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Abstract

Network services have been increasingly integrated into our daily lives, but their acces-

sibility and stability are also frequently impacted by flash crowds or Denial of Service

(DoS) attacks. To be immune from flash crowds or DoS attacks, robust network services

must possess two important qualities: completeness and generality. Completeness im-

plies that all resources must be protected, including CPU time, memory and disk capacity,

and link bandwidth. Generality means not handling attacks or faults as extraordinary

events, but instead treating them within the same framework used during normal opera-

tions. Fundamentally, this is a matter of efficient management of networked resources.

Toward this end, we use Content Distribution Networks (CDN) as an example, and

investigate how request redirection impacts CDN robustness. CDN systems deploy re-

dundant resources (servers) geographically distributed across the Internet and distribute

client requests to an appropriate server based on a variety of factors—e.g., server load,

network proximity, cache locality—in an effort to reduce response time and increase the

system capacity under load. We explore the design space of the redirection strategies em-

ployed by request redirectors, and define a class of new algorithms that carefully balance

load, locality, and proximity. We use large-scale detailed simulations to evaluate various

strategies. These simulations demonstrate the effectiveness of our new algorithms, which

yield a 60-91% improvement in system capacity when compared with the best published

CDN technology, yet user-perceived response latency remains low and the system scales

well with the number of servers. We also build a prototype CDN, named CoDeeN, on the

PlanetLab testbed. CoDeeN helps us to gain experience on managing and monitoring an

operational CDN, and will be used in future research.

Through this thesis, we demonstrate that the resilience of large wide area network

services can be improved through efficient management of networked resources. By
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adapting unified resource management schemes, we present a practical way to build

network systems that not only handle a larger volume of regular traffic more easily, but

also absorb flash crowds and deter DoS attacks as a natural part of their operations.
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Chapter 1

Introduction

As the Internet becomes more integrated into our everyday lives, the availability and sta-

bility of information services built on top of it becomes increasingly important. However,

overloaded servers and congested networks present challenges to maintaining high acces-

sibility. To alleviate these bottlenecks, it is becoming increasingly common to construct

network services using redundant resources. If well managed, redundant resources are

expected to provide protection to network services by eliminating single points of failure

and improving the system’s resilience under overload. Nevertheless, even armed with

redundant resources, current network services are still frequently impacted by different

kinds of abnormal traffic, and as a result, failures or attacks still cause disruptions in the

service. This discrepancy between our expectation and reality motivates us to study how

to efficiently harness massive resources to make network services more robust. To be

more specific, we need to understand what are the challenges facing the robustness of

network services, what are the general principles we need to follow to improve service

resilience, and most importantly, how to apply these principles to tackle the challenges in

practice.

1
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In this thesis, we consider two sources of service failures or faults, flash crowds and

Denial of Service (DoS) attacks. We believe that in order for network services to be im-

mune from these service robustness threats, they have to possess two important qualities,

completeness and generality. Completeness means we have to protect all the resources

on the network. Generality means not handling attacks or faults as extraordinary events,

but instead treating them within the same framework used during normal operations.

Following these two general guidelines, we take Content Distribution Networks (CDN) as

an example, and demonstrate a practical way of building robust network services through

unified resource management and scheduling schemes.

1.1 Challenges to Service Robustness

Once a network service becomes available on top of the Internet, it is potentially exposed

to an unlimited audience. However, it also means that the service has to handle all kinds

of traffic. Some of the traffic could well exceed the servers’ or networks’ capacities, and

some could simply be designed to disrupt the service. The robustness of network services

is therefore constantly tested by different sources. These sources could be friendly, in the

form of a flash crowd, or malicious, such as denial of service attacks.

In order to make network services more robust against these challenges, we need to

first understand the nature of these challenges. To provide a detailed survey of all the

robustness challenge sources is beyond the scope of this thesis. Here, we will focus on

the following two threats—flash crowds and DoS attacks.
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1.1.1 Flash Crowds

A flash crowd describes a situation where a large number of individuals try to access a

particular service simultaneously. Interestingly, the term flash crowd can be dated back to

a 1971 science fiction short story [54], where it referred to the situation when thousands

of people went back in time to see historical events anew through teleportation. The result

of a flash crowd on the Internet is typically a “hot spot” or some sort of congestion. In

reality, many events can trigger flash crowds, sometimes well anticipated, such as the Star

War trailer release and sports events like the Super Bowl, and sometimes hard to predict,

such as breaking news stories.

Since flash crowds normally appear as a sudden drastic surge in request volumes,

many services cannot handle them gracefully, even when the services have been over-

provisioned. The network itself can become severely congested with many packet losses

and retransmissions, and servers can be swamped by very high request streams. Users

trying to get services during a flash crowd usually encounter very frustrating experiences:

responses may take arbitrarily long times, or there is simply no response. The conse-

quences of flash crowds for revenue critical on-line services can be even more severe

than just unhappy users, and service degradation can cost millions of dollars. In short,

flash crowds present a serious challenge to keeping network services stable and robust.

In order to handle flash crowds, fundamentally, we have to employ and manage enough

redundant resources to absorb the increased demand.

1.1.2 Denial of Service Attacks

If flash crowds are still considered “friendly” in the sense that they are the price paid for

a successful service, the second kind of challenge we consider—Denial of Service (DoS)
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attacks—is “malicious”. As the name suggests, DoS attacks prevent legitimate accesses

to certain services. The way DoS works is usually through exploiting bugs or software

weaknesses to slow down or crash routers, servers and other network devices, or simply

by overwhelming servers or routers with high workloads in an effort to exhaust limited

resources such as network bandwidth and processing cycles. Although DoS attacks take

many forms, the end results are similar when they are successful: well-behaved users are

blocked from accessing the targeted system [33]. The consequences of these attacks are

severe and disruptive to our daily lives. In a recent incident, the so-called SQL Slammer

worm attacked many machines on the Internet via a vulnerability of Microsoft SQL

Server 2000 [18]. This attack grounded flights, blocked ATMs, congested the Internet

and interrupted services of many media, governments and companies. The damage was

estimated to be as much as one billion dollars.

DoS attacks are hard to handle. They can target many different resources of network

services, such as network bandwidth, CPU cycles, system memory, routers and DNS

servers, and so on. They also evolve rapidly from simple “ping flood” or “SYN flood” to

more subtle attacks that look no different from legitimate traffic [60]. As a result, detect-

ing and stopping these attacks is becoming increasingly difficult. Moreover, damage to

services can already be caused by attacks before we detect and stop them. Therefore, in

addition to the detection and stopping mechanisms, our ability to mitigate attack damage

is also very critical for DoS protection.

Recently, DoS attacks have also been launched from distributed locations, resulting

in a more sophisticated variant, called Distributed Denial of Service (DDoS) attacks.

Figure 1.1 shows the basic concept of DDoS, in which, an attacker first recruits a set

of attacking agents, called zombies or slave attackers, by compromising innocent hosts

across the Internet via some vulnerabilities of these nodes and installing attacking tools on
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Figure 1.1: Distributed Denial of Service (DDoS)

them. To further hide the attacker’s real entity, usually, one or more special zombies will

act as handlers to control other slave attackers. Later, the real attacker will instruct the

handler to launch a distributed DoS attack from those zombies that the handler controls.

DDoS attacks are even more difficult to handle. On one hand, detecting and stopping

DDoS attacks becomes more involved. Since zombies are simply normal hosts and there

are many of them, it is hard to distinguish them from other regular users and filter their

traffic. The existence of handlers and slave attackers also complicates the process of

identifying the real culprit. Moreover, by employing more slaves, the attacker is able

to use more resources for attacking and cause more damage. Therefore, to mitigate the

damage of DDoS attacks also requires more effort.
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DoS and DDoS attacks have become a big concern for the stability of the Inter-

net [52]. Many countermeasures have been explored and applied to detect or prevent

these attacks. They include applying software patches or upgrades, improving protocol

and server designs, using intrusion detection systems to detect possible attacks, monitor-

ing performance abnormalities and filtering spoofed packets. However, this thesis will

not be devoted to these countermeasures. We will instead focus on how to effectively

mitigate the potential damage of attacks through better utilizing the redundant resources

of network services. Redundant resources are often employed to replicate services for

performance reasons. However, the same set of resources can also be used to keep attacks

from disrupting the services. This is particularly useful in the DDoS case, where the

attackers can manipulate a large number of slave agents.

To summarize, flash crowds and DoS/DDoS attacks present serious challenges to the

robustness of network services. Meanwhile, redundant resources have been increasingly

employed in constructing current network services. These factors motivate us to search

for ways to better harness these redundant resources to provide protection to network

services.

1.2 Completeness and Generality

Dealing with different robustness challenges in large-scale network services has been an

interesting topic in the fault tolerance and security research communities. The approach

pursued by this thesis is to build robust network services through efficient resource man-

agement. This is based on the observation that different types of challenges, such as

flash crowds and DoS attacks, consume a large amount of resources, eventually turning

the service robustness protection problem into a “resource race” problem. As discussed
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earlier, to put network services in a better position in this resource race—in concert with

specially tailored detection and protection schemes—redundant (possibly distributed)

resources must also be widely used to provide protection against faults or attacks. How

to efficiently utilize these existing abundant resources is of particular importance. To this

end, we believe that in order for a network service to be robust against failures or attacks,

it has to possess two important qualities, which we call completeness and generality.

� Completeness means we have to protect all the resources in the network. Com-

pleteness has two dimensions. One refers to different resources on a local node,

such as processing cycles, memory and disk space, link bandwidth, and routing

tables. The other refers to different distributed components that must work properly

to provide the desired services, which may include routers, name servers and end

servers.

� Generality means we should not treat faults or attacks as extraordinary events,

but instead, we should handle them within the same framework used in normal

operations. Special-case handling approaches are not regarded as general since

they usually represent less-tested code paths.

It is easy to understand the first necessary quality of robust network services, since

attacking or exhausting any resource can cause service degradation or interruption. As

for the generality property, we actually treat protection against flash crowds, DoS attacks

and other faults as a special case of the general problem of resource scheduling, and want

to achieve a fair and load-balanced resource allocation. A fair and load-balanced system

should provide fault-tolerance and protection against attacks for free, since attacks are

extreme forms of unfair resource allocations and load imbalance. However, the converse
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is usually not true. To deal with faults and attacks, simply following a detect-and-

correct model has several drawbacks. First, we have to devise accurate attack or fault

detection mechanisms, distinguishing between good and bad traffic with low rates of

false positives/negatives. To date, this is still an open problem. Moreover, recent research

indicates that some DoS attacks take the form of legitimate traffic, making them even

more difficult to distinguish from normal traffic with high request rates [60]. Second,

if specially designed extra code paths are added into existing systems without being

exercised during normal operations, we may not have confidence in their effectiveness.

Third, it is usually the case that when attacks or faults are detected, damage has already

been done to the services. The lag between the occurrence of attacks or faults and

the actual protection actions could cause serious consequences. Therefore, instead of

employing a set of special “bells and whistles” just for the sake of attacks and faults, we

choose to take a unified approach and treat normal operations, attacks and faults within

the same framework. By doing so, we not only provide a better service under normal

conditions, but also gain a higher degree of confidence under abnormal conditions such

as flash crowds and attacks. This is because we are confident that our mechanisms have

been extensively tested and will react responsibly to robustness challenges.

Based on these guidelines, this thesis takes Content Distribution Networks as an

example, to explore how a unified, efficient resource management mechanism can be

used to make network services more robust.

In the rest of this chapter, we will first introduce our example system, Content Distri-

bution Networks, including the research problem we face in improving CDN robustness.

Then we discuss our research contributions and outline the remaining chapters of the

thesis.
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1.3 Content Distribution Networks

Content Distribution Networks (CDN) [1, 26, 50] are a primary example of the recent

trend of constructing network services using redundant resources. CDNs deploy geo-

graphically dispersed server surrogates across the Internet and distribute client requests

to an “appropriate” server based on various considerations. In this section, we describe

several general aspects of CDNs, discuss the motivation of this research and identify the

research problem we try to solve. More detailed information about CDNs can be found

in [62, 65].

1.3.1 Overview

The World Wide Web (WWW) has become a common vehicle to publish, retrieve and

exchange information on the Internet. More and more business transactions are being

carried out through the WWW as well. However, WWW services suffer from various

performance bottlenecks. It is generally agreed that while downloading web pages, there

are three potential bottlenecks.

� The last mile. This refers to the link between the end user and its ISP. End users

used to get connected to the Internet by a 56Kbps modem. Recent rapid growth of

broadband connections, such as DSL and cable modems, improves this situation.

But normally, compared to the well-provisioned Internet backbone, last mile links

are still relatively slow.

� The first mile. This refers to the link connecting the server to the Internet. Under

heavy traffic, both the first mile links and servers themselves can be overwhelmed.
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� Peering points. To have a global connectivity, traffic from one ISP needs to

pass or reach other ISPs, so there are crossing points between these ISPs where

they exchange traffic. This traffic exchange is mainly directed by ISPs peering

relationships and various local policies. Those ISPs that collectively implement

the backbone of the Internet have little incentive to buy unused connectivity from

or provide link capacity higher than the service level agreements to their peers.

Peering links often run at full capacity, and links with very high utilization tend

to exhibit high packet loss rates and high latency. Therefore, if a request needs

to cross different ISPs, there is a chance that the request can be delayed or even

dropped when the traffic is heavy.

Solving the first problem usually relies on the upgrade of end users’ connections.

CDNs, on the other hand, use replication to address the second and third bottlenecks.

The general idea of a CDN is to deploy a large set of geographically distributed server

surrogates that cache web pages normally stored in origin servers. These surrogates are

then used to service client requests. Doing so has two main advantages. First, instead of

letting every client wait to connect to the origin server, now the request load can spread

across multiple surrogates. This solves the first mile bottleneck through distributing the

load. Second, if a surrogate happens to reside in the same ISP as some clients or be

located close to the clients, the requests from these clients can be served without crossing

peering points. This solves the possible peering points bottleneck. Building such a large

infrastructure with thousands of server surrogates purely for a single website is certainly

not cost-effective. In practice, commercial CDNs are provided by content distribution

service providers (CDSPs), such as Akamai [1], which manages more than 13,000 servers

in about 500 networks across the Internet with many client companies. These servers
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form an application overlay network, allowing multiple web sites to share this overlay

and become customers of the CDSPs.

1.3.2 Components

A CDN typically has two main components: server surrogates and request redirectors.

Figure 1.2 illustrates these two kinds of entities. We now consider them in more detail.

� Server Surrogates. Server surrogates are distributed elements used to cache con-

tent and service client requests. These surrogates look similar to traditional proxy

caches, which will retrieve a page for a client when the requested page is not

present in these caches. CDN surrogates can work exactly the same way, but

the origin servers can also proactively propagate the content to CDN surrogates

instead of having them obtain the pages on-demand [32]. Normally, only static

pages are cached in these surrogates. Recently, some dynamic content has also

started being replicated on CDNs, but usually with the requirement that backend

data, such as databases, and computations, such as query or aggregation, can be

shipped to distributed locations. How to keep the cached documents, especially the

dynamic ones, fresh and consistent is also a very important topic, but will not be

explored further in this thesis. Another important issue is where to strategically

place these surrogates. Ideally, there should be at least one surrogate in each ISP

or autonomous system (AS). The wider these surrogates are spread, the larger the

potential benefits. As shown in Figure 1.2, each surrogate can possibly cache and

serve any content from all of the CDN customers (content providers). However,

each surrogate has only limited resources, such as link bandwidth, CPU cycles

and memory cache, so the request rate each surrogate handles and the working
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set on each surrogate have to be controlled as well. How to allocate and manage

these distributed surrogate resources will largely rely on the second kind of entity

discussed below.
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Figure 1.2: Content Distribution Networks

� Request Redirectors. To minimize the interface changes seen by clients, the

existence of CDN surrogates is usually kept transparent. To take advantage of

distributed surrogates, CDNs need to provide a set of redirectors that forward

client requests to the most appropriate server, as shown in Figure 1.2. Logically,

redirectors stand between clients and server surrogates. Practically, redirectors can

be implemented in many ways. There are also different redirection strategies for

selecting a server for a particular request, which will be covered more thoroughly
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in Chapter 2. Although what a redirector does is simply to assign a request to a

surrogate, this assignment process implicitly allocates and manages resources of

the CDN. As a result, the request redirection strategies employed by redirectors

will impact the resource utilization and the resilience of CDN systems.

1.3.3 Research Challenge

CDNs are designed to improve two performance metrics: response time and system

throughput. Response time, usually reported as a cumulative distribution of latencies,

is of obvious importance to clients, and represents the primary marketing case for CDNs.

System throughput, the average number of requests that can be satisfied each second, is

primarily an issue when the system is heavily loaded, for example, when a flash crowd

is accessing a small set of pages, or a DDoS attacker is targeting a particular site [33].

System throughput represents the overall robustness of the system since either a flash

crowd or a DDoS attack can make portions of the information space inaccessible.

As described in Section 1.3.2, request redirection plays an important role in utilizing

CDN resources to achieve these two goals. Given a sufficiently widespread distribution

of servers, CDNs use several, sometimes conflicting, factors to decide how to distribute

client requests. For example, to minimize response time, a server might be selected

based on its network proximity. In contrast, to improve the overall system throughput,

it is desirable to evenly balance the load across a set of servers. Both throughput and

response time are improved if the distribution mechanism takes locality into consideration

by selecting a server that is likely to already have the page being requested in its cache.

Although the exact combination of factors employed by commercial systems is not clearly
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defined in the literature, evidence suggests that the scale is tipped in favor of reducing

response time.

In practice, systems using CDNs are still susceptible to attacks or flash crowds.

The service outage of CNN, Yahoo and several other high-profile sites under DDoS

attacks in February 2000 [36], presents such an example. Given the massive redundant

resources on CDNs, there is certainly room for improving CDN systems’ responses under

attacks. This motivates us to conduct research on more efficiently managing the massive

resources on CDNs to increase their resilience in abnormal situations. The research

challenge is to find the right tradeoffs that a redirector needs to make when deciding

where to forward a client request, such that the CDN’s resources are better utilized and

the overall system robustness is improved. Following our principles of completeness and

generality, the right tradeoffs have two implications. First, we need to manage all the

resources well: CPU, memory, disk and link resources on a local surrogate host, and all

the distributed servers and bandwidth as a whole. Also, redirectors themselves have to

be robust, and should not rely on any centralized control. Second, the goal of request

redirection strategies is to make sure that under a unified framework, CDNs are not only

responsive across a wide range of load conditions, but also resilient in the face of flash

crowds and DoS attacks.

1.4 Related Work

The research problem identified above is related to many previous research efforts on

various fronts. However, we believe our goal of designing a wide-area CDN redirection

scheme that not only handles regular traffic better but also absorbs flash crowds and deters
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DoS attacks makes our research unique. The following is a brief discussion of a few

related research areas.

1.4.1 Cluster Schemes

Approaches for request distribution in clusters [19, 25, 37] generally use a switch or

router through which all requests for the cluster pass. As a result, they can use various

forms of feedback and load information from servers in the cluster to improve system

performance. In these environments, the delay between the redirector and the servers is

minimal, so they can have tighter coordination [3] than in schemes like ours, which are

developed for wide-area environments. As seen later, we borrow from this area of work

by adapting the fine-grained server set accounting of LARD/R approach [58].

1.4.2 Distributed Servers

Not surprisingly, we share some similarities with schemes for geographically distributed

caches and servers, since our approach must address some of the same issues that exist in

those environments. In the case of geographically distributed caches and servers, DNS-

based systems can be used to spread load among a set of servers, as in the case of round-

robin DNS [8], or it can be used to take advantage of geographically dispersed server

replicas [12]. More active approaches [20, 30, 35] attempt to use load/latency information

to improve overall performance. These approaches collect and estimate different load and

latency information using server-push based or probing schemes, and try to balance the

load of distributed servers. In contrast, we are primarily focused on designing distributed

algorithms that balance load, locality and latency without centralized control. However,

we can borrow their load/latency collecting and deriving techniques.
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1.4.3 Web Caches and CDNs

Proxy web caches are used in different content distribution schemes. The simplest ap-

proach, the static cache hierarchy [15], performs well in small environments but fails to

scale to much larger populations [85]. Other schemes involve overlapping meshes [86]

or networks of caches in a content distribution network [43], presumably including com-

mercial CDNs such as Akamai. As seen later, proxies are also used in our research.

