Making the “Box” Transparent:
System Call Performance as a First-class Résult

Yaoping Ruan and Vivek Pai
Department of Computer Science
Princeton University
{yruan, vi vek}@s. pri ncet on. edu

Abstract tions spend a significant fraction, often a majority, of their
time executing system calls. In the past, developers could
For applications that make heavy use of the operating sysxpect to put data-sharing services, such as NFS, into the
tem, the ability of designers to understand system call perkernel to avoid the limitations stemming from running in
formance behavior may be essential to achieving high pemnser space. However, with the rapid rate of developments
formance. Conventional approaches to performance anain HTTP servers, Web proxy servers, peer-to-peer systems,
ysis, such as monitoring tools and profilers, collect andand other networked systems, using kernel integration to
present their information off-line or via out-of-band chan- avoid performance problems becomes unrealistic. As a re-
nels. We believe that making this informatifirst-class sult, examining the interaction between operating systems
and exposing it to running applications vigbandchan- and user processes remains a useful area of investigation.
nels on aper-call basis presents opportunities for analy- Much of the earlier work focusing on the kernel/user in-
sis and performance tuning not available via other mechaterface centered around the developing new system calls
nisms. Furthermore, our approach provides direct feedbaadkore closely tailored to the needs of particular applications.
to applications on time spent in the kernel, resource contn particular, zero-copy 1/0 [18, 35] and scalable event
tention, and time spent blocked, allowing them to immedi-delivery [8, 9, 26] are examples of techniques that have
ately observe how the application and workload affect kerbeen adopted in mainstream operating systems, via calls
nel behavior. Not only does this approach provide greateguch asendfil e(),transmitfil e(),kevent(),
transparencynto the workings of the kernel, but it also al- andepol | (), to address performance issues for servers.
lows applications to control how performance informationOther approaches, such as allowing processes to declare
is collected, filtered, and correlated with application-leveltheir intentions to the OS [36], have also been proposed and
events. implemented. Some system calls, suchnaslvi se(),

To demonstrate the power of this approach, we showrovide some hints to the OS, but with operating systems
that our implementation, DeBox, obtains precise informa<ree to ignore such requests or restrict them to mapped files,
tion about OS behavior at low cost, and that it can be use@irograms cannot rely on their behavior.
in debugging/tuning application performance on complex Some recent research uses the reverse approach, where
workloads. In particular, we focus on the industry-standarchpplications determine how the “black box” OS is likely to
SpecWeb99 benchmark running on the Flash Web Servepehave and then adapt accordingly. For example, the Flash
Using DeBox, we are able to diagnose a series of probweb Server [34] uses thé ncor e() system call to deter-
lematic interactions between the server and the operatingiine memory residency of pages, and combines this infor-
system. Addressing these issues as well as other optimizgnation with some heuristics to avoid blocking. The “gray
tion opportunities generates an overall factor of four im-pox” approach [7, 15] tries to infer memory residency by
provement in our SpecWeb99 score and throughput gainsbserving page faults and correlating them with known re-
on other benchmarks. Equally importantly, our measureplacement algorithms. In both systems, memory-resident
ments suggest that parallelism stemming from programmeiles are treated differently than others, improving perfor-
convenience has a sharply negative impact on latency. Weance and/or latency. These approaches depend on the
show how our optimizations reduce this impact, improvingquality of the information they can obtain from the oper-
latency from a factor of 4 to 47 under different conditions. ating system and the accuracy of their heuristics. As work-

) load complexity increases, we believe that such inferences
1 Introduction will become harder to make.

Operating system performance continues to be an active 10 rémedy these problems, we propose a much more
area of research, especially as demanding applications ted€ct approach to making the OS transparent: make sys-
OS scalability and performance limits. The kernel/useft€M call performance information a first-class result, and

boundary becomes critically important as these applica[etum it in-band. _In practice, what this entails is having
each system call fill a “performance result” structure, pro-

*This work has been partially supported by an NSF CAREER award Viding information about what occurred in processing the

call. While it is much larger and more detailed than thetools. More importantly, it allows applications to tailor the
er r no global variable, they are conceptually similar. Sim- information provided to them in ways that would be diffi-
ple monitoring at the system call boundary, the schedulerult with out-of-band approaches or where information is
page fault handlers, and function entry/exit is sufficient toaggregated before being presented. We describe some of
provide detailed information about the inner working of thethe different types of tools currently in use, and how De-
operating system. This approach not only eliminates gues®ox relates to these approaches. Note that replacing all of
work about what happened during call processing, but ithese tools is an explicit non-goal of DeBox, nor do we be-
gives the application control over how this information is lieve that such a goal is even feasible.
collected, filtered, and analyzed, providing more customize Function-based profilers— One of the most common
able and narrowly-targeted performance debugging than iand effective means of detecting performance hotspots in
available in existing tools, yielding poorer results. programs and kernels is the use of function-based profilers,
We evaluate the flexibility and performance of our im- such agpr of , gpr of [21, 22], and their variants. These
plementation, DeBox, running on the FreeBSD operatingools use compiler assistance to add bookkeeping informa-
system. DeBox allows us to determine where applicationgion (count and time) to the entry and exit points of func-
spend their time inside the kernel, what causes them to losigons. This information is gathered while running and ana-
performance, what resources are being contended, and hdyzed offline to reveal function call counts and CPU usage,
the kernel behavior changes with the workload. The flex-often along paths in the call graph. This approach often
ibility of DeBox allows us to measure very specific infor- suffers from high overhead, especially when function call
mation, such as the kernel CPU consumption caused by times are small.
single call site in a program. e Coverage-based profilers- These profilers divide the
Our throughput experiments focus on analyzing and opprogram of interest into regions and use a clock interrupt
timizing the performance of the Flash Web Server on thdo periodically sample the location of the program counter.
industry-standard SpecWeb99 benchmark [44]. Using DeLike function-based profilers, data gathering is done on-
Box, we are able to diagnose a series of problematic inline while analysis is performed offline. Tools such as
teractions between the server and the operating system ¢ of i | (), ker nbb, andt cov can then use this infor-
this benchmark. Addressing these issues as well as oth&tation to show what parts of the program are most likely to
optimization opportunities generates an overall factor ofconsume CPU time. Coverage-only approaches may miss
four improvement in our SpecWeb99 score and throughpunfrequently-called functions entirely and may not be able
gains on other benchmarks. to show call-graph behavior. Coverage information com-
Equally importantly, our measurements suggest that pa|bined with compiler analysis can be used to show usage on
allelism stemming from programmer convenience, which@ basic-block basis.
we termexcess parallelisirhas a sharply negative impact ® Hardware-assisted profilers— These profilers are sim-
on latency. We find that the sources of latency are notlar to coverage-based profilers, but use special features of
specific to Flash or SpecWeb99 — even using other servet§€ microprocessor (event counters, timers, programmable
with other workloads, we are able to demonstrate respongdgterrupts) to obtain higher-precision information at lower
latency increasing with excess parallelism and trace theig0st. The other major difference is that these profilers, such
sources. We show how our optimizations reduce this im2s DCP!I [4], Morph [48], VTune [23], Oprofile [33], and
pact, improving latency from a factor of 4 to 47 under dif- PP[3] tend to be whole-system profilers, capturing activ-
ferent conditions. ity across all processes and the operating system. DCPI, in

The rest of this paper is organized as follows. Section ZParticular, is designed to have low enough overhead to run
provides some background on performance analysis angPntinuously in the background.
monitoring tools. In Section 3 we discuss some motivating \ith respect to profilers, DeBox is logically closest to
examples where existing tools do not suffice. The detailegernelgpr of , though it provides more than just timing
DeBox design and implementation are described in Secnformation. Call graphs can be constructed from its call
tion 4. We conduct our case study of how we use DeBoxracing output, and with the data compression/storage per-
to analyze and optimize the Flash Web Server in Section Sormed in user space, overhead is moved from the kernel to
We summarize the results of the case study and modificahe process. Coverage differs, however, since DeBox only
tions in Section 6 and conduct some experiments on latencyeasures functions directly used during the system call. As
in Section 7. We discuss related work in Section 8 and cong result, interrupt handlers and related functions, such as

clude in Section 9. the bottom half of the network stack, are not included.

