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Abstract

After a short period of being not much more than a curiosity, the World-Wide Web

quickly became an important medium for discussion, commerce, and business. Instead

of holding just information that the entire world could see, web pages also became

used to access email, financial records, and other personal or proprietary data that was

meant to be viewed only by particular individuals or groups. This made it necessary to

design mechanisms that would restrict access to web pages. Unfortunately, most current

mechanisms are lacking in generality and flexibility—they interoperate poorly and can

express only a limited number of security policies.

We view access control on the web as a general distributed authorization problem

and develop a solution by adapting the techniques of proof-carrying authorization, a

framework for defining security logics based on higher-order logic.

In this dissertation we present a particular logic for modeling access-control scenarios

that occur on the web. We give this application-specific logic a semantics in higher-order

logic, thus ensuring its soundness, and use it to implement a system that regulates access

to web pages. Our system uncouples authorization from authentication, allowing for

better interoperation across administrative domains and more expressive security policies.

Our implementation consists of a web server module and a local web proxy. The server

allows access to pages only if the web browser can demonstrate that it is authorized to

view them. The browser’s local proxy accomplishes this by mechanically constructing

a proof of a challenge sent to it by the server. Our system supports arbitrarily complex

delegation, and we implement a framework that lets the web browser locate and use

pieces of the security policy that have been distributed across arbitrary hosts. Our system

was built for controlling access to web pages, but could relatively easily be extended to

encompass access control for other applications as well.
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Chapter 1

Introduction

1.1 Access Control on the Web

After a short period of being not much more than a curiosity, the World-Wide Web quickly

became an important medium for discussion, commerce, and business. Instead of holding

just information that the entire world could see, web pages also became used to access

email, financial records, and other personal or proprietary data that was meant to be

viewed only by particular individuals or groups.

This made it necessary to design mechanisms that would restrict access to web pages.

The most widely used mechanism is for the user to be prompted for a user name and

password before he is allowed to see the content of a page [27]. A web administrator de-

cides that a certain page will be visible only if a user enters a correct user name/password

pair that resides in an appropriate database file on the web server. A successful response

will often result in the client’s browser being given a cookie; on later visits to the same

or related web pages, the cookie will be accepted as proof of the fact that the user has

already demonstrated his right to see those pages and he won’t be challenged to prove it

1
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again [49]. An organization such as a university may require that all people wishing to

see a restricted web page first visit a centralized login page which handles authentication

for all of the organization’s web sites. The cookie placed on the client’s browser then

contains information which any of the organization’s web servers can use to verify that it

was legitimately issued by the organization’s authentication service. In cases such as this,

the functions of authentication (verifying an identity) and authorization (granting access)

are separated into two distinct processes.

More modern methods of controlling access to web pages separate these functions

even further, not as an optimization, but as a basic element of their design. Increasingly

in use are systems in which a certificate, such as a Kerberos ticket [34, 44] or an X.509

certificate [32], is obtained by a user through out-of-band means; a web browser and a

web server are augmented so that the web browser can pass the certificate to the web

server and the web server can use the certificate to authorize the user to access a certain

page. The advantage of these mechanisms is that, in addition to providing more secure

implementations of protocols similar to basic web authentication, they make it possible

for different services to authorize access based on the same token. An organization can

now provide a single point of authentication for access to web pages, file systems, and

Unix servers.

Though growing increasingly common, most notably due to the use of Kerberos in

new versions of the Windows operating system, these systems have not yet gained wide

acceptance. This is partly because they don’t adequately deal with all the requirements

for authorization on the Web, so their undeniable advantages may not be sufficient to

justify their cost.

One of the chief weaknesses of these systems is that they are not good at providing

interoperability between administrative domains, especially when the domains use differ-
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ent security policies or authorization systems. Having a centralized authentication server

that issues each user a certificate works well when a large number of web servers are

willing to trust that particular authentication server (at a university, for example), but not

when such trust is absent (such as between two universities). There have been attempts

to build systems that cross this administrative divide [24] but the problem still awaits

practical solution.

We have built a system that addresses this issue. Our system even further uncouples

authorization from authentication, allowing for superior interoperation across adminis-

trative domains and more expressive security policies. Our implementation consists of

a web server module and a local web proxy. The server allows access to pages only if

the web browser can demonstrate that it is authorized to view them. The browser’s local

proxy accomplishes this by mechanically constructing a proof of a challenge sent to it

by the server. Our system supports arbitrarily complex delegation, and we implement a

framework that lets the web browser locate and use pieces of the security policy (e.g.,

delegation statements) that have been distributed across arbitrary hosts. Our system

was built for controlling access to web pages, but could relatively easily be extended

to encompass access control for other applications (e.g., file systems) as well.

1.2 Goals and Design

In designing our system for access control of web pages we had several criteria that we

wanted to address:

• interoperability and expressivity;

• convenience to the user;
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• ease of implementation and integration with web servers and web browsers;

• efficiency;

• applicability to spheres other than web access control.

1.2.1 Interoperability and Expressivity

Even the most flexible of current systems for web access control are limited in their

ability to interoperate across administrative boundaries, especially when the domains

use different security policies or authorization systems. One of the main reasons for

this is that though current systems attempt to separate the functions of authorization

and authentication, they overwhelmingly continue to express their security policy—the

definition of which entities are authorized to view a certain web page—in terms of the

identities of the users. Though the web server often isn’t the entity that authenticates a

user’s identity, basing the security policy on identity makes it very difficult to provide

access to users who can’t be authenticated by a server in the same administrative domain.

The way we choose to resolve this issue is by making the security policy completely

general—the right to access to a page can be described by an arbitrary predicate. This

predicate is likely to, but need not, be linked to a verification of identity—it could be that

a particular security policy grants access only to people who are able to present the proof

of Fermat’s last theorem. Since the facts needed to satisfy this arbitrary authorization

predicate are likely to include more than just a verification of identity, in our access-

control system we replace authentication servers with more general fact servers. In this

scenario the problem of deciding whether a particular client should be granted access to

a particular web page becomes a general distributed-authentication problem, which we

solve by adapting previously developed techniques from that field.
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Distributed authorization systems [14, 21, 23, 32] provide a way for implementing and

using complex security policies that are distributed across multiple hosts. The methods

for distributing and assembling pieces of the security policy can be described using

logics [1, 30], and distributed authorization systems have been built by first designing

an appropriate logic and then implementing the system around it [2, 3, 10]. Appel and

Felten recently introduced proof-carrying authorization (PCA), the most general of the

logic-based frameworks [8].

Appel and Felten argue that the underlying reasoning framework of a distributed

authorization system should be a general logic like higher-order logic [17]. In a traditional

scenario the use of an undecidable logic like higher-order logic would be infeasible, since

a server might not be able to decide whether a set of credentials implies that access should

be granted. Appel and Felten reason, however, that the authorization process associated

with any particular client’s request—that is, the facts or credentials that support the

request and the way they can be assembled into a proof of access—can be described using

a subset of higher-order logic that corresponds to a simple and decidable application-

specific logic. The client can use this application-specific logic to construct a proof of

the fact that it should be allowed access. This proof, along with the definition of the

application-specific logic in terms of the higher-order logic, is sent to the server. To

determine whether the client should be granted access, the server merely has to verify

that the proof is valid.

The server, using only the common underlying logic, can check proofs from all

clients, regardless of the method they used to generate the proof or the application-specific

logic they chose. This technique perfectly satisfies our goal of interoperability—as long

as a server bases its access-control policy on the underlying logic, interoperation with sys-



CHAPTER 1. INTRODUCTION 6

tems in different administrative hierarchies need be no more difficult than interoperation

with local ones.

1.2.2 Ease of Use

One of the major criticisms of many existing security mechanisms is that they place too

great a burden on the user, who typically is not aware of and does not care to learn

about all the security implications of the operations he wishes to perform. Users often

take advantage of only a very few of the many capabilities such systems offer and are

often unaware of the systems’ fundamental principles. As a consequence, many systems

provide a far weaker level of security than was intended.

One of the simplest ways of avoiding some of these pitfalls is to make the security

mechanism as invisible to the user as possible. A more powerful and expressive access-

control mechanism is generally likely to require more user interaction than a simple one,

but in our system we succeed in confining the complexity to the setup phase. After

our system has been installed and configured for a particular user and application (for

example, controlling access to a university’s course web pages), using it to successfully

access protected web pages is completely transparent to the user.

1.2.3 Convenience of Implementation

An important goal for a web access-control system that aspires to be practical is that it

be implementable without major modification of the existing infrastructure—that is, web

browsers and web servers. Our access-control system involves three types of players:

web browsers, web servers, and fact servers (which issue tokens that can certify not only
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successful authentication—as do ordinary authentication servers—but also any other type

of fact that they store).

We enable the web browser to understand our authorization protocol by implementing

a local web proxy. The proxy intercepts a browser’s request for a protected page and then

executes the authorization protocol and generates the proof needed for accessing the page;

the web browser sees only the result—either the page that the user attempted to access

or an appropriate failure message. Each user has a unique cryptographic key held by the

proxy. Users’ identities are established by certificates stored on fact servers that bind

names to keys. The use of keys makes it unnecessary to prompt the user for a password,

making the authorization process quicker and more transparent.

For tighter integration with the browser and for better performance, the proxy could

be packaged as a browser plugin. This would make it less portable, however, as a different

plugin would have to be written for each type of browser; we did not feel this was within

the scope of our prototype implementation.

The web server part of our system is built around an unmodified web server. The

web server is extended through the use of a servlet which intercepts and handles all

PCA-related requests. The two basic tasks that take place on the server’s side during

an authorization transaction are generating the proposition that needs to be proved and

verifying that the proof provided by the client is correct. Each is performed by a separate

component, the proposition generator and the checker, respectively.

Fact servers hold the facts a client must gather before it can construct a proof. Each

fact is a signed statement in the PCA logic. We implement an off-line utility for signing

statements, which lets us use a standard web server as a fact server. The fact server can

also restrict access to the facts it publishes with a servlet, in the same manner as the web

server.
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1.2.4 Efficiency

The access-control process is transparent to a user. To be practical, it must also be

efficient. Assembling the facts necessary to construct a proof may involve several transac-

tions over the network. The actual construction of the proof, the cryptographic operations

done during the protocol, and proof checking are all potential performance bottlenecks.

Though our system is a prototype and not of production quality, it demonstrates that

this approach can be made to perform well enough to be acceptable in practice. Heavy

use of caching limits the need to fetch multiple facts over the network and speculative

proving makes it possible to shorten the conversation between the web proxy and the

servlet.

1.2.5 Generality

The best current web authorization mechanisms have the characteristic that they are

not limited to providing access control for web pages; indeed, their strength is that

they provide a unified method that also regulates access to other resources, such as file

systems. Our system, while implemented specifically for access control on the Web, can

also be extended in this manner. The idea of proof-carrying authorization is not specific to

web access control, and the mechanisms we develop, while implemented in a web proxy

and a servlet, could easily be modified to provide access control for other resources.

1.3 Related Work

Access control for the web can be thought of as a special instance of distributed authoriza-

tion. This section reviews the most influential efforts to design comprehensive solutions

to the problem.
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1.3.1 X.509

One of the notable forerunners and the building block of many distributed authorization

systems is the X.509 standard [32]. X.509 defines certificates that bind public keys

to X.500 Distinguished Names [52]. X.500 was designed to be a global standard for

keeping track of named entities in a hierarchical fashion. An X.509 certificate was meant

to indicate who was allowed to modify the portion of the X.500 database described by a

particular Distinguished Name. X.500 postulated a globally unique naming scheme that

made widespread adoption of X.500 infeasible, rendering the intended function of X.509

certificates useless. X.509 certificates later started to be used, and are currently used, as

a mechanism for associating a public key with a person’s name. The authenticity and

integrity of an X.509 certificate is guaranteed by a digital signature. The signing key’s

own X.509 certificate and a certificate chain leading to a primary root certification author-

ity are attached to the signed certificate. X.509 thus provides a public-key infrastructure

useful for many applications [20, 46, 47]. In addition, X.509 certificates can be extended

to describe more than just keys and names, making them a convenient vehicle for carrying

security relevant data [25].

1.3.2 SPKI/SDSI

SPKI/SDSI (now known as SPKI 2.0) [23] is a digital certificate scheme that focuses on

authorization rather than just authentication. It represents the merging of two efforts:

SPKI [22], in particular, its method of binding authorization privileges to keys; and

SDSI [48], which contributed its mechanism for linking keys and names.

SPKI/SDSI certificates come in three forms: name-to-key, authorization-to-name, and

authorization-to-key bindings. Bindings of names to keys are meant to be interpreted
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locally [1, 30]. If the principalAlice binds the nameBob to a particular key, this binding

is considered to be true only withinAlice’s name space. An outsider wishing to refer to

Bobcan do it by specifying that he is talking aboutAlice’s Bob, in other words, theBob

whose name-to-key binding is specified byAlice. Alice herself is identified either with

her public key or with a chain of names rooted at a known key. In this manner, any named

entity can be globally identified by fully qualifying the name space in which it is defined.

SPKI/SDSI specifies that certificates, in addition to mapping names to keys, can also

be used to describe bindings of privileges, or authorizations, to keys or names. In such

cases, a certificate is interpreted to mean that the given key has the right to exercise

the named privilege. Privileges are represented as strings and can be combined using a

few simple combinators. Each certificate has a boolean flag that describes whether the

key may delegate the privilege. A delegated privilege can be further delegated by the

recipient.

An interesting feature of SPKI/SDSI is its sensible treatment of certificate revocation

lists (CRLs). A certificate that supports validation must identify the keys that issue CRLs

and the locations where they are published, and CRLs must carry non-intersecting validity

dates. This makes it possible to accept certificates only in the presence of a valid CRL,

and it ensures that only a single CRL will be valid at a given time.

Each certificate is represented as a 4- or 5-tuple. The authorization process involves

verifying the validity of certificates, translating the uses of names to a canonical form [19,

21], and computing the intersection of the privileges described in authorization tuples.

This yields a single authorization tuple which describes whether or not the named princi-

pal may access a particular resource.

SPKI/SDSI has been used to develop an access-control mechanism for protecting web

pages [42, 18]. In this system, the web server presents a browser with the access-control
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list (ACL) protecting the page that the client is trying to access. The client maintains a

local cache of SPKI/SDSI certificates, which it uses to generate an appropriate certificate

chain. The client then sends the certificate chain to the server, which verifies it before

allowing access to the web page.

1.3.3 Taos

The Taos operating system [50] was a test bed for a distributed authentication system [35,

53] based on a formal logic (ABLP logic) [2]. The distributed system consisted of

a number of nodes connected via a network, each running the Taos OS. To access a

resource, a principal first has to authenticate himself to it, and then demonstrate that he

is authorized to access it. A local agent running on each node is in charge of managing

credentials and communicating with other nodes.

The Taos authentication system is based on a modal logic with a very rich notion of

principals: they can be users, machines, channels, groups, roles, principals quoting other

principals, etc. A principalsaysa formula to indicate that he supports the statement or

assertion that it represents. The rich algebra of principals is used to specify precisely

the origin of a request or belief (for example, instead of stating that the user Bobsays

a formula, the logic is able to express the much more precise statement that a particular

machine running a particular operating system speaking on Bob’s behalfsaysthe for-

mula). In addition to standard axioms present in modal logic, the ABLP logic contains

axioms that capture ideas particular to distributed authentication (the delegation axiom,

for example, states that if principalA saysthatB speaks on its behalf then this becomes a

global truth that can be used in future inferences). The principal who controls a resource

may delegate the right to access it to whomever he chooses. A principalA is allowed to

access a resource if there exists a delegation chain from the controlling principal toA.
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The ABLP logic is too powerful to be decidable, so Taos uses a subset with a much

restricted notion of principals. Each node running the Taos OS exports a simple API that

is sufficient for one node to convince another that some principalA saysthe formulaF .

Resources are protected by access-control lists. Each element of an ACL is interpreted

to mean that the named principal controls the resource. A request to access a resource is

successful if a chain of delegations allows the requester to speak on behalf of the principal

controlling the resource.

1.3.4 PolicyMaker

PolicyMaker [14] represents another attempt to design a universal system for expressing

and verifying security policies. It deals specifically with distributed authorization in

decentralized environments, which it dubs “trust management.”

