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Abstract

During the last two decades, while disk capacity, disk bandwidth and CPU perfor-

mance have been improving at a rate of about 60% per year following Moore’s law,

disk access latency has only been improving at a rate of about 10% per year. The

performance gap between disk access latency and the rest of the computer system

has been increasing exponentially. Moreover, Redundant Array of Independent Disks

(RAID) has become a standard approach to improving the bandwidth and capacity

of disk subsystems after over a decade of research and development. As a result,

disk access latency becomes a performance bottleneck of many I/O intensive applica-

tions. Although several techniques, such as striping, mirroring and data replication

within a disk track, have been proposed to reduce disk access latency by sacrificing

disk capacity, it is not clear how to systematically configure disk arrays to reduce

disk access latency and improve disk throughput for a variety of workloads and disk

characteristics.

This dissertation proposes a novel way of designing disk arrays that can flexibly

and systematically reduce disk access latency while improving disk throughput. We

call this new disk array configuration family “SR-Array” because it considers reducing

both seek time and rotational delay in a balanced manner. The dissertation shows,

via theoretical and experimental studies, that the SR-Array approach can indeed im-

prove disk access latency significantly compared with existing disk array configuration

techniques.

The dissertation makes several contributions. First, we have developed analytical

models for disk array configurations, and we show how to use the models to guide

disk array designs towards optimal configurations by considering both disk and work-

load characteristics. Second, we have proposed a robust disk head position prediction
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mechanism without any hardware support and a new algorithm to reduce both seek

time and rotational delay for the SR-Array disk configurations. Third, we have imple-

mented a prototype disk array system together with an accurate simulator in a layered

approach that incorporates the configuration models. Finally, we have demonstrated

that the SR-Array approach can indeed improve disk I/O performance significantly

for several I/O intensive workloads over existing disk array configuration techniques.

iv



Acknowledgments

I would like to thank my advisor, Prof. Randolph Wang, for his knowledge, youthful

spirit, openmindedness and encouragement. This dissertation would not be made

possible if without his guidance. I have benefited greatly from the dynamic discussions

with him that opened up my thinking, gave me confidence and taught me how to

approach research problems. He has inspired many ideas in this dissertation.

I am grateful to Prof. Kai Li and Prof. Larry Peterson for serving as readers

in my dissertation committee and for their valuable comments and suggestions on

thesis drafts. I am fortunate to have worked with and learned from many faculty

members in the Computer Science Department. Prof. Douglas Clark and Prof. Ed-

ward Felten guided my academic study and research through my general exams. I

appreciate that they have agreed to serve on my dissertation committee. Prof. Kai

Li, Prof. Jaswinder P. Singh and Dr. James Philbin have supported my work on the

VMMC platform that provided me the necessary skills and confidence of engineering

system prototypes. This experience helped me substantially in implementing the ex-

perimental framework in my dissertation research. I would also thank our graduate

coordinator, Melissa Lawson, and CS staff for all their help during my study.

I would like to thank various funding agencies for their visions and efforts to

support my graduate study and research. This dissertation is supported in part by

the Scalable I/O project under the DARPA grant DABT63-94-C-0049 and by the

National Science Foundation under grant CDA-9624099 and CCR-9984790.

System research requires a lot of teamwork. I would like to thank my fellow stu-

dents Angelos Bilas, Han Chen, Stefanos Damianakis, Benjamin Gum, Liviu Iftode,

Minwen Ji, Dongming Jiang, Sanjeev Kumar, Cheng Liao, Zhiyan Liu, Robert Shill-

ner, Limin Wang, Chi Zhang, Yuanyuan Zhou and all others for their help and for all

v



I have learned from them. Special thanks to Yuqun Chen for our initial adventure of

tracking the rotational movements of disk heads together and for many productive

discussions that contributed into the research direction of this dissertation.

No words are enough to describe my gratitude to my parents for their love, nurtur-

ing, encouragement and sacrifice. Their own careers in scientific exploration always

inspire me to pursue excellence. I am deeply thankful to my wife, Min Wu, whose

love and support have made our life in Princeton so much enjoyable.

vi



Contents

Abstract iii

Acknowledgments v

1 Introduction 1

2 Modeling Disk Arrays 6

2.1 Modeling Single Disk Latency . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Modeling Basics and Assumptions . . . . . . . . . . . . . . . . 7

2.1.2 Expected Latency of Small Random Access . . . . . . . . . . 14

2.1.3 Effect of Zoning on Small Random Access Time . . . . . . . . 16

2.1.4 Small Access with Locality . . . . . . . . . . . . . . . . . . . . 18

2.1.5 Disk Latency, Capacity and Cost Trend . . . . . . . . . . . . . 19

2.2 Improving Latency by Using Disk Array . . . . . . . . . . . . . . . . 20

2.2.1 Motivation and Background . . . . . . . . . . . . . . . . . . . 20

2.2.2 Striping Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Rotational Replication Analysis . . . . . . . . . . . . . . . . . 22

2.2.4 Mirroring Analysis . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 SR-Array Configuration Family . . . . . . . . . . . . . . . . . . . . . 33

vii



2.3.1 Combining Striping and Mirroring . . . . . . . . . . . . . . . . 33

2.3.2 SR-Array: Combining Striping and Rotational Replication . . 35

2.3.3 Performance Improvement for Sequential Access . . . . . . . . 40

2.3.4 Mirroring Extension of SR-Array . . . . . . . . . . . . . . . . 42

2.4 SR-Array Throughput Modeling . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 FCFS Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 LOOK Scheduling for One Disk . . . . . . . . . . . . . . . . . 46

2.4.3 RLOOK Scheduling for SR-Array . . . . . . . . . . . . . . . . 55

2.4.4 SATF and RSATF Scheduling . . . . . . . . . . . . . . . . . . 57

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Experimental Framework 61

3.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Software Design Overview . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Multiple Software Configurations . . . . . . . . . . . . . . . . 62

3.2.2 Software Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.3 Benefits of Code Sharing . . . . . . . . . . . . . . . . . . . . . 65

3.3 Disk Calibration and Head Tracking . . . . . . . . . . . . . . . . . . . 66

3.3.1 Measuring Timing and Layout of A Disk . . . . . . . . . . . . 66

3.3.2 Runtime Access Time Prediction and Adjustment . . . . . . . 72

3.4 Scheduling Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Scheduling Reads . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.2 Delayed Writes . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.3 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



3.5.2 Validating The Integrated Simulator . . . . . . . . . . . . . . 77

3.6 Summary and Related Work . . . . . . . . . . . . . . . . . . . . . . . 80

4 Empirical Study 82

4.1 Validation of Mathematical Models . . . . . . . . . . . . . . . . . . . 83

4.1.1 Latency Model . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Throughput Model . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Study on Trace Workloads . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Logical Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.2 Playing Traces at Original Speed . . . . . . . . . . . . . . . . 100

4.2.3 Playing Traces at Accelerated Speed . . . . . . . . . . . . . . 105

4.3 More Disks v.s. More Memory Caching . . . . . . . . . . . . . . . . . 108

4.4 Summary and Related Studies . . . . . . . . . . . . . . . . . . . . . . 110

5 Conclusion 113

6 Future Directions 116

6.1 A “Continuous Replication” Disk Array . . . . . . . . . . . . . . . . . 116

6.2 Altering Disk Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Re-distributing Responsibilities among Storage System Components . 119

Bibliography 120

ix



List of Tables

3.1 Implementation Platform Characteristics . . . . . . . . . . . . . . . . 78

3.2 Detailed Statistics of Simulator Accuracy . . . . . . . . . . . . . . . . 79

4.1 Parameters Used in Disk Models . . . . . . . . . . . . . . . . . . . . . 84

4.2 Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x



List of Figures

2.1 An Illustration of a Disk Model . . . . . . . . . . . . . . . . . . . . . 7

2.2 An Example of a SCSI Disk Seek Profile . . . . . . . . . . . . . . . . 11

2.3 Minimum Access Time Measured on Seagate ST39133LWV . . . . . . 14

2.4 Effect of Zoning on Average Latency Modeling . . . . . . . . . . . . . 17

2.5 An Illustration of 2-way Striping . . . . . . . . . . . . . . . . . . . . 22

2.6 An Illustration of 2-way Rotational Replication . . . . . . . . . . . . 23

2.7 An Illustration of 2-way Mirroring . . . . . . . . . . . . . . . . . . . . 27

2.8 An Illustration of a Striped-mirroring Disk Array . . . . . . . . . . . 34

2.9 An Illustration of a SR-Array . . . . . . . . . . . . . . . . . . . . . . 36

2.10 An Illustration of the SR-Array Aspect Ratio Question . . . . . . . . 37

2.11 An Illustration of 2-way Rotational Replication for Sequential Access 41

2.12 Evaluation of Expected Seek Latency for LOOK Scheduling Policy . . 54

3.1 Prototype Software Architecture . . . . . . . . . . . . . . . . . . . . . 63

3.2 An Illustration of Missed Rotation . . . . . . . . . . . . . . . . . . . 73

3.3 Validation of the Simulator . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Validation of the SR-Array Read-only Latency Model . . . . . . . . . 86

4.2 Validation of the SR-Array Read/Write Latency Model . . . . . . . . 87

4.3 Validation of an Invariant of Rotational Replication . . . . . . . . . . 88

xi



4.4 Comparison of Latency of Disk Array Configurations . . . . . . . . . 89

4.5 Validation of the LOOK Scheduling Model for One Disk . . . . . . . 90

4.6 Validation of the RLOOK Scheduling Model for SR-Array . . . . . . 92

4.7 Comparison of Read Throughput on Different Configurations . . . . . 93

4.8 Comparison of Write Throughput on Different Configurations . . . . 95

4.9 Comparison of Read/Write Throughput on Different Configurations . 96

4.10 Latency of Cello Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 SR-Array Configurations for Figure 4.10 Workloads . . . . . . . . . . 103

4.12 Average I/O Response Time of the TPC-C Trace . . . . . . . . . . . 104

4.13 Comparison of Scheduling Policies with Accelerated Traces . . . . . . 106

4.14 Comparison of Different Configurations with Accelerated Traces . . . 107

4.15 Comparison of the Effects of Memory Caching and SR-Array . . . . . 109

xii



Chapter 1

Introduction

During the past two decades, we have witnessed explosive growth of disk areal den-

sity and capacity at an annual rate of about 60% [15]. In the same period, CPU

performance follows Moore’s Law and also maintains the same speed of growth. On

the other hand, disk latency has been improving at about only 10% per year [15]. As

a result, the performance gap between disk access latency and the rest of the com-

puter system has been increasing exponentially and makes application performance

increasingly unbalanced. Moreover, Redundant Array of Independent Disks (RAID)

has become a standard approach to improving the bandwidth and capacity of disk

subsystems after over a decade of research and development. Applications that lever-

age rapid growing disk bandwidth and capacity are increasingly limited by slowly

improving disk access latency. Although cost per byte and capacity per drive remain

the predominant concern of a large sector of the market, a substantial performance-

sensitive (in particular, latency-sensitive) market exists. Database vendors today have

already recognized the importance of building a balanced secondary storage system.

For example, in order to achieve high performance on the TPC-C [46] benchmark,

vendors configure disk arrays based on the number of disks involved instead of the
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total aggregated capacity of all the drives.

There are many performance-enhancing techniques in the disk array literature.

These include striping[30], mirroring[4], replication of data within a track to improve

rotational delay[32], and a combination of these, such as the RAID-10 configuration [5,

23, 45], which combines mirroring and striping so that each unit of the striped data

is also mirrored. All of these techniques share the common theme of improving

performance by using more disks and sacrificing total usable storage capacity. Among

all the factors, the following can significantly affect the overall performance of a disk

array system.

• characteristics of the disks, such as disk arm movement speed, platter rotation

speed, I/O access overhead and disk form factor;

• disk array configurations;

• scheduling policies for disk I/O requests;

• workloads; and

• information redundancy requirements that affect reliability.

While many aspects of the above factors impact the overall performance of a disk

array, this study is motivated by the following questions in particular.

• Given a fixed number of disks, what combination of the existing configuration

techniques should we choose to use to get optimal performance?

• Are there better alternatives than the existing ones?

• How do the workload characteristics affect the choice of these configurations?

• What are the theoretical models for deriving optimal configurations?
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• How does the best configuration depend on the quantity and the basic perfor-

mance characteristics of the disks used in the disk arrays?

• Given a fixed budget, is it more cost effective to increase memory cache size or

to increase the number of disks in the array?

This dissertation proposes a novel way of designing disk arrays that can flexibly

and systematically reduce seek time and rotational delay. We have demonstrated, via

modeling and experiments with a real implementation, that this approach can improve

disk I/O performance significantly over existing disk array configuration techniques.

We call the resulting disk array configuration family “SR-Array” in that it reduces

two key parts of disk access latency, seek time and rotational delay, in a balanced

manner based on both disk and workload characteristics. Our study focuses on the

kind of workloads that occur frequently in office file systems and database transaction

systems. We study latency and throughput of disk arrays while considering above

performance related factors. Parts of the study have been published [54].

The key contributions of this dissertation are:

• a flexible strategy (SR-Array) for configuring disk arrays and its performance

models;

• a robust disk head position prediction mechanism without any hardware sup-

port, and a new algorithm for reducing both seek time and rotational delay in

disk arrays;

• a prototype disk array system together with an accurate simulator in a layered

approach that incorporates various configuration models and position-sensitive

scheduling algorithms;
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• evaluations of the SR-Array approach that show significant improvements of

disk I/O performance in several I/O intensive workloads over existing disk array

configuration techniques.

More specifically, we have presented the SR-Array configuration family that flex-

ibly combines striping with rotational replication to reduce both seek and rotational

delay. The power of this configuration lies in that it can be flexibly adjusted in a

balanced manner that takes a variety of parameters into consideration. We present a

series of analytical models that show how to configure the array by considering both

disk and workload characteristics.

To evaluate the effectiveness of this approach, we have designed and implemented,

in a layered approach, a prototype disk array with an accurate simulator that incor-

porates the SR-Array and other existing configurations models. In the process, we

have developed a method for predicting the disk head location on off-the-shelf SCSI

hard drives without special hardware support. This mechanism is a crucial ingre-

dient in the success of the SR-Array configurations because it enables not only our

algorithm to reduce both seek time and rotational delay but also the implementa-

tion of position-sensitive scheduling algorithms, such as Shortest Access Time First

(SATF) [26, 43], across all the disks in a disk array. Because these algorithms involve

inter-disk replicas, it would have been difficult, without the head-tracking mechanism,

to choose replicas intelligently even if the drives themselves perform sophisticated in-

ternal scheduling.

Our experimental results demonstrate that the SR-Array provides an effective

way of trading capacity for improved performance over existing disk array configu-

ration techniques in several I/O intensive workloads. For example, under one file

system workload, a properly configured six-disk SR-Array delivers 1.23 to 1.42 times
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lower latency than that achieved on highly optimized striping and mirroring systems.

The same SR-Array achieves 1.3 to 2.6 times better sustainable throughput while

maintaining a 15 ms response time on this workload.

This dissertation is organized into several parts. Chapter 2 focuses on mathemat-

ical analysis of using disk arrays to improve disk system latency and throughput and

introduces a new disk array configuration family: SR-Array. Chapter 3 describes an

experimental framework that is designed to drive our empirical study, which includes

verifying our theoretical modeling results and getting more insights on other work-

loads and disk array configurations. Chapter 4 uses the above framework to study

various disk array configurations under different workloads. Chapter 5 summarizes

this dissertation and Chapter 6 presents a few future research directions.
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Chapter 2

Modeling Disk Arrays

This chapter focuses on analytical analysis of using disk arrays to improve disk system

latency and throughput. We first make some assumptions of a mathematical model

that approximates the behaviors of real disk drives. Based on this mathematical

model of a single disk drive, we then analyze different strategies of using multiple

disk drives to form a disk array to reduce the latency and improve the throughput.

We start this discussion by reviewing disk modeling basics and analyzing a sin-

gle disk latency model in Section 2.1. After going over the existing techniques of

using multiple disks to improve latency in Section 2.2, we introduce and analyze in

Section 2.3 a new disk array configuration strategy called the SR-Array disk array

configuration family, which can more effectively reduce latency. In Section 2.4, we

discuss modeling throughput of the SR-Array configuration family. We conclude in

Section 2.5.
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2

Increased storage density results from two improvements. The first is better linear recording density, which
is determined by the maximum rate of flux changes that can be recorded and read back; current values are
around 50,000 bits per inch and will approximately double by the end of the decade. The second comes from
packing the separate tracks of data more closely together, which is how most of the improvements are
occurring. Current values are about 2,500 tracks per inch, rising to perhaps 20,000 TPI by the end of the
decade. The product of these two factors will probably sustain a growth rate above 60 percent per year to
the end of the decade.

A single disk contains one, two, or as many as a dozen platters, as shown in Figure 1. The stack of platters
rotates in lockstep on a central spindle. Although 3,600 rpm was a de facto standard for many years, spindle
rotation speed has increased recently to as much as 7,200 rpm. The median rotation speed is increasing at a
compound rate of about 12 percent per year. A higher spin speed increases transfer rates and shortens
rotation latencies (the time for data to rotate under the head), but power consumption increases and better
bearings are required for the spindle. The spin speed is typically quoted as accurate within 0.5 to 1 percent;
in practice, the disk speeds vary slowly around the nominal rate. Although this is perfectly reasonable for
the disk’s operation, it makes it nearly impossible to model the disk’s rotational position some 100-200
revolutions after the last known operation. Fortunately, many I/O operations occur in bursts, so the
uncertainty applies only to the first request in the burst.

Each platter surface has an associated disk head responsible for recording (writing) and later sensing
(reading) the magnetic flux variations on the platter’s surface. The disk drive has a single read-write data
channel that can be switched between the heads. This channel is responsible for encoding and decoding the
data stream into or from a series of magnetic phase changes stored on the disk.

 Significant fractions of the encoded data stream are dedicated to error correction. The application of digital
signal processing may soon increase channel speeds above their current 100 megabits per second.
(Multichannel disks can support more than one read/write operation at a time, making higher data transfer
rates possible. However, these disks are relatively costly because of technical difficulties such as controlling
the cross talk between the concurrently active channels and keeping multiple heads aligned on their platters
simultaneously. The latter is becoming more difficult as track densities increase.)

Figure 1: the mechanical components of a disk drive.

b. top view.a. side view.

arm
assembly

arm head spindle

sector track

arm

head

arm
pivot

platter

cylinder

Figure 2.1: An illustration of the disk model presented by Ruemmler and Wilkes [36, 37].

2.1 Modeling Single Disk Latency

In the section, we first discuss the modeling assumptions and then discuss disk latency

modeling of a single disk.

2.1.1 Modeling Basics and Assumptions

First, we examine how we model a single disk drive. We briefly review the major steps

of disk operations. Ruemmler and Wilkes explain disk modeling in greater detail in

their papers [36, 37].