Web caches were originally used for (relatively) static web pages. Several recent

efforts are aimed at supporting the caching of dynamic pages. One solution is to provide

the edge caches with a template of the web page that identifies the fragments of the web

page that need dynamic aggregation and assembly [28]. One can also use an object depen-

dence graph to propagate changes from the underlying data to the cached objects that are

dependent on the data [14]. Others include sending and caching programs (computations)

to the proxy cache server for database-backed web sites [47] and caching equivalent or

partial results [48, 71]. Although our focus is not on caching dynamic content, these

efforts will benefit from our research in the long run. With more content suitable for

caching, our new redirection schemes will become even more effective in distributing the

request load on origin servers and improving the overall robustness of the WWW service.

One important research question with CDNs is deciding where to place server sur-

rogates or replicas, provided client access patterns and the network topology are known

beforehand. Previous research efforts have focused on how to maximize or minimize

certain objective functions subject to some constraints, such as topology and degrees

of replication, to optimize performance. Some of them model replica placement as a

dynamic programming problem assuming that the underlying network topologies are

trees [46]. Others take a more general approach, using real and synthesized topologies
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and traces, and formulating the problem as a facility location problem or minimum K-

median problem [64]. These problems are NP-hard, but approximation algorithms [16]

are known. These server placement mechanisms are useful for CDN provisioning. How-

ever, most of these approaches either require full knowledge of the request patterns and

topology information a priori, or have to infer their future trends based on history. It

is also very expensive or takes too long for the system to respond to the changes of

access patterns and network congestion in a very timely manner. Moreover, most of these

schemes assume that each replica can potentially satisfy all the request traffic destined to

it without explicitly considering the runtime constraints on the network link bandwidth

or server processing capacity, which can become a problem under load. In contrast, our

redirection schemes do not need any a priori knowledge on the access patterns. As we

can see clearer later in this thesis, they actively monitor CDN status at runtime, and

proactively react to network congestion and server overload under various conditions.

1.4.4 DDoS Detection and Protection

In response to DDoS attacks, researchers have recently developed techniques to identify

the source of attacks using various traceback techniques, such as ITRACE [7], proba-

bilistic packet marking [70] and the Source Path Isolation Engine (SPIE) [72]. These

approaches are effective in detecting and confining attack traffic. With their success in

deterring spoofing and suspicious traffic, attackers have to use more disguised attacks,

for example taking control of large number of slave hosts and instructing them to attack

victims with legitimate requests. Our new redirection strategy is effective in providing

protection against exactly such difficult-to-detect attacks. Some recent research proposes

to use overlay networks to provide protection against DoS and DDoS attacks, such as
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SOS [45] and Mayday [2]. These efforts share with us the similar goals of harnessing

resources on overlays to protect network services, but with different emphases, such as

client authentication and packet filtering.

1.4.5 Peer-to-Peer Networks

Peer-to-peer systems provide an alternative infrastructure for content distribution. Typ-

ical peer-to-peer systems involve a large number of participants acting as both clients

and servers, and they have the responsibility of forwarding traffic on behalf of others.

Given their very large scale and massive resources, peer-to-peer networks could provide

a potential robust means of information dissemination or exchange. Many peer-to-peer

systems, such as CAN [66], Chord [76], and Pastry [67] have been proposed and they can

serve as a substrate to build other services such as directory services [4], publish/subscribe

systems [69] and file storage services [24, 68]. Most of these peer-to-peer networks

use a distributed hash-based scheme to combine object location and request routing and

are designed for extreme scalability up to hundreds of thousands of nodes and beyond.

As we can see later, we also use a hash-based approach, but we are dealing one to

two orders of magnitude fewer servers than the peers in these systems, and we expect

relatively stable servers. As a result, much of the effort that peer-to-peer networks spend

in discovery and membership issues is not needed for our work. Also, we require fewer

intermediaries between the client and server, which translates to lower latency and less

aggregate network traffic.

Compared to these previous experiences, the problem we try to solve is different

in that we want to employ a general and efficient resource management scheme that is

effective on improving CDN robustness. By harnessing massive resources on CDNs, we
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not only provide a better CDN performance under normal load, but also make absorbing

flash crowds and deterring DoS attacks a natural part of CDN operations.

1.5 Thesis Contributions

This thesis addresses the problem of designing a request distribution mechanism that

manages all the CDN resources efficiently, making the CDN both responsive across a

wide range of loads, and robust in the face of flash crowds and DDoS attacks. Specifically,

we make the following three main contributions. First, we explore the design space of

redirection strategies employed by the request redirectors, and define a class of new algo-

rithms that carefully balance load, locality, and proximity. We demonstrate that these new

algorithms are much more effective on improving CDN robustness when compared with

published CDN technology. Second, we develop a novel hybrid network-server simulator

that provides detailed modeling at both the packet level and at the operating systems level,

and use it to conduct extensive large-scale simulations to evaluate various redirection

strategies. Third, we build a prototype CDN, called CoDeeN [53] on PlanetLab [61].

We gain valuable experience on managing and monitoring this operational CDN and use

it for ongoing research. Partial and preliminary results of this research have appeared

in our OSDI’02 paper [81]. These contributions are not limited to just CDNs, and the

algorithms and techniques developed in this research can potentially be applied to other

systems such as distributed storage systems and peer-to-peer systems.

1.5.1 Redirection Strategies

The main research challenge we have identified is to find the appropriate tradeoffs that

request redirection strategies need to make. Before proposing new schemes, we first
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evaluate the benefits and drawbacks of existing redirection strategies. We pick a baseline

strategy, Random, which has no pathological behavior. Next, we approximate some

well-known commercial CDN redirection strategies based on the published information,

including their best load balancing behavior. These redirection strategies rely on a fixed

number of server surrogates to serve each URL and share the request load. We then

propose a class of new strategies that carefully balance load, locality, and proximity. Our

new schemes dynamically change the number of surrogates for each URL based on the

current system load status and server cache locality.

We use large-scale detailed simulations to evaluate the various strategies. These

simulations clearly demonstrate the effectiveness of our new algorithms: they produce

a 60-91% improvement in system capacity when compared with published information

about commercial CDN technology, user-perceived response latency remains low, and

the system scales well with the number of servers. We also vary the patterns of request

traffic, for example, to create different hot spot situations. Again, using our new schemes,

CDN systems show better flexibility and adaptiveness under different traffic. These new

redirection schemes not only greatly improve the performance of CDNs under normal

operations, but also let the system absorb flash crowds and mitigate the damages of DoS

attacks more easily and naturally.

In addition, we evaluate several network proximity based redirection strategies. These

strategies explicitly factor network proximity information into redirection strategies in

an effort to direct more load to closer surrogates. Moving more requests to nearby

servers certainly improves response latency through shortening the network paths that

requests and responses have to traverse, but it could also have adverse impacts on sys-

tem throughput due to load imbalance. In current CDNs, network proximity is usually

handled through dividing the Internet into several geographical or topological regions.
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Our network proximity based schemes can certainly take advantage of this hierarchical

approach, but here we are more focused on addressing the intra-region proximity issue

on CDNs, which we believe is the first attempt in this light.

We explore the design space of request redirection strategies in Chapter 2 by pro-

viding some background knowledge and categorizing different redirection strategies into

several groups according to how they handle different factors, such as load and locality.

In Chapter 4, we present the performance results of different redirection strategies using

extensive large-scale simulations.

1.5.2 Hybrid Simulator

Evaluating various CDN redirection strategies at a large scale on the Internet is extremely

difficult, especially when we care more about overload situations, such as flash crowds

and DoS attacks. To artificially create these situations is not practical, and becomes

very disruptive to others. Therefore, simulation is the only viable option. However,

to faithfully simulate CDN systems under overload traffic, we need to be careful about

details at every aspect of the system, both at the network layer and at the operating

system/server application layer. At the time we started this work, there were no simulators

that provided detailed modeling at both layers. We decided to take advantage of existing

simulators that individually model either networks or OS/servers well, and combine the

best of them. Specifically, we merged the NS-2 and LogSim simulators, combining

them into a hybrid simulator that provides detailed modeling at both the packet level and

the operating system level. We also optimized several modules of the hybrid simulator,

allowing us to carry out simulations at a large scale. Currently, we can simulate a CDN

system with over 1,000 clients and 128 servers, and the sustainable request rate can reach
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to more than 70,000 requests per second, which hits the limit of our current simulation

environment. The simulator proves to be very useful in our evaluations and its detailed

accounting helps us understand why our new redirection schemes work better.

Chapter 3 presents details on how we construct our hybrid simulator, and describes

the network topology and traffic models we use in our simulations.

1.5.3 CDN Deployment

Recent developments of Internet-scale open testbed/emulation environments [61, 80, 84]

provide us a valuable opportunity to build an operational CDN under realistic constraints.

In particular, PlanetLab [61] is an overlay network that spans multiple universities, re-

search institutions and industrial companies. It is designed to let researchers develop,

deploy and access new, sometimes disruptive, Internet-scale services. Currently, it has

been deployed on more than 65 sites, distributed across North America, Europe, Asia

and Australia. We built a prototype CDN, named CoDeeN [53], atop PlanetLab, using

a commercial proxy server. CoDeeN is now successfully running on more than 40

PlanetLab sites. It follows an opt-in service model, where users point their browsers

to one of the CoDeeN proxies to take advantage of CoDeeN. CoDeeN allows us to have

first hand experience with CDN management, performance tuning and monitoring. It also

allows us to collect traffic patterns and learn how to auto-configure CDN servers, among

other interesting research issues. We plan to use CoDeeN to further verify our simulation

results about different redirection schemes.

We report our progress on deploying and managing CoDeeN in Chapter 5.



Chapter 2

Request Redirection

Request redirectors play a crucial role on CDNs, not just because they map a client

request to an appropriate server while largely keeping it transparent to the client, but more

importantly, because how they select servers affect how CDN resources are allocated. A

well-designed redirection strategy can efficiently utilize all the resources on CDNs and

make the system resilient across a wide range of loads. In contrast, a strategy with a

poor resource management policy would render the CDN system susceptible to abnormal

traffic or attacks.

This chapter explores the design space of CDN request redirection strategies. To be

more specific, we want to understand the benefits and drawbacks of existing strategies and

find the right tradeoffs we should make to improve current strategies. Before delving into

the details of each individual strategy, we first discuss some building blocks of request

redirectors. We describe several redirector implementation schemes commonly used by

CDNs, and also discuss a few hashing schemes that serve as the substrates for some of

the strategies we later investigate. With this background, we then study various strategies

and group them into different categories based on how they trade off different factors such

23



2.1. BUILDING BLOCKS 24

as server load, cache locality and network proximity. Most importantly, we present our

new unified redirection strategies that carefully balance these factors and improve CDN

robustness under both normal workload and flash crowds or attacks.

2.1 Building Blocks

As outlined in Section 1.3.2, we assume a general model of a CDN that consists of two

major components: server surrogates and request redirectors. We also assume any of

the server surrogates can serve any request on behalf of the origin servers. Where to

place these surrogates and how to keep their contents up-to-date have been addressed by

other CDN research [1, 26, 50], and are not our focuses. Here, we make no particular

assumptions about servers’ locations. Request redirectors are middleware entities that

forward client requests to appropriate servers based on one of the strategies described in

the next section. These redirection strategies are the main focus of this research. To help

understand these strategies, this section first outlines various mechanisms that could be

employed to implement redirectors, and then presents a set of hashing schemes that are

at the heart of redirection.

2.1.1 Redirector Mechanisms

Several mechanisms can be used to redirect requests [5], including augmented DNS

servers, HTTP-based redirects, and smart intermediaries such as routers or proxies. We

describe these three redirector implementation schemes as follows.
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DNS-Based Scheme

A popular redirection mechanism used by current CDNs is to augment DNS (Domain

Name System) servers to return different server IP addresses to clients. DNS can be

thought of as the “411” service on the Internet. Each Internet domain usually has its

own authoritative DNS server(s) that collectively provide a ubiquitous name directory

service on the Internet. Upon receiving a name resolution request, a DNS server returns

either an A (address), NS (name server), or CNAME (alias) resource record (RR) to the

client [51, 62].

1. req: www.ccc.com

2. req: www.ccc.com

3. rep: ns.ccc.com (23.45.0.1)

authoritative name server

ns.ccc.com

23.45.0.1

4. req: www.ccc.com

5. rep: IP addr 23.45.0.101
23.45.0.101

23.45.0.102
23.45.0.103

7. connect to server

www.ccc.com servers

root name server

6. rep: IP addr 23.45.101
client

client local 
name server

Figure 2.1: Typical DNS operation: a client resolves the address of www.ccc.com

Figure 2.1 shows an example of how a client resolves the IP address of www.ccc.com.

Typically, the client application makes a recursive query to its local name server (1 in the
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graph). The local name server then iteratively tries to resolve the name (www.ccc.com).

The local name server first contacts the root name server (2 in the graph). However, since

the domain ccc.com has been delegated, the root name server returns the IP address of

the authoritative name server of ccc.com domain—ns.ccc.com to the local name server (3

in the graph). Then the client side local name server contacts ns.ccc.com and gets the IP

address of www.ccc.com (4 and 5) and returns this address to the client (6 in the graph).

And now, the client can use the IP address to connect to the server (7 in the graph).

An augmented service-side authoritative DNS server can perform request redirection

functionality. It can send a single reply with the surrogate IP address that it believes is best

for the client. Alternatively, it can return multiple IP addresses of surrogates to clients

allowing the client side name server to consume these multiple addresses in a round-robin

fashion. For scalability reasons, current CDNs usually deploy a DNS hierarchy. The

high-level DNS server first points the name query to a regional-level DNS server through

NS redirection or CNAME redirection. Then the regional DNS server replies with the

actual server address. To alleviate the look-up load on authoritative DNS servers, the

RR records returned are usually cached on client-side name servers and these cached

entries are valid for a time-to-live (TTL) period. A longer TTL can further reduce the

traffic to authoritative DNS servers. On the other hand, in order to adapt quickly to

network congestion or server outages, the augmented authoritative DNS servers have to

set the TTL of RRs to be very short, in a hope to invalidate client-side caching when it is

needed. For example, regional-level DNS servers can set the TTL to be very short such

as 20 seconds, while high-level DNS servers can set it longer such as 20 minutes.

One limitation of the DNS-based schemes is that short TTLs in return could increase

the load on DNS servers. Meanwhile, client-side name servers may not strictly respect
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this TTL, but keep using the cached RR even after its TTL expires. So the effectiveness

of this shortened TTL may be limited by the lack of enforcement.

Another limitation of the DNS-based approaches lies in that it can only change the

name mappings at a per-site level. Ideally, request redirection should be done at a

per-object (URL) level. To achieve a finer granularity mapping and thus spread load

more evenly, URL rewriting is often used in addition to augmented DNS servers. URL

rewriting changes embedded objects in a page to point to different servers. This rewriting

could be done either a priori or on-demand, and those modified URLs can still be mapped

by augmented DNS servers.

HTTP Redirect

Servers can perform request redirection functionality themselves through HTTP [31]

“redirect” responses. In the header of a response returned from a web server, there is

a field containing a status code, using three digits, such as “200 OK”. HTTP has a class

of status code called “Redirection 3xx”, which indicates that further actions need to be

taken by the user agent (normally a browser) to fulfill the request. The code often used

in redirection is “302 Found”, which means the requested resource resides temporarily

under a different URI. So, when a server receives a client request, it can respond with

“302 Found” and a new (possibly better) server that the client should contact for the

page.

This approach is relatively simple to implement. However, it incurs an additional

round-trip time across the Internet, and leaves the servers vulnerable to overload by the

redirection task itself. Server bandwidth is also consumed by this process.
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Intermediaries

The redirection function can also be distributed across intermediate nodes of the network,

such as routers or proxies. These redirectors either rewrite the outbound requests, or send

HTTP redirect messages back to the client. This approach allows for object (URL) level

redirections, which helps to avoid congestion and balance server load at a fine granularity.

If the client is not using explicit (forward mode) proxying, then the redirectors must

be placed at choke points to ensure traffic in both forward and reverse directions is

handled. The former is called a classical proxy, while the latter is called a transparent

proxy [17]. Placing proxies closer to the edge yields well-confined easily identifiable

client populations, which makes it easy to gauge the traffic each proxy handles and adjust

the number of proxies to scale with the size of client population. The HTTP-redirect

solution could also incur less overhead since the extra RTT between the proxy and the

client is not likely to be significant. On the other hand, moving proxies closer to the

server can result in more accurate feedback and load information. These proxy-based

redirectors thus behave like overlay nodes and make an application-level request routing

decision based on a URL and their knowledge on the load information of server surrogates

and the network. Redirectors and surrogates thereby form an overlay network atop the

Internet.

There are also other variations to implement request redirection on CDNs, but we

cannot enumerate all of them here. To allow us to focus on redirection strategies and to

reduce the complexity of considering the various combinations outlined in this section,

we make the following assumptions: redirectors are located at the edge of a client site,

they receive the full list of server surrogates through DNS or some other out-of-band

communication, they rewrite outbound requests to pick the appropriate server, and they
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passively learn approximate server load information by observing client communications.

We do not rely on any centralization, and all redirectors operate independently. Our

simulations show that these assumptions—in particular, the imperfect information about

server load—do not have a significant impact on the results.

2.1.2 Hashing Schemes

Our geographically dispersed redirectors cannot easily adapt the request routing schemes

suited for more tightly-coupled LAN environments [37, 58], since the latter can easily

obtain instantaneous state about the entire system. Instead, we construct strategies that

use hashing to deterministically map URLs into a small range of values. The main benefit

of this approach is that it eliminates inter-redirector communication since the same output

is produced regardless of which redirector receives the URL. The second benefit is that

the range of resulting hash values can be controlled, trading precision for the amount of

memory used by bookkeeping.

The choice of which hashing style to use is one component of the design space, and

is somewhat flexible. The various hashing schemes have some impact on computational

time and request reassignment behavior on node failure/overload. However, as we discuss

later, the computational requirements of the various schemes can be reduced by caching.

Modulo Hashing — In this “classic” approach, the URL is hashed to a number

modulo the number of servers. While this approach is computationally efficient, it is

unsuitable because the modulus changes when the server set changes, causing most

documents to change server assignments. While we do not expect frequent changes in

the set of servers, the fact that the addition of new servers into the set will cause massive

reassignment is undesirable.
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Consistent Hashing [43, 44] — In this approach, the URL is hashed to a number in

a large, circular space, as are the names of the servers. The URL is assigned to the server

that lies closest on the circle to its hash value.

Figure 2.2 illustrates how consistent hashing works. As shown, each server IP address

is hashed to a value such as svr0, svr1..., and every URL also gets hashed to a value, url1,

url2 ... All these hash values are later converted to the range of [0,1]. Then a unit circle,

a circle with unit circumference, is used to lay out these normalized hash values in a

circular space. The server that a URL is assigned to is now obtained through finding the

server whose hash point is first encountered by moving clockwise from the URL’s point

on the unit circle. In Figure 2.2, url1 is assigned to svr2, url2 and url4 are assigned to

svr3 and url3 is assigned to svr0.

url2

svr2

svr1

unit circle −− a circle with unit circumference 

url4

svr2
url3

url1

svr3

svr0

Figure 2.2: Consistent Hashing
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There is a detailed technical analysis of Consistent Hashing in [44], which theoreti-

cally bounds its properties on load, balancing and computation cost. Intuitively, the hash

function will randomly and uniformly map both URLs and servers to points onto the unit

circle. As a result, each server is expected to get a fair share of all the URLs. When a

server node fails in this scheme, its load shifts to its “neighbor” servers on the unit circle.

