
Secure Linking: a Framework for Trusted Software
Components (Extended Version)

Eunyoung Lee
Department of Computer Science

Princeton University

elee@cs.princeton.edu

Andrew W. Appel
Department of Computer Science

Princeton University

appel@cs.princeton.edu

ABSTRACT
Deciding whether or not to trust a foreign software compo-
nent is important for the safety of a host which imports the
component. The decision can be made in a static situation
where the main concern is building a large software system
out of many components from different parties, as well as
in a dynamic situation where the main concern is executing
codes transferred via networks. Recently some linkers have
started concerning about trusting foreign code at the com-
ponent level, and type checking and digital signing are the
main ways of achieving the goal.

We propose a way of linking software components with cer-
tified assurances (called properties) and proof-carrying au-
thentication. We have developed a framework for secure
linking systems, which consists of the logic expressing the
linking procedure and the prover finding proofs for proof-
carrying authentication. The framework is general and ex-
pressive enough to represent other existing linking systems
and to help different linking systems interoperate.

1. INTRODUCTION
When a software system of large scale is built, the system
is analyzed carefully before being implemented and divided
into several subsystems, each of which is relatively indepen-
dent of other subsystems. The relative independence of soft-
ware components makes it possible for each component to
be implemented separately and to communicate with other
components only through its interface, regardless of its inner
implementation.

One of the advantages of restricting software components to
communicate only through interfaces is software reuse. A
large software system can be built out of independent, self-
contained software components. But when a programmer
uses a third-party software component as a building block
of her system, she doesn’t want the code she imports to
break her system.

The most widely used methods for ensuring safe linking are
type checking and code signing. Checking the type of the
interfaces between two software components ensures that
two components agree on the types they are using. Although
type checking is quite strong and easy to use, it doesn’t
guarantee that the code will behave in an expected way.

Code signing ensures that someone trustworthy trusts the
code. Currently a digital signature on codes only shows that
a trusted party signed the code, but it doesn’t show that
the code he writes/or inspects is trustworthy. Even though
a code is written by a trusted programmer, the code may
do harmful things to a host by the programmer’s mistake.

To solve this problem, stronger guarantees are needed. A
code consumer wants to specify that a component must
have certain properties to be linked safely and securely to
its system. At the same time, a code provider writing/or
supplying the component needs a method of proving that
it has the properties required by the host. We have devel-
oped a logical framework for secure linking based on Proof-
Carrying Authentication (PCA). PCA is an authentication
framework based on higher-order logic [2]. Unlike traditional
distributed authentication frameworks, a code provider is
responsible for proving her right to access some shared or
protected resources, and a code consumer only verifies the
proof handed in by the client. Since PCA uses higher-order
logic as a basic logic, the framework is more general and
more flexible than its predecessors. Users can define op-
erators on top of the basic logic of PCA. The semantics of
each operator is expressed by the underlying basic logic, and
inference rules on those operators are proved as lemmas.

In our framework, a code consumer announces its linking
policy to protect itself from malicious code from outside.
The policy can include certain properties required by the
code consumer for system safety, such as software compo-
nent names, a valid hash of codes, version information of
software components, etc. To link and to execute a compo-
nent in the code consumer, the provider of the component
should submit a proof that the component has the properties
specified in the code consumer’s linking policy. The proof is
formed by the basic logic and inference rules of the frame-
work. After being submitted, the proof is checked by a small
trusted proof checker in the code consumer, and if verified,
the component is allowed to be linked to other components
in the code consumer.

1

The breakdown of the paper is as follows: In section 2, we
mention some work related to our research. In section 3, we
explain the key concept of our proposing linking procedure
with a typical situation when a linking decision should be
made. In section 4 and 5, we present the user interface
languages of our framework and the basic logic, using the
example in section 3. In section 6, we show that the tactical
prover of our framework is sound and complete. In section
7, we demonstrate that our linking logic is expressive and
general enough to describe the existing linking systems with
it.

