
Making the “Box” Transparent:
System Call Performance as a First-class Result∗

Yaoping Ruan and Vivek Pai
Department of Computer Science

Princeton University
{yruan,vivek}@cs.princeton.edu

Abstract

For applications that make heavy use of the operating sys-
tem, the ability of designers to understand system call per-
formance behavior may be essential to achieving high per-
formance. Conventional approaches to performance anal-
ysis, such as monitoring tools and profilers, collect and
present their information off-line or via out-of-band chan-
nels. We believe that making this informationfirst-class
and exposing it to running applications viain-bandchan-
nels on aper-call basis presents opportunities for analy-
sis and performance tuning not available via other mecha-
nisms. Furthermore, our approach provides direct feedback
to applications on time spent in the kernel, resource con-
tention, and time spent blocked, allowing them to immedi-
ately observe how the application and workload affect ker-
nel behavior. Not only does this approach provide greater
transparencyinto the workings of the kernel, but it also al-
lows applications to control how performance information
is collected, filtered, and correlated with application-level
events.

To demonstrate the power of this approach, we show
that our implementation, DeBox, obtains precise informa-
tion about OS behavior at low cost, and that it can be used
in debugging/tuning application performance on complex
workloads. In particular, we focus on the industry-standard
SpecWeb99 benchmark running on the Flash Web Server.
Using DeBox, we are able to diagnose a series of prob-
lematic interactions between the server and the operating
system. Addressing these issues as well as other optimiza-
tion opportunities generates an overall factor of four im-
provement in our SpecWeb99 score and throughput gains
on other benchmarks. Equally importantly, our measure-
ments suggest that parallelism stemming from programmer
convenience has a sharply negative impact on latency. We
show how our optimizations reduce this impact, improving
latency from a factor of 4 to 47 under different conditions.

1 Introduction
Operating system performance continues to be an active
area of research, especially as demanding applications test
OS scalability and performance limits. The kernel/user
boundary becomes critically important as these applica-

∗This work has been partially supported by an NSF CAREER award

tions spend a significant fraction, often a majority, of their
time executing system calls. In the past, developers could
expect to put data-sharing services, such as NFS, into the
kernel to avoid the limitations stemming from running in
user space. However, with the rapid rate of developments
in HTTP servers, Web proxy servers, peer-to-peer systems,
and other networked systems, using kernel integration to
avoid performance problems becomes unrealistic. As a re-
sult, examining the interaction between operating systems
and user processes remains a useful area of investigation.

Much of the earlier work focusing on the kernel/user in-
terface centered around the developing new system calls
more closely tailored to the needs of particular applications.
In particular, zero-copy I/O [18, 35] and scalable event
delivery [8, 9, 26] are examples of techniques that have
been adopted in mainstream operating systems, via calls
such assendfile(),transmitfile(),kevent(),
andepoll(), to address performance issues for servers.
Other approaches, such as allowing processes to declare
their intentions to the OS [36], have also been proposed and
implemented. Some system calls, such asmadvise(),
provide some hints to the OS, but with operating systems
free to ignore such requests or restrict them to mapped files,
programs cannot rely on their behavior.

Some recent research uses the reverse approach, where
applications determine how the “black box” OS is likely to
behave and then adapt accordingly. For example, the Flash
Web Server [34] uses themincore() system call to deter-
mine memory residency of pages, and combines this infor-
mation with some heuristics to avoid blocking. The “gray
box” approach [7, 15] tries to infer memory residency by
observing page faults and correlating them with known re-
placement algorithms. In both systems, memory-resident
files are treated differently than others, improving perfor-
mance and/or latency. These approaches depend on the
quality of the information they can obtain from the oper-
ating system and the accuracy of their heuristics. As work-
load complexity increases, we believe that such inferences
will become harder to make.

To remedy these problems, we propose a much more
direct approach to making the OS transparent: make sys-
tem call performance information a first-class result, and
return it in-band. In practice, what this entails is having
each system call fill a “performance result” structure, pro-
viding information about what occurred in processing the

1

call. While it is much larger and more detailed than the
errno global variable, they are conceptually similar. Sim-
ple monitoring at the system call boundary, the scheduler,
page fault handlers, and function entry/exit is sufficient to
provide detailed information about the inner working of the
operating system. This approach not only eliminates guess-
work about what happened during call processing, but it
gives the application control over how this information is
collected, filtered, and analyzed, providing more customiz-
able and narrowly-targeted performance debugging than is
available in existing tools, yielding poorer results.

We evaluate the flexibility and performance of our im-
plementation, DeBox, running on the FreeBSD operating
system. DeBox allows us to determine where applications
spend their time inside the kernel, what causes them to lose
performance, what resources are being contended, and how
the kernel behavior changes with the workload. The flex-
ibility of DeBox allows us to measure very specific infor-
mation, such as the kernel CPU consumption caused by a
single call site in a program.

Our throughput experiments focus on analyzing and op-
timizing the performance of the Flash Web Server on the
industry-standard SpecWeb99 benchmark [44]. Using De-
Box, we are able to diagnose a series of problematic in-
teractions between the server and the operating system on
this benchmark. Addressing these issues as well as other
optimization opportunities generates an overall factor of
four improvement in our SpecWeb99 score and throughput
gains on other benchmarks.

Equally importantly, our measurements suggest that par-
allelism stemming from programmer convenience, which
we termexcess parallelism, has a sharply negative impact
on latency. We find that the sources of latency are not
specific to Flash or SpecWeb99 – even using other servers
with other workloads, we are able to demonstrate response
latency increasing with excess parallelism and trace their
sources. We show how our optimizations reduce this im-
pact, improving latency from a factor of 4 to 47 under dif-
ferent conditions.

The rest of this paper is organized as follows. Section 2
provides some background on performance analysis and
monitoring tools. In Section 3 we discuss some motivating
examples where existing tools do not suffice. The detailed
DeBox design and implementation are described in Sec-
tion 4. We conduct our case study of how we use DeBox
to analyze and optimize the Flash Web Server in Section 5.
We summarize the results of the case study and modifica-
tions in Section 6 and conduct some experiments on latency
in Section 7. We discuss related work in Section 8 and con-
clude in Section 9.

2 Background
By making performance information a first-class result of
the system call, DeBox allows applications to gain some
of the information provided by other monitoring/profiling

tools. More importantly, it allows applications to tailor the
information provided to them in ways that would be diffi-
cult with out-of-band approaches or where information is
aggregated before being presented. We describe some of
the different types of tools currently in use, and how De-
Box relates to these approaches. Note that replacing all of
these tools is an explicit non-goal of DeBox, nor do we be-
lieve that such a goal is even feasible.
• Function-based profilers– One of the most common
and effective means of detecting performance hotspots in
programs and kernels is the use of function-based profilers,
such asprof, gprof [21, 22], and their variants. These
tools use compiler assistance to add bookkeeping informa-
tion (count and time) to the entry and exit points of func-
tions. This information is gathered while running and ana-
lyzed offline to reveal function call counts and CPU usage,
often along paths in the call graph. This approach often
suffers from high overhead, especially when function call
times are small.
• Coverage-based profilers– These profilers divide the
program of interest into regions and use a clock interrupt
to periodically sample the location of the program counter.
Like function-based profilers, data gathering is done on-
line while analysis is performed offline. Tools such as
profil(), kernbb, andtcov can then use this infor-
mation to show what parts of the program are most likely to
consume CPU time. Coverage-only approaches may miss
infrequently-called functions entirely and may not be able
to show call-graph behavior. Coverage information com-
bined with compiler analysis can be used to show usage on
a basic-block basis.
• Hardware-assisted profilers– These profilers are sim-
ilar to coverage-based profilers, but use special features of
the microprocessor (event counters, timers, programmable
interrupts) to obtain higher-precision information at lower
cost. The other major difference is that these profilers, such
as DCPI [4], Morph [48], VTune [23], Oprofile [33], and
PP[3] tend to be whole-system profilers, capturing activ-
ity across all processes and the operating system. DCPI, in
particular, is designed to have low enough overhead to run
continuously in the background.