2 Backg round e System activity monitors — Tools such ast op,
vist at, netstat, i ostat, andsystat are com-

By making performance information a first-class result ofmonly used by system administrators to monitor a running

the system call, DeBox allows applications to gain somesystem or by users trying to determine a first-order cause

of the information provided by other monitoring/profiling for system slowdowns. The level of precision for the var-

ious tools varies greatly, withop showing per-process Since DeBox measures the performance of calls in their
information on CPU usage, memory consumption, ownernatural usage, it resembles the instrumentation tools. De-
ship, and running time, tenst at showing only summary Box gains some flexibility by presenting this data to the
information on memory usage, fault rates, disk activity, andapplication, which can filter it on-line. The main difference
CPU usage. between DeBox and kernel instrumentation is that we pro-

e Trace tools— Trace tools provide a means of observ-vide a standard set of measurements to any process, rather
ing the system call behavior of processes without requirthan providing more detail to processes allowed to modify
ing access to process source or modifying it in any waythe kernel.

These tools, such ds uss, PCT [11] andst r ace [2], . .

are able to show various levels of details of system calls,3 Motivation

such as parameter values, return values, and timing/coupjeBox is designed to bridge the divide in performance
information. More recent tools, such ksr ace and the ana|ysis across the kernel/user boundary by exposing ker-
Linux Trace Toolkit [47], also provide insight into some npe| performance behavior to user processes. The primary
of the kernel state that changes as a result of the systefotivation behind DeBox is to enable performance debug-
calls. These tools are intended for ObserVing another pr%|ng and ana|ysis of Server-sty|e app”cations on demand-
cess, and as a result, produce out-of-band measuremenisg workloads. In these environments, performance prob-
often requiring post-processing to generate usable outputiems can occur on either side of the boundary, and limiting
e Timing calls — One of the simplest approaches usable byanalysis to only one side potentially eliminates useful in-
programmers is to manually record the start and end timeformation. Even though some servers may spend most of
of certain events (e.g., usiget t i meof day() orsimi- their time in the kernel, the ultimate cause may be activi-
lar calls), and to try inferring information based on the dif- ties under process control. As a result, applications may be
ference. Theyet rusage() call additionally adds some able to modify their own behavior to avoid bottlenecks. Ad-
other information beyond timings (context switches, faults ditionally, by making performance information first-class,
messages and I/0O counts) and can similarly used. we believe that DeBox provides opportunities not afforded

) o by out-of-band or off-line approaches. Some examples are
DeBox compares favorably with a combination of the provided below.

timing calls and the trace tools in the sense that timing in-
formation is presented in-band, but the level of detail isUser-level timing approaches are not sufficientin com-
comparable to what is provided by the trace tools. Oumlex workloads, user-level timing approaches can not be
current prototype does not include the level of detail pro-used to reliably infer the presence of unusual activity in the
vided by the Linux Trace Toolkit, but the basic structure iskernel. Complex workloads can arise when many processes
amenable to expansion, and we are investigating the utilitpare competing for the CPU, as in multiprocessor servers, or
of that level of information. in event-driven servers when dynamic content is run in sep-
arate processes. Figure 1 shows user-level timing measure-
e Microbenchmarks — Popular tools for measuring best- ment of thesendfi | e() system call in an event-driven
case times or the actual cost of certain operations (cachserver. This server uses nonblocking sockets and invokes
misses, context switches, etc.) can be obtained from misendfile only when it believes the data to be sent is present
crobenchmarks such as Imbench [28] and hbench:OS [13jn main memory. As a result, the presence of peaks on this
Common usage for these tools is to compare different opgraph is a cause for concern, because they may indicate
erating systems, different hardware platforms, or possiblenat the server is blocking. In reality, though, the user-level
optimizations. timing functions around sendfile present a small window of
e Latency tools— Recent work on attempting to find the opportunity for the scheduler to be invoked.
source of latency on desktop systems not designed for real- Using DeBox, timing measurement is integrated into the
time work have yielded insight and some tools. The Intelsystem call process, and does not suffer from measurement
Real-Time Performance Analyzer [37] helps automate thexrrors caused by scheduling between the system call and
process of pinpointing latency. The work of Cota-Roblesthe timing. The DeBox-derived measurements of the same
and Held [16] and Jones and Regehr [24] demonstrate theall are shown in Figure 2, and do not indicate such sharp
benefits of successive measurement and searching. peaks. Summary data ferendfi | e andaccept are
e Instrumentation — Dynamic instrumentation tools pro- shown in Table 1. Since DeBox also monitors the sched-
vide mechanisms to instrument running systems (processeser, if a system call blocks and another process is run, the
or the kernel) under user control, and to obtain pre-timing information reflects both the wall-clock time for the
cise kernel information. Examples include Dyninst [14], system call, in addition to the actual time used. One area
Kernlinst [45], ParaDyn [29], Etch [39], and ATOM [42]. of weakness in many systems is the lack of proper account-
The appeal of this approach versus standard profilers is thag for interrupts, and DeBox does not attempt to remedy
flexibility (arbitrary code can be inserted) and the cost (nathis shortfall on its own. However, other approaches, such
overhead until use). Information is presented out-of-band.as Lazy Receiver Processing [17] or Deferred Procedure

10000 e e e T 10000
— —
o o
() ()
» 1000 | . : » 1000
> E 1 : 1 1 >
~ L | AT N il ~
= [
_ 100 _ 100

10 1 1 1 1 1 1 10 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
I nvocati on Nunber I nvocati on Nunber

Figure 1:User-space timing of thesendf i | e call on a server Figure 2:The same system call measured using DeBox shows
running the SpecWehbh99 benchmark. Note the sharp peaks, much less variation in behavior.
which may indicate anomalous behavior in the kernel.

Calls [24], can be used to mitigate this effect. Off-line reporting discards useful information. Servers
handling thousands of requests per second are not uncom-

accept () sendfil e() mon, and even with only a few system calls per request,
User | DeBox User | DeBox profilers may have to record tens of thousands of system

Min 5.0 5.0 8.0 6.0 calls per second. Obviously, capturing the full detail of
Median 10.0 6.0 60.0 53.0 each call is infeasible, since the recording process would
Mean 14.8 10.5 86.6 77.5 require more effort than actually performing the system call

Max | 5216.0| 174.0| 12952.0f 998.0 itself. As a result, sampling approaches or information ag-

Table 1: Execution time (in usec) of two system calls mea- gregation are necessary in profilers and monitoring tools.
sured in user application and DeBox.Note the large difference However, the information of interest may be lost in the ag-
in maximums stemming from the measuring technique. gregation/filtering process.
When applications receive performance information

Standard kernel profiling activation is binary. Ingeneral along with each system call, they can provide the filtering
use, standard kernel profiling monitors all of the kernel, andand aggregation that they need in order to accomplish their
must be activated by the superuser. Due to the high cost @foals. Applications may consider different things “inter-
call-graph profiling, the restriction on activation is sensible.esting”: calls that take longer than usual, calls that block,
However, this restriction prevents ordinary application de-or the change in call time over the course of the program.
velopers from using such tools. The other drawback to thén cases such as these, applications may opt to throw away
overhead is that it may distort the bottlenecks in the systenmost of the data, and record some of it in much greater
If call-graph profilers generate a factor of two slowdown in detail as needed. Applications may also be able to cor-
the system (not uncommon), then the CPU may becomeelate information about system calls with the underlying
the bottleneck resource when the profiler is running, evemction that is causing them. This concept is similar to how
though it may not be the actual bottleneck. In these sitgpr of separates profile information along different edges
uations, profiling can cause overflowing queues, delayedf a call graph. However, applications may use informa-
responses, and all of the other effects of overload. tion not available at compile-time in order to make their