Disk Structure

As illustrated in Figure 2.1 [36, 37], one commonly used simple model treats a disk

as a a group of one or more constantly rotating donut shaped platters with one disk

arm “flying” over each recording surface. The arms are bound to each other and can

move from the inner edge of the donut to its outer edge. The arm movement and the

rotating platter make it possible for the tip of each arm to reach every position on a
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recording surface, where data bits are lined up in concentric circular tracks. A head

at the tip of the arm can read or write those bits that pass underneath as the platters

rotate.

Data Layout

All tracks that have the same radius but are on different recording surfaces form

a cylinder, with each track in the cylinder served by a different read/write head.

Therefore, the number of heads inside the disk drive is the same as the number of

tracks per cylinder. Because all heads move together when the disk arm moves, these

heads are ideally always on the tracks that belong to the same cylinder. Only one

head is active to perform a read or write request at any instant. In other words, the

disk physically serves at most one request at any instant.

Tracks are usually evenly spaced on recording surfaces. We use track density to

represent the number of tracks that lie in a unit length of radius. Today’s technological

advances make it possible to pack more than 10,000 tracks in one inch. The tiny gaps

between adjacent tracks make it increasingly hard to position all the heads accurately

on the same cylinder simultaneously. A little disturbance of temperature or other

factors can result in one head being positioned on one cylinder while another head

could be positioned on a neighboring cylinder. This mal-alignment is one of the

practical reasons that the disk drives limit the number of operating heads to one at

any given instant of time.

On each track, bits are spaced evenly and linear density (recording density) is used

to represent the number of bits in a unit length of the circle. A fixed number of bits

(typically 4096 bits or 512 bytes) form a sector. A sector is the smallest addressable

unit that a disk exposes to its user.

All cylinders, tracks (or heads), and sectors are numbered. A request uses its
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cylinder number, head number and sector number to locate a particular sector. A

disk drive can also be considered as a linear list of sectors for a user, who may not

care about the internal data layout. Currently, Linear Block Address (LBA) is used

to specify the sector that a user desires to access. The firmware on the disk drive

translates the LBA to the proper cylinder, head and sector identifiers.

Not all bits on the platter are used to record user data. Some of the bits are

used to store redundant information for error correction, mark boundary of accessible

sectors, mark identification information of cylinders or make room for mechanical

and timing variations (within allowed range) on disk rotation and disk arm and head

movement. For a particular family of disk drives, these types of bits usually take a

fixed portion of the total bits in a track. Hospodor and Hoagland describe typical

data bits arrangements in their paper [21].

The amount of useful bits on a disk is represented by the advertised capacity after

the disk is formatted. Occasionally, a portion of the recording surface can lose its

recording capability over long term use. In order to keep this from affecting the overall

capacity of the disk, a number of spare sectors, tracks, or cylinders are reserved to

replace the failed ones.

In order to avoid interference between each other, each bit stored in the disk

requires an exclusive area on the platter and maintains at least a fixed distance to

the area of other bits. Given a fixed distance between two neighboring bits, an

outer track is inherently capable of holding more bits than an inner track because the

circumference of a track is proportional to its diameter. To simplify engineering, early

generation of disk drives let the outer tracks “waste” some space so that they store

the same number of bits as the innermost track. This way, every track has constant

number of bits and it is easy for the disk controller to calculate where a particular

LBA sector is located. We call this “constant track capacity” layout scheme.
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To use the capacity of outer tracks more efficiently, disk drives produced in last ten

years divide a disk platter into a number of exclusive zones of consecutive cylinders.

All tracks within the same zone must have the same number of sectors. Zones at

outer radius have more sectors per track than those at inner radius. By limiting the

number of zones, disk controllers only need to look up a small table to locate a sector

while keeping the number of wasted bits small. Each zone can also include a number

of spare sectors, tracks or cylinders at the end so that the replacements of a small

number of defective sectors can always be close to their original locations.

The ratio between the number of sectors on the outermost track to the number

of sectors on the innermost track is usually less than 2 for 3.5 inch disk drives. For

the Seagate Cheetah X15 family of disk drives, the ratio is around 1.3. The ratio is

around 1.5 for both the Seagate Cheetah 18LP and 36LP families of disk drives used

in our experimental platform and empirical studies.

Performance Parameters

A common approach to modeling the access time of disk data is to sum the seek

time, rotational latency and data transfer time [32, 42]. We also use this model in

our analytical study.

In order to read/write a specified sector, the disk firmware has to first translate

the LBA of the sector into a tuple of cylinder, head and in-track sector numbers.

The firmware looks up a table and moves the arm onto the target cylinder first. This

arm movement between cylinders is called a seek, which usually has four phases:

acceleration, coasting at constant speed, deceleration, and settling. For short seeks,

the coasting phase is not needed. The first three phases allow the head to quickly

but approximately reach the target cylinder, while the settling phase fine-tunes the

head position.
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Figure 2.2: An example of a SCSI disk seek profile: seek time as a function of the seek distance.
The graph includes a measured curve and a linear approximation of the measured curve.

Figure 2.2 is a typical seek profile of a disk. For large seek distances, the seek

time is close to a linear function of the seek distance because the arm moves over a

substantial distance at a nearly constant coasting speed. However, for short distances,

the arm spends most of its time in mechanical acceleration and deceleration. If

the disk arm moves randomly, modeling seek time as Ts = a + bS [14] is a good

approximation most of the time, where a and b are constants and S is the number of

cylinders the arm travels. The seek time of the state of art commercial hard drives is

about several milliseconds. Note that there are several other possible mathematical

models for the seek time, which model non-linear time behavior of the small distance

seeks more accurately [37, 17, 20]. As the acceleration speed of the disk arm grows
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over the years, the non-linear seek time range becomes smaller and the arm travels well

below 10 percent of the total number of cylinders during that time. Therefore, we use

the simple linear model here to simplify our analysis without severely compromising

our results.

After the head takes some time to settle on the target track, it starts to read the

bits passing underneath and waits for the marker bits corresponding to the target

sector. Once it identifies the marker bits, it starts to read or write the target sector,

which includes some redundant bits for error correction. The waiting time is usually

called the “rotational delay” and the read/write time is called the “data transfer

time.”

Because the disk platter rotates at a constant speed, the waiting time can be

expressed as Tr = cR, where c is a constant and R is the angle that the platter

rotates between the time when the head arrives on the track and when the head

starts accessing the sector. The full rotation time of state of art commercial hard

drives is about several milliseconds, which is comparable to a full seek delay.

To read/write a sector, the head needs to read/write from the first bit to the

last bit of the sector. For a track that has all its N sectors distributed evenly, the

read/write time of one sector is 1/N of the full rotation time. For today’s disks with

high linear density and fast rotation speed, the time for the disk head to fly over a

few sectors and transfer the information is about tens of microseconds. Although a

sector in the innermost zone requires more time for the head to fly over than a sector

in an outer zone does, its read/write time is still insignificant compared to the seek

and rotation times.

There is also time spent in the operating system, the I/O controller, and the disk

controller. For small accesses over a few sectors, we model these times as a fixed

overhead.
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In summary, for small accesses studied in this thesis, we ignore the data transfer

time and model the time cost to include the following:

1. seek time that is proportional to the seek distance;

2. rotational latency, which is proportional to rotational angle;

3. constant overhead time that an access incurs that is independent of the seek

distance and rotational angle. We refer to this time as To in later analysis.

Now, we examine the performance data collected from a hard drive used through-

out this thesis and present the model we build for the Seagate ST39133LWV SCSI

hard drive. Later in the thesis, we compare the results from real disks with the re-

sults derived by our model to show that our model is indeed a good approximation

for computing latency and throughput of some workloads.

Our first experiment measures the minimum time between reading two sectors on

two different cylinders. This measurement tries to minimize the rotational delay by

only measuring the shortest possible time between reading one sector on one cylinder

and another sector on a different cylinder.

Figure 2.3 gives the minimum read time (given on the Y-axis) between sectors at

different cylinder distances (given on the X-axis). As we can see, the access time can

be modeled as a linear function with an overhead of 2.7ms and maximum scalable

seek time of 9.2ms over 9772 cylinders.

We also measure the full rotational time by repeatedly reading one sector and

calculating the average time between two consecutive readings. The result we obtain

is 10026 RPM(Rotations Per Minute), which is close to the manufacture advertised

10000 RPM for the disk drive.

Knowing that every track on the disk has a minimum of 230 sectors, we can bound

the maximum time for the head to scan one sector by 60s/10000/230 < 30us, which
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Figure 2.3: Minimum access time as a function of seek distance measured on a Seagate ST39133LWV
disk drive. The minimum access time is the shortest possible time between reading one sector on one
cylinder and reading another sector on a different cylinder at a particular seek distance.

is indeed insignificant comparing to the seek, rotation time, and the fixed overhead if

only a small number of sectors are accessed in a given request.

2.1.2 Expected Latency of Small Random Access

We examine the performance of random accesses. Various researchers[10, 44, 27,

20] have proved that the average seek distance of random accesses on a constant

track capacity drive is NS/3, where NS is the total number of cylinders of the disk.

Therefore, if the constant overhead To (defined near the end of Section 2.1.1) incurred

by every access is excluded, the average random seek time is S/3, where S is the the
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full seek time excluding To.

There are different ways of calculating the above average time. Presented below as

an example is a method using integral calculus. We also employ similar analysis later

in this chapter. If we assume constant track capacity, the arm is evenly distributed

on different cylinders on the platters. Let vs be the coasting speed of the arm and

R and r are the radius of the outermost and the innermost cylinders respectively.

The average seek time S1 is the average of the seek time from a cylinder at radius

position x to another cylinder at radius position y, which is |y−x|
vs

, over all possible

combinations of x and y.

S1 =

∫ R

x=r

(∫ R

y=r

|y − x|
vs

dy

)
dx

∫ R

x=r

(∫ R

y=r
dy

)
dx

=
1

3

R− r

vs

=
S

3
(2.1)

Once the disk arm moves to the target track, it needs to wait for an average of half

a rotation to reach the target sector. So the average rotational delay is R1 = R/2,

where R is the full rotation time. This is a well known result that Houtekamer [11]

and many others have derived it. After the rotational delay, the head spends a fixed

amount of time per sector to access the data. As discussed above, when accessing

small number of sectors, the disk spends most of its time on seek and rotation instead

of transferring useful data.

Overall, The average delay (also called access time) of a random access T1 can be
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modeled as

T1 =
S

3
+

R

2
+ To (2.2)

2.1.3 Effect of Zoning on Small Random Access Time

Almost all the current hard drives use zoning to achieve a track capacity close to the

theoretical maximum capacity 2πxDl, where x is the radius of the track and Dl is the

number of bits per unit length on a track, i.e. bit density. Therefore, even for random

accesses, the distribution of the disk head positions is no longer uniform across all

cylinders. Instead, the heads are more likely to be positioned on the outer cylinders,

which have more sectors on them. Now, we recalculate the average seek time based

on the assumption that (a) R and r are the radius of the outermost and the innermost

cylinders respectively; and (b) each cylinder has a capacity proportional to 2πxDl.

We also use t to represent the ratio between R and r.

vs =
R− r

S

=
t− 1

S
r (2.3)

We introduce weights of 2πxDl and 2πyDl into the average calculated without the

consideration of zoning in equation (2.1):

S ′
1 =

∫ R

x=r

(∫ R

y=r
(2πxDl) (2πyDl)

|y − x|
vs

dy

)
dx

∫ R

x=r

(∫ R

y=r
(2πxDl) (2πyDl) dy

)
dx
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Figure 2.4: Average seek time, in terms of the fraction of the full seek time, as a function of the
ratio between the outermost track radius and the innermost track radius for two kinds of bit layout
schemes: one uses constant track capacity and does not use zoning; the other uses zoning and records
close to the maximum number of sectors allowed under a given linear bit density.

=

∫ R

x=r

(∫ R

y=r
xy
|y − x|

vs

dy

)
dx

∫ R

x=r

(∫ R

y=r
xydy

)
dx

=

4

15

(
R5 − r5

)
− 4

3
R2r2 (R− r)

vs

(
R2 − r2

)2

=

4

15

(
t5 − 1

)
− 4

3
t2 (t− 1)(

t2 − 1
)2

(t− 1)
S (2.4)

Figure 2.4 illustrates the difference between S ′
1 and S1 with the ratio t between

1.0 and 2.0. For a 3.5 inch disk drive, t is usually between 1.5 and 2.0. For a 2.5

inch disk drive, t is about 1.25. The data shows that the difference is smaller than

3 percent in both cases. This means that using equations (2.1) and (2.2) to model
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disks with zoning not only simplifies the analysis but is also a good approximation.

2.1.4 Small Access with Locality

We have considered a uniform distribution of requested sectors in the last two sections.

However, this uniform distribution assumption is not always true and many workloads

exhibit significant locality.

For example, in the UNIX Fast File System [31], all cylinders are divided into

several different cylinder groups, each of which includes several consecutive cylinders.

Obviously, seeks within the same cylinder group are often shorter than seeks across

cylinder groups. FFS assumes that files under the same directory are likely to be

accessed together and attempts to place them under the same cylinder group to

reduce the seek time. For a typical office workload, this layout scheme significantly

reduces the average seek distance for the disk arm. We call this phenomenon “seek

locality”.

In order to quantify seek locality, we introduce a “seek locality index” L to be

the ratio between the average seek distance of a uniformly distributed random access

workload and the observed average seek distance in the workload. This way, the

average of the linear part of seek time is reduced to

S1L =
S

3L
(2.5)

Compared to reducing seek time through layout techniques, reduction of rotational

delay is harder. There are several reasons behind the difficulty.

First, the disk drive interface currently only reveals a linear list of sectors to the

operating system and, therefore, special effort is needed to discover the layout of

sectors. Furthermore, zoning makes the effort even more difficult because different
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tracks may have different number of sectors and sectors n and n + 1 may no longer

be close to each other.

Second, the rotational delay of a request depends not only on the location of the

sector on the disk but also on the timing of the request. Because the disk rotates

constantly, the relative position of the head and the target sector keeps changing.

A small delay may cause the head to just miss the target sector after it settles on

the target track and, as a penalty, it has to wait another full rotation for the target

sector. Therefore, even if the operating system places the files close to each other

rotationally, the delay between their accesses is not guaranteed to be minimal.

The above considerations lead us to believe that the impact of software decisions on

rotational locality is less profound for non-sequential I/Os1. Results from simulation

presented in Chapter 4 also confirms that this is a good approximation. In the rest

of the analysis, we shall approximate the random access delay T1L as

T1L =
S

3L
+

R

2
+ To (2.6)

2.1.5 Disk Latency, Capacity and Cost Trend

Over the past two decades, we have witnessed the explosive growth of disk areal

density, which is at an annual rate of about 60% [15]. The reduction of the size of

the disk head sensor using a giant-magnetoresistive(GMR) technology increases the

track density while the reduction of the platter film thickness results in greater linear

density. Fueled by the improvement of both track and linear density, the growth

has been close to 100% in past 2-3 years. The rapid growth of linear density also

makes segments of a few sectors or a few kilo-bytes of data occupy a smaller fraction

1For sequential I/Os not focused by this study, the data transfer time, instead of access delay, is
dominant.
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of a track than ever before and therefore results in much less bit transfer time for

these small data accesses, which can be typical in database applications. As the disk

mechanical speed has been improving at about only 10% per year [15], the latency

of small I/Os increasingly dominates. As a result, disks are becoming increasingly

unbalanced in terms of the relationship between capacity and latency.

Although cost per byte and capacity per drive remain the predominant concerns,

a substantial performance-sensitive (and, in particular, latency-sensitive) market ex-

ists. Database vendors today have already recognized the importance of building a

balanced secondary storage system and use several latency reduction techniques to

improve the overall performance of their systems.

2.2 Improving Latency by Using Disk Array

In the last section, we have discussed how to model the latency for a single disk. In

this section, we discuss various techniques to improve the latency by using a disk

array composed of multiple disks.

2.2.1 Motivation and Background

Because the average latency is a function of maximum seek time, disk full rotation

time, and the overhead, disk manufacturers can reduce one or several of them to

improve latency. They can make disks rotate faster, disk arms move faster, or disk

access overheads smaller, but these improvements are subject to technology and cost

limitation.

When these limits are reached, it is hard to continue improving latency by using

only one disk. By placing multiple disk arms evenly on a cylinder and choosing

a head closest to the target sector, we may be able to reduce the rotational relay.
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We can also restrict the movement of each arm to a subset of disk cylinders; the

approach reduces the range of arm movement and, therefore, the average seek time.

Calderbank et al. presented a performance model for a two headed disk [3]. However,

the current market focus on improving the cost/capacity ratio appears to preclude

the commercial development of solutions involving multiple arm assemblies per disk

despite the presence of applications that demand lower latency. A more practical

alternative is to use a disk array that can improve both latency and throughput.

There are several known techniques that use multiple disks to reduce seek time,

rotation time or both. For example, striping reduces seek time [30] and mirroring

reduces both seek time and rotational delay [4]. These two techniques are widely

used in industry. Ng et al. use rotational replication to reduce rotational delay [32].

However, this technique has not been implemented so far. One contribution of this

thesis is to provide a prototype implementation and analysis of this rotation time

reduction technique on current off-the-shelf commercial disk drives. We delay the

discussion of the implementation details to Chapter 3.

2.2.2 Striping Analysis

Figure 2.5 shows an example of striping, where one full disk of data is evenly spread

over n disks. This seek reduction technique effectively “transforms” disks into disks

with the same rotational delay but 1/n the maximum seek distance of the original

disk. Therefore, the average access time for one random request in equation (2.2) in

our disk model is reduced to Tstripe(n).

Tstripe(n) =
S

3n
+

R

2
+ To (2.7)

The cost of this latency reduction is that only 1/n of overall disk space is used.
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Figure 2.5: An illustration of 2-way striping: (a) the original disk with 12 sectors; (b) the data is
striped to two disks, each of which holds 6 sectors.

2.2.3 Rotational Replication Analysis

Figure 2.6 shows an example of rotational replication, where each sector on a disk has

a total of n replicas on the same track. This way, each disk can only hold 1/n of the

total original data. Therefore, like the striping technique, we use n disks to hold one

disk of data. However, unlike the striping technique, we now have multiple replicas

of the same data, and only need to access the closest replica in a read. For writes, on

the other hand, all the replicas have to be written before the benefit of future read

latency reduction of the same data can be fully exploited as above.

Evenly Positioning Rotational Replicas

One way to place multiple replicas on the same track is to separate them evenly

as shown in Figure 2.6(b). This way, the rotational delay the disk head has to
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Figure 2.6: An illustration of 2-way rotational replication: (a) the original disk with 12 sectors; (b)
the data is spread to two disks, each of which holds 6 sectors and rotationally has 2 copies of each
sector spread evenly in the same track; (c) the data is spread to two disks, each holds 6 sectors and
rotationally has 2 copies of each sector located randomly in the same track.

incur for a random request falls into a uniform distribution from 0 to 1/n of full

rotation. Therefore, the average rotational delay is reduced to R/2n, 1/n of the

original average, and the average latency of one random request in equation (2.2) is

reduced to Trrep read(n).