With respect to profilers, DeBox is logically closest to
kernelgprof, though it provides more than just timing
information. Call graphs can be constructed from its call
tracing output, and with the data compression/storage per-
formed in user space, overhead is moved from the kernel to
the process. Coverage differs, however, since DeBox only
measures functions directly used during the system call. As
a result, interrupt handlers and related functions, such as
the bottom half of the network stack, are not included.

• System activity monitors – Tools such astop,
vmstat, netstat, iostat, and systat are com-
monly used by system administrators to monitor a running
system or by users trying to determine a first-order cause
for system slowdowns. The level of precision for the var-

2

ious tools varies greatly, withtop showing per-process
information on CPU usage, memory consumption, owner-
ship, and running time, tovmstat showing only summary
information on memory usage, fault rates, disk activity, and
CPU usage.
• Trace tools – Trace tools provide a means of observ-
ing the system call behavior of processes without requir-
ing access to process source or modifying it in any way.
These tools, such astruss, PCT [11] andstrace [2],
are able to show various levels of details of system calls,
such as parameter values, return values, and timing/count
information. More recent tools, such asktrace and the
Linux Trace Toolkit [47], also provide insight into some
of the kernel state that changes as a result of the system
calls. These tools are intended for observing another pro-
cess, and as a result, produce out-of-band measurements,
often requiring post-processing to generate usable output.
• Timing calls – One of the simplest approaches usable by
programmers is to manually record the start and end times
of certain events (e.g., usinggettimeofday() or simi-
lar calls), and to try inferring information based on the dif-
ference. Thegetrusage() call additionally adds some
other information beyond timings (context switches, faults,
messages and I/O counts) and can similarly used.

DeBox compares favorably with a combination of the
timing calls and the trace tools in the sense that timing in-
formation is presented in-band, but the level of detail is
comparable to what is provided by the trace tools. Our
current prototype does not include the level of detail pro-
vided by the Linux Trace Toolkit, but the basic structure is
amenable to expansion, and we are investigating the utility
of that level of information.

• Microbenchmarks – Popular tools for measuring best-
case times or the actual cost of certain operations (cache
misses, context switches, etc.) can be obtained from mi-
crobenchmarks such as lmbench [28] and hbench:OS [13].
Common usage for these tools is to compare different op-
erating systems, different hardware platforms, or possible
optimizations.
• Latency tools– Recent work on attempting to find the
source of latency on desktop systems not designed for real-
time work have yielded insight and some tools. The Intel
Real-Time Performance Analyzer [37] helps automate the
process of pinpointing latency. The work of Cota-Robles
and Held [16] and Jones and Regehr [24] demonstrate the
benefits of successive measurement and searching.
• Instrumentation – Dynamic instrumentation tools pro-
vide mechanisms to instrument running systems (processes
or the kernel) under user control, and to obtain pre-
cise kernel information. Examples include DynInst [14],
KernInst [45], ParaDyn [29], Etch [39], and ATOM [42].
The appeal of this approach versus standard profilers is the
flexibility (arbitrary code can be inserted) and the cost (no
overhead until use). Information is presented out-of-band.

Since DeBox measures the performance of calls in their
natural usage, it resembles the instrumentation tools. De-
Box gains some flexibility by presenting this data to the
application, which can filter it on-line. The main difference
between DeBox and kernel instrumentation is that we pro-
vide a standard set of measurements to any process, rather
than providing more detail to processes allowed to modify
the kernel.

3 Motivation
DeBox is designed to bridge the divide in performance
analysis across the kernel/user boundary by exposing ker-
nel performance behavior to user processes. The primary
motivation behind DeBox is to enable performance debug-
ging and analysis of server-style applications on demand-
ing workloads. In these environments, performance prob-
lems can occur on either side of the boundary, and limiting
analysis to only one side potentially eliminates useful in-
formation. Even though some servers may spend most of
their time in the kernel, the ultimate cause may be activi-
ties under process control. As a result, applications may be
able to modify their own behavior to avoid bottlenecks. Ad-
ditionally, by making performance information first-class,
we believe that DeBox provides opportunities not afforded
by out-of-band or off-line approaches. Some examples are
provided below.

User-level timing approaches are not sufficient.In com-
plex workloads, user-level timing approaches can not be
used to reliably infer the presence of unusual activity in the
kernel. Complex workloads can arise when many processes
are competing for the CPU, as in multiprocessor servers, or
in event-driven servers when dynamic content is run in sep-
arate processes. Figure 1 shows user-level timing measure-
ment of thesendfile() system call in an event-driven
server. This server uses nonblocking sockets and invokes
sendfile only when it believes the data to be sent is present
in main memory. As a result, the presence of peaks on this
graph is a cause for concern, because they may indicate
that the server is blocking. In reality, though, the user-level
timing functions around sendfile present a small window of
opportunity for the scheduler to be invoked.

Using DeBox, timing measurement is integrated into the
system call process, and does not suffer from measurement
errors caused by scheduling between the system call and
the timing. The DeBox-derived measurements of the same
call are shown in Figure 2, and do not indicate such sharp
peaks. Summary data forsendfile andaccept are
shown in Table 1. Since DeBox also monitors the sched-
uler, if a system call blocks and another process is run, the
timing information reflects both the wall-clock time for the
system call, in addition to the actual time used. One area
of weakness in many systems is the lack of proper account-
ing for interrupts, and DeBox does not attempt to remedy
this shortfall on its own. However, other approaches, such
as Lazy Receiver Processing [17] or Deferred Procedure

3

10

100

1000

10000

0 5000 10000 15000 20000 25000 30000

C
a
l
l

T
i
m
e

(
u
s
e
c
)

Invocation Number

Figure 1:User-space timing of thesendfile call on a server
running the SpecWeb99 benchmark. Note the sharp peaks,
which may indicate anomalous behavior in the kernel.

10

100

1000

10000

0 5000 10000 15000 20000 25000 30000

C
a
l
l

T
i
m
e

(
u
s
e
c
)

Invocation Number

Figure 2:The same system call measured using DeBox shows
much less variation in behavior.

Calls [24], can be used to mitigate this effect.

accept() sendfile()
User DeBox User DeBox

Min 5.0 5.0 8.0 6.0
Median 10.0 6.0 60.0 53.0

Mean 14.8 10.5 86.6 77.5
Max 5216.0 174.0 12952.0 998.0

Table 1: Execution time (in usec) of two system calls mea-
sured in user application and DeBox.Note the large difference
in maximums stemming from the measuring technique.

Standard kernel profiling activation is binary. In general
use, standard kernel profiling monitors all of the kernel, and
must be activated by the superuser. Due to the high cost of
call-graph profiling, the restriction on activation is sensible.
However, this restriction prevents ordinary application de-
velopers from using such tools. The other drawback to the
overhead is that it may distort the bottlenecks in the system.
If call-graph profilers generate a factor of two slowdown in
the system (not uncommon), then the CPU may become
the bottleneck resource when the profiler is running, even
though it may not be the actual bottleneck. In these sit-
uations, profiling can cause overflowing queues, delayed
responses, and all of the other effects of overload.

By making performance information a result of system
calls, the overhead normally associated with kernel call-
graph profiling is reduced in two ways. The first is that
applications may individually opt to profile their interac-
tion with the kernel, eliminating the binary nature of kernel
profiling. Not only does this approach reduce the amount of
profiling done, but one process desiring profiling does not
affect the behavior of others on the system. The second as-
pect is that the work of collecting and storing the profiling
information is shifted to the application, instead of being
the responsibility of the system kernel. In this way, appli-
cations affect only their own share of system resources if
they perform the processing normally associated with call-
graph profilers.