When a new node is added, it only “steals” URLs that are closer to its own hash point from

other servers, while other URLs whose points are far away are left unaffected. Thus, the

addition or removal of a server only causes local changes in request assignments. Most of

the URLs stick to their assigned servers, resulting in good server cache locality and a high

hit rate. Even when a redirector only knows a subset of all the servers, this scheme will

not cause too much discrepancy among different redirectors on deciding which server to

be responsible for an URL. That is because only a few servers are close to that URL on

the unit circle. In practice, to achieve a uniform distribution of URLs to servers, it is

necessary to make several copies of each server to different “random” points on the unit

circle. The base hash function that maps URLs and servers to the unit circle is also crucial

for a uniform distribution, and it turns out that a random universal hash function [13]

is a good candidate. Since this hashing scheme requires finding the closest match, a

search tree can be used to reduce the search to logarithmic time. Alternatively, breaking

the circle into equal length intervals and putting server points into “bins” according to

intervals can further improve this match operation to constant time. Conceivably, to map

a URL to multiple servers, one possible solution is to find the k closest servers on the unit

circle. Consistent Hashing has been applied in commercial CDNs and some peer-to-peer

systems [76] as well.

Highest Random Weight [78] — This approach, is the basis for Cache Array Routing

Protocol (CARP) [19], and consists of generating a list of hash values by hashing each
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URL with each server’s name and sorting the results. These sorted hash values are called

server weights for this URL. Each URL then has a deterministic order to access the set of

servers. This weight list is traversed to find a server for the URL, and typically the top-

most server from the list (the one with the highest weight) is selected. Similarly, for load

balancing purposes, a URL can be mapped to more than one server, such as k servers,

where the first k servers on the sorted list can be used.

A detailed analysis of Highest Random Weight (HRW) hashing is presented in [78].

In HRW hashing, server addition or removal only affects a small number of URLs,

since only those URLs whose highest ranked server changes have to be reassigned.

This approach requires more computation than Consistent Hashing, since generating the

ordered list takes O
�
NlogN � time, where N is the number of servers. However, it has

the benefit that each URL has a different server order, so a server failure results in the

remaining servers evenly sharing the load. To reduce computation cost, the sorted server

lists can be cached using O
�
N � num url hashes � space, and even this can be reduced by

keeping only the top few entries for each URL hash value.

2.2 Redirection Strategies

This section explores the design space for the request redirection strategies. As a quick

reference, we summarize the properties of the different redirection algorithms in Ta-

ble 2.1, where the strategies are categorized based on how they address locality, load

and proximity.

The first category, Random, contains a single strategy, and is used primarily as a

baseline. We then discuss four static algorithms, in which each URL is mapped onto a

fixed set of server replicas—the Static category includes two schemes based on the best-
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Category Strategy Hashing Dynamic Load
Scheme Server Set Aware

Random Random No

Static R-CHash CHash No No
R-HRW HRW No No

Static LR-CHash CHash No Yes
+Load LR-HRW HRW No Yes

CDR HRW Yes Yes
Dynamic FDR HRW Yes Yes

FDR-Global HRW Yes Yes

Network NPR-CHash CHash No No
Proximity NPLR-CHash CHash No Yes

NP-FDR HRW Yes Yes

Table 2.1: Properties of Request Redirection Strategies

known published algorithms, and the Static+Load category contains two variants that are

aware of each replica’s load. The four algorithms in these two static categories pay more

attention to locality than Random. Next, we introduce two new algorithms—denoted

CDR and FDR—that factor both load and locality into their decision with each URL

mapped onto a dynamic set of server replicas. We call this the Dynamic category. Finally,

we factor network proximity into the equation, and present another new algorithm—

denoted NP-FDR—that considers all aspects of network proximity, server locality, and

load.

2.2.1 Random

In the random policy, each request is randomly sent to one of the server surrogates. We

use this scheme as a baseline to determine a reasonable level of performance, since

we expect the approach to scale with the number of servers and not to exhibit any

pathological behavior due to patterns in the assignment. It has the drawback that adding
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more servers does not reduce the working set of each server. Since serving requests from

main memory is faster than disk access, this approach is at a disadvantage versus schemes

that exploit URL locality.

2.2.2 Static Server Set

We now consider a set of strategies that assign a fixed number of server replicas to each

URL. This has the effect of improving locality over the Random strategy, but still sharing

the load for a URL among several servers.

Replicated Consistent Hashing

In the Replicated Consistent Hashing (R-CHash) strategy, each URL is assigned to a set

of replicated servers. The number of replicas is fixed, but configurable. Following the

Consistent Hashing scheme, both the URL and the addresses of all servers are hashed to

a value in the circular space (unit circle), and instead of only choosing the single closest

server to the URL, the replicas are evenly spaced starting from this original point. On

each request, the redirector randomly assigns the request to one of the replicas for the

URL.

This strategy is intended to model the mechanism published about commercial CDNs,

and is virtually identical to the scheme described in [43] and [44] with the network treated

as a single geographic region. The scheme described in these two papers also includes a

mechanism to use coarse-grained load balancing via virtual server names. When server

overload is detected, the corresponding content is replicated across all servers in the

region, and the degree of replication shrinks over time. However, the schemes are not

described in enough detail to replicate.
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Replicated Highest Random Weight

The Replicated Highest Random Weight (R-HRW) strategy is the counterpart to R-

CHash, but with a different hashing scheme used to determine the replicas. To the best of

our knowledge, this approach is not used in any existing content distribution network. In

this approach, the set of replicas for each URL is determined by using the top k servers

from the ordered list generated by Highest Random Weight hashing. And on each request,

the redirector randomly picks one member of the appropriate set and sends the request

to that server. Compared to R-CHash, this scheme is less likely to generate the same set

of replicas for two different URLs. As a result, less-popular URLs that may have some

overlapping servers with popular URLs are also likely to have some other less-loaded

nodes in their replica sets.

2.2.3 Load-Aware Static Server Set

The Static Server Set schemes randomly distribute requests across a set of replicas, which

shares the load but without any active monitoring. We extend these schemes by introduc-

ing load-aware variants of these approaches. To perform fine-grained load balancing,

these load-aware schemes maintain local estimates of server load at the redirectors, and

use this information to pick the least-loaded member of the server set. A possible load

measure is the number of outstanding connections currently open to each server surrogate.

The load-balanced variant of R-CHash is called LR-CHash, while the counterpart for R-

HRW is called LR-HRW.
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2.2.4 Dynamic Server Set

We now consider a new category of algorithms that dynamically adjust the number of

replicas used for each URL in an attempt to maintain both good server locality and

load balancing. By reducing unnecessary replication, the working set of each server

is reduced, resulting in better file system caching behavior.

Coarse Dynamic Replication

Coarse Dynamic Replication (CDR) adjusts the number of replicas used by redirectors in

response to server load and demand for each URL. Like R-HRW, CDR uses HRW hashing

to generate an ordered list of servers. Rather than using a fixed number of replicas,

however, the request target is chosen using coarse-grained server load information to

select the first “available” server on the list.

Figure 2.3 shows how a request redirector picks the destination server for each re-

quest. This decision process is done at each redirector independently, using the load status

of the possible servers. Instead of relying on heavy communications between servers and

request redirectors to get server load status, we use local load information observed by

each redirector as an approximation. We currently use the number of active connections

to infer the load level, but we can also combine this information with response latency,

bandwidth consumption, etc.

As the load increases, this scheme changes from using only the first server on the

sorted list to spreading requests across several servers. Some documents normally han-

dled by “busy” servers will also start being handled by less busy servers. Since this

process is based on aggregate server load rather than the popularity of individual docu-

ments, servers hosting some popular documents may find more servers sharing their load
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find server(url, S) �
foreach server si in server set S,

weighti = hash(url, address(si));
sort weight;
foreach server s j in decreasing order of weight j �

if satis f y load criteria
�
s j � then �

targetServer � s j;
stop search;�

�
if targetServer is not valid then

targetServer � server with highest weight;
route request url to targetServer;�

Figure 2.3: Coarse Dynamic Replication

than servers hosting collectively unpopular documents. In the process, some unpopular

documents will be replicated in the system simply because they happen to be primarily

hosted on busy servers. At the same time, if some documents become extremely popular,

it is conceivable that all of the servers in the system could be responsible for serving

them.

Fine Dynamic Replication

A second dynamic algorithm—Fine Dynamic Replication (FDR)—addresses the prob-

lem of unnecessary replication in Coarse Dynamic Replication (CDR) by keeping infor-

mation on URL popularity and using it to more precisely adjust the number of replicas.

By controlling the replication process, the per-server working sets should be reduced,

leading to better server locality, and thus, better response time and throughput. This

scheme uses HRW hashing as in CDR, but additionally, each URL is also hashed to a

smaller identifier, in the range of thousands to millions of values. With each of these
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identifiers is kept the number of servers to use in the sorted list, allowing URLs to be

replicated across a number of servers based on their popularity.

Unpopular URLs could be unnecessarily replicated in CDR, simply because they

share their primary servers with some popular URLs. The introduction of finer-grained

bookkeeping is an attempt to counter the possibility of a “ripple effect” in CDR, which

could gradually reduce the system to round robin under heavy load. In this scenario, a

very popular URL causes its primary server to become overloaded, causing extra load on

other machines. Those machines, in turn, also become overloaded, causing documents

destined for them to be served by their secondary servers. Under heavy load, it is conceiv-

able that this displacement process ripples through the system, reducing or eliminating

the intended locality benefits of this approach.

To reduce extra replication, FDR keeps an auxiliary structure at each redirector that

maps each URL to a “walk length,” indicating how many servers in the HRW list should

be used for this URL. Using a minimum walk length of one provides minimal replication

for most URLs, while using a higher minimum will always distribute URLs over multiple

servers. When the redirector receives a request, it uses the current walk length for the

URL and picks the least-loaded server from the current set. If even this server is busy, the

walk length is increased and the least-loaded server is used.

This approach tries to keep popular URLs from overloading servers and displacing

less-popular objects in the process. The size of the auxiliary structure is capped by

hashing the URL into a range in the thousands to millions. Hash collisions may cause

some URLs to have their replication policies affected by popular URLs. As long as the

number of hash values exceeds the number of servers, the granularity will be significantly

better than the Coarse Dynamic Replication approach. The redirector logic for this

approach is shown in Figure 2.4. To handle URLs that become less popular over time,
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find server(url, S) �
walk entry � walkLenHash(url);
w len � walk entry.length;
foreach server si in server set S,

weighti = hash(url, address(si));
sort weight;
scandidate � least-loaded server of top w len servers;
if satis f y load criteria

�
scandidate � then �

targetServer � scandidate;
if (w len � 1 &&

timenow() � walk entry.lastUpd � chgThresh)
walk entry.length ��� ;�

else �
foreach rest server s j in decreasing weight order �

if satis f y load criteria
�
s j � then �

targetServer � s j;
stop search;�

�
walk entry.length � actual search steps;�

if walk entry.length changed then
walk entry.lastUpd � timenow();

if targetServer is not valid then
targetServer � server with highest weight;

route request url to targetServer;�

Figure 2.4: Fine Dynamic Replication

with each walk length, we also keep the time of its last modification. We decrease the

walk length if it has not changed in some period of time.

As a final note, both dynamic replication approaches require some information about

server load, specifically how many outstanding requests can be sent to a server by a

redirector before the redirector believes it is busy. We currently allow the redirectors to

have 300 outstanding requests per server, at which point the redirector locally decides



2.2. REDIRECTION STRATEGIES 40

the server is busy. It would also be possible to calibrate these values using both local

and global information—using its own request traffic, the redirector can adjust its view

of what constitutes heavy load, and it can perform opportunistic communication with

other redirectors to see what sort of collective loads are being generated. The count of

outstanding requests already has some feedback, in the sense that if a server becomes

slow due to its resources (CPU, disk, bandwidth, etc.) being stressed, it will respond

more slowly, increasing the number of outstanding connections. To account for the

inaccuracy of local approximation of server load at each redirector, in our evaluations,

we also include a reference strategy, FDR-Global, where all redirectors have perfect

knowledge of the load at all servers.

satisfy load criteria(server) �
if (server

�

s load � low thresh
&& exists server l with load � low thresh) ,

return true;
if (server

�

s load � 2 � high thresh)
return true;

return false;�

Figure 2.5: Example Load Evaluation

Figure 2.5 gives an example of load evaluation functions, where the low thresh and

high thresh are configurable parameters. In the case of using the number of outstanding

requests as the load measure, low thresh and high thresh can be set to 50 and 150

respectively.

Conceivably, Consistent Hashing could also be used to implement CDR and FDR.

We tested CHash-based CDR and FDR schemes, but they suffer from the “ripple effect”

and sometimes yield even worse performance than load-aware static replication schemes.

Part of the reason is that in Consistent Hashing, since servers are mapped onto a circular



2.2. REDIRECTION STRATEGIES 41

space, the relative order of servers for each URL will be effectively the same. This means

the load migration will take a uniform pattern; and the less-popular URLs that may have

overlapping servers with popular URLs are unlikely to have some other less-loaded nodes

in their replica sets. Therefore, we will mainly present CDR and FDR based on HRW.

And we will show our test results of CHash-based CDR and FDR in Section 4.4.3.

2.2.5 Network Proximity

Many commercial CDNs start server selection with network proximity matching. For

instance, [43] indicates that CDN’s hierarchical authoritative DNS servers can map

a client’s (actually its local DNS server’s) IP address to a geographic region within a

particular network and then combine it with network and server load information to select

a server separately within each region. Other research [41] shows that in practice, CDNs

succeed not by always choosing the “optimal” server, but by avoiding notably bad servers.

For the sake of studying system capacity, we make a conservative simplification by

treating the entire network topology as a single geographic region. We could also simply

take the hierarchical region approach as in [43], however, to see the effect of integrating

proximity into server selection, we introduce three strategies that explicitly factor intra-

region network proximity into the decision. Our redirector measures servers’ geographi-

cal/topological location information through ping, traceroute or similar mechanisms and

uses this information to calculate an “effective load” when choosing servers.

������ �����
min distance � MIN � distancei � i � 1 ����� n �

std distancei � distancei 	 min distance

effect loadi � loadi � std distancei

(2.1)



2.2. REDIRECTION STRATEGIES 42

To calculate the effective load, redirectors multiply the raw load metric with a normal-

ized standard distance between the redirector and the server. Redirectors gather distances

to servers using round trip time (RTT), routing hops, or similar information. These raw

distances are normalized by dividing by the minimum locally observed distance, yielding

the standard distance. In our simulations, we use RTT for calculating raw distances.

Equation group 2.1 depicts the calculation of effective load.

FDR with Network Proximity (NP-FDR) is the counterpart of FDR, but it uses

effective load rather than raw load. Similarly, NPLR-CHash is the proximity-aware

version of LR-CHash. The third strategy, NPR-CHash, adds network proximity to the

load-oblivious R-CHash approach by assigning requests such that each surrogate in the

fixed-size server set of a URL will get a share of total requests for that URL inversely

proportional to the surrogate’s distance from the redirector. As a result, closer servers in

the set get a larger share of the load.

The use of effective load biases server selection in favor of closer servers when raw

load values are comparable. For example, in standard FDR, raw load values reflect the

fact that distant servers generate replies more slowly, so some implicit biasing exists.

However, by explicitly factoring in proximity, NP-FDR attempts to reduce global re-

source consumption by favoring shorter network journeys.

Although we currently calculate effective load this way, other options exist. For

example, effective load can take other dynamic load/proximity metrics into account,

such as network congestion status through real time measurement, thereby reflecting

instantaneous load conditions.



Chapter 3

Evaluation Methodology

The main goal of this work is to examine how the strategies discussed in Chapter 2

respond under different loads, and especially how robust they are in the face of flash

crowds and other abnormal workloads that might be used for a DDoS attack. Attacks

may take the form of legitimate traffic [60], making them difficult to distinguish from

flash crowds.

Evaluating the various algorithms described in Section 2.2 on the Internet is not

practical, both due to the scale of the experiment required and the impact a flash crowd

or attack is likely to have on regular users. Simulations are clearly the only option, since

they provide us with easier controls in a confined environment. Unfortunately, there has

not been (up to the point we started) a simulator that considers both network traffic and

server load. Existing simulators abstract different aspects of the system by making certain

assumptions or simplifications, which could affect the accuracy of the results. They

either focus on the network, assuming a constant processing cost at the server, or they

accurately model server processing (including the cache replacement strategy), but use a

43
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static estimate for the network transfer time without considering possible congestion. In

the situations that interest us, both the network and the server are important.

To remedy this situation, we develop a new simulator that combines network-level

simulation with OS/server simulation. Specifically, we combine the NS-2 simulator with

LogSim, allowing us to simulate network bottlenecks, round-trip delays, and OS/server

performance. NS-2 [55] is a packet-level simulator that has been widely used to test TCP

implementations. However, it does not simulate much server-side behavior. LogSim is a

server cluster simulator used in previous research on LARD [58], and it provides detailed

and accurate simulation of server CPU processing, memory usage, and disk access. This

chapter describes how we combine these two simulators, and discusses how we configure

the resulting simulator to study the algorithms presented in Section 2.2.

3.1 Simulator

A model of LogSim is shown in Figure 3.1. Each server node consists of a CPU and

locally attached disk(s), with separate queues for each. At the same time, each server

node maintains its own memory cache of a configurable size and replacement policy.

Incoming requests are first put into the holding queue, and then moved to the active queue.

The active queue models the parallelism of the server, such as the maximum number of

processes or threads allowed on each server in multiple-process or multiple-thread server

systems.

3.1.1 Overview of the Hybrid Simulator

Both NS-2 and LogSim are discrete event-driven simulators, and we show the way of

combining them in Figure 3.2. We keep NS-2’s event engine as the main event manager
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Figure 3.1: LogSim Simulator

for the hybrid simulator, wrap each LogSim event as an NS-2 event, and insert it into

the NS-2 event queue. All the callback functions are kept unchanged in LogSim. We

maintain a “server” module in both NS-2 and LogSim, and a pair of server modules, one

from each simulator, are used to model the behaviors of a simulated server surrogate. The

module in NS-2 takes care of communication, and the module in LogSim is responsible

for request processing. When crossing the boundary between the two simulators, tokens

(continuations) are used to carry side-specific information. These tokens are pointers to

private data structures maintained respectively in NS-2 and LogSim. The processing state

of corresponding server modules is kept in these data structures. For simplicity, clients

are only modeled in NS-2, which are capable of setting up TCP connections with servers,

sending requests and receiving responses. Redirectors are also simulated in NS-2, which

can be configured with different redirection strategies. Since we assume a proxy or router
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based redirector implementation scheme, each redirector will be able to see the traffic

originating from and destined to the clients in its local region. As a result, redirectors

rely on this traffic information to approximate load status on each surrogate.

Event Dispatch

client

client

server

server

Event Dispatch

server

server

NS Simulator LogSim Simulator
Event Queue

NS token

LogSim token

Figure 3.2: Merging NS-2 and LogSim Simulator

A typical request-response session looks as follows (we follow the HTTP/1.0 model).

When a client wants to access a URL, the redirector near this client first chooses an

appropriate server surrogate for this URL, and then the client directly opens a new con-

nection to that server for the URL, mimicking instant packet rewriting at the redirector.

The requested URL then gets transferred to the server through two-way TCP in NS-

2. After the request fully arrives at the server module in NS-2, it is passed along with

an NS-2 token to its counterpart server module in LogSim. Next, the LogSim server

module processes the request. In LogSim, all the content exists on disks. The LogSim

server module first tries to find the content of the URL in its memory cache. If it is a
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cache miss, the server has to read the content from its disk. Reading content from its

disk to memory cache may trigger the cache replacement process if there is not enough

memory space. After locating the content, the LogSim server module passes back the

NS-2 token in addition to its own token to its NS-2 counterpart, asking the NS-2 server

module to transfer the response to the client through the TCP connection. If the content

has to be broken into chunks, this token passing (processing hand-over) may be repeated

several times. Finally, when all the response data have been shipped to the client, per its

LogSim counterpart’s request, the NS-2 server module initiates the teardown of the TCP

connection.

