which exports

a property prpTypeSafety and a type identifier class sharedActiveXControl. The

CHAPTER 3. SL INTERFACE 31

Secure Linking framework will allow webpageViewer to import any implementation of

sharedCom as long as it exports the given type identifiers and properties.

3.1.4 Combining component descriptions

A component description can be constructed from two existing component descriptions.

It is very useful to make it possible to combine component descriptions, especially when

considering digitally-signed certificates from property authorities. In Secure Linking, a

component description with modules is required to be digitally signed by property au-

thorities to prove its safety of linking. A property authority can guarantee only a set

of properties, and announces this set in advance; when signing, it is reasonable for the

property authority to sign on only the properties he can guarantee, rather than signing on

all the properties a component description exports. For example, a trusted compiler can

guarantee that modules with a given component description are type-safe, but doesn’t

want to, or is not able to, guarantee any other properties. This is the reason why the

Secure Linking framework provides a way of combining component descriptions. After

collecting component descriptions assured by property authorities, a code provider com-

bines the small descriptions, and builds a complete component description. It frees the

property authorities from a burden of assuring more properties of a component description

than they want to.

A combine component description consists of

• a new name of resulting component description specified by using the tag 〈name〉

• an expression which combines component descriptions. It begins with a tag 〈combine〉,

followed by the names of two source component descriptions.

CHAPTER 3. SL INTERFACE 32

3.2 Linking Policy Description

3.2.1 Linking policy model

The linking policy description language allows code consumers to set Secure Linking

policies that affect how applications run on their machines. A linking policy, P, in Secure

Linking is a four-tuple, (R,K,S,L), where

• R is a set of properties a policy writer (a code consumer) expects from foreign

software components.

• K is a list of key authorities whom a policy writer trusts. The policy writer has the

public keys of key authorities for verifying their digital signatures.

• S is a list of property servers whom a policy writer trusts as sources of providing

bindings between a property and its property authorities.

• L is a list of library components which are visible to outside software components.

Figure 3.4 shows the abstract syntax of the user interface language for establishing a

linking policy. The linking policy of Bob the example of Chapter 2 might look like one

in Figure 3.3. Every linking policy begins with a root tag, 〈linkingPolicy〉, and ends with

its counterpart tag, 〈/linkingPolicy〉. The four parts of a linking policy are given within

these two tags, and the order in which each part appears doesn’t matter.

3.2.2 Required properties

A tag 〈requiredPrps〉 and its counterpart tag 〈/requiredPrps〉 are used to specify the

properties a code consumer requires from all the components from outside. Under this

tag, the names of properties are enumerated by using a tag 〈item〉. In Figure 3.3, Bob

specifies that he will accept software components with a property safeUseOfSharedCom.4

4 Suppose that the property safeUseOfSharedCom stands for a software behavior that a software com-
ponent doesn’t call the buggy sharedCom at all or it makes only safe use of the buggy component.

CHAPTER 3. SL INTERFACE 33

〈linkingPolicy〉

〈requiredPrps〉
〈item〉 safeUseOfSharedCom 〈/item〉 〈/requiredPrps〉

〈keyAuth〉
〈item〉 Diane 〈/item〉 〈/keyAuth〉

〈propertyServer〉
〈item〉 Emily 〈/item〉
〈item〉 Ethan 〈/item〉 〈/propertyServer〉

〈library〉
〈component〉
〈name〉 sharedCom 〈/name〉
〈module〉
〈item hash = “9213317FCA”〉 sharedComOld.class 〈/item〉 〈/module〉

〈exports〉
〈type〉
〈item〉 class sharedActiveXControl 〈/item〉 〈/type〉

〈/exports〉 〈/component〉
〈component〉
〈name〉 sharedCom 〈/name〉
〈module〉
〈item hash = “683EE18970”〉 sharedComNew.class 〈/item〉 〈/module〉

〈exports〉
〈type〉
〈item〉 class sharedActiveXControl 〈/item〉 〈/type〉

〈property〉
〈item〉 prpTypeSafety 〈/item〉

〈/property〉 〈/exports〉 〈/component〉 〈/library〉 〈/linkingPolicy〉

Figure 3.3: An example of linking policy

CHAPTER 3. SL INTERFACE 34

LinkingPolicy ::= linkingPolicy Library∗ PropertyServer∗ RequiredPrps∗

Library ::= library ExportComponentId+

KeyAuthority ::= keyAuth ServerIdItem+

PropertyServer ::= propertyServer ServerIdItem+

RequiredPrps ::= requiredPrps PropertyIdtem+

ExportComponentId ::= component Name Modules Exports∗

Name ::= name NameId
Modules ::= module ModuleIdItem+

Exports ::= exports Types∗ Properties∗

NameId ::= String
ModuleIdItem ::= item HashCode ModuleName
ModuleName ::= String
HashCode ::= hash QuotedString
Types ::= type TypeIdItem+

TypeIdItem ::= String
Properties ::= property PropertyIdItem+

PropertyIdItem ::= String
ServerIdItem ::= String
String ::= (0|1| . . . |a|b| . . . |z|A|B| . . . |Z| |)+

QuotedString ::= “String”

Figure 3.4: Abstract syntax of the linking policy description language

CHAPTER 3. SL INTERFACE 35

3.2.3 Key authorities

Tags 〈keyAuth〉 and 〈/keyAuth〉 are used for enumerating the names of trusted key au-

thorities whom a code consumer trusts. Key authorities are responsible for providing the

bindings between a principal and its public key. A code consumer must know the public

keys of those key authorities, and public keys of any other principals should be accom-

panied by verifiable key certificates from trusted key authorities. Key certificates usually

form a chain of trust, and this is why the names of trusted key authorities are exposed to

code providers. In order to get any public keys used in their linking proofs, code providers

must make it sure that the chain of their key certificates ends up with a certificate signed

by any of the trusted key authorities of a code consumer.

In the example, Bob has one trusted key authority, Diane; therefore, Alice should get

key certificates directly from Diane, or should build a chain of key certificates originated

from Diane.

3.2.4 Property servers

As explained in Chapter 2, neither a code consumer nor a code provider has to know who

is responsible for guaranteeing which properties; instead both parties depend on another

kind of authorities called property servers. They certify the bindings between a property

and its property authorities, and a code consumer trusts the certificates only from his

trusted property servers after verifying their digital signatures. Since the assurances

about property-authority bindings should be given together with a linking proof, a code

consumer must specify at least one property server of his trust. Tags 〈propertyServer〉

and 〈/propertyServer〉 are used for enumerating the names of trusted property servers.

Bob enumerates two property servers, Emily and Ethan, in this linking policy by using

a tag 〈item〉 under the 〈propertyServer〉 tag.

CHAPTER 3. SL INTERFACE 36

3.2.5 Library components

Code consumers can control the visibility of software components in their system (called

library components) by enumerating, in their linking policies, only the library components

which they want to allow to be visible outside, and by hiding the library components

which they don’t want to expose. A tag 〈library〉 is used for enumerating the library

components which a code consumer wants to export.

A library component description, L, is a tuple, (N ,M, E), where

• N is the name of a library component.

• M is a list of modules making up of a library component.

• E consists of a list of exported type identifiers and a list of exported property names.

Note that the library component description is different from the basic component

description only in terms that it doesn’t have an import part. Since the library compo-

nents are already trusted as a part of a code consumer’s system, the safety of a library

component’s importing other components doesn’t need to be verified; indeed it is more

important to specify what the library components provide to outside components of the

system than what they require from other parts in the same system.

The library part of a linking policy consists of a list of library component descriptions,

and each of which looks similar to basic component description. Each library compo-

nent description is marked by tags 〈component〉 and 〈/component〉, and the syntax and

semantics of sub-tags are the same to those used for basic component description.

In Figure 3.3, a code consumer has two different library component the name of both

components is sharedCom. They have the same exported type identifiers as well as the

same component name. These components could be different implementations of the

same traditional component interface.5 But one component can be distinguished from

5 Traditional component interfaces reason about only type identifiers

CHAPTER 3. SL INTERFACE 37

the other within the Secure Linking framework since their exported properties are dif-

ferent. A foreign component described in Figure 3.1 is importing a component named

sharedCom supplying a type identifier class sharedActiveXControl and a property

named prpTypeSafety. Although Bob has two library components named sharedCom,

the second library component will be picked for linking by the Secure Linking framework.

It is because the second component exports the property prpTypeSafety required from

the foreign component while the first one doesn’t.

Chapter 4

SL Logic: Syntax

Linking policies of code consumers and component descriptions from code providers are

written in the user interface languages explained in Chapter 3; before being verified, they

are translated into the linking logic by the dedicated parsers. The linking logic plays as

a core part in the Secure Linking framework. The linking decision process is expressed

in the linking logic, and the decision about the safety of a foreign software component

depends on the proof written in this logic. Hence, the logic should have clear interface

for easy use and semantics powerful enough to cover different kinds of complicate linking

decision processes.

The logic of the Secure Linking framework is a higher-order logic defined on top of

PCA logic [3], and has a semantic model. In the Secure Linking logic, the meaning of each

operator is defined in terms of the underlying PCA logic and its underlying higher-order

logic, and its inference rules using operators are then proved as lemmas.

In this chapter, I explain the syntax and the inference rules of the linking logic. These

two make up the interface of the linking logic. Understanding the interface of the linking

logic gives users good intuition how to construct a linking proof written in the Secure

Linking logic. The next chapter is dedicated to a more detailed explanation of the semantic

model of the linking logic.

38

CHAPTER 4. SL LOGIC: SYNTAX 39

4.1 Term Constructors and Predicates

One of the basic units in the linking logic is a logic term. Terms are built by using

term constructors, and various predicates are used to express the relation among logical

terms. A formula in the Secure Linking logic is constructed by applying terms to a

predicate. Since the Secure Linking logic adopts a semantic approach, each operator

(term constructors or predicates) has its own definitions written in the underlying higher-

order logic.

Term constructors build logical terms to represent the entities in Secure Linking (such

as principals, component description, certificates, and so on) or fundamental structures

(such as lists and sets). I will briefly explain the syntax of some terms in this section, but

not of all.

Predicates are used for describing relations of SL logic terms. The predicates are cat-

egorized by their purposes in the linking logic: predicates for linking decision, predicates

for certificates from various authorities, and so on. The predicates are categorized by

the meaning of relation which each predicate stands for. Although the meaning of the

predicates (or inference rules) is not the topic of this chapter, it would be helpful for

understanding the intuitive roles of predicates in Secure Linking.

In this section, I will explain how to write formulas in the Secure Linking logic with

using the examples given in Chapter 3, and give the full syntax of term constructors and

predicates.

4.1.1 Translating linking policies

Linking policies are translated into the Secure Linking logic by the parser explained in

Chapter 3. Recall the example of Alice and Bob given in Chapter 2, and how Bob’s linking

policy has been written in the linking policy description language in Chapter 3. The

linking policy in Figure 3.3 is translated by the parser of the Secure Linking framework,

CHAPTER 4. SL LOGIC: SYNTAX 40

1 bob n prp1 ≡ mk str(s, mk str(a, . . .)).
2 % a string ‘‘safeUseOfShareCom’’
3 bob r prp1 ≡ mk prp(bob n prp1).
4 bob rprps ≡ set union(set singleton(rq component name exists),
5 set union(set singleton(rq export ids exists),
6 set union(set singleton(rq code hash checkable),
7 set union(set singleton(mk prp rq(bob r prp1)),
8 set empty)))).
9 diane : worldview.
10 bob ax key auth1 ≡ key authority(diane).
11 bob ax keybind1 ≡ keybind(diane, ‘‘4920035A6...’’).
12 emily : worldview.
13 bob ax prp server1 ≡ prp server(emily).
14 ethan : worldview.
15 bob ax prp server2 ≡ prp server(ethan).

Figure 4.1: A linking policy written in the SL logic

resulting in formulas in Figure 4.1 and Figure 4.2.

The linking policy begins with a set of required properties from Bob. In this example,

Bob requires the property safeUseOfSharedCom from foreign software components. To

make a property request of the property safeUseOfSharedCom, Bob constructs an identi-

fier bob n prp1 by using a term constructor mk str (at line 1), and constructs a property

out of the identifier by using a term constructor mk prp (at line 3).

Required properties from a code consumer are coded as a union set of property re-

quests. Bob’s required property safeUseOfSharedCom is unioned with three pre-defined

properties in Secure Linking. Secure Linking requires a foreign software component to

have a name, which is encoded as a property request rq component name exists (at

line 4). A foreign software component in Secure Linking must export a list of type

identifiers (encoded as a property request rq export ids exists at line 5), and the

modules of the component must have valid cryptographic hash codes (encoded as a

property request rq code hash checkable at line 6). A property request for the prop-

erty safeUseOfSharedCom is constructed by using a term constructor mk prp rq (at

line 7). The term constructors for core property requests (mk prp component name,

CHAPTER 4. SL LOGIC: SYNTAX 41

16 bob n libCom1 ≡ mk str(s, mk str(h, . . .)).
17 % a string ‘‘sharedCom’’
18 bob m1 n libCom1 ≡ mk str(s, mk str(h, . . .)).
19 % a string ‘‘sharedComOld.class’’
20 bob m1 libCom1 ≡ mk module(bob m1 n libCom1, mk hcode(9213317FCA)).
21 bob mlist libCom1 ≡ list cons(bob m1 libCom1, list nil).
22 bob id1 libCom1 ≡ mk str(c, mk str(l, . . .)).
23 % a string ‘‘class sharedActiveXControl’’
24 bob idList libCom1 ≡ list cons(bob id1 libCom1, list nil).
25 bob c libCom1 ≡ list cons(mk prp component name(bob n libCom1),
26 list cons(mk prp code hash(bob mlist libCom1),
27 list cons(mk prp export ids(bob idList libCom1,
28 list nil)))).
29 bob ax libCom1 ≡ library dsc(bob mlist libCom1, bob c libCom1).
30 bob n libCom2 ≡ mk str(s, mk str(h, . . .)).
31 % a string ‘‘sharedCom’’
32 bob m1 n libCom2 ≡ mk str(s, mk str(h, . . .)).
33 % a string ‘‘sharedComNew.class’’
34 bob m1 libCom2 ≡ mk module(bob m1 n libCom2, mk hcode(683EE18970)).
35 bob mlist libCom2 ≡ list cons(bob m1 libCom2, list nil).
36 bob id1 libCom2 ≡ mk str(c, mk str(l, . . .)).
37 % a string ‘‘class sharedActiveXControl’’
38 bob idList libCom2 ≡ list cons(bob id1 libCom2, list nil).
39 bob prp1 libCom2 ≡ mk prp(mk str(p, mk str(r, mk str(p, . . .)))).
40 bob c libCom2 ≡ list cons(mk prp component name(bob n libCom2),
41 list cons(mk prp code hash(bob mlist libCom2),
42 list cons(mk prp export ids(bob idLIst libCom2),
43 list cons(bob prp1 libCom2),
44 list nil))).
45 bob ax libCom2 ≡ library dsc(bob mlist libCom2, bob c libCom2).
46 bob lib modules ≡ list cons(bob mlist libCom1,
47 list cons(bob mlist libCom2, list nil)).
48 bob lib exports ≡ list cons(bob c libCom1,
49 list cons(bob c libCom2, list nil)).

Figure 4.2: A linking policy written in the SL logic (continued)

CHAPTER 4. SL LOGIC: SYNTAX 42

mk prp code hash and mk prp export ids) will be discussed in Chapter 7. Bob’s required

property set bob required prps is constructed out of four property requests by using set

constructors set union, set singleton and set empty (at lines 4–8).

The second part of Bob’s linking policy in Figure 3.3 enumerates the names of trusted

authorities. Bob has one trusted key authority named Diane. In the linking policy written

in the Secure Linking logic, Bob defines a principal diane of type worldview (at line 9).

Principals in the Secure Linking logic (such as code consumers, code providers, and various

authorities) are of type worldview, which is the type defined in PCA logic. Bob declares

that he trust Diane as a key authority by using a predicate key authority (at line 10).

To verify key certificates, Diane’s public key must be known to Bob in advance. Thus

Diane’s key binding is given by using a term constructor keybind as a part of the linking

policy (at line 11).

Figure 3.3 shows that Bob has two trusted authorities as property servers. As ex-

plained in Section 2.9, property servers are principals who are providing the bindings

between properties and property authorities. Bob’s trust in a property server is encoded

by using a term constructor prp server. Bob declares Emily (at line 13) and Ethan (at

line 15) as his trusted property servers.

The remaining part of Bob’s linking policy is used for describing the library component

information which Bob provides. The resulting linking policy written in the Secure Linking

logic is given in Figure 4.2. Each component in the list of library components of Figure 3.3

is translated into the Secure Linking logic one by one. The name of Bob’s first library

component sharedCom is translated into an identifier in the Secure Linking logic (at line

16).

The information of modules is also encoded in the logic as follows: The file name of a

module sharedComOld.class is coded as an identifier (at line 18), and a module in the

logic is constructed by using a term constructor mk module out of the identifier (at line

18) and a cryptographic hash code given in the linking policy description (at line 20).

CHAPTER 4. SL LOGIC: SYNTAX 43

Because a library component usually consists of more than one modules, the modules of

a component make up a list. Although Bob’s first library component sharedCom consists

of only one module, a list of modules bob mlist libCom1 is constructed by using list

constructors list cons and list nil (at line 21).

Figure 3.3 shows that Bob’s first library component sharedCom exports a type iden-

tifier class sharedActiveXControl. The type identifier class sharedActiveXControl

is converted into a identifier in the Secure Linking logic (at line 22), and comprises a

list of exported identifiers bob idList libCom1 (at line 24). The exported properties of

Bob’s first library component sharedCom consists of three default properties: a component

name constructed by a term constructor mk prp component name (at line 25), cryp-

tographic hash codes of modules constructed by a term constructor mk prp code hash

(at line 26), and a list of exported type identifiers constructed by a term constructor

mk prp export ids (at line 27). All the properties that Bob’s first library component

exports are encoded in the form of a list by using list cons and list nil (at lines 25–28). In

the same way, the second library component of Bob’s is translated into the Secure Linking

logic (at lines 30–44).

Since library components reside in Bob’s system and must be trusted, a binding be-

tween modules and its export of a library component is given as an axiom. A binding

between the library modules bob mlist libCom1 and the export bob c lib Com1 (at line

29), and another binding between the library modules bob mlist libCom2 and the export

bob c lib Com2 (at line 45) are translated into axioms by a predicate library dsc.

Bob has more than one library components in his linking policy, so they are encoded

as a list of library modules (at lines 46–47), and a list of library exports (at lines 48–49).

4.1.2 Translating component description

Alice must describe her component webpageViewer in the component description language

to Bob, and the result is shown in Figure 3.1. The component description is translated

CHAPTER 4. SL LOGIC: SYNTAX 44

1 alice n dsc1 ≡ mk str(w, mk str(e, . . .)).
2 % a string ‘‘webpageViewer’’
3 alice m1 n dsc1 ≡ mk str(d, mk str(i, . . .)).
4 % a string ‘‘display.class’’
5 alice m1 dsc1 ≡ mk module(alice m1 n dsc, mk hcode(194CA77319)).
6 alice m2 n dsc1 ≡ mk str(u, mk str(s, . . .)).
7 % a string ‘‘userInput.class’’
8 alice m2 dsc1 ≡ mk module(alice m2 n dsc, mk hcode(EF41900142)).
9 alice mlist dsc1 ≡ list cons(alice m1 dsc,
10 list cons(alice m2 dsc, list nil)).
11 alice id1 dsc1 ≡ mk str(c, mk str(l, . . .)).
12 % a string ‘‘class contentFrame’’
13 alice id2 dsc1 ≡ mk str(i, mk str(n, . . .)).
14 % a string ‘‘interface inputForm’’
15 alice idList dsc1 ≡ list cons(alice id1 dsc,
16 list cons(alice id2 dsc, list nil)).
17 alice prp1 dsc1 ≡ mk prp(mk str(s, mk str(a, . . .)))
18 % a property ‘‘safeUseOfSharedCom’’
19 alice export dsc1 ≡ list cons(mk prp component name(alice n dsc),
20 list cons(mk prp code hash(alice mlist dsc),
21 list cons(mk prp export ids(alice idList dsc),
22 list cons(alice prp1 dsc, list nil)))).
23 alice n imprtCom1 ≡ mk str(s, mk str(h, . . .)).
24 % a string ‘‘sharedCom’’
25 alice id1 imprtCom1 ≡ mk str(s, mk str(h, . . .)).
26 % a string ‘‘sharedActiveXControl’’
27 alice idList imprtCom1 ≡ list cons(alice id1 imprtCom1, list nil).
28 alice prp1 imprtCom1 ≡ mk prp(mk str(p, mk str(r, . . .))).
29 % a property ‘‘prpTypeSafety’’
30 alice import imprtCom1 ≡ list cons(mk rq component name(alice n imprtCom1),
31 list cons(mk rq export ids(alice idList imprtCom1),
32 list cons(mk prp rq(alice prp1 imprtCom1),
33 list nil))).
34 alice importList dsc1 ≡ list cons(alice import imprtCom1, list nil).
35 alice dsc1 ≡ mk component dsc(alice export dsc1,
36 alice importList dsc1).