2. RELATED WORK
2.1 PCA
The idea of Proof-Carrying Authentication was introduced
by Appel and Felten [2]. PCA is a distributed authen-
tication/authorization framework based on proof-carrying
mechanism. PCA is different from previously existing au-
thentication frameworks in two ways:

• it uses a higher-order logic that makes PCA more gen-
eral and more flexible, and

• a code consumer needs not execute a complicated de-
cision procedure to grant the client’s request. A code
provider is responsible for proving her capability of ac-
cess.

Authentication frameworks and protocols have been described
using formal logic [1], for example in the Taos distributed
operating system [12]. Taos has a logic of authentication on
top of propositional calculus, which are proved to be sound.

In Taos, a code consumer given an access request has to de-
cide whether to grant the request. Wobber et al. [12] chose
to implement only a decidable subset of their authentica-
tion logic since they want the decision procedure of grant-
ing a request to be decidable. Decidable logic are weaker
than general logics, so this makes the authentication logic
less flexible. To make an application-specific inference logic,
some application-specific rules should be added to a given
set of basic inference rules and the soundness of the whole
logic should be proved again.

PCA gains more flexibility by allowing quantification over
predicates. Therefore the authentication framework has only
one set of inference rules and all application-specific rules are
proved as lemmas. To describe an application-specific secu-
rity policy, a programmer only needs to pick an application-
specific decidable subset of the underlying general logic of
PCA.

Since all the application-specific logics are expressed using
the same general inference rules, they can interoperate with
each other easily. This makes PCA more general than other
previous authentication logic. However, finding a proof for
a request is not always possible because higher-order logic
is not decidable. To get around this problem, PCA puts the
burden of constructing proofs on the client and on the con-
trary the server simply checks that proof. This is in analogy
with proof-carrying code [9]. Even in an undecidable logic,
proof checking (not proving!) can be simple and efficient.

Bauer, Schneider and Felten developed an infrastructure for
distributed authorization based on the ideas of PCA [5].

2.2 Component models
A fundamental principle of software engineering is to divide
a large-scale program into relatively independent and small
subprograms. With this strategy, communication between
the subprograms and seamless integration of them become
important in order to protect each subprogram from ma-
licious attack or inadvertent misuse of other subprograms,
and eventually in order to make the large program work.
Traditionally, each program protects itself while commu-
nicating with other programs through abstract data types
(ADT) or information hiding.

Some languages, for example Standard ML and its associ-
ated Compilation Manager (CM) [6], support more facilities
than simple ADTs by making it possible to structure mod-
ules hierarchically. Rather than having a flat and simple
space of modules, CM makes it possible to build a hierar-
chy of modules by describing the relationship between them
with its own descriptive language. Furthermore, it provides
the facility of restricting view of modules and the facility to
be able to see modules through a richer interface. Within
the module hierarchy, modules in lower levels can communi-
cate across more expressive interfaces, and modules in higher
levels can enforce more restrictive ones. Bauer, Appel and
Felten extended the Java package mechanism and developed
a linking system supporting hierarchical modularity similar
to that of Standard ML and CM [4].

2.3 Assemblies of the .NET framework
The .NET framework is a computing platform developed
by Microsoft targeting the highly distributed environment
of the Internet [11]. The main components of the .NET
framework are Common Language Runtime and its class
library.

Common Language Runtime (CLR) is responsible for execution-
time management such as memory management, thread man-
agement and remote procedure calls. It could be compared
to the Java Virtual Machine [8]. CLR provides its own in-
termediate language called Common Intermediate Language
(CIL) and a code must be written in this intermediate lan-
guage to be executed on CLR. CLR also implements a strict
type- and code-verification infrastructure called Common
Type System (CTS) and supports Just-In-Time (JIT) com-
piling for enhancing performance.