PolicyMaker represents policies and credentials in a common language, and uses a

general-purpose compliance checker to verify that a particular policy and set of cre-

dentials meet a given request. Credentials are interpreted locally; if one of them is

a delegation statement, for example, it can be used to transfer authority only if the

local policy has explicitly indicated that such delegation statements should be trusted.

Each credential is a program written in a general-purpose programming language. The

compliance checker labels each credential with a string representing the identity of its

source. A policy is a credential labeled with the keyword “POLICY”. A principal’s

privileges are encoded as strings, and the semantics of the encoding are provided locally

by each credential. Credentials and policies take as input the currently known privileges

(each labeled with a string representing its source), and output the set of privileges (again,

labeled) that can be inferred from them. To verify whether a resourceRmay be accessed,
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the compliance checker runs the various credentials; if the policy, run on the resulting set

of privileges, outputs the stringR, access to the resource is granted.

PolicyMaker’s compliance checker has a standardized algorithm to decide in which

order and how many times to execute each credential. To ensure that the algorithm always

terminates and produces the correct answer, the scope of credentials and policies had to

be restricted: they are required to run in polynomial time and to be monotonic. The

monotonicity requirement asserts that if an inputI causes a credential to output the action

stringR, then the credential will also output the stringRwhen given as input any superset

of I .

KeyNote [13, 12] specializes the PolicyMaker system to authorization in public-key

infrastructures. The language for specifying credentials is simpler and human-readable,

and credential labels now represent the public keys of their issuers. The naming of

privileges is again left to the particular application of the system.

REFEREE [16] applies the ideas of PolicyMaker and KeyNote to the web. As before,

policies and credentials are programs, this time written in a language adapted to the

web. To determine whether an action should be allowed, typically, whether it’s OK for

a browser to display a web page, the system will execute the policy associated with that

action. A policy may consult other credentials or policies; this is done by dynamically

downloading the appropriate program and then allowing it to execute.

1.3.5 Others Efforts

Although not as well publicized, several other efforts are also worth mentioning. QCM [29]

is a public key infrastructure that incorporates a language for specifying policies. Its

mechanism for verifying whether a request should be granted includes the facility for

automatically retrieving needed credentials.
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Delegation Logic (DL) [37] is a logic-based language for describing policies, creden-

tials, and requests. A tractable, monotonic subset, D1LP [38, 39], has been implemented

as a translation to ordinary logical programs.

The RT framework [40] is a family of languages that adds to the ideas of systems such

as DL and SPKI/SDSI the notion of role-based access control [28, 41], providing access

control based on roles and attributes in addition to identity. Principals can assert that

other principals have specific attributes, and one type of attribute can be used to reason

about another, eventually leading to an access-control decision. RT thus resolves the most

obvious deficiency of SPKI/SDSI while remaining tractable in the style of D1LP.

1.4 Proof-carrying Authorization

Most distributed authorization systems try to provide support for notions such as the

ability to delegate privileges and treat groups as principals. While they strive to be

as expressive as possible—that is, to be able to represent as many security policies

as possible—they are constrained by how they choose to implement these ideas. The

SPKI/SDSI notion of delegation, for example, includes a boolean flag that describes

whether the delegated privilege may be redelegated by the recipient. PolicyMaker, on

the other hand, requires any redelegation to be explicitly approved by the security policy.

Each choice may be the best one for a particular situation, but no one particular choice

can be the ideal one forall situations.

Proof-carrying authorization follows a different approach to providing generality.

Unlike other systems, in which axioms that define ideas like delegation are part of the

logic which describes the system, PCA is based on a standard higher-order logic [17].

The only nonstandard axioms added to the logic are rules for decoding digital signatures.
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Higher-order logic is undecidable—there is no algorithm which will always be able to

prove the truth of every true statement—which raises the question: how can such a logic

can be used in an authorization system? A server is typically presented with a list of

credentials and has to decide whether they are sufficient for access to be granted. If the

logic that models this is undecidable, the server might not be able to come to the correct

conclusion.

PCA solves this problem by making it the client’s responsibility to prove that access

should be granted. All the server needs to do is verify that the client’s proof is valid,

which can be done efficiently even if the proof is expressed in an undecidable logic.

Transferring the burden of proof from the server to the client ensures that the server’s task

is tractable, but doesn’t explain how the client is able to construct a proof. What makes

the client’s task possible is that any particular client doesn’t need the full expressivity

of the undecidable logic. Instead, a particular client is probably content to construct

proofs in some decidable subset of higher-order logic—an application-specific subset

that corresponds to a particular notion of delegation, a particular way of defining groups

or roles, etc. Each of the operators in this subset can be given a definition in higher-order

logic, and each of the inference rules about these operators can be defined as a lemma.

When constructing a proof using these operators and inference rules the client doesn’t

need to pay any particular attention to the fact that they are merely placeholders for

higher-order logic terms—he can manipulate them as if they were a regular application-

specific logic, for example, the logic that models SPKI/SDSI. The server verifying the

proof, on the other hand, doesn’t care which particular application-specific logic the client

uses. As long as each operator and rule has a definition in higher-order logic, the server

sees it as just another higher-order logic proof, which it knows how to verify.
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This approach gives PCA great flexibility. In traditional systems we have to prove

metatheorems about the logic before we can trust the system to perform correctly. In

PCA much of this security comes from embedding the application-specific logic in a

framework that is known to be sound. Since they all use the same underlying framework,

it is not only easy to extend a particular application-specific logic, but it is also possible

to make different application-specific logics interact.

1.5 Overview

This dissertation describes how proof-carrying authorization can be used to build a prac-

tical access-control system for the Web, and presents its design and implementation. In

the process it defines the minimal extensions to a standard higher-order logic necessary

to support such a system.

The first step in building a PCA system is to identify a class of access-control scenar-

ios and develop an application-specific logic for reasoning about it (Chapter2). The

application-specific logic then needs to be encoded and given semantics in the PCA

higher-order logic (Chapter3). After we have settled on a particular logic, we must

build the infrastructure that allows web servers and web browsers to use the logic to

control access to web pages. This infrastructure comprises communication protocols,

mechanisms for generating and verifying the validity of proofs, a scheme for distributing

and collecting facts across a network, and a method for converting access requests to

proof goals. Chapter4 describes the prototype system that we have built, which addresses

these issues. (Much of the implementation work was described in a prior conference

paper [11].)
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While our original application-specific logic is simple and effective, it presents a

relatively low-level interface to the authorization process. Chapter5 describes how the

logic can be extended to encompass several more abstract concepts and present a more

refined interface. Finally, Chapter6 reviews the contributions of and discusses some of

the research challenges raised by this work.

Much of this work was done in collaboration with others. The application-specific

logic and its semantics were developed in cooperation with Andrew W. Appel and Edward

W. Felten, and the prototype system was implemented jointly with Michael A. Schneider

and Edward W. Felten.



Chapter 2

A Logic for Access Control

A PCA system, like any distributed authorization system, consists of a client that wants

to access a resource, a server that controls this resource, and a number of other hosts that

hold pieces of the security policy that protects the resource. The security policy is the set

of facts that is used to demonstrate to the server that the client is allowed access to the

resource.

The first step in building a PCA system is designing a logic that models these facts

and the procedure used to assemble them into a proof. In contrast with other distributed

authorization systems, in which the logic is a compromise driven by the need to be as

comprehensive as possible, in PCA one can design an application-specific logic that is

precisely tailored to a given scenario. This chapter introduces a simple logic designed

for access control on the web. The semantics of this application-specific logic, i.e.,

its encoding in the PCA higher-order logic, is described in Chapter3. Our purpose in

presenting this particular logic and its syntax is to explain the principles of PCA; the

logic itself is too simple to describe real scenarios. Chapter5 discusses some extensions

18
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to the logic aimed both at providing a higher-level interface to the security policy architect

and making the logic powerful enough to solve realistic problems.

Figure2.1 shows a scenario that is typical of the types of access-control problems

we would like to solve; it will be used as a running example throughout the rest of this

dissertation. In this scenario we have three entities: Alice, the client; Bob, the server; and

the Registrar, a fact server that holds a piece of the security policy.

Bob is a professor who teaches the class CS101. He recently gave his students a

midterm, and wants to publish statistics about the results on the web. He wants these

statistics to be accessible only to the students taking his class, and only after 8 P.M. on

a particular day (a tardy student is still taking the midterm). Furthermore, he doesn’t

want to be troubled to keep an up-to-date list of students in his high-attrition class.

Conveniently for him, the university where he teaches has a Registrar that keeps track

of which classes students are taking. Finally, Alice is a student in Bob’s class who wants

to access the midterm results page. The goal in this scenario is for Alice to prove to Bob

that he should let her see the web page.

This scenario captures most of the ideas that we will need to express in our application-

specific logic. Obviously, to describe Alice and Bob, our logic will have to have a notion

of principals. Alice wishes to access a particular web page—we will need a way of

describing the particular URL that she wants to reach. Bob believes that it’s OK for

certain principals to access the web page, so we will need a notion of belief. Furthermore,

we will need delegation, to describe Bob relinquishing to the Registrar the responsibility

to decide who is taking his class. Since Bob’s security policy specifies that a page is

accessible only after 8 P.M., our logic will also need to reason about time.

The example is not developed in sufficient detail to accurately describe a similar, real

situation. For instance, we assume that the principals all know each other’s public keys.
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Alice
(web browser)

Bob
(web server)

�

The Registrar 
knows that Alice is 
taking CS101

�

Bob publishes
midterm.html on the 
web

�

He wants the page to be 
visible only by students 
in CS101 and only after
8 P.M.

�

Alice wants to access 
http://server/midterm.html

�

Alice knows it’s after
8 P.M.

Registrar
(fact server)

Figure 2.1: A typical scenario for access control on the web.

As the reader will see, however, the logic we develop to describe the example can easily

be extended to model a more complicated situation; for instance, one where the principals

use a public key infrastructure. This and other extensions to the logic are discussed in

Chapter5.

2.1 Syntax

Our application-specific logic is inhabited by terms and formulas.

The terms denote strings, natural numbers, and principals. Strings and natural num-

bers are the base types of our application-specific logic.

Simple principals are created by applying thename constructor to the string that

represents a principal’s public key. For example, ifpubkeyAlice is Alice’s public key,
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thenname(pubkeyAlice) is the principal that represents Alice. For simplicity, we will

often abbreviatename(pubkeyAlice) asAlice.

Principals may want to refer to other principals or to create local name spaces—this

gives rise to the notion of compound principals. We will writeAlice.secretary to denote

the principal whom Alice calls “secretary.” The nature of this principal will be determined

by the privileges with which Alice endows him.Alice.secretary, for example, could be

a principal that represents an actual person, or a role that Alice adopts. For now, we will

allow only a single level of local names.

More formally, the terms of our application-specific logic can be described as follows:

t ::= s | n | p

p ::= name(s) | name(s).s

wheres andn are strings and natural numbers, andnameranges over strings.

The formulas of our logic describe principals’ beliefs. If Alice believes that the

formula F is true, we writeAlice saysF . To indicate that she believes a formula is

true, a principal signs it with her private key—we describe this in logic with thesigned

predicate. If Alice cryptographically signs the formulaF , the resulting sequence of bits

will be represented with the formulapubkeyAlice signedF .

To describe the URL that a client wants to access, we introduce thegoal constructor.

The first parameter to this constructor is a string representing the URL. In a PCA system

a client obtains access to a resource by presenting a proof—the proof acts as a capability

that allows access to the resource. To make sure that a proof cannot be reused, we make

the second parameter of thegoal constructor a nonce. A principal believes the formula
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goal(URL,nonce) if she thinks that it is OK to accessURL during the PCA session

identified bynonce.

Delegation is described with thespeaksfor and delegatepredicates. The formula

AlicespeaksforBob indicates that Alice is authorized to speak on Bob’s behalf; in other

words, that Bob has delegated to Alice the authority to make access-control decisions

about any URL.delegate(Bob, Alice, URL) transfers to Alice only the authority to

access the particular resource atURL.

To indicate that a delegation holds only after a given moment, delegation statements

can be enclosed in anafter statement. The formulaafter (N, F) indicates that the formula

F is true after timeN. The timeN is represented as a natural number, but in examples we

will often use the hour of the day, e.g.,after (8 P.M., F).

Thesaysandsignedpredicates are the only formulas that can occur at top level.

The formulas of our logic are described by the following syntax:

φ ::= ssignedφ′ | p saysφ′

φ′ ::= goal (s, s) | after (n, φ′′) | φ′′

φ′′ ::= p speaksforp | delegate(p, p, s)

wheres ranges over strings,n natural numbers, andp principals.

2.2 Context and Judgments

As explained, in our system principals express their beliefs by signing the formulas that

represent them. The resulting set of signed statements represents a global environment,

or context, which we use as a starting point for reasoning about the beliefs of principals.
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Γ ::= · | (ssignedφ′), Γ

The judgmentΓ ` F means that the formulaF is true with respect to some environ-

mentΓ. The formulaF will be true either ifF is itself in the environment, or ifF can be

derived by applying inference rules to formulas in the environment.

The inference rules of our logic do not change the environment; that is, in each rule

the premises and conclusions are all evaluated with respect to the same environment. It

is normally clear which statements are in the environment (all statements of the form

s signedφ′, and no other statements, are in the environment), so we abbreviate for the

sake of readability each judgmentΓ ` F to F .

2.3 Inference Rules

In this section we precisely define the meaning of each operator by specifying the rules

that show how it can be derived or how it can be used to derive other connectives.

Rules that show how an operator can be constructed are called introduction rules;

rules that show how an operator can be decomposed or used to derive other operators are

elimination rules. The names of our rules will have a -I or -E suffix to indicate whether

the rule is an introduction or an elimination rule.

The purpose of thesignedoperator is to reflect digital signatures which exist outside

of the logic. There are no rules, therefore, which would allow us to manipulate the

parameters of thesignedoperator, since the existence of such rules would suggest that

we are able to forge a signature.
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The existence of a signature implies that the signer believes something. Hence our

first rule, which transforms asignedstatement into a statement that represents a notion

of belief which we can manipulate.

pubkeysignedF
(name(pubkey)) saysF (SAYS-I)

Rather than defining general rules that describe the behavior of thesaysoperator, as

do other security logics, we will limit ourselves to describing the meaning of thesays

operator only with respect to delegation and time.

The principle behind the inference rules that describe delegation is that if a principalA

believes that he is delegating his own authority to principalB, then this delegation should

hold. Delegating someone else’s authority, on the other hand, is meaningless.

If A indicates thatB speaks onA’s behalf then it should be true that anything that is

said byB has the same force that it would if it were said directly byA. This is a general

delegation—A is delegating toB the right to make access-control decisions about any

resource.

A says(B speaksforA) B says(goal(URL,nonce))
A says(goal(URL,nonce)) (SPEAKSFOR-E)

Similarly, a principal is allowed to delegate the privileges that are held by the local

names that he controls.

A says(B speaksforA.S) B says(goal(URL,nonce))
A.Ssays(goal(URL,nonce)) (SPEAKSFOR-E2)
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More specific delegation statements, with whichA grants toB the right to control only

a particular URL, follow the same scheme.

A says(delegate(A, B, U)) B says(goal(U,N))
A says(goal(U,N)) (DELEGATE-E)

A says(delegate(A, B.S, U)) B.Ssays(goal(U,N))
A says(goal(U,N)) (DELEGATE-E2)

Both specific and general delegations can be made conditional on the current time. If

A believes that a delegation becomes valid at timeN, then at any point after timeN we

can conclude that the principalA believes that the delegation statement holds.

A says(after (N, F))
A saysF time> N (AFTER-E)

2.4 Putting Our Logic to Work

The logic we have developed is sufficiently expressive to precisely describe the scenario

of Alice, Bob, and the Registrar. We will first show how each of the principal’s beliefs is

modeled using our logic, and then explain how these statements can be manipulated by

the inference rules of our logic to demonstrate that Alice should be allowed access to the

midterm results web page.
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2.4.1 Beliefs

To describe his beliefs, a principal signs each of a list of formulas that represent them. In

the case of our example, each principal’s beliefs can be expressed using a single formula.