Figure 4.3: A component description written in the SL logic

CHAPTER 4. SL LOGIC: SYNTAX 45

into the Secure Linking logic by the parser of the Secure Linking framework, resulting in

formulas in Figure 4.3.

The description of the component webpageViewer begins with the component name.

It is encoded as an identifier (at line 1). The component webpageViewer consists of

two module files display.class and userInput.class, and they are translated into a

list of modules in the Secure Linking logic (at lines 3–10) in the same way explained in

Section 4.1.1. Exported type identifiers forms a list after they are converted into identifiers

in the Secure Linking logic (at lines 11–16), and the property safeUseOfSharedCom which

Alice’s component exports is translated into the Secure Linking logic by using mk prp (at

lines 17–18). The export of Alice’s component webpageViewer consists of three core

properties as well as the property safeUseOfSharedCom, making up a list (at lines 19–

22). The detail is omitted because the translating procedure so far is exactly the same as

the procedure given in Section 4.1.1.

A software component usually depends on other components, therefore the information

about dependent components must be specified in the component description. Figure 3.1

shows that Alice’s component relies on a software component named sharedCom. The

name of the library component imported by Alice is encoded as an identifier (at line 23),

and type identifiers required from the library component are encoded as a list of identifiers

alice idList imprtCom1 (at line 27). It is possible for code providers in Secure Linking to

ask some useful properties from library components when they import library components.

In case of Alice, she requires a property prpTypeSafety from the imported component

sharedCom. The requirement for an imported component is encoded as a list of property

requests: a request for the name of the library component (at line 30), a request for type

identifiers (at line 31), and a request for the property prpTypeSafety (at line 32). It is

usual for a component to import more than one library components; thus the specification

of imported library components forms a list of imports, each element of which is requests

for one library component. The import requests of Alice’s component is encoded as a list

CHAPTER 4. SL LOGIC: SYNTAX 46

alice importList dsc1 (at line 34).

A component description consists of its export and import. The description of Alice’s

component webpageViewer is finally constructed by using a term constructor

mk component dsc (at line 35).

4.1.3 Formal syntax

In the previous sections, I explained how to write a linking policy and a component de-

scription in the Secure Linking logic with an example. The full syntax of term constructors

is given in Figure 4.4, and Figure 4.5 shows the syntax of predicates of the Secure Linking

logic.

• A component description C can be made by using a term constructor

mk component dsc taking an export part Ce and an import part Ci. Otherwise, a

component description can be a result of combining two component descriptions by

a term constructor cdsc combine. For example, the component description from

Alice alice dsc1 is constructed out of an export alice export dsc1 and an import list

alice importList dsc1 at line 35 of Figure 4.3.

• A component description’s export is a list of properties. It also can be extracted from

a component description by using a term constructor cdsc exprt. In the example,

the export part alice export dsc1 of Alice’s component, consisting of four different

property requests, is defined at line 19.

• A component description’s import is a list of imports, each element of which Rp is

a set of property requests. The list can be extracted from a component description

by using a term constructor cdsc imprt list. At line 30 of Figure 4.3 shows that

Alice’s import is a list of only one element alice import imprtCom1.

• An element of a component description’s import list is a set of property requests

type Rp. A set is constructed by using set constructors set union, set singleton

CHAPTER 4. SL LOGIC: SYNTAX 47

(Terms) τ ::= C | Ce | Ci |M |Mc | Lm | Ld

| P |R |Rp | Ic | Is |H | L(τ)
| S(τ)| K |N |W |F

(Component Description) C ::= mk component dsc(Ce, Ci)
| cdsc combine(C, C)

(Component Export) Ce ::= L(P) | cdsc exprt (C)
(Component Import lists) Ci ::= L(Rp) | cdsc imprt list(C)
(Module) M ::= mk module(I,H)
(Component Modules) Mc ::= L(M)
(Library Modules) Lm ::= L(Mc)
(Library Description) Ld ::= L(Ce)
(Property) P ::= mk prp(I)
(Property Requests) R ::= mk prp rq(P)
(Required Properties) Rp ::= S(R)
(Characters) Ic ::= mk ch(N)
(Identifiers) Is ::= mk str(Ic, Is)
(Hash Codes) H ::= mk hcode(N)
(Lists) L(τ) ::= list nil

| list cons(τ,L(τ)) | list cat(L(τ),L(τ))
(Sets) S(τ) ::= set empty

| set singleton(τ) | set union(S(τ),S(τ))
(Key) K ::= {“011F9290E8821202”, “433C0555D4920035”, . . . }
(Numbers) N ::= {0, 1, 2, . . .}
(Worldview) W ::= {Alice, Bob, . . . }

Figure 4.4: Syntax of term constructors

CHAPTER 4. SL LOGIC: SYNTAX 48

(Predicates) F ::= Fs | Fpm | Fax | Fct | Fa | Fc | Fce | Fci

| Fp | Fi | Fm | Fmc | Fl | Fst | Feq

(Linking predicates) Fs ::= ok to link(Mc, C,Lm,Ld,Rp)
| export required prps(Rp, Ce)
| provide enough lib(Ci,Lm,Ld)
| satisfy imports(Ci,Ld)
| imprt match(Rp,Ld)
| valid library(Lm,Ld)

(Property match predicates) Fpm ::= has property(Rp, Ce)
| has prp(R, Ce)

(Axiom predicates) Fax ::= key authority(W) | keybind(W,K)
| prp authority(W)
| prp server(W)
| library dsc(Mc, C)
| signed(K,Fct)

(Certificate predicates) Fct ::= keybind(W,K)
| guarantees(W,S(R))
|module dsc(Mc, C)

(Authentication predicates) Fa ::= signed component dsc(Mc, C)
| all signed(Mc, C, Ce)
| signed prp(Mc, C,P)
| signed by auth(Mc, C,P)
| valid sig prp auth(W,Rp)
| valid sig component dsc(W,Mc, C)
| keycert(W,K)

(Component predicates) Fc ::= component dsc valid(C)
| component dsc eq(C, C)
| sub component dsc(C, C)
| sub export(Ce, Ce) | sub import list(Ci, Ci)

(Component export predicates) Fce ::= export valid(Ce) | export eq(Ce, Ce)
(Component import predicates) Fci ::= import list valid(Ci) | import list eq(Ci, Ci)
(Property predicates) Fp ::= prp valid(P) | prp eq(P) | prp match(R,P)
(Identifier predicates) Fi ::= ide valid(Is)
(Module predicates) Fm ::= module valid(M) |module eq(M,M)
(Component module predicates) Fmc ::= cmodule valid(Mc) | cmodule eq(Mc,Mc)
(List predicates) Fl ::= list valid(EQ(τ),L(τ))

| list is nil(L(τ))
| list member(L(τ), τ)
| list eq(EQ(τ),L(τ),L(τ))

(Set predicates) Fst ::= set member(S(τ), τ) | set is empty(S(τ))
(Equality predicates) Feq ::= validper(EQ(τ)) | validper refl(EQ(τ), τ)

Figure 4.5: Syntax of predicates

CHAPTER 4. SL LOGIC: SYNTAX 49

and set empty. In the example, an import alice import imprtCom1 consists of a

property request standing for an imported component’s name, a property request

for imported type identifiers and a property request for a property prpTypeSafety.

• A software component usually consists of a set of modules rather than only one

module, so a list of modules Mc is used for a component description. A module is

constructed by using a term constructor mk module out of a binary file name and

its cryptographic hash code. The component from Alice consists of two modules:

one module alice m1 dsc1 is defined at line 5 and the other module alice m2 dsc1 is

defined at line 8.

• A property P is made out of a name of the property by using a term constructor

mk prp.

• A property request R is constructed from a property by using a term constructor

mk prp rq.

• A public key K is a string composed by hexadecimal numbers.

• Principals in the Secure Linking logic (such as code consumers, code providers, and

various authorities) are of type worldview, which is the type defined in the PCA

logic.

4.2 Inference Rules

Inference rules describe the relation between predicates. The inference rules define the

interface of the Secure Linking logic. To build a linking proof, users (or provers) are guided

by inference rules rather than delving into the details of the logic. All the inference rules

are, in fact, lemmas of the Secure Linking logic, and they are all proved to be machine-

checkable. They are also a selected set of lemmas to hide the details of the Secure Linking

logic from the outside view.

CHAPTER 4. SL LOGIC: SYNTAX 50

signed component dsc(alice mlist dsc1, alice dsc1)
provide enough lib(cdsc imprt list(alice dsc1, bob lib modules, bob lib exports)
export required prps(bob rprps, cdsc exprt(alice dsc1)

ok to link(alice mlist dsc1, alice dsc1, bob lib modules, bob lib exports, bob rprps)

has property(bob rprps, alice export dsc1)

export required prps(bob rprps, alice export dsc1)

....
export eq(cdsc prps(alice dsc1), alice export dsc1)

export required prps(bob rprps, cdsc prps(alice dsc1))

Figure 4.6: Alice’s Secure Linking proof

4.2.1 Building a proof

Alice in the example must build a proof saying that her component exports all the prop-

erties required by the code consumer Bob. This can be done by showing that the set of

modules and the component description satisfy the predicate ok to link with respect to

the linking policy specified by Bob. Let’s call the formula of the predicate ok to link

applied by a set of modules and a component description an SL theorem The rule

ok to link i in Figure 4.7 is the inference rule used for building a linking proof which a

code provider should submit. Figure 4.6 shows a couple of derivations from the proof of

the SL theorem with Bob’s linking policy and Alice’s component description.

In the example of Alice and Bob, Alice should prove that her SL theorem

ok to link(alice mlist dsc1,alice dsc1,bob lib modules,bob lib exports,bob rprps)

holds. To prove this theorem, Alice must show that its three sub-theorems are satis-

fiable (by the rule ok to link i):

• signed component dsc(alice mlist dsc1, alice dsc1),

• provides enough lib(cdsc imprt list(alice dsc1), bob lib modules,

bob lib exports) and

• exports required prps(bob rprps, cdsc prps(alice dsc1))

The second derivation in Figure 4.6 shows how to prove the third sub-theorem. Proving

the theorem exports required prps(bob rprps, cdsc prps(alice dsc1)) is reduced

CHAPTER 4. SL LOGIC: SYNTAX 51

to proving two sub-theorems export required prps(bob rprps, alice export dsc1)

and export eq(component dsc prps(alice dsc1), alice export dsc1) by the rule ex-

port rprp congr in Figure 4.7; and then, proving the first sub-theorem export re-

quired prps(bob rprps, alice export dsc1) is reduced to another sub-theorem

has property(bob rprps, alice export dsc1) by the inference rule export required -

prps i in Figure 4.7.

Each theorem is reduced to smaller sub-theorems, and reduction continues until there

exists no more sub-theorems. The derivation of her SL theorem is the proof Alice must

submit to Bob with her component. After getting the component and the proof, Bob

checks if the derivation is valid with a trusted proof checker; and if the derivation is valid,

Bob allows the component to be linked to his system.

In the following subsections, I will show inference rules used for making linking deci-

sions and authentication, and give explanation how they work.

4.2.2 Linking

The inference rules in the linking group are the rules for proving an SL theorem at the first

step. They introduce formulas of the predicates provide enough lib, export required prps,

and other predicates used for proving their premises. The inference rules for the predicate

signed component dsc are explained in Section 4.2.3.

The predicate export required prps holds if a given export Ce has enough properties to

satisfy all the property requests in a set Rp (by the rule export required prps i). The

predicate export required prps also holds for an export Ce and a set Rp if the predicate

holds for another export Ce
′, which is export eq to Ce, and a set Rp.

The predicate provide enough lib holds if given library information Lm and Ld satisfies

the predicate valid library, and the predicate satisfy imports is proved with an import list

Ci and the library information Ld by the rule provide enough lib i.

The predicate satisfy imports holds if every import of an import list Ci, the first input

CHAPTER 4. SL LOGIC: SYNTAX 52

signed component dsc (Mc, C)
provide enough lib (component dsc import(C), Lm, Ld)
export required prps (Rp, component dsc prps(C))

ok to link (Mc, C, Lm, Ld, Rp)
(ok to link i)

has property (Rp, Ce)
export required prps (Rp, Ce)

(export required prps i)

export eq(Ce, Ce
′)

export required prps(Rp, Ce
′)

export required prps(Rp, Ce)
(export rprps congr)

set is empty (Rp)
has property (Rp, Ce)

(has property set empty)

has prp (R,Ce)
has property (set singleton (R), Ce)

(has property set singleton)

has property (Rp, Ce)
has property (Rp

′, Ce)
has property (set union (Rp, Rp

′), Ce)
(has property set union)

valid library (Lm, Ld)
satisfy imports (Ci, Ld)

provide enough lib (Ci, Lm, Ld)
(provide enough lib i)

list is nil (Ci)
satisfy imports (Ci, Ld)

(satisfy imports nil)

imprt match (Rp, Ld)
satisfy imports (Ci, Ld)

satisfy imports (list cons(Rp, Ci), Ld)
(satisfy imports cons)

satisfy imports (Ci, Ld)
satisfy imports (Ci

′, Ld)
satisfy imports (list cat(Ci, Ci

′), Ld)
(satisfy imports cat)

Figure 4.7: Rules for linking

CHAPTER 4. SL LOGIC: SYNTAX 53

argument of the predicate finds its match in the list of library information Ld. Hence, it

has three introducing rules, satisfy imports nil, satisfy imports cons, satisfy imports cat.

The rules are reasoning about the cases when the import list is nil, when the import list is

constructed by list cons, and when the import list is constructed by list cat respectively.

The predicate has property takes two arguments of type Rp and Ce, and it has three in-

troducing rules according to the structure of the first argument. The predicate has property

holds if the first argument is a empty set (rule has property set empty), if the first ar-

gument is formed by using a term constructor set singleton and the property request R

is satisfied by the second argument Ce (rule has property set singleton), or if the first

argument is formed by using a term constructor set union and each of constituent sets is

satisfied by the second argument Ce (rule has property set union).

4.2.3 Authentication

The inference rules in this category is focusing on introducing a formula formed by the

predicate signed component dsc. The rule signed component dsc holds if a component

description C is valid, and if there exists another component description C ′ which is equal

to the component description C and it satisfies the predicate all signed with the module

list of C and the export properties of C.

A property authority WV is the authority who can make an assurance of a property

P , if the formula valid sig prp auth(WV, P) is provable. The predicate valid sig prp auth

holds if there exist a key authority WV ′ and a property server WV ′′, the key authority

says the public key of the property server is K, and a property-authority certificate

guarantees(WV, P) is signed by K (rule valid sig prp auth i).

A component description C and its related modules Mc are considered as properly

signed by a property authority WV if the formula valid sig component dsc(WV, Mc, C)

is provable. The predicate valid sig component dsc holds if WV is a property authority,

if there exists a key authority WV ′ who says the public key of the property authority

CHAPTER 4. SL LOGIC: SYNTAX 54

component dsc valid (C)
component dsc eq (C,C ′)
all signed (Mc, C

′, cdsc prps (C))
signed component dsc (Mc, C)

(signed component dsc i)

list is nil (Ce)
all singed (Mc, C, Ce)

(all signed nil)

prp eq (P, P ′)
signed prp (Mc, C, P ′)
all signed (Mc, C, Ce)

all signed (Mc, C, list cons(P,Ce))
(all signed cons)

all signed (Mc, C, Ce)
all signed (Mc, C, Ce

′)
all singed (Mc, C, list cat(Ce, Ce

′))
(all signed cat)

sub component dsc (C,C ′)
signed by auth (Mc, C

′, P)
signed prp (Mc, C, P)

(signed prp i)

valid sig prp auth (WV, Rp)
set member (Rp, R)
prp match (R,P)
valid sig component dsc (WV, Mc, C)

signed by auth (Mc, C, P)
(signed by auth i)

key authority (WV ′)
prp server (WV ′′)
says (WV ′, (keybind (WV ′′,K)))
signed (K, guarantees (WV, P))

valid sig prp auth (WV, P)
(valid sig prp auth i)

prp authority (WV)
key authority (WV ′)
says (WV ′, keybind (WV, K))
signed (K, module dsc (Mc,C))

valid sig component dsc (WV, Mc, C)
(valid sig component dsc i)

key authority (WV ′)
says (WV ′, (keybind (WV, K)))
signed (K, Fct)

says (WV, Fct)
(says i)

Figure 4.8: Rules for authentication

CHAPTER 4. SL LOGIC: SYNTAX 55

keybind (WV, K)
(keybind i1)

key authority (WV ′) says (WV ′, (keybind (WV, K)))
keybind (WV, K)

(keybind i2)

Figure 4.9: Rules for key binding

is K, and if K signed that the component description C is the proper description of the

modules Mc (rule valid sig prp auth i).

The inference rules in Figure 4.9 shows how to introduce a binding between a principal

and its public key. The key binding of a trusted key authority is given as an axiom (rule

keybind i1). Except for the key bindings of key authorities, all the key bindings should

be introduced by using the rule keybind i2.

Chapter 5

SL Logic: Semantic Model

When building a system in logic, there are two different approaches: syntactic or semantic.

In this chapter, I will briefly explain two approaches to achieve the same goal with a very

simple example. Then I will explain the semantics of the Secure Linking logic using the

semantic approach. I will also discuss the soundness of the Secure Linking logic later in

this chapter.

5.1 Syntactic vs. Semantic Approach

Suppose that we are going to build a very, very simple system in logic, which compares two

natural numbers and determines if the first number is greater than the second number.

Figure 5.1 shows the syntax of simple-gt system. Natural numbers can be defined

inductively with zero and a successor function. There is only one expression in the simple-

gt system which is evaluated as true if the first argument is greater than the second

argument. The inference rules of simple-gt system is given at Figure 5.2. The rule gt-

zero shows that zero is the smallest natural numbers. The rule gt-succ is used for

comparing two successor numbers. A natural number (succ x) is greater than a natural

number (succ y) if the number x is greater than the number y.

56

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 57

type τ ::= nat | expr
nat n ::= zero | succ n
expr e ::= gt n n

Figure 5.1: The syntax of simple-gt system

gt (succ n) zero
[gt-zero]

gt x y

gt (succ x) (succ y)
[gt-succ]

Figure 5.2: Inference rules of simple-gt system

With these rules, it is possible to prove a natural number 3 (in the form of (succ

(succ (succ zero)))) is greater than a natural number 1 (in the form of (succ zero)).

The whole proof is given in Figure 5.3. First, the rule gt-succ is applied to reduce an

expression gt (succ (succ (succ zero))) (succ zero) into an expression gt (succ

(succ zero)) zero. The derivation is completed by applying the rule gt-zero.

For a logic system, it is useful to show that the system is consistent: what is provable

in the system is logically valid. Therefore, it should not be possible to prove both some

formula and its negation [19]. If it were possible, it would result in proving false, and

out of the proof of false, any arbitrary formula could be proved. If a logic system we

would build is not consistent, it is not of much use, because any formulas can be proved

in this logic system. Soundness of a logic is more powerful property than the consistency

of a logic. In a sound logic, any formula provable by the sound logic will be evaluated as

true in any model of the logic [19]. Thus, the soundness of a logic implies the consistency

of the logic.

There are two different ways to prove the consistency of a logic system: the syntactic

gt (succ (succ zero)) zero

gt (succ (succ (succ zero))) (succ zero)

Figure 5.3: A proof derivation of simple-gt system

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 58

gt (succ n) zero
gt-zero

gt (succ x) zero
gt-zero

gt (succ (succ x)) (succ zero)
gt-succ

gt (succ n) zero
gt-zero

.... gt-succ

gt (succ x) (succ y)
gt (succ (succ x)) (succ (succ y))

gt-succ

Figure 5.4: Proof trees for simple-gt system

and the semantic approaches. When using the syntactic approach, consistency is proved

by induction on the length of proofs. The consistency proof reasons about all proofs

that can be built from a given set of inference rules. To prove that the simple-gt system

is logically consistent, all the proofs which can be generated by the inference rules in

Figure 5.2 must be considered. Consider, for instance, a syntactic consistency theorem

saying that a false formula gt n (succ n) is not provable for any natural number n.