Trrep read(n) =
S

3
+

R

2n
+ To (2.8)

Rotational replication makes the disks system appear as if it rotates n times faster.
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In order to always have n replicas to choose from for a read, we need to update all

replicas upon each write request. This approach may worsen write performance. In

the case of replicas spread evenly in the track, the disk head has to rotate a fraction

(n − 1) · 1
n

of the full rotation to write n − 1 more replicas after it reaches the first

one. Hence, we model the write time as Trrep write(n).

Trrep write(n) =
S

3
+

(2n− 1)R

2n
+ To (2.9)

Randomly Positioning Rotational Replicas

Another way is to put multiple replicas randomly in the same track as shown in

Figure 2.6(c). The average rotation time TRread(n) is the average of the minimum of

n independent random variables between 0 and R. It is calculated as the sum of all

possible minimum values x multiplied by the probability of realizing that minimum

value n
(

R−x
R

)n−1
.

TRread(n) =
∫ R

0
xn
(

R− x

R

)n−1

dx

=
n

Rn−1

(
Rn

n
− Rn

n + 1

)

=
R

n + 1
(2.10)

On the other hand, the average rotation time TRwrite(n) for writes is the average of

the maximum of n independent random variables between 0 and R. This means that

the average of R−Rwrite(n) is the average of the minimum of n independent random

variables between R − 0 and R − R, which turns out to be the same situation of

24



calculating TRread(n).

TRwrtie(n) = R− TRread(n)

=
nR

n + 1
(2.11)

The above results show that reads of evenly distributed replicas have lower average

rotational delay than reads of randomly distributed replicas. This is reversed for

writes, however.

An Invariant: The Total Time of One Read and One Write

From the above results, we notice that the sum of the average rotational delay of reads

and that of writes is one full rotation time R for both even and random placement of

replicas. Assuming the disk head is at a random position on the track when it settles,

we can further prove that the sum of the expected rotational delay for one read and

one write is always one full rotation time, no matter how many replicas are there and

how the replicas are positioned in a track.

The basic idea is that for every starting head location xr that satisfy aprev < xr ≤

anext, where aprev is the position of the last replica the head just has passed and anext is

the position of the next replica anext, we can construct another starting head location

xw = aprev + anext−xr that satisfies aprev ≤ xw < anext. This way, the read time from

head location xr is anext − xr for reading the closest replica at anext, while the write

time from head location xw is R− (xw− aprev) for writing all the replicas. Therefore,

the sum of the read and the write times is anext − xr + R− (xw − aprev) = R. Based

on this construction, each starting head position for reads matches a unique starting

head position for writes. Therefore, the sum of the expected time for one read and

the expected time for one write is R, which is independent of the number of replicas
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and the location of replicas.

Implication of The Invariant

This invariant means that the time saved on one read because of the existence of the

replicas is the extra time spent for one write, which has to go through all these replicas

on the same track. For a particular workload that has more reads than writes, making

more replicas can reduce overall latency. If reads and writes are equally frequent, the

number of replicas(n) does not change the average overall latency. If writes are more

frequent than reads, the approach with no replication is always the best, if replicas

must be written in the foreground. When disks have idle time, some replicas can also

be written during idle periods in order to improve write performance. This strategy

is discussed in later sections.

Another implication of this invariant is that there is always a strategy better than

random placement of the replicas. When reads outnumber writes, the evenly spaced

replication strategy is better. When writes outnumber reads, the approach of having

no replicas is better because of better write time.

In Chapter 3, we discuss the implementation of evenly spaced rotational replicas.

Because accessing every replica has a small overhead in the implementation, increasing

the number of replicas after a certain degree does not help further improve the average

latency even when reads outnumber writes.

2.2.4 Mirroring Analysis

Figure 2.7 shows an example of mirroring, where one full disk of data is replicated on

n disks.

Mirroring has some similar aspects as rotational replication. First, mirroring uses
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Figure 2.7: An illustration of 2-way mirroring: (a) the original disk with 12 sectors; (b) the data is
copied to a second disk, which also holds the same 12 sectors but in a random layout; (c) the data
is copied to a second disk, which also holds the same 12 sectors but in the same layout.

multiple replicas to reduce the read access time at the cost of only using 1/n of total

disk space. Second, mirroring also needs to write all replicas in order to effectively

reduce the read time.

However, mirroring differs from rotational replication in several important ways.

First, mirroring places replicas of the same data on different disk drives. Because disks

tend to fail independently, there is no data loss in a mirrored system unless all n disks

fail, whereas a system that employs rotational replication alone loses 1/n of total data
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per failed disk drive. However, this data reliability does not come for free because

mirroring needs to use all the disk heads for one write, whereas rotational replication

only needs one. Later, we show that mirroring uses disk heads less efficiently than

rotational replication does. In terms of disk modeling analysis, mirroring is more

complicated than both striping and rotational replication because of the fact that

data resides on different disks, whose heads may not be moving together.

There are several configurations of mirroring with minor differences in data layout

and read/write strategies. We discuss some of them in the following sub-sections.

Random Mirroring without Rotational Position Tracking

Random mirroring assumes that all the disk arms and the replicas for a sector in

different drives are at independent random positions as illustrated in Figure 2.7(b).

Bitton and Gray analyze both read and write latency for this case [4]. They assume

that the rotational positions of the heads and the data sectors are not available to the

algorithm for picking which disk to read. Therefore, the algorithm chooses to read

the replica with the shortest seek time. For a write, the algorithm spends at most the

longest seek time to reach the farthest replica. For both reads and writes, an average

time of R/2 is spent on rotational delay after each seek.

Their results show that (1) the expected seek distance for reads is S
2n+1

; and (2)

the expected seek time for writes is approximately S (1− Ik), where Ik =
∏n

k=1
2k

2k+1
.

Ik drops from 0.53 for n = 2 to 0.27 for n = 10. When n = 1, the case degenerates to

one copy and is consistent with our earlier random seek distance result. In summary,

we have read latency Tmirror read and write latency Tmirror write as the following.

Tmirror read(n) =
S

2n + 1
+

R

2
+ To (2.12)
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Tmirror write(n) = S

(
1−

n∏
k=1

2k

2k + 1

)
+

R

2
+ To (2.13)

Random Mirroring with Rotational Position Tracking

With rotational position tracking, we can do better at picking the closest copy by con-

sidering the minimum of all n positioning times, which are sums of both seek time and

rotational delay. When S � R, equation (2.12) and (2.13) are good approximations

for average read and write latency.

On the other hand, when R � S, picking the replica with shortest rotational

delay is close to the optimal strategy. Using this strategy, we can achieve an average

rotational delay that is the average of the minimum of n random independent rota-

tional delays, which is calculated in equation (2.10) as R
n+1

. Writes are also modeled

as the sum of the expected seek time and the average of the maximum of n random

independent rotational delays.

T ′
mirror read(n) =

S

3
+

R

n + 1
+ To (2.14)

T ′
mirror write(n) =

S

3
+

nR

n + 1
+ To (2.15)

This result is the same as that achieved under random rotational replication.

Both results for the above strategy are upper bounds for the expected minimum

of n different sums of seek time and rotational delay. Intuitively, when R is close

to S, the replica with the minimum positioning time is likely to be neither the one

with the shortest seek distance nor the one with the shortest rotational delay. Gum

derives an approximation for read latency in his Ph.D. thesis [16] as the following.

T ′′
mirror read(n) =

√
πRS

4n
+ To (2.16)
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We can see that the overhead independent part of T ′′
mirror read(n) improves pro-

portionally to
√

n. Currently, we are not aware of any model for write latency that

considers rotational position. We study both read and write latencies of mirroring

again in our empirical study in a later chapter.

Synchronized Mirroring

Synchronized mirroring has all the disks always lay out the same sector of data at

the same position as illustrated in Figure 2.7(c).

By deploying a circuit that connects all n disk drives in the mirroring set, we can

guarantee that platters in all the drives have exactly the same rotational speed. By

making all the disk arms always move together and having all the replicas spread

out evenly on different drives, read latency can be reduced to Tmirror sync because the

heads can reach the replica on their own drive in evenly separated gaps. Its read

latency is the same as that of rotational replication, its write latency is also similar

to that of evenly spread rotational replication.

Tmirror sync(n) =
S

3
+

R

2n
+ To (2.17)

Dishon and Liu [9] have considered another form of synchronized D-way mirroring.

They place the replicas at rotationally identical positions and have the heads of all

disks reach the corresponding sectors at the same time. This way, the multiple replicas

can be written at nearly the same time. This reduces the write latency so that it

is the same as the read latency Tmirror sync(n). However, this approach does not

improve read latency because it allows no rotational delay reduction for reads. Both

the average read and write latencies in this case are the same as those in the single

disk case.
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Note that having all the arms move together to the target cylinder is a requirement

to attain the above expected latency. Otherwise, even if all the drives rotate at the

same speed and the replicas are evenly spread relative to the track, the seek times

and the landing rotational positions of all the heads on the target track become

independent random variables. This scenario is similar to the random mirroring case

discussed earlier. Therefore, there is no particular benefit for having all the drives

rotate at the same speed without synchronizing arm movement on all disk drives.

Nevertheless, it is a common practice to have the same data layout on all disks

because it trivializes the tracking of all replicated sectors in the disk array.

Although synchronized mirroring has the same read/write latency as rotational

replication on a single disk, it does have a limitation on the overall number of requests

that the disk array can handle simultaneously. When there are many pending read

requests, it can only serve one request at a time while random mirroring can have

different heads serve different read requests simultaneously.

Mirroring Advantage and Limitation

In summary, with or without the restriction on disk arm movement, synchronized

mirroring has no apparent benefit over random mirroring when the throughput of

the entire mirrored system is more important than expected latency of one request.

Therefore, we will only use the strategy of random mirroring with the same sector

layout order on all disk drives when evaluating mirroring in this thesis.

Both striping and rotational replication only reduce one term of the latency equa-

tion to 1/n: they can improve either the seek time or the rotational delay, but not

both. When n is sufficiently large, these two techniques face a diminished return

of latency reduction of only one term. When rotational positioning is considered in

picking a disk drive to serve a request, random mirroring performs well because it
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can achieve a better result by considering the sum of seek time and rotational delay

together. Moreover, random mirroring also provides better reliability.

Mirroring’s low latency and reliability does not come for free. Compared with the

other two techniques, mirroring does worse on writes when there are many pending

writes. Both striping and rotational replication can have different disk drives execute

different write requests simultaneously because each piece of data only exists on one

drive. This is not the case with mirroring.

In the area of disk modeling, we are not aware of any study that gives good and

simple closed-form results for write latency on mirroring. The lack of simple models

makes it difficult for a disk array builder to find good configurations without resorting

to empirical results.

2.2.5 Summary

There are other latency reduction techniques [47, 55] besides the ones discussed above.

The common theme is to trade the fast improving capacity for improved latency, which

improves slowly. By using a disk array with multiple disks to hold one disk worth of

data, we can achieve performance improvements. We can reduce the maximum seek

time to improve both read and write latencies or make more copies to increase the

choices a system has in satisfying read requests. In general, with more replicas, the

read performance improves but the write performance degrades.

We also find that each techniques discussed above has its own strength and could

be best suited for certain workloads. In later sections, we also discuss the throughput

model, which considers the reordering of multiple outstanding requests to improve

performance in a disk array.
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2.3 SR-Array Configuration Family

In the last section, we have discussed several individual latency reduction techniques

and found that each technique has its own strengths and weaknesses. In this sec-

tion, we discuss ways to combine individual techniques and form a new disk array

configuration family. We also discuss the modeling of several configurations.

2.3.1 Combining Striping and Mirroring

Striping and mirroring can be combined to provide both the reliability of mirroring

and the seek reduction of striping resulting in overall read latency reduction while

lowering the cost of writing because of the lower degree of mirroring. Figure 2.8 shows

an example of a disk array with both striping and mirroring.

While striping has the conventional name of RAID-0 and 2-way mirroring of

RAID-1, the combination of the two is also widely used and is called RAID-10.

Because mirroring is not well modeled, the combination is not well modeled either.

We only derive an approximation of read latency here for D = Ds · Dm, where Ds

is the number of disks devoted to striping and Dm is the number of disks devoted

to mirroring. As a corollary of equation (2.16), we get the average read latency

TSM(Ds, Dm), when S/Ds and R are close.

TSM(Ds, Dm) =

√√√√√√πR
S

Ds

4Dm

+ To

=

√
πRS

4D
+ To (2.18)

The result shows that the overhead-independent part of the latency can roughly

improve proportionally with the square root of the number of disks D. For each D,
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Figure 2.8: An illustration of a Ds×Dm-way striped-mirroring disk array: (a) the original disk with
12 sectors; (b) a striped-mirroring 6-disk array with 2-way striping(Ds = 2) and the resulting two
striped disks replicated three times(Dm = 3).
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there can be several combinations of Ds and Dm value whose product is D. This

equation gives no insight on latency differences among different Ds and Dm values,

however. We depend on experimental results to study the performance differences

among different combinations.

2.3.2 SR-Array: Combining Striping and Rotational Repli-

cation

Because striping and rotational replication each reduces one term of the latency equa-

tion, we can combine both of them to reduce both terms. Figure 2.9 shows an example

of this combination, which we call an SR-Array. Let us consider using a total of D

disk drives to hold a single disk’s worth of data. We decide to dedicate Ds disks to the

dimension of striping to reduce the seek time to S/3Ds and Dr disks to the dimension

of rotational replication to reduce the rotational delay to R/2Dr. When Dr = 1, an

SR-Array degenerates to simple D-way striping. When Ds = 1, it degenerates to

simple D-way rotational replication. In Figure 2.9, Ds = 2 and Dr = 3.

The advantage of an SR-Array lies in not only reducing both seek time and rota-

tional delay but also the fact that balanced reduction can be achieved in both terms.

When S is less than R, more effort should be devoted to reducing R and vice versa.

Another advantage is that both of the techniques are amenable to relatively simple

analytical models and we can derive a good model to help answer the following ques-

tion: given a fixed budget of D disks, what degree of striping and what degree of

rotational replication should we use to achieve optimal average latency for a given

workload? Figures 2.10(b) and (c) demonstrate this “aspect ratio” question. We first

answer the question for read latency and then consider a workload with a mixture of

reads and writes.
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Figure 2.9: An illustration of a Ds ×Dr-way SR-Array: (a) the original disk with 12 sectors; (b) a
6-disk SR-Array with 2-way striping(Ds = 2) and each sector in the resulting two-way striped disks
is rotationally replicated three times(Dr = 3).
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Figure 2.10: An illustration of the SR-Array aspect ratio question: (a) the original disk; (b) a 2× 3
SR-Array with 6 disk drives; (c) a 3× 2 SR-Array also with 6 disk drives.

Read Latency on SR-Array

The average random read latency TR(Ds, Dr) is the sum of the reduced seek time,

the reduced rotational delay and the fixed overhead.

TR(Ds, Dr) =
S

3Ds

+
R

2Dr

+ To (2.19)

We know that a + b ≤ 2
√

ab for any a ≥ 0 and b ≥ 0. Given the constraint of

DsDr = D, we can prove that the following configuration reduces the seek time to

Tbest seek and the rotational delay to Tbest rot and produces the best overall latency

Tbest. 
Ds =

√
2S

3R
D

Dr =

√
3R

2S
D

(2.20)
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Tbest seek =

√
SR

6D
(2.21)

Tbest rot =

√
SR

6D
(2.22)

Tbest =

√
2SR

3D
+ To (2.23)

This result shows that in order to achieve the best reduction of overall latency,

Ds and Dr have to be chosen in such a way that the reduced average seek time and

the reduced average rotational delay are equal.

According to the above results, disks with slower rotational speed (larger R) de-

mand a higher degree of rotational replication. In terms of the SR-Array illustration

of Figure 2.9(b), this argues for a tall thin grid like Figure 2.10(b). On the other

hand, disks with poorer seek characteristics (larger S) demand a larger striping fac-

tor. In terms of Figure 2.9(b), this argues for a short fat grid like Figure 2.10(c). To

capture seek locality, we replace S with S/L, where L is the seek locality index used

in equation (2.5). More seek locality leads to a larger L and also argues for larger

optimal Dr and a tall thin grid.

The model indicates that the latency improvement on an SR-Array is proportional

to the square root of the number of disks (
√

D). It is likely that the optimal Ds and

Dr are not integer values. For such scenarios, we choose the closest integer values

that could produce the best result in practice.

Read/Write Latency on SR-Array

Now we extend the latency model of an SR-Array to model the performance of both

read and write operations. Naively, when we write a sector with multiple copies, we

write them all consecutively in one rotation before we complete the write request. A

potentially better technique is to complete writing the closest copy first and delay the
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propagation of other copies to a future time when the disk is idle. The next chapter

covers delayed write propagation in greater details.

When there is indeed idle time to write the replicas in the background, the latency

of a write can be treated as that of a read. In the scenario of not being able to mask the

cost of replica propagation in idle time, we must incur a write latency of TW (Ds, Dr).

TW (Ds, Dr) =
S

3Ds

+ R− R

2Dr

+ To (2.24)

Let the number of reads be Xr, the number of writes that can be propagated in

the background be Xwb, and the number of remaining writes that are propagated in

the foreground be Xwf . We define the ratio p to be the fraction of requests that incur

the latency of an average read request.

p =
Xr + Xwb

Xr + Xwb + Xwf

(2.25)

Now, the average read/write latency can be modeled as T (Ds, Dr).

T (Ds, Dr) = pTR + (1− p)TW

=
S

3Ds

+ p
R

2Dr

+ (1− p)(R− R

2Dr

) + To (2.26)

The first term is the average seek incurred by any request. The second term

is the average rotational delay consumed by I/O operations that do not result in

foreground replica propagation (based on Equation (2.8)) with probability p; and the

third term is the rotational delay consumed by writes whose replicas are propagated

in the foreground due to lack of idle time (based on Equation (2.9)) with probability

1 − p. We derive that the following configuration provides the best overall latency
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Tbest. 
Ds =

√
2S

3R(2p− 1)
D

Dr =

√
3R(2p− 1)

2S
D

(2.27)

Tbest =

√
2SR(2p− 1)

3D
+ (1− p)R + To (2.28)

A low p ratio here calls for a short fat grid in Figure 2.9(b). A p ratio under 50%

precludes rotational replication and pure striping provides the best configuration as

discussed in Section 2.2.3. In the best case, when all write replicas can be propagated

in the background (or when we have no writes at all), writes and reads become indis-

tinguishable as far as this model is concerned, so p = 1 and the latency improvement

is again proportional to
√

D.

2.3.3 Performance Improvement for Sequential Access

Although the disk array layout schemes of Figure 2.9(b) and the earlier Figure 2.6(b)

improve the average latency of a random read request by using Dr rotational replicas

to reduce the average rotational delay to 1/Dr of the original average, they also

reduce the bandwidth available to a sequential request because the disk has to incur

a track switch every 1/Dr of a full rotation instead of every full rotation as in the

Figure 2.6(a) layout. As illustrated in Figure 2.3, a track switch is a little below

1ms, which is about 1/6 of the full rotation time of the disk drives used in our study.