The .NET framework class library is a collection of reusable
classes, or types, that tightly integrate with the common
language runtime. It provides a variety of classes, from the
basic classes for graphical user interface to the more sophisti-
cated classes and tools for development and consumption of
Web services supporting the standards such as SOAP (stan-
dard object access protocol), XML (an extensible mark-up
language).

2.3.1 Assemblies
An assembly is the logical unit of a program executable on
the common language runtime. It is also a unit of secu-
rity, a unit of type and a unit of version within the .NET

2

framework, as well as a deployment unit during runtime exe-
cution. An assembly consists of four elements: the assembly
manifest, type metadata, CIL code, and a set of resources
(such as .bmp or .jpg files).

The assembly manifest contains a collection of data that
describes how the elements in the assembly relate to each
other. This metadata includes the name of the assembly,
version number, its cultural background (such as language),
list of all files in the assembly, type reference information,
and information on referenced assemblies. Assembly devel-
opers can add or change some information in the assem-
bly manifest by putting assembly attributes declaratively in
their source codes. But an assembly manifest is created au-
tomatically by compilers or programming tools supporting
the .NET framework. The .NET framework provides the
CIL disassembler to view CIL information in a file. If the
file being examined is an assembly, this information can in-
clude the assembly’s attributes, as well as references to other
modules and assemblies.

2.3.2 Versioning
An assembly is used as the unit of linking deployment, and
execution in the .NET framework. When a developer build
an application, the main assembly is linked to other ref-
erence assemblies, each of which is identified by using the
information such as the name of the assembly, the version
number, the cultural information, etc.. However, sometimes
the developer wants the application to run against a newer
version of an assembly. The .NET framework supports redi-
recting assembly versions through configuration files. Con-
figuration files and decision procedures for version redirec-
tion will be discussed in detail later.

The .NET framework also supports side-by-side execution.
This is the ability to run multiple versions of assemblies
of the same name simultaneously. Support for side-by-side
storage and execution of different versions of the same as-
sembly is an integral part of versioning, and is built into a
part of the runtime. Treating an assembly’s version number
as part of its identity enables the runtime to store multiple
versions of assemblies under the same name and distinguish
them at run time.

3. EXAMPLE
In this section, we explain the design of our framework with
a simple, but realistic example. Suppose that a principal
Alice has a component named compiler. Alice could be a
programmer who wrote the component, or she could be a
customer who bought the component from a third-party de-
veloper. Now, Alice wants to send the component compiler
to another principal named Bob, and execute compiler af-
ter linking to other components in his system. Because Bob
wants to keep his system secure and cannot trust the safety
of the component Alice provides, he requires Alice to prove
that her software component is safe to be linked to other
components in his system. To protect his system from all
untrusted components from outside, Bob tells his security
policy to Alice. A linking policy usually consists of three
parts: the description of software components Bob provides
(call it a library), a list of useful properties Bob requires for
outside software components, and the names of authorities
trusted by Bob.

3.1 Properties
A code consumer requires a software component to have
some preannounced properties in order for the component
to be linked to other components in his system. A property of
a component is an assertion of expected behavior from the
component. There are many useful properties which help
protect systems from malicious outside codes, such as “this
software component is type-checked,” “this software compo-
nent never accesses outside of the memory which is assigned
to it,” “this software component doesn’t read any informa-
tion from or write any information to the file system,” or
“this software component doesn’t produce any arithmetic
overflow or underflow.”

In our example, suppose that Bob requires that every com-
ponent from outside should have a property called
prp type checked, that means that Bob will allow only a
type-checked component to be linked to his system. Now
Alice must prove her component compiler has the property
prp type checked in order to link the component to Bob’s
system.

3.2 Property authorities
Some properties, like the property of being type checked,
can be guaranteed by a trusted compiler, while others can-
not be proven easily. These properties, however, may be
accepted as true if a software component has assurances
made by a trusted third-party authority. The trusted au-
thority can make assurances resulting from a software audit
or some other verification processes for software engineer-
ing. Such assurances are usually encoded as digitally signed
statements. We call those authorities property authorities.
After verifying the digital signatures on the statements, the
property statements made by trusted property authorities
are accepted as true and the components are considered to
have the properties assured in those statements.