Figure 5.4 shows possible proof trees in the simple-gt system. Every proof tree ends with

the rule gt-zero because this is the only rule requiring no premises to be proved in the

simple-gt system. The proof of the consistency theorem is built by induction on the length

of derivation (that is, on the number of inference rules applied) in the simple-gt system.

The base case is when the length of derivation is 1. Applying the rule gt-zero once is

the only possible way to construct a proof of length 1, and the first proof tree in Figure 5.4

illustrates this case. It is obviously impossible to prove the consistency theorem for the

rule gt-zero when the proof length is 1; thus, for the base case, the consistency theorem

holds.

For the inductive step, suppose that the consistency theorem for the rule gt-zero

holds when the proof length is k. A proof of length k + 1 in the simple-gt system must

be constructed by applying the rule gt-succ k-times, and following applying the rule gt-

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 59

t: tp.
nat : tp = (t arrow t) arrow (t arrow t).

zero : tm nat = lam [f] lam [x] x.
succ : tm (nat arrow nat) = lam [n] lam [f] lam [x] f @ (n @ f @ x).

gt : tm (nat arrow nat arrow form) =
lam [a] lam [b]

forall [r]
(forall [n] r @ (succ @ n) @ zero) imp
(forall2 [x][y] r @ x @ y imp r @ (succ @ x) @ (succ y)) imp
r @ a @ p.

gt-zero : pf (gt @ (succ N) @ zero) = ...
gt-succ : pf (gt @ X @ Y) -> pf (gt @ (succ X) @ (succ Y)) = ...

Figure 5.5: The definition of simple-gt system

zero once. After applying the rule gt-succ, the formula gt n (succ n) is reduced to

a formula gt n’ (succ n’) where n ≡ (succ n’).1 So, if it were possible to prove the

formula gt n (succ n) in the simple-gt system, after applying the inference rules k + 1

times, it should be also possible to prove the formula gt n’ (succ n’) with applying

the inference rules k times. By the induction hypothesis, it is impossible to prove the

formula gt n’ (succ n’) with k steps, therefore it is impossible to prove the formula gt

n (succ n)) with k + 1 steps. By induction, the consistency theorem holds.

Another approach, which we adopt for the Secure Linking logic, is the semantic one.

With the semantic approach, operators in a logic system are defined by using an underlying

logic, and the logic system is called an object logic of the underlying logic. Each logic term

of an object logic is reduced to a term of the underlying logic; thus the soundness of the

object logic depends on the soundness of the underlying logic.

The semantic specification of simple-gt system is shown at Figure 5.5. Suppose that

we have a type t defined in an underlying logic, which has infinitely many elements. To

1If n is zero, there exists no applicable rules to the formula, and it contradicts the premise that the
proof length is k + 1.

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 60

model natural numbers, we used Church numerals [12]. The type nat is defined as a

higher-order function, which returns a function from type t to type t when applied by

an input function from type t to type t. A natural number is defined by the number of

times a function f is composed; the natural number zero is defined as an identity function

(that is, composed 0 times), and the successor function returns a function of type nat

after composing a function f once more. The predicate gt is defined on top of natural

numbers as illustrated in Figure 5.5.

With the definitions of nat, zero, succ and gt, the inference rules gt-zero and gt-

succ are defined as lemmas shown in Figure 5.5. The complete definition and the proved

lemmas of simple-gt system are given at Appendix B.

5.2 SL Logic Semantics

The Secure Linking logic adopts the semantic approach. Every operator is defined in terms

of operators of PCA logic and its underlying higher-order logic. The Secure Linking logic

consists of 65 definitions and 186 lemmas. The definitions must be trusted by a code

consumer, therefore be included in Trusted Computing Base (TCB) of Secure Linking.

The complete definition of the Secure Linking logic is given at Appendix C. The Secure

Linking logic also contains lemmas which is considered as useful for proving Secure Linking

theorems. All the lemmas in the Secure Linking logic are proved and the proofs amount to

about 2720 lines in the underlying higher-order logic. Since the lemmas are not trusted,

they should be checked by a trusted proof checker if they are used for proving Secure

Linking theorems.

The underlying Core Logic on which the Secure Linking logic relies is defined as

an object logic in Twelf [38]. The Twelf system is one of the implementations of the

logical framework LF [17], which allows the specification of logics. Figure 5.6 shows

some declarations. A metalogic (Twelf) type is a type, and an core-logic type is a tp.

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 61

tp: type.
tm: tp -> type.
form: tp.
arrow: tp -> tp -> tp.
pf: tm form -> type.
lam: (tm T -> tm U) -> tm (T arrow U).
@: tm (T arrow U) -> tm T -> tm U.
and: tm form -> tm form -> tm form.

and_i: pf A -> pf B -> pf (A and B) =
def_i: pf (B X) -> pf (lam B @ X) =

Figure 5.6: Core Logic definitions

Core Logic types are constructed from the type form of formulas of the Core Logic, and

the arrow constructor. Core Logic level terms of type T has type (tm T) in the Twelf

metalogic. Terms of type (pf A) are terms represented proofs of formula A.

The declarations beginning with lam introduce constants for constructing terms and

formulas. Intuitively, lam is used for constructing a λ-expression of a higher-order logic,

and @ is used for applying Core Logic level terms to a function which is constructed by

lam.

Figure 5.7 shows the definition of the predicate ok to link; the predicate is de-

fined using the Core Logic constructors lam and and as well as other SL predicates

signed component dsc, provide enough lib, and export required prps.

The lemma ok to link i can be used for constructing a pf term of ok to link out of

three pf terms. The lemma def i is used to derive a pf term of the lam constructor, and

the lemma and i is used to derive a pf term of the and constructor (See Figure 5.6). Note

that the lemma ok to link i exactly looks like the inference rule ok to link i in Figure 4.7.

Figure 5.8 shows the definitions of list constructors list member and list cat, and the

proof of a lemma list member cat i1. Lists are defined in the Core Logic of the SL frame-

work, consisting of constructors (such as list nil, list cons, list cat, sublist, list mapfun,

and so on), predicates (such as list valid, list length, list is nil, and so on), and lemmas

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 62

ok_to_link: tm (module_list arrow component_dsc arrow
(list module_list) arrow (list export) arrow
(set prp_rq) arrow form) =

lam [m] lam [cdsc] lam [lib] lam [libdsc] lam [rprps]
signed_component_dsc @ m @ cdsc and
provide_enough_lib @ (cdsc_imprt_list @ cdsc) @ lib @ libdsc and
export_required_rprps @ (cdsc_exprt @ cdsc).

ok_to_link_i :
pf (signed_component_dsc @ M @ Cdsc) ->
pf (provide_enough_lib @ (cdsc_imprt_list @ Cdsc) @ Lib @ Libdsc) ->
pf (export_required_prps @ Rprps @ (cdsc_exprt @ Cdsc)) ->
pf (ok_to_link @ M @ Cdsc @ Lib @ Libdsc @ Rprps) =
[p1][p2][p3]
def_i (def_i (def_i (def_i (def_i (and_i p1 (and_i p2 p3)))))).

Figure 5.7: Secure Linking logic definition and lemma

list_member: tm (list T arrow set T) =
lam2 [L][X] exists [I] list_nth @ L @ I @ X.

list_cat: tm (list T arrow list T arrow list T) =
lam4 [L1][L2][I][X]
exists [N]
list_length @ L1 @ N and
if (lt I N) (list_nth @ L1 @ I @ X) (list_nth @ L2 @ minus I N @ X).

list_member_cat_i1 :
{n} pf (list_length @ L1 @ n) ->
pf (list_member @ L1 @ X) ->
pf (list_member @ (list_cat @ L1 @ L2) @ X) =
[n][p2: pf (list_length @ L1 @ n)]
[p1: pf (list_member @ L1 @ X)]
exists_e (def2_e p1) [i][q1: pf (L1 @ i @ X)]
cut (list_index_inrange p2 (list_nth_i q1)) [q2: pf (inrange @ n @ i)]
def2_i (exists_i i
(def4_i (exists_i n
(and_i p2
(if_i1 (inrange_e3 q2) q1))))).

Figure 5.8: SL logic definitions (continued)

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 63

describing the properties of lists. The Secure Linking logic uses only three constructors

(list nil, list cons and list cat), and a couple of predicates (list valid and list is nil) among

those constructors and predicates. The semantic definition of list member says that a

value X is an element of a list L if there exists an index i and X is the ith element of the

list L. A list constructor list cat returns the ith element of the fist list L1 if the index i is

smaller than the length n of L1; otherwise it returns the (i − n)th element of the second

list L2.

The lemma list member cat i1 intuitively means that if a value X is a member of

the list L1, then X is a member of the concatenated list from the lists L1 and L2. The

lemma takes two premises: the length of the list L1 is n and the value X is a member of

L1. The proof is constructed by proof constructors2 in the Core Logic such as exists e,

def e, cut, and so on. The complete proof of the lemma is given in Figure 5.8. With the

semantic approach, the inference rules in the Secure Linking logic are coded as lemmas

and all of the lemmas are proved.

5.3 Soundness of the SL Logic

With the syntactic approach, the soundness of a logic is typically proved by induction over

all proofs that can be built from a given set of inference rules. However, with the semantic

approach, the soundness of a logic can be proved in a different way. As already mentioned,

PCA adopts a semantic model approach. That means each application-specific operator

is defined in terms of the underlying operators of higher-order logic. Each inference rule is

proved as a theorem of higher-order logic. Because each rule is proved sound independent

of all the others, the system is more modular. This makes it easier to add new application-

specific operators and rules as needed.

The soundness of the PCA logic has been proved relying on the soundness of its

underlying higher-order logic. The PCA logic consists of a higher-order logic and ax-
2 They are, in fact, proved lemmas in the Core Logic.

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 64

iomatic premises introduced by the predicate signed, standing for cryptographic signa-

tures. Bauer showed that the PCA logic is sound, and the way his access-control logic

introduces a set of axiomatic premises (of the form signed(A, F)) does not compromise

the soundness of the PCA logic [6, Section 3.3].

The same argument can be also applied to the soundness of the Secure Linking logic.

We have chosen the PCA logic as the underlying logic of the Secure Linking logic, ev-

ery term in the Secure Linking logic boils down to a term in higher-order logic, whose

soundness was proved by Church [12]. With the semantic approach we adopt for the Se-

cure Linking logic, the soundness of the underlying PCA logic and the higher-order logic

guarantees the soundness of any lemma provable in the SL logic.

Adding a set of premises with no semantic definitions could make the higher-order logic

inconsistent [6]. For example, if both F and ¬F are added to the Secure Linking logic,

one could derive false, and it would result in making it possible to prove any arbitrary

software component is acceptable regardless of linking policies or signed certificates.

The Secure Linking logic have three different kinds of axioms: axioms built in the

underlying logic, axioms added by trusted parties and and axioms added by untrusted

parties. Axioms in the underlying logic are not of much interest when the soundness of

the SL logic is discussed, because the set of axioms is fixed, and the soundness of the

underlying logic including the axioms has been already proved.

The second group of axioms are introduced by trusted parties such as code consumers

and the SL parsers. Three predicates are used for constructing axioms from trusted

parties: key authority, property server and library dsc. Axioms of those predicates are

constructed from a code consumer’s linking policy by the trusted SL parser. Axioms

of the predicate key authority is used for declaring key authorities who are trusted by a

code consumer, and axioms of the predicate property server is used for declaring trusted

property servers. The predicate library dsc is used for introducing the library information

of a code consumer’s to the Secure Linking logic. Those premises, however, must be

CHAPTER 5. SL LOGIC: SEMANTIC MODEL 65

generated by someone trusted (for example, a code consumer who establishes his own

linking policy or trusted parsers in the framework), so it is not probable for the axioms

in the second group having contradiction in order to interfere with the soundness of the

Secure Linking logic.

The third group of axioms are introduced by untrusted parties such as code providers.

The predicate signed in the PCA logic is the only constructor by which untrusted parties

can introduce axioms into the Secure Linking logic. Bauer already showed that axioms

introduced by signed cannot compromise the soundness of the PCA logic [6]. Therefore,

axioms of the third group cannot cause any inconsistency in the Secure Linking logic.

Hence, adding a set of axioms that Secure Linking allows to add doesn’t cause any

inconsistency in the Secure Linking logic.

Chapter 6

Tactical Prover

We have developed a tactical prover in order to help code providers prove Secure Linking

theorems. The tactical prover is a logic program running on the Twelf logical framework

[38]. A Secure Linking theorem with the modules and the component description from

a code provider is the goal to be proved, and axioms that are likely to be necessary

in proving the SL theorem are defined before starting proving. The prover generates a

derivation of the SL theorem; this is the proof that a code provider must send to a code

consumer.

Code providers can build their own proofs from scratch, but it is not easy for someone

who is not familiar with logic programming or with the Secure Linking logic to write down

the proof by himself. The prover is a tool designed for making the proving process easy,

signed component dsc(alice mlist dsc1, alice dsc1)
provide enough lib(cdsc import(alice dsc1, bob lib modules, bob lib exports)
export required prps(bob rprps, cdsc exprt(alice dsc1)

ok to link(alice mlist dsc1, alice dsc1, bob lib modules, bob lib exports, bob rprps)

has property(bob rprps, alice export dsc1)

export required prps(bob rprps, alice export dsc1)

....
export eq(cdsc prps(alice dsc1), alice export dsc1)

export required prps(bob rprps, cdsc prps(alice dsc1))

Figure 6.1: Alice’s Secure Linking proof (revisited)

66

CHAPTER 6. TACTICAL PROVER 67

fp signed cdsc(W,Mc, C)
fp exp prps(Rp, C)
fp prv prps(C,Lm, Ld)

fp ok to link(W,Mc, C, Lm, Ld, Rp)
[R.1]

fp has property(Rp, C)
fp exp prps(Rp, C)

[R.4]

fp has property(Rp, C)
fp has property(Rp

′, C)
fp has propety(set union(Rp, Rp

′), C)
[R.10]

fp has prp′(R,C)
fp has property(set singleton(R), C)

[R.11]

fp emptyset(Rp)
fp has property(Rp, C)

[R.12]

Figure 6.2: Rules in the SL tactical prover

but the tactical prover doesn’t need to be trusted. Any proof generated by the prover

should be verified by a trusted checker at link time, so any bugs causing the misbehavior

of the prover will get caught when checking the resulting proofs.

In this chapter, I explain the structure of the tactical prover, and prove the soundness,

the termination and the conditional completeness of the tactical prover.

6.1 Finding a proof

In Chapter 4, I showed how inference rules are used for proving a Secure Linking the-

orem. A proof of a Secure Linking theorem can be built out of inference rules and

logic definitions by users, but writing a proof in formal logic could be overwhelming to

users. Figure 6.1 shows the same proof tree given in Figure 4.6, and Figure 6.2 illustrates

the rules related to the predicates ok to link export required prps and has property.

With a SL theorem provided by users, the tactical prover starts to search a proof; the

proving always starts with the rule [R.1] because it is the only rule applicable to a for-

CHAPTER 6. TACTICAL PROVER 68

mula constructed by the predicate ok to link. By the rule [R.1], the goal is reduced

to three different subgoals:1 a subgoal fp signed cdsc alice mlist dsc1 alice dsc1,

a subgoal fp exp prps bob rprps alice dsc1, and a subgoal fp prv prps alice dsc1

bob lib modules bob lib exports. Then the prover tries to find a proof of each subgoal.

For the subgoal fp exp prps bob rprps cdsc prps(alice dsc1), the prover has only

one rule applicable, Rule [R.4]. By the rule [R.4], proving the goal fp exp prps bob rprps

cdsc prps(alice dsc1) is reduced to proving a subgoal fp has property bob rprps

cdsc prps(alice dsc1). Figure 6.2 shows that there are 3 rules for the tactical fp has -

property. The structure of the first term (of type Rp) decides which rule should be ap-

plied to a given goal. Recall that the set of property requests from Bob, bob rprps is

constructed by set-unioning 4 singleton sets (in Figure 4.1). Hence, Rule [R.10] is cho-

sen for proving this goal because bob rprps of the goal is constructed by using the term

constructor set union. In this way, the prover searches a proof of a goal (that is, an SL

theorem) until there exists no subgoal (in this case, the prover returns a derivation), or

until there is no applicable rule (in this case, the prover reports a failure).

6.2 Tacticals and Tactics

The tactical prover of the Secure Linking framework consists of 41 tacticals and 73 tactics.

When a prover searches for a proof, tactics are reducing goals to subgoals, and tacticals

are providing primitives for combining tactics into larger ones that can give multiple

proof-steps.

We designed the tactical prover in order that each tactical is related to at most one

predicate; thereby a tactical finds proofs (or derivations) of formulas built only by the

related predicate. On the other hand, every predicate used in the prover, except for the

1 The subgoals means, informally, (1) the certificates describing the binding between alice mlist dsc1

and alice dsc1 have digitally valid signatures, (2) the component description alice dsc1 exports all
the properties specified in bob rprps alice dsc1, and (3) Bob provides enough library (represented by
bob lib modules and bob lib exports) to satisfy the import requests of alice dsc1.

CHAPTER 6. TACTICAL PROVER 69

Tactical Predicate
ax key auth key authority
ax key bind keybind
ax prp server prp server
ax prp auth property authority
ax auth sig stmt signed
ax library dsc library dsc
ax cacl hash calc hash

Table 6.1: Mapping between axiomatic tacticals and predicates

predicate has prp, is related to only one tactical. That is, for a theorem formed by a

given predicate, the proof of the theorem is derivable only by the related tactical in the

prover. For example, as shown in Table 6.2, the predicate ok to link is related to only one

tactical fp ok to link, so trying to prove a Secure Linking theorem with the SL tactical

prover would always end up with calling the tactical fp ok to link. It is also possible to

design a tactical prover of the same capability which has fewer tacticals, but we mapped

each tactical to one predicate because this will make it easier to reason about the prover’s

properties.

The 41 tacticals of the Secure Linking prover are categorized into two groups:

• 7 tacticals which are used only for finding a proof from digitally signed axioms.

• 34 tacticals which are used for finding a proof of a formula, relying on the Secure

Linking logic.

The digitally signed axioms are given by code consumers or authorities (key authori-

ties, property authorities or property servers), and believed true if the digital signatures

are valid. After being verified, the axioms are stored in the knowledge database of Twelf.

Whenever a tactical in the first group is called, Twelf searches the knowledge database,

and returns a matching proof if there exists any in the knowledge database. Tacticals in

Table 6.1 comprise the first group. There are no tactics related to these tacticals because

a goal with one of the axiom tacticals is provable only when the proof is already in the

CHAPTER 6. TACTICAL PROVER 70

Tactical Predicate
fp ok to link ok to link
fp prv prps provide enough lib
fp exp prps export required prpps
fp st imprt satisfy imports
fp st imprt cdsc imprt match
fp has property has property
fp has prp′ has prp
fp has prp has prp
fp valid lib valid library
fp signed cdsc signed component dsc
fp all signed all signed
fp signed prp signed prp
fp signed ma signed by auth
fp valid sig auth valid sig prp auth
fp valid sig cdsc valid sig component dsc
fp key cert keycert
fp cdsc valid component dsc valid
fp export valid export valid
fp import valid import valid
fp prp match prp match
fp prp valid prp valid
fp module valid module valid
fp cmodule valid cmodule valid
fp valid chash valid chash
fp valid clist valid chash list
fp ide valid ide valid
fp ide list valid list valid(ide eq)
fp list valid list valid
fp list member list member
fp list is nil list is nil
fp set member set member
fp emptyset set is empty
fp validper validper
fp validper refl validper refl

Table 6.2: Mapping between tacticals and prediccates

CHAPTER 6. TACTICAL PROVER 71

knowledge database of Twelf. A tactical in the second group breaks a goal into subgoals

by using tactics, and tries to solve the subgoals by calling other tacticals. The success or

failure of proving a goal depends on the success or failure of proving subgoals. Table 6.2

illustrates the tacticals in our tactical prover, and the mapping between tacticals and the

predicates. The complete list of tactics and their related tacticals of the tactical prover is

given at Appendix A.1.