Therefore, even a modest Dr = 2 in the Figure 2.6(b) layout can result in substantial

performance penalty for sequential access.

In order to avoid this substantial performance penalty for sequential access, we

introduce an alternative layout scheme for rotational replication, where we replicate
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Figure 2.11: An illustration of 2-way rotational replication for sequential access for the 12-sector
disk show in Figure 2.6(a): (a) the data is spread, as in Figure 2.6(b), to two disks, each of which
holds 6 sectors and rotationally has 2 copies of each sector spread evenly in the same track; (b) the
data is spread to two disks, each of which holds one track of 6 sectors and has 2 copies of the same
track positioned next to each other, but with replicas of data sectors placed at evenly spaced rotational
angles.

and rotate a full track into adjacent tracks as shown in Figure 2.11(b). We also include

the original layout scheme of Figure 2.6(b) next to Figure 2.11(b) for comparison. We

can also apply the same technique to our SR-Array layout illustrated in Figure 2.9(b).

In this new layout scheme, the disk incurs a track switch every full rotation, the

same overhead as that in the original disk without replication. When a track switch

happens, instead of switching the head to an adjacent track in the Figure 2.11(a)

case, the disk head skips the adjacent Dr − 1 adjacent replicated tracks and switches

to a track that contains the next distinct set of data. With a modest Dr, this switch

costs almost the same as one would when switching to an adjacent track.

Because the replicated tracks are placed adjacent to each other with an evenly

spaced rotational angle, the seek time to these tracks are almost the same. The

rotational delay for a random read request can also be the same if the disk drive

can predicate and pick beforehand the correct track that has the replica with the
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shortest delay. Our experimental platform described in the next chapter shows that

we can indeed predict quite accurately even in the host system. For example, our

predications are 99.8% accurate in the experiments of Section 3.5.2.

For replica writes of a small write request, we can switch to the adjacent replicated

track as soon as we finish writing one replica in a track. As long as the track switching

time is less than the minimum write time between the adjacent tracks, the new layout

scheme can finish writing all the replicas in one full rotation without extra penalty

time when compared with the layout scheme that puts all the replicas in the same

track. In our experimental platform, we can switch track and write the next replica

in time when Dr ≤ 6.

In summary, when Dr is modest, the two layout schemes shown in Figure 2.11(a)

and (b) result in the same seek latency and rotational delay for random read and write

requests while the layout scheme in Figure 2.11(b) also enjoys the same performance

for sequential requests as that of a traditional disk layout schema. Therefore, all

our mathematical results on random requests in this chapter apply to both layout

schemes. Our experimental platform uses the improved layout scheme for SR-Array.

2.3.4 Mirroring Extension of SR-Array

By combining striping and rotational replication, we arrive at an SR-Array configu-

ration family that can reduce latency in a balanced manner. Because each piece of

data only exists in one disk drive in an SR-Array, the reliability of the array is not as

good as mirroring.

By adding mirroring to replicate each disk drive in an SR-Array Dm times, we

can achieve better reliability. We call the result of this SR-Array extension as an

“SR-Mirror”. The SR-Mirror configuration family has 3 parameters: Ds, Dr and
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Dm, where Ds implies that only 1/Ds of the space of the disk is used to hold any

data (to reduce seek time), Dr is the number of replicas on the same disk, and Dm

is the number of replicas on different disks. The total disks needed for an SR-Mirror

configuration is D = DsDrDm. A D × 1× 1 system is D-way striping. A 1× 1×D

system is a D-way mirror. A Ds × Dr × 1 system is an SR-Array. A Ds × 1 × 2 is

the commonly used RAID-10 configuration.

From the read latency model for an SR-Array, we can see that an SR-Array

behaves like a single disk with a leaner (the maximum seek distance reduced to 1/Ds)

and faster rotating disk (the full rotation time reduced to 1/Dr). This way, we may

approximate the performance of an SR-Mirror by replacing S with S/Ds and R with

R/Dr in the mirroring models. As a corollary of equation (2.16), we obtain the

average read latency TSRM(Ds, Dr, Dm), when S/Ds and R/Dr are close.

TSRM(Ds, Dr, Dm) =

√√√√√√π
R

Dr

S

Ds
4Dm

+ To

=

√
πRS

4D
+ To (2.29)

While this equation does not shed light on how to choose the Ds, Dr, and Dm

values, our intuition is to choose Dm > 1 only when a higher degree of reliability is

desired. A Dm value that is larger than that required by reliability is undesirable

because mirroring appears to deliver poorer write performance than rotational repli-

cation on a single disk (as discussed in Section 2.2.4). Unfortunately, we do not have

a closed form model for the write latency of mirroring so that we cannot currently

precisely quantify analytically the performance difference.

This thesis mainly studies the properties of the SR-Array both in mathematical

models and in experiments. We will compare the SR-Array (Ds × Dr × 1) with
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other configurations of the SR-Mirror, such as simple striping (Ds× 1× 1), RAID-10

(Ds × 1× 2) and striped-mirroring (Ds × 1×Dm).

2.4 SR-Array Throughput Modeling

While the average latency of random requests is an important metric of a storage

system, overall sustained throughput is a more useful metric to measure the system’s

ability of handling a heavy load of requests. In this section, we discuss some of the

results we have derived for modeling throughput of different disk array configurations.

Our discussion mainly focuses on striping, rotational replication, and the combination

of the two, SR-Array. Because pure striping and pure rotational replication are

degenerated cases of SR-Array, we only give results for the SR-Array throughput

model and discuss the degenerate cases when needed. As is the case with latency,

modeling configurations involving mirroring is not as easy as modeling SR-Array if

we consider rotational position of the heads when scheduling the requests. We discuss

these configurations in empirical studies later.

When a storage system handles a heavy load, requests are queued. Outstanding

requests can sometimes be reordered. This may reduce the seek time and rotational

delay between consecutive requests so that we can achieve low response time and high

throughput. Various techniques for reordering or scheduling a queue of requests lead

to different request throughputs. The throughput of a technique can be calculated as

the inverse of average request time.

The more the number of requests in the queue, the more choices a policy has to

schedule the next request and therefore the lower the average latency and the higher

the throughput. An effective scheduling policy should achieve lower average latency

with more requests in the queue. In studying the scheduling policies on SR-Array,
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we consider a scenario that always keeps a constant Q outstanding requests. As one

request is satisfied in this scenario, another new request is generated in time to keep

a constant Q outstanding requests for the next scheduling decision. This way we may

understand better how the queue length affects the overall throughput of a scheduling

policy.

In this section, we discuss mathematical models of throughput for some scheduling

policies for SR-Array. When calculating throughput, we first calculate the average

latency between the completion of two consecutive requests for a scheduling policy.

We then use the average latency to compute the aggregate throughput produced by

the disk array.

2.4.1 FCFS Scheduling

The naive scheduling policy FCFS serves the requests in the order of their arrival.

In this case, every request in this scheduling policy costs the average latency time

given in the SR-Array latency model in Equation (2.26) and the optimal latency in

Equation (2.28).

Even though Q does not affect the single request latency, it does affect the prob-

ability of some disks in a disk array being idle during a particular period. A greater

Q reduces the chance of a disk being idle in a given period and therefore increases

the disk array utilization. Equation (2.45) in Section 2.4.3 reveals how we consider

the individual disk utilization factor in disk array situations and build disk array

throughput models based on single disk throughput models.
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2.4.2 LOOK Scheduling for One Disk

The LOOK scheduling policy attempts to reorder the requests according to their

cylinder order to reduce disk arm movement [26, 43]. In LOOK scheduling, a disk

arm always moves in the same direction until there is no more request in the current

direction and there is at least one request in the opposite direction. In that case, the

disk arm changes direction and starts to sweep across the platters in the opposite

direction. The LOOK scheduling policy amortizes at most one full seek distance over

all the consecutive requests served between two consecutive arm direction changes.

Both LOOK and its similar alternative, SCAN, have been well studied for random

workloads with Poisson arrival time [8, 7, 33, 44]. Here, we analyze LOOK with a

fix number of outstanding requests in the disk queue. Our own analysis of LOOK

scheduling algorithm on a single disk lays the foundation of our analysis of a similar

scheduling algorithm RLOOK on SR-Array in the next sub-section.

Expected Seek Distance of One Sweep of q Requests

In the following analysis, we use q to represent the number of requests scheduled in a

single sweep during which the head moves in the same seek direction. We assume that

the sweep starts at a random request that has just finished and has a lower cylinder

number than all of the other q requests. Obviously, the head moves up the cylinder

numbers from the starting request and serves all the q requests. The head stops at the

request that has the maximum cylinder number among the q requests. We treat the

seek positions of these q + 1 requests as evenly distributed random numbers between

0 and the maximum seek distance S.

We first calculate the expectation (Smin) of the minimum of these q + 1 random

numbers (a0, a1, ...aq) between 0 and S. We calculate the sum of every minimum seek
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position x multiplied by its occurrences (q + 1) (S − x)q and divide it by the sum of

all the possible occurrences.

Smin =

∫ S

0
x(q + 1) (S − x)q dx∫ S

0
(q + 1) (S − x)q dx

=
(q + 1)

∫ S

0
(S − x) xqdx

(q + 1)
∫ S

0
xqdx

=

(q + 1)

(
1

q + 1
− 1

q + 2

)
Sq+2

Sq+1

=
S

q + 2
(2.30)

We also realize that S−a0, S−a1, ..., S−aq are also q+1 evenly distributed random

values between 0 and S. Their expected minimum is Smin based on the above analysis.

Obviously, for S − ai to be the minimum value among S − a0, S − a1, ..., S − aq, ai

must be the maximum value among a0, a1, ...aq. Therefore, we get Smax.

Smax = S − Smin

=
q + 1

q + 2
S (2.31)

Therefore, the average seek distance SLOOK of one sweep is the seek distance

between the minimum and the maximum positions of the q + 1 random positions.

The latency of one request T1LOOK on one disk and TLOOK(Ds, Dr) on a Ds × Dr

SR-Array can be derived from SLOOK .

SLOOK = Smax − Smin
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=
q

q + 2
S (2.32)

T1LOOK =
SLOOK

q
+

R

2
+ To

=
S

q + 2
+

R

2
+ To (2.33)

TLOOK(Ds, Dr) =
S

(q + 2)Ds

+
R

2Dr

+ To (2.34)

When q = 1, the above result is consistent with the expected single request latency

for one disk or an SR-Array discussed in the previous sections.

Expected Seek Distance among Random Requests

As a preparation for later analysis, we prove here that the expected position of the kth

minimum among the q + 2 random positions is kS
q+2

. We prove this by mathematical

induction. We have proved the k = 1 case above. Assuming that the k = i case

is true and the expected position of the ith minimum is iS
q+2

, we see that the rest of

the q + 1 − i positions that are greater than the ith minimum should be evenly and

randomly distributed between the ith minimum and S. Obviously, the i+1th minimum

position must be the minimum position of these q + 1 − i positions. Therefore, the

expected difference diff(i, i+1) between the ith and i+1th minimum should be 1
(q+2−i)

of the distance between the ith minimum and S.

diff(i, i + 1) =
1

(q + 2− i)

(
S − iS

q + 2

)

=
S

q + 2

Therefore, the expected position of i + 1th minimum is (i+1)S
q+2

and the case is also true

for k = i+1. The proof ends here. As a corollary, the expected distance between the
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ith minimum and kth minimum for these q + 1 numbers is the following, given k > i.

diff(i, k) =
(k − i)S

q + 2
(2.35)

Expected Number of Requests in One Sweep for Q = 1

Now, let us examine the scenario where we always keep Q outstanding requests. We

can not simply use the result of Equation 2.30 because having Q constant outstanding

requests does not mean that every arm sweep serves exactly Q requests. In fact, after

we finish one request and the new request generated falls at a location that the arm

is currently moving towards, we should also be able to serve that request in the same

sweep. Therefore, the expected number of requests in one sweep is a function of Q

and is larger than Q.

We define a forward seek as a seek from a lower cylinder number to a higher

one and a backward seek as one that the arm moves in the opposite direction. We

also define a forward sweep as n ≥ 1 contiguous forward seeks sandwiched between

two backward seeks. Similarly, we define a backward sweep as a group of contiguous

backward seeks sandwiched between two forward seeks. This way if we number all the

sweeps from 1 and start with a forward sweep, all forward sweeps are odd-numbered

and all backward sweeps are even-numbered.

Because of the symmetry of forward and backward sweeps, we only need to calcu-

late the expected number of requests in a forward sweep. Note that we assume here

that the disk has an infinitely large number of cylinders. Therefore, the probability

that two requests in Q requests share n cylinder number is asymptotically zero and

we only need to consider different cylinder numbers as an approximation. In the

following analysis, we use fractions of the maximum seek distance to represent all the

seek positions. Therefore, the “weighted” averages calculated are also in the fraction
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of the maximum seek distance.

We begin our calculation by first looking at the Q = 1 case and calculating (1) the

expected number of requests in one forward sweep; (2) the expected aggregate seek

distance during one forward sweep; (3) the expected seek distance per request as the

ratio between the above two quantities. We then explain the relationship between

the Q = 1 case and the Q ≥ 1 cases and use the result of the Q = 1 case to obtain

the results for all the Q ≥ 1 cases.

When Q = 1, each time we only have one request in the queue to schedule. A

forward sweep starts with the last request of the previous backward sweep. Let a0 be

the seek position of the last request before the last backward seek; a1 be that of the

first request before the first forward seek; an be that of the last request before the

last forward seek; an+1 be that of the first request before the first backward seek after

the whole forward sweep; and an+2 be the resulting seek position of the backward

seek performed after an+1. Expressed mathematically, a sequence that meets this

condition must satisfy a0 > a1 < a2 < ... < an < an+1 > an+2, which has n ≥ 1

forward seeks to form a forward sweep.

Notice that this type of sequence must start with the first three requests in the

order of a0 > a1 < a2, which defines the end of a previous backward sweep and the

start of the current forward sweep. Among all 3! = 6 possible orderings of three

independently generated random requests, only two(a1 < a0 < a2 and a1 < a2 < a0)

satisfy the condition of a0 > a1 < a2. Therefore, at any instance, we have 1/3

probability that a seek from a0 to a1 is the end of a backward sweep and the seek

from a1 to a2 is the beginning of a forward sweep.

Among the 1/3 chances of starting a forward sweep after a backward sweep, the

length of the forward sweep could be from 1 to infinity. A forward sweep with length

n must have n + 3 requests starting from a0 to satisfy a0 > a1 < a2 < ... < an <
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an+1 > an+2. There are a total of (n + 3)! possible ascending-ordered sequences for

the n + 3 requests. Among these (n + 3)! possibilities, we count and place those that

satisfy the above ordering requirement into the categories enumerated below. For

each category, we also calculate the expected forward sweep distance an+1 − a1 (as

fractions of the maximum seek distance) by using the result of Equation (2.35).

1. (n+1)n ascending-ordered sequences that have an+1 as the maximum and a1 as

the minimum. There are (n+1)n ways to pick a0 and an+2. The sweep distance

is n+3
n+4

− 1
n+4

= n+2
n+4

.

2. n ascending-ordered sequences that have an+1 as the maximum, an+2 as the

minimum and a1 as the second minimum. There are n ways to pick a0. The

sweep distance in this case is n+1
n+4

.

3. n ascending-ordered sequences that have a0 as the maximum, an+1 as the second

maximum, and a1 as the minimum. There are n ways to pick an+2. The sweep

distance in this case is also n+1
n+4

.

4. 1 ascending-ordered sequence that has a0 as the maximum, an+1 as the second

maximum, an+2 as the minimum and a1 as the second minimum. The sweep

distance in this case is n
n+4

.

Now we weigh the forward sweep of length n with its probability (the sum of

all the above four categories) and sum cases for all possible values of n and obtain

the expected number of requests for each forward sweep q(1). The probability for a

forward sweep to happen is 1/3.
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q(1) =

∞∑
n=1

(
n · (n + 1)n + n + n + 1

(n + 3)!

)
1

3

= 3
∞∑

n=1

(
1

n!
− 3

(n + 1)!
+

5

(n + 2)!
− 3

(n + 3)!

)

= 3
(

1

1!
+

1− 3

2!
+

1− 3 + 5

3!

)
=

3

2
(2.36)

(2.37)

Expected Single Request Latency in One Sweep for Q = 1

We also obtain the expected sweep distance for all forward sweeps as dist(1) and the

expected single request seek distance TS(1) as the ratio between q(1) and dist(1).

Both dist(1) and TS(1) are calculated as fractions of the maximum seek distance.

dist(1) =

∞∑
n=1

(
1

(n + 3)!

(
n + 2

n + 4
(n + 1)n +

n + 1

n + 4
n +

n + 1

n + 4
n +

n

n + 4
1
))

1

3

= 3
∞∑

n=1

(
1

(n + 1)!
− 4

(n + 2)!
+

7

(n + 3)!
− 4

(n + 4)!

)

= 3
(

1

2!
+

1− 4

3!
+

1− 4 + 7

4!

)
=

1

2
(2.38)

TS(1) =
dist(1)

q(1)

=
1

3
(2.39)

Note that our average seek distance computed here for Q = 1 is exactly the same
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as the expected latency for evenly distributed random requests in an early section.

Expected Number of Requests in One Sweep for Q ≥ 1

Earlier in the Q = 1 case, we have divided the request sequence (ordered by the time

of request generation) into intermingled forward sweeps and backward sweeps. We

now do the same for the Q ≥ 1 cases. We have proved that when Q = 1, the expected

number of requests for a sweep is 1.5. We now prove that the expected number of

requests for a sweep in the Q ≥ 1 case is 1.5Q.

Given Q outstanding requests, we make another request sequence a0, a1, ..., aQ−1,

aQ, aQ+1, ..., a2Q in an order such that (1) a0, ..., aQ−1 are the first Q random requests

generated; and (2) the fulfillment of request ai generates request ai+Q for all i ≥ 1.

Note that this request sequence is neither necessarily ordered by request generation

time, nor necessarily ordered by the request fulfillment time. Instead, we use this

sequence to capture the inter-dependency among requests.

By the definition of the sequence, request ai+Q must be served after request ai but

before request ai+2Q. Also, if request ai falls into a forward sweep, request ai+Q falls

into the same forward sweep if and only if ai+Q > ai. Otherwise, it falls into the next

backward sweep. Similar reasoning holds if request ai falls into a backward sweep.

This way the request sub-sequence a0, aQ, a2Q, ...anQ, ... behaves exactly as an average

Q = 1 case, as if they were generated in the Q = 1 case. Therefore, an average of 1.5

requests in this sub-sequence fall into a sweep. Because there are Q such independent

sub-sequences, the expected number of requests for a sweep is 1.5Q, which holds true

for all Q ≥ 1 cases.
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Figure 2.12: Evaluation of the expected single request seek latency using the LOOK scheduling pol-
icy: (1) The “Measured” curve represents the experiment result of keeping Q constant outstanding
requests; (2) The “Modeled” curve represents Equation ( 2.40).