Off-line reporting discards useful information. Servers
handling thousands of requests per second are not uncom-
mon, and even with only a few system calls per request,
profilers may have to record tens of thousands of system
calls per second. Obviously, capturing the full detail of
each call is infeasible, since the recording process would
require more effort than actually performing the system call
itself. As a result, sampling approaches or information ag-
gregation are necessary in profilers and monitoring tools.
However, the information of interest may be lost in the ag-
gregation/filtering process.

When applications receive performance information
along with each system call, they can provide the filtering
and aggregation that they need in order to accomplish their
goals. Applications may consider different things “inter-
esting”: calls that take longer than usual, calls that block,
or the change in call time over the course of the program.
In cases such as these, applications may opt to throw away
most of the data, and record some of it in much greater
detail as needed. Applications may also be able to cor-
relate information about system calls with the underlying
action that is causing them. This concept is similar to how
gprof separates profile information along different edges
of a call graph. However, applications may use informa-
tion not available at compile-time in order to make their
classification decisions. The key point in all of these cases
is that using DeBox, the applications maintain control over
information filtering/aggregation.

4 Design & Implementation
This section describes our DeBox prototype implementa-
tion in FreeBSD and measures its overhead. We first de-
scribe the user-visible portion of DeBox, and then the ker-
nel modifications. We also measure the overhead of having
DeBox support in the kernel, as well as the cost for using
it. Examples of how to fully use DeBox and what kinds
of information it provides are deferred to the case study in
Section 5.

4

typedef struct PerSleepInfo {
int numSleeps; /* # sleeps for the same reason */
struct timeval blockedTime; /* how long the process is blocked */
char wmesg[8]; /* reason for sleep (resource label) */
char blockingFile[32]; /* file name causing the sleep */
int blockingLine; /* line number causing the sleep */
int numWaitersEntry; /* # of contenders at sleep */
int numWaitersExit; /* # of contenders at wake-up */

} PerSleepInfo;

typedef struct CallTrace {
unsigned long callSite; /* address of the caller */
int deltaTime; /* elapsed time in timer or CPU counter */

} CallTrace;

typedef struct DeBoxInfo {
int syscallNum; /* which system call */
union CallTime {
struct timeval callTimeval;
long callCycles; /* wall-clock time of entire call */

} CallTime;
int numPGFaults; /* # page faults */
int numPerSleepInfo; /* # of filled PerSleepInfo elements */
int traceDepth; /* # functions called in this system call */
struct PerSleepInfo psi[5]; /* sleeping info for this call */
struct CallTrace ct[200]; /* call trace info for this call */

} DeBoxInfo;

int DeBoxControl(DeBoxInfo *resultBuf, int maxSleeps, int maxTrace);

Figure 3:DeBox data structures and function prototype

4.1 User-Visible Portion

The programmer-visible interface to DeBox is intentionally
simple, since it consists of some monitoring data structures
and a new system call to enable/disable data gathering. Fig-
ure 3 shows the data structure that handles the DeBox infor-
mation, DeBoxInfo. It serves as the “performance informa-
tion” counterpart to other system call results likeerrno.
Programs wishing to use DeBox need to perform two ac-
tions: declare one or more of these structures as global
variables, and call DeBoxControl to inform the operating
system of the amount of per-call performance information
it wishes to obtain.

At first glance, the DeBoxInfo structure appears to be
very large, which would normally be an issue since its size
could affect system call performance. This structure size is
not a significant concern, since the entire structure is rarely
copied, and the process can specify limits on how much
of it is used. Most of the space is consumed by two ar-
rays, and they are not expected to be fully used in practice.
The PerSleepInfo array contains information about each of
the times the system call blocks (sleeps) in the course of
processing. The CallTrace array provides the history of
what functions were called and how much time was spent
in each. Both arrays are generously sized, and we do not
expect many calls to fully utilize either one.

DeBoxControl can be called multiple times over the
course of a process execution for a variety of reasons. Pro-
grammers may wish to have several DeBoxInfo structures
and use different structures for different purposes. They
can also vary the number of PerSleepInfo and CallTrace
items recorded for each call, to vary the level of detail gen-
erated. Finally, they can specify a NULL value for result-
Buf, which deactivates DeBox monitoring for the process.

4.2 In-Kernel Implementation
The kernel portion of DeBox consists largely of performing
the necessary bookkeeping to gather the data in the DeBox-
Info structure. The points of interest are the system call en-
try/exit, the scheduler sleep and wakeup routines, and the
function entry/exit for all functions reachable from a sys-
tem call.

Since DeBox returns performance information when
each system call finishes, the system call entry/exit code is
modified to detect if a process is using DeBox. Once a pro-
cess calls DeBoxControl and specifies how much of the ar-
rays to use, the kernel stores this information and allocates
a kernel-space DeBoxInfo reachable from the process con-
trol block. This copy is used to record information while
the system call executes, consolidating the data gathering
that would otherwise require a large number of small ker-
nel/user copies. Prior to system call return, the requested

5

DeBoxInfo:
4, /* system call # */

3591064, /* call time, microsecs */
989, /* # of page faults */

2, /* # of PerSleepInfo used */
0, /* # of CallTrace used (disabled) */

PerSleepInfo[0]: PerSleepInfo[1]:
1270 /* # occurrences */ 325

723903 /* time blocked, microsecs */ 2710256
biowr /* resource label */ spread

kern/vfs_bio.c /* file where blocked */ miscfs/specfs/spec_vnops.c
2727 /* line where blocked */ 729

1 /* # processes on entry */ 1
0 /* # processes on exit */ 0

Figure 4:Sample DeBox output showing the system call performance of copying a 10MB mapped file

information is copied back to user space.

At system call entry, all non-array fields of the process’s
DeBoxInfo are cleared. Arrays do not need to be explicitly
cleared since the counters indicating their utilization have
been cleared. Call number and start time are stored in the
entry. We measure time using the CPU cycle counter avail-
able on our hardware, but we could also use timer interrupts
or other facilities provided by the hardware.

Page faults that occur during the system call are counted
by modifying the page fault handler to check for DeBox ac-
tivation. We currently do not provide more detailed infor-
mation on where faults occur, largely because we have not
observed a real need for this information. However, since
the DeBoxInfo structure can contain other arrays, more de-
tailed page fault information can be added in the future if
desired.

The most detailed accounting in DeBoxInfo revolves
around the “sleeps,” when the system call blocks waiting on
some resource. When this occurs in FreeBSD, the system
call invokes thetsleep() function, which passes control
to the scheduler. When the resource becomes available,
thewakeup() function is invoked and the affected pro-
cesses are unblocked. In FreeBSD, kernel routines invok-
ing thetsleep() mechanism provide a human-readable
label for use in utilities liketop. We define a new macro
for tsleep() in the kernel header files that permits us to
intercept any sleep points. When this occurs, we record in
a PerSleepInfo element where the sleep occurred (block-
ingFile/blockingLine), what time it started, what resource
label was involved (wmesg), and the number of other pro-
cesses waiting on the same resource (numWaitersEntry).
Similarly, we modify thewakeup() routine to provide
numWaitersExit and calculate how much time was spent
blocked. If the system call sleeps more than once at the
same location, that information is aggregated into a single
PerSleepInfo entry.

The process of tracing which kernel functions are called
during system call processing is slightly more involved,

largely to minimize overhead. Conceptually, all that has
to occur is that every function entry and exit point has to
record that it was executed and when it started/finished,
similar to what call graph profilers use. The gcc compiler
allows entry/exit functions to be specified via the “instru-
ment functions” option, but these are invoked by explicit
function calls. As a result, function call overhead increases
by roughly a factor of three. Our current solution involves
manually inserting entry/exit macros into reachable func-
tions and recording the function address and timings into
the CallTrace array. Automating this modification process
should be possible in the future, and we are investigating
using themcount() kernel function used for kernel pro-
filing.