By making performance information a result of systemclassification decisions. The key point in all of these cases
calls, the overhead normally associated with kernel callis that using DeBox, the applications maintain control over
graph profiling is reduced in two ways. The first is that information filtering/aggregation.
applications may individually opt to profile their interac-
tion with the kernel, eliminating the binary nature of kernel 4 Design & Implementation
profiling. Not only does this approach reduce the amount of
profiling done, but one process desiring profiling does nofThis section describes our DeBox prototype implementa-
affect the behavior of others on the system. The second asion in FreeBSD and measures its overhead. We first de-
pect is that the work of collecting and storing the profiling scribe the user-visible portion of DeBox, and then the ker-
information is shifted to the application, instead of beingnel modifications. We also measure the overhead of having
the responsibility of the system kernel. In this way, appli-DeBox support in the kernel, as well as the cost for using
cations affect only their own share of system resources ift. Examples of how to fully use DeBox and what kinds
they perform the processing normally associated with call-of information it provides are deferred to the case study in
graph profilers. Section 5.

typedef struct PerSleeplnfo {

i nt nuntl eeps; /* # sleeps for the sane reason */
struct timeval blockedTinme; /* how long the process is blocked */
char wnesg[8] ; /* reason for sleep (resource |abel) */
char bl ocki ngFil e[32]; [* file name causing the sleep */

i nt bl ocki ngLi ne; /* line nunmber causing the sleep */

int numMitersEntry; [* # of contenders at sleep */

int numMitersExit; [* # of contenders at wake-up */

} Per Sl eepl nf o;

typedef struct Call Trace {

unsi gned long call Site; /* address of the caller */
i nt deltaTine; /* elapsed tine in tinmer or CPU counter */
} Call Trace;

typedef struct DeBoxlnfo {
int syscal | Num [* which systemcall */
union Call Ti me {
struct timeval callTineval;

I ong cal | Cycl es; /* wall-clock time of entire call */
} Cal | Ti ne;
i nt nunPGFaul ts; [* # page faults */
i nt nunPer Sl eepl nf o; [* # of filled PerSleeplnfo elenments */
int traceDepth; [* # functions called in this systemcall */
struct PerSleeplnfo psi[5]; /* sleeping info for this call */
struct Call Trace ct[200]; /[* call trace info for this call */
} DeBoxI nf o;

i nt DeBoxControl (DeBoxl nfo *resul tBuf, int maxSleeps, int naxTrace);

Figure 3:DeBox data structures and function prototype

4.1 User-Visible Portion DeBoxControl can be called multiple times over the
o o) course of a process execution for a variety of reasons. Pro-

The programmer-visible interface to DeBox is '”te”t'ona”ygrammers may wish to have several DeBoxInfo structures

simple, since it consists of some monitoring data structure§ 4 yse different structures for different purposes. They

and a new system call to enable/disable data gathering.. Figan also vary the number of PerSleepinfo and CallTrace
ure 3 shows the data structure that handles the DeBoxX infokzams recorded for each call, to vary the level of detail gen-

mation, DeBoxInfo. It serves as the “performance informa-g4teq. Finally, they can specify a NULL value for result-

tion” counterpart to other system call results I&erno. gy \which deactivates DeBox monitoring for the process.
Programs wishing to use DeBox need to perform two ac-

tions: declare one or more of these structures as glob#.2 In-Kernel Implementation

variables, and call DeBoxControl to inform the operatingThe kernel portion of DeBox consists largely of performing
system of the amount of per-call performance informationthe necessary bookkeeping to gather the data in the DeBox-
it wishes to obtain. Info structure. The points of interest are the system call en-
At first glance, the DeBoxInfo structure appears to betry/exit, the scheduler sleep and wakeup routines, and the
very large, which would normally be an issue since its sizefunction entry/exit for all functions reachable from a sys-
could affect system call performance. This structure size igem call.
not a significant concern, since the entire structure is rarely Since DeBox returns performance information when
copied, and the process can specify limits on how mucheach system call finishes, the system call entry/exit code is
of it is used. Most of the space is consumed by two ar-modified to detect if a process is using DeBox. Once a pro-
rays, and they are not expected to be fully used in practicecess calls DeBoxControl and specifies how much of the ar-
The PerSleeplinfo array contains information about each ofays to use, the kernel stores this information and allocates
the times the system call blocks (sleeps) in the course od kernel-space DeBoxInfo reachable from the process con-
processing. The CallTrace array provides the history otrol block. This copy is used to record information while
what functions were called and how much time was spenthe system call executes, consolidating the data gathering
in each. Both arrays are generously sized, and we do nahat would otherwise require a large number of small ker-
expect many calls to fully utilize either one. nel/user copies. Prior to system call return, the requested

DeBox| nf o:
4, |* systemcall # */
3591064, /* call tinme, mcrosecs */
989, /* # of page faults */
2, |I* # of PerSleeplnfo used */
0, /* # of CallTrace used (disabled) */

Per Sl eepl nfo[0] : Per Sl eepl nfo[1] :
1270 /* # occurrences */ 325

723903 /* tine bl ocked, mcrosecs */ 2710256

biow /* resource |abel */ spread
kern/vfs_bio.c /* file where bl ocked */ m scf s/ specfs/spec_vnops. c
2727 [|* line where bl ocked */ 729

1 /* # processes on entry */ 1

0 /* # processes on exit */ 0

Figure 4:Sample DeBox output showing the system call performance obpying a 10MB mapped file

information is copied back to user space. largely to minimize overhead. Conceptually, all that has

At system call entry, all non-array fields of the process'sto occur is that every function entry and exit point has to
DeBoxInfo are cleared. Arrays do not need to be exp|icit|yrecord that it was executed and when it Started/ﬂniShed,
cleared since the counters indicating their utilization haveSimilar to what call graph profilers use. The gcc compiler
been cleared. Call number and start time are stored in th@llows entry/exit functions to be specified via the “instru-
entry. We measure time using the CPU cycle counter availment functions” option, but these are invoked by explicit

able on our hardware, but we could also use timer interrupthnCtion calls. As a reSUIt, function call overhead increases
or other facilities provided by the hardware. by roughly a factor of three. Our current solution involves

Page faults that occur during the system call are counteH“”lnually inserting entry/exit macros into reach_aple fu_nc-
by modifying the page fault handler to check for DeBox ac-tons and recording the funct!on aqldress _gnd _tlmlngs Into
tivation. We currently do not provide more detailed infor- the CallTrace array..Automatlng this modnﬁca’qon process
mation on where faults occur, largely because we have n(ﬁh_OUId be possible in the future,. and we are investigating
observed a real need for this information. However, since'>'"9 themcount () kernel function used for kernel pro-
the DeBoxInfo structure can contain other arrays, more def—'l'ng'

tailed page fault information can be added in the future if. To get a sense of what kind of infprmgtion is provided
desired. in DeBox, we show sample output in Figure 4. We be-

. N gin by memory-mapping a 10MB file, and then using the
The mos“t deta|I?d accounting in DeBoxInfo reyplveswri t e() system call to copy its contents to another file.
around the “sleeps,” when the system call blocks waiting onr o

call invokes the sl eep() function, which passes control of wall-clock time. Itincurred 989 page faults, and blocked

to the scheduler. When the resource becomes avallablfﬁ two unique places in the kernel. The first element of the

the wakeup() bflunﬁtlgn IIS g\vokBe(SjDanlg thelaffe;:_ted pro- PerSleeplinfo array shows that it blocked 1270 times at line
cesses are unblocked. In Free » KETNEL TOULINES INVOK5257 i1y ishio.c on “biowr”, which is the block 1/0O write

ing thet s| eep() mechanism provide a human-readableroutine. The second location was line 729 of spaops.c,

label for use in utilities liket op. We define a new macro . “ " ;
fort sl eep() inthe kernel header files that permits us to which caused 325 blocks at "spread", a read of a special