On the NS-2 side, all packets are stored and forwarded, as in a real network. We

use two-way TCP at the transport layer, which includes detailed modeling of three-way

handshake, disconnection, and TCP Reno’s congestion control mechanism [55]. We

currently use static routing within NS-2, although we may run simulations with dynamic

routing in the future.

On the LogSim side, the costs for the basic request processing were derived by

performing measurements on a 300MHz Pentium II machine running FreeBSD 2.2.5 and

the Flash web server [57]. Although this machine is clearly slower than the cutting-edge

high-end web servers, it makes it possible for us to simulate at a large scale. Connection

establishment and teardown costs are set at 145µs, while transmit processing incurs 40µs

per 512 bytes. Using these numbers, an 8-Kbyte document can be served from the main

memory cache at a rate of approximately 1075 requests/sec. When disk access is needed,

reading a file from the disk has a latency of 28ms. The disk transfer time is 410µs

per 4 Kbytes. For files larger than 44 Kbytes, an additional 14ms is charged for every

44 Kbytes of file length in excess of 44 Kbytes. The replacement policy used on the

servers is Greedy-Dual-Size (GDS)[11], as it appears to be the best-known policy for
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Web workloads. 32MB memory is available for caching documents on each server and

every server node has one disk. This server is intentionally slower than the current state-

of-the-art (it is able to service approximately 600 requests per second), but this allows the

simulation to scale to a larger number of nodes.

3.1.2 Optimizations

When we scaled up our simulations to many nodes, for example, 1000 clients and 128

servers, and a high request rate, currently up to more than 70,000 requests per second,

the experiments became extremely slow, taking more than 70 hours wall-clock time. This

greatly affected our ability to conduct multiple experiments and collect many data points.

We instrumented the hybrid simulator to identify the problems. The LogSim part was

quite efficient, and there was little room for further optimizations. On the NS-2 side,

however, we found a couple of bottlenecks. To speed up the simulation time and increase

the simulation scale, we re-implemented several NS-2 modules and performed other

optimizations. Compared to the existing largest commercial CDNs with over 10,000

servers, our final simulated system (up to 128 servers) may still be small, and can be

viewed as a model of servers within a geographical or administrative region. However,

these simulations have already reached the limit of our current simulation environment.

Below, we discuss our three main optimizations on the NS-2 side. We are still refining our

current improvements and examining other possible ways to speed up the simulations.

NS-2 is an object-oriented simulator, and follows the idea of split-language program-

ming [56]. It is implemented in C++ with an OTcl [83] (an object-oriented variant of

Tcl) front end. NS-2 simulation configurations, such as topology setup and start/stop

routines, are generally written in OTcl. This is because the OTcl script is executed
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through interpretation, which makes it easy to update settings without re-compiling the

whole NS-2 package whenever some minor configuration changes are needed. On the

other hand, the core processing logic is written in C++ for performance reasons. The

NS-2 simulator supports a class hierarchy in C++ and a similar class hierarchy within the

OTcl interpreter. From a user’s perspective, there is a one-to-one correspondence between

classes from these two hierarchies, respectively. In other words, entities, such as network

links, TCP sources and sinks and so on, have a main object in C++ with a “shadow”

object in OTcl. By doing this, these entities can be easily manipulated in OTcl. In fact,

this shadowing or binding happens with an even finer granularity at the individual variable

level. In this case, bi-directional bindings are established between member variables in

C++ and corresponding member variables in OTcl. Changes of variables in one language

are automatically propagated to their counterparts in the other language. However, cross-

language updates are very expensive and can considerably slow down the simulations.

For example, when creating a new TCP source, all its state variables, such as window

sizes and timeout values, have to be initialized to their default values in OTcl and these

initializations are propagated to C++ as well, resulting in a fairly large overhead. Keeping

many variables in both C++ and OTcl also increases memory pressure of simulations. All

of these present particular challenges to our experiments, where a large number of TCP

connections are set up or torn down every second of simulated time.

NS-2 is not optimized for this type of experiments that require a very large memory

footprint and CPU processing power. To alleviate these problems, we modify the two-

way TCP modules of NS-2 and keep everything in C++. By doing this, each time a

new two-way TCP agent is created, all the initializations will be done in C++ only,

which saves processing in OTcl. Eliminating shadow variables in OTcl also reduces

memory use, and any change of these TCP state variables in the future will also not
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cause any additional changes in OTcl (Of course, now we cannot directly manipulate

these variables in OTcl). However, in the previous NS-2 implementation, attaching a

TCP agent to or detaching it from a node is achieved in OTcl through classifier objects.

To accommodate our pure C++ TCP agents with no corresponding OTcl shadow objects,

we also need a pure C++ classifier. Having these two pieces (pure C++ TCP agents and

classifiers) in place, opening a new TCP connection becomes less heavy-weight, and the

memory requirement for a single two-way TCP agent is reduced from about 3.1KB to

about 1.2KB. We are therefore able to support a very large number of simultaneous TCP

connections, currently up to 160,000 concurrent connections at a given time.

Another limitation of the original NS-2 implementation is related to its port manage-

ment and two-way TCP details. In NS-2, each transport agent, such as TCP or UDP,

has to be bound to a port on a node. The port number is part of the demultiplex key

used by classifiers on NS-2 nodes. This port-based scheme, to some extent, resembles

the socket interface [75], but not entirely. When an agent is detached from a node, or

more precisely from the port classifier of the node, the port number of this agent will

then be put in a free port pool by clearing its bit in the port map of that node. The next

time a new agent has to be attached to the same node’s port classifier, NS-2 linearly

searches the port map to find the first (smallest) available (free) port number. This agent

attaching and detaching process is necessary since the port space is limited, and port

numbers have to be recycled. Meanwhile, although we have optimized the two-way

TCP implementation by eliminating shadowing OTcl TCP objects, each TCP agent still

requires a considerable amount of memory, on the order of a thousand bytes. In large-

scale simulations, to save memory, it is also very important to recycle ports and TCP

agents as soon as possible. However, fast recycling stands at odds with TCP “dangling

packets”, especially the retransmitted FIN packets.
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Figure 3.3: Time Line for TCP connection Set-up and Tear-down in CDN experiments

Figure 3.3 depicts a typical time line of TCP with its state, where the client initiates

the connection and the server tears it down, as in the case of our CDN experiments. At the

beginning, after the three-way handshake, the client sets up a connection with the server

and both parties enter the ESTABLISHED state. Then the client sends the request and the

server replies with the response in data packets. When the server finishes sending all the

response data, it sends a FIN packet to the client to initiate the disconnection, and itself

enters the FIN WAIT 1 state. When the client gets the FIN packet, it acknowledges it and

enters the CLOSE WAIT state. This ACK packet causes the server-side TCP to enter the

FIN WAIT 2 state. Then the client-side TCP sends a FIN packet to the server-side TCP

indicating it is ready to disconnect, and the client enters the LAST ACK state waiting

for the (last) ACK packet for its just-sent FIN packet. If everything goes well, after the

client gets the last ACK from the server in its LAST ACK state, it enters the CLOSED
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state. Now it is safe to recycle the port and TCP agent on the client side. However,

if the ACK from the server does not come in time, the client-side TCP has to resend

FIN. The server-side TCP, on receiving the FIN packet from the client, sends an ACK

to this FIN, but has to remain in the TIME WAIT state before moving to the CLOSED

state. This is because it does not know if the final ACK has been successfully delivered

to the client. The client may try retransmitting FIN packet as discussed above. During

network congestion, the retransmitted FIN from the client may get delayed, and there

could be even more retransmitted FINs from the client if ACKs (or FINs) keep getting

lost. So if we allow the current port on the server to get recycled without waiting long

enough in the TIME WAIT state, a new connection that re-uses the same port number can

get “dangling” FIN packets belonging to legacy connections. Even worse, since it is a

(retransmitted) FIN packet, this new connection can be terminated unexpectedly. This is

a well studied and documented situation in the TCP specification [79] and the wait period

in the TIME WAIT state is typically set as two times of the Maximum Segment Lifetime

(2MSL), for example 120 seconds.

However, the TIME WAIT state is missing in NS-2’s two-way TCP implementation.

After just sending one ACK to the client’s FIN, the sever side TCP immediately enters

the CLOSED state and this TCP agent and its port then get recycled. As a result, in

our earlier experiments, we experienced quite a few unexpected disconnections on recent

recycled ports due to the dangling FIN packets.

To solve this problem, one possible solution is to add the TIME WAIT state into NS-

2’s two way TCP implementation. However, waiting such a long time (120 seconds of

simulated time) will force a lot of memory tied up to those TCP agents doing nothing but

waiting. An alternative is to simply ignore the dangling FIN packets. However, doing this
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will cause the client side TCP to stay in the CLOSE WAIT state for an indefinite time,

since its FIN packet never gets ACKed.

To alleviate this dangling FIN packet problem and also strike a balance between

recycling TCP agents fast and sticking to TCP specifications, we make the following

adaptations. We leave the basic logic of two-way TCP of NS-2 unchanged, and after the

server TCP sends its last ACK, it still enters the CLOSED state immediately. However,

we replace this server TCP agent with a dummyACK agent at the same port when we de-

tach the TCP agent. This dummyACK agent simply acknowledges any packet it receives

by swapping the source and destination addresses and ports in the packet. In other words,

this dummyACK agent can be attached to multiple nodes or to multiple ports on the same

node simultaneously. It is only used to make sure client-side TCPs can get ACKs to their

FINs. This approach consumes only a constant but small amount of memory; however,

it achieves similar effects as if a full server-side TCP agent is waiting for the possibly

retransmitted (dangling) FIN packets, and it reduces our simulations’ memory footprint

through releasing full TCP agents earlier. This spoofed TIME WAIT state is intentionally

kept shorter than 2MSL, allowing port numbers to be recycled faster. Now, when the

client side TCP does not receive an ACK in the LAST ACK state and resends FIN packet,

for most of the time, it can still get ACKs from this dummyACK agent and move to

its CLOSED state even if the original server side TCP gets recycled. The specification

of TCP disconnection is therefore largely preserved. Since dummyACK waits shorter

than 2MSL, it is possible that there are still dangling FIN packets under very heavy

network congestion. As a last resort, we take advantage of the unique flow ID assigned

to each TCP connection, which is originally used for bookkeeping purposes. A TCP

agent will then ignore any packet that is not bearing the same flow ID as determined at

the connection setup time. This eventually avoids the unexpected disconnection problem.
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And we also force to recycle client side TCPs when they wait for their last ACKs for too

long.

In summary, we try our best to keep our simulations as realistic as possible, but

at the same time, still shoot for a less resource consumption. Since this optimization

facilitates fast recycling of TCP agents, it also contributes to sustaining the large number

of concurrent TCP connections discussed earlier.

A third major bottleneck of NS-2 lies in its event management. Since we use NS-2’s

event dispatcher as the main event engine for the hybrid simulator, its performance de-

termines how fast we can move the events along. The default NS-2 event dispatcher uses

a calendar queue [9, 39], which has an asymptotic O(1) time for event insertion/deletion

operations. Calendar queue schedulers perform well when they have many buckets and

each bucket (of time) has a relatively small number of events. However, in our CDN

experiments, within each second, even millisecond of simulated time, there are many

events. This is because we have a large number of simultaneously active connections,

thus a large number of packets from these connections. Each packet becomes an event

in NS-2. (In fact, in a typical run of our simulations for 600 seconds of simulated time,

the total number of events generated already far exceeds four billion, and we have to use

64-bit event IDs.) So, too many events will be mapped into one bucket, and many of the

event operations will result in a linear search in some bucket. As a result, the calendar

queue scheduler with default settings does not run very fast. Although we could adapt

the number of buckets in a calendar queue for possible speed up, it has to be done on

a case-by-case base. In fact, empirically in many cases, without tuning any parameter,

the calendar queue scheduler does not provide better event dispatching performance for

our simulations than some other schedulers based on different approaches, for example,

a heap [21] scheduler can be 20% faster.
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We choose to use a heap-based event dispatcher instead. However, the heap imple-

mentation in NS-2 suffers on event deletion operations. This is because given the pointer

to an event for deletion, the heap-based event manager in NS-2 needs to first find the

index of this event through a linear search of its entire array that stores the heap, which

is an O(N) operation. Only after finding the index, the heap can delete the element and

perform a “heapify” operation to restore heap properties. As pointed out before, at any

given simulated time point, there could be a large number of simultaneous events, so the

heap array itself can be quite large and linear searches of this array will never be fast.

These event deletion operations thus can become very slow. On the other hand, from

time to time, TCP agents have to cancel timeout timers, which are translated to deleting

the corresponding timer events. So when there are a large number of TCP connections,

there will also be a lot of event deletion operations. Therefore, the total simulation time

can be prolonged due to slow event deletions. To remedy this situation, we trade some

space for speed by adding a heap index field into each event. The index field is updated

whenever the event gets moved around in the heap array. This extra field saves the initial

linear search step in event deletions in a heap and improves the event deletion time by

more than two orders of magnitude at a price of 8 extra bytes for each event. And the

total event scheduling time is shortened by about 20–30% compared to the previous heap-

based implementation.

All the above optimizations in NS-2 are due to the large scale of our experiments,

which have high requirements on CPU processing power and memory size. However,

the final simulations are still very heavy weight, with over a thousand nodes and a

very high aggregate request rate. We run the simulator on two platforms, one is a 4-

processor/667MHz AlphaServer ES-40 with 8GB RAM and the other is a 4-way HP/Intel
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rx4610 IA-64 Itanium with 16GB RAM. Each simulation requires 2-6GB of RAM, and

generally takes 20-50 hours of wall-clock time.

3.2 Network Topology

It is not easy to find a topology that is both realistic and makes the simulation manage-

able. We choose to use a slightly modified version the NSFNET backbone network T3

topology, as shown in Figure 3.4.

In this topology, the round-cornered boxes represent backbone routers with the ap-

proximate geographical location label on it. The circles, tagged as R1, R2..., are regional

routers;1 small circles with “C” stand for client hosts; and shaded circles with “S” are the

server surrogates. In the particular configuration shown in the figure, we put 64 servers

behind regional routers R0, R1, R7, R8, R9, R10, R15, R19, where each router sits

in front of 8 servers. We distribute 1,000 client hosts evenly behind the other regional

routers, yielding a topology of nearly 1,100 nodes. The redirector algorithms run on the

regional routers that sit in front of the clients.

Based on common practice and without loosing diversity, the latencies of servers to

regional routers are set randomly between 1ms to 3ms, those of clients to regional routers

are between 5ms and 20ms, those of regional routers to backbone routers are between

1 to 10ms, and latencies between backbone routers are set roughly according to their

geographical distances, ranging from 8ms to 28ms.

To simulate high request volume, we deliberately provision the network with high

link bandwidth by setting the backbone links at 2,488Mbps, and links between regional

routers and backbone routers at 622Mbps. Links between servers and regional routers

1These can also be thought of as edge/site routers, or the boundary to an autonomous system
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Figure 3.4: Network Topology

are 100Mbps and those between clients and their regional servers are randomly between

10Mbps and 45Mbps. All the queues at routers are drop tail, with the backbone routers

having room to buffer 1024 packets, and all other routers able to buffer 512 packets.

It is worth noting that network topology generators are also used to produce synthetic

topologies in many network simulations. The types of topology generators can span

a wide range. There are random topology generators based on Waxman [82] model.

There are also structural generators like GT-ITM [10] that generate topologies based on

hierarchy, such as Transit-Stub [10] and Tiers [27]. And most recently, inspired by the

power-law properties of degree distributions discovered in Internet topology graphs [29],

there appear a series of degree-based generators such as BRITE [49] and INET [40].

An in-depth analysis of these generators is beyond the scope of this thesis, and a recent
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comparison study can be found in [77]. In contrast, our topology is based on a real back-

bone. It is both easy to manage and also provides proximity variations among nodes. It

bears the flavor of Transit-Stub model as well. Besides these generated topologies, there’s

also some recent effort on inferring an ISP’s topology [73]. Both of these generated and

inferred topologies can potentially benefit our future experiments.

3.3 Workload and Stability

We determine system capacity using a trace-driven simulation and gradually increase the

aggregate request rate until the system fails. We use a two month trace of server logs

obtained at Rice University, which contains 2.3 million requests for 37,703 files with a

total size of 1,418MB [58], and has properties similar to other published traces.

Number of Requests URL Size in Bytes

Total Max Median Min Total Max Median Min
2,290,909 47,170 6 1 1,418M 26.6M 2,529 1

Table 3.1: Rice Trace Properties

Table 3.1 gives a summary of the trace in terms of the total number of requests,

the maximum, median and minimum number of requests that a URL gets, and total,

maximum, median and minimum URL sizes in bytes. Figure 3.5 and 3.6 further visualize

different aspects of the trace. Figure 3.5 shows the cumulative URL size distribution, and

the curve is heavy-tailed. Figure 3.6 illustrates individual URL’s popularity and it roughly

follows Zipf’s Law [87]. Zipf’s Law states that if files are ordered from most popular to

least popular, the number of references to a file (P) tends to be inversely proportional

to its rank (r), i.e. P � kr �
1. All these properties of the Rice trace we use conform to

previous findings about web traces in the literature [6, 87].
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Figure 3.5: URL Size Distribution of Rice Trace

1e-05

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000 100000

P
er

ce
nt

ag
e 

in
 L

og
 S

ca
le

Access Rank in Log Scale

Figure 3.6: Popularity of URLs in Rice Trace

The simulation starts with the clients sharing the trace and sending requests at a low

aggregate rate in an open-queue model (clients keep sending requests at a rate-defined

time interval without waiting for previous ones to finish). Each client gets the name of
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the document sequentially from the shared trace when it needs to send a request, and

the timing information in the trace is ignored. The request rate is increased by 1%

every simulated six seconds, regardless of whether previous requests have completed.

This approach gradually warms the server memory caches and drives the servers to

their limits over time as described below. We configure LogSim to handle at most 512

simultaneous requests and queue the rest. The simulation is terminated when the offered

load overwhelms the servers.

We define a server as being overwhelmed when it can no longer satisfy the rate of

incoming requests and is unlikely to recover in the future. This approach is designed to

determine when service is actually being denied to clients, and to ignore any short-term

behavior which may be only undesirable, rather than fatal. Through experimentation,

we find that when a server’s request queue grows beyond 4 to 5 times the number of

simultaneous connections it can handle, throughput drops and the server is unlikely to

recover. Thus, we define the threshold for a server failure to be when the request queue

length exceeds five times the simultaneous connection parameter. Since we increase the

offered load 1% every 6 seconds, we record the request load exactly 30 seconds before

the first server fails, and declare this to be the system’s maximum capacity.

Although we regard any single server failure as a system failure in our simulation, the

strategies we evaluate all exhibit similar behavior—significant numbers of servers fail

at the same time, implying that our approach to deciding system capacity is not biased

toward any particular scheme.

Flash crowds, or DDoS attacks in bursty legitimate traffic form, are simulated by

randomly selecting some clients as intensive requesters and randomly picking a certain

number of hot-spot documents. These intensive requesters randomly request the hot

documents at the same rate as normal clients, making them look no different than other
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legitimate users. Therefore, “intensive” does not mean these requesters send requests

much faster, rather indicates that they focus on some hot-spots. We believe that this ran-

dom distribution of intensive requesters and hot documents is a quite general assumption

since we do not require any special detection or manual intervention to signal the start of

a flash crowd or DDoS attack.



Chapter 4

Performance Results

This section evaluates how the different strategies in Table 2.1 perform, both under

normal conditions and under flash crowds or DDoS attacks. Network proximity and

other factors that affect the performance of these strategies are also addressed.