Bob believes that the midterm results should be accessible only after 8 P.M., and then

only to students that the Registrar believes are taking his class. The Registrar maintains

a local name corresponding to each class taught at the university. The local name that

describes Bob’s class is CS101, so the principal that represents the students in Bob’s class

is calledRegistrar.CS101. Bob delegates the right to control access tomidterm.html to

the principalRegistrar.CS101, but makes the delegation conditional on the current time

by enclosing it in anafter statement.

To make it easier to refer to this formula in the future, we call itP1.

P1 = pubkeyBob signed(after (8P.M., delegate(Bob, Registrar.CS101, midterm.html)))

The Registrar believes that Alice is taking Bob’s class. He indicates this by signing a

formula stating that Alice speaks on behalf of the principalRegistrar.CS101.

P2 = pubkeyRegistrar signed(AlicespeaksforRegistrar.CS101)

Alice believes that it’s OK for her to access the midterm results.

P3 = pubkeyAlice signed(goal(midterm.html,nonce))

Bob will provide Alice with the particular noncenonce that she will have to use in

her proof; this and other details regarding how principals communicate are described in

Chapter4.
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2.4.2 Proving Access

Alice’s task is now to determine whether and how Bob’s and the Registrar’s beliefs can

be used to convince Bob that he believes that it’s OK for Alice to be given access to the

midterm results web page. In other words, Alice must prove the following formula.

Bobsays(goal(midterm.html,nonce))

Since she wants to reason about the implications of Bob’s and the Registrar’s beliefs,

Alice’s first step will be to use the (SAYS-I) inference rule to convert each of the pieces

of the security policy (formulasP1, P2, andP3) into asaysstatement that she can manip-

ulate. The most interesting piece of the security policy is Bob’s, since ultimately only his

beliefs can be used to conclude that Bob believes that access should be authorized.

P1

Bobsays(after (8P.M., delegate(Bob, Registrar.CS101, midterm.html)))
by SAYS-I

Bob’s delegation statement does not become valid until 8 P.M. Knowing that it’s

currently 9 P.M., Alice can assume that the time according to Bob’s clock must be after

8 P.M., so she asserts that the local time is after 8 P.M. and reasons that Bob also believes

this.

Bobsays(after (8P.M., delegate(Bob, Registrar.CS101, midterm.html)))
Bobsays(delegate(Bob, Registrar.CS101, midterm.html))

by AFTER-E

Alice has succeeded in demonstrating that Bob delegates to the Registrar the authority

to access the midterm results. Before she can make use of that fact she has to show that

the Registrar, too, believes that access should be granted. To do this, she combines her
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own assertion that access should be granted with the Registrar’s delegation statement that

makes her a member of the group CS101.

Registrarsays(AlicespeaksforRegistrar.CS101)

Alicesays(goal(midterm.html,nonce))

Registrar.CS101 says(goal(midterm.html,nonce))
by SPEAKSFOR-E2

The final step is to combine this result with Bob’s statement that delegates authority

to the Registrar.

Bobsays(delegate(Bob, Registrar.CS101, midterm.html))

Registrar.CS101 says(goal(midterm.html,nonce))

Bobsays(goal(midterm.html,nonce))
by DELEGATE-E2

Alice has successfully proven that the beliefs of the three principals are cumulatively

sufficient to demonstrate to Bob that she is allowed to see the web page. The derivation

that shows that Bob believes that it’s OK to access the web page represents a proof of this

fact.

P1

Bobsays. . .
by SAYS-I

Bobsays. . .
by AFTER-E

P2
Registrarsays. . .

by SAYS-I
P3

Alicesays. . .
by SAYS-I

Registrar.CS101 says. . .
by SPEAKSFOR-E2

Bobsays(goal(midterm.html,nonce))
by DELEGATE-E2

2.5 Soundness

We would like to be able to argue that our logic accurately describes the authorization

problems we are trying to solve. In particular, we would like to confirm that a formula



CHAPTER 2. A LOGIC FOR ACCESS CONTROL 29

like Bobsays(goal(URL,nonce)) is provable only if it is the case that the principalBob

is willing to give access toURL. This property is called soundness.

More formally, a logic is said to be sound ifΓ ` F implies thatΓ |= F ; that is, if

a formulaF can be proven from a set of assumptionsΓ then, under any model, that

formula must be true if the assumptions inΓ are true. Whether or not the assumptions

and conclusion are true depends on the model that gives the logic its meaning. To prove

that a logic is sound, therefore, we need to have a model for the logic.

Soundness is especially important in security applications. The purpose of an access-

control logic, for example, is to make sure that only authorized people can gain access

to a resource. An unsound logic could easily lead to unauthorized access of protected

resources, so proofs of soundness of such a logic are of more than just theoretical interest.

For a security logic to be trustworthy, we would ordinarily have to give it a semantic

model and then prove the logic sound under that model. This is often a complicated and

tedious task; whenever a logic is changed, for example to accommodate a new kind of

delegation, soundness must be proven anew.

PCA simplifies the task of writing trustworthy application-specific logics. Each app-

lication-specific logic is given a semantics by defining all its operators in terms of the

underlying PCA higher-order logic. Higher-order logic is known to be sound, which

guarantees that any logic that can be expressed in it is also sound [4, Thm. 5402]. Hence,

the security-logic designer need only provide an encoding of his logic into higher-order

logic, and he gets soundness almost for free.

Chapter3 describes the encoding of our application-specific logic into higher-order

logic and explains how this guarantees soundness.

Although the semantics of the application-specific logic is defined by its encoding into

higher-order logic, i.e., we do not yet have a formal model for our application-specific
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logic, it is still useful to be able to informally argue that the logic “makes sense.” To

“make sense” means that it is not possible to mistakenly conclude that a principal is

willing to give access to a resource (i.e., thatA says(goal(URL,nonce))).

There are two ways to conclude that a principal is willing to give access to a URL

(A says(goal(URL,nonce))). One way is for the principal to sign a statement of the

appropriate goal (pubkeyA signed(goal(URL,nonce))); the other is for that principal to

delegate authority (either in general, or just over that URL) to a principal that is willing

to give access to the URL (e.g.,A says(B speaksforA) andB says(goal(URL,nonce))).

Neither case allows us to arrive at the conclusion in error. In the first case, the

formula representing a signed statement is derived from a sequence of bits generated

by the principal; the formula cannot be created by applying the inference rules of our

logic, so it cannot be falsified or arrived at by mistake.

The second case is safe if neither the delegation statement nor the beliefs of the

principal to whom rights are being delegated can be falsified. A formula that represents

a delegation statement (e.g.,A says(B speaksforA)) can only be derived if the prin-

cipal A has certified the delegation by signing it (e.g.,pubkeyA signed(B speaksforA)

or pubkeyA signed(after (N, (B speaksforA)))). That leaves the principal to whom

privileges were delegated as the only potential weak point. However, this principal’s

beliefs can also be arrived at only through signing or delegation; hence, by induction,

they are valid. It is not possible to arrive at the conclusion thatA says(goalURL,nonce)

in an unintended manner; therefore, our logic “makes sense.”
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2.6 Decision Procedure

One of the goals of designing a simple application-specific logic is that there should be

an efficient decision procedure for finding proofs of true formulas. In most distributed

authorization systems this is critical, because the server that runs the decision procedure

must always correctly conclude whether or not to grant access. In PCA systems the

decidability of an application-specific logic is not crucial, since an inefficient or undecid-

able logic will stymie only the particular client using it, not the server or the system as a

whole. However, it is certainly desirable that an application-specific logic be decidable,

because even if its undecidability cannot harm the server or the system, it makes the logic

much less useful, if not completely useless, to the client. In this section we present an

informal argument of why our logic always allows a correct, polynomial-time access-

control decision, and describe a simpler algorithm we use in practice.

When using our application-specific logic in scenarios such as the one between Alice,

Bob, and the Registrar, the client’s task will always be to prove that a formula of the

form Serversays(goal(URL,nonce)) can be derived from the premises that comprise

the security policy. Since our logic is straightforward, it is not difficult to describe a

polynomial-time algorithm that proves formulas of this kind.

Each formula in the context has the formSsignedF , whereF is either a goal state-

ment or a delegation statement, and optionally valid only after a certain time. To find

whether the initial assumptions support the formula that describes the goal, we repre-

sent the assumptions as a directed graph in which nodes represent principals and edges

represent delegations.

Suppose that we want to find a proof ofServersays(goal(URL,nonce)). First, we

discard unneeded assumptions. These can be delegation statements in which a principal
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attempts to delegate someone else’s authority (e.g.,pubkeyA signed(B speaksforC))

or delegation statements which delegate authority over a resource other thanURL. The

former are always invalid, since there are no inference rules for manipulating them, and

the latter are useless for finding the proof we are currently interested in, since there are

no rules that can connect delegation statements about two different resources.

Second, we process every formula from the context. If the formula is an assertion,

and if it asserts the correct goal (i.e., the one withURL andnonce), we add to the graph

a node for the principal that made the assertion, and label it as start node. If the node for

that principal already exists, we merely label it a start node. If the formula is a delegation,

we add nodes for the source and the target of the delegation, and an edge from the target

to the source (i.e., for the formulapubkeyA signed(B speaksforA) we add nodes forA

andB and an edge fromB to A). We do not add any edges or nodes that already exist in

the graph. If the formula is a delegation that is valid only after a timeN, we either discard

it or treat it as a regular delegation, depending on whether the current time is before or

afterN.

Proving the formulaServersays(goal(URL,nonce)) is akin to finding a path from a

source node to the node that represents the principalServer. The path can be found using

a depth-first search. All potentially useful delegations are represented as edges in the

graph and a depth-first search will touch all edges reachable from the source node, so if a

path cannot be found then there can exist no proof of the goal, and vice versa.

Both the search and the construction of the graph take polynomial time in the num-

ber of initial assumptions. During the construction of the graph each assumption is

considered only once. Furthermore, each assumption can lead to the creation of at

most two nodes and one edge, so if there areN assumptions there can be at most 2N

nodes andN edges. If the running time of the depth-first search isO(v+ e), it will
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be O(2N + N) = O(N) when expressed relative to the number of assumptions. Hence,

determining whether a set of assumptions supports a particular access-control decision

takes linear time.

Figure2.2 shows how this algorithm can be used to show that Alice is allowed to

access Bob’s URL. The security policy (represented by formulasP1, P2, P3) is the same as

in Section2.4. The first processing pass discards unneeded formulas. None ofP1 through

P3 is unneeded or invalid. The second pass constructs the graph. First considered (though

the order is unimportant) is Bob’s delegation. The delegation holds only after 8 P.M.;

assuming that the current time is after 8 P.M. it is treated as a normal delegation. Nodes

representingBob(the issuer of the delegation) andRegistrar.CS101 are added to a graph,

as well as an edge fromCS101 to Bob (Figure2.2a). Next examined is the Registrar’s

delegation, which givesAlice the authority to speak on behalf ofRegistrar.CS101. The

graph already contains a node forRegistrar.CS101, so only a node representingAlice is

added, as well as an edge fromAlice to Registrar.CS101 (Figure2.2b). The last piece of

the security policy is Alice’s assertion that it is OK to access the URL. Again, a node for

Alicealready exists in the graph, so we merely label it as the start node (Figure2.2c). The

graph is now fully constructed. To determine whether Alice may access Bob’s URL, we

look for a path from the node labeled “Start” to Bob’s node (Figure2.2d). A path (show

dashed) exists, so access should be allowed.

In practice, we make access-control decisions using an algorithm that is easier to

implement.

The search performed by the graph algorithm can also be done by a tactical theorem

prover operating directly on the set of initial assumptions without building a graph.

The running time of DFS without marking on an acyclic graph is exponential in the

worst case. In our logic principals may mutually delegate authority to each other (e.g.,
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(a) (b)

(c) (d)

Figure 2.2: A graph generated from Alice’s, Bob’s, and the Registrar’s beliefs. Bob’s
delegation statement, which holds since the time is currently after 8 P.M., is processed
first (a), followed by the Registrar’s specific delegation (b), and Alice’s statement of
goal (c). The existence path from the node labeled “Start” to the node representing Bob
demonstrates that Alice is able to access the URL (d).

pubkeyA signed(B speaksforA) andpubkeyB signed(A speaksforB)), so the graph may

be cyclic and the running time of DFS without marking infinite. In both situations,

however, DFS with marking would be exponential in the worst case.

To make our tactical prover as simple as possible, we constrain the set of initial as-

sumptions by disallowing cyclic delegations, and search for the proof using DFS without

marking.

Each tactic in the theorem prover corresponds to an inference rule of the logic (i.e.,

the tactic that corresponds to theSPEAKSFOR-E rule specifies that a proof of the formula

A says(goal(URL,nonce)) can be derived from the proofs ofA says(B speaksforA) and
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Bsays(goal(URL,nonce)). The theorem prover thus works in the opposite direction from

the graph algorithm, following delegation chains from the goal to assertions. Although

the theorem prover is less general, it is more convenient for our purposes, as will be

discussed in Section4.1.3. The tactics that comprise our prover are shown in AppendixA.



Chapter 3

Semantics for an Access-control Logic

The second step in building a PCA system is to give the application-specific logic a

semantics in the PCA logic. We will begin by explaining the PCA logic in detail, after

which we will describe how we use the PCA logic to encode our application-specific

logic. Finally, we will explain why giving such a semantics to the application-specific

logic guarantees soundness.

3.1 The PCA Framework

The PCA logic is standard higher-order logic with a few extensions that make it more

suitable for defining security logics.

Before we delve into the details of the PCA logic it is useful to review why higher-

order logic is particularly useful for our purposes. One might ask, for example, why we

do not use a simpler logic, like predicate logic; or one with more built in operators, like a

linear or a modal logic.

36
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One of our primary requirements for a substrate for defining logics is that it be

sufficiently powerful to describe a broad range of application-specific logics. Many

security logics, such as our application-specific logic, have higher-order features like

relations that range over formulas (thesaysrelation, for example)—these are expressed

most naturally in higher-order logic. A decidable logic like propositional logic is not

powerful enough for our purposes. Although somekth-order logic could conceivably be

sufficient to describe the relations we desire, there is nothing to be gained by using a

kth-order logic in favor of higher-order logic; higher-order logic is both more general and

provides for a more natural encoding of many relations. In addition, in many cases higher-

order logic makes it possible to write proofs aboutkth-order terms more efficiently than it

would be possible inkth-order logic [5, Section 1.4]. Partly thanks to logical frameworks

like HOL and Isabelle, the convenience of using higher-order logic as a tool for describing

logics has been well established.

Higher-order logic allows us to encode notions like modality and linearity (as we will

see, for example,saysis a modal operator). One could argue that it would sometimes be

more convenient for those notions to be built into the logic. In our experience, however,

defining such operators using higher-order logic has not been unduly complicated or

inefficient. In addition, using higher-order logic makes our framework more general,

and the trusted computing base smaller, than it would be if we used a more specialized

logic.

3.1.1 Higher-order Logic

Our presentation of higher-order logic is standard. The simple types are numbers, strings,

principals, and formulas; compound types are functions from types to types and pairs.

The primitive constructors of the logic allow function abstraction (λ) and application,
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Figure 3.1: The inference rules of higher-order logic.

[A]
B

A→ B
→ I

A→ B A
B

→ E

[y/x]A
∀x.A(x)

∀ I
∀x.A(x)
A(Y)

∀ E

F
(λx.[x/Y]F)(Y)

β I
(λx.F)(Y)

[Y/x]F
β E

F(X)→ F(fst(〈X,Y〉)) FST
F(X)→ F(snd(〈Y,X〉)) SND

¬(¬(F))→ F
NOT-NOT-E

implication (→), universal quantification (∀), and creating and decomposing pairs. The

logic contains nine inference rules for manipulating these constructors (Figure3.1), as

well as a set of rules about arithmetic.

Other standard operators (e.g.,∧,∨) can be defined as abbreviations from the existing

ones (see Figure3.2for some examples). The standard introduction and elimination rules

can be proved as theorems based on these abbreviations.

3.1.2 Extensions

In addition to the standard features of higher-order logic, the PCA logic contains a few

primitives that are useful specifically for defining security logics. In the present work

we have refined the PCA logic so that the number of additions to higher-order logic is

minimal.
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Figure 3.2: Common constructors defined as abbreviations.