. . . .file. The writes blocked for roughly 0.7 seconds, and the
intercept any sleep points. When this occurs, we record INaads for 2.7 seconds

a PerSleeplinfo element where the sleep occurred (block-
ingFile/blockingLine), what time it started, what resource4.3 Overhead

label was involved (wmesg), and the number of other profor DeBox to be attractive, it should generate low kernel
cesses waiting on the same resource (numWaitersEntrygyerhead, especially in the common case. To quantify this
Similarly, we modify thewakeup() routine to provide oyerhead, we compare an unmodified kernel, a kernel with
numWaitersExit and calculate how much time was spenheBox support, and the modified kernel with DeBox acti-
blocked. If the system call sleeps more than once at thgated. We show these measurements in Table 2. The first
same location, that information is aggregated into a singleolumn indicates the various system callget pi d(),
PerSleeplnfo entry. get ti meof day(), andpread() with various sizes.
The process of tracing which kernel functions are calledThe second column indicates the time required for these
during system call processing is slightly more involved,calls on an unmodified system. The remaining columns in-

dicate the additional overhead for various DeBox features tar—gz a directory with make
on a modified system. 1MB file 10MB file kernel
base time| 275.61 mseg 3078.50 mseq 236.96 sec|
basicon| +0.97 msec| +22.73msec +1.74sec
full support| +1.03 msec| +44.58 msed +7.49 sec

callname| base| basic| basic| trace| trace
or read size| time off on off on
| getpid| 0.46] +0.00] +0.50| +0.03| +1.45 | Table 3:DeBox macrobenchmark overheads

| gettimeofday| 5.07[+0.00| +0.43]| +0.03] +1.52]
pread 1288] 3.27] +0.02] +056| +021] +2z03] o Case Study

256 bytes| 3.83| +0.00 | +0.59| +0.26 | +2.02| |n this section, we show a case study of using DeBox to
512 bytes| 4.70| +0.00| +0.69| +0.28 | +2.02| analyze and optimize the behavior of the Flash Web Server
1024 bytes| 6.74 | +0.00| +0.68| +0.27 | +2.02| running on the FreeBSD operating system. We discover a
2048 bytes| 10.58| +0.03 | +0.68 | +0.26 | +2.01| series of problematic interactions, trace their causes, and

4096 bytes| 18.43| +0.03 | +0.74| +0.29| +2.16| find appropriate solutions to avoid them or fix them. In
Table 2:DeBox microbenchmark overheadsBase time is the 1€ Process, we gain insights .Into the causes ,Of perfor-
execution time on an unmodified system. Al times are in mi- Mance problems and how seemingly simple solutions, such
croseconds as throwing more resources at the problem, may exacer-
bate the problem. Our optimizations generate an overall

] . factor of four improvementin our result on the SpecWeb99
We find that the largest source of performance loss is Ca'ﬂ)enchmark and also lead to a sharp decrease in latency.

history tracing, so we separate its measurement. The “bas .
off” column indicates the overhead introduced with a mod-g'l Experimental Setup & Workload

ified kernel supporting DeBox without call tracing. The We first describe our experimental setup and the rglevant
performance impact is virtually unnoticeable. The “basicSOftware components of the system. All of our experiments
on” column show the impact of activating DeBox without @€ Performed on a uniprocessor server running FreeBSD
call tracing. We use the CPU cycle counter, since accessinfy; With a 933MHz Pentium 11, 1GB of memory, one 5400
the hardware clock on our system requires 5 microsecond§PM Maxtor Diamond IDE disk, one Promise Ultra DMA

This overhead is the reason why gettimeofday has a conf® controller, and a single Netgear GA621 gigabit ether-
parable running time to a 512 byte read. net network adapter. The clients consist of ten Pentium Il

machines running at 300 MHz connected to a switch us-
From these numbers, we can see that the cost to SUPPQHy Fast Ethernet. All machines are configured to use the

most DeBox features is minimal, and the cost of using theyaq it (1500 byte) MTU as required by the SpecWeb99
measurement infrastructure is tolerable. Since these co nchmark.

are borne only by the applications that choose to enable De- |+ main application is the event-driven Flash Web

Box, the overh(_ead is tolerable. The cost of supporting Calberver, although we also perform some tests on the widely-
tracing, shown in the “trace off” column, where every func- |, multi-process Apache [6] server. The Flash Web

tion entry and exit pointis affected, is higher, averaging apgeyer consists of a main process and a number of helper
proximately 5% of the system call time. This overhead iSyrqcesses. The main process multiplexes all client con-

higher than ideal, and may noft be des'rab'? to have C,Om'nuﬁections, is intended to be nonblocking, and is expected to
ously enabled. However, our implementation is admittedlyga e all requests only from memory. The helpers load disk

Cr_ude, and be_tter compiler support could better integrate i&ata and metadata into memory to allow the main process
with the function prologue/epilogue code. We expect thal, 4\4id hlocking on disk. The number of main processes
we can reduce this overhead, along with the overhead Qf, {he system is generally equal to the number of physical
using the call tracing, with optimization. processors, while the the number of helper processes is tied
The overhead of microbenchmarks do not indicate whato the number of disks, and is dynamically adjusted based
kinds of slowdowns may be typically observed. To giveon load. In previous tests, the Flash Web Server has been
some insight into these costs, Table 3 shows some mashown to compare favorably to high-performance commer-
robenchmarks on an unmodified system, one with only “bacial Web servers [34]. We run with logging disabled.
sic” DeBox activated, and one with complete DeBox sup- We focus on the SpecWeb99 benchmark, an industry-
port. The first two columns are times for archiving and standard workload that is designed to test the overall scal-
compressing files of different sizes. The last column is forability of Web servers under realistic conditions. It is
building the kernel. The overheads of DeBox support rangelesigned by SPEC, the developers of the widely-used
from less than 1 percent to roughly 3 percent in the kerneSpecINT and SpecFP workloads [43], and its parameters
build. We expect that many environments will tolerate thisare derived from observations of workloads at production
overhead in exchange for the flexibility provided by De- Web sites. Although not common in academia, it is the
Box. de factostandard in industry [31], with over 150 published

results, and is different from most other Web server benchis not able to meet the quality-of-service requirements of
marks in its complexity and requirements. It measures th&pecWeb99. One obvious cause for this kind of situation is
overall scalability of a system by reporting the number ofthat the server is blocking, so additional load can not allow
simultaneous connections the server is able to handle whilhe server to take advantage of the available CPU.
meeting a specified quality of service. The sizes of the data

set and working set increase with the number of simultane- | biord/166] inode/127] getblk/1] sfpbsy/1]

ous connections, and quickly exceed the physical memory [~open/162[readlink/84] close/1| sendfile/1

of commodity systems. 70% of the requests are for static read/3 open/28

content, with the other 30% for dynamic content, includ- unlink/1 read/9

ing a mix of HTTP GET and POST requests. 0.15% of staté

the requests require the use of a CGI process that must Bepie 4- Summarized DeBox output_showing blocking
spawned separately for each request. counts: The layout is organized by resource label and system call
5.2 Initial experiments name. For example, of the 127 times this test blocked with the

Our first run of SpecWeb99 on the publically-available ver- inode” label, 28 were from thepen() system call

sion of the Flash Web Server yields a SpecWeb99 result of

roughly 200 simultaneous connections, much lower than USing the PerSleepinfo data, we record every system
the published score of 575 achieved by comparable harde@ll invocation from the main Flash process that blocks in-
ware. At 200 simultaneous connections, the data set size f§de the kemel. The main process is designed to be non-
roughly 750MB, which is smaller than the amount of phys_blockmg, so any blocking system call is of interest. The re-
ical memory in the machine. Not surprisingly, the work- sults of this data gathering are shown in Table 4, where each
load is CPU-bound, and a quick examination shows thafolumn header shows the resource label (wmesg) causing

themi ncor e() system call is consuming more resourcesthe blocking, followed by the total number of times blocked
than any other call site in Flash. at that label. The elements in the column are the system

The underlying problem is the use of linked lists in the calls that block on that resource, and the number of invo-
FreeBSD virtual memory subsystem for handling virtual cations involved. As evidenced by the calls involved, the

memory objects. The heavy use of memory-mapped filestiord” (block 1/O read) and “inode” (vnode lock) labels

in Flash generates large numbers of memory objects, arf€ Poth involved in opening and retrieving files from disk,

a linear walk utilized byni ncor e() generates signifi- yvh|ch is not surprising since our data set exceeds the phys-
cant overhead. We apply a patch from Alan Cox of Rice!Cal memory of the machine.