4.1 Normal Workload

Before evaluating these strategies under flash crowds or other attack, we first measure

their behavior under normal workloads. In these simulations, all clients generate traffic

similar to normal users and gradually increase their request rates as discussed in Sec-

tion 3.3. We compare aggregate system capacity and user-perceived latency under the

different strategies, using the topology shown in Figure 3.4.

4.1.1 Optimal Static Replication

The static replication schemes (R-CHash, R-HRW, and their variants) use a configurable

(but fixed) number of replicas, and this parameter’s value influences their performance.

62



4.1. NORMAL WORKLOAD 63

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60

Sy
st

em
 C

ap
ac

ity
 (r

eq
s/

se
c)

Number of Server Replicas for Each URL

Figure 4.1: Finding Optimal Number of Replicas for R-HRW in 64 Server Case

Using a single replica per URL perfectly partitions the file set, but can lead to early

failure of servers hosting popular URLs. Using as many replicas as available servers

degenerates to the Random strategy. To determine an appropriate value, we varied this

parameter between 2 and 64 replicas for R-HRW when there are 64 servers available,

with the results shown in Figure 4.1. The results for R-CHash are similar. Increasing the

number of replicas per URL initially helps to improve the system’s throughput as the load

gets more evenly distributed. Beyond a certain point, throughput starts decreasing due to

the fact that each server is presented with a larger working set, causing more disk activity.

In the 64-server case—the scenario we use throughout the rest of this section—10 server

replicas for each URL achieves the optimal system capacity. For all of the remaining

experiments, we use this value in the R-CHash and R-HRW schemes and their variants.
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Figure 4.2: Capacity Comparison under Normal Load

4.1.2 System Capacity

The maximum aggregate throughput of the various strategies with 64 servers are shown

in Figure 4.2. To determine the capacity numbers, we use the failure threshold of the

server request queue length discussed at the end of Section 3.3. Here we do not plot all

the strategies and variants, but focus on those impacting throughput substantially. Ran-

dom shows the lowest throughput at 9,300 req/s before overload. The static replication

schemes, R-CHash and R-HRW, outperform Random by 119% and 99%, respectively.

Our approximation of static schemes’ best behaviors, LR-CHash and LR-HRW, yields

173% better capacity than Random. The dynamic replication schemes, CDR and FDR,

show over 250% higher throughput than Random, or more than a 60% improvement over

the static approaches and 28% over static schemes with fine-grained load control.

The difference between Random and the static approaches stems from the locality

benefits of the hashing in the static schemes. By partitioning the working set, more
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documents are served from memory by the servers. Note, however, that absolute minimal

replication can be detrimental, and in fact, the throughput for only two replicas in Fig-

ure 4.1 of Section 4.1.1 is actually lower than the throughput for Random. The difference

in throughput between R-CHash and R-HRW is 10% in our simulation. However, this

difference should not be over emphasized, because changes in the number of servers or

workload can cause their relative ordering to change. Considering load helps the static

schemes gain about 25% better throughput, but they still do not exceed the dynamic

approaches.

The performance difference between the static (including with load control) and dy-

namic schemes stems from the adjustment of the number of replicas for the documents.

FDR also shows 2% better capacity than CDR. By assigning a small number of replicas

for most (unpopular) URLs, the working set size on each server is effectively reduced. As

a result, the memory cache on each server has a higher hit rate and documents are served

faster directly from memory than from disks. On the other hand, when the load on one

server becomes too high due to some popular URLs, dynamic schemes also intelligently

migrate the load to other servers by increasing the number of replicas. Dynamic schemes

thus achieve a good balance between cache locality and server load.

Interestingly, the difference between our dynamic schemes (with only local knowl-

edge) and the FDR-Global policy (with perfect global knowledge) is minimal. These

results suggest that request distribution policies not only fare well with only local infor-

mation, but that adding more global information may not gain much in system capacity.

Examination of what ultimately causes overload in these systems reveals that, under

normal load, the server’s behavior is the factor that determines the performance limit

of the system. None of the schemes suffers from saturated network links in these non-

attack simulations. For Random, due to the large working set, the disk performance is
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Utilization CPU (%) DISK (%)
Scheme Mean Stddev Mean Stddev

Random 21.03 1.36 100.00 0.00

R-CHash 57.88 18.36 99.15 3.89
R-HRW 47.88 15.33 99.74 1.26

LR-CHash 59.48 18.85 97.83 12.51
LR-HRW 58.43 16.56 99.00 5.94

CDR 90.07 11.78 36.10 25.18
FDR 93.86 7.58 33.96 20.38

FDR-Global 91.93 11.81 17.60 15.43

Table 4.1: Server Resource Utilization at Overload under Normal Load

the limit of the system, and before system failure, the disks exhibit almost 100% activity

while the CPU remains largely idle. The R-CHash, R-HRW and LR-CHash and LR-

HRW exhibit much lower disk utilization at comparable request rates; but by the time

the system becomes overloaded, their bottleneck also becomes the disk and the CPU is

roughly 50-60% utilized on average. In the CDR and FDR cases, at system overload,

the average CPU is over 90% busy, while most of the disks are only 10-70% utilized.

Table 4.1 summarizes resource utilization of different schemes before server failures (not

at the same time point).

These results suggest that the CDR and FDR schemes are the best suited for tech-

nology trends, and can most benefit from upgrading server capacities. From past expe-

riences, the speed of CPUs and networks generally increases faster that that of disks,

and the performance gap between CPUs and disks is expected to become even larger in

the future. Shifting system bottlenecks from disks to CPUs clearly fits this trend. In

fact, the throughput of our simulated machines is lower than what can be expected from

state-of-the-art machines, but this decision to scale down resources was made to keep the
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simulation time manageable. With faster simulated machines, we expect the gap between

the dynamic schemes and the others to grow even larger.

4.1.3 Response Latency

Along with system capacity, the other metric of interest is user-perceived latency, and we

find that our schemes also perform well in this regard. To understand the latency behavior

of these systems, we use the capacity measurements from Figure 4.2 and analyze the

latency of all of the schemes whenever one category reaches its performance limit. For

schemes with similar performance in the same category, we pick the lower limit for the

analysis so that we can include numbers for the higher-performing scheme. In all cases,

we present the cumulative distribution of all request latencies as well as some statistics

about the distribution.

Figure 4.3–4.6 plot the cumulative distribution of latencies at four request rates: the

maximums for Random, R-HRW, LR-HRW, and CDR (the algorithm in each category

with the smallest maximum throughput). The x-axis is in log scale and shows the time

needed to complete requests. The y-axis shows what fraction of all requests finished

in that time. The data in Table 4.2 gives mean, median, 90th percentile and standard

deviation details of response latencies at our comparison points.

The response time improvement from exploiting locality is most clearly seen in Fig-

ure 4.3. At Random’s capacity, most responses complete under 4 seconds, but a few

responses take longer than 40 seconds. In contrast, all other strategies have median times

almost one-fourth that of Random, and even their 90th percentile results are less than

Random’s median. These results, coupled with the disk utilization information, suggest
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Figure 4.3: Response Latency under Normal Load, [Random’s limit: 9,300 req/s]
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Figure 4.5: Response Latency under Normal Load, [LR-HRW’s limit: 25,407 req/s]
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Figure 4.6: Response Latency under Normal Load, [CDR’s limit: 32,582 req/s]
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that most requests in the Random scheme are suffering from disk delays, and that the

locality improvement techniques in the other schemes are a significant benefit.

The benefit of FDR over CDR is visible in Figure 4.6, where the plot for FDR lies to

the left of CDR. The statistics also show a much better median response time, in addition

to better mean and 90th percentile numbers. This is because FDR avoids unnecessary

replication in CDR, further reducing the working set size and increasing the cache locality

on each server. FDR-Global has better numbers in all cases than CDR and FDR, due to

its perfect knowledge of server load status.

An interesting observation is that when compared to the static schemes, dynamic

schemes have worse mean times but comparable (sometimes better) medians and 90th

percentile results. We find that this behavior stems from the time required to serve the

largest files. Since generally and also verified in our trace, these large files are less popular

(being accessed less), the dynamic schemes replicate them less than the static schemes

do. As a result, these files are served from a smaller set of servers, causing them to be

served more slowly than if they were replicated more widely. This can also been seen

from the relatively large latency standard deviations of dynamic schemes, which suggest

that their latency distributions have a fairly large tail. We do not consider this behavior

to be a significant drawback, and note that some research explicitly aims to achieve this

effect [22, 23]. We will revisit large file issues in Section 4.4.2.
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Req Rate 9,300 req/s 18,478 req/s 25,407 req/s 32,582 req/s
Latency µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ
Random 3.95 1.78 11.32 6.99

R-CHash 0.79 0.53 1.46 2.67 1.01 0.57 1.98 3.58
R-HRW 0.81 0.53 1.49 2.83 1.07 0.57 2.28 3.22

LR-CHash 0.68 0.44 1.17 2.50 0.87 0.51 1.82 2.74 1.19 0.60 2.47 3.79
LR-HRW 0.68 0.44 1.18 2.50 0.90 0.51 1.89 3.13 1.27 0.64 2.84 3.76

CDR 1.16 0.52 1.47 5.96 1.35 0.55 1.75 6.63 1.86 0.63 4.49 6.62 2.37 1.12 5.19 7.21
FDR 1.10 0.52 1.48 5.49 1.35 0.54 1.64 6.70 1.87 0.62 3.49 6.78 2.22 0.87 4.88 7.12

FDR-Global 0.78 0.50 1.42 2.88 0.97 0.54 1.58 5.69 1.11 0.56 1.86 5.70 1.35 0.66 2.35 6.29

Table 4.2: Response Latency of Different Strategies under Normal Load. µ — Mean, σ — Standard Deviation.
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4.1.4 Scalability

Robustness not only comes from resilience with certain resources, but also from good

scalability with increasing resources. We repeat similar experiments with different num-

ber of servers, from 8 to 128, to test how well these strategies scale. The number of

server-side routers is not changed, but instead, more servers are attached to each server

router as the total number of servers increases.
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Figure 4.7: System Scalability under Normal Load

We plot system capacity against the number of servers in Figure 4.7. They all display

near-linear scalability, implying all of them are reasonably good strategies when the

system becomes larger. Note, for CDR and FDR with 128 servers, our original network

provision is not enough. The bottleneck in that case is the link between the server router

and backbone router, which is 622Mbps. In this scenario, each server router is handling

16 servers, giving each server on average only 39Mbps of traffic. At 600 reqs/s, even an

average size of 10KB requires 48Mbps. Under this bandwidth setup, CDR and FDR yield



4.2. BEHAVIOR UNDER FLASH CROWDS 73

similar system capacity as LR-CHash and LR-HRW, and all these 4 strategies saturate

server-router-to-backbone links. To remedy this situation, we run simulations of 128

servers for all strategies with doubled bandwidth on both the router-to-backbone and

backbone links. Performance numbers of 128 servers under these faster links are plotted

in the graph instead. This problem can also be solved by placing fewer servers behind

each pipe and instead spreading them across more locations.

4.2 Behavior Under Flash Crowds

Having established that our new algorithms perform well under normal workloads, we

now evaluate how they behave when the system is under a flash crowd or DDoS attack.

To simulate a flash crowd, we randomly select 25% of the 1,000 clients to be intensive

requesters, where each of these requesters repeatedly issues requests from a small set of

pre-selected URLs with an average size of about 6KB, but still at the same request rate

as normal clients. In most of the experiments below, we use 10 URLs. The total size of

these URLs is about 60KB, which roughly compares to a small web page with several

embedded objects.

4.2.1 System Capacity

Figure 4.8 depicts the system capacity of 64 servers under a flash crowd. In general,

it exhibits similar trends as the no-attack case shown in Figure 4.2. Importantly, the

CDR and FDR schemes still yield the best throughput, making them most robust to flash

crowds or attacks. Two additional points deserve more attention.

First, FDR now has a similar capacity with CDR, but still is more desirable as it

provides noticeably better latency, as we will see later. FDR’s benefit over R-CHash and
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R-HRW has grown to 91% from 60% and still outperforms LR-CHash and LR-HRW by

22%.
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Figure 4.8: Capacity Comparison Under Flash Crowds

Second, the absolute throughput numbers tend to be larger than the no-attack case,

because the workload is also different. Here, 25% of the traffic is now concentrated

on 10 URLs, and these attack URLs are relatively small, with an average size of 6KB.

Therefore, the relative difference among different strategies within each scenario yields

more useful information than simply comparing performance numbers across these two

scenarios.

Table 4.3 summarizes resource utilization of different schemes before server failures

at their individual maximum capacities. Again, our dynamic schemes shift the system

bottleneck from disks to CPUs, which is desirable for improving system capacity.
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Utilization CPU (%) DISK (%)
Scheme Mean Stddev Mean Stddev

Random 19.60 2.52 100.00 0.00

R-CHash 51.27 20.30 93.01 12.16
R-HRW 51.86 16.47 91.70 12.94

LR-CHash 57.38 18.64 96.91 13.86
LR-HRW 57.90 17.98 98.97 5.85

CDR 94.49 8.23 57.94 27.03
FDR 92.61 10.27 23.85 19.61

FDR-Global 91.98 11.04 7.98 13.81

Table 4.3: Server Resource Utilization at Overload under Flash Crowds

4.2.2 Response Latency

The cumulative distribution of response latencies for all seven algorithms under attack are

shown in Figure 4.9–4.12. Also, the statistics for all seven algorithms and FDR-Global

are given in Table 4.4. As seen from the figures and table, R-CHash, R-HRW, LR-CHash,

LR-HRW, CDR, and FDR still have far better latency than Random, and static schemes

are a little better than CDR and FDR at Random, R-HRW’s and LR-HRW’s failure points;

and LR-CHash and LR-HRW yields slightly better latency than R-CHash and R-HRW.

As we explained earlier, CDR and FDR adjust the server replica set in response to

request volume. The number of replicas that serve attack URLs increases as the attack

ramps up, which may adversely affect serving non-attack URLs. However, the differences

in the mean, median, and 90-percentile are not large, and all are probably acceptable to

users. The small price paid in response time for CDR and FDR brings us higher system

capacity, and thus, stronger resilience to various loads.

Again, due to more concentrated traffic on small URLs, under flash crowds, latency

numbers are slightly smaller than those under normal load.



4.2. BEHAVIOR UNDER FLASH CROWDS 76

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge
 o

f R
es

po
ns

es

Response Latency (seconds) in Log Scale

LR-HRW
LR-CHash

R-HRW
R-CHash

FDR
CDR

Random

Figure 4.9: Response Latency under Flash Crowds, [Random’s limit: 11,235 req/s]
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Figure 4.10: Response Latency under Flash Crowds, [R-HRW’s limit: 19,811 req/s]
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Figure 4.11: Response Latency under Flash Crowds, [LR-HRW’s limit: 31,000 req/s]
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Figure 4.12: Response Latency under Flash Crowds, [CDR’s limit: 37,827 req/s]
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Req Rate 11,235 req/s 19,811 req/s 31,000 req/s 37,827 req/s
Latency µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ
Random 2.37 0.64 8.57 5.29

R-CHash 0.73 0.53 1.45 2.10 0.81 0.53 1.57 2.59
R-HRW 0.73 0.52 1.45 2.11 0.76 0.52 1.51 2.51

LR-CHash 0.62 0.45 1.15 1.70 0.67 0.45 1.23 2.42 0.96 0.52 1.86 3.55
LR-HRW 0.63 0.45 1.18 1.80 0.67 0.46 1.26 2.65 1.07 0.53 2.19 3.52

CDR 1.19 0.55 1.72 5.40 1.25 0.55 1.86 5.51 1.80 0.76 4.35 6.08 2.29 1.50 4.20 6.41
FDR 1.22 0.55 1.81 5.71 1.18 0.55 1.83 5.27 1.64 0.66 3.57 5.95 2.18 1.14 4.15 6.63

FDR-Global 0.91 0.55 1.66 4.09 0.90 0.53 1.60 4.59 0.98 0.54 1.74 5.08 1.20 0.56 1.99 5.53

Table 4.4: Response Latency of Different Strategies under Flash Crowds. µ — Mean, σ — Standard Deviation.
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4.2.3 Scalability

We also repeat the scalability test under a flash crowd or attack, where 250 clients are

intensive requesters that repeatedly request 10 URLs. As shown in Figure 4.13, all

strategies scale linearly with the number of servers. Again, in the 128-server cases, we

use doubled bandwidth on the router-to-backbone and backbone links.
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Figure 4.13: System Scalability under Flash Crowds

4.2.4 Various Flash Crowds

Throughout our simulations, we have seen that a different number of intensive requesters,

and a different number of hot or attacked URLs, have an impact on system performance.

To further investigate this issue, we carry out a series of simulations by varying both the

number of intensive requesters and the number of hot URLs. Since it is impractical to

exhaust all possible combinations, we choose two classes of flash crowds. One class has

a single hot URL of size 1KB. This represents a small icon or image file. The other class
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has 10 hot URLs averaging 6KB, as before. In both cases, we vary the percentage of

the 1000 clients that are intensive requesters from 10% to 80%. The results of these two

experiments with 32 servers are shown in Figures 4.14 and 4.15, respectively.

In the first experiment, as the portion of intensive requesters increases, more traffic is

concentrated on this one URL, and the request load becomes more unbalanced. Random,

CDR and FDR adapt to this change well and yield increasing throughput. This benefit

comes from their ability to spread load across more servers. Random performs well

simply because the hot URL has a small size, and on each server, it can be kept in

memory cache due to frequent requests. As the request load becomes more focused

on this URL, Random utilizes all the servers to serve it from memory caches and gets

increasing throughput. However, CDR and FDR behave better than Random because

they not only adjust the server replica set on demand, but also maintain server locality for

less popular URLs. In contrast, R-HRW, R-CHash, LR-HRW and LR-CHash suffer with

more intensive requesters or attackers, since their fixed number of replicas for each URL

cannot handle the high volume of requests for one URL. In the 10-URL case, the change

in system capacity looks similar to the 1-URL case, except that due to a larger amount

of data being intensively requested or attacked, CDR and FDR cannot sustain the same

high throughput. We continue to investigate the effects of more attack URLs and other

strategies.

Another possible DDoS attack scenario is to randomly select a wide range of URLs.

In the case that these URLs are valid, the dynamic schemes “degenerate” into one server

for each URL. This is the desirable behavior for this attack as it increases the cache hit

rates for all the servers. In the event that the URLs are invalid, and the servers are actually

reverse proxies (as is typically the case in a CDN), then these invalid URLs are forwarded
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Figure 4.14: 1 Hot URL, 32 Servers, 1000 Clients
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Figure 4.15: 10 Hot URL, 32 Servers, 1000 Clients

to the server-of-origin, effectively overloading it. Servers must address this possibility by

throttling the number of URL-misses they forward.
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To summarize, under flash crowds or attacks, CDR and FDR sustain very high request

volumes, making overloading the whole system significantly harder and thereby greatly

improving the CDN system’s overall robustness.

4.3 Proximity

The previous experiments focus on system capacity under different loads. We now

compare the strategies that factor network closeness into server selection—Static (NPR-

CHash), Static+Load (NPLR-CHash), and Dynamic (NP-FDR)—with their counterparts

that ignore proximity. We test the 64-server cases in the same scenarios as in Section 4.1

and 4.2. Since commercial CDNs typically use Consistent Hashing based static strategies,

we do not evaluate those corresponding HRW based proximity variants.