The tactical prover in the Secure Linking framework is carefully designed to expedite

the speed of finding a proof: by syntax-directness and by the order of tactics The prover

is almost syntax-directed. A tactical prover is said to be syntax-directed if there exists

only one tactic for a given input formula to the prover. For only a few formulas, the

tactical prover has more than one matching tactics. In the case of multiple matching

tactics, the prover tries the tactics one by one in the order that the tactics are defined. If

the tactic fails, the prover back-tracks to the points it branched, and then tries the next

tactics. Backtracking is one of the notorious factors which can make a tactical prover

slow and impractical. We designed the prover in order to make it as syntax-directed as

possible; only 6 pairs out of 73 tactics cause backtracking,2 but for a given formula, there

are at most two matching tactics in the Secure Linking prover. For example, the tactical

fp list member has 4 related tactics. As explained in Chapter 4, the Secure Linking logic

provides two list constructors: list cat and list cons. If a list is constructed from two

input lists by using list cat, a member of the list is a member of the first input list or a

member of the second input list. The tactic [R.57] and the tactic [R.58] in Appendix A.1

are used for solving this case. First, the prover chooses the tactic [R.57], and will succeed

if an element in question is a member of the first list in the concatenated list. Otherwise,

the prover fails, and then backtracks to apply the tactic [R.58] instead. The success of

proving at this time depends on whether or not the element in question is a member of

the second list in the concatenated list. Another pair of tactics, [R.59] and [R.60], also

2 Let’s call these pairs backtracking pairs.

CHAPTER 6. TACTICAL PROVER 72

causes backtracking. These tactics are used for testing membership of a list constructed

by list cons. For a given formula, the tactical prover calls tactics in one of the two pairs,

not in both of them. It is because the input domain of a backtracking pair is orthogonal

to each other. Hence, backtracking happens only within a backtracking pair, not across

a backtracking pair.

To speed up the proving process, the order of tactics is also considered. In the Secure

Linking prover, the order of tactics doesn’t affect whether a given formula is provable by

the prover or not. The success of proving is completely independent of the order how the

tactics are arranged. But proving can be accelerated if the tactics are carefully arranged.

For example, when reasoning about the validity of a list, there are 3 cases to consider,

and they result in 3 tactics in the prover related to the tactical fp list valid. A list is valid

if two input lists of a concatenated list are valid ([R.54]), if a list is formed by using the

constructor list cons with a valid head element and a valid tail list ([R.55]), or if the list

is nil ([R.56]). In our tactical prover, we put the tactic for a nil list at the last. The rule

[R.56] is applied only when a given input formula doesn’t match the two previous rules;

this cuts off time-consuming evaluation and successive backtracking. Otherwise, every

input list would be evaluated to see if the list is nil before applying the other rules.

6.3 Soundness

By showing the soundness of a tactical prover, it is guaranteed that every formula that is

provable (or derivable) by the prover (consisting of axioms and inference rules) is true in

the logic.

Appel and Felty [4] showed that using a dependently typed programming language

can yield a partial correctness guarantee for a theorem prover: if it type-checks, then any

proof (or subproof) that it builds will be valid. Twelf is such a higher-order dependently

typed logic programming language, and the Secure Linking prover is easily seen to be

CHAPTER 6. TACTICAL PROVER 73

sound by the method of Appel & Felty.

Although a dependent type system is useful for showing the soundness of the Secure

Linking prover, it doesn’t guarantee that the prover is complete. The completeness of

a prover, hence, should be proved in a different way. Later in this chapter, I will prove

the conditional completeness of the Secure Linking prover. Proving soundness and the

conditional completeness ensures the conditional consistency of the Secure Linking prover.

6.4 Termination

Proving the termination of the tactical prover of the Secure Linking framework is useful

because it guarantees that the prover returns a result, regardless of an input. That means,

for any formula the prover returns a derivation of the input formula or reports a failure

without looping forever.

Twelf, on which the prover runs, provides a termination checker [38, 39]. Although,

in general, termination is undecidable, it is possible to verify if a given type family, when

interpreted as a logic program, always terminates on well-moded goals. The termination

checker of Twelf requires a logic program being checked to be well-moded.

In logic-programming-language terminology, mode information refers the information

about which arguments to a predicate should be considered input and output. To be

well-moded, every argument of a predicate must be assigned its mode, and when the

predicate is called, the input arguments and the output arguments of the predicate must

be ground.3

The mode declaration of a few tacticals in the tactical prover is shown in Figure ref-

fig:prover:mode. An argument of a predicate is assigned an identifier, and augmented by

‘+’ if the argument is input, ‘–’ if it is output, or ‘∗’ if its use is unrestricted. For example,

the tactical fp ok to link has 6 arguments, and all of them are inputs. In case of the

tactical fp valid sig auth, it has 3 arguments; the first two arguments are inputs, but
3 In Twelf terminology, ground objects are objects not containing any existential variables.

CHAPTER 6. TACTICAL PROVER 74

%mode fp_ok_to_link +CC +M +Dsc +L +Lc +R.
%mode fp_exp_prps +R +E.
%mode fp_prv_prps +I +L +Lc.

%mode fp_valid_sig_auth +CC +Ma -Rprps.
%mode fp_valid_sig_cdsc +CC -Ma +M +C.

Figure 6.3: Mode declaration of the Secure Linking tactical prover

%terminates Ma (fp_valid_sig_auth _ Ma _).
%terminates C (fp_valid_sig_cdsc _ _ _ C).

%terminates I (fp_prv_prps I _ _).
%terminates [R E] (fp_exp_prps R E).
%terminates D (fp_ok_to_link _ _ D _ _ _).

Figure 6.4: Termination declaration of the prover

the last argument is output. The mode of the Secure Linking tactical prover is given at

Appendix A.2. It shows that all the tacticals in the prover are well-moded without any

unrestricted use. That means, every argument in the tactical prover is input or output of

a tactical.

In order for a Twelf logic program to be termination-checked, the mode information of

the program of interest should be declared and be checked before termination is checked.

And the termination declaration of the program must be given to the Twelf termination

checker. Termination checking is based on lexicographic or simultaneous subterm ordering

by programmers. The termination declaration specifies which arguments or predicates

are associated to termination via call patterns.4 During termination checking, the checker

verifies if every termination argument of a predicate are reduced to its subterms whenever

the predicate is called. If so, it becomes a simple sufficient condition to guarantee the

termination of the logic program.

Figure 6.4 shows the termination declaration of the tacticals whose modes are given in

4 Let’s call these arguments termination arguments.

CHAPTER 6. TACTICAL PROVER 75

Figure 6.3. The tactical fp valid sig auth has one termination argument, Ma;5 whenever

this tactical is called, a term for Ma is reduced to its subterm. The termination declaration

also shows that the tactical fp exp prps has two lexicographic termination arguments, R

and E. Therefore, whenever fp exp prps is called, either a term for R or a term for E is

reduced to its own subterm.

The tactical prover of the Secure Linking framework is carefully designed to be well-

moded and termination-checked. The mode of the prover is declared, and the termination

call patterns are specified; it results in an automated, machine-generated proof that the

prover always terminates. The full mode declaration and termination declaration of the

Secure Linking prover is given at Appendix A.2.

6.5 Completeness

We also proved that the tactical prover in the Secure Linking framework is conditionally

complete. We know from Gödel’s incompleteness theorem, general higher-order logic is

not complete. That means, in general higher-order logic, it is not always possible to find a

proof of a true formula. Hence, it might not be possible to prove the completeness of the

Secure Linking logic, which is based on a higher-order logic. It is, however, still possible

to show that the Secure Linking tactical prover is complete, because we are considering

only a subset of a general higher-order logic. In general, proving the completeness of a

logic guarantees that there exists a derivation for every true formula formed by the logic.

The completeness I discuss here is conditional in the sense that the prover always finds

a proof (or derivation) of every true formula which is generated by the trusted parsers

discussed in Chapter 3. The set of true formulas which the conditional complete prover

covers is a subset of true formulas which the Secure Linking logic can express, and it is

quite useful to prove the completeness of the prover on the set of true formulas generated

5 In a termination declaration, the arguments, which have no effect on termination, can be omitted by
using underscore.

CHAPTER 6. TACTICAL PROVER 76

by the Secure Linking parsers; it guarantees that the prover will not fail in finding a

proof of a correct theorem originated from a code consumer’s linking policy and a code

provider’s component description.

The formulas generated by the trusted parsers have restriction as follows:

• The congruence rules using equivalence relations (such as export eq, list eq, etc.) are

removed from the prover.

• A list of library component modules and a list of library component descriptions are

made out of the list constructor list cons.

• Exports or import lists are constructed by using both list cons and list cat, but

cannot be extracted from component descriptions (for example, by using a term

constructor component dsc exprt or component dsc imprt list).

• Module lists must be formed by using list cons. The list constructor list cat is not

allowed to be used. Note that the list of modules are not concatenated or combined

in any other way when combining two component descriptions. Two component

descriptions must have the same list of modules to get combined.

The Secure Linking logic has congruence rules for equivalence relations such as ex-

port eq or list eq. Although congruence rules enrich the expressive power of the SL logic,

they might prevent the prover (which is, in fact, a logic program) from terminating.6 In

the Secure Linking prover, we restricted the use of congruence rules in order to guarantee

the termination of the prover. Instead, the exact match of terms is used for determining

the equality of terms. However, this is not a critical loss in the expressive power of the SL

logic, because the terms in a Secure Linking theorem are generated by the same trusted

parsers either in the proving phase (at a code provider’s site) or in the checking phase (at

a code consumer’s site), resulting in the exactly same structure.
6 That means, the prover may loop forever without returning a derivation successfully or without

reporting a failure.

CHAPTER 6. TACTICAL PROVER 77

The Secure Linking logic has two list constructors, list cons and list cat, and exten-

sively uses lists in its definitions of Secure Linking formulas. The trusted parsers use

restricted list constructors in the cases enumerated above to reduce the number of rules

in the Secure Linking prover, and to improve the speed of the prover. Restricting list

constructors does not weaken the expressive power of the SL logic since the equivalence

between a list constructed by list cons and a list constructed by list cat can be easily

proved; this restriction only cuts off a few proving steps, making the SL prover faster.

The ultimate goal of the prover is to prove Secure Linking theorems, that is, to find a

derivation of a formula constructed by ok to link if it is true; Otherwise the prover must

report failure.

Table 6.2 shows that the tactical fp ok to link is the only applicable tactical to formulas

formed by the predicate ok to link. Hence, the completeness of the prover can be stated

as follows.

Proposition 1 The tactical fp ok to link finds a derivation for every parser-generated

true formula constructed by the predicate ok to link.

We will outline the proof of Proposition 1 here; the full proof is provided in Appendix A.3.

The completeness of a tactical depends on the completeness of the dependent tacticals

for proving subgoals. To prove that applying every true formula generated by the Secure

Linking parsers to the tactical fp ok to link always results in a correct derivation, we have

to show that each subsequent call to another tactical always returns a correct derivation.

We can prove the completeness of a tactical by climbing up the call tree of subsequent

tacticals with showing the completeness of each subsequent tactical one by one.

The pattern how a tactical calls other tacticals comes down to one of the following

three cases:

• Tacticals with no tactics

• Tacticals with a tactic, but without any subgoals

CHAPTER 6. TACTICAL PROVER 78

• Tacticals calling only other tacticals to prove subgoals

• Tacticals making recursive calls

The conditional completeness of the Secure Linking prover can be proved by showing

that all the tacticals of each group are conditionally complete. The tacticals of the first

group are axiomatic tacticals discussed in Section 6.2. They are used for finding an axiom

stored in Twelf’s knowledge database. For a given formula, it is true as an axiom if

the formula is believed as true by a code consumer, and stored in a prover’s knowledge

database. In other words, if a parsed formula is true as an axiom, the formula must reside

in Twelf’s knowledge database, and must be retrievable when the Secure Linking prover

asks. This proves the conditional completeness of axiomatic tacticals. Table 6.1 shows 7

axiomatic tacticals of the prover.

The tacticals in the second group don’t have any subgoals, so they work as terminat-

ing points of proof search in the prover. The 3 tacticals, fp list is nil, fp emptyset and

fp validper, fall into this category. The conditional completeness of these tacticals depends

on whether or not the related tactics of a tactical in this group cover all the possible true

input formulas. The complete proof is given at Appendix A.3.1.

The third group consists of tacticals each of which has subgoals to prove, but doesn’t

make any recursive calls to itself. The 14 tacticals, fp ok to link, fp exp prps, fp signed prp,

fp signed ma, fp valid sig auth, fp valid sig cdsc, fp key cert, fp export valid, fp import -

valid, fp prp match, fp prp valid, fp module valid, fp valid chash, and fp validper refl, are

included in this group. The conditional completeness of these tacticals rely on the con-

ditional completeness of dependent tacticals (or subsequently called tacticals) and the

completeness of the input domain covered by the tactics of each tactical. The complete

proof for this group is given at Appendix A.3.2.

The remaining 17 tacticals fall into the fourth group. They have subgoals to prove,

and each of them makes recursive calls to itself. The tacticals, fp prv prps, fp st imprt,

CHAPTER 6. TACTICAL PROVER 79

fp st imprt cdsc, fp has property, fp has prp′, fp has prp, fp valid lib, fp signed cdsc,

fp all signed, fp cdsc valid, fp cmodule valid, fp valid clist, fp ide valid, fp ide list valid,

fp list valid, fp list member, and fp set member, make up the fourth group. The com-

pleteness proof is built by induction on the structure of input formulas of each tacticals,

and/or induction by cases of term constructors used for input formulas. The complete

proof for this group is given at Appendix A.3.3.

Chapter 7

Beyond SL logic

A strength of the the Secure Linking logic is that it can be extended to encode application-

specific details. In this chapter I will explain how to extend the Secure Linking logic in

order to represent some typical properties for linking in the Secure Linking logic. I will

also discuss, in Chapter 8, that the Secure Linking logic is expressive enough for users to

model a real world linking system by adding small extension to the logic.

Another strength is that the Secure Linking logic can interoperate with other application-

specific logics concerning system security. Since they are built in the same higher-order

logic, existing examples of application-specific logics are Foundational Proof-Carrying

Code (FPCC) and the public key infrastructure using the PCA logic.

7.1 Extending the Secure Linking logic

The Secure Linking logic lies in a hierarchy of logic; it is based on the Proof-Carrying

Authentication logic and core logic which encodes basic structures such as sets or lists.

These logics are defined on top of a general higher-order logic. Figure 7.1 illustrates

the hierarchy of those logics. The figure also shows that the Secure Linking logic can

be extended in the same way to encode basic linking properties and real world linking

80

CHAPTER 7. BEYOND SL LOGIC 81

Higher-order Logic

Core Logic

PCA Logic

Secure Linking Logic

Basic
Properties

.NET Linking System Logic

Figure 7.1: Hierarhcy of logics

systems.

The Secure Linking logic defines very general and abstract properties and property

requests. Users have freedom and responsibility to write property definitions and their

matching property requests with suitable semantics; but it would be not easy for users

who are not used to logic or logic programming to write down property-request pairs

by themselves. Hence, to support general users of the Secure Linking framework, it is

necessary to choose a set of basic properties and a set of basic property requests and to

include them as a part of the framework.

At link time, linkers usually check the names of components and the types of ex-

ported/imported identifiers. It is essential to support these functionalities in the Secure

Linking framework if we want linkers based on the Secure Linking framework to work as

an ordinary linker as well as to check more sophisticated properties.

We chose three core properties the Secure Linking framework should support:

• Names of components

CHAPTER 7. BEYOND SL LOGIC 82

(Property) P ::= mk prp(I)
|mk prp cname(I)
|mk prp export ids(L(I))
|mk prp code hash(Mc)

(Property Requests) R ::= mk prp rq(P)
| rq cname exists
|mk rq cname(I)
| rq export ids exists
| rq code hash checkable

(Module predicates) Fm ::= module valid(M) |module eq(M,M)
| is module fname(M, I)
| is module hcode(M,H)
| valid chash(M)

(Component module predicates) Fmc ::= cmodule valid(Mc)
| valid chash list(Mc)

(Axiom predicates) Fax ::= key authority(W) | . . . | calc hash(I,H)

Figure 7.2: Added term constructors and predicates

• Identifiers exported from/imported to a component

• Cryptographic hash codes of binary modules

The added term constructors and predicates to the Secure Linking logic are shown in

Figure 7.2, and new inference rules in Figure 7.3. Three new constructors are introduced

for the type property: mk prp cname, mk prp export ids, and mk prp code hash. A term

constructor mk prp cname builds a property term out of an identifier, standing for a

component name. A term constructor mk prp export ids constructs a property term from

a list of identifiers standing for exported type identifiers (such as class names, structure

names, or function names). A term constructor mk prp code hash is used for encoding

cryptographic hash codes of a component’s binary modules into a property term.

Coupling with newly introduced properties, four property request constructors are

added to the extension of the Secure Linking logic. Term constructors rq cname exists

and mk rq cname build property requests related to the component name property. A term

constructor rq export ids exist is used for the exported identifier property, and rq code hash -

CHAPTER 7. BEYOND SL LOGIC 83

ide valid(I)
prp match(rq cname exists, mk prp cname(I))

(pmatch cname i1)

ide eq(I, I ′)
prp match(mk rq cname(I),mk prp cname(I ′))

(pamtch cname i2)

list valid(ide eq, L(I))
¬list is nil(L(I))

rq export ids exists(mk prp export ids(L(I))
(pmatch ids i)

cmodule valid(Mc)
valid chash list(Mc)

rq code hash checkable(mk prp code hash(Mc)
(pmatch chash i)

list is nil(Mc)
valid chash list(Mc)

(valid chash list nil)

valid chash(M)
valid chash list(Mc)

valid chash list(list cons(M,Mc))
(valid chash list cons)

is module fname(M, I)
is module hcode(M,H)
calc hash(I, H)

valid chash(M)
(valid chash i)

Figure 7.3: Added inference rules

CHAPTER 7. BEYOND SL LOGIC 84

checkable is used for the cryptographic hash code property of modules.

We designed a property request as a predicate accepting a property term, and reduced

the decision process of property matching to a simple predicate evaluation. It is also

possible to define more than one property requests for one property. Owing to our semantic

model approach, users can assign different semantics to each property request. This makes

the property matching of the Secure Linking framework more flexible.

For example, the two different property requests for the component name property in

extended SL logic explain this flexibility. Usually there are two cases a component name is

concerned about: users might want to check if a software component has a name without

caring what the component name is. In the other case, however, users might want to check

if a component has the exact name they wants. That means, users need two different ways

of checking one property; this can be accomplished by providing two different property

requests rq cname exists and mk rq cname for the component name property.

The inference rule pmatch cname i1 in Figure 7.3 is used to check if an input prop-

erty is of type property. The predicate prp match holds if an input property is built by

using the term constructor mk prp cname. It doesn’t matter what exact component name

the argument has. On the other hand, the inference rule pmatch cname i2 in Figure 7.3

is used for exact matching. The predicate prp match holds if and only if an input property

is built from the same identifier (that is, a component name) to the identifier used for

building the property request.

Secure Linking also verifies cryptographic hash codes of a component’s binary mod-

ules to check if binary modules are tampered with after the component description has

been built. This requirement is coded as a property request by using a term construc-

tor rq code hash checkable. The inference rules pmatch chash i, valid chash list nil,

valid chash list cons and valid chash i shows how the hash code checking works. The

property request rq code hash checkable is satisfied if an input list of modules has valid

cryptographic hash codes (rule pmatch chash i), and a list of modules is considered to

CHAPTER 7. BEYOND SL LOGIC 85

have valid cryptographic hash codes if every element of the list has a valid cryptographic

hash code (rule valid chash list nil and rule valid chash list cons).

7.2 Interoperating with other logics

7.2.1 Foundational proof-carrying code

Foundational Proof-Carrying Code (FPCC) is a proof-carrying code framework [2], in

which safety proofs about machine-language programs can be stated and proved with

respect to a minimum set of axioms. Safety properties such as memory safety (“this

program accesses only addresses in a certain range”) and type safety (“this program

respects its Java interfaces”) can be established in and enforced by FPCC.

FPCC logic and FPCC system are useful in building an extended Secure Linking

system. For example, in the extended SL system, a code consumer may ask all incoming

foreign software components to have FPCC proofs showing that they are obeying the

safety theorem of FPCC. In this case, the FPCC logic and certifying compilers supporting

FPCC can be considered as property authorities, whose certificates are written in logic,

and machine-checkable. The certificates from FPCC (in fact, the safety proofs written in

FPCC logic) are verified by a trusted proof checker; if valid, the Secure Linking framework

generates an axiom constructed by the predicate signed. It is just like generating an axiom

of the signed predicate after verifying digital signatures.

7.2.2 Public Key Infrastructure

Code signing uses key certificates issued by trusted key authorities. Since different key

authorities could use different formats for their certificates, it is necessary for a secure

system to support as many formats as possible for interoperability. For example, the

security model of the .NET framework supports several standard public key certificate

formats including X.509.