A = B
def= ∀P.P(B)→ P(A)

A∧B
def= ∀C.(A→ B→C)→C

A∨B
def= ∀C.(A→C)→ (B→C)→C

∃F def= ∀B.(∀X.F(X)→ B)→ B

⊥ def= ∀A.A
¬A

def= A→⊥

Most security logics are likely to have some notion of principals, proof goals, cryptog-

raphy, and time. A framework for developing security logics should make it convenient

to represent these ideas. At the same time, the mechanism that makes embedding these

ideas in the PCA logic convenient should not restrict the semantics that they might have

in different security logics.

To represent principals, we add to the PCA logic the typeworldview. This type

is implemented as an abbreviation for thestring type. A user of the logic, however,

need not be aware of this; to him,worldview is an abstract type whose implementation

remains opaque.

worldview = string

To create terms of typeworldview, we use thenameconstructor.

name: string→ worldview

Unlike principals, which are terms, both proof goals and cryptographic primitives

can more naturally be represented as formulas. The constructor for goals allows a goal
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specified with two strings to be interpreted as a formula.

goal : string→ string→ formula

The only cryptographic construct supported in the PCA logic is a public-key signa-

ture, which is specified by a public key and a formula that was signed by the correspond-

ing private key.

signed: string→ formula→ formula

If we wanted to use the PCA logic to encode security logics that used other cryp-

tographic primitives, such as group signatures, for example, it might be helpful to add

additional constructors.

An important component of most security logics is the notion of time. To support

such logics the PCA logic has the constantlocaltime, a natural number whose value

represents the current (universal standard) time on the local host. For any numberN that

is greater than the current value oflocaltime, the system will provide users with a proof

thatlocaltime>N; corresponding proofs will also be made available about numbers less

thanlocaltime. Details of how these proofs can be accessed by a user will be described

in Chapter4.

We added the constructors described in this section because they provided a conve-

nient way of expressing concepts that we encountered while designing security logics.

The PCA logic is intended to be used to describe arbitrary security logics, so we did not

endow these constructors with any meaning particular to our application-specific logic.

In particular, we have added to the PCA logic no inference rules that describe how the

constructors behave, which leaves the semantics of each constructor up to the designer of

any particular application-specific logic.
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Since we have added no rules, our extensions fit neatly into higher-order logic. Type

theory permits constants of arbitrary type [5, Section 1.2], which allows the inclusion of

our constructors,name, goal, andsigned, and thelocaltime constant.

3.2 Defining Operators and Inference Rules

Our task is now to devise a definition, in the PCA logic, of each of the operators of

our application-specific logic. The operators should be defined in a way that makes it

possible to derive from their definitions all the inference rules (e.g.,SPEAKSFOR-E) of

the application-specific logic. In other words, each of the inference rules presented in

Chapter2 must be proved as a theorem.

All the definitions and theorems presented in this chapter have been checked by

machine.

Some of the operators of the application-specific logic map cleanly onto the operators

provided by the PCA logic and need no definition. Thesignedoperator of the application-

specific logic, for example, can be represented by the same operator of the PCA logic.

Because formulas likeSsignedF cannot be deduced using the inference rules of the

application-specific logic (or by inference rules of the PCA logic), the semantics of the

signedoperator will be specified by the definitions of the operators (likesays) that make

use of it. Similarly to thesignedoperator,nameandgoalmap directly to the appropriate

constructors of the PCA logic.

3.2.1 Belief

The key notion in our application-specific logic is the notion of belief. A server’s will-

ingness to let a resource be accessed, a client’s intention to access it, and delegation
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statements are all couched as beliefs. This makes it particularly important for the defini-

tion of belief to be accurate, because even a slightly misstated definition could affect any

reasoning done with our logic (unlike, for example, the definition of a particular kind of

delegation, which, if incorrect, might not affect the behavior of any other operators).

We contend that principals should be both rational and accountable1. Before we

formulate the definition of thesaysoperator, we should try to exactly characterize the

beliefs of such a principal. It is clear, for example, that a formula likepubkeyA signedF

should imply thatA believesF , i.e.,A saysF . This behavior, and others, we specified in

our application-specific logic by the inference rules that make use of thesaysoperator.

From these inference rules, and from our intuition about the meaning of thesaysoperator,

we want to extrapolate a more general set of characteristics that describe the operator’s

behavior. Since our goal is to devise a definition in the PCA logic, we want these

characteristics also to be expressed in the PCA logic.

From the application-specific rules about delegation (e.g.,SPEAKSFOR-E andDELE-

GATE-E), and according to the principle of accountability, we can conclude that a par-

ticular belief (e.g.,A saysF) can be the result of some other belief held by the same

principal (e.g.,A says(B speaksforA)) combined with an external fact (e.g.,B saysF).

If a principal believes a set of formulas he should also believe all the formulas that can be

derived from that set. In other words, something very similar to the modus ponens rule

should hold within thesaysoperator. It seems reasonable that a principal’s beliefs should

be consistent both internally and in combination with facts that are globally true, hence

this modus-ponens-like rule should allow as premises both facts thatA believes and facts

that are generally true. We can express this more formally using the following two rules.
1While this may be a poor model of reality, it is nevertheless a useful and reasonable assumption for a

security logic.
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F
A saysF (3.1)

A says(G→ F) A saysG
A saysF (3.2)

The second rule (3.2) ensures thatA’s beliefs are internally consistent. The first rule

(3.1) requires thatA believe anything that is globally true; together with the second rule,

this means one ofA’s beliefs can be combined with a generally true statement to derive a

new belief, which is exactly what happens in the application-specific rules that describe

delegation.

Rules3.1 and3.2 account for the behavior ofsaysin the application-specific rules

about delegation, but they do not help explain theSAYS-I rule. TheSAYS-I rule takes as a

premise a specific sort of formula that cannot be further decomposed, so there is no more

general way of characterizing the behavior the rule describes. Hence, we makeSAYS-I

the third rule that describes the behavior of thesaysoperator.

SsignedF
(nameS) saysF (3.3)

Now that we have described the high-level behavior ofsayswith several rules written

in the PCA logic (3.1–3.3), we need to definesaysin a way that embodies those rules.

The most precise way to do so is to definesaysas the most restrictive operator that obeys

those rules. In particular, if there are infinitely many two-argument relationsS that range

over principals and formulas, a subset of them will relate principals to formulas according

to the rules we wantsaysto follow. We quantify over all possible relations, so one of the

relations in that subset will relate principals to formulas only according to those three
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rules—we define thesaysoperator to be that relation.

A saysF
def= ∀S∀A′ ∀F ′ ∀G′ ∀K.((

F ′→ S
(
A′,F ′

))
∧
((

S
(
A′,F ′

)
∧ S

(
A′, (F ′→G′)

))
→ S

(
A′,G′

))
∧
(
K signedF ′→ S

(
name(K),F ′

)))
→ S(A,F)

Thesaysoperator is the intersection of all the relationsS that obey the three rules.

Now that we have defined thesaysoperator, we should be able to use its definition to

prove some theorems about the operator’s behavior. We have yet to define thespeaksfor

anddelegateoperators, so we cannot prove as theorems all the inference rules of our

application-specific logic, but we can at least prove thatsaysobeys the properties de-

scribed by rules3.1–3.3. Once proved as theorems, these properties will become the

introduction rules for thesaysoperator. Rule3.3 is theSAYS-I rule of the application-

specific logic; proving it as a theorem confirms that at least one of the inference rules

of our application-specific logic can be derived from the definitions of thesaysoperator.

Rules3.1and3.2are important properties that we will often use in proofs; we will prove

them as theorems also, and label themSAYS-I2 andSAYS-I3.

SsignedF
(nameS) saysF (SAYS-I)

F
A saysF (SAYS-I2)
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A says(G→ F) A saysG
A saysF (SAYS-I3)

To demonstrate how to prove theorems from the definition ofsays, let us proveSAYS-

I2, i.e., that a principal believes anything that is globally true. The proof follows directly

from the three rules embodied in the definition ofsays, and is shown in Figure3.3. Note

that applications ofβ rules are omitted in the proof.

The proof demonstrates that the premise,F , can be used to derive the body of the

definition of thesaysoperator, which is definitionally equivalent (line 9) to deriving

A saysF . The parameters ofsaysare therefore in scope throughout the body of the proof

(lines 1–8). The outermost layer of the definition ofsays is the universally quantified

variable that represents says-like relations. By proving that the inner layer can be derived

with respect to any says-like relation (lines 2–7), we demonstrate that it holds for all such

relations (line 8). This inner layer demonstrates that the rules3.1–3.3, with the variables

universally quantified, implyS′(A,F). This is proven by instantiating the quantified

variables withA andF , the arguments of the definition ofsays(line 4). The third variable,

G, is unimportant, so we instantiate it with⊥ (false). After instantiating the variables, we

discard the second two rules, since they are not relevant (line 5) and use the first rule to

prove the subgoalS′(A,F) (line 6).

We can use the same technique to prove theoremsSAYS-I andSAYS-I3.

In addition to directly obeying each the rules in its definition, thesaysoperator also

acts in accordance to what the rules as a whole imply. For example, we can prove that

A says(A saysF) impliesA saysF . This is consistent with our intuitive idea of belief—

barring complicated metaphysical ideas of reality, if Alice believes that she believes a
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Figure 3.3: Proof of theoremSAYS-I2: principals believe tautologies.

1 F premise

2 [S′0]

3

∀A′∀F ′∀G′∀K.(F ′→ S′0(A′, F ′)) ∧

((S′0(A′, F ′) ∧ S′0(A′, (F ′→G′)))→ S′0(A′, G′)) ∧

(K signedF ′→ S′0(nameK, F ′))

assumption

4 (F → S′0(A, F) ∧

((S′0(A, F) ∧ S′0(A, (F →⊥)))→ (S′0(A, ⊥))) ∧

(K signedF → S′0(nameK, F))) ∀A′F ′G′K e 3

5 F → S′0(A, F) ∧ e 4

6 S′0(A, F) → e 5, 1

7 ∀A′∀F ′∀G′∀K.((F ′→ S′0(A′, F ′)) ∧

((S′0(A′, F ′) ∧ S′0(A′, (F ′→G′)))→ S′0(A′, G′)) ∧

(K signedF ′→ S′0(nameK, F ′)))→ S′0(A, F) → i 3–6

8 ∀S′∀A′∀F ′∀G′∀K.((F ′→ S′(A′, F ′)) ∧

((S′(A′, F ′) ∧ S′(A′, (F ′→G′)))→ S′(A′, G′)) ∧

(K signedF ′→ S′(nameK, F ′)))→ S′(A,F) ∀S′ i 2–7

9 A saysF
def= i 8
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formulaF , then she actually does believeF . We show this proof in Figure3.4 and call

the theoremSAYS-TAUT.

A says(A saysF)
A saysF (SAYS-TAUT)

3.2.2 Local Names

Our application-specific logic has two kinds of principals: principals that are created

from public keys, and local name spaces that belong to those principals. The former

kind, principals created from public keys, maps cleanly onto the PCA logic. As in

the application-specific logic, Alice can be described by the termname(pubkeyAlice),

wherename is the PCA-logic constructor and the whole term has the (PCA-logic) type

worldview.

Expressing local names (likeRegistrar.CS101) is less straightforward—we do not

have the option of using a built-in constructor. As with thesaysoperator, before devising

a definition for local names in the PCA logic we need to clarify their meaning.

The key notion in the application-specific logic is belief; we are interested in prin-

cipals as entities that hold beliefs. The beliefs of local names are described only in one

rule, SPEAKSFOR-E, which states that if the owner of a local name delegates away its

privileges (e.g.,A says(B speaksforA.S)), then the local name believes at least as many

formulas as the recipient of the delegation (e.g., ifB saysF thenA.SsaysF). This rule

is a particular instance of a more general principle—local names believe whatever the

principals that own them decide they believe.A.S believes, in other words, whateverA

believes thatA.S believes. In addition, the prefix ofA.S that identifies the principal to
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Figure 3.4: Proof of theoremSAYS-TAUT: Alice believes her own beliefs.

1 A says(A saysF) premise

2 [¬(A saysF)] assumption

3 [A saysF ] assumption

4 [¬(A saysF)] assumption

5 ⊥ ¬ e 4,3

6 (A saysF)→ (¬(A saysF))→⊥ →2 i 3–5

7 A says((A saysF)→ (¬(A saysF))→⊥) SAYS-I2 6

8 A says((¬(A saysF))→⊥) SAYS-I3 7,1

9 A says⊥ SAYS-I3 8,2

10 [⊥] assumption

11 F ⊥ e 10

12 ⊥→ F → i 10–11

13 A says(⊥→ F) SAYS-I2 12

14 A saysF SAYS-I3 13,9

15 ⊥ ¬ e 2,14

16 A saysF RAA 2–15
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Figure 3.5: Proof of theoremSAYS-I2’: local names believe tautologies.

1 F premise

2 SsaysF SAYS-I2 1

3 A says(SsaysF) SAYS-I2 2

whom the nameSbelongs is needed only for someone likeC to distinguish betweenA.S

andB.S. FromA’s perspective,A.S is uniquely identified by the nameS. Hence, the set

of ideas that are held byA.S is in fact the set of ideas thatA believesSbelieves. We need

local names only to reason about their beliefs, so instead of defining local names as terms

in the PCA logic we can just reason about the beliefs that the local names’ owners believe

they hold.A.S thus becomes just an abbreviation.

A.SsaysF ≡ A says((nameS) saysF)

We formally defined the notion of belief after deciding that all principals’ beliefs

should be consistent according to a particular set of rules. After adopting this abbreviation

for local names, we should be able to show that the beliefs of local names are consistent

in the same way. We therefore prove theorems about the beliefs of local names analogous

to the theorems we proved about the beliefs of simple principals. For illustration we show

theSAYS-I2’ theorem, an analogue toSAYS-I2; its proof is in Figure3.5.

F
A.SsaysF (SAYS-I2’)
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Treating local names as an abbreviation is convenient in that it absolves us from

having to define another operator, which makes the semantics of our application-specific

logic simpler and easier to reason about. It is inconvenient, however, in that local names

are no longer a term in the logic, so they cannot be passed to an operator as a single

argument. For example, sinceA.S is not a single term, we cannot write the formula

B speaksforA.S. Instead, we will have to define an additional version of speaksfor

and writespeaksfor(B,A,S). It is possible to maintain the semantics of local names

as abbreviations and still allow all principals to be represented as single terms; defining

this in the PCA logic is complicated, however, so we defer it to Section5.3.

3.2.3 General Delegation

Delegation is closely linked to belief. If Alice believes she is delegating her own authority

to Bob, then her authority really is being delegated. If Alice believes she is delegating

Bob’s authority, however, then that belief has no meaning to anyone but Alice.

We want to define a delegation statement to be the particular formula that Alice

believes if she wants to delegate her authority to Bob. To delegate authority means to

allow Bob’s beliefs to influence her own. If Alice has delegated her authority to Bob,

then Bob’s belief that it is OK to access a certain URL (Bobsays(goal(URL,nonce))) is

sufficient to cause Alice to believe this too (Alicesays(goal(URL,nonce))). Therefore,

the delegation formula that Alice believes has to make it possible to conclude that Bob’s

beliefs imply Alice’s. It is straightforward to express this in higher-order logic.

A speaksforB def= ∀U∀N.(A says(goal(U,N)))→ (B says(goal(U,N)))
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The next step is to prove theSPEAKSFOR-E rule as a theorem. The proof makes use

of the SAYS-I3 theorem to conclude thatA believes thatA believes the goal. TheSAYS-

TAUT theorem allows us to conclude from this thatA believes the goal. The full proof is

shown in Figure3.6.

Figure 3.6: Proof of theSPEAKSFOR-E theorem.