To get a sense of what kind of information is provided
in DeBox, we show sample output in Figure 4. We be-
gin by memory-mapping a 10MB file, and then using the
write() system call to copy its contents to another file.
The main DeBoxInfo structure shows that system call 4
(write()) was invoked, and it ran for about 3.6 seconds
of wall-clock time. It incurred 989 page faults, and blocked
in two unique places in the kernel. The first element of the
PerSleepInfo array shows that it blocked 1270 times at line
2727 in vfsbio.c on “biowr”, which is the block I/O write
routine. The second location was line 729 of specvnops.c,
which caused 325 blocks at “spread”, a read of a special
file. The writes blocked for roughly 0.7 seconds, and the
reads for 2.7 seconds.

4.3 Overhead
For DeBox to be attractive, it should generate low kernel
overhead, especially in the common case. To quantify this
overhead, we compare an unmodified kernel, a kernel with
DeBox support, and the modified kernel with DeBox acti-
vated. We show these measurements in Table 2. The first
column indicates the various system calls –getpid(),
gettimeofday(), and pread() with various sizes.
The second column indicates the time required for these
calls on an unmodified system. The remaining columns in-

6

dicate the additional overhead for various DeBox features
on a modified system.

call name base basic basic trace trace
or read size time off on off on

getpid 0.46 +0.00 +0.50 +0.03 +1.45

gettimeofday 5.07 +0.00 +0.43 +0.03 +1.52

pread 128B 3.27 +0.02 +0.56 +0.21 +2.03
256 bytes 3.83 +0.00 +0.59 +0.26 +2.02
512 bytes 4.70 +0.00 +0.69 +0.28 +2.02

1024 bytes 6.74 +0.00 +0.68 +0.27 +2.02
2048 bytes 10.58 +0.03 +0.68 +0.26 +2.01
4096 bytes 18.43 +0.03 +0.74 +0.29 +2.16

Table 2:DeBox microbenchmark overheads:Base time is the
execution time on an unmodified system. All times are in mi-
croseconds

We find that the largest source of performance loss is call
history tracing, so we separate its measurement. The “basic
off” column indicates the overhead introduced with a mod-
ified kernel supporting DeBox without call tracing. The
performance impact is virtually unnoticeable. The “basic
on” column show the impact of activating DeBox without
call tracing. We use the CPU cycle counter, since accessing
the hardware clock on our system requires 5 microseconds.
This overhead is the reason why gettimeofday has a com-
parable running time to a 512 byte read.

From these numbers, we can see that the cost to support
most DeBox features is minimal, and the cost of using the
measurement infrastructure is tolerable. Since these costs
are borne only by the applications that choose to enable De-
Box, the overhead is tolerable. The cost of supporting call
tracing, shown in the “trace off” column, where every func-
tion entry and exit point is affected, is higher, averaging ap-
proximately 5% of the system call time. This overhead is
higher than ideal, and may not be desirable to have continu-
ously enabled. However, our implementation is admittedly
crude, and better compiler support could better integrate it
with the function prologue/epilogue code. We expect that
we can reduce this overhead, along with the overhead of
using the call tracing, with optimization.

The overhead of microbenchmarks do not indicate what
kinds of slowdowns may be typically observed. To give
some insight into these costs, Table 3 shows some mac-
robenchmarks on an unmodified system, one with only “ba-
sic” DeBox activated, and one with complete DeBox sup-
port. The first two columns are times for archiving and
compressing files of different sizes. The last column is for
building the kernel. The overheads of DeBox support range
from less than 1 percent to roughly 3 percent in the kernel
build. We expect that many environments will tolerate this
overhead in exchange for the flexibility provided by De-
Box.

tar—gz a directory with make
1MB file 10MB file kernel

base time 275.61 msec 3078.50 msec 236.96 sec
basic on +0.97 msec +22.73 msec +1.74 sec

full support +1.03 msec +44.58 msec +7.49 sec

Table 3:DeBox macrobenchmark overheads

5 Case Study
In this section, we show a case study of using DeBox to
analyze and optimize the behavior of the Flash Web Server
running on the FreeBSD operating system. We discover a
series of problematic interactions, trace their causes, and
find appropriate solutions to avoid them or fix them. In
the process, we gain insights into the causes of perfor-
mance problems and how seemingly simple solutions, such
as throwing more resources at the problem, may exacer-
bate the problem. Our optimizations generate an overall
factor of four improvement in our result on the SpecWeb99
benchmark and also lead to a sharp decrease in latency.

5.1 Experimental Setup & Workload
We first describe our experimental setup and the relevant
software components of the system. All of our experiments
are performed on a uniprocessor server running FreeBSD
4.6, with a 933MHz Pentium III, 1GB of memory, one 5400
RPM Maxtor Diamond IDE disk, one Promise Ultra DMA
66 controller, and a single Netgear GA621 gigabit ether-
net network adapter. The clients consist of ten Pentium II
machines running at 300 MHz connected to a switch us-
ing Fast Ethernet. All machines are configured to use the
default (1500 byte) MTU as required by the SpecWeb99
benchmark.

Our main application is the event-driven Flash Web
Server, although we also perform some tests on the widely-
used multi-process Apache [6] server. The Flash Web
Server consists of a main process and a number of helper
processes. The main process multiplexes all client con-
nections, is intended to be nonblocking, and is expected to
serve all requests only from memory. The helpers load disk
data and metadata into memory to allow the main process
to avoid blocking on disk. The number of main processes
in the system is generally equal to the number of physical
processors, while the the number of helper processes is tied
to the number of disks, and is dynamically adjusted based
on load. In previous tests, the Flash Web Server has been
shown to compare favorably to high-performance commer-
cial Web servers [34]. We run with logging disabled.

We focus on the SpecWeb99 benchmark, an industry-
standard workload that is designed to test the overall scal-
ability of Web servers under realistic conditions. It is
designed by SPEC, the developers of the widely-used
SpecINT and SpecFP workloads [43], and its parameters
are derived from observations of workloads at production
Web sites. Although not common in academia, it is the
de factostandard in industry [31], with over 150 published

7

results, and is different from most other Web server bench-
marks in its complexity and requirements. It measures the
overall scalability of a system by reporting the number of
simultaneous connections the server is able to handle while
meeting a specified quality of service. The sizes of the data
set and working set increase with the number of simultane-
ous connections, and quickly exceed the physical memory
of commodity systems. 70% of the requests are for static
content, with the other 30% for dynamic content, includ-
ing a mix of HTTP GET and POST requests. 0.15% of
the requests require the use of a CGI process that must be
spawned separately for each request.

5.2 Initial experiments
Our first run of SpecWeb99 on the publically-available ver-
sion of the Flash Web Server yields a SpecWeb99 result of
roughly 200 simultaneous connections, much lower than
the published score of 575 achieved by comparable hard-
ware. At 200 simultaneous connections, the data set size is
roughly 750MB, which is smaller than the amount of phys-
ical memory in the machine. Not surprisingly, the work-
load is CPU-bound, and a quick examination shows that
themincore() system call is consuming more resources
than any other call site in Flash.

The underlying problem is the use of linked lists in the
FreeBSD virtual memory subsystem for handling virtual
memory objects. The heavy use of memory-mapped files
in Flash generates large numbers of memory objects, and
a linear walk utilized bymincore() generates signifi-
cant overhead. We apply a patch from Alan Cox of Rice
University that replaces the linked list with a splay tree,
and this bringsmincore() in line with other calls. Our
SpecWeb99 score rises to roughly 320, a 60% improve-
ment. At this point, the working set has increased to 1.1GB,
slightly exceeding our physical memory.