CHAPTER 7. BEYOND SL LOGIC 86

The Secure Linking framework requires all the certificates from property authorities

to be digitally signed, and has intense use of signature verification modules and public

key certificates. Those functionalities could be embedded in the linking logic, but tying

public-key infrastructure so closely to the logic results in a less flexible system than ex-

pected; future users with a different PKI will not be able to fit in the linking logic without

extending the logic, and not be able to take advantage of the soundness of the Secure

Linking logic. For the scalability of key certificates, The Secure Linking framework sep-

arates authenticating with public key certificates from the secure linking logic in a more

modular way.

To address principal-public key bindings, the Secure Linking framework has a built-in

formula constructor keybind for translating various key certificate formats into a formula

in the linking logic. The predicate keybind takes two arguments: the name of a principal,

and its public key. The formula holds if and only if there exists a binding between the

principal and the key.

Several different key-distribution protocols, such as SPKI or X.509, can be expressed

as definitions (and machine-checked lemmas) within the PCA logic [3]. The PCA logic has

the same underlying higher-order logic as the Secure Linking framework, and it enables

Secure Linking to make use of almost any public-key protocol in a sound and secure way

with no mismatching of protocol interfaces.

Chapter 8

Case Study

In this chapter, I will show the Secure Linking logic is general and expressive enough to

express the linking protocol of the .NET framework. I also discuss what we learn about

the properties of .NET while we’re giving a formal specification of its linking procedure.

8.1 Overview

The .NET framework is a computing platform developed by Microsoft targeting the highly

distributed environment of the Internet [40]. The main components of .NET are the

Common Language Runtime and its class library.

The Common Language Runtime (CLR) uses Java-style bytecode verification, and has

a new configuration-management unit called an assembly, which provides version-number

information, as well as information about what version numbers of other components are

required for linking with the given assembly.

CLR is responsible for execution-time management such as memory management,

thread management and remote procedure calls. It could be compared to the Java Virtual

Machine [23]. CLR provides its own intermediate language called Microsoft Intermediate

Language (MSIL) and programs must be compiled to this intermediate language to be

87

CHAPTER 8. CASE STUDY 88

executed on CLR. CLR also implements a strict type- and code-verification infrastruc-

ture called Common Type System (CTS) and supports Just-In-Time (JIT) compiling for

enhancing performance.

The .NET framework class library has a collection of reusable classes that tightly

integrate with the Common Language Runtime. It provides a variety of classes, from the

basic classes for graphical user interface to the more sophisticated classes and tools for

development and consumption of Web services supporting the standards such as SOAP

(standard object access protocol), XML (an extensible mark-up language).

8.1.1 Assemblies

An assembly is the logical unit of a program executable on the common language runtime.

It is also a unit of security, a unit of type and a unit of version within the .NET framework,

as well as a deployment unit during runtime execution. An assembly consists of four

elements: the assembly manifest, type metadata, MSIL code, and a set of resources (such

as .bmp or .jpg files).

An assembly manifest contains a collection of data that describes how the elements

in an assembly relate to each other. This metadata includes the name of the assem-

bly, version number, its cultural background (such as language), list of all files in the

assembly, type reference information, and information on referenced assemblies. Assem-

bly developers can add or change some information in the assembly manifest by putting

assembly attributes declaratively in their source codes. An assembly manifest is created

automatically by compilers or programming tools supporting the .NET framework. .NET

framework provides an MSIL disassembler to view MSIL information in a file. If the file

being examined is an assembly, this information can include the assembly’s attributes, as

well as references to other modules and other assemblies.

CHAPTER 8. CASE STUDY 89

〈configuration〉
〈runtime〉
〈assemblyBinding xmlns=”run:schemas-microsoft-com:asm.v1”〉
〈dependentAssembly〉
〈assemblyIdentity name=”hashTable”/〉
〈bindingRedirect

oldVersion = ”1.0.0.0 - 1.9.9.0”
newVersion = ”2.0.0.0”/〉

〈/dependentAssembly〉
〈/assemblyBinding〉 〈/runtime〉 〈/configuration〉

Figure 8.1: A .NET configuration file

8.1.2 Versioning

An assembly is used as the unit of linking deployment and execution in the .NET frame-

work. When a developer builds an application, the main assembly of the application is

linked to other reference assemblies, each of which is identified by using the information

such as the name of the assembly, the version number, the cultural information, and so on.

However, sometimes the developer wants the application to run against a newer version

of an assembly. .NET supports redirecting assembly versions through configuration files.

Configuration files and decision procedures for version redirection will be discussed in the

next section.

.NET also supports side-by-side execution. This is the ability to run multiple versions

of assemblies of the same name simultaneously. Support for side-by-side storage and

execution of different versions of the same assembly is an integral part of versioning, and

is built into a part of the runtime. Treating an assembly’s version number as part of its

identity enables the runtime to store multiple versions of assemblies under the same name

and distinguish them at run time.

CHAPTER 8. CASE STUDY 90

8.2 Versioning

8.2.1 Version redirection in .NET

.NET framework treats an assembly’s version number as part of the assembly’s identity;

this enables assemblies of the same name to co-exist within one system, and gives more

control to developers or system administrators at link time. The runtime of the .NET

framework allows developers or system administrators to specify the version of an assem-

bly to bind and to choose a different version of an assembly of the same name at link

time. In order to redirect binding of assemblies users can specify it in configuration files

at different levels. Figure 8.1 illustrates an example of configuration files. Application

configuration files, machine configuration files, and publisher policy files are used to redi-

rect one version of an assembly to another. Usually the original version of an assembly

and the versions of dependent assemblies are recorded automatically in the assembly’s

manifest by programming tools or compilers supporting .NET framework. The .NET

linker decides which version of an assembly to bind with the following steps: first, the

linker checks the original assembly reference to determine what version was originally

used. Second, it checks all available configuration files to find applicable redirection re-

quests in a sequence of machine configuration files, publisher policy files and application

configuration files. Last, it determines the correct assembly version that should be linked

to the calling assembly, from the information of the original assembly reference and any

redirection specified in the configuration files.

8.2.2 Formal specification in the Secure Linking logic

In Chapter 7 I showed how to represent some basic properties such as component names

as properties and property requests in the secure linking logic. In the same way, version

information and redirection requests are coded as properties and property requests.

The linking decision procedure of the .NET framework is translated into a set of

CHAPTER 8. CASE STUDY 91

¬isempty(VP)
inrange(VP .range, V)

ver policy effective(VP , V)
(vp effective)

ver policy effective(VPmch, Vorg)
version match policy(VPmch, Vnew)

ver redir(Vorg,VPmch,VPpub,VPapp, Vnew)
(machine redir)

¬ver policy effective(VPmch, Vorg)
ver policy effective(VPpub, Vorg)
version match policy(Vpub, Vnew)

ver redir(Vorg,VPmch,VPpub,VPapp, Vnew)
(publisher redir)

¬ver policy effective(VPmch, Vorg)
¬ver policy effective(VPpub, Vorg)
ver policy effective(VPapp, Vorg)
version match policy(VPapp, Vnew)

ver redir(Vorg,VPmch,VPpub,VPapp, Vnew)
(app redir)

¬ver policy effective(VPmch, Vorg)
¬ver policy effective(VPpub, Vorg)
¬ver policy effective(VPapp, Vorg)
version match simple(Vorg, Vnew)

ver redir(Vorg,VPmch,VPpub,VPapp, Vnew)
(no redir)

Figure 8.2: Rules for version redirection

CHAPTER 8. CASE STUDY 92

asm hash code(Asm,H)
valid hash code(Asm,H)

signed sname(Asm)
(signed with self key)

key authority(WV)
says(WV, keybind(WV ′,K))
signed(K, Asm)

signed certs(Asm)
(signed with certs)

signed sname(Asm)
∨

signed certs(Asm)
signed asm(Asm)

(signed asembly)

Figure 8.3: Rules for signing assemblies

inference rules in the secure linking logic, shown in Figure 8.2. The versions of two as-

semblies may match if they are identical (ver match simple), or through a redirection

(rule ver match policy). The redirection may come from local configuration files (rule

machine redir), from the software developer (rule publisher redir), or from the com-

ponent integrator (rule app redir). A redirection request is effective if the version of

an original assembly to be linked is within the affected old version range specified in the

redirection request. If so, it is provable that the predicate ver policy effective holds. The

inference rule machine redir shows the case when a version policy V Pmch from a ma-

chine configuration file is effective. If the version V of a target assembly matches the new

version in the policy V Pmch, then the assembly of version V is used in the later phase

of linking. Other inference rules (publisher redir, app redir, and no redir) show that

local redirections override publisher redirections, and so on.

8.3 Signing Assemblies

The runtime system of .NET requires that every assembly has a strong name [26]. A

strong name of an assembly consists of the assembly’s name, its version number, its

culture information (such as languages), plus a public key and a digital signature. This

CHAPTER 8. CASE STUDY 93

information is stored in the assembly’s manifest.

In order to guarantee the integrity of an assembly, a code producer is advised to sign

the assembly with the private key corresponding to the public key stored in its assembly

manifest. A code producer can sign an assembly in two different ways: with key certificates

obtained from third-party key authorities or without key certificates. After signing an

assembly the resulting signature is stored in its assembly manifest. Then, .NET runtime

verifies the digital signature of an assembly using the public key stored in its assembly

manifest (and key certificates if provided).

In formalizing the signed assembly feature of .NET, we were unable to prove a standard

theorem in the Secure Linking framework that every public key is certified by at least one

key authority. It turns out that .NET uses keys that need not be certified when it signs

an assembly without key certificates from third-party key authorities. At first glance, this

appears to be a security hole, but in fact it is simply a harmless misapplication of public-

key encryption. However, it is a latent weakness if some future user could be misled into

using this signature as a certificate of some property. Especially this kind of assembly

signing doesn’t guarantee the non-repudiation property which is commonly expected from

digital signatures. In other words, without key certificates from trusted third-party key

authorities, a digital signature on an assembly cannot give any assurance about the source

of the assembly.

Signing with a self-announcing public key doesn’t provide more trust than hash ver-

ification does. Verifying a digital signature with a public key in an assembly manifest

only guarantees that the assembly has not been tampered with after being signed. It is

exactly as strong as verifying a hash code of an assembly manifest because it is (assumed)

impossible to change the content of data without changing the hash code of the data

calculated by a cryptographic hash function (such as MD5 or SHA-1).

Digital signing is more complicated than hash code verification, and usually operates

with hash code verification. Therefore, signing an assembly without key certificates in

CHAPTER 8. CASE STUDY 94

.NET seems redundant. In expressing the assembly signing in the Secure Linking logic,

we replace signing on an assembly with a self-announcing public key by simple hash code

verification. Figure 8.3 shows the inference rules of signing assemblies. An assembly is

considered signed validly if it is signed with verified public key (rule signed with certs),

or if it has a valid cryptographic hash code (rule signed with self key).

8.4 Discussion

Secure Linking proposed to solve the weakness of the traditional code signing protocol: the

traditional code signing protocol is not expressive enough for the current heavily connected

computing environment. The .NET framework has been developed to give an answer to

the same problem because Microsoft suffered from the system vulnerability caused by

their less expressive code signing protocol as quoted in Section 1.1. Although Secure

Linking and the .NET framework have been developed independently without knowing

each other’s existence, they aim for the same goal: to improve the expressive power of

code signing. The .NET framework chose to support version information of a software

component and to provide a way for users to specify version-specific configuration at link

time. This approach works fine with solving the previously quoted problem successfully.

Compared to the .NET framework, the approach that Secure Linking provides is

more general. Users can specify informally the properties they want to enforce (such as

version information, verifiable cryptographic hash code, and so on), and certificates from

one third-party authority is signed only on a property the authority can guarantee. As

demonstrated in this chapter, Secure Linking is still expressive enough to encode .NET’s

version-redirection into an application-specific extension of Secure Linking.

Another thing I want to mention is the advantage of formal specification. We could

find a small problem of code signing protocol Microsoft proposed while trying to give a

formal specification to .NET’s linking procedure. The problem of .NET’s assembly signing

CHAPTER 8. CASE STUDY 95

protocol is small, but it could cause a system hole, or a bug in users’ applications if the

application designers understand the limitation and implication of the assembly signing

protocol thoroughly. It is not a good design decision to leave a weakness in a system with

expecting no bad things to happen We could get closer insight to the system while we

tried to describe the system formally. This case study shows that the formalization of an

existing system is a quite useful tool to analyze the system.

Chapter 9

Implementation

We have built a prototype Secure Linking system using the Secure Linking framework.

Its system diagram is given in Figure 9.1. The prototype system implements a Java class

loader running Sun Microsystem’s Java virtual machine. It consists of: an XML parser

for the linking policy description language, an XML parser for the component description

language, the Secure Linking logic augmented by basic property and property requests, a

tactical prover, a proof checker, and a Java class loading module.

9.1 Java Class Loaders

The class loader concept, one of the cornerstones of the Java virtual machine, describes

the behavior of converting a named class into the bits responsible for implementing that

class. Because class loaders exist, the Java runtime does not need to know anything about

files and file systems when running Java programs [24]. The Java environment also allows

users to provide customized class loaders. A user class loader gets the chance to load a

class before the built-in original class loader does. Because of this, it can load the class

implementation data from some alternate source (such as source repositories connected

by the HTTP protocol), or it can perform some actions enhancing the security of a code

96

CHAPTER 9. IMPLEMENTATION 97

Proof Checker

Secure Linking Logic

Component
Parser

Policy
Parser

Tactical
Prover

Certificate
 Storage

component
description linking policy

proof

axioms
axioms axioms

Untrusted

Trusted Code Base

OK!

Signature
Verifier

certificates

axioms

Figure 9.1: Prototype implementation

consumer’s system. In the Secure Linking prototype system, we designed a class loader

which checks a Secure Linking proof of a class file before the class is loaded.

An instance of the SL class loader is created with a linking policy of a code consumer.

The linking policy is specified by using the description language explained in Chapter 3.

If the SL class loader gets a request to load a class, it checks if the given binary class

file comes with a component description in the SL component description language and

a SL proof; if not, the class loader rejects the request. To check the SL proof from

a code provider, the linking policy and the component description are translated into

axioms in the Secure Linking logic by the trusted parsers of the framework. Beside

trusted parsers, the SL class loader has a trusted digital signature verifier which produces

axioms formed by the signed predicate after verifying the cryptographic signatures on

the certificates. Currently, the SL class loader uses the Java package java.security for

the trusted signature verifier. We chose the X.509 format [11] for public key certificates

of the prototype SL class loader, SHA-1 [30] for the message digest algorithm, and DSA

[33] for the digital signature algorithm.

After getting the axioms, the SL class loader starts the trusted proof checker; the

Secure Linking logic and the axioms generated by the SL parsers and the trusted signature

CHAPTER 9. IMPLEMENTATION 98

verifier are loaded into the checker. The SL proof from a code provider is verified by the

loaded checker. If the proof is valid, the class of the request is loaded into the Java virtual

machine; otherwise the request is rejected.

9.2 Proof Checker

Currently we’re using the Twelf logical framework for code consumers to verify proofs

from code providers. Twelf provides many useful features for theorem proving and proof

verification, and they are very helpful when building a prototype system.

The proof checker in a secure linking system is an essential part of the trusted comput-

ing base (TCB), so a bug in the proof checker can be a security hole in the larger system.

Twelf itself is a large program, and it has a problem of increasing the size of TCB. This

problem can be avoided if we include only the core part of proof checking within the TCB

rather than trust a software with all the redundant functionalities. Appel et al. [5] built

a small trustworthy proof checker, which consists of only 800 lines of code. Their proof

checker reduces the size of TCB significantly, and would be useful for linking systems

using the Secure Linking framework.

Given a proof from a code provider, a code consumer must be able to verify the validity

of the proof. The SL framework is built on the Twelf logical framework [38]. The Twelf

system is one of the implementations of the logical framework LF [17], which allows the

specification of logics as mentioned before. Since the Secure Linking logic is written on

top of PCA, an object logic of LF, every term in the Secure Linking logic boils down to

a term in the underlying LF logic. Therefore, the proof provided by a code provider is

encoded as an LF term. The type of the term is the statement of the proof; the body of

the term is the proof’s derivation.

By the Curry-Howard isomorphism, checking the correctness of deriving the term that

represents a proof is equivalent to type checking of the term. If the term is well typed, then

CHAPTER 9. IMPLEMENTATION 99

the derivation is correct; hence, a code provider has succeeded in proving the proposition.

If the proof of a code provider is checked, a secure linker of the SL framework will allow

the component with the proof to be linked.

9.3 Certificate Storage

A few signed certificates are involved in Secure Linking when proving a SL theorem and

checking a SL proof. Since a code provider is responsible for presenting certificates as well

as an SL proof to a code consumer, getting certificates from various authorities could be

a burden to a code provider. A code provider has collected lots of certificates for previous

SL proofs, but she may not be sure if the certificates in need are in her collection or

not. Therefore, a tool which manages digitally signed certificates and searches a queried

certificate is quite useful for making the proving process easy.

Certificate management systems need not be trusted because signature verification or

reasoning about security at link time would be done other components in the TCB of the

Secure Linking framework. A certificate management tool in Secure Linking could be a

file cabinet with printed certificates or a sophisticated database system. For the prototype

system, we implemented a simple database which is based on a keyed hash table. However,

there are some alternatives for the certificate storage; beyond database systems, some

certificate management systems concern the system security when retrieving certificates.

For example, Jim proposed a trust management system consisting of a high-level policy

language, a local policy evaluator, and a certificate retrieval system, in which every answer

of a query is checked if the answer follows the established security policy [16].

Chapter 10

Conclusion

I have shown a flexible way of establishing linking policies to ensure system security at link

time. In this way we can give more expressive power to traditional code signing protocol.

I have proposed and implemented a logical framework supporting Secure Linking.

In this scheme the burden of proving rights to access the shared resources of a code

consumer is put on a code producer rather than on the code consumer, unlike in traditional

distributed authentication frameworks.

In the Secure Linking framework, a code consumer announces its linking policy to

protect its system from malicious code from outside. The policy can include properties,

for example component names, valid hash code of programs, version information, and

so on, which code consumers thinks important for the system safety. To link a software

component to other components in a code consumer and to execute it, a provider of the

component should submit a proof that the component has the properties required by the

code consumer.

The Secure Linking logic consists of basic formula constructors and inference rules

based on the logic of Proof-Carrying Authentication (PCA). Linking decision procedures of

a code consumer, system-specific linking policies, and description of software components

of code producers are translated into the linking logic. A proof of Secure Linking is

100

CHAPTER 10. CONCLUSION 101

formed out of the SL logic, and checked by a trusted proof checker in a code consumer.

If the accompanying proof is valid, a software component is allowed to be linked to other

components in the system of the code consumer.

In addition, adopting the higher-order logic of PCA makes the Secure Linking logic

general and flexible. The Secure Linking logic is expressive enough to encode the linking

procedures of a real-world linking system (the .NET framework). Due to this expressive-

ness, it is possible to encode various security models into the Secure Linking logic, and to

enable different security models to interoperate conveniently. Trying to give a formal de-

scription of a real-world system gives us insight into the system. While trying to describe

the .NET linking procedures in formal logic, we found that .NET’s protocol of signing

assemblies is not well-defined, and it might cause a weakness in a user’s system.

Secure Linking is a way a code consumer can require high-level properties from outside

software components and check the exported properties of a software component with

certificates from third party authorities. Secure Linking enhances the security of a system

during linking time, giving more control to a code consumer for linking decisions.

Appendix A

Tactical Prover

A.1 Tacticals and Tactics

This section shows the complete list of tactics of the Secure Linking tactical prover. See

Chapter 6 for a detailed discussion about the prover.