1 A says(B speaksforA) premise

2 B says(goal(U,N)) premise

3 [∀U ′∀N′.B says(goal(U ′,N′))→ A says(goal(U ′,N′))] assumption

4 B says(goal(U,N))→ A says(goal(U,N)) ∀U,N e 3

5 (∀U ′∀N′.B says(goal(U ′,N′))→ A says(goal(U ′,N′)))

→ (B says(goal(U,N))→ A says(goal(U,N))) → i 3–4

6 A says((∀U ′∀N′.B says(goal(U ′,N′))→A says(goal(U ′,N′)))

→(B says(goal(U,N))→A says(goal(U,N)))) SAYS-I2 5

7 A says(∀U ′∀N′.B says(goal(U ′,N′))→ A says(goal(U ′,N′))) def= e 1

8 A says(B says(goal(U,N))→ A says(goal(U,N))) SAYS-I3 6, 7

9 A says(B says(goal(U,N))) SAYS-I2 2

10 A says(A says(goal(U,N))) SAYS-I3 8, 9

11 A says(goal(U,N)) SAYS-TAUT 10

To allow delegation to local names likeB.S, we have to formulate another version

of the speaksfor operator. The formulation follows directly from the definitions of
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speaksforand our abbreviation for local names.

A speaksfor′ B.Sdef= ∀U∀N.(A says(goal(U,N)))

→ (B says((nameS) says(goal(U,N))))

We modify SPEAKSFOR-E2 to take into account the alternative delegation operator,

speaksfor′, and then we prove the rule as a theorem. The proof is analogous to the proof

of SPEAKSFOR-E.

A says(B speaksfor′ A.S) B says(goal(URL,nonce))
A.Ssays(goal(URL,nonce)) (SPEAKSFOR-E2)

3.2.4 Specific Delegation

The only difference between specific and general delegation is that specific delegation

shares authority regarding only a particular URL, rather than all URLs. Thedelegate

operator, therefore, is very similar to thespeaksforoperator; it takes the additional URL

as a parameter, and its definition does not quantify over all URLs.

delegate(A, B, U) def= ∀N.(B says(goal(U,N)))→ (A says(goal(U,N)))

An analogous operator is used to delegate authority to local principals.

delegate′ (A, B.S, U) def= ∀N.(B says((nameS) says(goal(U,N))))

→ (A says(goal(U,N)))
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3.2.5 Time

Theafter operator is similar to the delegation operators: if a principal believes a formula

constructed with such an operator, and if some external condition is true, then we can

conclude that the principal has certain other beliefs. This suggests that theafter operator

can be defined as an implication. In the case of delegation the external condition is the

belief of the recipient of the delegation, whereas in the case of theafter operator it is a

judgment about the current time.

after (N, F) def= (localtime> N)→ F

The PCA logic describes the current time with the constantlocaltime, which makes

it possible to replace the magical side condition on theAFTER-E rule with an additional

premise.

A says(after (N, F)) localtime> N
A saysF (AFTER-E)

The proof is straightforward; the key, again, is to useSAYS-I3 (modus ponens inside

says) to discharge the proof obligation in the definition ofafter.

3.3 Soundness

As discussed in Section2.5, before we decide to rely on a particular security logic, we

would like to have certain guarantees about its behavior.

One desired behavior is consistency: it should not be possible to prove both some

formula and its negation. If it were possible, one could prove⊥, and⊥ could be used to
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prove any arbitrary formula. A logic in which one can prove arbitrary formulas is not of

much use, so we certainly want our application-specific logic to be consistent. A related,

but strictly more powerful, property is soundness. In a sound logic it is impossible to

erroneously prove any formula that is not supported by the initial facts. A sound logic is

necessarily consistent, so a proof of soundness also guarantees consistency.

For any particular application-specific logic, we might like to have even stronger

guarantees. It would be useful to prove, for example, that principals’ beliefs obey a

property akin to consistency. We would be more inclined to trust our logic if we knew,

for example, that if the Registrar signed only certain kinds of statements then his beliefs

would never include⊥. Any such property would require the overall logic to be sound,

or at least consistent; in this section we address these more general guarantees.

The discussion of soundness in Section2.5 was brief and highly informal, since

soundness is proven with respect to a model, and in that chapter we presented no model

for our logic. In this chapter, we have provided the logic with a semantics—each of the

operators and rules of our application-specific logic has a definition in the PCA logic.

Any set of formulas that has a model in higher-order logic is sound [4, Thm. 5402]; if

the application-specific logic were embedded directly in higher-order logic, this theorem

would be sufficient to prove the soundness of our application-specific logic. The PCA

logic differs somewhat from the particular formalization of higher-order logic to which

the theorem refers [4, Chapter 5], but we will argue that the PCA logic itself can be based

on the same formalization. We address each significant difference in turn.

• The sets of operators and inference rules of the PCA logic are not the same as those

of higher-order logic. However, each of the operators of the PCA logic can be

defined from the operators of higher-order logic. Similarly, each of the inference

rules can be derived from the axioms and inference rule of higher-order logic. For



CHAPTER 3. SEMANTICS FOR AN ACCESS-CONTROL LOGIC 55

example, the PCA logic has an operator for existential quantification (∃), whereas

higher-order logic has universal quantification (∀). Existential quantification, how-

ever, can be defined as an abbreviation:∃x.A def= ¬(∀x.¬A).

• The PCA logic has the type of principals. This type is defined, however, as a string,

and strings can be modeled by the natural numbers in a conventional presentation

of higher-order logic.

• Constructors likesignedandnamehave no analogue in higher-order logic. Higher-

order logic permits arbitrary constants of various types, fortunately, so the addition

of our constants merely gives results to a particular formulation of higher-order

logic [4, p. 162].

We have established that the PCA logic can be expressed in a particular formulation

of higher-order logic. This is sufficient to show that the set of definitions and theorems

that corresponds to our application-specific logic is sound.

Proving access using our application-specific logic introduces one more variable which

could potentially lead to unsoundness: each proof of access is based on a set of premises

(of the form A signedF) which are temporarily added to the logic as postulates; if

the premises themselves make the higher-order logic inconsistent, we cannot guarantee

anything about the application-specific logic. For example, if bothF and¬F are added,

one could derive⊥, and therefore proveBobsays goal(. . .) even if Bob does not wish to

grant access.

Fortunately, in our case the premises cannot lead to such a situation. More formally,

the property we would like to hold is that if we derive a formulaφ in the logic expanded

with our premises, and thesignedconstructor does not occur inφ, thenφ is also derivable

in the unexpanded logic. Thesignedconstructor is specific to our formulation of higher-
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order logic, so it does not appear in any standard axioms or inference rules; the standard

axioms and inference rules could potentially affect only the parameters,A andF . To

convert a proof ofφ derived in the enhanced logic to a proof in the original logic, we

replace all the instances of thesigned constructor in the derivation of the proof with

λAλF.>. All the premises are similarly replaced and evaluate to>, leaving a derivation

in the original logic, with no mention of thesignedoperator. Since no inference rules of

higher-order logic mentionsigned, any inference rules that were used in the proof with

signedwill still work in the proof with λAλF.>. The property described above hence

holds; therefore, adding premises of the formA signedF does not interfere with the

soundness of the original logic [6].



Chapter 4

System Implementation

To make use of our access-control logic we have developed a system with automated

provers, proof checkers, and a protocol that allows hosts to transmit to each other state-

ments made in our logic. The system we have built consists of clients, servers, and fact

servers. Clients (e.g., Alice) attempt to access web pages and have to construct proofs;

servers (e.g., Bob) guard access to the web pages published on them; and fact servers

(e.g., the Registrar) publish and, optionally, protect pieces of the security policy. The

functionality required of fact servers is a subset of what is required of ordinary servers,

so this chapter will not discuss them in detail.

One of the design requirements of our system was that it be convenient to retrofit onto

existing web infrastructure. This dictates the architecture of our system—we provide

extensions to standard web browsers and standard web servers which enable them to

carry out the PCA protocol. Figure4.1shows the architecture of our system.

The bulk of the client part is a web browser. The rest—the proxy server and the

prover—are components that enable the web browser to use the PCA protocol. The

57
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Figure 4.1: The components of our system.

browser itself remains unmodified, and our system does not use any features that are

unique to a particular browser version.

The server part of our PCA system is built around an unmodified web server. The

web server is PCA-enabled through the use of a servlet which intercepts and handles all

PCA-related requests. The two basic tasks that take place on the server’s side during a

PCA transaction are generating the proposition that needs to be proved and verifying that

the proof provided by the client is correct. Each is performed by a separate component,

the proposition generator and the checker, respectively.

This chapter will describe in detail the individual parts of the client and the server.

An extended example will illustrate how they are all used during the course of a PCA

transaction.

4.1 Client

To access a PCA-protected web page, the client will have to generate proofs of one or

more challenges provided by the server.
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4.1.1 Proxy Server

The job of the proxy server is to be the intermediary between a web browser that has no

knowledge of the PCA protocol and a web server that is PCA-enabled. An attempt by

the browser to access a PCA-protected web page results in a dialogue between the proxy

and the server that houses the page. The dialogue is conducted through PCA-enhanced

HTTP, that is, HTTP augmented with headers that allow it to convey information needed

for authorization using the PCA protocol. The browser is completely unaware of this

dialogue; it sees only the web page returned at the end.

The proxy is meant to be a substitute for a browser plugin. We decided to use a

proxy instead of a plugin because this lets our system be completely browser independent.

A production implementation would probably replace the proxy with a plugin. Like a

plugin, our proxy is meant to be tightly coupled with the web browser. Unlike traditional

web proxies, it is meant to serve a single client, not a set of them. This is because the

proxy needs to speak on behalf of a client, perhaps signing statements with the client’s

private key or identifying itself with the client’s public key. If a shared proxy were to be

used for this purpose, its ability to access the private information of several clients would

be a concern. Also, it would have to authenticate client-side connections so that it would

know which client’s data, or identity, to use for PCA transactions. Such authentication

would be at cross purposes with one of the goals of our system—authorization uncoupled

from authentication.

Using a local, single-user proxy does not solve the problem of authenticating the user

to the proxy. On a well-configured, single-user personal computer, however, logging in

to the computer itself is sufficient to guarantee that only the client whose private key the

proxy holds will be able to use the proxy.
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4.1.2 Secure Transmission and Session Identifiers

In a PCA system a client obtains access to a resource by presenting a proof—the proof

acts as a capability that allows access to the resource. It’s important, therefore, to guard

the proof against misuse, both by an attacker who intercepts it and a malicious client

who might try to reuse a old proof. To that end, the server requires that each proof goal

contains a session identifier, or nonce. In addition, proofs and nonces are transmitted only

over a secure channel.

The session identifier is a server-generated secret shared by the client and server. A

single authorization transaction might require the client to generate multiple proofs. The

session identifier is used in challenges and proofs (including in digitally signed formulas

within the proofs) to make them specific to a single authorization session. The session

identifier not only allows a server to require a client to generate a fresh proof, but also

allows the server to cache proofs and to let clients present the session identifier as a token

that demonstrates that they have already provided the server with a proof of access. Since

they may be time-dependent, the server will still verify that the premises of a cached

proof are valid.

Since the session identifier may be sufficient to gain access to a resource, stealing a

session identifier, akin to stealing a proof in a system where goals are not tagged with

nonces, compromises the security of the system. In order to keep the session identifier

secret, communication between the client and server uses the secure protocol HTTPS

instead of normal HTTP in all cases where a session identifier is sent. If the client

attempts to make a standard HTTP request for a PCA-protected page, the server replies

with a special “Authorization Required” message which directs the client to switch to

HTTPS and retry the request.
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4.1.3 Prover

In the course of a PCA conversation with a server, the proxy needs to generate proofs

that will demonstrate to the server that the client should be allowed access to a particular

file. This task is independent enough from the rest of the authorization process that it is

convenient to abstract it into a separate component. During a PCA conversation the client

may need to prove multiple statements; the process of proving each is left to the prover.

The core of the prover in our system is the Twelf logical framework [45]. Proofs

are generated automatically by a logic program that uses tactics. The goal that must be

proven is encoded as the statement of a theorem. Facts that are likely to be helpful in

proving the theorem are added as assumptions. The logic program generates a derivation

of the theorem; this is the “proof” that the proxy sends to the server.

The tactics that define the prover (see AppendixA.2) roughly correspond to the

inference rules of the application-specific logic. Together with the algorithm that uses

them, the tactics comprise a decision procedure that generates proofs. As described in

Section2.6, the algorithm implemented by the prover is a depth-first search without

marking.

As part of generating the proof of a goal given to it by the proxy, the prover’s job is to

find all the assumptions that are required by the proof. Assumptions needed to generate

a proof might include statements made by the server about who is allowed to access a

particular file, guesses about time, statements by which principals delegate authority to

other principals, or statements of goal. While some of these might be known to the proxy,

and would therefore have been provided to the prover, others might need to be obtained

from web pages.
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4.1.4 Gathering Facts and Iterative Proving

As part of generating the proof of a goal given to it by the proxy, the prover’s job is to

find all the assumptions that are required by the proof.

The client may not always be able to generate a proof of a challenge on its first try.

It may need to obtain additional information, such as signed delegations or other facts,

before the proof can be completed. The process of fetching additional information and

then retrying the proof process is callediterative proving. The process does not affect the

server, and terminates when a proof is successfully generated.

Proof generation can be divided into two phases. In the first phase, facts are gathered.

In the second phase, a prover attempts to assemble the facts into a proof of the challenge.

If it is successful, the proof is returned. Otherwise, the phases are repeated, first gathering

additional facts and then reproving, until either a proof is successfully generated, or until

no new facts can be found.

For the purpose of specifying the order in which they are gathered, we group facts

into four general categories.

Goal-oriented facts are those that describe who has access to a particular URL—

this is the piece of the security policy that typically resides on the server. Goal-oriented

facts represent the last delegation in the delegation chain that gives a client access to a

resource, so if a client is looking to accumulate facts, this is the first sort of fact that the

client gathers.

Key-oriented facts describe delegation statements made by principals other than the

holder of the resource. We call them key-oriented because a client learns them by seeking

information about public keys that might be mentioned in goal-oriented facts. Key-

oriented facts are the second type of fact to be gathered.
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Self-signed facts are the assertions made by a client that access should be granted.

Each proof contains one self-signed assertion. If the server delegates authority directly

to the client, then a goal-oriented and a self-signed fact could be sufficient to generate a

proof. In the hope that it might be able to generating a proof from facts that it has already

learned, a client creates a self-signed fact immediately after receiving a challenge.

Assertions about time are the last kind of fact. To demonstrate that a time-dependent

delegation statement holds, the client makes an assertion about the current time on the

server’s machine. These assertions are made whenever the client encounters a time-

dependent delegation, and they are verified by the server before the proof is accepted.

Since fetching facts from the web is a relatively time-consuming process (hundreds

of milliseconds is a long time for a single step of an interactive authorization that should

be transparent to the user), the prover caches the facts for future use. The prover also

periodically discards facts which have not been recently used in successful proofs.

4.1.5 Client Control Flow

The proxy’s behavior while trying to prove access to a PCA-protected web page is sum-

marized in Figure4.2. We assume that the proxy has is communicating with the server

over a secure channel (HTTPS). The proxy starts out by requesting the URL from the

server. If the server’s answer does not include a challenge, the proxy’s job is done; this is

either because the server has returned the desired web page, or because an error occurred

on the server.

If the server’s answer includes a challenge, the proxy must check whether this same

challenge has been proved before. Receiving a challenge that it has already proven most

likely indicates that the proxy’s proof was not accepted. This should normally happen

only if the proxy’s guesses about current time were incorrect; the solution, then, is to
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Figure 4.2: Client flowchart.

discard those guesses and attempt to generate the proof anew. If the server continues to

respond with the same challenge, the proxy has no recourse but to give up.

When the proxy receives a new challenge, it enters the iterative proving loop, during

which it repeatedly fetches facts and tries to construct a proof of the challenge. Iterative

proving stops when the challenge has been proven or when the proxy is unable to fetch

any new facts.
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4.2 Server

4.2.1 Proposition Generator and Iterative Authorization

When a client attempts to access a PCA-protected web page, the server replies with a

statement of the theorem that it wants the client to prove before granting it access. This

statement, or proposition, depends only on the pathname of the file that the client is trying

to access and on the syntax of the logic in which it is to be encoded; it is generated by the

server’sproposition generator, a module independent from the rest of the server.

The proposition generator provides the server with a list of propositions. The server

returns to the client the first unproven proposition. If the client successfully proves

that proposition in a subsequent request, then the server will reply with the next un-

proven proposition as the challenge. This process of proving and then receiving the next

challenge from a list of unproven propositions is callediterative authorization, and is

illustrated in Figure4.3.