University that replaces the linked list with a splay tree,5.4 Revisiting Flash Helpers

and this bringsn ncor e() in line with other calls. Our £or portability, the main process in Flash only uses the
SpecWeb99 score rises to roughly 320, a 60% improvepe|ners to demand-fetch disk data and metadata into the
ment. Atthis point, the working set has increased to 1.1GBgg caches, but does not otherwise use their results. One
slightly exceeding our physical memory. set of helpers is used to resolve URLs to files on disk,
5.3 Modern Interfaces and are known as the name conversion helpers. Once the
Once theni ncor e() problem is addressed, we find that helpers have completed loading data, the main process re-
the two most CPU-intensive system calls aed ect () peats the operation immediately, assuming that the recently
andwr i tev(). The former is used to determine which loaded information will prevent it from blocking. Observ-
file descriptors are ready for service, while the latter is usednd the timings of system call activity, we find that when

to send data back to the client. Since the development dhe main process blocks, the helper processes are operating
Flash, FreeBSD has incorporated a zero-copy I/O systerin similarly-named files as the main process.

call, sendfi |l e(), and a scalable event delivery mecha-
nism,kevent () . With memory-mapped files, Flashgen- | #ofhelpers] 1 [5 | 10 | 15 |
erally closes the associated descriptor, reducing the impadt Blocking count| 114 295 339 394
onsel ect (). However, usingsendfil e() requires % Conforming| 40.9% | 95.1% | 96.9% | 89.5%
that file descriptors be kept open, greatly increasing thefable 5: Parallelism benefits and self-interference: The
number of file descriptors in use by Flash. To mitigate thisSconformance measurement indicates how many requests meet
impact, we implement support ferendf i | e() concur- SpecWeb99's quality-of-service requirement.

rently with support fokevent () .

CPU utilization drops after these changes are intro- Guided by this information, we determine that the inter-
duced, but to our surprise, so does performance. Usinfgrence between the main process and the helpers occurs
writev() instead osendfil e() seemsto make litle when they access files which share path components. To
difference in performance, an observation we note for latetest our hypothesis, we try increasing the number of helper
investigation. We find the CPU has idle time, but whenprocesses and observe its effect on the SpecWeb99 results,
we attempt to increase the offered load, we find that Flaslas shown in Table 5. We observe that too few helpers is

insufficient to fully utilize the disk, and increasing their 140
number initially helps performance. However, note that the 120 W
number of blocks from self-interference increases, eventu-
ally decreasing performance. This self-interference may af- ‘
fect other systems that try to use parallelism to increase per-
formance [46]. We solve this problem by having the helper
processes return open file descriptors usegdnsg() ,
eliminating duplication of work in the main process.

We find that this change alone solves most of the
filesystem-related blocking. However, onpen() call
in Flash still shows periodic blocking at the label “biord” 0 : : :

. . 0 200 400 600 800 1000 1200 1400
(reading a disk block), but only after the server has been I nvocati on Number

running for some time. To determine what application pathFigure 5: Call time of fork() as a function of invocation
causes this behavior, we have the processadadir t () number
whenopen() sleeps, such that we can examine the user

stack trace and data structures. . .
starting as low as 300 microseconds.

This problem uncovers a subtle performance bug in . " .
. . Call tracing measurements indicate that copying mapped
Flash induced by mapped-file cache replacement. Flash h?g ions and file descriptors durifigr k() is consumin
two independent caches — one for URL-to-filename trans- 9 P @ 9

lations (name cache), and another for memory-mmaped most of the time. We confirm this observation by varying
ions (data cache) F'or this workload. the narr):e cachpe do(?ge sizes of the caches in Flash and seeing their impact on

9 L . . $or k() times. Rather than try to address this by changing

not suffer from capacity misses, while the data cache may, implementation of or k() , we opt to slightly modify

ﬁ;lr?:etzggﬁ:shtitrztr:\?jn;zz;zsiecisggf;.agi?drenrishsegz\i/zslgg(ljzyl fhﬁ Flash architecture. We introduce a new helper process
X) apacity Rat is responsible for the creation of the CGI processes.

to erroneously be_heve that it had just recently performe ince this new process does not map files or cache open

the name translation. When Flash caljsen() to access . files, itsf or k() time is not affected by the main process

the file, the metadata associated with the name conversion
S i . . Size. This change yields a 10% improvement, to 440 simul-
is missing, causing blocking. We solve this problem by al-

lowing the second set of helpers, the read helpers, to returtr';jmeous connections and a 1.5GB data set size.

[N
@ o
o o

IN o)
o o

Call Tine (nsec)

T

file descriptors if the main process does not already have 5 : : : : : :
them open. 45 “
The final source of metadata-related blocking is diag- 4

nosed by using the kernel call tracing facilities of De-
Box and determining what paths get executed in the miss
cases. We discover that in FreeBSD, two parameters
control the metadata cache policy, “vmiodirenable” and
“nameileafonly”. The former determines if directory meta- sk]
data caching can use the block cache, and the second deter-8 ;|
mines if non-leaf metadata cache entries can be evicted. We =~ .| .
enable both options, and the remaining metadata-related o
blocking disappears. With these change, we are able to 0 5000 10000 15000 - 20000 25000 30000

X i I nvocati on Nunber
handle 390 simultaneous connections from SpecWebQSlQZi ure 6: Call time of map() as a function of invocation
with a data set size of 1.3GB. 9 ' P

number
5.5 Process Creation Overhead

With all blocking eliminated and with a much higher re- 5.6 Memory residency overhead

quest rate, we return to the issue of system call CPUAtthis point, even though the data set size exceeds physical
consumption and find that the largest call times are fomemory by over 50%, the system bottleneck is the CPU,
the fork() system call. These calls stem from the largely due to the amount of overhead involved in mem-
SpecWeb99 workload requirement that 0.15% of the reory residency checking. Though our modified Flash uses
quests be handled by forking off new processes. Amongendfil e() and does not examine file content, the use
the system calls, we discover thabr k() takes as long of mi ncor e() to determine memory residency requires
as 130ms, while most calls finish in 1 ms. Using DeBox’sthat files be memory-mapped. The cumulative overhead of
ability to measure the per-call time, we record the per-callmemory-map operations is the largest consumer of CPU
time as function of call number, to generate Figure 5. Wetime. As can be seen in Figure 6, the per-call overhead of
observe thaf or k() time increases as the program runs,map() is significant and increases as the server runs. The

35
3

as i
2 - - - - - - .-

Il Time (nsec)

cost increase is presumably due to finding available space 24

as the process memory map becomes fragmented. s 22 | odified sendfile =]
To eliminate the memory-residency overheads, we use g 5 | sendfile -]

Flash's mapped-file cache bookkeeping as the sole heuris- % 18 SE— .

tic for guessing memory residency. We eliminate all 5 16 g

mmrap/ m ncor e/ munmap calls but keep track of what & 14

pieces of files have been recently accessed. Sizing the 5 12 9:‘;%_

cache conservatively with respect to main memory, we save ¢ 10 =

CPU overhead but introduce a small risk of having the main § 8

process block. The CPU savings of this approach is sub- O

stantial, allowing us to reach 620 simultaneous connections 6 0125 0.25 05 1 2 4 8 16

and a 2GB data set size. File Size (Kbytes)

5.7 Dynamic Content Interface Figure 7: Microbenchmark performance comparison of

We take advantage of DeBox’s ability to separate the kerWritev, sendfile, and modified sendfile:in this test, all clients
nel time consumption by call site to determine that althougt{€duest a single file at full speed using persistent cororesti
ther ead() system call is used by the main process, the

helpers,.and all of the CGil processes, the sing!e call Sit%hange, many requests to the same file do not cause mul-
responsible for most of the time is where the main proces le mappings, and eliminates the associated virtual mem-

reads from the CGls. Flash uses a persistent CGI interfacé3 ; - ;
ry and physical ma map) operations. Caching these
similar to FastCGl [32] to reuse CGI processes when pos y phy P (pmap) op g

ol d thi hani icat . mappings may temporarily use more wired memory than
sib’e, and this mechanism communicates over pipes. o caching, but the reduction in overhead and address space
Our measurements show that this call site consumes 20