5.3 Modern Interfaces
Once themincore() problem is addressed, we find that
the two most CPU-intensive system calls areselect()
andwritev(). The former is used to determine which
file descriptors are ready for service, while the latter is used
to send data back to the client. Since the development of
Flash, FreeBSD has incorporated a zero-copy I/O system
call, sendfile(), and a scalable event delivery mecha-
nism,kevent(). With memory-mapped files, Flash gen-
erally closes the associated descriptor, reducing the impact
on select(). However, usingsendfile() requires
that file descriptors be kept open, greatly increasing the
number of file descriptors in use by Flash. To mitigate this
impact, we implement support forsendfile() concur-
rently with support forkevent().

CPU utilization drops after these changes are intro-
duced, but to our surprise, so does performance. Using
writev() instead ofsendfile() seems to make little
difference in performance, an observation we note for later
investigation. We find the CPU has idle time, but when
we attempt to increase the offered load, we find that Flash

is not able to meet the quality-of-service requirements of
SpecWeb99. One obvious cause for this kind of situation is
that the server is blocking, so additional load can not allow
the server to take advantage of the available CPU.

biord/166 inode/127 getblk/1 sfpbsy/1

open/162 readlink/84 close/1 sendfile/1
read/3 open/28

unlink/1 read/9
stat/6

Table 4: Summarized DeBox output showing blocking
counts: The layout is organized by resource label and system call
name. For example, of the 127 times this test blocked with the
“inode” label, 28 were from theopen() system call

Using the PerSleepInfo data, we record every system
call invocation from the main Flash process that blocks in-
side the kernel. The main process is designed to be non-
blocking, so any blocking system call is of interest. The re-
sults of this data gathering are shown in Table 4, where each
column header shows the resource label (wmesg) causing
the blocking, followed by the total number of times blocked
at that label. The elements in the column are the system
calls that block on that resource, and the number of invo-
cations involved. As evidenced by the calls involved, the
“biord” (block I/O read) and “inode” (vnode lock) labels
are both involved in opening and retrieving files from disk,
which is not surprising since our data set exceeds the phys-
ical memory of the machine.

5.4 Revisiting Flash Helpers
For portability, the main process in Flash only uses the
helpers to demand-fetch disk data and metadata into the
OS caches, but does not otherwise use their results. One
set of helpers is used to resolve URLs to files on disk,
and are known as the name conversion helpers. Once the
helpers have completed loading data, the main process re-
peats the operation immediately, assuming that the recently
loaded information will prevent it from blocking. Observ-
ing the timings of system call activity, we find that when
the main process blocks, the helper processes are operating
on similarly-named files as the main process.

of helpers 1 5 10 15

Blocking count 114 295 339 394
% Conforming 40.9% 95.1% 96.9% 89.5%

Table 5: Parallelism benefits and self-interference: The
conformance measurement indicates how many requests meet
SpecWeb99’s quality-of-service requirement.

Guided by this information, we determine that the inter-
ference between the main process and the helpers occurs
when they access files which share path components. To
test our hypothesis, we try increasing the number of helper
processes and observe its effect on the SpecWeb99 results,
as shown in Table 5. We observe that too few helpers is

8

insufficient to fully utilize the disk, and increasing their
number initially helps performance. However, note that the
number of blocks from self-interference increases, eventu-
ally decreasing performance. This self-interference may af-
fect other systems that try to use parallelism to increase per-
formance [46]. We solve this problem by having the helper
processes return open file descriptors usingsendmsg(),
eliminating duplication of work in the main process.

We find that this change alone solves most of the
filesystem-related blocking. However, oneopen() call
in Flash still shows periodic blocking at the label “biord”
(reading a disk block), but only after the server has been
running for some time. To determine what application path
causes this behavior, we have the process callabort()
whenopen() sleeps, such that we can examine the user
stack trace and data structures.

This problem uncovers a subtle performance bug in
Flash induced by mapped-file cache replacement. Flash has
two independent caches – one for URL-to-filename trans-
lations (name cache), and another for memory-mmaped re-
gions (data cache). For this workload, the name cache does
not suffer from capacity misses, while the data cache may
evict the least recently used entries. Under heavy load, a
name cache hit and a data cache capacity miss causes Flash
to erroneously believe that it had just recently performed
the name translation. When Flash callsopen() to access
the file, the metadata associated with the name conversion
is missing, causing blocking. We solve this problem by al-
lowing the second set of helpers, the read helpers, to return
file descriptors if the main process does not already have
them open.

The final source of metadata-related blocking is diag-
nosed by using the kernel call tracing facilities of De-
Box and determining what paths get executed in the miss
cases. We discover that in FreeBSD, two parameters
control the metadata cache policy, “vmiodirenable” and
“nameileafonly”. The former determines if directory meta-
data caching can use the block cache, and the second deter-
mines if non-leaf metadata cache entries can be evicted. We
enable both options, and the remaining metadata-related
blocking disappears. With these change, we are able to
handle 390 simultaneous connections from SpecWeb99,
with a data set size of 1.3GB.

5.5 Process Creation Overhead
With all blocking eliminated and with a much higher re-
quest rate, we return to the issue of system call CPU
consumption and find that the largest call times are for
the fork() system call. These calls stem from the
SpecWeb99 workload requirement that 0.15% of the re-
quests be handled by forking off new processes. Among
the system calls, we discover thatfork() takes as long
as 130ms, while most calls finish in 1 ms. Using DeBox’s
ability to measure the per-call time, we record the per-call
time as function of call number, to generate Figure 5. We
observe thatfork() time increases as the program runs,

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400

C
a
l
l

T
i
m
e

(
m
s
e
c
)

Invocation Number

Figure 5: Call time of fork() as a function of invocation
number

starting as low as 300 microseconds.
Call tracing measurements indicate that copying mapped

regions and file descriptors duringfork() is consuming
most of the time. We confirm this observation by varying
the sizes of the caches in Flash and seeing their impact on
fork() times. Rather than try to address this by changing
the implementation offork(), we opt to slightly modify
the Flash architecture. We introduce a new helper process
that is responsible for the creation of the CGI processes.
Since this new process does not map files or cache open
files, itsfork() time is not affected by the main process
size. This change yields a 10% improvement, to 440 simul-
taneous connections and a 1.5GB data set size.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5000 10000 15000 20000 25000 30000

C
a
l
l

T
i
m
e

(
m
s
e
c
)

Invocation Number

Figure 6: Call time of mmap() as a function of invocation
number

5.6 Memory residency overhead
At this point, even though the data set size exceeds physical
memory by over 50%, the system bottleneck is the CPU,
largely due to the amount of overhead involved in mem-
ory residency checking. Though our modified Flash uses
sendfile() and does not examine file content, the use
of mincore() to determine memory residency requires
that files be memory-mapped. The cumulative overhead of
memory-map operations is the largest consumer of CPU
time. As can be seen in Figure 6, the per-call overhead of
mmap() is significant and increases as the server runs. The

9

cost increase is presumably due to finding available space
as the process memory map becomes fragmented.

To eliminate the memory-residency overheads, we use
Flash’s mapped-file cache bookkeeping as the sole heuris-
tic for guessing memory residency. We eliminate all
mmap/mincore/munmap calls but keep track of what
pieces of files have been recently accessed. Sizing the
cache conservatively with respect to main memory, we save
CPU overhead but introduce a small risk of having the main
process block. The CPU savings of this approach is sub-
stantial, allowing us to reach 620 simultaneous connections
and a 2GB data set size.

5.7 Dynamic Content Interface
We take advantage of DeBox’s ability to separate the ker-
nel time consumption by call site to determine that although
theread() system call is used by the main process, the
helpers, and all of the CGI processes, the single call site
responsible for most of the time is where the main process
reads from the CGIs. Flash uses a persistent CGI interface
similar to FastCGI [32] to reuse CGI processes when pos-
sible, and this mechanism communicates over pipes.