The process of iterative authorization terminates when either the client gives up (i.e.,

cannot prove one of the propositions) or has successfully proven all of the propositions,

in which case access is allowed. If the client presents a proof which fails when the server

checks it, it is simply discarded. In this case, the same challenge will be returned to the

client twice.

Our system generates a proposition for each directory level of the URL specified

in the client’s request. This ensures that the client has permission to access the full

path (as in the standard access control for a hierarchical file system). Since the server

returns identical challenges regardless of whether the requested object exists, returning a

challenge reveals no information about the existence of objects on the server.
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Isolating the proposition generator from the rest of the server makes it easy to adapt

the server for other applications of PCA (protecting a file system, for example, or web-

based resources that do not have a hierarchical naming scheme); using it for another

application may require nothing more than changing the proposition generator.

A benefit of iterative authorization is that it allows parts of the security policy to be

hidden from unauthorized clients. Only when a challenge has been proven will the client

be able to access the facts that it needs to prove the next challenge. In the context of our

application this means, for example, that a client must prove that it is allowed to access a
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directory before it can even find out what goal it must prove (and therefore what facts it

must gather) to gain access to a particular file in that directory.

4.2.2 Transmitting Challenges and Proofs

For each authorization request, the server’s proposition generator generates a list of

propositions which must be proven before access is granted. Each proposition contains

a URL and a session identifier. The server checks each proposition to see if it was

previously proven by the client by checking a cache of previously proven challenges.

If all of the propositions have been proven, access is allowed immediately. Otherwise,

the first unproven proposition is returned to the client as a challenge. Any other unproven

propositions are discarded.

The server constructs a reply with a status code of “Unauthorized.” This is a stan-

dard HTTP response code (401) [26]. The response includes the required HTTP header

field “WWW-Authenticate” with an authentication scheme of “PCA” and the unproven

proposition as its single parameter.

Once the client has constructed a proof of the challenge, it makes another HTTPS

request (this can be done with the same TCP connection if allowed by keep-alive) con-

taining the challenge and the proof. The challenge is included in an “Authorization”

request-header field, and the proof is included in a series of “X-PCA-Proof” request-

header fields. The server checks that the proof proves the supplied challenge, adds the

challenge to its cache of proven propositions, and then begins the checking process for

the next proposition.
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4.2.3 Proof Checking

The Theory

After it learns which proposition it must prove, the client generates a proof and sends it

to the server. If the proof is correct, the server allows the client to access the requested

web page. Proofs are checked using Twelf. The proof provided by the client is encoded

as an LF term [31]. The type (in the programming languages sense) of the term is the

statement of the theorem that must be proven; the body of the term is the proof itself.

Checking that the derivation is correct amounts to type checking the term that represents

the proof. If the term is well typed, the client has succeeded in proving the proposition.

As is the case for building the proof, using Twelf for proof checking is overkill,

since only the type-checking algorithm is used. The proof checker is part of the trusted

computing base of the system. To minimize the likelihood that it contains bugs that

could compromise security, it should be as small and simple as possible. Several minimal

LF type checkers have been implemented [9, 43]; one of these could serve as the proof

checker for our system.

The natural way to efficiently represent LF proofs is in the form of directed acyclic

graphs (DAGs). This makes it easy to reuse the many shared structures, particularly type

information, that occur in the proof. Twelf accepts as input and provides output in human-

readable ASCII, so instead of representing proofs as DAGs we have to represent them in

a more linear fashion, as trees, with all the shared structures replicated wherever they are

used. The replication causes an exponential increase in the size of our proofs. Relying

on Twelf’s implicit type reconstruction algorithm would allow us to compress the proofs

to a manageable size. Unfortunately the algorithm is undecidable, which could cause

correct proofs not to be accepted or the server to be tied up by a complicated proof. The
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best solution would be to represent our proofs in the more efficient, machine-friendly

format and use one of the previously mentioned minimal checkers. For now, however, we

will use the inefficient, explicitly typed form; our proofs are sufficiently small to remain

tractable despite the blowup in size.

The Practice

Verifying that proofs are valid is slightly more involved than just checking that Twelf will

accept them. Twelf allows the user to input both axioms and theorems. If we allowed a

client’s proof to contain axioms, he could simply assert a proposition instead of proving

it. In addition, the server must verify any digital signatures and guesses about time that

are sent with the proof.

We developed a preprocessor that resolves these issues before the proof is sent to

Twelf. The preprocessor first makes sure that all of the terms that make up the proof have

both a type and a definition; a proof that contains illegal axioms is rejected.

Next, two special types of axioms are inserted into the proof as necessary. The first

type is used to make propositions about digital signatures, and the second type is used to

make propositions regarding time. These are required since an LF type checker cannot

itself check digital signatures or assertions about time. The client inserts into the proof

placeholders for the two types of axioms. The server makes sure that each axiom holds,

generates an LF declaration that represents it, and then replaces the placeholder with a

reference to the declaration.

For digital signatures, the client inserts into the proof a proposition of the special form

“#signaturekey, formula, sig”. The server checks thatsig is a valid signature made by the

key keyfor the formulaformula. If so, the #signature statement is replaced by an axiom

asserting thatkeysignedformula.
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To make statements about time, the client inserts a proposition of the special form

“#localtime{<,>} value”. The preprocessing stage verifies whether the assertion about

time is correct. If it is, the preprocessor produces an axiom that describes the current time

as being before or afterN and replaces the #localtime statement with a reference to that

axiom. If the assertion is not correct, the proof is rejected.

Once the proof has been parsed to make sure it contains no axioms and special axioms

of these two forms have been reintroduced, the preprocessor verifies that the proof is

attempting to prove the correct challenge. (It might be a perfectly valid proof of some

other challenge!) If this final check succeeds, then the whole proof is passed to an LF

type checker; in our case, this is again Twelf.

If all of these checks succeed and the proof is valid then the challenge is inserted into

the server’s cache of proven propositions. The server will either allow access to the page

(if this was the last challenge in the server’s list) or return the next challenge to the client.

4.3 A Sample Transaction

To illustrate how the various parts of the client and server work together to perform a

PCA transaction, we will describe in detail what happens when Alice tries to access the

midterm results page.

First, Alice types the URLhttp : //server/midterm.html into her browser. Her

browser forms the request and sends it to the local proxy (Figure4.1, step 1). The

proxy server does not yet know that the page Alice has requested is PCA protected, so it

forwards the request to Bob without modifying it (step 2). Alice’s browser will remain

completely unaware of the proxy’s actions until the proxy sends the browser either the
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page that Alice attempted to load or an error message explaining why the page couldn’t

be loaded.

Bob receives Alice’s request. Since the request is for a PCA-protected web page, the

request is handled by the servlet, which will handle the server’s end of the remainder of

the PCA transaction. The servlet notices that the request has been made over HTTP and

rejects it with a hint that Alice should try again via HTTPS. Alice’s proxy switches to

HTTPS and sends the same request again.

After receiving the second, encrypted request, the servlet first generates the session

ID, SID. It then passes the request and the ID to the proposition generator (step 3). The

proposition generator returns a list of propositions that Alice must prove before she is

allowed to see/midterm.html (step 4).

(name(pubkeyBob)) says(goal(http : //server/,SID))

(name(pubkeyBob)) says(goal(http : //server/midterm.html,SID))

The first proposition states that the server believes that it’s OK for the session iden-

tifier SID to readhttp : //server/. The servlet checks whether this proposition has

already been proved—it has not—and then constructs an HTTP response that includes

this proposition as a challenge and sends it to Alice (Figure4.1, step 5).

The proxy receives Bob’s message and extracts the challenge. Knowing that any

proof of the challenge must include Alice’s assertion that it is OK to access the URL in

question, the proxy generates the corresponding fact.

(name(pubkeyAlice)) signed(goal(http : //server/,SID))
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Armed with these facts, Alice’s proxy uses the prover to try to prove the challenge

(step 6). The attempt fails, since Alice’s assertion is by itself insufficient to support a

proof. Alice’s proxy will now iteratively fetch additional facts until a proof can be found

(step 7).

The proxy first attempts to fetch from Bob the goal-oriented facts abouthttp : //

server/. The facts about each URL are housed on Bob’s machine in a location deter-

mined by the name of the URL, so Alice knows where to find them.

Bob receives Alice’s request for goal-oriented facts. These facts, like the midterm

results web page, are PCA protected. To bootstrap the authorization process, however,

the goal-oriented facts that describe who has access to the root directory of the server are

freely available.

In addition to the midterm results page, Bob is in the habit of making other class

materials available on his server. The root directory on his machine, therefore, is always

accessible to any of his students. Bob therefore returns to Alice the following fact:

(name(pubkeyBob)) signed

(delegate(name(pubkeyBob),

(name(pubkeyRegistrar)).CS101,

http : //server/))

Armed with these facts, Alice’s proxy uses the prover to try to prove the challenge.

The attempt fails, since the facts are insufficient to support a proof. Alice’s proxy will

now iteratively fetch additional facts until a proof can be found. To learn where to look

for additional facts, Alice examines the facts she has already obtained.

Bob’s public key and the Registrar’s public key are embedded in the facts Alice

has collected. In each key is encoded a URL that describes a location at which the
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owner of that key publishes additional facts. The Registrar’s key, heretofore given as

pubkeyRegistrar actually has the formpubkeyRegistrar;http : //server/facts/.

Alice visits these URLs in the hope of finding useful facts. From the URL mentioned

in the Registrar’s public key she learns the following fact:

(name(pubkeyRegistrar)) signed

((name(pubkeyAlice)) speaksfor((name(pubkeyRegistrar)).CS101))

After fetching this fact, Alice again attempts to generate a proof of the first assump-

tion. She now has enough facts to demonstrate that she is authorized to readhttp : //

server/, so she succeeds in constructing the proof. The proxy repeats its request to

accesshttp : //server/midterm.html, this time including in the request the proof that

was just generated (step 9).

Upon receiving Alice’s request, the servlet again uses the proposition generator to

determine which propositions must be satisfied before access is granted. Noticing that

Alice’s request carries a proof of the first proposition, the servlet send the proof to the

checker (step 10). The checker verifies that Alice’s proof of the first proposition is valid.

The servlet checks its cache to determine whether the second proposition has been proved.

It has not, so the servlet again rejects Alice’s request, this time including in its response

an encoding of the second challenge.

Alice now repeats the process that she used to generate the first proof, with minor

variations because she already knows some facts that will be useful in constructing the

proof (steps 6–12).

As before, Alice’s proxy first creates a self-signed fact.

(name(pubkeyAlice)) signed(goal(http : //server/midterm.html,SID))
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Alice now tries to use this fact, together with the facts that have been gathered during

the attempt to generate the first proof, to prove the second challenge. The attempt fails,

since Alice has no goal-oriented fact that describes who is allowed to access the midterm

results.

Exactly as for the previous challenge, Alice requests from Bob a goal-oriented fact

abouthttp : //server/midterm.html. Before sending her the fact, Bob verifies that

Alice had previously proved that she is allowed to access the server’s root directory, since

only people who can access the root directory are allowed access to the goal-oriented

facts about files in the root directory.

Like the root directory, the midterm results file is accessible only by students taking

CS101; in addition, no one may access it before 8 P.M.

(name(pubkeyBob)) signed

(after (8P.M.,(delegate(name(pubkeyBob),

(name(pubkeyRegistrar)).CS101,

http : //server/midterm.html))))

Parsing the goal-orient fact, Alice also learns that Bob’s delegation is time dependent.

Knowing that it’s currently 9 P.M. according to her own clock, Alice assumes that Bob’s

clock shows a time after 8 P.M. She asserts the formulalocaltime> 8P.M. and adds it to

her list of facts.

As before, at this point Alice attempts to generate a proof. Unlike for the first chal-

lenge, however , proving succeeds, since Alice has in her cache the Registrar’s delegation

statement. Alice makes a final request to accesshttp : //server/midterm.html, this

time including in it the proof of the second challenge.
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The server receives Alice’s request formidterm.html and generates a list of propo-

sitions that need to be proved before access is granted. The first proposition has been

proved, and Alice has included a proof of the second one; the server confirms that her

proof is valid. There are no more propositions left to be proved, so Alice has success-

fully proved that she is authorized to readhttp : //server/midterm.html. The server

sends the requested page to Alice. Alice’s proxy recognizes that the proving process is

complete, and returns the page to Alice’s browser.

4.4 Performance and Optimizations

4.4.1 Caching and Modularity

Our authorization protocol involves a number of potentially lengthy operations like trans-

ferring data over the network and verifying proofs. We use caching on both the client and

the server to alleviate the performance penalty of these operations.

Client-side One of the inevitable side-effects of a security policy that is distributed

across multiple hosts is that a client has to communicate with each of them. Delegation

statements in the security policy may force this communication to happen sequentially,

since a client might fetch one piece of data only to discover that it needs another. While

there is little than can be done to improve the worst-case scenario of a series of sequential

fetches over the network, subsequent fetches of the same facts can be eliminated by

caching them on the client. Some facts that reside in the cache may expire; but since

it is easy for the client to check whether they are valid, they can be checked and removed

from the cache out-of-band from the proof-generation process.
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Server-side To avoid rechecking proofs, all correctly proven propositions are cached.

Some of them may use time-dependent or otherwise expirable premises—they could be

correct when first checked but false later. If such proofs, instead of being retransmitted

and rechecked, are found in the cache, their premises must still be checked before autho-

rization is accepted. The proofs are kept cached as long as the session ID with which they

are associated is kept alive.

Since all proofs are based on a sparse and basic core logic, they are likely to need

many lemmas and definitions for expressing proofs in a concise way. Many clients

will use these same lemmas in their proofs; most proofs, in fact, are likely to include

the same basic set of lemmas. We have added to the proof language a simple mod-

ule system that allows us to abstract these lemmas from individual proofs. Instead of

having to include all the lemmas in each proof, the module system allows them to be

imported with a statement likebasiclem = #include http://server/lemmas.elf.

If the lemmaspeaksfor e1, for example, resides in thebasiclem module, it can now

be referenced from the body of the proof asbasiclem.speaksfor e. Instead of being

managed individually by each client, abstracting the lemmas into modules allows them

to be maintained and published by a third party. A company, for instance, can maintain a

single set of lemmas that all its employees can import when trying to prove that they are

allowed to access their payroll records.

To make the examples in the previous section more understandable, we have omitted

from them references to modules. In reality, each proof sent by a client to a server would

be prefixed by a#include statement for a module that contained the definitions of, for

example,says, speaksfor, delegate and the lemmas that manipulate them, as well as

more basic lemmas.
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Aside from the administrative advantages, an important practical benefit of abstract-

ing lemmas into modules is increased efficiency, both in bandwidth consumed during

proof transmission and in resources expended for proof checking. Instead of transmitting

with each proof several thousands of lines of lemmas, a client merely inserts a#include

declaration which tells the checker the URL at which the module containing the lemmas

can be found. Before the proof is transmitted from the client to the server, the label under

which the module is imported is modified so that it contains the hash of the semantic

content (that is, a hash that is somewhat independent of variable names and formatting)

of the imported module. This way the checker knows not only where to find the module,

but can also verify that the prover and the checker agree on its contents.

When the checker is processing a proof and encounters a#include statement, it first

checks whether a module with that URL has already been imported. If it has been, and

the hash of the previously imported module matches the hash in the proof, then proof

checking continues normally and the proof can readily reference lemmas declared in the

imported module. If the hashes do not match or the module has not been imported, the

checker accesses the URL and fetches the module. A module being imported is validated

by the checker in the same way that a proof would be. Since they are identified with

content hashes, multiple versions of a module with the same URL can coexist in the

checker’s cache.

The checker takes appropriate precautions to guard itself against proofs that may

contain modules that endlessly import other modules, cyclical import statements, and

other similar attacks.
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4.4.2 Speculative Proving

In our running example the web proxy waited for the server’s challenge before it began

the process of constructing a proof. In practice, our proxy keeps track of visited web

pages that have been protected using PCA. Based on this log, the proxy tries to guess,

even before it sends out any data, whether the page that the user is trying to access is

PCA protected, and if it is, what the server’s challenge is likely to be. In that case, it

can try to prove the challenge even before the server makes it (we call thisprove-ahead

or speculative proving). The proof can then be sent to the server as part of the original

request. If the client guessed correctly, the server will accept the proof without first

sending a challenge to the client. If the web proxy already has all the facts necessary for

constructing a proof, this will reduce the amount of communication on the network to a

single round trip from the client to the server. This single round trip is necessary in any

case, just to fetch the requested web page; in other words, the proof is piggybacked on

top of the fetch message.