Tactical fp ok to link

fp signed cdsc(W,Mc, C)
fp exp prps(Rp, C)
fp prv prps(C,Lm, Ld)

fp ok to link(W,Mc, C, Lm, Ld, Rp)
[R.1]

Tactical fp prv prps

fp cdsc valid(C) fp prv prps(C,Lm, Ld)
fp cdsc valid(C ′) fp prv prps(C ′, Lm, Ld)

fp prv prps(component dsc combine(C,C ′), Lm, Ld)
[R.2]

fp list valid(Ci)
fp valid lib(Lm, Ld)
fp st imprt(Ci, Ld)

fp prv prps(mk component dsc(Ce, Ci), Lm, Ld)
[R.3]

Tactical fp exp prps

fp has property(Rp, C)
fp exp prps(Rp, C)

[R.4]

102

APPENDIX A. TACTICAL PROVER 103

Tactical fp st imprt

fp st imprt(Ci, Ld)
fp st imprt(C ′

i, Ld)
fp st imprt(list cat(Ci, C

′
i), Ld)

[R.5]

fp st imprt cdsc(Rp, Ld)
fp st imprt(Ci, Ld)

fp st imprt(list cons(Rp, Ci), Ld)
[R.6]

fp list is nil(Ci)
fp st imprt(Ci, Ld)

[R.7]

Tactical fp st imprt cdsc

fp export valid(Ce)
fp has property(Rp, Ce)

fp st imprt cdsc(Rp, list cons(Ce, Ld))
[R.8]

fp list valid(Ld)
fp st imprt cdsc(Rp, Ld)

fp st imprt cdsc(Rp, list cons(Ce, Ld))
[R.9]

Tactical fp has property

fp has property(Rp, C)
fp has property(Rp

′, C)

fp has propety(set union(Rp, Rp
′), C)

[R.10]

fp has prp′(R,C)
fp has property(set singleton(R), C)

[R.11]

fp emptyset(Rp)
fp has property(Rp, C)

[R.12]

Tactical fp has prp′
fp has prp′(R,C)

fp has prp′(R, component dsc combine(C,C ′))
[R.13]

fp has prp′(R,C ′)
fp has prp′(R, component dsc combine(C,C ′))

[R.14]

fp export valid(Ce)
fp has prp(R,Ce)

fp has prp′(R,mk component dsc(Ce, Ci))
[R.15]

APPENDIX A. TACTICAL PROVER 104

Tactical fp has prp

fp has prp(R,Ce)
fp has prp(R, list cat(Ce, Ce

′))
[R.16]

fp has prp(R,Ce
′)

fp has prp(R, list cat(Ce, Ce
′))

[R.17]

fp prp valid(P) fp prp match(R,P)
fp has prp(R, list cons(P,Ce))

[R.18]

fp list valid(Ce) fp has prp(R,Ce)
fp has prp(R, list cons(P,Ce))

[R.19]

Tactical fp valid lib

ax library dsc(Mc, Ce)
fp export valid(Ce)
fp cmodule valid(Mc)
fp valid lib(Lm, Ld)

fp valid lib(list cons(Mc, Lm), list cons(Ce, Ld))
[R.20]

fp list is nil(Lm)
fp list is nil(Ld)

fp valid lib(Lm, Ld)
[R.21]

Tactical fp signed cdsc

fp singed cdsc(W,Mc, C)
fp singed cdsc(W,Mc, C

′)
fp signed cdsc (W,Mc, component dsc combine(C,C ′))

[R.22]

fp export valid(Ce)
fp import valid(Ci)
fp all signed(W,Mc,mk component dsc(Ce, Ci), Ce)
fp singed cdsc(W,Mc,mk component dsc(Ce, Ci))

[R.23]

Tactical fp all signed

fp signed prp(W,Mc, C, P)
fp all singed(W,Mc, C, Ce)

fp all signed(W,Mc, C, list cons(P,Ce))
[R.24]

fp list is nil(Ce)
fp all signed(W,Mc, C, Ce)

[R.25]

APPENDIX A. TACTICAL PROVER 105

Tactical fp signed prp

fp cdsc valid(C)
fp signed ma(W,Mc, C, P)
fp signed prp(W,Mc, C, P)

[R.26]

Tactical fp signed ma

fp valid sig cdsc(W,W ′,Mc, C)
fp valid sig auth(W,W ′, Rp)
fp set(Rp, R)
fp prp match(R,P)

fp signed ma(W,Mc, C, P)
[R.27]

Tactical fp valid sig auth

ax prp server(W,Wps)
fp key cert(W,Wps,K)
ax auth sig stmt(K, guarantees(W ′, Rp))

fp valid sig auth(W,W ′, Rp)
[R.28]

Tactical fp valid sig cdsc

ax prp auth(W,W ′)
fp key cert(W,W ′,K)
ax auth sig stmt(K, module dsc(Mc, C))

fp valid sig cdsc(W,W ′,Mc, C)
[R.29]

Tactical fp key cert

ax key auth(W,Wca)
ax key bind(Wca,Kca)
ax auth sig stmt(Kca, keybind(W ′,K))

fp key cert(W,W ′,K)
[R.30]

Tactical fp cdsc valid

fp cdsc valid(C)
fp cdsc valid(C ′)

fp cdsc valid(component dsc combine(C,C ′))
[R.31]

fp export valid(Ce)
fp import valid(Ci)

fp cdsc valid(mk component dsc(Ce, Ci))
[R.32]

APPENDIX A. TACTICAL PROVER 106

Tactical fp export valid

fp list valid(Ce)
fp export valid(Ce)

[R.33]

Tacitcal fp import valid

fp list valid(Ci)
fp import valid(Ci)

[R.34]

Tactical fp prp match

fp prp valid(P)
fp prp match(mk prp rq(P), P)

[R.35]

fp prp match(rq cname exists, mk prp cname(I))
[R.36]

fp ide valid(I)
fp prp match(mk rq cname(mk prp cname(I)),mk prp cname(I))

[R.37]

fp ide list valid(L(I))
fp prp match(rq export ids exists, mk prp export ids(L(I)))

[R.38]

fp valid clist(Mc)
fp cmodule valid(Mc)

fp prp match(rq code hash checkable,mk prp code hash(Mc))
[R.39]

Tactical fp prp valid

fp ide valid(I)
fp prp valid(mk prp(I))

[R.40]

fp ide valid(I)
fp prp valid(mk prp cname(I))

[R.41]

fp ide list valid(L(I))
fp prp valid(mk prp export ids(L(I)))

[R.42]

fp cmodule valid(Mc)
fp prp valid(mk prp code hash(Mc))

[R.43]

Tactical fp module valid

fp ide valid(I)
fp module valid(mk module(I))

[R.44]

APPENDIX A. TACTICAL PROVER 107

Tactical fp cmodule valid

fp module valid(M)
fp cmodule valid(Mc)

fp cmodule valid(list cons(M,Mc))
[R.45]

fp list is nil(Mc)
fp cmodule valid(Mc)

[R.46]

Tactical fp valid clist

fp valid chash(M)
fp valid clist(Mc)

fp valid clist(list cons(M,Mc))
[R.47]

fp list is nil(Mc)
fp valid clist(Mc)

[R.48]

Tactical fp valid chash

ax calc hash(I, H)
fp ide valid(I)

fp valid chash(mk module(I,H))
[R.49]

Tactical fp ide valid

fp ide valid(Ic)
fp ide valid(Is)

fp ide valid(mk str(Ic, Is))
[R.50]

fp ide valid(mk ch(N))
[R.51]

Tactical fp ide list valid

fp ide list valid(L(I))
fp ide valid(I)

fp ide list valid(list cons(I, L(I)))
[R.52]

fp list is nil(L(I))
fp ide list valid(L(I))

[R.53]

Tactical fp list valid

fp list valid(EQ(τ), L(τ))
fp list valid(EQ(τ), L(τ)′)

fp list valid(EQ(τ), list cat(L(τ), L(τ)′))
[R.54]

APPENDIX A. TACTICAL PROVER 108

fp validper refl(EQ(τ), t)
fp list valid(EQ(τ), L(τ))

fp list valid(EQ(τ), list cons(t, L(τ)))
[R.55]

fp list is nil(L(τ))
fp validper(EQ(τ))
fp list valid(L(τ))

[R.56]

Tactical fp list member

fp list member(L(τ), t)

fp list member(list cat(L(τ), L(τ)′), t)
[R.57]

fp list valid(L(τ)′
, t)

fp list member(list cat(L(τ), L(τ)′), t)
[R.58]

fp validper refl(Eq(τ), t)
fp list member(list cons(t, L(τ)), t)

[R.59]

fp list member(L(τ), t′)
fp list valid(EQ(τ), L(τ))

fp list member(list cons(t, L(τ)), t′)
[R.60]

Tactical fp list is nil

fp list is nil(list nil)
[R.61]

Tactical fp set member

fp set member(S(τ), x)

fp set member(set union(S(τ), S(τ)′), x)
[R.62]

fp set member(S(τ)′
, x)

fp set member(set union(S(τ), S(τ)′), x)
[R.63]

fp set member(set singleton(x), x)
[R.64]

Tactical fp emptyset

fp emptyset(set empty)
[R.65]

Tactical fp validper

fp validper(module eq)
[R.66]

APPENDIX A. TACTICAL PROVER 109

fp validper(prp eq)
[R.67]

fp validper(cmodule eq)
[R.68]

fp validper(export eq)
[R.69]

Tactical fp valdiper refl

fp module valid(M)
fp validper refl(module eq,M)

[R.70]

fp prp valid(P)
fp validper refl(prp eq, P)

[R.71]

fp cmodule valid(Mc)
fp validper refl(cmodule eq,Mc)

[R.72]

fp export valid(Ce)
fp validper refl(export eq, Ce)

[R.73]

A.2 Termination Checking

A.2.1 Mode Declaration

Mode declaration in Twelf asks that every argument of a predicate must be decorated

with its mode [37]. An argument of a predicate is assigned an identifier, and augmented

by ‘+’ if the argument is input, ‘–’ if it is output, or ‘∗’ if its use is unrestricted.

Twelf checks explicit mode declaration by the programmer against the signature and

signals if the prescribed information flow is violated.

The full mode declaration of Secure Linking tactical prover is given below. This mode

declaration passes Twelf’s mode checking; thus the prover is well-moded.

%mode fp ok to link +CC +M +Dsc +L +Lc +R.

%mode fp prv prps +I +L +Lc.

%mode fp exp prps +R +E.

%mode fp valid lib +L +LC.

%mode fp st imprt +Ilist +LibDsc.

APPENDIX A. TACTICAL PROVER 110

%mode fp st imprt cdsc +I +L.

%mode fp has property +R +E.

%mode fp has prp +R +E.

%mode fp has prp’ +R +C.

%mode fp cdsc valid +C.

%mode fp export valid +X.

%mode fp signed cdsc +CC +M +C.

%mode fp all signed +CC +M +C +E.

%mode fp signed prp +CC +M +C +P.

%mode fp signed ma +CC +M +C +P.

%mode fp valid sig auth +CC +Ma -Rqset.

%mode fp valid sig cdsc +CC -Ma +M +C.

%mode fp key cert +CC +P -Pkey.

%mode fp prp match +R +P.

%mode fp prp valid +P.

%mode fp module valid +M.

%mode fp cmodule valid +L.

%mode fp valid clist +L.

%mode fp valid code hash +M.

%mode fp ide valid +X.

%mode fp ide list valid +L.

%mode fp list valid +E +L.

%mode fp list is nil +L.

%mode fp list member +L *X.

%mode fp validper refl +E +X.

%mode fp validper +E.

%mode fp set +S -X.

%mode fp emptyset +S.

%mode ax key auth +CC -Ka.

%mode ax key bind +P -K.

APPENDIX A. TACTICAL PROVER 111

%mode ax prp server +CC -P.

%mode ax prp auth +CC -Ma.

%mode ax auth sig stmt +K -S.

%mode ax library dsc +L +LC.

A.2.2 Termination Declaration

A termination declaration of a predicate1 consits of an order specification and a call

pattern. A call pattern shows which arguments are required to be reduced whenever

making a call to a predicate. An argument must get an identifier if it is used in the

termination order specifiation. Otherwise, a place holder ‘ ’ can be used for an argument.

The termination order specification part informs which arguments decreases at recursive

calls.

Table A.2 gives the full termination declaration of Secure Linking prover. The prover

and its termination declaration is checked successfully by the termination checker of Twelf;

this can be used fo a machine-generated proof of the prover’s termination.

%terminates F (ax calc hash F).

%terminates CC (ax key auth CC Ka).

%terminates P (ax key bind P).

%terminates CC (ax prp server CC P).

%terminates CC (ax prp auth CC Ma).

%terminates K (ax auth sig stmt K).

%terminates [L LC] (ax library dsc L LC).

%terminates X (fp ide valid X).

%terminates M (fp module valid M).

%terminates L (fp list is nil L).

%terminates L (fp ide list valid L).

1 in Secure Linking prover, it is corresponding to a tactical.

APPENDIX A. TACTICAL PROVER 112

%terminates L (fp mlist valid L).

%terminates P (fp prp valid P).

%terminates X (fp export valid X).

%terminates E (fp validper E).

%terminates X (fp validper refl X).

%terminates L (fp list valid L).

%terminates L (fp list member L).

%terminates L (fp list eq refl L).

%terminates S (fp set S).

%terminates S (fp emptyset S).

%terminates M (fp valid code hash M).

%terminates L (fp valid clist L).

%terminates R (fp prp match R).

%terminates C (fp cdsc valid C).

%terminates [CC Ka] (fp key cert CC Ka).

%terminates Ma (fp valid sig auth Ma).

%terminates C (fp valid sig cdsc C).

%terminates C (fp signed ma C).

%terminates C (fp signed prp C).

%terminates E (fp all signed E).

%terminates C (fp signed cdsc C).

%terminates [L LC] (fp valid lib L LC).

%terminates E (fp has prp E).

%terminates E (fp has prp’ E).

%terminates R (fp has property R).

%terminates L (fp st imprt cdsc L).

%terminates I (fp st imprt I).

%terminates [R E] (fp exp prps R E).

%terminates I (fp prv prps I).

%terminates D (fp ok to link D).

APPENDIX A. TACTICAL PROVER 113

A.3 Conditional Completeness Proof

A.3.1 Group 2: Tacticals with no subgoals

fp list is nil:

As explained in Section 6.2, the only way of constructing a nil list is to use the pre-defined list

constructor list nil. The tactic [R.61] covers this case, so the tactical fp list is nil is complete.2

fp emptyset:

The only way the Secure Linking parsers to construct an empty set is to use the pre-defined set

constructor set empty. The tactic [R.65] covers this case, so the tactical fp emptyset is complete.

fp validper:

The tactical fp validper is related to the predicate validper, and the tactic [R.56] is only one tactic

calling the tactical fp validper. The tactic [R.56] is related to the tactical fp list valid, which

reasons about the validity of lists. Although the Secure Linking logic (in fact, its underlying Core

Logic) allows to construct a list of any legitimate type, but only 4 types matter when considering

the formulas generated by the trusted parsers. That means, only 4 different kinds of lists are

taken into consider with respect to the tactical fp validper. The tactics [R.66], [R.67], [R.68] and

[R.69] cover the 4 cases which are produced by the Secure Linking parsers, therefore the tactical

fp validper is complete.

A.3.2 Group 3: Tacticals with no recursive calls

The completeness of these tacticals rely on the completeness of dependent tacticals (or subse-

quently called tacticals and the completeness of the input domain covered by the tactics of each

tactical. The tacticals in this group can be subgrouped by the patterns they call dependent

tacticals:
2 Note that the word completeness in this proof refers to the conditional completeness on input terms

parsed by the Secure Linking parsers.

APPENDIX A. TACTICAL PROVER 114

• calling dependent tacticals with their original input terms.

• calling dependent tacticals after getting rid of term constructors.

When dependent tacticals are called with their original input terms, the completeness of these

tacticals only depends on the completeness of dependent tacticals. The tacticals of this subgroup

are fp ok to link, fp exp prps, fp signed prp, fp signed ma, fp valid sig auth, fp valid sic cdsc,

fp key cert, fp export valid, fp import valid and fp validper refl.

fp ok to link:

The tactic [R.1] is the only rule related to the tactical fp ok to link. The completeness of this tacti-

cal depends on the completeness of dependent tacticals fp signed cdsc, fp exp prps and fp prv prps,

which are proved at Section A.3.3, Section A.3.2 and Section A.3.3. Therefore, the tactical

fp ok to link is complete.

fp exp prps:

The tactic [R.4] is the only rule related to the tactical fp exp prps. The completeness of this

tactical depends on the completeness of a dependent tactical fp has property, which is proved at

Section A.3.3. Therefore, the tactical fp exp prps is complete.

fp signed prp:

The tactic [R.26] is the only rule related to the tactical fp signed prp. The completeness of this

tactical depends on the completeness of dependent tacticals fp cdsc valid and fp signed ma, which

are proved at Section A.3.3, Section A.3.2 respectively. Therefore, the tactical fp signed prp is

complete.

fp signed ma:

The tactic [R.27] is the only rule related to the tactical fp signed ma. The completeness of this tac-

tical depends on the completeness of dependent tacticals fp valid sig cdsc, fp set and fp prp match,

which are proved at Section A.3.2, Section A.3.3 and Section A.3.2 respectively. Therefore, the

tactical fp signed ma is complete.

APPENDIX A. TACTICAL PROVER 115

fp valid sig auth:

The tactic [R.28] is the only rule related to the tactical fp valid sig auth. The completeness of

this tactical depends on the completeness of dependent tacticals ax prp server, fp key cert and

ax auth sig stmt which are proved at Section 6.5, Section A.3.2 and Section 6.5 respectively. There-

fore, the tactical fp valid sig auth is complete.

fp valid sic cdsc:

The tactic [R.29] is the only rule related to the tactical fp valid sig cdsc. The completeness of

this tactical depends on the completeness of dependent tacticals ax prp auth, fp key cert and

ax auth sig stmt which are proved at Section 6.5, Section A.3.2 and Section 6.5 respectively. There-

fore, the tactical fp valid sig cdsc is complete.

fp key cert:

The tactic [R.30] is the only rule related to the tactical fp key cert. The completeness of this tactical

depends on the completeness of dependent tacticals ax key auth, ax key bind and ax auth sig stmt

which are all proved at Section 6.5. Therefore, the tactical fp key cert is complete.

fp export valid:

The tactic [R.33] is the only rule related to the tactical fp export valid. The completeness of

this tactical depends on the completeness of dependent tacticals fp list valid, which is proved at

Section A.3.3. Therefore, the tactical fp export valid is complete.

fp import valid:

The tactic [R.34] is the only rule related to the tactical fp import valid. The completeness of

this tactical depends on the completeness of dependent tacticals fp list valid, which is proved at

Section A.3.3. Therefore, the tactical fp import valid is complete.

APPENDIX A. TACTICAL PROVER 116

fp validper refl:

The tactical fp validper refl is related to the tactics [R.55] and [R.59]. Note that both of the tactics

are reasoning about the lists in the Secure Linking logic. As mentioned above, the lists of only 4

types matter when considering the formulas generated by the trusted parsers. The tactics [R.70],

[R.71], [R.72] and [R.73] cover the four cases which are produced by the Secure Linking parsers.

In the case of the rule [R.70], the completeness of this tactic depends on the completeness

of the subsequent tactical fp module valid, which is proved at Section A.3.2. In the case of the

rule [R.71], the completeness of this tactic depends on the completeness of the subsequent tactical

fp prp valid, which is proved at Section A.3.2. In the case of the rule [R.72], the completeness

of this tactic depends on the completeness of the subsequent tactical fp cmodule valid, which is

proved at Section A.3.3. In the case of the rule [R.73], the completeness of this tactic depends on

the completeness of the subsequent tactical fp export valid, which is proved at Section A.3.2.

The tacticals in the other subgroup, fp prp match, fp prp valid, fp module valid and fp valid -

chash, call the subsequent tacticals after stripping term constructors. In this case, the completeness

of these tacticals depends on how completely the tactics of a tactical cover all possible input terms

as well as the completeness of the subsequent tacticals.

fp prp match:

In the Secure Linking logic, 5 term constructors are used to build property requests. The first term

constructor mk prp rq is used to make a property request out of a property term. The tactic [R.35]

is the rule related to mk prp rq. The completeness of dependent tactical fp prp valid is proved in

this section, therefore the tactic [R.35] is complete. Terms constructed by rq cname exists are

handled by the tactic [R.36]. This tactic has any subgoals, so it is complete. The tactic [R.37]

is the rule related to the term constructor mk rq cname. The completeness of dependent tactical

fp ide valid is proved at Section A.3.3, therefore the tactic [R.37] is complete. The tactic [R.38]

is the tactic related to the term constructor rq export ids exists. The completeness of dependent

tactical fp ide list valid is proved at Section A.3.3, therefore the tactic [R.38] is complete. The

tactic [R.39] is the tactic related to the term constructor rq code hash checkable. The completeness

of dependent tacticals fp valid clist and fp cmodule valid are proved at Section A.3.3, therefore the

APPENDIX A. TACTICAL PROVER 117

tactic [R.39] is complete.

By induction on the cases, the tactical fp prp match is complete.

fp prp valid:

The Secure Linking logic has 4 term constructors for making property terms. The tactic [R.40]

is the tactic related to the term constructor mk prp. This is the term constructor making a

property term out of an identifier standing for a property name. The completeness of dependent

tactical fp ide valid is proved at Section A.3.3, therefore the tactic [R.40] is complete. The tactic

[R.41] is the tactic related to the term constructor mk prp cname. This is the term constructor

making a property term out of an identifier standing for a property name. The completeness of

dependent tactical fp ide valid is proved at Section A.3.3, therefore the tactic [R.41] is complete.