. bnsumption outweighs the drawbacks.
of all kernel time, (176 seconds out of 891 seconds total). The other two resource labels, “getblk” and “biord”, are
Writi_n_g the request to the CGI processes is much ‘?’ma"errelated to disk access initiated W,iths'mandf ile() Whe,n
requiring only 24.3 seconds of system ca_lll time. This Ievelthe requested pages are not in memory. Even though the
of detail demonstrates the power of making performance Qocket being used is nonblocking, that behavior is lim-
first-class result, since existing kernel profilers would nOtited only to network buffer usage \’Ne introduce a variant
have bec_—zn able to sgp.arate the “”?e forrtlead() call sendfi | e() callwith slightly different semantics, which
by call site. By modifying our CGlI interface slightly, we

low th) i ite the HTTP o th returns a differenér r no value if disk blocking would oc-
a’ow the main process to write the response 1o &\ s change allows us to achieve the same effect as we

client, and then pass the socket to the CGI to let it Writehad withni ncor e() , but with much less CPU overhead
directly. This change allows us to reach 710 simultaneou%e may optionally hz;ve the read helper process send data
connections, and a 2.35GB data set size.

directly back to the client on a filesystem cache miss, but
have not implemented this optimization.

However, even whemsendfi | e() does not block, we
observe no performance gain overi t ev() , and we find
that the problem stems from handling small writes. HTTP
static content responses consist of a small header followed
by file data. Usingw it ev() allows aggregation of the
header and the first portion of the body data into one packet,
5.8 Optimizing sendfile() benefiting small file transfers. In SpecWeb99, 35% of all
We return our focus to theendf i | e() system callfora static requests are for files 1KB or smaller.
variety of reasons: we had noted worse performance than The FreeBSDsendfi | e() call includes parameters
writev(), we had seen some blocking at the label “sf- specifying headers and trailers to be sent with the data,
pbsy”in Table 4, and our replacementofncor e() with whereas the Linux implementation does not. Linux intro-
a heuristic may cause more blocking. New PerSleepinfaluces a new socket option to “cork” the TCP stream so that
measurements of the blocking behaviors@ndf i | e() HTTP header data sent visri t e() can be combined
are shown in Table 6. with zero-copy packet data. While FreeBSD’s “mono-

The resource label “sfbufa” indicates that the kernel hadithic” approach provides enough information to avoid
exhausted the sendfile buffers used to map filesystem pageending a separate header, its implementation sends the
into kernel virtual memory. We confirm that manually header using a kernel versionwfi t ev() , thus generat-
increasing the number of buffers eliminates this probleming a separate packet for the response header. We improve
in our test. However, based on the results of previoughis implementation by creating an mbuf chain using the
copy-avoidance systems [18, 35], we opt instead to impleheader and body data before sending it to lower levels of
ment recycling of kernel virtual address buffers. With thisthe network stack. This change generates fewer packets,

| time | label] kernelfile | line |
6492 | sfbufa | kern/uipcsyscalls.c| 1459
702 | getblk kern/kernlock.c | 182
984544 | biord kern/vfsbio.c | 2724
Table 6:New blocking measurements ogendfi | e()

10

Start Start
Accept Accept
Conn Conn
Read Read
Request Request
n athname | filename Helner Tnd — Open File 1 filename rCEs_siE'l
File Trans. Cache p URL L Cache [-ﬁ|e descriptor- I_+_O_p<zl_!

esponse orm esponse
Header Header Cach Header Header Cach
sad ile appe filename Helper | Modified 1 file descriptor F&ghgHTE 1
Send Data File Cache [L Sendfile |<—>!_He|per |
End End
(a) Original Architecture (b) New Architecture

Figure 8: Architectural changes: The architecture is greatly simplified by using file desaiigiassing and eliminating mapped file
caching. Modified components are indicated with a dashed box

improving performance and network latency. Results ofmarked. We outperform all uniprocessor systems with sim-

these changes on a microbenchmark are shown in Figure #lar memory configurations — the highest score for a system

With thesendf i | e() changes, we are able to achieve awith less than 2GB of memory is 575.

SpecWeb99 score of 820, with a data set size of 2.7GB. Most of our changes are portable architectural modifica-

tions to the Flash Web Server, including (1) passing file de-

900 scriptors between the helpers and the main process to avoid
800 4— — — — — — — — — — — most disk operations in the main process, (2) introducing a

newf or k() helper to handle forking CGI requests, (3)

eliminating the mapped file cache, and (4) allowing CGI

=
%)
i
i L I % processes to write directly to the clients instead of writing
2 50+———————— D'I od?® to the main process. Figure 8 shows the original and new
< 4004 — — — — — — g E g architectures of the static content path for the server.
b <t I — = The changes we make to the operating system focus on
Q300+ < SHEESCE S _ ; , , o
N [S) I Q 2RO I ORc sendfil e(),including (1) changing the semantics to in-
200 8. S x c I dicate when blocking on disk would occur, (2) caching ker-
100 s I o o I nel address space mapping to avoid unnecessary physical
04 > map operations, and (3) sending headers and file data in a
1 2 3 4 5 6 7 8 single mbuf chain to avoid multiple packets for small re-
Server Configuration sponses. Additionally, we apply a virtual memory system

patch that ultimately is superfluous since we remove the

Figure 9: SpecWeb99 summary: 1. Original 2. VM patch memory-mapped file cache.

3. Using sendfile() 4. FD-passing helpers 5. Fork helper i&-El
inate mmap 7. New CGl interface 8. New sendfile()

7 Latency

Since we identify and correct many sources of blocking,
6 Case StUdy Summary we are interested in the effects of our changes on server
By addressing the interaction areas identified by DeBoxJatency. We first compare the effect of our changes on a
we achieve a factor of four improvementin our SpecWeb9%pecWeb99 workload, and then reproduce workloads used
score, supporting four times as many simultaneous conby other researchers in studying static content latencies. In
nections while also handling a data set that almost threall cases, we compare latencies using a workload below the
times as large as the physical memory of our machine. Thenaximum of the slowest server configuration under test.
SpecWeb99 results of our modifications can be seem in On the SpecWeb99 workload, we find that mean re-
Figure 9, where we show the scores for all of the intermedisponse time is reduced by a factor of four by our changes.
ate modifications described in this paper. Our final result ofThe cumulative distribution of latencies can be seen in Fig-
820 compares favorably to published SpecWeb99 scoresire 10. We use 300 simultaneous connections, and com-
though no directly-comparable systems have been benclpare the new server with the original Flash running on a

11

=< 1 T T < 1
" n
\ \Y
£ o8 B g o8 B
= -
))
L 0.6 e 2 06 E
o IS}
o o
%] %]
go.nt———— B go.nt———— g B
> > AT (New Fiash) —e—
Z — / ; T K (New Flash,4p) ---e-—
N] Z o2 b e (Apache150p) ---3---]
) new, static workload —+— i) / ’ (Ap?g)?de ,gggﬁg e
< [+ v
S new, standard workload ---%--- o (Old Flash,4p) -
=] old, standard workload ---%--- o '
& 0 I I 1 I & 0 Z I I I

0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000

Time (nsec) Time (nsec)

Figure 10:Latency summary for 300 SpecWeb99 connections Figure 11:Response latencies for the 3.3GB static workload

5% | median 95% mean

patched VM system. Since 30% of the requests are for (ms) (ms) (ms) (ms)

longer-running dynam|p content, we also test the latencieg New Elashl 037 079 =45 =56
of a SpecWeb99 test with only static requests. The mean o New Flash, 4p| 0.38 085 781 775
this workload is 7.08 msec, lower than the 10.6 msec mear d - - - -
for the new server running the complete workload. This OldFlash) 3.36| 37.59| 326.40) 92.37
difference suggests that further optimization of dynamic| ©O!d Flash, 4p| 7.05| 142.65| 1924.42| 420.85
content interface may lead to even better performance. To Apache 150p| 0.70 6.64 | 1599.50| 360.62
compare the difference between static and dynamic request Apache 300p| 0.78 | 124.98| 2201.63| 545.93
handling, we calculate the 5th, 50th, and 95th percentiles Table 8:Summaries of the static workload latencies
of the latencies for requests on the SpecWeb99 workload.