System Capacity (reqs/sec)
Category Scheme Normal Flash Crowds

Static NPR-CHash 14409 14409
R-CHash 20411 19811

Static NPLR-CHash 24173 30090
+Load LR-CHash 25407 31000

Dynamic NP-FDR 31000 34933
FDR 33237 37827

Table 4.5: Proximity’s Impact on Capacity

Table 4.5 shows the capacity numbers of these strategies under both normal load

and flash crowds of 250 intensive requesters with 10 hot URLs. As we can see, adding

network proximity into server selection slightly decreases the system capacity in the case

of NPLR-CHash and NP-FDR. However, the throughput drop of NPR-CHash compared

with R-CHash is considerably large. Part of reason is that in LR-CHash and FDR,
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server load information already conveys the distance of a server. However, in the R-

CHash case, the redirector randomly choosing among all replicas causes the load to be

evenly distributed, while NPR-CHash puts more burden on closer servers, resulting in

unbalanced server load.

We further investigate the impact of network proximity on response latency. In

Table 4.6 and 4.7, we show the latency statistics under both normal load and flash crowds.

As before, we choose to show numbers at the capacity limits of Random, NPR-CHash,

NPLR-CHash and NP-FDR.

In Figure 4.16–4.19, we show the latency distribution of these schemes under normal

load, and the results under flash crowds are shown in Figure 4.20–4.23. Instead of plotting

relevant strategies together all the way, we use a different format. For example, under

normal load, we first plot all relevant strategies against the Random scheme at Random’s

limit of 9,300 req/s, then we plot the six schemes pair-wise at the lower capacity in each

category. We want to find out the impacts of proximity on response latency.

We can see from the tables and graphs that when servers are not loaded, all schemes

with network proximity taken into consideration—NPR-CHash, NPLR-CHash and NP-

FDR—yield better latency. When these schemes reach their limit, NPR-CHash and NP-

FDR still demonstrate a significant latency advantage over R-CHash and FDR, respec-

tively.

Interestingly, NPLR-CHash under-performs LR-CHash in response latency at its limit

of 24,173 req/s under normal load and 30,090 req/s in the case of flash crowds. NPLR-

CHash is basically LR-CHash using effective load. When all the servers are not loaded,

it redirects more requests to nearby servers, thus shortening the response time. However,

as the load increases, in order for a remote server to get a share of load, a local server has

to be much more overloaded than the remote one, inversely proportional to their distance
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ratio. Unlike NP-FDR, there is no load threshold control in NPLR-CHash, so it is possible

that some close servers get significantly more requests, resulting in slow processing and

longer responses. In summary, considering proximity may benefit latency, but it can also

impact capacity. NP-FDR, however, achieves a good balance of both.
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Figure 4.16: Proximity Impact on Response Latency under Normal Load, [Random limit:
9,300 req/s]
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Figure 4.17: Proximity Impact on Response Latency under Normal Load, [NPR-CHash
limit: 14,409 req/s]
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Figure 4.18: Proximity Impact on Response Latency under Normal Load, [NPLR-CHash
limit: 24,173 req/s]
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Figure 4.19: Proximity Impact on Response Latency under Normal Load, [NP-FDR limit:
31,000 req/s]
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Req Rate 9,300 req/s 14,409 req/s 24,173 req/s 31,000 req/s
Latency µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ
Random 3.95 1.78 11.32 6.99

NPR-CHash 0.66 0.42 1.21 2.20 0.76 0.44 1.51 2.30
R-CHash 0.79 0.53 1.46 2.67 0.82 0.56 1.63 2.50

NPLR-CHash 0.57 0.36 0.93 2.00 0.68 0.39 1.33 2.34 1.34 0.55 2.63 4.73
LR-CHash 0.68 0.44 1.17 2.50 0.71 0.48 1.43 2.19 1.04 0.50 1.95 3.44

NP-FDR 0.70 0.50 1.42 1.63 0.67 0.49 1.33 1.56 0.80 0.49 1.55 2.82 1.08 0.53 1.96 3.54
FDR 1.10 0.52 1.48 5.49 1.25 0.54 1.71 5.87 1.60 0.57 2.10 6.84 1.88 0.59 3.72 7.25

Table 4.6: Proximity’s Impact on Response Latency under Normal Load. µ — Mean, σ — Standard Deviation.
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Figure 4.20: Proximity Impact on Response Latency under Flash Crowd, [Random limit:
11,235 req/s]
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Figure 4.21: Proximity Impact on Response Latency under Flash Crowd, [NPR-CHash
limit: 14,409 req/s]
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Figure 4.22: Proximity Impact on Response Latency under Flash Crowd, [NPLR-CHash
limit: 30,090 req/s]
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Figure 4.23: Proximity Impact on Response Latency under Flash Crowd, [NP-FDR limit:
34,933 req/s]
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Req Rate 11,235 req/s 14,409 req/s 30,090 req/s 34,933 req/s
Latency µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ
Random 2.37 0.64 8.57 5.29

NPR-CHash 0.61 0.42 1.15 1.76 0.63 0.41 1.08 2.34
R-CHash 0.73 0.53 1.45 2.10 0.73 0.52 1.38 2.50

NPLR-CHash 0.53 0.36 0.90 1.75 0.55 0.35 0.91 2.29 1.29 0.61 2.65 3.94
LR-CHash 0.62 0.45 1.15 1.70 0.64 0.44 1.13 2.56 0.90 0.49 1.73 3.44

NP-FDR 0.70 0.50 1.45 1.68 0.66 0.45 1.34 1.63 0.81 0.47 1.64 2.55 0.99 0.51 1.92 3.26
FDR 1.22 0.55 1.81 5.71 1.07 0.54 1.67 5.47 1.60 0.66 3.49 5.90 1.84 0.78 4.15 6.31

Table 4.7: Proximity’s Impact on Response Latency under Flash Crowds. µ — Mean, σ — Standard Deviation.
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4.4 Other Factors

4.4.1 Heterogeneity

To determine the impact of network heterogeneity on our schemes, we explore the impact

of non-uniform server network bandwidth. In our original setup, all first-mile links

from the server have bandwidths of 100Mbps. We now randomly select some of the

servers and reduce their link bandwidth by an order of magnitude, to 10Mbps. We

want to test how different strategies respond to this heterogeneous environment. We pick

representative schemes from each category: Random, R-CHash, LR-CHash and FDR and

stress them under both normal load and flash crowd similar to network proximity case.

Table 4.8 summarizes our findings on system capacities with 64 servers. Again, for static

strategies, we focus on CHash based schemes, which are typically used in commercial

CDN systems.

Portion of Slower Links
Redirection Normal Load Flash Crowds

Schemes 0% 10% 30% 0% 10% 30%
Random 9300 8010 8010 11235 8449 8449
R-CHash 20411 7471 7471 19811 7110 7110

LR-CHash 25407 23697 19421 31000 26703 22547
FDR 33237 31000 25407 37827 34933 29496

Table 4.8: Capacity (reqs/sec) with Heterogeneous Server Bandwidth,

From the table we can see, under both normal load and flash crowds, Random and

R-CHash are hurt badly because they are load oblivious and assign requests to servers

with slower links without explicit monitoring their status, thereby overload them early.

In contrast, LR-CHash and FDR only suffer a slight performance downgrade. However,
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FDR still maintains an advantage over LR-CHash, due to its dynamic expanding of server

set for hot URLs.

4.4.2 Large File Effects

As we discussed at the end of section 4.1.3, the worse mean response times of dynamic

schemes come from serving large files with a small server set. Our first attempt to remedy

this situation is to handle the largest files specially. Analysis of our request trace indicates

that 99% of the files are smaller than 530KB, so we use this value as a threshold to trigger

special large file treatment. For these large files, there are two simple ways to redirect

requests for them. One is to redirect these requests to a random server, which we call

T-R (tail-random). The other is to redirect these requests to a least loaded member in a

server set of fixed size (larger than one), which we call T-S (tail-static). Both of these

approaches enlarge the server set serving large files. However, we do not achieve this

through imposing new strategies for large files, we instead simply use a random and fixed

server set for them. Therefore, for large files. T-R and T-S are comparable to random

and static schemes. We repeat experiments of the 64 server cases in Section 4.1 and 4.2

using these two new approaches, where T-S employs a 10-replica server set for large

files in the distribution tail. Handling the tail specially yields slightly better capacity

than standard CDR or FDR, but the latency improves significantly. Table 4.9 summarizes

latency results under normal load. As we can see, the T-R and T-S versions of CDR and

FDR usually generate better latency numbers than LR-CHash and LR-HRW, and also

show a much smaller latency standard deviation than plain CDR and FDR, indicating a

reduced latency distribution tail. Results under flash crowds are similar. This confirms

our assertion about large file effects.



4.4.
O

T
H

E
R

FA
C

T
O

R
S

93

Req Rate 9,300 req/s 18,478 req/s 25,407 req/s 32,582 req/s
Latency µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ µ 50% 90% σ

LR-CHash 0.68 0.44 1.17 2.50 0.87 0.51 1.82 2.74 1.19 0.60 2.47 3.79
LR-HRW 0.68 0.44 1.18 2.50 0.90 0.51 1.89 3.13 1.27 0.64 2.84 3.76

CDR 1.16 0.52 1.47 5.96 1.35 0.55 1.75 6.63 1.86 0.63 4.49 6.62 2.37 1.12 5.19 7.21
CDR-T-R 0.78 0.52 1.43 2.77 0.76 0.52 1.40 2.80 1.05 0.57 1.90 3.06 1.58 0.94 3.01 3.55
CDR-T-S 0.74 0.52 1.43 2.17 0.72 0.52 1.38 2.44 1.01 0.56 1.93 2.96 1.53 0.68 3.69 4.18

FDR 1.10 0.52 1.48 5.49 1.35 0.54 1.64 6.70 1.87 0.62 3.49 6.78 2.22 0.87 4.88 7.12
FDR-T-R 0.78 0.52 1.43 2.77 0.75 0.52 1.40 2.82 1.01 0.57 1.87 2.98 1.39 0.77 2.82 3.68
FDR-T-S 0.74 0.52 1.43 2.17 0.72 0.52 1.37 2.55 0.98 0.56 1.84 2.95 1.41 0.63 2.88 3.88

Table 4.9: Response Latency with Special Large File Handling, Normal Load. µ — Mean, σ — Standard Deviation.
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4.4.3 Dynamic Strategy with Different Hashing Schemes

At the end of Section 2.2.4, we explain that CHash-based CDR and FDR do not perform

as well as HRW-based CDR and FDR. Here, we present some of our test results. Fig-

ure 4.24 and 4.25 compare the throughput of CHash-based CDR and HRW-based CDR

under both normal workload and flash crowds, with the number of servers ranging from

8 to 64. The results for FDR are similar.

From these graphs, we can see using Consistent Hashing to implement our dynamic

strategies such as CDR and FDR does not yield as good as performance as using HRW

hashing, and sometimes much worse. This is mainly because in HRW hashing, different

URLs have a different order of accessing the servers. However, in CHash, the load

migration among servers will take a uniform pattern for different URLs; and the less-

popular URLs that may have overlapping servers with popular URLs are unlikely to

have some other less-loaded nodes in their replica sets. Meanwhile, in CHash, uniform

migration not only spreads load to different servers but also increases the working set

size on each server. As each server keeps seeing a larger and larger working set size

uniformly, cache locality on these servers is reduced and eventually it turns into a round-

robin scheme.

4.5 Summary

In this chapter, we present our simulation results on different request redirection strate-

gies. Through these simulations, we demonstrate that our newly proposed dynamic

strategies can yield 60%-91% throughput benefit compared to the existing best published

schemes, client perceived latency remains low and the system scales well with the number

of server surrogates. These improvements make CDNs using our dynamic schemes not
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Figure 4.24: CHash-based CDR vs. HRW-based CDR: Throughput under Normal Load
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Figure 4.25: CHash-based CDR vs. HRW-based CDR: Throughput under Flash Crowd

only more responsive across a wide range of loads but also more robust in the face flash

crowds or DoS attacks.
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These improvements come from our success in shifting the system bottleneck from

disks to CPUs. This shift fits the technology trends well, where the performance gap

between CPUs and disks is expected to become even larger in the future. It suggests that

CDR and FDR benefit most from upgrading server capacities. Due to the limitation of our

simulation environment, currently we can only simulate 128 servers with relatively small

capacity. We expect that CDR and FDR can scale easily to thousands of servers, and

with faster simulated machines, the performance gap between these dynamic schemes

and the others will grow even larger. When the CDN system grows beyond tens of

thousands of servers, we can leverage hierarchy by dividing the servers into geographical

or topological regions.

We also investigate the behavior of different strategies under network heterogeneity

and how intra-region proximity information can impact the request redirection perfor-

mance. Again, our dynamic strategies yield the best performance.

Our dynamic redirection strategies improve CDN robustness through efficiently man-

aging CDN resources and maintaining a balance between load, locality and proximity.

We believe these successful experiences are not limited to just CDNs. In similar systems,

such as peer-to-peer systems and distributed storage systems, there are also constrained

resources and conflicting factors. Efficiently managing system resources will be a key in

making these systems robust, and we think our algorithms can naturally be extended to

those areas.



Chapter 5

CDN Deployment — CoDeeN

Recent developments in building large-scale network testbed [61] and emulation or sim-

ulation environments [80, 84] provide us with the opportunities to build an experimental

CDN. We choose to construct our prototype CDN, named CoDeeN, on top of Planet-

Lab [61, 63]—an open testbed for developing, deploying and accessing planetary-scale

services. PlanetLab provides an overlay network that can be used to both experiment

with new network services and let users access them, which meets our goals of building

CoDeeN. This chapter first briefly introduces PlanetLab testbed, describes how we built

CoDeeN atop it and discusses the problems we encountered.

5.1 PlanetLab

Recently, with the emergence of a new class of geographically distributed network ser-

vices, such as network-embedded storage, peer-to-peer file sharing and robust routing

overlays, testbed environments for designing, evaluating and deploying these services are

gaining importance. In [61], it is advocated that the most effective way to facilitate such

97
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a new service-oriented network architecture is to use an overlay-based testbed, which

supports both researchers that want to develop new services and clients that want to use

them. The rationale is that the Internet is now less and less influenced by research but

increasingly shaped by commercial interests. It becomes harder to test and introduce new

services, especially disruptive ones, directly into the Internet. Overlays provide the right

opportunity for innovation because they can be quickly programmed without having to

compete with the Internet for performance and reliability, etc.

PlanetLab, an open, globally distributed overlay testbed for developing, deploying

and accessing planetary-scale network services, is now being built through a multiple-

institution effort [63]. As of June 2003, PlanetLab has about 160 nodes dispersed to 65

sites in 16 countries [42]. They span widely across North America, Europe, Asia, and

Australia. These nodes are Linux-based PCs and have a diversity of connectivity, not

only located in universities and research institutions, but also in co-location and routing

centers, and homes (DSL lines and cable modems). Figure 5.1 shows a snapshot of the

current nodes on PlanetLab.

We choose to build our academic prototype CDN, named CoDeeN, on top of Plan-

etLab. PlanetLab provides us with realistic network conditions and diverse perspectives

on the Internet in terms of connection properties, network presences, and geographical

locations. It allows us to build a CDN at a large scale, and conduct different research

experiments under various situations. However, CoDeeN has to share the same set of

distributed resources on PlanetLab with other services. Therefore, unlike commercial

CDNs, CoDeeN does not have fully dedicated and highly reliable resources.
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Figure 5.1: Nodes on PlanetLab

5.2 CoDeeN

CoDeeN is an academic prototype Content Distribution Network built on top of Plan-

etLab. Different from commercial CDNs, CoDeeN is both an experimental system for

research projects and also a useful service for users on PlanetLab and beyond. This

section first explains our design choices in building CoDeeN, then describes the proxy

API we use and how we construct CoDeeN. After explaining how we monitor CoDeeN

status, we also discuss a few pragmatic issues and some ongoing projects based on

CoDeeN.

5.2.1 Design Choices

A Content Distribution Network has two main components—server surrogates and re-

quest redirectors. Server surrogates need to be widely spread and request redirectors
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need to be able to “intercept” client requests. To build a CDN, we have to implement

both of these elements. Nodes on PlanetLab form an overlay network with diverse

connection and location properties. These nodes are widely dispersed, and become a

natural choice to place CoDeeN server surrogates that cache the content from the origin

servers. However, on PlanetLab, we do not have the luxury of controlling the authoritative

DNS servers. Therefore, the augmented DNS approach used by commercial CDNs to

implement request redirectors does not apply here. We have to use nodes on PlanetLab as

CoDeeN request redirectors as well, but in a classical forward proxy setup. Such a proxy-

based request redirector scheme implies that we will adopt an opt-in service model, where

a user has to point to his browser to one of the proxies of CoDeeN (preferably close to

him) if he wants to take advantage of CoDeeN. This minor configuration change does not

cause much inconvenience in particular, because most services built atop PlanetLab take

some form of an overlay application and probably need some adjustments on the client

side if the client wants to use them.

We decided to use PlanetLab nodes to implement both CoDeeN surrogates and redi-

rectors, and then the next problem is how. We can certainly partition all the PlanetLab

nodes we employ for CoDeeN into two separate sets, one for server surrogates and the

other for request redirectors. However, to better utilize these nodes and consider the fact

that each node has plenty of resources, we can also make some nodes both a surrogate

and a redirector. We can implement both these functionalities using the same proxy

software—configuring it as a reverse (caching) proxy for a server surrogate and as a

forward proxy with redirecting capability for a request redirector. For those hybrid nodes,

they are then both a redirecting proxy and a caching proxy. Their dual use allows them

to map local client requests missed in their own cache to other caching proxies and at the

same time to satisfy the redirected requests from remote clients if desired. However, we
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have to be careful about deploying hybrid proxies. For example, a PlanetLab node with a

relatively low bandwidth connection can be used as a request redirector (forward proxy)

for local clients, but is not suitable for being a server surrogate (reverse proxy) to serve

requests of clients from other locations with faster links.

CoDeeN thus consists of a network of Web caching proxies. This configuration, espe-

cially using proxies as redirectors, also conforms to the model we used in our simulations.

In addition, proxies can keep track of different activities and generate useful logs/profiles

of traffic patterns. Moreover, deploying a network of open proxies at a large scale opens

the doors to a lot of interesting research issues such as security and proxy monitoring

and management. So far, little has been published in the literature about managing such

networks of open proxies.

The remaining problem is to find a proper proxy server to build CoDeeN. One possible

choice is to use an open-source proxy server such as Squid [74]. However, the overhead

to change proxies like Squid is very high, which requires blending our redirection logic

into the proxy core. This implies not just a large amount of work (Squid has 60,000 lines

of code), but also means we have to engage in tuning the proxy performance after adding

our extensions. Since our focus is not on building fast proxy servers, and we do not want

to delve into the details of HTTP processing, what we need is a proxy that has both high

performance and a high-level programmable interface allowing us to easily modify the

request handling process. Fortunately, iMimic donated its DataReactor [38] proxy servers

to PlanetLab, which possess exactly these two properties. Below, we discuss how we use

DataReactor proxy servers to construct CoDeeN.
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5.2.2 CoDeeN Implementation

As noted above, a proxy-based approach to build CoDeeN requires a high performance

proxy server that can be easily customized according to our needs, such as redirecting

requests and caching content. iMimic’s DataReactor proxy server is such a candidate.

It is a full-fledged proxy capable of handling multiple protocols, which relieves us from

dealing with the gory details of HTTP. More importantly, it has a flexible and efficient

application programming interface (API) for customizations [59].

This API facilitates the development of customized content adaptation, content man-

agement and specialized administration features. It provides the infrastructure required

to process HTTP requests and responses at a high level. This API allows user modules

(add-on functions) to be directly loaded into the core of the proxy cache and run services

either on the proxy system or on a separate server as desired. With an API-enabled proxy

server, the client sends a request to the proxy and the proxy interprets the request and

compares it with the content it caches locally. If the request is a cache hit, the proxy

gets the content from its local storage system and returns it to the client. Otherwise,

the proxy has to contact the remote server to get the most up-to-date version of the

requested object and possibly stores a copy for future similar requests. During these

interactions, there are many places where special treatments, such as content adaptations,

can be launched. This is achieved through the API allowing user specified modules

to register callbacks to the proxy. These callbacks are special functions with defined

inputs and outputs that are invoked by the proxy on events in the HTTP processing flow.