The tactic [R.42] is the tactic related to the term constructor mk prp export ids. The completeness

of dependent tactical fp ide list valid is proved at Section A.3.3, therefore the tactic [R.42] is

complete. The tactic [R.43] is the tactic related to the term constructor mk prp code hash. The

completeness of dependent tactical fp cmodule valid is proved at Section A.3.3, therefore the tactic

[R.43] is complete.

By induction on the cases, the tactical fp prp valid is complete.

fp module valid:

The only way of constructing a module term is using the term constructor mk module, and the

tactic [R.44] handles this case. The completeness of dependent tactical fp ide valid is proved at

Section A.3.3, therefore the tactical fp module valid is complete.

fp valid chash:

The tactical fp valid chash takes a module term as an argument, and the term constructor mk module

is the only way of constructing a module term in the Secure Linking logic. The tactic [R.49] shows

the only case. The completeness of this tactical relies on the completeness of dependent tacticals

ax calc hash and fp ide valid. The completeness of the tactical ax calc hash is discussed at Sec-

tion 6.5, and the completeness of the tactical fp ide valid is proved at Section A.3.3. Therefore

the tactical fp valid chash is complete.

APPENDIX A. TACTICAL PROVER 118

A.3.3 Group 4: Tacticals with recursive calls

A tactical in this group make recursive calls to itself and subsequent calls to other tacticals. The

completeness of a tactical making recursive calls can be proved by induction on the structure of

input terms. Therefore the completeness of tacticals in this group is proved by using induction

as well as other dependent tacticals’ completeness. The tacticals are grouped again with respect

that the types of input terms dependent tacticals are called with original input terms or their

subterms. The subcategories are:

• tacticals making subsequent calls with subterms of type C (a type for component descrip-

tions). This group consists of the tacticals fp prv prps, fp has prp′, fp signed cdsc and

fp cdsc valid.

• tacticals making subsequent calls with subterms of type L(τ) (a type for lists). This group

consists of the tacticals fp st imprt, fp st imprt cdsc, fp has prp, fp valid lib, fp all signed,

fp cmodule valid, fp valid clist, fp ide list valid, fp list valid and fp list member.

• tacticals making subsequent calls with subterms of type S(τ) (a type for sets). This group

consists of the tacticals fp has property and fp set member.

• tacticals making subsequent calls with subterms of type I (a type for identifiers). This

group has only one tactical fp ide valid.

The tacticals in the first subgroup make recursive calls with subterms of type C (a type for

component descriptions). In the Secure Linking logic, a component description can be constructed

by using the term constructors mk component dsc and component dsc combine. The case in which

a component description built from mk component dsc is the base case of the induction when

proving the completeness of these tacticals. The term constructor component dsc combine is used

for constructing a bigger component description term out of two component description terms.

Hence, the tactics using component dsc combine cover the inductive step of the induction.

Following are the proofs of the tacticals in this subgroup one by one.

fp prv prps:

The base case of the tactical fp prv prps is when a component description is formed by using the

term constructor mk component dsc. The tactic [R.3] handles this case, and the completeness of

APPENDIX A. TACTICAL PROVER 119

the tactic relies on the completeness of dependent tacticals fp list valid, fp valid lib and fp st imprt.

The completeness of those tacticals are proved at Section A.3.3. Hence, the tactical fp prv prps is

complete in the base case.

For the inductive step, suppose that the tactical fp prv prps is complete with component

descriptions C and C ′. The only way of constructing a component description out of two compo-

nent descriptions is to use the term constructor component dsc combine. By the tactic [R.2], the

completeness of the tactical fp prv prps depends on the completeness of calling itself with compo-

nent descriptions C and C ′ (true by the induction hypothesis), the completeness of the tactical

fp cdsc valid (proved at Section A.3.3). So the tactical fp prv prps is complete for the inductive

step.

By induction, the tactical fp prv prps is complete.

fp has prp′:

The base case of the tactical fp has prp’ is when a component description is formed by using the

term constructor mk component dsc. The tactic [R.15] handles this case, and the completeness of

the tactic relies on the completeness of dependent tacticals fp export valid and fp has prp. The

completeness of the tactical fp export valid is proved at Section A.3.2, and the completeness of the

tactical fp has prp is proved at Section A.3.3. Hence, the tactical fp has prp’ is complete in the

base case.

For the inductive step, suppose that the tactical fp has prp’ is complete with component de-

scriptions C and C ′. The only way of constructing a component description out of two component

descriptions is to use the term constructor component dsc combine. The tactic [R.13] shows the

case in which the formula with the component description C is true. The completeness of the

tactical fp has prp’ depends on the completeness of calling itself with the component description

C (true by the induction hypothesis). The tactic [R.14] shows the case in which the formula

with the component description C ′ is true. The completeness of the tactical fp has prp’ depends

on the completeness of calling itself with the component description C ′ (true by the induction

hypothesis). By induction on the cases, the tactical fp has prp’ is complete for the inductive step.

By induction, the tactical fp has prp’ is complete.

APPENDIX A. TACTICAL PROVER 120

fp signed cdsc:

The base case of the tactical fp signed cdsc is when a component description is formed by using

the term constructor mk component dsc. The tactic [R.23] handles this case, and the completeness

of the tactic relies on the completeness of dependent tacticals fp export valid, fp import valid and

fp all signed. The completeness of the tacticals fp export valid and fp import valid are proved at

Section A.3.2, and the completeness of the tactical fp all signed is proved at Section A.3.3. Hence,

the tactical fp signed cdsc is complete in the base case.

For the inductive step, suppose that the tactical fp signed cdsc is complete with component

descriptions C and C ′. The only way of constructing a component description out of two compo-

nent descriptions is to use the term constructor component dsc combine. By the tactic [R.22], the

completeness of the tactical fp signed cdsc depends on the completeness of calling itself with com-

ponent descriptions C and C ′ (true by the induction hypothesis). So the tactical fp signed cdsc is

complete for the inductive step.

By induction, the tactical fp signed cdsc is complete.

fp cdsc valid:

The base case of the tactical fp cdsc valid is when a component description is formed by using the

term constructor mk component dsc. The tactic [R.32] handles this case, and the completeness

of the tactic relies on the completeness of dependent tacticals fp export valid and fp import valid.

The completeness of the tacticals fp export valid and fp import valid are proved at Section A.3.2.

Hence, the tactical fp cdsc valid is complete in the base case.

For the inductive step, suppose that the tactical fp cdsc valid is complete with component

descriptions C and C ′. The only way of constructing a component description out of two com-

ponent descriptions is to use the term constructor component dsc combine. By the tactic [R.31],

the completeness of the tactical fp cdsc valid depends on the completeness of calling itself with

component descriptions C and C ′ (true by the induction hypothesis). So the tactical fp cdsc valid

is complete for the inductive step.

By induction, the tactical fp cdsc valid is complete.

The tacticals in the second subgroup make subsequent calls with subterms of type L(τ) (a type

APPENDIX A. TACTICAL PROVER 121

for lists). The Secure Linking logic has 3 list constructors list nil, list cons and list cat. A list in the

Secure Linking logic can be formed by using the constructors list nil and list cons, or by using the

constructors list nil and list cat. For each case, the base case is when a list is constructed by using

the constructor list nil. For the inductive steps, lists formed by the constructors list cons and/or

list cat are considered. If two kinds of lists are considered, the completeness of the inductive step

is proved by the induction on the cases.

Following are the proofs of the tacticals in this subgroup one by one.

fp st imprt:

The base case of the tactical fp st imprt happens when a list is constructed by the term constructor

list nil. The tactic [R.7] handles this case, and the completeness of the tactic depends on the

completeness of the dependent tactical fp list is nil. The completeness of the tactical fp list is nil

is proved at Section A.3.1. Hence, the tactical fp st imprt is complete in the base case.

For the inductive step, suppose that the tactical fp st imprt is complete with lists Ci and Ci
′.

The Secure Linking has two list constructors forming a list out of given lists: list cat and list cons.

The tactic [R.5] handles the case in which a list is constructed by using list cat. The completeness

of this tactic relies on the completeness of calling itself with lists Ci and Ci
′ (true by induction

hypothesis), so the tactic [R.5] is complete. The tactic [R.6] handles the case in which a list is

constructed by using list cons. The completeness of this tactic relies on the completeness of calling

itself with a list Ci (true by induction hypothesis), and the completeness of the dependent tactical

fp st imprt cdsc (proved at Section A.3.3. By induction on the cases, the tactical fp st imprt is

complete for the inductive step.

By induction, the tactical fp st imprt is complete.

fp st imprt cdsc:

The completeness of the tactical fp st imprt cdsc is proved by induction on the length of an input

list. As discussed in Chapter 6, any parsed true formula for the tactical fp st imprt cdsc is con-

structed by using the list constructors list cons and list nil because a list of library descriptions is

built by using only those 2 constructors.

The base case is when the length of the input list is one. That means, the input list is formed

APPENDIX A. TACTICAL PROVER 122

with a head element and a nil list. The tactic [R.8] is applied for this case. The completeness of

this tactic relies on the completeness of dependent tacticals fp export valid and fp has property.

The completeness of fp export valid and fp has property are proved at Section A.3.2 and at Sec-

tion A.3.3. Hence, the tactical fp st imprt cdsc is complete in the base case.

For inductive step, suppose that the tactical fp st imprt cdsc is complete when an input list

of length k. Then a list of length k + 1 can be constructed by using list cons. Note that the

tactic [R.9] is applied only when applying the tactic [R.8] fails. If the tactic [R.8] is applied, the

completeness of the tactical depends on the completeness of dependent tacticals fp export valid

(proved at Section A.3.2) and fp has property (proved at Section A.3.3). So the tactic [R.8] is

complete. If the tactic [R.9] is applied, the completeness of the tactical depends on the complete-

ness of calling itself with a list of length k (true by induction hypothesis) and the completeness of

the dependent tactical fp list valid (proved at Section A.3.3). So the tactic [R.8] is complete. By

induction on the cases, the tactical fp st imprt cdsc is complete for the inductive step.

By induction, the tactical fp st imprt cdsc is complete.

fp has prp:

For any list formula which makes the tactical fp has prp true in the Secure Linking logic, the

formula must be constructed by using the term constructors list cat or list cons.

If a list formula is built by list cat and the list makes the tactical fp has prp true, the first

part of the concatenated list must make the tactical fp has prp true [R.16], or the second part of

the concatenated list must make the tactical fp has prp true [R.17]. If a list formula is built by

list cons and the list makes the tactical fp has prp true, the head element must make the tactical

fp has prp true [R.18], or the tail list must make the tactical fp has prp true [R.19].

By induction on the cases, the tactical fp has prp is complete.

fp valid lib:

The base case of the tactical fp valid lib happens when a list is constructed by the term constructor

list nil. The tactic [R.21] handles this case, and the completeness of the tactic depends on the

completeness of the dependent tactical fp list is nil. The completeness of the tactical fp list is nil

is proved at Section A.3.1. Hence, the tactical fp valid lib is complete in the base case.

APPENDIX A. TACTICAL PROVER 123

For the inductive step, suppose that the tactical fp valid lib is complete with lists Lm and

Ld. Note that a list of library descriptions is built by using only list cons and list nil by the

Secure Linking parsers. The tactic [R.20] handles the case in which a list is constructed by using

list cons. The completeness of this tactic relies on the completeness of calling itself with Lm and

Ld (true by induction hypothesis), and the completeness of the dependent tacticals ax library dsc

(discussed at Section 6.5), fp export valid (proved at Section A.3.2), and fp cmodule valid (proved

at Section A.3.3). So the tactical fp valid lib is complete for the inductive step.

By induction, the tactical fp valid lib is complete.

fp all signed:

The base case of the tactical fp all signed happens when a list is constructed by the term construc-

tor list nil. The tactic [R.25] handles this case, and the completeness of the tactic depends on the

completeness of the dependent tactical fp list is nil. The completeness of the tactical fp list is nil

is proved at Section A.3.1. Hence, the tactical fp all signed is complete in the base case.

For the inductive step, suppose that the tactical fp valid lib is complete with a list Ce. Note

that the tactic [R.23] is the only one calling the tactical fp all signed, and an input argument

comes from the argument of a component description. The Secure Linking parsers use only the

list constructor list cons when building a component description from a list of modules and a list

of exported properties. Thus, any list input to the tactical fp all signed is always built by using

list cons. The tactic [R.20] handles the case in which a list is constructed by using list cons. The

completeness of this tactic relies on the completeness of calling itself with Ce (true by induction hy-

pothesis), and the completeness of the dependent tactical fp signed prp (proved at Section A.3.2).

So the tactical fp all signed is complete for the inductive step.

By induction, the tactical fp all signed is complete.

fp cmodule valid:

The base case of the tactical fp cmodule valid happens when a list is constructed by the term

constructor list nil. The tactic [R.46] handles this case, and the completeness of the tactic depends

on the completeness of the dependent tactical fp list is nil. The completeness of the tactical

fp list is nil is proved at Section A.3.1. Hence, the tactical fp cmodule valid is complete in the

APPENDIX A. TACTICAL PROVER 124

base case.

For the inductive step, suppose that the tactical fp cmodule valid is complete with a list Mc.

Note that the Secure Linking parsers always use the list constructor list cons for a list of modules.

The tactic [R.45] handles the case in which a list is constructed by using list cons. The completeness

of this tactic relies on the completeness of calling itself with Mc (true by induction hypothesis),

and the completeness of the dependent tactical fp module valid (proved at Section A.3.2). So the

tactical fp cmodule valid is complete for the inductive step.

By induction, the tactical fp cmodule valid is complete.

fp valid clist:

The base case of the tactical fp valid clist happens when a list is constructed by the term construc-

tor list nil. The tactic [R.48] handles this case, and the completeness of the tactic depends on the

completeness of the dependent tactical fp list is nil. The completeness of the tactical fp list is nil

is proved at Section A.3.1. Hence, the tactical fp valid clist is complete in the base case.

For the inductive step, suppose that the tactical fp valid clist is complete with a list Mc. Note

that the Secure Linking parsers always use the list constructor list cons for a list of modules. The

tactic [R.47] handles the case in which a list is constructed by using list cons. The completeness

of this tactic relies on the completeness of calling itself with Mc (true by induction hypothesis),

and the completeness of the dependent tactical fp valid chash (proved at Section A.3.2). So the

tactical fp valid clist is complete for the inductive step.

By induction, the tactical fp valid clist is complete.

fp ide list valid:

The base case of the tactical fp ide list valid happens when a list is constructed by the term

constructor list nil. The tactic [R.53] handles this case, and the completeness of the tactic depends

on the completeness of the dependent tactical fp list is nil. The completeness of the tactical

fp list is nil is proved at Section A.3.1. Hence, the tactical fp ide list valid is complete in the base

case.

For the inductive step, suppose that the tactical fp ide list valid is complete with a list L(I).

Note that the Secure Linking parsers always use the list constructor list cons for a list of exported

APPENDIX A. TACTICAL PROVER 125

identifiers. The tactic [R.52] handles the case in which a list is constructed by using list cons. The

completeness of this tactic relies on the completeness of calling itself with L(I) (true by induction

hypothesis), and the completeness of the dependent tactical fp ide valid (proved at Section A.3.3).

So the tactical fp ide list valid is complete for the inductive step.

By induction, the tactical fp ide list valid is complete.

fp list valid:

The base case of the tactical fp list valid happens when a list is constructed by the term constructor

list nil. The tactic [R.56] handles this case, and the completeness of the tactic depends on the

completeness of the dependent tacticals fp list is nil and fp validper. The completeness of those

tacticals are proved at Section A.3.1. Hence, the tactical fp list valid is complete in the base case.

For the inductive step, suppose that the tactical fp list valid is complete with lists L(τ) and

L(τ)′. The Secure Linking has two list constructors forming a list out of given lists: list cat and

list cons. The tactic [R.54] handles the case in which a list is constructed by using list cat. The

completeness of this tactic relies on the completeness of calling itself with lists L(τ) and L(τ)′

(true by induction hypothesis), so the tactic [R.54] is complete. The tactic [R.55] handles the

case in which a list is constructed by using list cons. The completeness of this tactic relies on the

completeness of calling itself with a list L(τ) (true by induction hypothesis), and the completeness

of the dependent tactical fp validper refl (proved at Section A.3.2). By induction on the cases, the

tactical fp list valid is complete for the inductive step.

By induction, the tactical fp list valid is complete.

fp list member:

For any list formula which makes the tactical fp list member true in the Secure Linking logic, the

formula must be constructed by using the term constructors list cat or list cons.

If a list formula is built by list cat and the list makes the tactical fp list member true, the

first part of the concatenated list must make the tactical fp list member true [R.57], or the second

part of the concatenated list must make the tactical fp list member true [R.58]. If a list formula is

built by list cons and the list makes the tactical fp list member true, the head element must make

the tactical fp list member true [R.59], or the tail list must make the tactical fp list member true

APPENDIX A. TACTICAL PROVER 126

[R.60].

By induction on the cases, the tactical fp list member is complete.

The tacticals in the third subgroup make subsequent calls with subterms of type S(τ) (a type

for sets). The set constructs included in the Secure Linking logic are set empty, set singleton and

set union. Tacticals in this subgroup are fp has property and fp set member. Following are the

proofs of the tacticals in this subgroup one by one.

fp has property:

A true set formula which makes the tactical fp has property is either an empty set or a nonempty

set. In case of an empty set, the tactic [R.12] is applied. The completeness of this tactic relies

on the completeness of the tactical fp emptyset (proved at Section A.3.1); thus the tactic [R.12] is

complete.

For a nonempty set, the base case occurs when the cardinality of the set is 1. The tactic [R.11]

handles this case, and the completeness depends on the completeness of the tactical fp has prp’

(proved at Section A.3.3); thus the tactical fp has property is complete in the base case.

Suppose that the tactical fp has property is complete with input sets Rp and Rp
′ for the

inductive step. The only way of building a bigger set from sets is using the set constructor

set union, and the tactic [R.10] handles this case. The completeness of the tactic [R.10] relies on

the completeness of calling itself with Rp and Rp
′ (true by induction hypothesis); thus the tactical

fp has property is complete for the inductive step. By induction, the tactical fp has property is

complete when an input set is nonempty.

By induction on the cases, the tactical fp has property is complete.

fp set member:

The base case of the tactical fp set member happens when a list is constructed by the term con-

structor set singleton. The tactic [R.64] handles this case, and it requires no further calls to other

tacticals. Hence, the tactical fp set member is complete in the base case.

For the inductive step, suppose that the tactical fp set member is complete with sets S(τ) and

S(τ)′. The Secure Linking has only one set constructor forming a set out of given sets: set union.

APPENDIX A. TACTICAL PROVER 127

If an element x is a member of a unioned set of two sets, x is a member of one set or the other. The

tactics [R.62] and [R.63] cover this case. The completeness depends on the completeness of calling

the tactical fp set member itself with sets S(τ) or S(τ)′, and it is proved by induction hypothesis.

Thus, the tactical fp set member is complete for the inductive step.

By induction, the tactical fp set member is complete.

The tactical in the fourth subgroup make subsequent calls with subterms of type I (a type

for identifiers). There are two term constructors for identifiers: mk ch and mk str. The tactical

fp ide valid is the only one in this subgroup.

The base case of the tactical fp ide valid happens when an identifier is constructed by the term

constructor mk ch. The tactic [R.51] handles this case, and it requires no further calls to other

tacticals. Hence, the tactical fp ide valid is complete in the base case.

For the inductive step, suppose that the tactical fp ide valid is complete with identifiers Ic and

Is. The Secure Linking has only one term constructor forming an identifier from another identifier:

mk str. The tactic [R.50] handles this case. The completeness depends on the completeness of

calling the tactical fp ide valid itself with Ic and Is, and it is proved by induction hypothesis.

Thus, the tactical fp ide valid is complete for the inductive step.

By induction, the tactical fp ide valid is complete.