Expected Single Request Latency in One Sweep for Q ≥ 1

Though we can leverage the results of the Q = 1 case to calculate the expected single

request latency in one sweep for the Q ≥ 1 cases, we need to modify the Q = 1

equation for the expected one sweep distance because the sweep distance is from the

minimum of Q ≥ 1 minimums to the maximum of Q maximums in every sub-sequence.

For large Q, the minimum is close to 0 and the maximum is close to S.

Though we can not show a closed-form result of the average seek distance, we can

still get a good approximation TS(Q) for all Q ≥ 1 cases. Figure 2.12 shows that this

seek time model is a good approximation (within 1%) to the result measured from an

experiment. We can also get average latency T1LOOK(Q). The expected throughput
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for one disk is the inverse of the expected single request latency.

TS(Q) =
S

1.5Q + 1 +
0.5

Q

(2.40)

T1LOOK(Q) =
S

1.5Q + 1 +
0.5

Q

+
R

2
+ To (2.41)

2.4.3 RLOOK Scheduling for SR-Array

We have developed an extension of the LOOK algorithm for SR-Arrays which we call

RLOOK. Under the traditional LOOK algorithm, the disk arm moves bi-directionally

from one end of the disk to the other, servicing requests that are in the cylinders under

the path of the arm movement. On an SR-Array disk, in addition to scanning the

disk in the seek direction, our RLOOK scheduling also chooses the replica that is

rotationally closest among all the replicas during the sweep.

Expected Single Request Latency

When we have a Ds×Dr SR-Array, the total of Q requests are distributed to D disks.

When Q is sufficiently large, the distribution is close to an even distribution and each

disk is likely to maintain a queue length close to q = Q/D. Expected single request

latency T1LOOK(Ds, Dr) can be derived from Equation (2.41) and (2.26) under the

same workload assumption.

T1LOOK(Ds, Dr) = pTR + (1− p)TW

=
S(

1.5q + 1 + 0.5
q

)
Ds

+
pR

2Dr

+ (1− p)(R− R

2Dr

) + To(2.42)
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We can get the optimal configuration for the workload and the optimal expected

single request latency as below.



Ds =

√√√√√√
2S(

1.5q + 1 +
0.5

q

)
R (2p− 1)

D

Dr =

√√√√√√
(

1.5q + 1 +
0.5

q

)
R(2p− 1)

2S
D

(2.43)

T1LOOK best =

√√√√√√
2SR(2p− 1)(

1.5q + 1 +
0.5

q

)
D

+ (1− p)R + To

=

√√√√√√ 2SR(2p− 1)

1.5Q + D +
0.5D2

Q

+ (1− p)R + To (2.44)

When Q/D is sufficiently large, 1.5Q + D + 0.5D2

Q
in T1LOOK best is relatively close

to 1.5Q, which means that the asymptotic optimal single request latency T1LOOK best

is independent of the number of disks in the SR-Array. Intuitively, in an SR-Array

with a fixed configuration and a fixed queue length, as we increase the number of

disks, there are fewer requests per disk and therefore the amortized seek distance

between two consecutive requests is longer. At the same time, the optimal SR-Array

configuration demands a greater Ds to be devoted to seek reduction. The net result

of these two opposite effects is a nearly constant single request latency.
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Expected Throughput

Having modeled the throughput of a single disk in an SR-Array, we now attempt to

model the throughput of an entire SR-Array with D disks and a total of Q = Dq

outstanding requests, where q is the average queue length per disk. Because we

assume that the requests are randomly distributed in the system, there could be a

load imbalance in the form of idle disks especially when Q is not much greater than D.

The probability of one disk being idle is
(
1− 1

D

)Q
. Therefore, the total throughput

of the system can be approximated as:

ND ≈ D

[
1−

(
1− 1

D

)Q
]
· 1

T1LOOK best

(2.45)

When Q is much larger than D,
(
1− 1

D

)Q
is close to zero and the chance of a disk

being idle becomes very small. As all the disks face similar load in this case, the total

throughput in an optimal SR-Array configuration is approximately proportional to

the number of disks D.

Although this approximation is derived only based on the reasoning about the

presence of one idle disk, we shall see in Section 4.1.2 in our empirical study that it

is in fact a good approximation to the real measured throughput. Those empirical

results also show that the throughput of pure striping or rotational replication is

sub-linear and worse than that of an optimal SR-Array for a given number of disks.

2.4.4 SATF and RSATF Scheduling

The scheduling policy called Shortest-Access-Time-First(SATF) attempts to pick the

next request in the queue with the least sum of seek time and rotation delay from the

head position of the current request. Gum[16] shows that the average single request
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latency T1SATF is a good approximation for SATF scheduling, if the full seek time S

is close to the full rotation time R.

T1SATF =
√

πRS
4q + To (2.46)

Since we have described the RLOOK extension to LOOK, it is easy to understand

a similar extension to SATF: RSATF for SR-Array. An RSATF scheduler chooses the

next request with the shortest access time by considering all rotational replicas. It is

well known that SATF outperforms LOOK [26, 43] by considering rotational delay.

We do not model throughput for SATF and RSATF here because we do not have a

closed-form result. Instead, our results in Section 4.1.2 show that the performance gap

between RLOOK and RSATF is small because both scheduling algorithms consider

rotational delays. Once the detailed low level disk layout is understood, RLOOK is

easier to implement than RSATF and therefore is an attractive scheduling policy for

an SR-Array. RLOOK’s analytical model is also better understood.

2.5 Summary

In this section, we have explored how by scaling the number of disks in a storage

system we can (1) reduce seek distance, (2) reduce rotational delay, (3) reduce over-

all latency by combining these techniques in a balanced manner, and (4) improve

throughput. To achieve these goals, the storage system needs to be configured based

on a number of parameters. We have developed simple models that capture the

following parameters that influence the configuration decisions:

• disk characteristics in the form of seek and rotational characteristics (S and R),

• read/write ratio (p),
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• load on the system (Q),

• seek locality (L), and

• overhead time(To).

We have discussed disk modeling basics and existing approaches of using disk

arrays to improve disk system latency. Based on the analysis, we have introduced the

SR-Array disk array configuration family as an alternative. We have further derived

a latency model for SR-Array and obtained the optimal SR-Array configuration by

balancing the reductions on both seek time and rotational delay. Our results reveal

that the non-overhead part of the latency, or the scalable part of seek time and

rotational delay, can be reduced by a factor of
√

D at best when we use a D-disk

SR-Array with the optimal configuration. This latency time reduction is better than

that achieved on simple striping and rotational replication. Later in Chapter 4, we

show that the average latency of an SR-Array is also better than mirroring-based

data replication schemes, such as RAID-10.

We have also analyzed the overall throughput of a single disk and that of an

SR-Array. Specifically, we have developed mathematical models for the LOOK and

the RLOOK scheduling algorithms. Although these results are approximations, our

models lead us to believe that by balancing the reduction of seek time and rotational

delay between consecutively scheduled requests, SR-Array with RLOOK scheduling

policy can generate better throughput. We have further showed that when the num-

ber of outstanding random requests is fixed and much greater than the number of

disks for a disk array system, the throughput of an optimally configured SR-Array

is approximately proportional to the number of disks in the array (D) thanks to its

ability to adjust the degrees of seek time and rotational delay reduction given different

numbers of disks and workload conditions.
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Our results show that there does not exist a single “perfect” SR-Array config-

uration; instead, there may exist one “right” configuration for every workload and

cost/performance specification. As we increase the number of disks, and if we prop-

erly configure the storage system under the right conditions, the various results in

this section suggest the following rule of thumb: by using D disks, we can improve the

overhead-independent part of response time by a factor of
√

D and the fixed queue

length throughput by a factor of D.
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Chapter 3

Experimental Framework

In this chapter, we describe an experimental framework that is designed to verify our

theoretical modeling results and to learn more insights on various configurations and

workloads.

3.1 Design Goals

In our theoretical analysis, we have made an assumption that we can access accurate

relative position information between disk head and the fast rotating disk platter at

any time. Unfortunately, there is no existing system that can accomplish this with-

out hardware support in a disk array system. We have designed and implemented

a method that tracks the disk head position accurately on off-the-shelf commercial

disk drives without any special hardware support. This mechanism is a crucial re-

quirement in the realization of the SR-Array configuration family. It also enables the

implementation of rotational position sensitive scheduling algorithms (such as Short-

est Access Time First (SATF) [26, 43]) across all the disks in a disk array. Even if

the drives themselves perform sophisticated scheduling internally, it would have been
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difficult to choose replicas intelligently without this head-tracking mechanism when

there are multiple replicas on different disk drives.

Although accurate head tracking mechanism is a critical component, it is only

one of the requirements for a whole disk array system to work. In this chapter, we

describe an experimental framework for general disk array studies. It helps us vali-

date our theoretical analysis results and gain more insights on how these disk arrays

behave under the various configurations and workloads that we have not analyzed

mathematically.

Simplistic simulations that are not based on accurate disk performance models

may not be accurate enough for the disk studies that we conduct. Our simulation

environment is based on a sophisticated and realistic model that is shared by the

simulator and a prototype array implementation on the Microsoft Windows 2000

operating system. We show that the behavior of the simulator closely matches that

of the implementation.

3.2 Software Design Overview

3.2.1 Multiple Software Configurations

We design our experimental framework in a layered architecture. Figure 3.1 illustrates

the main system components and how they stack against each other.

There are a number of ways to configure the system. At the top level, the user-

visible interface can be a user level disk driver so that the whole system can be used

as a library. It can also be configured as a normal storage volume (such as the Z:

drive in the Window 2000 Operating System) so that the whole system is packaged

as an OS kernel device driver and is accessible by normal applications.
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Figure 3.1: Prototype software architecture. The arrows in the figure indicate the information flow
direction.

When used as a kernel device driver, the bottom SCSI abstraction layer interacts

with real disk drives. When used as a user level driver, the bottom layer can be either

a disk timing simulator or real SCSI disk drives controlled by a special I/O Control

API supported by the operating system. The remaining components in the middle

are shared across all software configurations.
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3.2.2 Software Layers

The SCSI Abstraction Layer abstracts device-specific operations such as SCSI device

detection at boot time, issuing SCSI read/write commands, and the retrieval of com-

mand status. We currently support two types of 10,000 RPM SCSI drives: Seagate

ST34502LW [40] and ST39133LWV [41]. However, all experimental results reported

in this chapter are from the ST39133LWV model. This layer has two modes: kernel

mode and user mode. In the kernel mode, it relies on the Windows 2000 layered device

driver architecture to issue SCSI commands to the lower layer SCSI disk driver. In

the user mode, it can use either the Advanced SCSI Programming Interface (ASPI)

developed by Adaptec [2, 39] or the SCSI Pass-Through Interface (SPTI) natively

supported by Windows NT and Windows 2000 [39] to issue various SCSI-specific

IOCTL (I/O control) calls directly to any SCSI disk drives.

A parallel layer to the SCSI abstraction layer is the Simulator. We have decided

to integrate the simulator into the architecture to shorten the simulation time for

long traces. Using simulation, we not only avoid waiting during the idle time in

workloads, but also replace long disk I/O time with simulated time. The simulator

also provides the flexibility of exploring the impact of changing disk characteristics.

To faithfully simulate the behavior of the disks that we currently use in the prototype,

the simulator receives timing information from the calibration layer to configure itself.

The Calibration Layer is used for calibrating the disk and extracting information

regarding the physical layout of the disk. It keeps track of where the disk head is

currently located and calculates the time required to move the head from its current

position to a target sector. Section 3.3 provides more details about our head-tracking

technique.

The Scheduling layer implements several disk scheduling policies, such as FCFS,
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LOOK, CLOOK, SSTF, SATF, RLOOK, and RSATF. This layer maintains a read/write

command queue for each physical disk and invokes a user determined policy to pick

the next request at each scheduling step. We call these queues the drive queues. Sec-

tions 3.4.1 and 3.4.2 provide details of the scheduling policies of both read requests

and write requests.

The Disk Configuration Layer provides support for configuring a collection of

disks using techniques such as D-way mirroring, striping, SR-Array, and SR-Mirror.

It translates I/O requests for a logical disk to a set of I/O commands on the physical

disks and inserts them into the appropriate drive queues. The striping unit is 64K

bytes in our experiments.

The Logical Disk Layer exposes a logical disk to the application. The kernel device

driver exposes a mounting point (e.g. drive letter Z: in Windows 2000) to user space.

The user level driver exposes the disk in the form of an API to the application.

3.2.3 Benefits of Code Sharing

Our simulator and the SCSI abstraction layer expose the same interface to upper

layers so that we can use a single version of the source code for upper layers for both

the simulation and real disk modes. This design greatly simplifies the debugging

process of our system because we can avoid the trouble of debugging a kernel device

driver by performing most of the upper layer debugging and experiments, such as

those in the numerous scheduling policies and disk configurations, in a user library.

For similar reasons, the user level device driver is designed to access real disk drives

in order to efficiently debug SCSI commands to a real disk drive. The result of this

effort is that our prototype device driver becomes stable enough in a short period of

time to allow us to start systematically evaluating different disk array configurations
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under different workloads. The fact that the simulator and the implementation share

most of the source code also contributes to our confidence in the validity of the

simulation results.

3.3 Disk Calibration and Head Tracking

Both the SR-Array disk configuration family and the SATF scheduling policy depend

on our ability of accurately predicting the timing of head movement. In analyzing

the SATF scheduling policy and its variants, previous proposals [6, 48] that depend

on the knowledge of head positions have relied on hardware support. Unfortunately,

this level of support is not always available in commodity hard drives. We have

developed a software-only head-tracking method using off-the-shelf commodity hard

drives without special hardware support. This section details several aspects of our

implementation, which include (1) measuring timing of the relative movement of

heads and disk platters; (2) measuring sector layout of a disk; (3) maintaining head

tracking accuracy; and (4) predicting access time during runtime.

3.3.1 Measuring Timing and Layout of A Disk

In order to predict the time required for the head to move from its current position

to a target sector, we need the following steps. First, we need an accurate reading of

a clock with good enough resolution. Second, we need to know the current relative

position between the head and the platter, which requires us to track the full rotation

time with good accuracy. Third, we need to know how sectors are laid out on the disk

platters. Finally, we need to know how much time is needed for the head to move

over a certain cylinder distance. All these tasks are done in the calibration layer.
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Reading The Clock

The Windows 2000 Platform SDK provides a high resolution timer API that pro-

vides several million counts per second. Therefore, the resolution of this API is at

microsecond level. One full rotation time of a 10,000 rotations per minute (RPM)

SCSI hard drive is around six milliseconds. If the reading of the full rotation time is

off by just one microsecond, it only takes 6000 rotations, or roughly 36 seconds, for

our prediction to potentially miss one full rotation. For our prototype, this kind of

resolution is not good enough.

We have two ways of improving the clock reading resolution. First, we use a

special assembly instruction to read the cycle counter provided by the Intel Pentium

processor family. As all the current processor runs at at least 100MHz, the cycle

counter can yield a much higher resolution than the microsecond level. Second, we

measure the time of tens of thousands of disk rotations. This way, even if the clock

reading is off by ten microsecond, the amortized discrepancy of one full rotation is still

well below the microsecond level. Both methods are implemented in our framework.

Measuring Full Rotational Time

We first issue two read requests to a fixed reference sector. When we issue the read re-

quests fast enough, the time between the finishing times of the two requests is roughly

one full rotation time. This time does not have a high degree of accuracy because

the differences of the unpredictable amount of overheads in the operating system, the

I/O buses, the disk controller and other places can sum up to a significant amount

of time (as much as tens of microseconds). We use a similar method to measure the

time of multiple full rotations by issuing multiple read requests consecutively. This

way, we can improve the accuracy of one full rotation time by amortizing the over-

67



head difference over multiple rotations. However, this technique requires the head to

constantly read the reference sector and therefore it cannot do anything else. We call

this synchronized measurement. Moreover, when we perform n consecutive requests,

it is possible that the disk actually takes more than n rotations to fulfill these re-

quests, especially when n is large. Even if we missed only one rotation out of 1000

rotations, our estimated one full rotation time can be off by six microseconds, which

is still significant.

To overcome the drawbacks of the synchronized measurement, we have developed

a method, which we call asynchronous measurement, to allow the disk to perform

other operations between the readings of the reference sector. The basic idea is that

no matter how many rotations have passed, the time between two read accesses of

the reference sector should always be close to an integral multiple of the full rotation

time plus an unpredictable overhead, which is usually several microseconds.

If we assume that we already know that our current estimate of one full rotation

time is within 1% of the actual full rotation time, and if we let the disk run for a

time that is roughly 25 full rotation time between two reads of the reference sector,

our prediction offset will be at most 25% of one full rotation time. Because it is

less than 50%, we can still safely use our current estimate of the full rotation time

to deduce the exact integral number of rotations that have passed. This estimate

of the number of rotations is accurate because the error of the single rotation time

estimated is not sufficient to cause the estimation to be off by one. We can then divide

the time interval by the number of rotations to derive a new but more accurate full

rotation time. We can also estimate that the accuracy range of this new estimate is

the difference between the old and the new estimates. After that, we can start a new

round of measurement but the new allowable time interval can be longer.

By gradually increasing the time interval between adjacent read requests of the
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reference sector, we can amortize the unpredictable overhead over tens of thousands

rotations and obtain a very accurate estimate of the single full rotation time.

N(k + 1) =
αR(k)

∆(k)
(3.1)

∆(k + 1) =
γ

N(k + 1)

=
γ

αR(k)
∆(k) (3.2)

We now describe the above process formally. For the kth measurement iteration,

let R(k) be the computed single full rotation time after the iteration, N(k) be the

number of rotations that we roughly allow in the iteration, γ be the upper bound of

the unpredicted OS and hardware overhead in measuring request finishing time, and

∆(k) be the upper bound of the estimated difference between R(k) and the real full

rotation time. Equation (3.1) computes the number of rotations in the next iteration

that guarantees that the aggregated rotational angle error cannot exceed a certain

percentage (α) of the full rotation time. This guarantee ensures that we can compute

the accurate integral number of rotations during the next iteration. To be safe, we

can pick an α that is less than 25%. Equation (3.2) then estimates the upper bound

of the difference between R(k) and the real full rotation time for the next iteration.

As long as αR(k) ≈ αR > γ, ∆(k + 1) < ∆(k), and we should achieve a better

estimated rotation time R(k + 1) in the next iteration.

However, this process can not go on forever because it depends on the assumption

that the real full rotation time is stable within a small range. Once we obtain a ∆(k)

that is significantly small, the drift in real full rotation time may make us unable to

get an accurate reading of the number of rotations in the iteration and, consequently,

we are unable to obtain more accurate estimates. Note that a small change of either
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the CPU clock generator or the disk full rotation time can cause the drift because

the time we measure is in terms of the number of cycles of the CPU clock.