4.4.3 Performance Numbers

protocol stage ms
fetch URL attempt without HTTPS 198
fetch URL attempt with no proof 723
failed proof attempt 184
fetch file fact + failed proof attempt 216
fetch key fact + successful proof attempt 497
fetch URL attempt (empty server cache) 592
failed proof attempt 184
fetch file fact + successful proof attempt 295
fetch URL attempt (server cached module) 330
total 3219

Figure 4.4: Worst-case performance.
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protocol stage ms
fetch URL attempt with no proof 180
failed proof attempt 184
fetch file fact + successful proof attempt 295
fetch URL attempt (server cached module) 330
total 989

Figure 4.5: Typical performance.

protocol stage ms
construct proof from cached facts 270
fetch URL attempt (server cached module) 330
total 600

Figure 4.6: Fully-cached performance.

protocol stage ms
fetch URL attempt (already authorized) 175
total 175

Figure 4.7: Performance with valid session ID.

As one might expect, the performance of our system varies greatly depending on how

much information is cached by the proxy and by the server. The relevant metric is the

amount of time it takes to fetch a protected web page. We evaluated our system using the

example of Alice trying to accessmidterm.html (see Figures4.4–4.7). For comparison,

Figure 4.8 shows the length of time to fetch a page that is not protected. The actual

example from which we obtained the performance data was based on a slightly different

logic that did not include facts about time.

The slowest scenario, detailed in Figure4.4, is when all the caches are empty and the

first attempt to fetch the protected page incurs initialization overhead on the server (this is

why the first attempt to fetch the URL takes so long even though a proof is not included).

midterm.html
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protocol stage ms
fetch URL attempt (page not protected) 50
total 50

Figure 4.8: Access control turned off.

In this case, it takes 3.2 seconds for the proxy to fetch the necessary facts, construct a

proof, and fetch the desired page.

A more typical situation is that a user attempts to access a protected page on a previ-

ously visited site (Figure4.5). In this case, the user is already likely to have proven to the

server that she is allowed access to the server and the directory, and must prove only that

she is also allowed to access the requested page. In this case she probably needs to fetch

only a single (file or goal) fact, and the whole process takes 1 second. Speculative proving

would likely eliminate the overhead of an attempted fetch of a protected page without a

proof, saving about .2 seconds. If the client already knows the file fact (Figure4.6), that

length of the access is cut to about .6 seconds.

When a user wants to access a page that she has already accessed and the session

identifier used during the previous, successful attempt is still valid, access is granted

based on just the possession of the identifier—this takes about 175 milliseconds.

Alice’s proof might have to be more complicated than in our example; it could, for

example, contain a chain of delegations. For each link of the chain Alice would first

have to discover that she could not construct the proof, then she would have to fetch

the relevant fact and attempt to construct the proof again—which in our system would

currently take about .6 seconds.

The performance results show that, even when all the facts are assembled, generating

proofs is slow (at least 200 ms) and grows slower as the user learns more facts. While

this is a fundamental bottleneck, the performance of our prover is over an order of
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magnitude slower than it need be. For comparison purposes, we implemented a similar

tactical prover in SICStus Prolog [33]. Thought the performance of the two provers

cannot be compared directly because they were implemented on different platforms, the

Prolog prover was roughly two orders of magnitude faster, with access decisions typically

reached in around 5 milliseconds.

If this were a production-strength implementation, we would likely have implemented

the theorem prover in Java. The capabilities of Twelf are far greater than what we

need and impose a severe performance penalty; a custom-made theorem prover that had

only the required functionality would be more lightweight. This also impacts the proof-

checking performance; a specialized checker [9] would be much faster.



Chapter 5

Extending the Logic

The application-specific logic we have defined is able to express many useful security

policies. To be useful in practice, however, a security logic needs to be able to de-

scribe several additional common ideas. In this chapter we describe extensions to our

application-specific logic that capture expiration, revocation, a more flexible kind of

delegation, and a more general and user-friendly notion of principal.

5.1 Expiration

In Chapter2 we introduced an operator that allowed delegation statements to become

valid only after a certain time. Equally useful is thebefore operator, which can be used

to indicate that delegations expire.

before(N, F) def= (localtime< N)→ F

From this definition we can prove a theorem that shows thatbeforebehaves similarly

to after.

82
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A says(before(N, F)) localtime< N
A saysF (BEFORE-E)

5.2 Key Management and Revocation

In the scenario of Chapter2, the principals knew each other by their public keys. The

Registrar, for example, listed Alice in the roster for CS101 by delegating to her key the

authority to speak on behalf of the class. The Registrar implicitly knew, perhaps through

having verified it himself, that the person who held Alice’s private key was Alice.

In a more realistic scenario, the binding between Alice’s identity and her key would

be managed by a certification authority (CA). The CA might export a local name that

represented Alice, which it would bind to the holder of Alice’s private key.

CAsigned((namepubkeyAlice) speaksforCA.Alice)

The Registrar could now make Alice a member of CS101 by referring toCA.Alice

instead of to Alice’s key.

Alice’s private key could become compromised. In this case, the CA would want

to renege on its assertion that Alice’s identity was bound to the corresponding public

key. One way to implement this would be to issue name-to-key bindings with a limited

lifespan.

CAsigned(before(tomorrow, ((namepubkeyAlice) speaksforCA.Alice)))
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If Alice’s key were compromised, the CA simply would not issue a new statement

biding Alice’s identity to her old public key. This approach is appealing in its simplicity,

but also has drawbacks: even if stolen, Alice’s public key will continue to be bound to

her identity untiltomorrow. To reduce the likelihood of misuse the interval at which the

CA reissued bindings would have to be short, but that would require the CA to be signing

and all of the CA’s clients constantly to be fetching the new certificates.

A more practical choice—the one made in reality [51]—is to allow the name-to-key

bindings to be valid for a long interval and to give the CA a mechanism for revoking

bindings that are no longer valid even though they have not reached their expiration date.

The traditional idea of revocation [32] is nonmonotonic—it allows new facts to cause

previously known facts to disappear. The new fact is a certificate revocation list; the

previously known fact is a certificate. The validity of any particular certificate depends

on knowing the most current revocation list. In any large system with many principals and

certificates, it is impossible to guarantee with reasonable efficiency that every principal

has the most up-to-date revocation list. In the presence of adversaries who might try to

deny access to the newest revocation lists, this becomes even bigger problem. In addi-

tion, reasoning about nonmonotonic revocation is complicated, because only exhaustive

examination of all facts can demonstrate that no revocation list invalidates a particular

certificate.

In our logic we implement a monotonic version of revocation [36]—our certificates

have meaning only in the presence of a valid revocation list. More specifically, a certifi-

cate described bycert(A,F,N) can be understood to imply thatA believes the formula

F only in the presence of a valid revocation list that shows that the certificate with serial

numberN has not been revoked. A revocation listrevlist(T1,T2,L) contains a listL of

expired certificates and specifies the interval〈T1,T2] during which this list is valid. If
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the current time is afterT2, a new revocation list must be obtained. We require that

the revocation list is issued by the same principal that issued the certificate that is being

revoked.

cert(A,F,N) A signed(revlist(T1,T2,L)) localtime< T2 N 6∈ L
A saysF

(CERT-E)

As before, we definecert and revlist in a way that allows the (CERT-E) rule to be

proved as a theorem.

A certificate is data that is signed by a principal, so it seems natural to define it

using thesignedoperator. The question then becomes: what specific form should the

signed formula have? We want to convey the idea that the content of the certificate is

valid only under certain circumstances, so most likely we need to use some form of

implication which will allow us to conclude that the principal who created the certificate

stands behind its content only if the premises of the implication can be discharged. The

premises must be derivable from the revocation list, because it is a valid revocation list

(i.e., a revocation list that has not expired and that does not revoke a particular certificate)

that gives meaning to a certificate. The formulas that are easiest to fabricate are formulas

about belief. We have on multiple occasions taken advantage of modus ponens inside says

(SAYS-I3), and this is another situation in which it will come in handy. We will define

a certificate as asignedstatement in which the content,F , is expressed as the belief of

a fictitious entity. Certificates are revoked by serial number, so the fictitious entity will
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represent the serial number of the current certificate.

cert(A,F,N) def= A signed((nameSerialNumber) says((nameN) saysF))

One way to conclude from a certificatecert(A,F,N) that the principalA believes the

formulaF is to demonstrate thatA believes that ifSerialNumber.N beliesF thenF is

true, i.e.,A says((SerialNumber.N saysF)→ F). A should believe this, of course, only

if the certificate has not yet been revoked, that is, if there exists a revocation list that

is both current and does not revoke the certificate. This leads us to the definition of a

revocation list.

revlist(T1,T2,L) def= ∀N ∀F.

localtime< T2

→ N 6∈ L

→ (nameSerialNumber) says((nameN) saysF)

→ F

To be relevant, a revocation list needs to be issued by the same principal who issued

the certificate whose validity we are confirming. This ensures both that there is no

confusion about whose certificate a particular serial number refers to and that a certificate

can be revoked only by an authorized entity, the issuer.

A revocation list is a chained implication. To conclude from a certificate thatA

believesF , we will first need to resolve the implication chain to its last two elements

((nameSerialNumber) says((nameN) saysF)→ F). To discharge the first two parts

of the implication (localtime< T2 andN 6∈ L), we need to demonstrate that the revocation
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list is current and that the list of serial numbers it carries does not include the serial

number of our certificate. Discharging the first two parts of the implication yields a

formula which can be combined with the certificate (usingSAYS-I3) to demonstrate that

the issuer of the certificate believes its content. This is formalized by theCERT-E theorem.

5.3 Abstract Principals

Our notion of principals, as defined in Chapters2 and 3, was simple and sufficiently

expressive for our sample scenario. A real security logic, however, should have a more

general notion of local names. The semantics of local names as abbreviations (e.g.,

Alice’s BobsaysF = Alicesays(BobsaysF)) seems appropriate and flexible enough, but

the interface exposed to the user should be improved: we should not need different oper-

ators to delegate authority to a simple principal and to a local name. Ideally, there should

be a new type of principals that represents both principals created from a public key and

arbitrarily long local names, i.e., theA in A saysF should range not only over principals

created from single strings (Alice), but also over their local names (Alice’s Bob), the local

names’ local names (Alice’s Bob’s Charlie), and so on.

Our scheme of encoding the application-specific logic in higher-order logic makes

adding this functionality at least conceptually straightforward.

First, we introduce a new type,prin, to represent our more powerful principals.

Each principal is specified by one or more strings:Alice by the stringpubkeyAlice,

Alice’s Bob’s Charlieby the stringspubkeyAlice, Bob, andCharlie. We hence define

our new type to be a list of strings.

prin = string list
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Second, we need to define constructors that will let us create principals of the type

prin.

mkprin : string→ prin

So we can represent them in the PCA logic, the constructors need to have semantics,

i.e., definitions. Principals are really just lists of strings, so a constructor that takes a

single string and returns a principal can be defined as the cons (::) operator.

mkprin A
def= A :: nil

Similarly, we can define a constructor that creates local principals.

localprin : prin→ string→ prin

localprin (A,S) def= S:: A

A constructor that creates a local principals several levels deep may also be useful.

localprin ′ : prin→ string list→ prin

localprin ′ (A,L) def= concat(L,A)

Using these constructors we can represent principals likeAliceandAlice’s Bob.

Alice = mkprin (pubkeyAlice)

= pubkeyAlice :: nil

Alice’s Bob = localprin (mkprin (pubkeyAlice),Bob)

= Bob :: pubkeyAlice :: nil
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As before, the definitions of the typeprin and the corresponding constructors need not

concern a user of the logic; they are shown here to aid in explanation. For convenience,

we will continue to refer to principals such asAlice’s BobasAlice.Bob; now that abbre-

viation meanslocalprin (mkprin (pubkeyAlice),Bob).

Next comes the harder task of developing operators that take arguments of typeprin.

As with the original semantics, the key definition is that of thesays operator. The

corresponding operator that ranges over arguments of typeprin we will call says′. Since

we decided we were satisfied with the initial semantics of local names, and wanted to

change only the user interface, we can definesays′ in terms ofsays, so that, for example,

Alice’s Bob’s Charliesays′ F ≡ Alicesays(Bobsays(CharliesaysF)).

As a first step toward definingsays′, let us informally define a function that performs

a single step of expanding the abbreviation.

unroll (〈head:: tail, F〉) = 〈tail, (name(head) saysF)〉

The unroll function maps pairs to pairs. Its argument is a pair composed of a list of strings

(i.e., the principal) and a formulaF . The function generates the formula that the head of

the list of strings believesF . The function’s output is a pair composed of the tail of the

input string list and the generated formula.

As an illustration, let us apply the unroll function to the root principal that represents

Alice and the formulaF .

unroll (〈mkprin (pubkeyAlice), F〉 = unroll (〈pubkeyAlice :: nil, F〉)

= 〈nil,(name(pubkeyAlice) saysF)〉
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More to the point, applying unroll twice to the principal that describes Alice’s Bob

recreates the formula that we are trying to abbreviate.

unroll (unroll (〈Bob :: pubkeyAlice:: nil, F〉) =

= unroll (〈pubkeyAlice:: nil, name(Bob) saysF〉)

= 〈nil,name(pubkeyAlice) says(name(Bob) saysF)〉

It seems apparent that the intended meaning of thesays′ operator can be achieved by

applying unroll the appropriate number of times. This is exactly how we definesays′.

A says′ F def= ∀N ∀Y.

length(A,N)

→ iter (unroll,N,〈A,F〉,Y)

→ snd(Y)

The definition uses relations rather than functions, which makes the definition appear

more complicated than it is. Conceptually, however, it is simple: for all numbersN

and pairsY; if N is the length of the principal, apply unrollN times; if Y is the result

of applying unrollN times, its second component,s1 says. . .sn saysF , is exactly the

intended meaning ofs1 . . .sn says′ F . We use the relation iter to apply unrollN times; this

and many other ideas, including the theory of lists that we use here and in Section5.2,

have been defined in higher-order logic as part of the Foundational Proof-Carrying Code

project [7].
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The definition of iter is similar in concept to the definition ofsays: iter is the particular

relationC that satisfies exactly the rules we specify.

iter (F,N,X,Y) def= ∀C .

(∀Z .C (F,0,Z,Z))

→ (∀N′ ∀Z′ ∀Z′′ . isNat(N′)→ N′ > 0

→C (F,N′−1,Z′,Z′′)→C (F,N′,Z′,F(Z′′))))

→C (F,N,X,Y)

To complete the transition fromsaysto says′, we need to prove some theorems about

says′. A useful one to start with is the dual ofSAYS-I.

SsignedF
mkprin (S) says′ F (SAYS’- I)

Sincesays′ is just an abbreviation of the appropriate use ofsays, it seems reasonable

that we should be able to prove aboutsays′ everything that we can prove about a chain of

application ofsays. We can prove, for example, the following theorems.

A says(A saysF)
A saysF (5.1)

A says(B says(A says(B saysF)))
A says(B saysF) (5.2)
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It should come as no surprise, therefore, that we can also prove a similar theorem for

says′.
A says′ (A says′ F)

A says′ F (SAYS’- TAUT)

Once we have proved all the necessary theorems aboutsays′, operators likespeaksfor,

whose definitions rely onsays, can be redefined usingsays′. In this way, uses ofsaysare

completely confined to the definition of and the proofs of theorems aboutsays′. A user

of the logic has at his disposal a much more powerful notion of principals than before,

and does not need to be aware how these principals are implemented.

We can alter the meanings of some operators to take advantage of our new notion of

principals. In our definition ofspeaksfor, for example, we will encompass the idea that if

principalA speaks for principalB then anything believed by a compound principal rooted

atA is also believed by the corresponding compound principal rooted atB.