Appendix B

Simple-Gt System

t: tp.

t_nonempty: pf (exists [x: tm t] true).

t_infinite:

pf (exists [r: tm (t arrow t arrow form)]

(forall2 [x][y] r @ x @ y equiv not (r @ y @ x)) and

(forall3 [x][y][z] (r @ x @ y imp r @ y @ z imp r @ x @ z)) and

(forall [x] exists [y] r @ x @ y)).

nat : tp = (t arrow t) arrow (t arrow t).

zero : tm nat = lam [f] lam [x] x.

succ : tm (nat arrow nat) =

lam [n] lam2 [f][x] f @ (n @ f @ x).

gt : tm (nat arrow nat arrow form) =

lam2 [a][b]

forall [r]

(forall [n] r @ (succ @ n) @ zero) imp

(forall2 [x][y] r @ x @ y imp r @ (succ @ x) @ (succ @ y)) imp

r @ a @ b.

gt-zero : pf (gt @ (succ @ N) @ zero) =

def2_i

(forall_i [r]

imp2_i [q1: pf (forall [n] r @ (succ @ n) @ zero)][q2]

forall_e q1 N).

gt-succ :

pf (gt @ X @ Y) ->

pf (gt @ (succ @ X) @ (succ @ Y)) =

[p1: pf (gt @ X @ Y)]

def2_i (forall_i [r] imp2_i

[q1: pf (forall [n] r @ (succ @ n) @ zero)]

[q2: pf (forall2 [x][y] r @ x @ y imp r @ (succ @ x) @ (succ @ y))]

cut (imp2_e (forall_e (def2_e p1) r) q1 q2)

[q3: pf (r @ X @ Y)]

imp_e (forall2_e q2 X Y) q3).

128

Appendix C

Complete Secure Linking Logic

%%% linking definitions

library_dsc : tm (rel module_list export).

valid_library : tm (rel (list module_list) (list export)) =

lam2 [mLst][cidLst]

list_valid @ module_list_eq @ mLst and

list_valid @ export_eq @ cidLst and

(exists [n] list_length @ mLst @ n and list_length @ cidLst @ n) and

forall3 [i][x][xid] (list_nth @ mLst @ i @ x and list_nth @ cidLst @ i @ xid) imp

exists2 [x’][xid’]

module_list_eq @ x @ x’ and export_eq @ xid @ xid’ and

library_dsc @ x’ @ xid’.

has_prp : tm (rel prp_rq (list property)) =

lam2 [rq][prps]

exists [prp] list_member @ prps @ prp and rq @ prp.

has_property : tm (rel (set prp_rq) (list property)) =

lam2 [rqs][prps]

forall [rq] rqs @ rq imp has_prp @ rq @ prps.

imprt_match : tm (rel import (list export)) =

lam2 [i][libdsc]

exists [cid] list_member @ libdsc @ cid and has_property @ i @ cid.

satisfy_imports : tm (rel (list import) (list export)) =

lam2 [importLst][libdsc]

forall [i] list_member @ importLst @ i imp

imprt_match @ i @ libdsc.

provide_enough_lib : tm (rel3 (list import) (list module_list) (list export)) =

lam3 [imprt][lib][libdsc]

valid_library @ lib @ libdsc and

satisfy_imports @ imprt @ libdsc.

129

APPENDIX C. COMPLETE SECURE LINKING LOGIC 130

export_required_prps : tm (rel (set prp_rq) export) =

lam2 [rprps][exprt] has_property @ rprps @ exprt.

ok_to_link : tm (module_list arrow component_dsc arrow

(list module_list) arrow (list export) arrow (set prp_rq) arrow form) =

lam5 [m][cdsc][lib][libdsc][rqs]

signed_component_dsc @ m @ cdsc and

provide_enough_lib @ (component_dsc_imprt_list @ cdsc) @ lib @ libdsc and

export_required_prps @ rqs @ (component_dsc_exprt @ cdsc).

%%% component description definitions

export : tp = list property.

export_eq = list_eq @ prp_eq.

export_valid = list_valid @ prp_eq.

import : tp = set prp_rq.

import_eq = set_equiv.

imprt_list_eq = list_eq @ import_eq.

imprt_list_valid = list_valid @ import_eq.

component_dsc : tp = pair export (list import).

mk_component_dsc : tm (export arrow (list import) arrow component_dsc) =

lam2 [id][imports] mkpair @ id @ imports.

component_dsc_exprt : tm (component_dsc arrow export) = fst.

component_dsc_imprt_list : tm (component_dsc arrow (list import)) = snd.

component_dsc_eq : tm (eqrel component_dsc) =

lam2 [g1][g2]

(export_eq @ (fst @ g1) @ (fst @ g2)) and

(list_eq @ import_eq @ (snd @ g1) @ (snd @ g2)).

component_dsc_valid : tm (component_dsc arrow form) =

lam [cdsc]

list_valid @ prp_eq @ (component_dsc_exprt @ cdsc) and

list_valid @ import_eq @ (component_dsc_imprt_list @ cdsc).

sub_export : tm (rel export export) =

lam2 [lst1][lst2]

forall [x] list_member @ lst1 @ x imp list_member @ lst2 @ x.

sub_import_list : tm (rel (list import) (list import)) =

lam2 [lst1][lst2]

list_is_not_nil @ lst1 imp

exists2 [f][l]

sublist_proper_range @ lst2 @ f @ l and

list_eq @ set_equiv @ lst1 @ (sublist @ f @ l @ lst2).

sub_component_dsc : tm (rel component_dsc component_dsc) =

lam2 [dsc1][dsc2]

sub_export @ (component_dsc_exprt @ dsc1)

APPENDIX C. COMPLETE SECURE LINKING LOGIC 131

@ (component_dsc_exprt @ dsc2) and

sub_import_list @ (component_dsc_imprt_list @ dsc1)

@ (component_dsc_imprt_list @ dsc2).

export_combine : tm (export arrow export arrow export) = list_cat.

imprt_list_combine :

tm (list import arrow list import arrow list import) = list_cat.

component_dsc_combine : tm (component_dsc arrow component_dsc arrow component_dsc) =

lam2 [dsc1][dsc2]

mk_component_dsc

@ (export_combine @ (component_dsc_exprt @ dsc1) @ (component_dsc_exprt @ dsc2))

@ (imprt_list_combine @ (component_dsc_imprt_list @ dsc1)

@ (component_dsc_imprt_list @ dsc2)).

%%% authentication definitions

controls : tm (rel worldview form) =

lam2 [a][f] (says @ a @ f) imp f.

keybind : tm (rel worldview str) =

lam2 [prn][pkey] speaksfor @ (key @ pkey) @ prn.

key_authority : tm (worldview arrow form) =

lam [ca] forall2 [p][k] controls @ ca @ (keybind @ p @ k).

keycert : tm (rel worldview str) =

lam2 [prn][pkey]

exists [ca] key_authority @ ca and says @ ca @ (keybind @ prn @ pkey).

guarantees : tm (rel worldview (set prp_rq)).

prp_server : tm (worldview arrow form) =

lam [pa]

forall2 [ma][prpSet] controls @ pa @ (guarantees @ ma @ prpSet).

valid_sig_prp_auth : tm (rel worldview (set prp_rq)) =

lam2 [ma][prpSet]

exists2 [pa][paKey]

prp_server @ pa and

keycert @ pa @ paKey and

signed @ paKey @ (guarantees @ ma @ prpSet).

module_dsc : tm (rel (list module) component_dsc).

property_authority : tm (worldview arrow form) =

lam [ma]

forall2 [m][dsc] controls @ ma @ (module_dsc @ m @ dsc).

valid_sig_component_dsc : tm (worldview arrow list module arrow component_dsc arrow form) =

lam3 [ma][m][dsc]

property_authority @ ma and

exists [maKey]

APPENDIX C. COMPLETE SECURE LINKING LOGIC 132

keycert @ ma @ maKey and

signed @ maKey @ (module_dsc @ m @ dsc).

signed_by_auth : tm (rel3 (list module) component_dsc property) =

lam3 [m][dsc][prp]

exists3 [ma][prqSet][rq]

valid_sig_prp_auth @ ma @ prqSet and

prqSet @ rq and rq @ prp and

valid_sig_component_dsc @ ma @ m @ dsc.

signed_prp : tm (rel3 (list module) component_dsc property) =

lam3 [m][dsc][prp]

exists [dsc’] sub_component_dsc @ dsc’ @ dsc and signed_by_auth @ m @ dsc’ @ prp.

all_signed :

tm (rel3 (list module) component_dsc (list property)) =

lam3 [m][dsc][plist]

forall [p] list_member @ plist @ p imp

exists [p’] prp_eq @ p @ p’ and signed_prp @ m @ dsc @ p’.

signed_component_dsc : tm (rel (list module) component_dsc) =

lam2 [m][dsc]

component_dsc_valid @ dsc and

exists [dsc’] component_dsc_eq @ dsc @ dsc’ and

all_signed @ m @ dsc’ @ (component_dsc_exprt @ dsc).

%%% property definitions

property : tp = tree num.

prp_kind = tree_root.

prp_eq : tm (eqrel property) = tree_eq @ eq_arith.

prp_valid : tm (property arrow form) = tree_valid @ eq_arith.

mk_prp : tm (ide arrow property) = lam [p] p.

prp_rq : tp = property arrow form.

mk_prp_rq : tm (property arrow (property arrow form)) =

lam [rprp]

lam [sprp] prp_eq @ rprp @ sprp.

%%% basic property definitions

prp_component_name : tm num.

mk_prp_component_name : tm (ide arrow property) =

lam [cname]

mktree @ eq_arith @ prp_component_name

@ (list_cons @ (tree_eq @ eq_arith) @ cname @ list_nil).

rq_component_name_exists : tm (property arrow form) =

lam [prp]

prp_kind @ prp @ prp_component_name.

APPENDIX C. COMPLETE SECURE LINKING LOGIC 133

mk_rq_component_name : tm (ide arrow prp_rq) =

lam [cname]

lam [sprp]

prp_kind @ sprp @ prp_component_name and

prp_eq @ (mk_prp_component_name @ cname) @ sprp.

prp_export_id : tm num.

mk_prp_export_id : tm (list ide arrow property) =

lam [idlist]

mktree @ eq_arith @ prp_export_id @ idlist.

rq_export_id_exists : tm (property arrow form) =

lam [prp]

prp_kind @ prp @ prp_export_id and

list_is_not_nil @ (tree_list_of_subtrees @ eq_arith @ prp).

prp_code_hash : tm num.

mk_prp_code_hash : tm (list module arrow property) =

lam [mlist] mktree @ eq_arith @ prp_code_hash @ mlist.

prp_code_hash_modules : tm (property arrow (list module)) =

tree_list_of_subtrees @ eq_arith.

rq_code_hash_checkable : tm prp_rq =

lam [prp]

prp_kind @ prp @ prp_code_hash and

valid_chash_list @ (prp_code_hash_modules @ prp).

%%% module definitions

module : tp = tree num.

mk_module : tm (ide arrow hash_code arrow module) =

lam2 [fname][hcode]

mktree @ eq_arith @ hcode

@ (list_cons @ (tree_eq @ eq_arith) @ fname @ list_nil).

module_eq : tm (eqrel module) = tree_eq @ eq_arith.

get_module_name : tm (rel module ide) =

lam2 [m][fname]

tree_get_subtree’ @ m @ (list_cons @ eq_nat @ zero @ list_nil) @ fname.

get_hash_code : tm (rel module hash_code) = tree_root.

valid_chash : tm (module arrow form) =

lam [m]

exists3 [fname][hcode][hcode’]

get_module_name @ m @ fname and

get_hash_code @ m @ hcode and

calc_hash @ fname @ hcode’ and

hash_code_eq @ hcode @ hcode’.

module_valid = tree_valid @ eq_arith.

APPENDIX C. COMPLETE SECURE LINKING LOGIC 134

module_list : tp = list module.

module_list_eq = list_eq @ module_eq.

module_list_valid : tm (module_list arrow form) = tree_valid_subtrees @ eq_arith.

valid_chash_list : tm (module_list arrow form) =

lam [mlist]

forall [m] list_member @ mlist @ m imp valid_chash @ m.

hash_code : tp = num.

hash_code_eq : tm (eqrel hash_code) = lam2 [h1][h2] eq_arith @ h1 @ h2.

calc_hash : tm (rel ide hash_code).

%%% identifier definitions

ch_a : tm num.

ch_b : tm num.

...

ch_y : tm num.

ch_z : tm num.

ch_underscore : tm num.

ch_dash : tm num.

ch_space : tm num.

ide = tree num.

mk_ch : tm (num arrow ide) =

lam [ch] mktree @ eq_arith @ ch @ list_nil.

mk_str : tm (num arrow ide arrow ide) =

lam2 [ch][str] mktree @ eq_arith @ ch

@ (list_cons @ (tree_eq @ eq_arith) @ str @ list_nil).

ide_valid = tree_valid @ eq_arith.

ide_eq = tree_eq @ eq_arith.

ide_list_valid : tm (list ide arrow form) = tree_valid_subtrees @ eq_arith.

Bibliography

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control
in distributed systems. ACM Transactions on Programming Languages and Systems,
15(4):706–734, September 1993.

[2] A. W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium
on Logic in Computer Science, June 2001.

[3] A. W. Appel and E. W. Felten. Proof-carrying authentication. In 6th ACM Confer-
ence on Computer and Communications Security, November 1999.

[4] A. W. Appel and A. P. Felty. Dependent types ensure partial correctness of theorem
provers. Journal of Functional Programming, Accepted for publication.

[5] A. W. Appel, N. G. Michael, A. Stump, and R. Virga. A trustworthy proof checker.
In Foundations of Computer Security, Copenhagen, Denmark, July 2002.

[6] L. Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis,
Princeton University, 2003.

[7] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms for secure modular program-
ming in java. Technical Report CS-TR-603-99, Department of Computer Science,
Princeton University, July 1999.

[8] L. Bauer, M. A. Schneider, and E. W. Felten. A general and flexible access-control
system for the web. In Proceedings of the 11th USENIX Security Symposium, August
2002.

[9] M. Blume and A. W. Appel. Hierarchical modularity. ACM Transactions on Pro-
gramming Languages and Systems, 21:812–846, 1999.

[10] L. Cardelli. Program fragments, linking, and modularization. In Proceedings of
ACM Symposium on Principles of Programming Languages, pages 266–277. ACM
Press, January 1997.

[11] CCITT. Recommendation X.509: The directory - authentication framework. Tech-
nical report, CCITT Blue Book, 1989.

135

BIBLIOGRAPHY 136

[12] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68, June 1940.

[13] D. Dean. The security of static typing with dynamic linking. In Proceedings of
the Fourth ACM Conference on Computer and Communications Security, Zurich,
Switzerland, 1997.

[14] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generic
software wrappers. In IEEE Symposium on Security and Privacy, pages 2–16, 1999.

[15] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
algorithms. IEEE Transactions on Information Theory, 31(4):469–472, June 1985.

[16] C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software Practice and
Experience, 30(15):1609–1640, 2000.

[17] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40:143–184, January 1993.

[18] N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and in-
tegrity. In 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 365–377, New York, NY, USA, 1998. ACM Press.

[19] M. R. Huth and M. D. Ryan. Logic in Computer Science: Modelling and reasoning
about systems. Cambridge University Press, 2000.

[20] J.V.Guttag, J. Horning, S. Garland, K. Jones, A. Modet, and J.M.Wing. Larch:
Languages and tools for formal specification, January 1993.

[21] E. Lee and A. W. Appel. Secure Linking: a framework for trusted software compo-
nents (extended version). Technical Report CS-TR-663-02, Department of Computer
Science, Princeton University, September 2002.

[22] E. Lee and A. W. Appel. Policy-enforced linking of untrusted components (extended
abstract). In Proceedings of the 9th European Software Engineering Conference and
the 10th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering, Helsinki, Finland, September 2003.

[23] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addision Wesley,
second edition, 1999.

[24] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison Wesley,
2nd edition, 1999.

[25] Microsoft. Authenticode. http://www.microsoft.com/technet/security/topics/-
secapps/authcode.asp.

[26] Microsoft. Inside the .NET framework. http://msdn.microsoft.com/library/.

BIBLIOGRAPHY 137

[27] Microsoft. Introduction to Code Signing. http://msdn.microsoft.com/workshop/-
security/authcode/intro authenticode.asp.

[28] Microsoft. Signing and Checking code with Authenticode. http://msdn.microsoft.-
com/workshop/security/authcode/signing.asp.

[29] Microsoft, http://www.microsoft.com/technet/security/bulletin/MS02-065.asp. Mi-
crosoft Security Bulletin MS02-065, November 2002.

[30] National Institute of Standards and Technology. SECURE HASH STANDARD, April
1995. http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[31] G. C. Necula. Proof-carrying code. In Proceedings of the 24th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL
’97), January 1997.

[32] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In
G. Vigna, editor, Mobile Agents and Security, volume 1419, pages 61–91. Springer-
Verlag, Berlin, 1998.

[33] N. I. of Standards and Technology. Digital Signature Standard (DSS), May 1994.

[34] E. Organick. The Multics System: An Examination of its Structure. MIT press,
1972.

[35] S. Owre, N. Shankar, J. Rushby, and D. W. J. Stringer-Calvert. User Guide for
the PVS Specification and Verification System. Computer Science Laboratory, SRI
International, Menlo Park, CA, December 2001.

[36] M. Pawlan and S. Dodda. Signed applets, browsers, and file access, April 1999.

[37] F. Pfenning and C. Schuermann. Twelf User’s Guide, Version 1.4. http://www-
2.cs.cmu.edu/t̃welf/guide-1-4/twelf toc.html, December 2002.

[38] F. Pfenning and C. Schürmann. System description: Twelf – A meta-logical frame-
work for deductive systems. In Proceedings of the 16th International Conference on
Automated Deduction (CADE-16), pages 202–206, July 1999.

[39] B. Pientka. Termination and reduction checking for higher-order logic programs.
In First International Joint Conference on Automated Reasoning(IJCAR), LNCS.
Springer, 2001.

[40] D. S. Platt. Introducing Microsoft .NET. Microsoft Press, 2001.

[41] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital sig-
natures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

[42] A. Sabelfeld and A. Myers. Language-based information-flow security, 2003.

BIBLIOGRAPHY 138

[43] P. Sewell and J. Vitek. Secure composition of insecure components. In PCSFW:
Proceedings of The 12th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1999.

[44] P. Sewell and J. Vitek. Secure composition of untrusted code: Wrappers and causality
types. In PCSFW: Proceedings of The 13th Computer Security Foundations Work-
shop. IEEE Computer Society Press, 2000.

[45] R. N. Srinivas. Java Security Evolution and Concepts, Part 3: Applet Security.
http://developer.java.sun.com/developer/technicalArticles/Security/% -applets, De-
cember 2000.

[46] Sun Microsystems. Java 2 Platform, Standard Edition, v 1.3 Documentation. http://-
www.javasoft.com/j2se1.3/docs.html.

[47] VeriSign Inc. Code Signing Digital IDs for Sun Java Signing, 2001.

[48] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in the Taos
operating system. ACM Transactions on Computer Systems, 12(1):3–32, 1994.

[49] A. M. Zaremski and J. M. Wing. Specification matching of software components.
ACM Transactions on Software Engineering and Methodology, 6(4):333–369, October
1997.

	Abstract
	Introduction
	Code-Signing Protocols
	Goals
	Related Work
	Proof-carrying authentication
	Component models
	Digital signatures
	Security-concerned linking

	The Design of SL
	A Simple Example
	Code Provider
	Code Consumer
	Secure Linking Policies
	Properties
	Property Authorities
	Library
	Key Authorities
	Property Servers
	Linking Decision

	SL Interface
	Component Description Language
	Modules
	Exports
	Imports
	Combining component descriptions

	Linking Policy Description
	Linking policy model
	Required properties
	Key authorities
	Property servers
	Library components

	SL Logic: Syntax
	Term Constructors and Predicates
	Translating linking policies
	Translating component description
	Formal syntax

	Inference Rules
	Building a proof
	Linking
	Authentication

	SL Logic: Semantic Model
	Syntactic vs. Semantic Approach
	SL Logic Semantics
	Soundness of the SL Logic

	Tactical Prover
	Finding a proof
	Tacticals and Tactics
	Soundness
	Termination
	Completeness

	Beyond SL logic
	Extending the Secure Linking logic
	Interoperating with other logics
	Foundational proof-carrying code
	Public Key Infrastructure

	Case Study
	Overview
	Assemblies
	Versioning

	Versioning
	Version redirection in .NET
	Formal specification in the Secure Linking logic

	Signing Assemblies
	Discussion

	Implementation
	Java Class Loaders
	Proof Checker
	Certificate Storage

	Conclusion
	Tactical Prover
	Tacticals and Tactics
	Termination Checking
	Mode Declaration
	Termination Declaration

	Conditional Completeness Proof
	Group 2: Tacticals with no subgoals
	Group 3: Tacticals with no recursive calls
	Group 4: Tacticals with recursive calls

	Simple-Gt System
	Complete Secure Linking Logic