For the more than ten Seagate disk drives that we have used, their full rotation

time is remarkably stable. Our experiments show that periodic re-calibration at an

interval of two minutes yields predictions that have an error of only 1% of a full

rotation time with 98% confidence. Because the kernel device driver has higher CPU

priority, we can achieve this accuracy even under heavy load when the CPU is near

100% usage. We achieve a ∆(k) that is less than three nanoseconds for a γ that is

roughly 60 microseconds.

It is encouraging that we can achieve a high degree of accuracy with a low overhead

associated with reading the reference sector every two minutes. To further reduce this

overhead, we can exploit the timing information and known disk head locations at

the end of user requests. We have not implemented this optimization because our

current method is already accurate enough and has very low overhead.

Measuring Sector Layout

Our scheme of measuring full rotational time also yields the approximate time of

zero relative rotational angle between the head and the reference sector. Together

with the full rotation time, we can calculate, at any instance, the relative rotational

angle between the head and the reference sector. In order to get the relative position

between the target sector and the current head location, we also need to know the

relative position between each sector and the reference sector.

Given the LBA of a target sector, we can use a SCSI command to translate the

LBA to the cylinder number, the head number and the sector number within the

track. We can also use the same type of command to measure the exact number of

sectors per track. We can then derive the relative rotational angle between the target
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sector and the first sector in the track, safely assuming that all the sectors in the

track are evenly spaced. We also obtain zoning information during the process.

The last piece of layout information that we need is the relative rotational angle

between the first sector of the track and the reference sector. We obtain this informa-

tion by noting the timestamp after reading the first sector. Note that it may not be

true that the first sector of every track is located at the same rotational angle. The

difference between adjacent tracks is called track skew. Track skews allow the disk

head to reach the end of one track, take some time to switch and settle on the next

track, and continue at the beginning of the next track at full rotation speed without

any undue delays.

We obtain information on disk zones, track skew, bad sectors, and reserved sectors

through a sequence of low-level SCSI disk operations. Worthington et al. explains a

similar process in more detail [53]. The whole process is slow even if we use various

optimizations. Therefore, we store the result of layout information at a known place

on the disk so that we can retrieve it after reboots without having to re-derive the

sector layout map. We also use the layout information to convert a target LBA into

a relative position between it and the reference sector as part of the access time

calculation.

Measuring Minimum Read Time

The last piece of timing information that we need is the cost of performing track

switches and seeks. We measure the minimum time differences between two consec-

utive reads (and writes) to different tracks and to different cylinders for certain well-

spaced cylinder distances. We use interpolation to derive the minimum read/write

times for other cylinder distances. We perform the measurement several times. Our

experiments indicate that the least access times are accurate within a range of ± 100
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µs for short seeks that move heads less than 10% of the total number of cylinders

and ± 200 µs for long seeks. Considering that a full rotational delay is 6 ms on these

disks, we regard this level of accuracy (within 3%) to be satisfactory for the various

degrees of rotational replication that we employ.

3.3.2 Runtime Access Time Prediction and Adjustment

During runtime, the scheduling layer uses the information gathered in the calibration

layer to determine the locations of the requests and the order in which the requests

are scheduled. For those scheduling policies that require the access time to be part of

the scheduling decision, such as the SATF scheduling policy, the decision requires an

estimation of the current head position and a prediction of the time needed for the

head to reach each candidate location. We have already discussed the head position

estimation. We now discuss access time prediction and runtime adjustment of the

prediction.

Predicting Access Time

The arm of a disk drive stays in a cylinder unless it is directed by software to move

to another cylinder. Therefore, our system can always keep track of in which cylinder

the head is located. We need to have two pieces of information to predict the access

time: (1) the seek time that the head needs to reach the target cylinder; and (2) the

rotational delay that the head needs to wait on the target track before the target

sector rotates under the head.

We look up the table of the least read/write time to predict the time that the

head needs to reach the cylinder. We also know the relative rotational angle between

the head and the target sector after the head reaches the cylinder and, therefore, we
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Figure 3.2: An illustration of missed rotation

have an estimate of the rotational delay.

Runtime Feedback and Adjustment

Because our timing measurement might drift in the small range around the actual

timing, our estimation of when the head can settle on the target cylinder can be off a

little. If our prediction time is too short, the head only needs to spend the extra time

waiting on the target cylinder. However, if our prediction is too long and we happen

to need the head to read a sector very soon after it settles, the head may just miss

the target sector and it may have to wait for almost a full rotation to reach the target

again. In this situation, our small prediction error may lead to a large penalty of

nearly one full rotation time. Figure 3.2 illustrates the situation of a missed rotation

because of a prediction error.

To reduce the number of rotation misses, we add a slack time into the estimation

of the seek time. A larger slack time may cause the scheduler to over-predict the

access time required for those requests that need very small rotational latency. As
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a result, we may unnecessarily delay the scheduling of these requests. To limit the

inefficiency resulting from this slack time, we would like the slack time to be as small

as possible.

The system could use different slack time for different seek distance and constantly

monitor the number of missed rotations and adjust the slack time accordingly.

3.4 Scheduling Details

3.4.1 Scheduling Reads

The head-tracking mechanism, along with the accurate models of the disk layout

and the seek profile, allows us to implement sophisticated local scheduling policies on

individual disks; these include RLOOK, SATF, and RSATF.

Scheduling on a mirrored system, however, is more complex due to the fact that

a request can be serviced by any one of the disks that have the data. We use the

following heuristic scheduling algorithm in this situation. When a read request arrives,

if some of the disks that contain the data are idle, the scheduler immediately sends

the request to the idle disk head that is closest to a copy of the data. If all disks that

contain the desired data are busy, the logical disk layer duplicates the request and

inserts the copies into the drive queues of all these disks. Each disk drive does the

specified scheduling locally. However, as soon as such a request is scheduled on one

disk, all other duplicate requests are removed from all other drive queues. When a

disk completes processing a request, its local scheduler greedily chooses the “nearest”

request from its own drive queue. Although this heuristic algorithm may not be

optimal, it can avoid load imbalance and works fairly well in practice.
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3.4.2 Delayed Writes

While multiple copies of data reduce read latency, they present a challenge for per-

forming writes efficiently because more than one copies need to be written. We need

to make Dr × Dm copies for a Ds × Dr × Dm SR-Mirror. It is however feasible to

propagate the copies lazily when the disks are idle. We can issue a write to the closest

copy and delay writing the remaining copies. On the other hand, reads of data blocks

whose propagation has not yet completed cannot enjoy the full benefit of latency re-

duction. Fortunately, the likelihood of such occurrence can be reduced by caching the

content of writes because reads that hit in cache will no longer be issued to the disk.

For back-to-back writes to the same data block, which happens frequently for data

that die young [36], we can safely discard unfinished updates from previous writes.

This is similar to the approach taken by the AFRAID system [38].

In our implementation, we maintain for each disk a delayed write queue, which is

distinct from the foreground request queue. When a write request arrives, we initially

schedule the first write using the foreground request queue just as we do for reads.

As soon as writing one of the replicas is scheduled, we move the remaining update

operations for the other replicas into the individual delayed write queues. Entries

from this queue are serviced when the foreground request queue becomes empty on

the corresponding disk. Delayed writes require us to make a copy of the data because

the original buffer is returned to the OS as soon as the first write completes.

To aid crash recovery, the physical location of the first write is stored in a delayed

write metadata table that is kept in NVRAM. Note that it is not necessary to store a

copy of the data itself in NVRAM—the physical location of the first write is sufficient

for completing the remaining delayed writes upon recovery; so the table is small.

When the metadata table fills up to a threshold (10,000 entries in the current imple-
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mentation), we force delayed writes out by moving them to the foreground request

queue.

We have implemented the basic delayed write strategy described above. Other

potentially better alternatives also exists. In fact, the general idea of delayed write

is not new. Polyzois [35] proposes careful scheduling of delayed writes to different

disks in a mirror to maximize throughput, a technique that can potentially benefit

delayed writes in our system when the replicas are on different disks. The “distorted

mirror” [34] provides an alternative way of improving the performance of writes in a

mirror. It performs writes initially to rotationally optimal but variable locations and

propagates them to fixed locations later. This technique can be integrated with our

delayed write strategy as well.

3.4.3 Limitation

Although we model precisely the disk rotation and head seek/settle timing, our model

for data transfer and various overhead in SCSI and disk interfaces are less sophisti-

cated than the state of art. We do not model disk prefetching, read caching, write

buffering and command overlapping and have these features turned off for disks used

in our prototype. While we do full scheduling in the driver for the entire disk array,

we restrict that each physical disk has at most one outstanding request at any time.

As some modern SCSI disks are capable of performing SATF-like scheduling inside

their disk firmware efficiently, the software-based SATF scheduling performance in

our prototype can be worse than that of firmware-based solutions for a single disk

because of communication overheads. It is possible that we may be able to further

improve the performance of our system by modeling the full set of firmware features

and still keep our advantages of being able to (1) deal with rotational replicas, and
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(2) cooperatively schedule requests among all available disks in mirroring situations.

3.5 Simulation

3.5.1 Simulator

We use an event driven simulator. It has an event queue ordered by event time.

The simulator always processes the event at the head of the queue. When the event

is processed, the simulator adjusts the system’s virtual time and invokes a callback

routine associated with the event. The simulator may also monitor the time consumed

in the callback routine and advance the virtual clock accordingly. The simulator

estimates the completion time of each request just as described in section 3.3.2 but

without the “slack time”.

Our simulator can also introduce some small random noise in the timing infor-

mation of seek and rotational delay. This simulates the behavior of mechanics on

real disks, which never perform at the exact timing even when repeating the same

operations. The type and the size of these random noise can be measured when the

system is running on real disk arrays and these measurements can be then configured

into the simulator.

3.5.2 Validating The Integrated Simulator

So far, we have described the architecture and the components of our experimental

framework. To establish (1) the accuracy of the head-tracking mechanism, and (2)

the validity of the simulator, we perform a series of experiments using “Iometer”, a

benchmark developed by the Intel Server Architecture Lab [25]. Iometer can generate

workloads of various characteristics including read/write ratio, request size, and the
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Operating system Microsoft Windows 2000
CPU type Intel Pentium III 733 MHz
Memory 128 MB
SCSI Interface Adaptec 39160
SCSI bus speed 160 MB/s
Disk model Seagate ST39133LWV 9.1 GB
RPM 10000
Average seek 5.2 ms read, 6.0 ms write

Table 3.1: Implementation platform characteristics.
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Figure 3.3: Comparison of throughput results from the prototype system and the simulator. We
use two random workloads, one with just reads, and another with an equal number of reads and
writes. The request size is 512 bytes. The array configuration is a 2 × 3 SR-Array based on the
RSATF scheduler. Writes are synchronously propagated in the foreground. We vary the number of
outstanding requests (on the x-axis).
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Misses 0.22%
Mean Prediction Error 3 µs
Standard Deviation of Error 31 µs
Average Access Time 2746 µs
Demerit 52 µs
Demerit/Access Time 1.9 %

Table 3.2: Detailed statistics of simulator accuracy when subjected to the “Cello base” file system
workload. The configuration is a 2 × 3 SR-Array based on RSATF scheduling. I/O requests in
this experiment are physical I/O requests sent to drives; and access time is that of a physical I/O.
Prediction error is the difference between the access time predicted by the scheduler and the actual
measured access time of a single request. We calculate demerit using the definition by Ruemmler
and Wilkes [36].

maximum number of outstanding requests. We use Iometer to generate equivalent

workloads to drive both the device driver and the simulator. Table 3.1 lists some

platform characteristics of the prototype. Figure 3.3 shows the results of these Iometer

experiments. The throughput discrepancy between the simulator and the prototype

under all queueing conditions is under 3%.

To shed more light on the accuracy of our simulation, in Table 3.2, we give more

detailed statistics by subjecting the simulator and the prototype to the “Cello base”

file system workload (described in Section 4.2.1). We organize the disks into an SR-

Array configuration. The small mean prediction error and low standard deviation

show that there are essentially only two types of prediction results: 99.8% of the

predictions are almost right on target, and 0.2% of the predictions miss their targets

by a very small amount of time and incur a full rotation penalty. The net effect of

these rare rotation misses, however, is insignificant in terms of overall access time.

These results indicate that the simulator faithfully simulates a real SR-Array, allowing

us to understand the performance behavior of the SR-Array using simulation-based

results in later empirical studies.
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3.6 Summary and Related Work

In this chapter, we have described our experimental framework with an accurate disk

head position tracking scheme and an integrated simulator. We have shown that the

simulator faithfully reflects the timing of requests of a real system. This is due to the

fact that most of the code is shared between the simulator and the real prototype,

which can run as a real storage volume under Windows 2000.

There have been several simulation studies on scheduling policies for a single

disk [12, 19, 26, 43, 49, 51]. We integrate and validate our simulator with a real

device driver and study both single disks and disk arrays.

Our implementation is only one of the recent efforts to track disk head position.

At the time of this research, the Trail system [24] has independently developed a disk

head tracking mechanism that is similar to ours. Trail uses this information to perform

fast log writes to carefully chosen rotational positions. Aboutabl et al. has developed

a similar disk timing measurement strategy, which is used to model the response

time of individual I/O requests [1]. In comparison, our head-tracking mechanism

achieves a higher degree of accuracy while incurring much lower overhead. We have

also implemented various scheduling policies, which can handle heavy workloads.

The importance of reducing rotational delay has long been recognized. Seltzer and

Jacobson have independently examined a number of disk scheduling algorithms that

take rotational position into consideration [26, 43] with the assumption that rotational

position information is readily available. A number of hard drive manufacturers

have also incorporated SATF-like scheduling algorithms in their firmware. An early

example was the HP C2490A [18].

Our host-based software solution enables the employment of SATF-like scheduling

on hard drives that do not support such scheduling internally. Furthermore, it allows
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experimentation with strategies such as rotational replica selection, which would have

been difficult to realize even on the hard drives that support intelligent scheduling

internally. We have also considered the impact of reducing rotational delay in array

configurations in a manner that balances the conflicting goals of reducing seek time

and rotational delay at the same time.

Rotational position-aware scheduling algorithms, such as SATF, are not the only

applications of an accurate head tracking mechanism. We have already mentioned

that the Trail system [24] uses this information to perform fast log writes to care-

fully chosen rotational positions. A similar write strategy is also used in the earlier

Mime system [6], though Mime relies on hardware support for getting its rotational

positioning information. Lumb et al. [29] exploit “free bandwidth” that is available

when the disk head is seeking during servicing normal requests in a busy system. The

free bandwidth is used for background I/O activity. Our delayed write scheme for

propagating replicas in our system can also take advantage of this free bandwidth.

Wang et al. [48] propose to rely on hardware support to realize “eager writing” in the

“virtual-log based” file system. “Eager writing” refers to the strategy of writing data

to the closest possible free block. Zhang et al. [55] have extended both this thesis

work and the virtual log-based file system work so that they can be applied to disk

arrays.

In summary, based on our accurate head tracking mechanism, we have imple-

mented a prototype experimental framework that supports various configurations of

the SR-Array configuration family with various scheduling policies. We have also

integrated a simulator in this framework and have validated its accuracy.
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Chapter 4

Empirical Study

We now use the framework discussed in the last chapter to study various disk ar-

ray configurations under different workloads. We devote one section to each of the

following three objectives, with Section 4.4 summarizing the conclusions of our study.

First, we would like to verify some mathematical models that we have developed

in Chapter 2. These models are based on a few simplified assumptions that are

close to but not the same as reality. For example, we model the seek time or the

minimum access time as being proportional to the seek distance. This overestimates

the time required when the seek distance is relatively small, such as when it is less

than 10% of the maximum seek distance. Our model does not consider zoning. This

is based on the assumption that a simplified model without zoning considerations is

a good approximation of reality. Once we validate these models, we can then rely

on the models to estimate the best disk array configuration for a certain workload.

The results presented in Section 4.1 demonstrate that our mathematical models are

indeed quite close to our measured results for controlled workloads.

Second, we would like to demonstrate that the SR-Array configuration family

can improve the disk array performance more effectively than some existing disk
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array configurations on some workloads. We also study the performance differences

among various scheduling policies because the performance of different disk array

configurations can be affected by the choices of scheduling algorithms. Section 4.2

uses trace driven simulation to demonstrate the strengths of SR-Array configuration

family and its scheduling policies.

Third, because SR-Array can achieve low latency and high throughput, we would

like to demonstrate the possibility that the use of more disks can sometimes be a more

cost-effective way than the use of memory caching in improving overall system perfor-

mance for certain workloads. Section 4.3 uses trace driven simulation and the relative

cost between disk drives and memory to compare the performance improvements of

the two schemes.

4.1 Validation of Mathematical Models

In this section, we verify our latency and throughput model built for SR-Array in

Chapter 2. We generate workloads assumed by the models and feed them into the

simulator. Before running the simulation, we also run the same workloads on our

experimental platform with a few real disk array configurations and validate our sim-

ulator results. Section 3.5.2 provides more details on how we validate our simulator.

For both latency and throughput models, we use workloads generated by the Iome-

ter micro-benchmark, which we have introduced in Section 3.5.2. This benchmark

generates workloads suitable for validating our throughput model as we can specify

the constant outstanding request queue length and the ratio between read and write

requests in a workload. We also use the benchmark for our latency study by limiting

the outstanding request queue length to one when generating the workloads.

We have designed our system to minimize the performance impact of foreground
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parameter value
S 9.2ms
R 6.0ms
To 2.7ms
Two 0.7ms

Table 4.1: Parameters used in disk models (gathered from the Seagate ST39133LWV)

propagation of newly written replicas. Our mathematical models do not take into

account the availability of idle time for delayed write propagation in a real world

workload. This simplified model is therefore a conservative performance estimate.

The workloads generated by Iometer keep all the disks constantly busy. To validate

the simplified models, we disable the delayed writes feature in our implmentation.

During our simulation, we generate 10,000 requests that are random in terms of

locality. We only measure the performance of the middle 7,000 requests to avoid the

effects of warming up and cooling down during the simulation. Because the configu-

rations employing a single disk, simple striping and simple rotational replication are

all special cases covered by the more general SR-Array configuration family, the data

points of these cases are included in our evaluation of the SR-Array configuration

family. In the real world, we may not necessarily encounter workloads like what we

use in these micro-benchmarks. However, by running these controlled experiments,

we hope to gain some insights of how various disk array configurations perform and

understand the strengths and weaknesses of different configurations.

Table 4.1 lists the disk parameters used in the SR-Array models for the real disk

array implemented in our prototype system. We have deduced these parameters from

measurements as shown in Figure 2.3. As the ”Linear approximation” line shown in

that graph, the overhead part (the intersection with Y-Axis) of the minimum read

time is To = 2.7ms. For a seek across the maximum seek distance on the disk we

used, the minimum read time is 11.9ms. This means that we model the minimum
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read time as a straight line between 2.7ms and 11.9ms and deduce S = 9.2ms for our

model equations. All disks rotate at 10,000RPM, which translates to a full rotation

time of R = 6ms.