A speaksfor′ B def= ∀U∀N∀L.((localprin ′(A,L) says′ (goal(U,N)))

→ (localprin ′(B,L) says′ (goal(U,N))))

There are, of course, other useful notions of what “speaking for” a principal should mean,

so we could define a whole family of delegation operators to describe the different ways

in which principals might wish to delegate their authority.

5.4 Delegation Across Domains

An important feature for cross-domain authorization is the ability to delegate a privilege

under a new name. Consider, for example, a case of two companies that are merg-
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ing. The employees of company A access accounting information through a web page

calledaccounting.html. The employees of company B call their own accounting page

Buchhaltung.html. After the merger the combined accounting information resides at

accounting.html. Everyone who was authorized to accessBuchhaltung.html should

also be able to access the new page.

The delegation operators we defined in Chapter2 can delegate authority to company

B’s certification authority in such a way that every employee of company B who has

access toaccounting.html can access the same page of the merged company. The

operators are not sufficiently flexible, however, to provide the kind of renaming needed

in this situation. Hence we add an operator similar todelegate. delegateAs(A,Ua,B,Ub)

extendsA’s authority over the resourceUa to B under the nameUb. If the principalB

asserts that it is OK to accessUb this will have the same effect as ifA asserted that it is

OK to accessUa.

delegateAs(A,Ua,B,Ub) def= ∀N.(B says(goal(Ub,N)))→ (A says(goal(Ua,N)))

Based on this definition we can now define the behavior ofdelegateAsas a theorem.

A says(delegateAs(A,Ua,B,Ub)) B says(goal(Ub,N))
A says(goal(Ua,N)) (RENAME-E)

5.5 An Extended Example

With the extensions we define in this chapter, our toy logic of Chapters2 and3 becomes a

full-fledged distributed authorization logic that is able to describe with sufficient precision
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many realistic scenarios. As an illustration, we revisit the example of Alice, Bob, and

the Registrar. Initially we had ignored issues such as key management, expiration, and

revocation; this time we will show how to model more realistically the security policy

protecting Bob’s web page. The detail in which this scenario can be described using our

logic is similar to what might be achieved with SPKI [23] or the logic underlying the Taos

authorization mechanism [53].

As before, to gain access to the midterm results page, Alice must prove that Bob

believes the goal statement.

(mkprin (pubkeyBob)) says(goal(midterm.html, nonce))

The initial example assumed that the principals knew each other’s public keys; this

time, a certification authority (CA) binds principals’ public keys to their names. Bob’s

security policy, therefore, will refer to the Registrar by name rather than by key. In

addition, the Registrar we want to model is not an individual like Alice or Bob, but

a function of Bob’s University. We model this indirection by using local names. To

refer to the entity that the CA knows as “University,” we saymkprin (pubkeyCA).Univ.

This University’s Registrar, then, ismkprin (pubkeyCA).Univ.Reg. As is customary, we

assume that everyone knows the CA’s public key.

In addition to stating his policy using this additional level of indirection, Bob also

wants the midterm results web page to be visible only until the end of the semester.

P1 = pubkeyBob signed(before(end-of-semester, after (8P.M.,

delegate(mkprin (pubkeyBob),

mkprin (pubkeyCA).Univ.Reg.CS101, midterm.html))))
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For the principalmkprin (pubkeyCA).Univ.Reg.CS101 to be meaningful, both the

CA and the University need to create their respective local names. The CA does this

in the traditional fashion, via a revocable certificate. Following our implementation of

certificates, in order to be valid a certificate must be accompanied by a current revocation

list that does not invalidate that certificate. Here, the CA signs a revocation list that

revokes no certificates.

P2 = cert(pubkeyCA,before(next-year,

(mkprin (pubkeyUniv) speaksfor(mkprin (pubkeyCA).Univ))),

0001)

P3 = pubkeyCA signed(revlist (yesterday, tomorrow, nil))

The CA has delegated to the holder of the University’s private key the right to speak on

behalf of the principalmkprin (pubkeyCA).Univ.

Unlike the CA, the University eschews certificates in favor of simplicity, but reissues

its statements weekly.

P4 = pubkeyUniv signed(before(next-week,

mkprin (pubkeyReg) speaksfor(mkprin (pubkeyUniv).Reg)))

With this statement, the University bestowed upon the holder of the private key corre-

sponding topubkeyReg the authority to act as the University’s Registrar until next week.

Note that although the CA maps the University’s public key to a local name, the

CA exerts no control over the the University’s own name space. The University is free

to manage its own local names, and uses a local name to refer to the Registrar. The

Registrar is now represented by the principalmkprin (pubkeyUniv).Reg as well as by

mkprin (pubkeyCA).Univ.Reg.



CHAPTER 5. EXTENDING THE LOGIC 96

Now that we have established the Registrar’s authority, it is time for the Registrar to

issue a statement making Alice a member of the CS101 class. This statement is similar

to the Registrar’s old policy, except that now Alice is referred to by her proper name

(and probably her Social Security Number or some other information that will guarantee

uniqueness). As with other pieces of the security policy, this one has a limited lifetime.

P5 = pubkeyReg signed(before(next-week,

mkprin (pubkeyCA).Alice speaksfor(mkprin (pubkeyReg).CS101)))

Naturally, this statement can be useful to Alice only if the CA issues a certificate

binding Alice’s name to her key.

P6 = cert(pubkeyCA,before(next-year,

(mkprin (pubkeyAlice) speaksfor(mkprin (pubkeyCA).Alice))),

0002)

There is no need for the CA to issue another revocation list, since the previous one (P3)

is still valid.

The final piece of the puzzle is provided by Alice.

P7 = pubkeyAlice signed goal(midterm.html, nonce)

We will briefly run through the steps of assembling these seven statements into a

proof that will give Alice access to the midterm results. We abstract from the details

of demonstrating that all time-dependent statements are currently valid and assume that

each of thesignedstatements is converted to asaysstatement.
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First, Alice’s statement (P7) can be combined with the CA’s certificate (P6) and

revocation list (P3) to conclude that the principalmkprin (pubkeyCA).Alice believes

that the web page may be accessed. From the Registrar’s delegation statement making

Alice a member of CS101 (P5) we can then reason thatmkprin (pubkeyReg).CS101

thinks the page may be accessed. The University’s delegation to the Registrar (P4) and

the CA’s certificate binding the University’s public key to its name (P2) and associated

revocation list (P3) can be used to derive thatmkprin (pubkeyCA).Univ.Reg.CS101 be-

lieves the goal statement. This can be combined with Bob’s policy (P1) to conclude

(mkprin (pubkeyBob)) says(goal (midterm.html, nonce)), i.e., that Bob believes that

it is OK for Alice to gain access to the web page.



Chapter 6

Conclusions and Future Work

A number of logics have been proposed for modeling and solving the problems of dis-

tributed authentication and authorization. The logics have two typically incompatible

goals: expressivity, the ability to represent as many authorization scenarios as possible;

and decidability, the characteristic that answers to access-control questions can always

be derived. Proof-carrying authorization is an alternative to the mainstream approach.

PCA is a framework for defining security logics that allows logics engineered for solving

different problems to easily interoperate. By requiring clients to provide to servers proofs

of authorization, PCA ensures that servers will always be able to reach access-control

decisions even if clients use arbitrarily complex logics.

6.1 Contributions

This dissertation gives substance to the idea of proof-carrying authorization [8]. We spec-

ify a particular higher-order logic that can be used as a substrate for defining application-

specific security logics, and explain how PCA can be used to develop a usable distributed
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authorization framework. We use PCA to develop a particular application-specific logic

and design and implement a system for access control on the web. Our presentation of our

application-specific logic is suitable for use as a tutorial for using PCA to give semantics

to application-specific security logics.

One of the caveats of using security logics has been that they are often not an accurate

model of an implemented system. If a logic only approximates an actual authorization

protocol then any theorems we may be able to prove about the logic need to be taken with

a grain of salt. In security applications perhaps more than in other fields, it is important to

bridge the gap between model and implementation. This dissertation demonstrates that

formal methods and tools, such as security logics and theorem provers, need no longer

be used just to model or explain real systems. These tools have become practical enough,

or are just a step away from practical enough, that they are suitable for use as building

blocks of real systems.

The particular contributions of this dissertation are:

• A formulation of the PCA logic [8] suitable for implementing practical authoriza-

tion logics. Our PCA logic contains only the standard axioms of higher-order

logic. This ensures that it is completely general, and suitable for encoding more

than just security logics with particular characteristics. A prerequisite for trusting

any application-specific logic that we might define in PCA is the soundness of the

underlying framework; since our formulation of the PCA logic does not contain

any axioms other than those of higher-order logic, it is easier to demonstrate and

trust that our PCA logic is sound.

• An application-specific security logic, similar in style to previous logics of authen-

tication [10, 15, 30]. Our application-specific logic has a polynomial-time decision
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procedure, and can describe a wide range of authorization scenarios, including

those involving revocation, local name spaces, and delegation with renaming. We

give our logic a semantics in the PCA logic, which both guarantees the soundness

of the application-specific logic and makes it suitable for use in PCA systems.

• In conjunction with previous work [11], the design and implementation of a system

for controlling access to web pages via PCA. Our system is implemented as add-

on modules to standard web browsers and web servers and demonstrates that it is

feasible to use a proof-carrying authorization framework as a basis for building real

systems.

The system allows pieces of the security policy to be distributed across arbitrary

hosts. Through the process of iterative proving the client repeatedly fetches proof

components until it is able to construct a proof. This mechanism allows the server’s

policy to be arbitrarily complex, controlled by a large number of principals, and

spread over an arbitrary network of machines in a secure way. Iterative authoriza-

tion, or allowing the server to repeatedly challenge the client with new challenges

during a single authorization transaction, provides a great deal of flexibility in

designing security policies.

Our performance results demonstrate that it is possible to reduce the inherent over-

head to a level where a system like ours is efficient enough for real use. To increase

performance we make heavy use of caching and add a module system to the proof

language.
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6.2 Future Work

The work described in this dissertation leaves open many directions for future research.

A particularly interesting problem deals with managing privacy while using auto-

mated provers. In our running example, Alice’s proxy—acting on behalf of Alice—

collects facts that describe which classes Alice is taking and sends them to Bob. In a

more general setting it is easy to imagine that other private data, such as social security

and credit card numbers, could be part of an authorization decision. In that case, we

would not want an automated prover to blindly collect whatever facts were necessary and

use them to create a proof. Alice, for example, may not want to send out her credit card

number unless she explicitly trusts the party that requested it. In addition, a malicious

server could attempt to gain as much information as possible about a client by specifying

proof goals that required the particular datums to be used as premises.

One approach to solving this problem could be to use existing bit-commitment or

oblivious transfer protocols. The question, then, would be how to integrate these proto-

cols with the PCA protocols we described in Chapter4. But because a client’s prover

is not likely to know all of the client’s preferences—it would not know, for example,

whether Alice trusts a web site that is encountered for the first time—it seems neces-

sary that there should be some interaction between the human client and her automated

proving mechanisms. This is one area that I intend to explore.

Another interesting problem space is developing protocols that take advantage of the

common underlying framework that PCA provides. All proofs are expressed in the same

underlying logic, so partial proofs or lemmas can be communicated among clients. It

might be useful, for example, to share lemmas that are time-consuming or otherwise hard

to prove. Some lemmas might be provable only by certain clients, because others may
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not know or be able to find the facts needed for the proofs. Clients may even use different

but overlapping application-specific logics, which would allow each of them to prove

different sets of lemmas. Mechanisms need to be developed that allow these lemmas to

be created, communicated between clients, and used during proving.

Our prototype web access-control system (Chapter4), despite demonstrating the fea-

sibility of our approach, left much to be desired in terms of performance. Though mostly

an engineering challenge, several particular problems need to be answered. It is not too

difficult to write fast provers that ignore the semantics of the application-specific logic.

Yet to be modular and easy to maintain, to cope with a changing logic, for example, a

prover should not be completely oblivious of the semantics of the logic. Fetching facts

is crucial to successfully generating a proof. In our examples the number of facts was

small so it was simple to collect them all; in a more realistic scenario it is likely that fact

fetching, a potentially time-consuming operation, would need to be guided by the prover

according to its needs.

Applications of authorization systems, such as physical access control, for example,

have traditionally been limited by the requirements of servers. With PCA, however,

servers no longer need to collect facts or perform computation-intensive proving. This

opens the door to novel authorization-system architectures that take advantage of the

potentially much more lightweight servers.



Appendix A

Tactical Prover

A.1 Sample Tactical Prover

A tactical theorem prover, implemented in Twelf, attempts to prove that access should be

allowed. The prover is presented with a list of assumptions and a goal, and uses tactics

to guide its search for the proof. Each assumption consists of a formula and its proof.

Each tactic describes how a particular subgoal might be proven. Thep-signed tactic,

for example, generates a proof of the subgoalA saysF if a proof can be found for the

formulaA signedF ; the proof ofA saysF consists of the application of theSAYS-I rule

to the proof of the formulaA signedF .

Proof search begins by checking whether the first tactic,init , applies. init checks

whether the current subgoal is the first assumption. If it is, the proof of that assumption

is returned as the proof of the subgoal; otherwise, the prover will try all the other tactics

in the order in which they are stated. The last tactic,next-fact, removes the first element

from the list of assumptions. The prover then attempts to apply each tactic again; this

gives theinit tactic a chance to check whether each of the assumptions matches a given
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subgoal. The prover thus implements a depth-first search in which the proof goal is the

root and the assumptions are the leaves.

Note that thep-after tactic retains the condition, also present in theAFTER-E rule,

that the current time must be greater thanN, the argument of theafter statement. A

practical implementation is described in Chapter3 and reflected in the tactics shown in

AppendixA.2. For now, we assume that the tactic can be used only if the side condition

is met.

init:

findproof ((A by P),Γ) A P

p-signed:

findproof Γ A signedF P

findproof Γ A saysF (SAYS-I P)

p-after:

findproof Γ A signed(after (N, F)) P

findproof Γ A saysF (AFTER-E (SAYS-I P))
time> N

p-speaksfor-e1:

findproof Γ A says(B speaksforA) P1

findproof Γ B says(goal(U,N)) P2

findproof Γ A says(goal(U,N)) (SPEAKSFOR-E1 P1 P2)
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p-speaksfor-e2:

findproof Γ A says(B speaksforA.S) P1

findproof Γ B says(goal(U,N)) P2

findproof Γ A.Ssays(goal(U,N)) (SPEAKSFOR-E2 P1 P2)

p-delegate-e1:

findproof Γ A says(delegate(A, B, U)) P1

findproof Γ B says(goal(U,N)) P2

findproof Γ A says(goal(U,N)) (DELEGATE-E1 P1 P2)

next-fact:

findproof Γ A P

findproof (X,Γ) A P

A.2 Implemented Tactical Prover

While giving our application-specific logic a semantics (Chapter3), we changed slightly

our way of describing local names and the time on each host. The accordingly modified

tactics are shown here.

init:

findproof ((A by P),Γ) A P
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p-signed:

findproof Γ A signedF P

findproof Γ A saysF (SAYS-I P)

p-after:

findproof Γ A signed(after (N, F)) P1

findproof Γ localtime> N P2

findproof Γ A saysF (AFTER-E (SAYS-I P1) P2)

p-speaksfor-e1:

findproof Γ A says(B speaksforA) P1

findproof Γ B says(goal(U,N)) P2

findproof Γ A says(goal(U,N)) (SPEAKSFOR-E1 P1 P2)

p-speaksfor-e2:

findproof Γ A says(B speaksfor′ A.S) P1

findproof Γ B says(goal(U,N)) P2

findproof Γ A says(Ssays(goal(U,N))) (SPEAKSFOR-E2 P1 P2)

p-delegate-e1:

findproof Γ A says(delegate(A, B, U)) P1

findproof Γ B says(goal(U,N)) P2

findproof Γ A says(goal(U,N)) (DELEGATE-E1 P1 P2)
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p-delegate-e2:

findproof Γ A says(delegate′ (A, B.S, U)) P1

findproof Γ B says(Ssays(goal(U,N))) P2

findproof Γ A says(goal(U,N)) (DELEGATE-E2 P1 P2)

next-fact:

findproof Γ A P

findproof (X,Γ) A P
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