Examples of HTTP processing events include the completion of receiving request or

response headers, the arrival of request or response body content, the completion of the

entire HTTP transaction, and timer events. To handle these events, user modules need to
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specify a group of callback function pointers to the proxy core. If a module is interested

in a certain event (callback point), it can specify a non-NULL function entry for that

event. Otherwise, a NULL function pointer means that the module wants to receive no

notification for the corresponding event. The API also allows the module to keep its own

state in a private data structure and clean it up if desired when the transaction is complete.

In addition, the API allows the module to access configuration fields specified in one

or multiple configuration files. These configuration fields can be used to set different

parameters in the module at runtime without modifying the module’s source code.

To implement CoDeeN, we install DataReactor proxy servers on selected PlanetLab

nodes, and use them both as request redirectors and server surrogates as much as possible.

Figure 5.2 presents a very high level overview of different scenarios. If a proxy node

(such as Proxy A and Proxy E) does not have a well-provisioned network connection, we

keep it simply as a redirector, a forward proxy that caches recently-accessed pages for

local users. For example, a local client sends a request to Proxy A and the requested

content is missed in Proxy A’s cache, Proxy A redirects the request to some server

surrogate on CoDeeN, but other proxies do not forward requests to Proxy A. Otherwise, a

proxy without connectivity constraints also acts as a caching surrogate (reverse proxy) for

all the CoDeeN users, such as Proxy B, C and D. As seen in Figure 5.2, if a local client’s

request causes a miss in Proxy B, Proxy B redirects this request to some surrogate, and the

chosen surrogate could be a remote one or a local one in Proxy B itself, depending on the

URL and the redirection strategy. In other words, a CoDeeN proxy is at least a redirector.

CoDeeN users need to connect to one of the CoDeeN proxies, and their requests will then

be intercepted and handled by the redirector. Logically, a CoDeeN proxy can include two

entities, a redirector and a surrogate. But in practice, they are blended into one single

proxy server loaded with our redirector module.
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Figure 5.2: CoDeeN Proxy Server Logical Setup

Caching is a built-in functionality of the DataReactor proxy servers. When a sur-

rogate proxy is chosen to be responsible for the requested URL, it is able to get the

content from the origin server and cache it if appropriate. Therefore, our main focus

here is not on the surrogate, but on the redirector’s logic. To separate concerns, we

choose to develop a general redirector infrastructure, and keep the redirection strategies

independent of the redirector mechanisms. We present to the redirector an abstraction

of a redirection strategy in the form of a server selection function. This function takes

a URL and a list of surrogates as inputs and returns an appropriate server surrogate for

that URL. By doing this, we can easily replace different redirection strategies without

changing the general redirector infrastructure. In fact, we make the redirection strategy

as a configuration parameter, allowing us to experiment with different strategies we have

studied in Section 2.2 conveniently.
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With separate redirection strategies and a flexible proxy API, the redirector logic

seems simple to construct at first. However, our real implementation turns out more

involved. As pointed out in Section 5.1, CoDeeN does not have dedicated and reliable

resources, therefore, the proper functioning of CoDeeN relies more on our ability to

monitor the health of CoDeeN proxy servers and detect abnormal conditions. We spend

quite some effort on building effective monitoring facilities for redirectors. On the other

hand, CoDeeN is a network of open proxies that do not restrict their client population to

PlanetLab participant sites. This feature opens a number of security issues for CoDeeN.

We also employ different mechanisms to keep CoDeeN from being abused. More detailed

information about CoDeeN monitoring can be found in Section 5.2.3 and security issues

are covered in Section 5.2.4. Here, we present the general control flow of CoDeeN

redirectors.

When a redirector module gets loaded, its initialization function first starts the boot-

strap process, with the help of several configuration files. It prepares for CoDeeN moni-

toring facilities, which includes opening a UDP socket for heartbeat messages and spawn-

ing a helper process to test HTTP/TCP level connectivity to other redirectors. In order

to get notified when the UDP socket is ready, it needs to register the interest in that

socket to the proxy core. Meanwhile, it also initializes request rate estimation/control

and other logging data structures. The actual bookkeeping and monitoring activities

will be addressed more thoroughly later on. To control these monitoring and logging

behaviors, an API-provided timer is employed to perform various activities at different

time intervals. Another task of the initialization is to get the list of the server surro-

gates currently available on CoDeeN. This list is now obtained through reading from a

configuration file distributed among all CoDeeN redirectors. We are also investigating

other ways of disseminating and updating this information. The server list also implicitly
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decides whether to use this local proxy as a server surrogate, depending on whether or

not it appears on the list. Besides knowing all the available server surrogates, a redirector

also needs to select its server selection function, which is decided through reading the

redirection strategy option from its local configuration file.

On receiving the full URL and headers of a request, the redirector module does

various sanity checks on the client IP address and the URL, mainly for security and

robustness reasons. We first check to see if the client IP address is from some known

attackers or bad users. If that is the case, an error response will be returned to the client.

This protects CoDeeN proxies from being disrupted by malicious traffic. The request

header function also decides if the client is from the local domain, other PlanetLab sites

or outside world. This classification information will later be used for making request

redirection decisions. Next, the module examines the request headers and ignores any ill-

formed request. If the IP address and URL are normal, the redirector decides if the request

has been forwarded from a peer proxy on CoDeeN. The way requests get forwarded from

one proxy to another on CoDeeN is through passing along with the modified request two

extra header fields starting with an ‘‘x’’ that bear the original request information.

When a redirector decides that a particular request needs to be redirected, it rewrites the

URI and the “host” header field of the request such that the changed request is destined

to the target proxy. It also adds to the forwarded request an extra field to indicate the

original URI and another extra field to indicate the original host. According to HTTP

protocol [31], any header field starting with an ‘‘x’’ is not a standard HTTP header.

So these special header fields will not interfere with normal HTTP transactions. On the

target proxy side, if it sees these two special fields, it knows that the request has been

forwarded to it and recovers the original request from these two special headers. As long

as the target proxy behaves as a server surrogate, it has to fulfill this request on behalf of
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its peer proxy and contact the origin server if needed. If there are no such special headers,

the request must be directly sent from a CoDeeN user connected to this proxy. The

redirector then takes further actions based on the client address classification information

and the target website. Currently, a client outside of PlanetLab is given less freedom,

only allowed for HTTP GET requests and more constrained on what sites it can access

and how much bandwidth it can consume. Some restricted or private sites will only be

accessible to local users. These measures are used to protect CoDeeN from being abused,

and we discuss more about these rationales in Section 5.2.4. If the request does not need

any special treatment, the server selection (request redirection) function will be called

at this time to decide which surrogate is the best for serving this request. If the chosen

surrogate is a remote one, this redirector needs to modify the request, replacing the first

line and “host” field with new ones that destined to the target surrogate proxy and adding

extra ‘‘x’’-starting fields to preserve the original request. Using these extra header

fields proves to be fairly easy to implement request redirection among CoDeeN proxies,

however, we are also working on forwarding schemes with stronger authentications.

When a request is sent out to a remote node on a local cache miss, we do some load

status bookkeeping. The remote node can be either a remote proxy in the case of a request

redirection, or the origin server if the local proxy is the server surrogate responsible for

the request. We count the number of requests sent to each remote proxy and use it as a

local load approximation as we did in our simulations.

We keep track of the bandwidth usage for each request when the response header and

body come back. If the initial connection with the remote node fails, we can discover it

inside the response header function through a special status flag set by the API.

We have a 1-second timer in each CoDeeN redirector module. In the timer han-

dler function, from time to time, we dump performance statistics to files and re-read
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configuration files if there is any change. We also update request rate accounting data,

and launch heartbeat messages and HTTP/TCP connectivity tests. Redirector specific,

coarser-grained timers are thus implemented using this 1-second timer.

Our entire redirector module now consists of about 5,000 lines of code, including

the monitoring routines discussed in next section. Currently, DataReactor proxies loaded

with our redirector module have been installed on over 40 PlanetLab nodes, using a slice

(princeton9) of PlanetLab resources. CoDeeN is already fully operational and evolving

quickly. Table 5.1 gives a list of 40 nodes that are public to CoDeeN users as we

announced CoDeeN’s alpha test in July 2003. Proxies on these nodes are configured

as both redirectors and surrogates.

5.2.3 Monitoring CoDeeN

As we see from Table 5.1, CoDeeN now has one instance running per site for most

of the North American educational sites that host PlanetLab, and it keeps expanding

to other PlanetLab nodes. Operating and managing such a network of web proxies

requires careful monitoring of the health of each node, especially when CoDeeN shares

the same set of distributed resources with other services on PlanetLab. An overloaded

or dead proxy should certainly be avoided by other peers. Monitoring current status

of each CoDeeN node provides useful information for CoDeeN’s operation, moreover,

accumulated history of status can be a good indicator of future behaviors. To avoid a

centralized scheme, each CoDeeN instance operates independently, and uses heartbeat

messages to try to determine what other nodes are alive and worth using. The load

information is gathered from time to time, and stored into the local disk on each proxy

every 30 seconds. The stored information can later be reloaded when the proxy reboots,
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avoiding losing all the performance history after a node becomes off-line for some time.

The summary of this information is also published and updated automatically on the

CoDeeN central status page [53]. This section discusses how each CoDeeN redirector

monitors its own proxy state, the state of the node, and gathers information about other

nodes.

A redirector in a CoDeeN proxy collects and maintains some information about the

proxy itself, such as how long it has been alive (proxy uptime). In the API timer handler

function, we also count the average number of requests per hour the proxy handles. This

number gives an approximation of how busy the proxy is recently.

To collect the load information of the local CoDeeN node, a redirector uses sev-

eral system tools, such as “uptime”, “top” and “vmstat’, and also gets help from some

specially-designed self-testing routines. Using “uptime”, we know how long the actual

node has been alive. We obtain the system load averages for the past 1, 5 and 15 minutes

from “top”. We then use the maximum of these 3 numbers as the representative system

load value, which indicates how many active processes are competing for CPU. Another

load indicator is how much CPU time is spent in the operating system. We gather readings

of system CPU utilization through “vmstat” and report the maximum number for the last

3 minutes. A value over 95% implies that the system is not stable at that time. This is

based on our empirical experiences that while some applications do spend most of their

time in the OS, few spend much more than 90%. Even with some PlanetLab special

accounting routines in the kernel, the system CPU time can be high, but over 95% is very

rare. Besides recording these numbers reported by the system, a redirector also conducts

its own tests on some of the local node resources. For example, since the proxy needs

to open a number of sockets for accepting and redirecting client requests, free sockets

(file descriptors) become an important resource. Meanwhile, since each proxy shares
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Node Name IP address

planetlab1.cs.ubc.ca 142.103.2.1
planetlab1.cs.arizona.edu 150.135.65.2
planetlab2.millennium.berkeley.edu 169.229.51.251
planetlab-1.cmcl.cs.cmu.edu 128.2.198.188
planlab1.cs.caltech.edu 131.215.45.71
planetlab1.comet.columbia.edu 128.59.67.200
planetlab1.cs.cornell.edu 128.84.154.49
planetlab1.cs.duke.edu 152.3.136.1
lefthand.eecs.harvard.edu 140.247.60.123
planetlab2.cnds.jhu.edu 128.220.231.3
kupl1.ittc.ku.edu 129.237.123.250
planetlab1.lcs.mit.edu 18.31.0.190
planetlab2.cs.northwestern.edu 129.105.44.81
planet1.scs.cs.nyu.edu 216.165.109.81
planetlab-1.cs.princeton.edu 128.112.152.122
planetlab2.cs.purdue.edu 128.10.19.53
ricepl-1.cs.rice.edu 128.42.6.143
planet2.cs.rochester.edu 128.151.65.102
planet1.ecse.rpi.edu 128.113.50.102
planetlab2.rutgers.edu 165.230.49.115
planetlab-1.stanford.edu 171.64.64.216
pl1.ece.toronto.edu 128.100.241.67
planetlab1.cs.ucla.edu 131.179.112.70
planetlab1.cs.uchicago.edu 128.135.11.149
planet1.cs.ucsb.edu 128.111.52.61
planetlab1.ucsd.edu 132.239.17.224
planetlab1.cs.uiuc.edu 192.17.239.250
planetlab1.netlab.uky.edu 206.240.24.20
planetlab1.cs.umass.edu 128.119.247.210
planetlab1.eecs.umich.edu 141.213.4.201
planetlab1.cis.upenn.edu 158.130.6.254
planetlab2.flux.utah.edu 155.98.35.3
planetlab1.csres.utexas.edu 128.83.143.152
pl1.cs.utk.edu 160.36.57.172
planetlab1.cs.virginia.edu 128.143.137.249
planetlab01.cs.washington.edu 128.95.219.192
planetlab1.cs.wayne.edu 141.217.16.210
planetlab1.cs.wisc.edu 198.133.224.145
vn1.cs.wustl.edu 128.252.19.20
planet1.cc.gt.atl.ga.us 199.77.128.193

Table 5.1: Current Public CoDeeN Nodes on PlanetLab
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resources with other services multiplexed on the same PlanetLab node, it is possible that

the system runs out of free file descriptors sometimes. If that happens, the proxy should

not be regarded as a good target for request redirection. To determine whether or not a

proxy is suitable to be a recipient of requests, we test to see if we can open a number of

sockets (e.g. 50) from time to time. If there is a problem during this test, we will record

it as a file descriptor exhaustion incident, otherwise it is simply a success. The interval

between file descriptor tests is configurable and currently set to be 2 seconds. We keep

a history of last 32 tests. If all tests succeed for the past 32 tests, we determine that the

proxy is fit, at least from the free sockets point of view (FdTst). Otherwise, the proxy is

deemed to be not good for receiving requests due to running out of file descriptors. At this

point, additional local system resource testing mechanisms are also under investigation.

To monitor the reachability and gather load status of other peer proxies, each redirec-

tor in a CoDeeN proxy employs the following two mechanisms—a UDP-based heartbeat

to exchange load information and a wget helper process to test HTTP/TCP level con-

nectivity. Here, the peer proxies refer to those server surrogates listed in the CoDeeN

surrogate configuration file. We use UDP-based heartbeat because even when local file

descriptors are exhausted, the UDP port still works, and we can still exchange information

with peers. On the other hand, UDP packets can be dropped or lost, we use this loss or

drop rate as an estimate of congestion. However, TCP tries to send packets reliably and

we cannot gather packet loss information.

� UDP-based heartbeat. As discussed earlier, at initialization, each proxy maintains

an open UDP socket for sending and receiving heartbeat messages. When a timer

expires (every second), a proxy (A) sends a heartbeat request message to one of its

peer proxies (B). When the peer (B) receives this request message, B responds to A

with a UDP acknowledgment indicating it is alive and also piggybacking B’s own
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load information. The piggybacked load information includes B’s average load

(LoadAvgs), system time CPU percentage (SysPtCPU), whether file descriptors

have been exhausted recently (NoFd), proxy and node uptime (NdUptime, PxUp-

time), and average requests handled per hour (ReqsHour). If B is configured as or

believes itself that it should not handle redirected requests, it can also explicitly say

so in the acknowledgment. However, this acknowledgment heartbeat message can

get delayed or lost. To account for these events, we record the sending time of each

heartbeat request message and also maintain a history of late ACKs (LateAcks)

and missed ACKs (MissAcks) for each peer. Over time, proxy A sends heartbeat

messages to all its peers and learns whether or not each peer proxy is alive or

overloaded. By doing this, A obtains a view of all CoDeeN proxies and decides

whether or not to avoid redirecting requests to certain peers. This UDP-based

heartbeat scheme also permits a summary request, which will trigger the receiver to

send a summary of its local view of the entire CoDeeN network to the sender. This

summary can be useful for both quick load information exchanges and external

monitoring. Figure 5.3 depicts the format of heartbeat messages.

� WGET helper process. The above heartbeat scheme provides an internal ping

facility for peer proxy monitoring. In addition to this UDP-based approach, we

also use external tools to test HTTP/TCP connections and provide this information

to our proxy modules. This is because UDP-based heartbeat cannot capture certain

types of failures. For example, sometimes, due to site administrators’ port filtering

on TCP connections, although UDP packets can be exchanged without obstruction,

HTTP/TCP level connection to the proxies cannot be established. The external tool

we choose is “GNU wget” [34], which is a free software package for retrieving
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#define HBI QUERY 0x000 /* must be zero */
#define HBI ACK 0x001
#define HBI FDEXHAUST 0x002
#define HBI DONOTSEND 0x004
#define HBI SUMMARYQUERY 0x100
#define HBI VERSION 11

typedef struct HeartbeatInfo
�

int hi statusVec; /* HBI xxx code defined above */
int hi versionNum;
int hi loadAvg; /* load from uptime, rounded up */
int hi sysPctCPU; /* how much cpu is system using */
int hi proxUptime; /* how many seconds proxy has been up */
int hi nodeUptime; /* how many seconds node has been up */
int hi reqsPerHour; /* not a true count - just an approx */�
HeartbeatInfo;

Figure 5.3: Heartbeat Message Format

files using protocols like HTTP, HTTPS and FTP. Here, we only use wget’s HTTP

capability. As described earlier, in each CoDeeN proxy’s initialization phase,

we spawn a helper process from our redirector module. The helper process then

communicates with the main proxy module through a UNIX socket [75]. It reads

wget-test instructions from the main proxy module through the socket and launches

another child process of its own executing the corresponding wget command. The

helper process uses a timer to keep track of the progress of its wget child process

and kills it if it is still trying when the timer expires. Whether the wget command

is successful or not, the helper process reports the result to the main proxy module.

The way we use wget to test whether a proxy works properly is as follows. We

maintain a fake webserver listening on a special port in each CoDeeN proxy, and

this fake webserver is used solely for the wget measurement. Instead of launching

wget directly toward the fake webserver of a target peer proxy, we use a level of
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indirection and configure wget to use one of CoDeeN’s proxies as its “http-proxy”.

This can be easily achieved through setting the corresponding environment variable

of wget. For example, we can have wget on A to get a web page from a target fake

webserver on C through an “http-proxy” B. Here, A, B and C are all CoDeeN

proxies. And the webpage we ask for from C is not cacheable, so it will not be

directly satisfied or forwarded at B and has to be fetched from C by B. Thus,

without disturbing other outside nodes, we are able to test from A whether B’s

proxy is working and whether C is reachable. Both the wget proxy and the wget

target will be iterated through the server surrogate list over time. We keep a history

of the failed past wget tests for each peer both as a wget proxy (WgetProx) and as

a wget target (WgetTarg). Combining this wget test information with the previous

heartbeat information, we then determine whether or not a peer proxy should be

used for receiving redirected requests.

To summarize, we present a snapshot of the collected information at one of the

CoDeeN proxies (planetlab-1.cs.princeton.edu) below. The first part includes its own

load status and its local view of other CoDeeN proxies, and the second part is how other

proxies on CoDeeN think of this proxy.

planetlab-1.cs.princeton.edu

FdTstHst: 0x0

ProxUptm: 36707

NodeUptm: 111788

LoadAvgs: 0.18 0.24 0.33

ReqsHrly: 5234 3950 0 788 1004 275 2616

SysPtCPU: 2 2 1 3 2 4
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planetlab-1.cs.princeton.edu’s view of CoDeeN

Liveness: ..X.. ..X.. ..... .X.XX ..... ...X. ..... .....

MissAcks: 10w00 00001 00000 0w066 00010 000v0 00020 00000

LateAcks: 00000 00000 00000 00000 00000 00000 00000 00000

NoFdAcks: 00000 00000 00000 00000 00000 00000 00000 00000

VersProb: 00000 00000 00000 00000 00000 00000 00000 00000

MaxLoads: 41022 11111 11141 20344 11514 14204 11111 11011

SysMxCPU: 81011 11111 11151 10656 11615 15564 11111 11111

NdUptime: kk0mh lmkmk mhemk m0kmm mllkm kmmfl mmmmj mmllm

PxUptime: gg0gg ggggg ggdgg g0ggg ggggg gggdg gdggg ggggg

ReqsHour: ed0dd ddded ddccd d0dde dcdcd ecdbe cccdc ccccc

WgetProx: 00w00 00100 00010 0w110 00000 000s0 00010 00001

WgetTarg: 11w11 10301 01021 1w220 00111 101t0 11121 00011

CoDeeN’s view of planetlab-1.cs.princeton.edu

Liveness: ..... ....X ..... ..... .X.X. ..... ..X.. ...