Our measurements show that this call site consumes 20%
of all kernel time, (176 seconds out of 891 seconds total).
Writing the request to the CGI processes is much smaller,
requiring only 24.3 seconds of system call time. This level
of detail demonstrates the power of making performance a
first-class result, since existing kernel profilers would not
have been able to separate the time for theread() call
by call site. By modifying our CGI interface slightly, we
allow the main process to write the HTTP response to the
client, and then pass the socket to the CGI to let it write
directly. This change allows us to reach 710 simultaneous
connections, and a 2.35GB data set size.

time label kernel file line

6492 sfbufa kern/uipcsyscalls.c 1459
702 getblk kern/kernlock.c 182

984544 biord kern/vfsbio.c 2724
Table 6:New blocking measurements ofsendfile()

5.8 Optimizing sendfile()
We return our focus to thesendfile() system call for a
variety of reasons: we had noted worse performance than
writev(), we had seen some blocking at the label “sf-
pbsy” in Table 4, and our replacement ofmincore()with
a heuristic may cause more blocking. New PerSleepInfo
measurements of the blocking behavior ofsendfile()
are shown in Table 6.

The resource label “sfbufa” indicates that the kernel has
exhausted the sendfile buffers used to map filesystem pages
into kernel virtual memory. We confirm that manually
increasing the number of buffers eliminates this problem
in our test. However, based on the results of previous
copy-avoidance systems [18, 35], we opt instead to imple-
ment recycling of kernel virtual address buffers. With this

6

8

10

12

14

16

18

20

22

24

0.125 0.25 0.5 1 2 4 8 16

R
eq

ue
st

s
/ S

ec
on

d
(x

10
00

)

File Size (Kbytes)

modified sendfile
writev

sendfile

Figure 7: Microbenchmark performance comparison of
writev, sendfile, and modified sendfile:In this test, all clients
request a single file at full speed using persistent connections.

change, many requests to the same file do not cause mul-
tiple mappings, and eliminates the associated virtual mem-
ory and physical map (pmap) operations. Caching these
mappings may temporarily use more wired memory than
no caching, but the reduction in overhead and address space
consumption outweighs the drawbacks.

The other two resource labels, “getblk” and “biord”, are
related to disk access initiated withinsendfile() when
the requested pages are not in memory. Even though the
socket being used is nonblocking, that behavior is lim-
ited only to network buffer usage. We introduce a variant
sendfile() call with slightly different semantics, which
returns a differenterrno value if disk blocking would oc-
cur. This change allows us to achieve the same effect as we
had withmincore(), but with much less CPU overhead.
We may optionally have the read helper process send data
directly back to the client on a filesystem cache miss, but
have not implemented this optimization.

However, even whensendfile() does not block, we
observe no performance gain overwritev(), and we find
that the problem stems from handling small writes. HTTP
static content responses consist of a small header followed
by file data. Usingwritev() allows aggregation of the
header and the first portion of the body data into one packet,
benefiting small file transfers. In SpecWeb99, 35% of all
static requests are for files 1KB or smaller.

The FreeBSDsendfile() call includes parameters
specifying headers and trailers to be sent with the data,
whereas the Linux implementation does not. Linux intro-
duces a new socket option to “cork” the TCP stream so that
HTTP header data sent viawrite() can be combined
with zero-copy packet data. While FreeBSD’s “mono-
lithic” approach provides enough information to avoid
sending a separate header, its implementation sends the
header using a kernel version ofwritev(), thus generat-
ing a separate packet for the response header. We improve
this implementation by creating an mbuf chain using the
header and body data before sending it to lower levels of
the network stack. This change generates fewer packets,

10

Start

End

Accept
Conn

Request
Read

File
Find

Header
Send

Send Data
Read File

Helper

Response
Header Cache

Mapped
File Cache

Pathname
Trans. Cache

filename

Helper
filename

(a) Original Architecture

Start

End

Accept
Conn

Request
Read

Header
Response

Header Cache

Open File
CacheURL

Find

Form

file descriptor

Classify
+ Open

filename

file descriptor

Sendfile
Helper

Modified
Sendfile

(b) New Architecture

Figure 8:Architectural changes: The architecture is greatly simplified by using file descriptor passing and eliminating mapped file
caching. Modified components are indicated with a dashed box.

improving performance and network latency. Results of
these changes on a microbenchmark are shown in Figure 7.
With thesendfile() changes, we are able to achieve a
SpecWeb99 score of 820, with a data set size of 2.7GB.

100

 0

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8

or
ig

se
nd

fil
e

fo
rk

 h
el

pe
r

no
 m

m
ap

C
G

I w
rit

e

ne
w

 s
en

df
ile

S
pe

cW
eb

99
 R

es
ul

t

Server Configuration

V
M

 p
at

ch

F
D

 p
as

si
ng

Figure 9: SpecWeb99 summary: 1. Original 2. VM patch
3. Using sendfile() 4. FD-passing helpers 5. Fork helper 6. Elim-
inate mmap 7. New CGI interface 8. New sendfile()

6 Case Study Summary
By addressing the interaction areas identified by DeBox,
we achieve a factor of four improvement in our SpecWeb99
score, supporting four times as many simultaneous con-
nections while also handling a data set that almost three
times as large as the physical memory of our machine. The
SpecWeb99 results of our modifications can be seem in
Figure 9, where we show the scores for all of the intermedi-
ate modifications described in this paper. Our final result of
820 compares favorably to published SpecWeb99 scores,
though no directly-comparable systems have been bench-

marked. We outperform all uniprocessor systems with sim-
ilar memory configurations – the highest score for a system
with less than 2GB of memory is 575.

Most of our changes are portable architectural modifica-
tions to the Flash Web Server, including (1) passing file de-
scriptors between the helpers and the main process to avoid
most disk operations in the main process, (2) introducing a
new fork() helper to handle forking CGI requests, (3)
eliminating the mapped file cache, and (4) allowing CGI
processes to write directly to the clients instead of writing
to the main process. Figure 8 shows the original and new
architectures of the static content path for the server.

The changes we make to the operating system focus on
sendfile(), including (1) changing the semantics to in-
dicate when blocking on disk would occur, (2) caching ker-
nel address space mapping to avoid unnecessary physical
map operations, and (3) sending headers and file data in a
single mbuf chain to avoid multiple packets for small re-
sponses. Additionally, we apply a virtual memory system
patch that ultimately is superfluous since we remove the
memory-mapped file cache.

7 Latency
Since we identify and correct many sources of blocking,
we are interested in the effects of our changes on server
latency. We first compare the effect of our changes on a
SpecWeb99 workload, and then reproduce workloads used
by other researchers in studying static content latencies. In
all cases, we compare latencies using a workload below the
maximum of the slowest server configuration under test.

On the SpecWeb99 workload, we find that mean re-
sponse time is reduced by a factor of four by our changes.
The cumulative distribution of latencies can be seen in Fig-
ure 10. We use 300 simultaneous connections, and com-
pare the new server with the original Flash running on a

11

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

P
r
o
b
a
b
i
l
i
t
y

[
R
e
s
p
o
n
s
e

t
i
m
e

<
=

x
]

Time (msec)

new, static workload
new, standard workload
old, standard workload

Figure 10:Latency summary for 300 SpecWeb99 connections

patched VM system. Since 30% of the requests are for
longer-running dynamic content, we also test the latencies
of a SpecWeb99 test with only static requests. The mean of
this workload is 7.08 msec, lower than the 10.6 msec mean
for the new server running the complete workload. This
difference suggests that further optimization of dynamic
content interface may lead to even better performance. To
compare the difference between static and dynamic request
handling, we calculate the 5th, 50th, and 95th percentiles
of the latencies for requests on the SpecWeb99 workload.
These results are shown in Table 7, and indicate that dy-
namic content is served at roughly half the speed of its
static counterpart. The latency difference between the new
server and the original Flash on this test is not as large as
expected because the working set still fits in physical mem-
ory.