In the models introduced in Chapter 2, we assume that the minimum read time

is always the same as the least write time for a given seek distance. However, this is

not always true. In fact, on our hard drives, we measured that the minimum write

time is always roughly 0.7ms more than the corresponding minimum read time for a

given seek distance. Therefore, we adjust our equations correspondingly in Chapter 2

to account for the more time spent on writes.

4.1.1 Latency Model

To validate the SR-Array latency model, we generate a new random request im-

mediately after the last request is serviced. This way the system always has one

outstanding request. We measure the average service time of all the requests under

different configurations and read/write ratios. Because we only allow one outstanding

request at a time, the choices of scheduling policies in our latency experiments do not

affect the performance results. Therefore, we do not specify the scheduling policy

used in the result figures.

We first measure the read only workloads of SR-Array (Ds×Dr×1) configurations

using different number of rotational replicas Dr and different number of disks. Fig-

ure 4.1 shows the experiment results and model results according to Equation (2.19).

These experiments confirm that Equation (2.19) models the latency results well with

varying number of disks in the array. We also see that the curves approach asymp-

totes as more disks are used and the benefit of a higher degree of striping reaches

diminishing return.
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Figure 4.1: Validation of the SR-Array read-only latency model: average latency as a function of
the number of disks used in an SR-Array and the degree of rotational replication: (a) Dr = 1; (b)
Dr = 2; (c) Dr = 3; and (d) Dr = 4. The workload is random reads of one 4K-byte block. Each
figure includes a measured curve and a model curve based on Equation (2.19).
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Figure 4.2: Validation of the SR-Array read/write latency model: average latency as a function of
the read/write ratio in different 6-disk SR-Array configurations: 2× 3× 1, 3× 2× 1 and 6× 1× 1.
The workload is random reads/writes. Each configuration includes a measured curve and a model
curve based on Equation (2.26).

Now we keep the number of disks in the array to be a constant of six and vary the

read/write ratio under different SR-Array configurations. The results in Figure 4.2

confirm that Equation (2.26) is a good improvement over Equation (2.19) when con-

sidering the read/write ratio. These experiments also show that the 3×2×1 SR-Array

is the best among the three configurations when the read ratio is larger than 0.8 and

striping with no rotational replication (the 6 × 1 × 1 configuration) has the best la-

tency when the read ratio is below 0.8. The curve of striping is not completely flat

because each write is roughly 0.7ms more expensive than a read.

In Equation (2.11), we show that the average rotational delay is always a half

rotation time in a 50% read workload no matter how many rotational replicas are

used. We verify this property by using a workload containing an equal number of

reads and writes. We change Dr and keep Ds constant for each curve. The flat latency
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Figure 4.3: Validation of an invariant of rotational replication: average latency as a function of
the degree of rotational replication (Dr) in SR-Array configurations with different degrees of striping
(Ds). The workload is random single block requests with equal number of reads and writes.

curves in Figure 4.3 confirm our theory. As we increase Ds, we see the corresponding

curves grow closer, indicating a diminishing return of latency reduction.

The above experimental results confirm that our latency model of Equation (2.19)

and (2.26) are accurate in predicting average single request latency in an SR-Array.

Because the model is accurate on all different SR-Array configurations with different

read/write ratios, it can accurately predict the configuration with the best latency

given a fix number of disks in the SR-Array.

Now, we compare the latency of SR-Array (Ds × Dr × 1) with other existing

disk array configurations: striped-mirroring (Ds × 1 × Dm), striping (Ds × 1 × 1)
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Figure 4.4: Comparison of latency of disk array configurations: average latency as a function of
the number of disks in different disk array configurations: striping, RAID-10, striped-mirroring and
SR-Array. The workload is random single block requests.

and RAID-10 (Ds × 1 × 2). The workload used here is read-only. Figure 4.4 shows

that the latency can be best reduced when we allow the flexibility of picking the

best configuration in both SR-Array and striped-mirroring. The larger the number

of disks in the system, the larger the improvement because of the ability of balancing

seek time and rotational delay reduction in these configuration strategies. On the

other hand, striping results in the poorest latency because of the lack of rotational

delay reduction. RAID-10 is in the middle because it allows limited rotational delay

reduction using only two replicas instead of more.
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Figure 4.5: Validation of the LOOK scheduling model for one disk: throughput as a function of the
request queue length for one disk with the LOOK scheduling policy. The figure includes a measured
curve and a model curve based on Equation (2.41). The workload is random single block read requests
with a constant number of requests outstanding.

4.1.2 Throughput Model

Our throughput model of the LOOK and RLOOK scheduling policies on SR-Array

considers several factors: (1) the number of disks, (2) the disk array configuration,

(3) the length of the outstanding request queue, and (4) the read/write ratio in the

workload. We start our validation with read-only workloads on one disk. Then we

examine SR-Arrays with more than one disk. After comparing the results with other

configurations (such as RAID-10), we consider write requests. Lastly, we also validate

our model by varying the read/write ratio.

We first validate a single disk LOOK model by running random read requests.

Figure 4.5 compares the read throughput results against those predicated by our
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mathematical model in Equation (2.41). Although not shown in the figure, our data

confirms that the average number of requests serviced during a single sweep in one

direction is roughly 1.5Q, consistent with the calculation in Section 2.4.2. Our model

is close (less than 3% difference) to the measured data when Q is less than 10. When

Q becomes larger than 10, the average seek distance is small enough such that the

difference between the minimum access time and its linear model that we have used

in earlier mathematical analysis, though still less than 8%, grows larger. This is

expected for seek distances that are less than 1,000 cylinders based on what we have

seen in Figure 2.3.

Now we run the same type of experiments on SR-Array. Figure 4.6 presents the

measured and modeled results for 6, 8 and 12 disks. Each curve has several points

representing different SR-Array configurations using the same number of disks. The

workloads keep a constant number (8) of outstanding requests in the experiments of

Figure 4.6(a) and 32 in Figure 4.6(b). This figure confirms that our mathematical

model is largely consistent with the measured results. Most of the measured data

points have errors that are less than 3% of what the model predicts. It also shows that

increasing the degree of rotational replication (Dr) can improve the read throughput

in these workloads, although one reaches diminishing returns quickly.

The result of 12 disks with a queue length of 8 shows the largest model error

(which is still less than 10% for all experiments). This is mainly due to our inaccu-

rate modeling of cases with short queue lengths (8 in this case). Despite the model

errors, our model still captures the relative performance trend of different SR-Array

configurations with the same number of disks. Because of the relative accuracy of the

model, it can be safely used to predict the configuration that has the best throughput

for a particular workload.

Figure 4.7 evaluates the relative performance of the same read-only workloads
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Figure 4.6: Validation of the RLOOK scheduling model for SR-Array: throughput as a function of
the degree of rotational replication in 6-, 8- and 12-disk SR-Array configurations. The workloads are
single block random read request with (a) 8 and (b) 32 requests outstanding. Each figure includes
measured curves and model curves based on Equation (2.44) with p = 0 for a read-only workload.
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Figure 4.7: Comparison of read throughput on different disk array configurations: throughput as
a function of the number of disk in disk arrays and scheduling policies: SR-Array with RSATF-
and RLOOK-scheduling, RAID-10 with SATF-scheduling and striping with SATF-scheduling. The
workloads are random single block read requests with (a) 8 and (b) 32 outstanding requests.
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using different disk array configuration strategies with the same number of disks.

The two SR-Array curves represent the best throughput for a given scheduling policy

(RSATF or RLOOK) among possible SR-Array configurations using the same number

of disks.

Striping has the worse performance even with the rotational position sensitive

SATF scheduling policy. RAID-10 and SR-Array have similar read throughput re-

sults. (The difference is less than 5%.) We can also see that RLOOK is not as good

as RSATF scheduling for SR-Array. The difference is small because both scheduling

policies consider rotational positions. RSATF is a little better because it also consid-

ers the minimum of the overall latency when scheduling requests. The experiments

also validate equation (2.45) and its explanation in Section 2.4.3 that the throughput

of SR-Array is close to being a linear function of the number of disks when Q is large.

We have seen that striped-mirroring configurations, such as RAID-10, with SATF

scheduling have roughly the same read throughput as that of SR-Array. We now

consider write throughput. Because we use a throughput micro-benchmark that has

no idle time, we do not consider propagating replicas in the background. In the ex-

periments, all writes to the corresponding replicas must be served before each request

is considered complete. This is an conservative evaluation of write throughput for

SR-Array.

Figure 4.8 shows the write throughput with 32 outstanding write requests. Unlike

the read-only workload, RAID-10 performs clearly the worst. On this 100% write

workload, striping, a strategy without replication, clearly wins. Because striping is

also a special case of SR-Array, the best SR-Array is striping regardless whether SATF

or LOOK scheduling is used. (SATF is 30% better than LOOK in this case.) Although

both SR-Array with 2-way rotational replication and RAID-10 have 2 replicas for each

piece of data, the former performs 20% better than the latter. This is because the
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Figure 4.8: Comparison of write throughput on different disk array configurations: throughput as
a function of the number of disks in disk arrays and scheduling policies: SR-Array with RSATF-
and RLOOK-scheduling, RAID-10 with SATF-scheduling and striping with SATF-scheduling. The
workloads are random single block write requests with 32 outstanding requests.

SR-Array configurations require a single seek followed by writing all the replicas on

nearby tracks for each write request, while the striped mirror configurations (such

as RAID-10) need to perform multiple seeks on multiple disks and therefore spend

more time on arm movement, even though SATF scheduling attempts to reduce the

latency between requests.

In order to study the effect of writes more closely, we vary the read/write ratio in

the workload for different configurations of disk arrays with 6 disks. Specifically, we

study SR-Array with 2-way rotational replication (3×2×1) and RAID-10 (3×1×2),

both of which have 2 replicas for each piece of data. We also examine striping (6×1×1)

with SATF and LOOK scheduling for comparison.

Figure 4.9 shows the results for queue lengths 8 and 32. We can draw several
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Figure 4.9: Comparison of throughput of 6-disk array configurations: throughput as a function of
the read/write ratio: RAID-10 with SATF; 3× 2× 1 SR-Array with RSATF, RLOOK and RLOOK
model based on Equation (2.44); and striping with SATF and LOOK. The workloads are random
single block requests with (a) 8 and (b) 32 outstanding requests.
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conclusions. First, RLOOK and RSATF for 3 × 2 × 1 SR-Array have similar per-

formance for all read/write ratios and RSATF is always slightly better. Second, our

RLOOK model, Equation (2.44), approximates measured RLOOK results well for

all read/write ratios and both queue lengths. Third, the 3 × 2 × 1 SR-Array curve

intersects with the curve corresponding to LOOK-based striping at an x-axis value

between 50% and 60%, which again confirms a conclusion that can be drawn based

on a model given earlier: when the number of reads equals that of writes, the benefit

derived from rotational replication by reads is roughly equal to the cost paid on fore-

ground replica propagation for writes. The point of intersection is higher than 50%

because 6-way striping has better seek time reduction than the 3 × 2 × 1 SR-Array

(with 3-way striping). Furthermore, the intersection in Figure 4.9(b) is closer to 50%

than that of Figure 4.9(a). This is because the seek time reduction becomes less

significant with a larger queue of outstanding requests in Figure 4.9(b). Fourth, a

3 × 1 × 2 RAID-10 is consistently worse than an 3 × 2 × 1 SR-Array and the gap

widens to more than 20% for workloads with more writes. We also note that the

striping performance drops slightly with more writes. This is because on average, a

write request experiences approximately 700 microseconds more than a comparable

read request.

4.2 Study on Trace Workloads

In the last section, we have used micro-benchmarks to evaluate SR-Array perfor-

mance and its mathematical model. Now we use disk traces gathered from real

systems to study different configurations of disk arrays. The I/O access patterns in

these traces are more complicated than those we can model accurately in the similar

microbenchmarks. Nevertheless, we hope to see that the relative performance rela-
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Cello Cello TPC-C
base disk 6

Data size 8.4 GB 1.3 GB 9.0 GB
I/Os 1,717,483 1,545,341 3,598,422

Duration 1 week 1 week 2 hours
Avg. I/O rate 2.84/s 2.56/s 500/s

Reads 55.2% 35.8% 54.8%
Async. writes 18.9% 16.1% 0

Seek
locality (L) 4.14 16.67 1.04
Read after

write (1 hour) 4.15% 3.8% 14.8%

Table 4.2: Trace characteristics. The “seek locality” row is calculated as the ratio between the
average of random seek distances on that disk and the average seek distance observed in the trace.
Section 2.1.4 gives more details on this ratio. The “read after write (1 hour)” row lists the percentage
of I/O operations that are reads that occur less than one hour after writing the same data.

tionships among different configuration are still similar to what we have seen before.

We use two traces. Cello is a two month trace taken on a server running at HP

Labs [36] in 1992. The server has eight disks and is used for running simulations,

compilations, editing, and reading mail and news. We use one week’s worth of trace

data (for the period of 5/30/92 through 6/6/92). TPC-C is a disk trace (collected

on 5/03/94) of an unaudited run of the Client/Server TPC-C benchmark running

at approximately 1150 tpmC on a 100 Warehouse database. These traces have been

used in measuring disk performances in several previous studies [52, 36].

4.2.1 Logical Data Sets

The 9.1 GB Seagate disks that we use in our experimental platform are much larger

and faster than any of the original disks used in the traces; therefore, we do not map

the original smaller disks one-to-one onto our much larger disks. Instead, we group

the original data into three logical data sets and study how to place each data set in

a disk array made of new disks.
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The first data set consists of all the data from Cello disks with the exception of

disk 6, which houses “/usr/spool/news”. We merge these separate Cello disk traces

based on time stamps to form a single large trace. The data from different disks are

concatenated to form a single data set. We refer to this workload as “Cello base” in

our study. The second data set consists solely of Cello disk 6. This disk houses the

news directory; it exhibits access patterns that are different from the rest of the Cello

disks and accounts for 47% of the total accesses. We refer to this workload as “Cello

disk 6”. The third data set consists of data from 31 original disks of the TPC-C trace.

We merge these traces to form a single large trace; and we concatenate these disks to

form a single data set as well. We refer to this workload as “TPC-C”.

Table 4.2 lists the key characteristics of the trace data sets. We see that the

“Cello base” and “Cello disk 6” workloads average fewer than three requests per

second. Both workloads are light and contain ample idle time, although at times

there are bursty periods. In contrast, “TPC-C” is a heavy workload averaging 500

requests per second.

We also record the amount of asynchronous writes in the traces. Most of the

these asynchronous writes are generated by the file system sync daemon at 30-second

intervals. Although response time of asynchronous operations is not important to

applications, these I/Os affect the response time of other requests, especially under

heavy load when there is no idle time.

The last row reports the fraction of I/Os that are reads to recently written data.

Although this ratio is high for TPC-C, it does not rise higher for intervals longer

than an hour. Together with the amount of available idle time, this ratio impacts

the effectiveness of the delayed write propagation strategy and influences the array

configurations.

We play the traces to our simulator by submitting read/write requests according
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to their timestamps in the trace. We measure the response time of each request, which

is the time elapsed between the submission and completion of the request. We use

the average response time for all the requests in the trace to measure the performance

of the disk system.

To test our system under different load conditions, we also uniformly scale the

rate at which the trace is played based on the timestamp information. For example,

when the scaling rate is two, the traced inter-arrival times are halved.

4.2.2 Playing Traces at Original Speed

Playing Cello Traces

As a base, we place the Cello base data set on one Seagate disk and the Cello disk 6

data set on another. Although we have fewer disks in this case than in the original

trace, the original speed of the Cello traces is still sufficiently low that we are effec-

tively measuring individual I/O latency most of the time. There is also sufficient idle

time to mask the delayed write propagations. Therefore, we are able to apply the

read-only latency model (Equation (2.19) and (2.20)) in Section 2.3.2 to configure the

SR-Array. When applying the formulas, we also account for the different degree of

seek locality (L) in Table 4.2 by replacing S with S/L. We perform replica propaga-

tion in the background for all configurations. Although all write operations from the

trace are played, we exclude those of asynchronous writes when reporting response

time; most of the asynchronous writes are generated by the file system sync daemon

at 30-second intervals and their response times are not as important.

Figure 4.10 shows the performance improvement on both Cello workloads as we

scale the number of disks under various configurations. The curve labeled as “SR-

Array” shows the performance of the best SR-Array configuration for a given number
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Figure 4.10: Comparison of average I/O response time of the Cello file system workloads on different
disk array configurations. The SR-Array uses the RSATF scheduler and the remaining configurations
use the SATF scheduler. The two configurations labeled as “RAID-10” and “Dm-way mirror” are
reliable configurations and are denoted by thicker curves. This convention is used throughout the
rest of the figures in this chapter.

of disks. The SR-Array configuration performs well because it is able to effectively

distribute disks to both the seek and the rotational dimensions in a balanced manner.

In contrast, the performance of simple striping is poor due to the lack of rotational

delay reduction. This effect is more apparent for larger numbers of disks due to the

diminishing returns from seek distance reduction. The performance of RAID-10 is

intermediate because the two replicas allow for a reduction in the rotational delay to

a limited extent. D-way mirroring is the closest competitor to an SR-Array because

of its high degree of flexibility in choosing which replica to read. Note that our

SATF-based implementations of RAID-10 and D-way mirroring are highly optimized

versions, which considers rotational positioning across all disks in the array when
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choosing a disk to serve a request with. This optimization is not achievable solely

based on internal SATF-like scheduling within one disk.

The figure also shows that the latency model of Section 2.3.2 is a good approxima-

tion of the SR-Array performance for light workloads. The anomalies on the model

curves are due to the two following practical constraints: (1) Ds and Dr must be in-

teger factors of the total number of disks D, and (2) our implementation restricts the

largest degree of rotational replication to six. This restriction is due to the difficulty

of propagating more copies within a single rotation, as rotational replicas are placed

on different tracks and a track switch costs about 900 µs. Due to these constraints,

for example, the largest practical value of Dr for D = 9 is only three, much smaller

than the non-integer solution of Equation (2.20) (5.8 for Cello base and 11.6 for Cello

disk 6).

While the Cello base data set consumes an entire Seagate disk, the Cello disk

6 data set only occupies about 15% of the space on a single Seagate disk; so the

maximum seek delay of Cello disk 6 is small to begin with for all configurations.

Consequently, a larger Dr for an SR-Array is desirable as we increase the number

of disks. With these large Dr values, however, the practical constraints enumerated

above start to take effect. Coupled with the fact that seek time is no longer a linear

function of seek distance at such short seek distances, this explains the slightly more

pronounced anomalies of the SR-Array performance with a large number of disks on

the Cello disk 6 workload.

Figure 4.11 compares the performance of other possible SR-Array configurations

with that of the configuration chosen by the model. For example, when the number

of disks is six, the model recommends a configuration of Ds × Dr = 2 × 3 for Cello

base. The three alternative configurations are 1 × 6, 3 × 2, and 6 × 1. The figure

shows that the model is largely successful at finding good SR-Array configurations.
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Figure 4.11: Configurations of the SR-Array for the two workloads of Figure 4.10. The curves show
the performance of the SR-Array configuration recommended by the model of Equation (2.20). Each
point symbol in the graph shows the performance of an alternative SR-Array configuration with a
different number of rotational replicas (Dr).