MissAcks: 10000 00000 01000 00000 02061 00000 00v00 000

LateAcks: 00000 00000 00000 00000 00000 00000 00000 000

NoFdAcks: 00000 00000 00000 00000 00000 00000 00000 000

WgetProx: 00000 00000 00000 00000 00120 00000 00t00 000

WgetTarg: 00111 11013 11111 10010 10221 11100 01u01 101

Most of the fields are explained earlier. In order to have a compact representation of

the status of many nodes, sometimes, we use base-32 (0–9a–w) numbers, with 0 being

the lowest value and w being the highest. For example, MissAcks, LateAcks, NoFdAcks,

MaxLoads, WgetProx and WgetTarg are shown as a base-32 number. NdUptime, PxUp-

time and ReqsHour for peer proxies are first converted in to log base 2 numbers and then
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also reported in base-32 format. For SysMxCPU, values below 90% are rounded to the

higher multiple of 10% and shown divided by 10. So, a value of 6 means that 51-60%

of the CPU time is being spent in the system. Values that are 90% or higher are shown

starting with the letter “a”, incremented by one character for each percent, with 90%=a,

91%=b, 92%=c, etc.

The Liveness row has one character for each CoDeeN node, and shows whether this

node considers that node to be a viable redirector. If the node is considered unusable, an

“X” is shown in its column. Otherwise, a “.” indicates liveness. The reasons for a node

being considered unavailable are multiple. Nodes that have not responded to heartbeats

recently are considered dead. Likewise, nodes that are behind others in terms of recent

wget tests (WgetProx and WgetTarg failure counts exceed other nodes by more than 2)

are also considered not viable. Finally, nodes that show a system CPU time above 95%

are similarly skipped.

As we can see from the snapshot, the liveness status is consistent with other metrics.

Those nodes that are considered bad by planetlab-1.cs.princeton.edu, typically either have

a high number of missed ACKs, or fail to meet the safe threshold on other aspects such

as WgetProx and WgetTarg. The bottom half of the snapshot shows other’s view of

planetlab-1.cs.princeton.edu. Since at the time we took the snapshot, two nodes were

physically down without any connections, we can only show 38 nodes here. Although

planetlab-1.cs.princeton.edu seems OK locally, some of other nodes are still avoiding it.

This load/performance information is not only critical to CoDeeN’s smooth oper-

ation, but also valuable for monitoring the status of PlanetLab nodes in general. For

example, we have discovered that wide disparity exists between nodes. At the snapshot

time, out of the total 40 nodes running on CoDeeN, most nodes considered about 33–

35 other nodes to be viable. However, some nodes saw much less—only about 9 viable
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nodes. Load status on different nodes also differed a lot, with most of the live nodes on

CoDeeN seeing load averages of less than 1, but some seeing a load average of 10–11.

And some nodes also fluctuated between fine and bad frequently. Some nodes had few

problems responding to the UDP heartbeat, but failed the wget tests. These observations

on one hand prove that our multiple-test approach is quite useful in discovering different

abnormalities (CoDeeN performs well and successfully avoids bad nodes with our mon-

itoring facilities in place), but on the other hand also motivates us to study the problem

of node monitoring more thoroughly. We keep collecting more performance data and

developing tools to analyze and visualize them. Currently, these monitoring activities

incur negligible overhead on CoDeeN. However, when the number of CoDeeN nodes

further increases, this application-level n-to-n ping scheme may not scale very well. One

possible solution is to divide CoDeeN nodes into regional cliques and organize them into

a hierarchy. Within a clique, we can still use frequent heartbeats to monitor each proxy.

We then can use a dissemination tree to pass load summaries among different cliques and

eventually propagate the complete load information to all proxies. We are now working

on improving our monitoring routines and reducing their overhead.

5.2.4 Pragmatic Issues and Ongoing Research

CoDeeN uses a network of programmable proxies running on PlanetLab nodes to in-

telligently route web traffic requests to offload traffic from origin servers and balance

load across the network. In deploying the initial prototype of CoDeeN, we found several

security-related vulnerabilities, where CoDeeN nodes were used to help carry out mali-

cious activities. We also received complaints from PlanetLab administrators indicating

CoDeeN was abused. This is mainly because CoDeeN nodes operate as “open” prox-
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ies, which do not restrict their client population to PlanetLab participant sites. During

the seven weeks of CoDeeN’s trial period, although we did not publicly announced it,

CoDeeN attracted over 24 million requests from more than 59,000 unique IP addresses,

and our request rate is growing, as shown in Figure 5.4. This was well beyond our expec-

tations. Part of the reason is that some users kept probing for open proxies. Meanwhile,

some web sites listed open proxies and sold additional software to make testing and using

proxies easier and CoDeeN nodes were found to be advertised on these sites. However,

some of the outside users of CoDeeN tried to abuse CoDeeN in a number of different

ways.
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Figure 5.4: Daily traffic on CoDeeN.

We analyzed the security issues and overhauled the initial CoDeeN system. How-

ever, the list of the problems is still growing and our work on handling these issues is

still underway. Here we only discuss how we address some of issues and mitigate the

corresponding problems. It also helps to understand some of the implementation choices
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described in previous section. In the end, we describe some of the ongoing research based

on CoDeeN to conclude this section.

Denial of Most HTTP CONNECT Requests

The CONNECT method in HTTP is used to tunnel TCP for end-to-end services such

as SSL when proxies also serve as firewalls. The client specifies a remote machine and

a port number, and the proxy creates a new TCP connection and forwards data in both

directions. Spammers search for proxies that allow this TCP tunneling via the HTTP

CONNECT method. Examples include connecting to port 25 of open SMTP (Simple

Mail Transfer Protocol) relays or to port 6667 of IRC (Internet Relay Chat) network

servers. In both cases, the spammer sends spam through a weakly-authenticated system,

and hides his/her identity by going through the proxy. To the victim, the proxy appears

to originate the connection.

To address this problem, we classify clients by their IP addresses, and determine

which clients are from within PlanetLab-affiliated sites and which are not. Clients from

outside PlanetLab are not allowed to use the HTTP CONNECT method. Clients attempt-

ing to connect to port 25 are optionally sent to a local SMTP honeypot, where their

activities are logged.

More Restrictive Handling of Non-GET Requests

The POST request is used for submitting web-based forms, including cgi-to-email gate-

ways. These gateways use a CGI program called formmail to allow users to mail web-

based forms to the site’s operators, usually for feedbacks. And formmail often encodes

the destination email address in one of the form’s hidden input. Although regular web

browsers will send along only the email address specified in the form, it is easy to forge
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requests with different email addresses. We observed the proxy being used for high rates

of such formmail submissions by spammers targeted to their victim email addresses. In

reaction to this problem, clients from outside of PlanetLab are only allowed to issue

requests using the HTTP GET method. This will limit their ability to complete certain

forms, including those used for authenticated login to sites such as eBay. Clients from

within PlanetLab are not restricted.

Rate-limiting of Non-PlanetLab Clients

We have observed suspiciously high rates of requests from some clients, seemingly from

automated services. We do not know that these are malicious, but one can imagine that

some web site receiving high rates of requests over a long time may feel threatened.

We can specify the maximum number of requests per minute, per hour, and per day

from any IP address. We currently default to use the following thresholds: 3 reqs/sec per

minute, 0.5 reqs/sec per hour, and 0.1 reqs/sec per day. These limits are configurable on

a per-node basis, and are designed to allow bursts of activity over short periods of time.

Protection of ”Private” Information on PlanetLab Sites

Many organizations such as universities have web pages that are not accessible from

outside the range of IP addresses associated with the university. While the PlanetLab

AUP (Acceptable Use Policy) [63] explicitly forbids using PlanetLab nodes to access

such information, few technical barriers are present to enforce such behavior. As a result,

connections from the proxy appear to originate from acceptable IP addresses, and such

content may be visible via CoDeeN.

We now have information on the range of IP addresses affiliated with each PlanetLab

site, and use this information to determine if a client is ”local” to that site. If such a
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client attempts to access a local page, it is permitted. If a non-local client attempts to

access such a page, the request is forwarded to a CoDeeN node at another site, thereby

de-escalating its privilege.

Protection of Weakly-authenticated Subscription Services

In the past, open proxies have been used to access large amounts of content at subscription-

only online journals and databases. These sites typically have the IP address ranges of the

universities that have subscribed to them, and use only this information in authenticating

clients. A few accesses to these sites via the CoDeeN prototype occurred, and such

behavior indicated that a more coordinated large-scale access may have been planned.

We have a database of such sites, and they can only be accessed by clients local to

each PlanetLab site. Currently, if a client from outside of PlanetLab attempts to access

such sites, their access is denied. In the future, we may forward such requests to sites

without subscriptions, de-escalating them similar to the way we handle ”private” pages.

Ongoing Research

In summary, many of the issues listed above are related to CoDeeN’s nature as a network

of open proxies. And these open proxies reside in a semi-hostile environment, with

PlanetLab local users more trustworthy. How to manage this network of open proxies in

such a unique environment presents a very interesting and challenging research problem.

Although our immediate goal is to secure CoDeeN from the problems associated with

open proxies, our mechanisms may be also helpful for other research projects that allow

“open” access to Web resources.

Our current effort solves or alleviates some of the CoDeeN problems through rate-

limiting and privilege separation. We expect to see more security and management related
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issues and plan to address them in a more systematic and automatic fashion. Currently,

there are a couple of research projects carried out along this direction. For example,

we are looking for ways to distinguish between requests sent by human beings or those

generated by scripts, in an effort to early detect some organized and automated spamming

or attacking activities. We are also investigating how to use SMTP honeypot on CoDeeN

to defend against mail spams.

Other interesting issues include to improve and better utilize our CoDeeN monitoring

facilities and see how they can cooperate with other monitoring schemes on PlanetLab.

Certainly, we can use CoDeeN to test different redirection strategies under various load

conditions to further verify our simulation results. We plan to use other PlanetLab nodes

as clients to stress CoDeeN proxies. However, we still need to exercise caution not

to disturb other services/projects on PlanetLab too much, since PlanetLab is a shared

testbed. In order to create sufficient amount of request traffic, we may need to scale-

down CoDeeN proxy servers capacity or conduct the experiments at a less busy time

with the coordination of other PlanetLab services. Another factor to consider is that

on CoDeeN, most of its proxies behave both as a redirector and a surrogate, so we

can not control what content will be served from the surrogates (content is cached on-

demand) with unconstrained client populations. While on commercial CDNs, surrogates

are only responsible for content belongs to certain CDN’s customers (content providers)

and redirectors simply map requests.

This section describes how we deploy CoDeeN on top of PlanetLab, and reports

the current status of CoDeeN including the problems we have encountered. Although

some of the problems stem from our using open proxies to build CoDeeN, our solutions

can potentially benefit other “open” systems as well. We have already gained valuable

experience on managing and monitoring an operational CDN from CoDeeN. As CoDeeN
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becomes more stable, we are confident to have more opportunities to carry out different

experiments and expand our knowledge about CDN and open proxies.



Chapter 6

Conclusions

To conclude this thesis, we summarize our three main technical contributions in this

research. First, we explore CDN redirection strategy design space and propose a new

class of dynamic redirection schemes that yield much better performance. Second, we

develop a hybrid network-server simulator and conduct large scale detailed end-to-end

simulations to study various redirection strategies. Third, we deploy an academic pro-

totype CDN on PlanetLab. These contributions support our claim that through efficient

resource management we can make network services more robust in the face of different

traffic. In the end, we also outline our plans for continuing research.

6.1 Technical Contributions

This thesis addresses the problem of improving network service robustness from the

standpoint of efficient resource management. We study two main robustness challenges—

flash crowds and Denial of Service (DoS) attacks. We find that in order to be immune

from these challenges, a network service needs to possess two important properties—
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completeness and generality. In other words, we have to protect all the resources of

a network service and should handle faults or attacks within the same framework used

during normal operations. Following these two principles, we use Content Distribution

Networks as an example and demonstrate that through a unified resource management

scheme, we can build a network service that not only yields better performance under

regular traffic, but also becomes more robust in the face of abnormal events such as flash

crowds and DoS attacks.

More specifically, in designing a request distribution mechanism that manages all

the CDN resources efficiently to improve CDN robustness, we make the following three

main contributions. First, we explore the design space of redirection strategies employed

by CDN request redirectors, and define a class of new algorithms that carefully balance

load, locality, and proximity. Through detailed end-to-end simulations, these new algo-

rithms are demonstrated to be much more effective on improving CDN robustness when

compared with published CDN technology. Second, we develop a novel hybrid network-

server simulator that provides detailed modeling at both packet level and operating system

level. We optimize the simulator and use it to conduct extensive large-scale simulations

to evaluate various redirection strategies. Third, we build an academic prototype CDN—

CoDeeN on PlanetLab. CoDeeN provides us with valuable experience on building and

managing an operational CDN. We use CoDeeN to conduct many research projects and

plan to further verify our simulation results on CoDeeN.

Request Redirection Strategies

In this thesis, we have studied a number of redirection strategies, from the baseline case

Random, the best published CDN technology based on a fixed set of servers to service
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each URL, to our newly proposed schemes that dynamically adjust the servers responsible

for each URL according to the system’s load, locality and proximity.

In exploring the design space of request redirection strategies, we identify the ben-

efits and disadvantages of different strategies, and also demonstrate that our improved

dynamic request redirection strategies can effectively improve CDN robustness by bal-

ancing locality, load and proximity. Detailed large-scale end-to-end simulations show

that even when redirectors have imperfect information about server load, algorithms that

dynamically adjust the number of servers selected for a given object, such as FDR, allow

the system to support a 60-91% greater load than best published CDN systems. Moreover,

this gain in capacity does not come at the expense of response time, which is essentially

the same both when the system is under flash crowds and when operating under normal

conditions. We also test these strategies under various request traffic patterns and different

hot-spot situations. Again, using our new schemes, CDN systems show better flexibility

and adaptiveness under various conditions. Finally, we evaluate several network prox-

imity based redirection strategies. We believe we are the first to study how to explicitly

factor intra-region proximity information into server selection algorithms.

These results demonstrate that the proposed algorithm results in a system with signif-

icantly greater capacity than published CDNs, which should improve the system’s ability

to handle legitimate flash crowds. The results also suggest a new strategy in defending

against DDoS attacks: each server added to the system multiplicatively increases the

number of resources an attacker must marshal in order to have a noticeable affect on the

system.

Our algorithms and techniques developed in this research are not only limited to CDN

systems, they can also be applied to other systems, such as distributed storage systems

and peer-to-peer systems, to provide them with protection against abnormal traffic.
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Hybrid Network-Server Simulator

To evaluate various CDN redirection strategies at a large scale under overload situations,

such as flash crowds and DoS attacks, we build a hybrid network-server simulator by

combining the best of existing simulators that individually models either networks or

OS/server well. We merge NS-2 and LogSim simulators into a hybrid simulator, which

provides detailed modeling at both packet level and operating systems level. We also

optimize some modules in these two simulators, eliminating some bottlenecks that restrict

us from conducting simulations at large scales. Currently we can afford to simulate a

CDN system with over 1000 clients and 128 servers, and the sustainable request rate can

reach to more than 70,000 requests per second.

The simulator proves to be very useful in our evaluations and its detailed accounting

helps us to understand why our new redirection schemes work better. Our new dynamic

strategies achieve better performance because we successfully shift the system bottleneck

from disks to CPUs. Since CPU speed increases faster than that of disks, with faster

CPUs, we expect the performance gap between our strategies and others will become

even more pronounced. Therefore, this shift not only explains why our schemes work,

but also predict that they can become even better in the future.

This hybrid simulator helps us to conduct large-scale simulations and understand a

lot of performance issues in our CDN study. We believe it can also be used in other areas,

such as web caching, peer-to-peer systems and distributed file storage system. We plan

to use it for more experiments and also prepare to release it to the research community.
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CoDeeN Deployment on PlanetLab

We are now building an academic testbed CDN, named CoDeeN, on top of Planet-

Lab. PlanetLab provides an overlay network with rich diversity of link behavior and

widespread geographical coverage that can be used to both experiment with new network

services and let users access them. These properties of PlanetLab fit CoDeeN’s goals

very well. We use CoDeeN both as a research testbed but also as a continuous service.

We implement CoDeeN as a network of web proxies using iMimic’s DataReactor proxy

servers that have an efficient and flexible API allowing user specified special processing in

HTTP transactions. Each proxy on CoDeenN is configured either as a request redirector,

or most often, a hybrid request redirector and server surrogate. We follow an opt-in

service model letting users point their browsers to one of the proxies. Currently, CoDeeN

has been running on over 40 sites on PlanetLab and has been open to the public for

alpha test. During the deployment process, we devise a number of monitoring schemes

to watch the health of CoDeeN proxies and nodes. These monitoring routines prove to be

very useful for the smooth operations of CoDeeN, and will be potentially beneficial to the

monitoring of PlanetLab as a whole. We also encounter various security and management

problems when operating CoDeeN as a network of open proxies. We take actions to

handle these issues and believe these experiences are valuable for managing networks of

open proxies in general. Meanwhile, we are preparing for using other PlanetLab nodes

to stress CoDeeN and further test various redirection strategies. We also plan to conduct

other research projects such as anti-spam mail honeypots.

In summary, in this thesis, we propose improved CDN request redirection strategies,

evaluate them through detailed large-scale end-to-end simulations, and deploy a testbed

CDN on PlanetLab overlay network. We demonstrate that the resilience of large wide area
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network services can be improved through efficient management of networked resources.

By adapting unified resource management schemes, we present a practical way to build

network systems that not only handle a larger volume of regular traffic more easily, but

also absorb flash crowds and deter DoS attacks as a natural part of their operations.

6.2 Future Work

Although we believe this thesis identifies important trends, much work remains to be

done.

First, we have conducted the largest detailed simulations as current simulation en-

vironment allows. We also find that approximate load information works well. We

expect our new algorithms scale to very large systems with thousands of servers, but

it requires a lot more resources and time to evaluate. Also, to reach a scale beyond tens

of thousands of servers, we can take a hierarchical region approach, where servers within

a region adapt our dynamic redirection schemes directly. In the future, we would like

to run simulations at an even larger scale, with faster, more powerful simulated servers.

This includes further optimizing our hybrid simulator and exploring how to integrate the

hierarchical region approach. We would also like to experiment with more topologies

such as those generated by power-law based topology generators, use more traces, real or

synthetic (such as SPECweb99).

Second, we want to continue improving our new dynamic redirection schemes. For

example, to further explore how to combine proximity information into redirection strate-

gies, both intra-region and inter-region wise. Meanwhile, although our wide-area dy-

namic redirection strategies, such as FDR, are inspired by previous cluster-based schemes,

their distributed, non-centralized control makes them candidates for being used in clusters
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and LAN environments as well. As discussed earlier, these dynamic schemes can also

be adapted in other similar systems, such as distributed storage systems and peer-to-peer

systems, to improve their resource utilization and service robustness. We want to explore

the possible use of our redirection schemes in other contexts.

Third, we will keep working on improving our testbed CDN—CoDeeN’s monitoring

and managing infrastructure. We plan to stress CoDeeN from other PlanetLab nodes to

calibrate our simulation results on different redirection strategies. We have also started

many other interesting research projects on top CoDeeN, in particular, how to improve

the reliability and security of a network of open proxies like CoDeeN.

We believe these future projects will be promising. They will not only further our

knowledge on how to make network services more robust, but also possibly inspire new

research directions.
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