5%(ms) 50%(ms) 95%(ms) mean(ms)
static 0.51 1.45 59.81 9.92

dynamic 0.99 2.83 91.31 12.19

Table 7:Separating SpecWeb99 static and dynamic latencies

To determine our latency benefit on a more disk-bound
workload and to compare our results with those of other re-
searchers, we construct a static workload similar to the one
used to evaluate the Haboob server [46]. In this workload,
1020 simulated clients generate static requests to a 3.3GB
data set. To avoid overloading the slowest server, the re-
quest rate is fixed at 170 requests per second. Persistent
connections are used, with clients issuing 5 requests over a
single connection before closing it. Our test environment
differs from that used to evaluate Haboob in the following
ways: our system has only 1GB of memory versus 2GB,
we have a single 933 MHz processor versus four 500 MHz
processors, and we are using FreeBSD versus Linux.

We compare several configurations to determine the la-
tency benefits and the impact of parallelism in the server.
We run the new and original versions of Flash with a single
instance and four instances, to compare uniprocessor con-
figurations with what would be expected on a 4-way SMP.

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

P
r
o
b
a
b
i
l
i
t
y

[
R
e
s
p
o
n
s
e

t
i
m
e

<
=

x
]

Time (msec)

(New Flash)
(New Flash,4p)
(Apache,150p)
(Apache,300p)

(Old Flash)
(Old Flash,4p)

Figure 11:Response latencies for the 3.3GB static workload

5% median 95% mean
(ms) (ms) (ms) (ms)

New Flash 0.37 0.79 7.45 7.56
New Flash, 4p 0.38 0.82 7.51 7.72

Old Flash 3.36 37.59 326.40 92.37
Old Flash, 4p 7.05 142.65 1924.42 420.85

Apache 150p 0.70 6.64 1599.50 360.62
Apache 300p 0.78 124.98 2201.63 545.93
Table 8:Summaries of the static workload latencies

We also run Apache with 150 and 300 server processes.
The results are given in Figure 11 and Table 8 and show

the response time of our new server under this workload
exhibits improvements of more than a factor of twelve in
mean response time, and a factor of 47 in median latency.
With four instances, the difference are a factor of 54 in
mean response time and 174 in median time. We mea-
sure the maximum capacities of the servers when run in
infinite-demand mode, and these results are shown in Ta-
ble 9. While the throughput gain from our optimizations
is significant, the scale of gain is much lower than the
SpecWeb99 test, indicating that our latency benefits do not
stem purely from extra capacity.

We also observe that all servers tested show latency
degradation when run with more processes, though the ef-
fect is much lower for our new server. This observation is in
line with the self-interference we described earlier between
the helpers and the main Flash process, but is observed even
with Apache. We confirm this by using DeBox to mea-
sure the number of sleeps when running Apache. With 150
processes, Apache blocks 3667 times per second, and this
increases to 3994 times per second at 300 processes.

This result suggests that excess parallelism, where server
designers use parallelism for convenience, may actually de-

New Flash Old Flash Apache
1p 4p 1p 4p 150p 300p

326.4 308.6 264.5 221.1 210.6 201.5
Table 9:Server static workload capacities (Mb/s)

12

grade performance noticeably. This observation may ex-
plain the latency behavior reported for Haboob [46]. The
median latency shown for Flash in that paper is approxi-
mately 50ms, comparable to the 37.59ms median we mea-
sure. The mean latency given for Haboob is 547ms and its
median is approximately 500-600ms. In comparison, our
mean latency for the new version of Flash is 7.56ms and
our median is 0.82ms, suggesting our latencies are 70-500
times lower than Haboob.

8 Related Work
In this section, we discuss other related work not already
covered in our discussion in Section 2. The idea of observ-
ing kernel behavior to improve performance has appeared
in many different forms. We share similarities with Sched-
uler Activations [5] in observing scheduler activity to opti-
mize application performance, and with Marsh et al. [27],
who make user-level threads first-class with kernel support.
Our goals differ, since we are more concerned with under-
standing why blocking occurs rather than reacting to it dur-
ing a system call. Our modification ofsendfile() to
indicate blocking is patterned on non-blocking sockets, but
it could be used in other system calls as well. In a simi-
lar vein, RedHat has applied for a patent on a new flag to
theopen() call, which causes it to fail if the necessary
metadata is not in memory [30].

Our observations on excess parallelism and its impact
on latency may impact server design. Performance stud-
ies of the Harvest Cache [12] established the suitability
of event-driven designs for network servers, and the Flash
server demonstrated how to avoid some disk-related block-
ing [34]. Schmidt and Hu [40] performed much of the
early work in studying threaded architectures for improv-
ing server performance. A similar architecture was used
by Welsh et al. [46] to support concurrency and provide
scheduling behavior. Larus and Parkes [25] demonstrate
that such scheduling can also be performed in event-driven
architectures. Qie et al. [38] show that such architec-
tures can also be protected against denial-of-service at-
tacks. Adya et al. [1] discuss the unification of the two
models. We believe that DeBox can be used to identify
problem areas in other servers and architectures, as our la-
tency measurements of Apache suggest.

Most of the changes in our case study modified the server
code rather than the operating system. This observation
may indicate that the incorporation of previous OS research
into mainstream operating systems has been successful, or
that problem avoidance is equally viable as kernel modifi-
cation. Extensible kernels [10, 19, 20, 41] may provide op-
portunities for applications to “fix” problems that can not
easily be avoided, such as our implementation changes of
sendfile(). Likewise, conveniences, such as our se-
mantic change of its behavior, would also become more
attractive, but these may only be appropriate for trusted ap-
plications.

9 Conclusion
This paper presents the design, implementation and eval-
uation of DeBox, an effective approach to provide more
OS transparency, by exposing system call performance as
a first-class result via in-band channels. DeBox provides
direct performance feedback from the kernel on a per-call
basis, enabling programmers to diagnose kernel/user inter-
actions correlated with user-level events. Furthermore, we
believe that the ability to monitor behavior on-line provides
programmatic flexbility of interpreting and analyzing data
not present in other approaches.

Our case study using the Flash Web Server with the
SpecWeb99 benchmark running on FreeBSD demonstrates
the power of DeBox. Addressing the problematic interac-
tions and optimization opportunities discovered using De-
Box improves our experimental results an overall factor of
four in SpecWeb99 score, despite having a data set size
nearly three times as large as our physical memory. Fur-
thermore, our latency analysis demonstrates gains between
a factor of 4 to 47 under various conditions. Further re-
sults show that fixing the bottlenecks identified using De-
Box also mitigates most of the negative impact from excess
parallelism in application design.

References
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur.

Cooperative tasking without manual stack management. InUSENIX
2002 Annual Technical Conference, Monterey, CA, June 2002.

[2] W. Akkerman. strace homepage. http://www.wi.leidenuniv.nl/
wichert/strace/.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. InSIG-
PLAN Conference on Programming Language Design and Imple-
mentation, pages 85–96, Las Vegas, NV, June 1997.

[4] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,S. Le-
ung, D. Sites, M. Vandevoorde, C. Waldspurger, and W. Weihl.
Continuous profiling: Where have all the cycles gone. InProc. of
the 16th ACM Symp. on Operating System Principles, pages 1–14,
Saint-Malo, France, Oct. 1997.

[5] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy.
Scheduler activations: Effective kernel support for the user-level
management of parallelism.ACM Transactions on Computer Sys-
tems, 10(1):53–79, Feb. 1992.

[6] Apache Software Foundation. The Apache Web server. http://www.
apache.org/.

[7] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
control in gray-box systems. InProc. of the 19th ACM Symp. on
Operating System Principles, pages 43–56, Chateau Lake Louise,
Banff, Canada, Oct. 2001.