These results are shown in Table 7, and indicate that dy- .

namic content is served at roughly half the speed of its/V€ also run Apache with 150 and 300 server processes.
static counterpart. The latency difference between the new 1he results are given in Figure 11 and Table 8 and show
server and the original Flash on this test is not as large a§'@ response time of our new server under this workload

expected because the working set still fits in physical memgxhibits improvements of more than a factor of twelve in
ory. mean response time, and a factor of 47 in median latency.

With four instances, the difference are a factor of 54 in

5%(ms) | 50%(ms)| 95%(ms)| mean(ms) 'Mean response time and 174 in median time. We mea-
Static 051 145 5081 9.92| sSure the maximum capacities of the servers when run in
dynamic 0'99 2.83 91'31 12'19 infinite-demand mode, and these results are shown in Ta-

ble 9. While the throughput gain from our optimizations
Table 7:Separating SpecWeb99 static and dynamic latencies is significant, the scale of gain is much lower than the
SpecWeh99 test, indicating that our latency benefits do not

To determine our latency benefit on a more disk-boundstem purely from extra capacity.
workload and to compare our results with those of otherre- We also observe that all servers tested show latency
searchers, we construct a static workload similar to the ondegradation when run with more processes, though the ef-
used to evaluate the Haboob server [46]. In this workloadfect is much lower for our new server. This observationisin
1020 simulated clients generate static requests to a 3.3GIhe with the self-interference we described earlier between
data set. To avoid overloading the slowest server, the rethe helpers and the main Flash process, but is observed even
quest rate is fixed at 170 requests per second. Persistewith Apache. We confirm this by using DeBox to mea-
connections are used, with clients issuing 5 requests oversure the number of sleeps when running Apache. With 150
single connection before closing it. Our test environmenprocesses, Apache blocks 3667 times per second, and this
differs from that used to evaluate Haboob in the followingincreases to 3994 times per second at 300 processes.
ways: our system has only 1GB of memory versus 2GB, This result suggests that excess parallelism, where server
we have a single 933 MHz processor versus four 500 MHzjlesigners use parallelism for convenience, may actually de-
processors, and we are using FreeBSD versus Linux.

We compare several configurations to determine the la-

tency benefits and the impact of parallelism in the server. New Flash Old Flash Apache

We run the new and original versions of Flash with a single 1p 4p 1p 4p | 150p | 300p
instance and four instances, to compare uniprocessor con- | 326.4| 308.6| 264.5| 221.1| 210.6| 201.5
figurations with what would be expected on a 4-way SMP. Table 9:Server static workload capacities (Mb/s)

12

grade performance noticeably. This observation may ex9 Conclusion
plain the latency behavior reported for Haboob [46]. The,.. L .)
median latency shown for Flash in that paper is approxi-Thls paper presents the design, implementation and eval

telv 50 ble to the 37.59 di uation of DeBox, an effective approach to provide more
mately 5oms, comparaple o the 3/.59ms median we megy g transparency, by exposing system call performance as

surg: Th_e mean Igtentcyl/ gg/oeg é%rOHabolob IS 547”.“5 and "3 first-class result via in-band channels. DeBox provides
median IS approximately ~ODUMS. 1N COMPaArson, oufy; o q performance feedback from the kernel on a per-call

mean Iz;enqy (f)o;;he new verst!on of Fllatsh IS 7.56m7s,0a5r)10 asis, enabling programmers to diagnose kernel/user inter-
ourmedianis ©.c2ms, suggesting ourfatencies are 19-oUions correlated with user-level events. Furthermore, we

times lower than Haboob. believe that the ability to monitor behavior on-line provides

programmatic flexbility of interpreting and analyzing data
8 Related Work not present in other approaches.
In this section, we discuss other related work not already OUr case study using the Flash Web Server with the
covered in our discussion in Section 2. The idea of observSPeCWeb99 benchmark running on FreeBSD demonstrates
ing kernel behavior to improve performance has appeareH'® power of DeBox. Addressing the problematic interac-
in many different forms. We share similarities with Sched-1ions and optimization opportunities discovered using De-
uler Activations [5] in observing scheduler activity to opti- BOX improves our experimental results an overall factor of
mize application performance, and with Marsh et al. [27],four in SpecWeb99 score, despite having a data set size
who make user-level threads first-class with kernel supporf}€@rly three times as large as our physical memory. Fur-
Our goals differ, since we are more concerned with underfh€rmore, our latency analysis demonstrates gains between
standing why blocking occurs rather than reacting to it dur-2 factor of 4 to 47 under various conditions. Further re-
ing a system call. Our modification sfendfil e() to sults show that fixing the bottlenecks identified using De-
indicate blocking is patterned on non-blocking sockets, buBB0X also mitigates most of the negative impact from excess
it could be used in other system calls as well. In a simi-Parallelism in application design.
lar vein, RedHat has applied for a patent on a new flag t
theopen() call, which causes it to fail if the necessarycReferences
metadata is not in memory [30]. [1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Deur.
Our observations on excess parallelism and its impact Cooperative tasking without manual stack managemerd SBNIX
on Iatency may impact server design Performance stud- 2002 Annual Technical Conferenddonterey, CA, June 2002.
ies of the Harvest Cache [12] established the suitability (2] \\:vvi'dlkrlt(/zrtrrgig'/_ strace homepage. hitp://www. wi.leidern/
of event-driven designs for network servers, and the Flash[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardwagfpr-
server demonstrated how to avoid some disk-related block- " mance counters with flow and context sensitive profiling.SIfs-
ing [34]. Schmidt and Hu [40] performed much of the PLAN Conference on Programming Language Design and Imple-
early work in studying threaded architectures for improy- ~ mentation pages 85-96, Las Vegas, NV, June 1997.
ing server performance. A similar architecture was used4] J- A”dt’)efSSQ?v L. S’IQV\C/ JaDea”aS- ghev:/n?c\;vat' M. Henz(ljr@vsts\-/ o
. ung, . Dltes, . Vanaevoorde, . aldspurger, an f einl.
by Wels_h et al. [46] to support concurrency and prowde Continuous profiling: Where have all the cycles gone.Pioc. of
scheduling behavior. Larus and Parkes [25] demonstrate the 16th ACM Symp. on Operating System Principtegjes 114,
that such scheduling can also be performed in event-driven Saint-Malo, France, Oct. 1997.
architectures. Qie et al. [38] show that such architec-[5] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.\Lev
tures can also be protected against denial-of-service at- Scheduler af“"faﬂonsni |~Efr£i\c(t;i\,<,?1l-(emel f_upporf fgf fher*tlevgl
tacks. Adya et al. [1] discuss the unification of the two ~ [anagemen’ of paralelismLil fransactions on Lomputer sys-
) . . tems 10(1):53-79, Feb. 1992.
models. We believe that DeBox can be used to identify @

. . [6] Apache Software Foundation. The Apache Web server:/httpw.
problem areas in other servers and architectures, as our la-" zpache.org.

tency measurements O_f ApaChe suggest. . [7] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infoioratind
Most of the changes in our case study modified the server control in gray-box systems. IRroc. of the 19th ACM Symp. on

code rather than the operating system. This observation Operating System Principlepages 43-56, Chateau Lake Louise,

L i 4 . Banff, Canada, Oct. 2001.

may indicate that the incorporation of previous OS research | Ga; ana daJ g ocul Scalable kermel oerf ctormet

H : . . banga an . C. Mogul. Scalable kKernel performancaierne

Into mainstream pperatlng systems _has been SUCCESSfL!lZ J? servers under realistic loads. WSENIX 1998 Annual Technical

tha_t problem a_vmdance is equally viable as kernel _mod|f|— ConferenceNew Orleans, LA, June 1998.

cation. EXter‘S'ble Kem_e'5 [10, 1_9- 20, 41] may provide op- (9] G. Banga, J. C. Mogul, and P. Druschel. A scalable andiikpl

portunities for applications to “fix” problems that can not event delivery mechanism for UNIX. ISENIX 1999 Annual Tech-

easily be avoided, such as our implementation changes of nical Conferencepages 253-265, Monterey, CA, June 1999.

sendfil e(). Likewise, conveniences, such as our se-[10] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M.Zynski,

mantic change of its behavior, would also become more ~ D- Becker. S. Eggers, and C. Chambers. Extensibility, patad
performance in the SPIN operating system. Piroc. of the 15th

at_trac_tive- but these may only be appropriate for trusted ap- Acm symp. on Operating System Principlpages 267-284, Cop-
plications. per Mountain, CO, Dec. 1995.