For example, on Cello base, with six disks, the SR-Array is 1.23 times as fast as a

highly optimized RAID-10, 1.42 times as fast as a striped system, and 1.94 times as

fast as the single disk base case.

Playing TPC-C Trace

Although a single new Seagate disk can accommodate the entire TPC-C data set in

terms of capacity, it cannot support the data rate of the original trace. Indeed, the

original traced workload is striped to more than 30 disks so that it can sustain such a

high request rate. Only a fraction of the space is used on each of the original traced

disk. Our experiment first combines the traces from all disks. Because the disks
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Figure 4.12: Average I/O response time of the TPC-C trace. (a) Comparison of striping, RAID-10,
and SR-Array. (b) Comparison of alternative configurations of an SR-Array.

we use are much faster than those original ones, we start with 12 disks for each of

the array configurations. Figure 4.12 shows the performance as we scale the number

of disks beyond the starting point. The data rate experienced by each disk under

this workload is much higher than that under the Cello system. The workload also

contains a large fraction of writes so it also stresses delayed write propagation as idle

periods are shorter.

Compared to Figure 4.10, two curves are missing from Figure 4.12. One is D−way

mirroring—it is impossible to support the original data rate while attempting to

propagate D replicas for each write. Another missing curve is the latency model—

the high data rate renders the latency model inaccurate. The spirit of Figure 4.12,

however, is very much similar to that of Figures 4.10 and 4.11: a properly configured
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SR-Array is faster than a RAID-10, which is faster than a striped system.

What is more interesting is the fact that striping, the only configuration that does

not involve replication, is not the best configuration even under the heavy write traffic

exhibited by this workload. There are at least two reasons. First, even under this

higher I/O rate, there are still idle periods to mask replica propagations. Second, even

without idle periods, there exists a tradeoff between the benefits received from reading

the closest replicas and the cost incurred when propagating replicas, as explained in

Section 2.2.3; a configuration that can successfully exploit this tradeoff excels. For

example, with 36 disks, a 9 × 4 × 1 SR-Array is 1.23 times as fast as a 18 × 1 × 2

RAID-10, and 1.39 times as fast as a 36× 1× 1 striped system.

4.2.3 Playing Traces at Accelerated Speed

Although the original I/O rate of TPC-C is higher than that of the Cello traces, it

does not stress the 12-disk arrays discussed in the last section. We now raise the I/O

rates to stress the various configurations. For example, when the “scale rate” is two,

we halve the inter-arrival time of requests.

Before we compare the different array configurations, we first consider the im-

pact of different scheduling policies. Figure 4.13 evaluates four schedulers: LOOK

and SATF for striping, and RLOOK and RSATF for an SR-Array. Given a partic-

ular request arrival rate, the gap between RLOOK and RSATF is smaller than that

between LOOK and SATF. This is because both RLOOK and RSATF take rota-

tional positioning into consideration. Although it is a well known result that SATF

out-performs LOOK [26, 43], we see that SATF alone is not sufficient for addressing

rotational delays if the array is mis-configured to begin with. For example, under the

Cello base workload, a 2×3×1 SR-Array significantly outperforms a 6×1×1 striped
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Figure 4.13: Comparison of scheduling policies with accelerated traces for different configurations.
We use (a) 6 disks for Cello base, and (b) 36 disks for TPC-C.

system even if the former only uses an RLOOK scheduler while the latter uses an

SATF scheduler. In the rest of this sub-sections, unless specified otherwise, we use

the RSATF scheduler for SR-Arrays and the SATF scheduler for other configurations.

Figure 4.14 shows the performance of the various configurations while we fix the

number of disks for each workload and vary the rate at which the traces are played.

Under the Cello base workload (shown in Figure 4.14(a)), the 6-way mirroring and

the 1×6 SR-Array deliver the lowest sustainable rates. These configurations make the

largest number of replicas, which makes it difficult to mask the replica propagation

under high request rates. The 6-way mirroring is better than the 1 × 6 SR-Array,

because it can afford the flexibility of choosing any disk to service a request, so it can
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Figure 4.14: Comparison of I/O response time on different configurations with accelerated traces.
We use (a) 6 disks for Cello base, and (b) 36 disks for TPC-C.

perform better load balancing. The 2 × 3 SR-Array is best for all the arrival rates

that we have examined; this is because the benefits derived from the extra rotational

replicas outweigh the cost. If we demand an average response time no greater than

15 ms, the 2× 3× 1 SR-Array can support a request rate that is 1.3 times that of a

3× 1× 2 RAID-10 and 2.6 times that of a 6× 1× 1 striped system.

The situation is different for the TPC-C workload (shown in Figure 4.14(b)).

Under the original trace playing rate, the 9× 4× 1 SR-Array is best. As we raise the

request arrival rate, we must successively reduce the degree of replication; so the role

of the best configuration passes to the 12× 3× 1, 18× 1× 2, 18× 2× 1, and finally,

36×1×1 configurations, in that order. If we again demand an average response time
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no greater than 15 ms, the 36× 1× 1 configuration can support a request rate that is

1.3 times that of a 18×2×1 configuration and 2.1 times that of a 18×1×2 RAID-10

configuration.

4.3 More Disks v.s. More Memory Caching

We have seen that it is possible to achieve significant performance improvement by

scaling the number of disks. We now compare this approach against one alternative:

simply adding volatile memory as cache. We assume that the memory cache performs

LRU replacement. Synchronous writes are forced to disks in both alternatives. In

the following discussion, we assume that the price per MB ratio between memory

and disk is M . At the time that we started this research, 256 MB of memory costs

$300, an 18 GB SCSI disk costs $400, and these prices give an M value of 57. At

present, 1 GB of memory costs $300, and a 72GB SCSI disk costs $400. The similar

improvements in the capacity to cost ratios of memory and disk result in an M value

that is roughly stable.

Note that we are not necessarily advocating the use of a fast disk array over a

large memory cache for all workloads. We merely show that for some workloads, a

fast disk array can be a more cost-effective solution.

Figure 4.15(a) examines the impact of memory caching on the Cello base workload.

At the trace scale rate of one, we need to cache an additional 1.5%, or 126 MB, of the

file system in memory to achieve the same performance improvement of doubling the

number of disks; and we need to cache 4%, or 336 MB, of the file system to reach the

performance of a four-disk SR-Array. M needs to be less than 67 and 75 respectively

in order for memory caching to be more cost effective, which it was at the time this

research started.
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Figure 4.15: Comparison of the effects of memory caching and scaling the number of disks. The
two SR-Array curves show the performance improvement achieved by scaling the number of disks
(bottom x-axis) and they correspond to playing the traces at the original speed and three times the
original speed. The two Memory curves show the performance improvement achieved by scaling the
amount of memory caching (top x-axis).

At the trace scale rate of three, using similar reasoning, we can conclude that M

needs to be less than 20 in order for memory caching to be more cost effective than

doubling the number of disks. Beyond this budget, at this I/O rate, the diminishing

locality and the need to flush writes to disks make the addition of memory less

attractive. The addition of disks, however, speeds up all I/O operations, albeit at a

diminishing rate.

Figure 4.15(b) examines the impact of memory caching on the TPC-C workload,

which has much less locality. We start with a 12-disk SR-Array. At a scale rate of

one, M needs to be less than 80 in order for memory caching to be a cost effective
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alternative to increasing the number of disks to 18 or 24. Adding memory would be

a more attractive alternative for this workload at that time.

At a scale rate of three, M needs to be less than 24 for memory caching to be more

cost effective than increasing the number of disks to 18. Beyond this budget, adding

memory provides little additional performance gain, while increasing the number of

disks from 18 to 36 can provide an additional 1.76 times speedup.

There are reasons that make the use of a fast disk array a better alternative

than increasing memory caching. One is when the working set is much larger than

that can fit in the amount of memory that one can afford. In this case, a fast disk

array can uniformly speed up all requests while a memory cache can only speed up

a fraction of the requests. The second is when there are many writes that must be

made persistent. A large volatile memory cache, in itself, does not reduce the disk

write traffic by much.

4.4 Summary and Related Studies

We can draw several conclusions from this empirical study.

• Our latency models and throughput models of SR-Array developed in Chapter 2

are consistent with the results measured on our experimental platform.

• An SR-Array can provide better performance compared to existing disk array

techniques for certain workloads.

• The SR-Array latency model can be applied to light workloads like “Cello”

to fairly accurately predict the best SR-Array configuration or configurations

whose performance is close to the best.
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• The RLOOK and RSATF scheduling policies have similar performance, at least

for the workloads that we have studied. This makes RLOOK a good alternative

to RSATF because it is simpler to implement.

• For certain workloads, adding more disks to form a fast disk array can be more

cost effective than adding more memory as a cache.

• The best disk array configurations are different for different workloads; no single

configuration is universally the best.

The tradeoff between storage system capacity and performance has long been rec-

ognized. Hou and Patt [22] have performed a simulation study of the tradeoff between

mirroring and RAID-5. The HP Ivy project [28] is a simulation study of how a high

degree of replication can improve read performance. Our study differs from Ivy in

several ways. First, Ivy only explores reducing seek distance and leaves rotational de-

lay unresolved. Second, Ivy only examines mirroring. The third difference is a feature

of Ivy that we intend to incorporate into our system in the future: Ivy dynamically

chooses the candidate and the degree of replication by observing access patterns.

Another way of trading capacity for better performance is to exploit the temporal

locality in the workload by employing a hierarchical storage system: the storage

level that is closer to the host uses more physical storage space to store (or cache)

a smaller amount of logical data to achieve better performance while the levels that

are farther away from the host use less physical storage for a comparable amount of

logical data so these levels are slower. One such system is the HP AutoRAID system,

which incorporates both mirroring and RAID-5 into a two-level hierarchy [50]. The

mirrored upper level provides faster small writes at the expense of consuming more

storage, while the RAID-5 lower level is more frugal in its use of disk space. The

primary focus of this system is solving the small write problem of RAID-5. We have
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not implemented a hierarchical system in our experimental framework, although the

flexible tradeoff between capacity and performance provided by SR-Array makes it a

natural candidate as higher levels in a hierarchical storage system. We have taken the

tradeoff between capacity and performance a step further by (1) improving latency

and throughput of all I/O operations, (2) being able to benefit from more than twice

the excess capacity while the upper level of AutoRAID is limited to a RAID-1, which

is limited to a single strategy of doubling the storage capacity, and (3) providing a

means of systematically configuring the extra disks to achieve the best result.

One of our goals of studying the impact of altering array configurations is to un-

derstand how to configure a storage system given certain cost/performance specifica-

tions. The “attribute-managed storage” project [13] at HP shares this goal, although

its focus is at the disk array level as opposed to individual drive level.
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Chapter 5

Conclusion

This dissertation proposes a novel way of designing disk arrays that can flexibly and

systematically reduce seek time and rotational delay. We have demonstrated, via

modeling and experiments with a real implementation, that the SR-array approach

can improve disk I/O performance significantly over existing disk array configuration

techniques.

We analyze the existing techniques in disk array design, such as striping, mirroring

and rotational replication. In particular, we articulate the relationship between the

benefit of better read performance as a result of exploiting rotational replicas and the

cost of degrading write performance as a result of replica propagation. By combining

these existing techniques, we develop a new way of configuring disk arrays called

SR-Array that can reduce both seek time and rotational delay in a balanced way.

We present mathematical models for both latency and throughput of SR-Array

by considering both workload and disk drive characteristics. Our study focuses on

the workloads that can occur frequently in some office file systems and database

transaction systems such as those mainly involving large working sets that do not fit in

main memory, small I/O sizes of a few sectors, and poor locality. Moreover, we derive
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close-form results on how to configure an SR-Array to obtain the best performance.

This gives us insights into how capacity can be best traded for performance. By

using D times more disks in an SR-Array, the optimal configuration can improve the

non-overhead part of latency by a factor of up to
√

D. The optimal configuration can

improve the throughput by a factor of D under our new RLOOK scheduling policy.

Our theoretical results are confirmed by empirical studies to be accurate and very

helpful in deriving the best SR-Array configurations for a given number of disk drives.

We report that SR-Array compares favorably in terms of performance with other disk

array configuration strategies for these workloads with no single configuration being

the best for all workloads. With the ability of improving performance by adding extra

disk drives, SR-Array can be a more cost effective way of improving performance than

adding memory caching for certain workloads when the relative cost ratio between

disk drives and memory reach a low enough threshold.

It is difficult to obtain the above empirical results without our flexible experimental

framework designed for studying a variety of disk array configuration strategies. Our

framework can operate in either a disk driver mode, which drives real disks in a

real implementation, or in a simulation mode, which allows us to perform accurate

and fast performance studies for various workloads and array configurations. The

framework not only helps us confirm that SR-Array is theoretically effective but also

makes us believe that it is practically feasible.

An important part of the framework is an accurate disk head position tracking

mechanism, which is one of the first reported efforts that we are aware of to accomplish

rotational position tracking on commercial off-the-shelf SCSI disk drives without any

special hardware support. This mechanism is crucial in supporting rotational repli-

cation on the same or neighboring tracks, which is required in implementing the

SR-Array configuration family. In addition to supporting the disk array studies in
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this thesis, the head tracking mechanism and the framework can help implementing

the ideas in other disk- or disk array-related studies[48, 29, 55].
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Chapter 6

Future Directions

6.1 A “Continuous Replication” Disk Array

In this dissertation, we have examined several ways of systematically trading disk

capacity for improved performance. These strategies, however, treat all data blocks

in a uniform way, such as employing a single replication factor for all blocks. This

approach simplifies the design and implementation of our prototype, but it may not

be the best way of utilizing the available physical capacity. A better approach may

be to treat different data blocks differently based on their access patterns so that,

for example, more frequently read blocks would enjoy a higher degree of replication

and/or are placed on “faster” disks. In a way, in addition to being an extension of

the SR-Array, this approach is also an extension of the AutoRAID approach, which

supports only two replication factors (1× in RAID-5, or 2× in RAID-1) and allows

data to be dynamically moved between these two levels. By allowing greater flexibility

in the degree of replication and in ways different blocks are replicated, we may be

able to support a smooth and variable continuum of cost/performance and reliability

specifications in a single disk array, at a data granularity that is as fine as a single
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block, and at a time granularity that is as short as a few I/O operations.

6.2 Altering Disk Geometry

As we have discussed earlier, a primary motivation behind this thesis is the phe-

nomenon that as disk capacity rapidly increases, disks are becoming increasingly un-

balanced in the relationship between capacity and latency. The techniques of using

extra disks to reduce latency, as is done in the SR-Array, are in effect emulating faster

disks using existing slow disks. A more direct and potentially more cost-effective ap-

proach to balancing capacity with lower latency is to build “better” drives to start

with so that we do not have to resort to either replication or discarding space.

By using only a portion of the disk, striping is in effect emulating a smaller disk

using a large disk. A more direct approach is to simply reduce the disk diameter.

Reducing disk diameter directly improves both maximum seek distance and rotational

speed. (Without exceeding allowable data rates, which appear to be the bottleneck

of current disk drive technology, a reduction of diameter by a certain factor can

be matched by an increase of the same factor in rotational speed.) There are also

secondary benefits such as the fact that a smaller arm can be made more rigid and is

easier to control.

Unlike the use of extra disks in the SR-Array, however, reducing diameter alone

does not allow us to flexibly adjust the amount of resources devoted to the improve-

ment of seek and rotational dimensions. It is, however, possible to adjust the amount

of improvement that each dimension receives by adjusting the inner and outer radius

of the platters while maintaining constant area. A larger inner radius results in fewer

tracks and better seek characteristics at the expense of slower rotational speed, while

a smaller inner radius has the opposite effect.
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The techniques that we have examined so far all involve increasing the number of

spindles for the same amount of usable capacity. We now speculate on the most direct

and potentially most cost-effective way of building a more “balanced” drive: increas-

ing the number of heads per surface. Each head is mounted on its own independent

arm. The arms are spaced in such a way that they cannot collide. Although such

a drive can amortize the cost of the components such as the spindle and the power

supply over a larger number of heads, due to the data rate constraint, each arm in

such a drive is likely to need its own data channel. To provide reliability and to allow

more flexible cost/performance-driven configurations, we can complement these more

expensive drives with cheaper conventional drives in a disk array.

This approach also affords us the largest degree of freedom in terms of choosing

which one of the seek and rotational dimensions we would like to devote more resources

to. At one extreme, each head can be dedicated to I/Os destined to a subset of the

cylinders. This is analogous to striping in that it improves seek performance without

affecting rotational delay. At the other extreme, each head may seek to any cylinder

and we always choose the head that is rotationally closest to the target sector. This

improves rotational delay without affecting seek delay. It is up to the system software

to choose a strategy that strikes a balance between these two extremes by judiciously

scheduling the independent heads.

The technique of using extra disks, as is done in the SR-Array, is the least cost-

effective because replication and discarding space are both wasteful. Maintaining

replicas also introduces complexity. Reducing platter diameter is less wasteful because

no bits are wasted; but this technique results in an increase of both the number of

heads and spindles for the same amount of capacity, so it is more costly than the third

technique of just adding heads. We note that there does not exist a single “perfect”

drive that has the “right” diameter and the “right” number of heads per surface.
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Instead, there may exist one “right” drive for every cost/performance specification.

6.3 Re-distributing Responsibilities among Stor-

age System Components

Traditionally, storage system designers have strived to virtualize the storage devices so

that they provide a uniform abstract interface of a single conventional disk. Consistent

with this tradition, an important goal of the disk array prototype developed as part of

this thesis is its transparency: our prototype disk array supports existing file systems

and applications (“from below”) and existing off-the-shelf disk drives (“from above”).

Although this division of responsibility makes the system simple and modular, it

may not necessarily be the best for performance. As we have discussed above, one pos-

sible extension of the SR-Array approach is to exploit application-specific information

or access patterns. Instead of attempting to deduce this information transparently

at the storage level, however, one may wish to export a new storage system interface

that allows sophisticated applications (such as databases and web servers) to make

the most of an underlying storage system that is far more sophisticated than a single

drive. For example, a database may choose to place its logs on a storage subsystem

that is configured quite differently from one storing some of its relational tables. Of

course, one must exercise care to provide the right level of abstraction so we limit the

complexity exposed.

In addition to exploring the interface between applications and storage systems,

in a similar vein, in light of the sophisticated storage systems that we have examined,

one may also wish to re-examine the interface between the storage systems and the

underlying disk drives. One example is the disk head rotational position tracking
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mechanism that we have built entirely in software. Although we have achieved a

remarkable degree of accuracy, it is a source of considerable complexity. An even

more accurate and simpler system might have been achieved had we had firmware

support. Again, we must exercise care to ensure that the firmware support is generic

and flexible enough to support a wide range of storage functionalities (such as the

various array scheduling algorithms) without exposing too much low-level complexity.
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