[8] G. Banga and J. C. Mogul. Scalable kernel performance forInternet
servers under realistic loads. InUSENIX 1998 Annual Technical
Conference, New Orleans, LA, June 1998.

[9] G. Banga, J. C. Mogul, and P. Druschel. A scalable and explicit
event delivery mechanism for UNIX. InUSENIX 1999 Annual Tech-
nical Conference, pages 253–265, Monterey, CA, June 1999.

[10] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski,
D. Becker, S. Eggers, and C. Chambers. Extensibility, safety and
performance in the SPIN operating system. InProc. of the 15th
ACM Symp. on Operating System Principles, pages 267–284, Cop-
per Mountain, CO, Dec. 1995.

13

[11] C. Blake and S. Bauer. Simple and general statistical profiling with
pct. InUSENIX 2002 Annual Technical Conference, Monterey, CA,
June 2002.

[12] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F.
Schwartz. The Harvest information discovery and access system.
Computer Networks and ISDN Systems, 28(1–2):119–125, 1995.

[13] A. Brown and M. Seltzer. Operating system benchmarkingin the
wake of lmbench: A case study of the performance of netbsd on
the intel x86 architecture. InACM SIGMETRICS Conference, pages
214–224, Seattle, WA, June 1997.

[14] B. Buck and J. K. Hollingsworth. An API for runtime code patching.
The International Journal of High Performance Computing Applica-
tions, 14(4):317–329, Winter 2000.

[15] N. Burnett, J. Bent, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
Exploiting gray-box knowledge of buffer-cache management. In
USENIX 2002 Annual Technical Conference, Monterey, CA, June
2002.

[16] E. Cota-Robles and J. P. Held. A comparison of windows driver
model latency performance on windows NT and windows 98. In
Proc. of the 3rd USENIX Symp. on Operating Systems Design and
Implementation, pages 159–172, New Orleans, LA, Feb. 1999.

[17] P. Druschel and G. Banga. Lazy receiver processing (LRP): A net-
work subsystem architecture for server systems. InProc. of the 2nd
USENIX Symp. on Operating Systems Design and Implementation,
pages 261–275, Seattle, WA, Oct. 1996.

[18] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidthcross-
domain transfer facility. InProc. of the 14th ACM Symp. on Oper-
ating System Principles, pages 189–202, Asheville, NC, Dec. 1993.

[19] P. Druschel, L. L. Peterson, and N. C. Hutchinson. Beyond micro-
kernel design: Decoupling modularity and protection in Lipto. In
Proc. of the 12th International Conference on Distributed Comput-
ing Systems, pages 512–520, Yokohama, Japan., June 1992.

[20] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:An op-
erating system architecture for application-level resource manage-
ment. InProc. of the 15th ACM Symp. on Operating System Princi-
ples, pages 251–266, Copper Mountain, CO, Dec. 1995.

[21] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call
graph execution profiler. InSIGPLAN Symposium on Compiler Con-
struction, pages 120–126, Boston, Massachusetts, June 1982.

[22] S. L. Graham, P. B. Kessler, and M. K. McKusick. An execution pro-
filer for modular programs. InSoftware- Practice and Experience,
pages 671–685, 1983.

[23] Intel. Vtune Performance Analyzers Homepage. http://developer.
intel.com/software/products/vtune/index.htm.

[24] M. B. Jones and J. Regehr. The problems you’re having maynot be
the problems you think you’re having: Results from a latencystudy
of windows nt. In7th Workshop on Hot Topics in Operating Systems
(HotOS-VII), Rio Rico, AZ, March 1999.

[25] J. Larus and M. Parkes. Using cohort-scheduling to enhance server
performance. InUSENIX 2002 Annual Technical Conference, pages
103–114, Monterey, CA, June 2002.

[26] J. Lemon. Kqueue: A generic and scalable event notification facility.
In FREENIX Track: USENIX 2001 Annual Technical Conference,
pages 141–154, Boston, MA, June 2001.

[27] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-
class user-level threads. InProc. of the 13th ACM Symp. on Op-
erating System Principles, pages 110–121, Pacific Grove, CA, Oct.
1991.

[28] L. W. McVoy and C. Staelin. lmbench: Portable tools for perfor-
mance analysis. InUSENIX 1996 Annual Technical Conference,
pages 279–294, San Diego, CA, June 1996.

[29] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall.
The paradyn parallel performance measurement tool.IEEE Com-
puter, 28(11):37–46, 1995.

[30] I. Molnar. Method and apparatus for atomic file look-up.United
States Patent Application #20020059330, May 16, 2002.

[31] E. Nahum. Deconstructing SPECweb99. In7th International Work-
shop on Web Content Caching and Distribution (WCW), Boulder,
CO, Aug. 2002.

[32] Open Market. FastCGI. http://www.fastcgi.com/.

[33] OProfile. A system profiler for linux. http://oprofile.sourceforge.
net/.

[34] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable web server. InUSENIX 1999 Annual Technical Conference,
pages 199–212, Monterey, CA, June 1999.

[35] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified I/O
buffering and caching system.ACM Transactions on Computer Sys-
tems, 18(1):37–66, 2000.

[36] R. H. Patterson, G. A. Gibson, and M. Satyanarayanan. A status
report on research in transparent informed prefetching.ACM Oper-
ating Systems Review, 27(2):21–34, 1993.

[37] L. K. Puthiyedath, E. Cota-Robles, J. Keys, and J. P. H. Anil Aggar-
wal. The design and implementation of the intel real-time perfor-
mance analyzer. InEighth IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS’02), San Jose, CA, Sept.
2002.

[38] X. Qie, R. Pang, and L. Peterson. Defensive programming: Using an
annotation toolkit to build dos-resistant software. InProc. of the 5th
USENIX Symp. on Operating Systems Design and Implementation,
Boston, MA, Dec. 2002.

[39] T. Romer, G. V. D. Lee, A. Wolman, W. Wong, H. Levy, B. N.
Bershad, and J. B. Chen. Instrumentation and optimization of
Win32/Intel executables using etch. InUSENIX Windows NT Work-
shop, pages 1–8, 1997.

[40] D. C. Schmidt and J. C. Hu. Developing flexible and high-
performance Web servers with frameworks and patterns.ACM Com-
puting Surveys, 32(1):39, 2000.

[41] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealingwith dis-
aster: Surviving misbehaved kernel extensions. InProc. of the 2nd
USENIX Symp. on Operating Systems Design and Implementation,
pages 213–227, Seattle, WA, Oct. 1996.

[42] A. Srivastava and A. Eustace. Atom: A system for building cus-
tomized program analysis tools. InACM SIGPLAN ’94 Conference
on Programming Language Design and Implementation, pages 196–
205, June 1994.

[43] Standard Performance Evaluation Corporation. SPEC CPU2000
Benchmarks. http://www.spec.org/cpu2000.

[44] Standard Performance Evaluation Corporation. SPEC Web
96 & 99 Benchmarks. http://www.spec.org/osg/ web96/ and
http://www.spec.org/osg/web99/.

[45] A. Tamches and B. P. Miller. Fine-grained dynamic instrumenta-
tion of commodity operating system kernels. InProc. of the 3rd
USENIX Symp. on Operating Systems Design and Implementation,
pages 117–130, New Orleans, LA, Feb. 1999.

[46] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. InProc. of the
19th ACM Symp. on Operating System Principles, pages 230–243,
Chateau Lake Louise, Banff, Canada, Oct. 2001.

[47] K. Yaghmour and M. R. Dagenais. Measuring and characterizing
system behavior using kernel-level event logging. InUSENIX 2000
Annual Technical Conference, San Diego, CA, June 2000.

[48] C. X. Zhang, Z. Wang, N. C. Gloy, J. B. Chen, and M. D. Smith.
System support for automated profiling and optimization. InProc.
of the 16th ACM Symp. on Operating System Principles, pages 15–
26, Saint-Malo France, Oct. 1997.

14