13

[11]

(12]

(13]

(14]

(15]

(16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

C. Blake and S. Bauer. Simple and general statistiaailjprg with
pct. INUSENIX 2002 Annual Technical Conferenttonterey, CA,
June 2002.

C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F
Schwartz. The Harvest information discovery and accestersys
Computer Networks and ISDN Syste28(1-2):119-125, 1995.

A. Brown and M. Seltzer. Operating system benchmarkmthe
wake of Imbench: A case study of the performance of netbsd ont33l
the intel x86 architecture. IACM SIGMETRICS Conferengeages
214-224, Seattle, WA, June 1997.

B. Buck and J. K. Hollingsworth. An API for runtime codatghing.
The International Journal of High Performance Computingphga-
tions 14(4):317-329, Winter 2000.

N. Burnett, J. Bent, A. Arpaci-Dusseau, and R. ArpacisBeau.
Exploiting gray-box knowledge of buffer-cache managemeht

USENIX 2002 Annual Technical Conferenddonterey, CA, June
2002.

E. Cota-Robles and J. P. Held. A comparison of windoweedr
model latency performance on windows NT and windows 98. In
Proc. of the 3rd USENIX Symp. on Operating Systems Design an
Implementationpages 159-172, New Orleans, LA, Feb. 1999.

P. Druschel and G. Banga. Lazy receiver processing jJLRPet-
work subsystem architecture for server systems2rtre. of the 2nd
USENIX Symp. on Operating Systems Design and Implementatio
pages 261-275, Seattle, WA, Oct. 1996.

P. Druschel and L. L. Peterson. Fbufs: A high-bandwidtbss-
domain transfer facility. IfProc. of the 14th ACM Symp. on Oper-
ating System Principlepages 189-202, Asheville, NC, Dec. 1993.

P. Druschel, L. L. Peterson, and N. C. Hutchinson. Belynoricro-
kernel design: Decoupling modularity and protection intbip In
Proc. of the 12th International Conference on Distributedn@ut-
ing Systemgpages 512-520, Yokohama, Japan., June 1992.

D. R. Engler, M. F. Kaashoek, and J. O'Toole. Exokernt op-
erating system architecture for application-level reseunanage-
ment. InProc. of the 15th ACM Symp. on Operating System Princi-
ples pages 251-266, Copper Mountain, CO, Dec. 1995.

S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: alc
graph execution profiler. IBIGPLAN Symposium on Compiler Con-
struction pages 120-126, Boston, Massachusetts, June 1982.

S. L. Graham, P. B. Kessler, and M. K. McKusick. An exéauijpro-
filer for modular programs. I$oftware- Practice and Experience
pages 671-685, 1983.

Intel. Vtune Performance Analyzers Homepage. htpwéloper.
intel.com/software/products/vtune/index.htm.

M. B. Jones and J. Regehr. The problems you're having maaype
the problems you think you're having: Results from a latesitdy

of windows nt. In7th Workshop on Hot Topics in Operating Systems
(HotOS-VII) Rio Rico, AZ, March 1999.

J. Larus and M. Parkes. Using cohort-scheduling to robaerver
performance. IJSENIX 2002 Annual Technical Conferenpages
103-114, Monterey, CA, June 2002.

J. Lemon. Kqueue: A generic and scalable event notificdacility.
In FREENIX Track: USENIX 2001 Annual Technical Conference [46]
pages 141-154, Boston, MA, June 2001.

B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markat&$rst-
class user-level threads. PRroc. of the 13th ACM Symp. on Op-
erating System Principlepages 110-121, Pacific Grove, CA, Oct
1991.

L. W. McVoy and C. Staelin. Imbench: Portable tools farfor-
mance analysis. IRUSENIX 1996 Annual Technical Conference
pages 279-294, San Diego, CA, June 1996.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Haligsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newha
The paradyn parallel performance measurement tt®EE Com-
puter, 28(11):37-46, 1995.

(30]

(31]

(32]

(34]

(35]

(36]

B

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

47

(48]

14

I. Molnar. Method and apparatus for atomic file look-upnited
States Patent Application #20020059330, May 16, 2002.

E. Nahum. Deconstructing SPECweb997th International Work-
shop on Web Content Caching and Distribution (WC®Hulder,
CO, Aug. 2002.

Open Market. FastCGl. http://www.fastcgi.com/.

OProfile. A system profiler for linux. http://oprofil@srceforge.
net/.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: Aniefficand
portable web server. ISENIX 1999 Annual Technical Conference
pages 199-212, Monterey, CA, June 1999.

V. S. Pai, P. Druschel, and W. Zwaenepoel. 10-Lite: diadil/O
buffering and caching systerACM Transactions on Computer Sys-
tems 18(1):37-66, 2000.

R. H. Patterson, G. A. Gibson, and M. Satyanarayanan.tafis
report on research in transparent informed prefetchi@M Oper-
ating Systems Revie®7(2):21-34, 1993.

L. K. Puthiyedath, E. Cota-Robles, J. Keys, and J. P. il Aggar-
wal. The design and implementation of the intel real-timeqre
mance analyzer. |Righth IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS,023n Jose, CA, Sept.
2002.

X. Qie, R. Pang, and L. Peterson. Defensive programmiifging an
annotation toolkit to build dos-resistant software Pioc. of the 5th
USENIX Symp. on Operating Systems Design and Implementatio
Boston, MA, Dec. 2002.

T. Romer, G. V. D. Lee, A. Wolman, W. Wong, H. Levy, B. N.
Bershad, and J. B. Chen. Instrumentation and optimization o
Win32/Intel executables using etch. WSENIX Windows NT Work-
shop pages 1-8, 1997.

D. C. Schmidt and J. C. Hu. Developing flexible and high-
performance Web servers with frameworks and pattek@ Com-
puting Surveys32(1):39, 2000.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealingth dis-
aster: Surviving misbehaved kernel extensionsPioc. of the 2nd
USENIX Symp. on Operating Systems Design and Implementatio
pages 213-227, Seattle, WA, Oct. 1996.

A. Srivastava and A. Eustace. Atom: A system for buidditus-
tomized program analysis tools. ACM SIGPLAN '94 Conference
on Programming Language Design and Implementafmages 196—
205, June 1994.

Standard Performance Evaluation Corporation. SPEC20B0
Benchmarks. http://www.spec.org/cpu2000.
Standard Performance Evaluation Corporation. SPE(h We

96 & 99 Benchmarks. http://www.spec.org/osg/ web96/ and
http://www.spec.org/osg/web99/.

A. Tamches and B. P. Miller. Fine-grained dynamic insienta-
tion of commodity operating system kernels. Pmoc. of the 3rd
USENIX Symp. on Operating Systems Design and Implementatio
pages 117-130, New Orleans, LA, Feb. 1999.

M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An arcluite
ture for well-conditioned, scalable internet servicesPtoc. of the

19th ACM Symp. on Operating System Principlesges 230-243,
Chateau Lake Louise, Banff, Canada, Oct. 2001.

K. Yaghmour and M. R. Dagenais. Measuring and charaater
system behavior using kernel-level event loggingUBENIX 2000
Annual Technical Conferenc8an Diego, CA, June 2000.

C. X. Zhang, Z. Wang, N. C. Gloy, J. B. Chen, and M. D. Smith
System support for automated profiling and optimizationPiac.

of the 16th ACM Symp. on Operating System Principleges 15—
26, Saint-Malo France, Oct. 1997.