In our example, as shown in Figure 1, Charlie is a property
authority who examines a software component and deter-
mines if the component has the property prp type checked.
Since Bob announced that he trusts Charlie as a property
authority of prp type checked, Alice must get a digitally
signed assurance from Charlie that the component compiler
has the property prp type checked.

3.3 Key authorities
Since all certificates from property authorities comes with
digital signatures, a code consumer must know what the
signers’ public keys are in order to check the validity of the
digital signatures. The code consumer must at least know
who can provide the right public keys for verifying the sig-
natures and what her public key is. These authorities are
called key authorities (also known as certificate authorities).
Key authorities are responsible for guaranteeing the bind-
ings between a principal name and a public key. Key certifi-
cates signed by a key authority are verified with her already
known public key. Hence, it is usual for the key certificates
to form a chain of trust.

Diane, in Figure 1, is a key authority who ensures the bind-
ings between a principal and the principal’s public key. There-
fore, when Bob gets a digitally signed property certificate

3

Figure 1: An example of secure linking

from Charlie, Bob doesn’t need to know in advance Char-
lie’s public key to verify the signature of that certificate.
Instead Bob asks Diane for Charlie’s key certificate (or Bob
might ask Alice to get Charlie’s key certificate from Diane
to complete her proof); he gets Charlie’s public key after
verifying the key certificate with Diane’s public key.

3.4 Property servers
Just as Bob doesn’t have to know all the public keys of
principals, he doesn’t have to know all the bindings between
properties and property authorities. Instead Bob announces
that he trusts a principal as someone who will let him know
the property-authority bindings. Therefore, Bob doesn’t
enumerate the names of property authorities for every re-
quired property in his linking policy, and it relieves him from
modifying and reannouncing the linking policy whenever a
property-authority binding changes.

In our example, Bob announces that he trusts Emily as a
property server. So Alice should consult Emily to find out
from whom she can get the property statements for the com-
ponent compiler.

3.5 Library
Although it is possible to write a software component to be
self-contained, it is very natural for a software component
to use already existing software components by importing
them. A code consumer announces what components it has
and what properties are exported by each of those compo-
nents. At the same time, a component from a code provider
declares what components it imports and what properties
are required for each of them in its component description.
For a foreign component to be linked safely, a secure linker
checks whether or not the library of a code consumer pro-
vides all the software components that are required by the
foreign component.

Suppose that the component compiler uses a hash table
during its computation and imports a component called

hashTable with a property prp efficient search, and Bob’s
library has several different components named hashTable.
These are different from each other in terms of the proper-
ties they export. For example, one hashTable component
doesn’t export any properties verified by property authori-
ties, while another hashtable components exports
prp efficient search. Because the component compiler
requires the component hashTable with prp efficient search,
only the second hashTable component can be linked to the
component compiler.

3.6 Linking decision
To decide to link a component coming from outside to other
components in the system, a code consumer must verify
whether or not the component provides all the required
properties.

For example, Bob checks the proof from Alice with the cer-
tificates by using a trusted proof checker, and the component
compiler to be linked to other components in his system if
the proof is valid, otherwise he rejects it. Since the certifi-
cates Alice provides are digitally signed, during the proof-
checking time, the validity of digital signatures are checked.
The detailed verification steps are as follows:

1. verifies the digital signatures on the key certificates
with Diane’s public key to get Emily’s and Charlie’s
public keys,

2. verifies the digital signatures on the property-authority
binding certificates from Emily with Emily’s public key
obtained in the first step,

3. verifies the digital signatures on the property state-
ments from Charlie with Charlie’s public key obtained
in the first step.

In what follows, we will explain our framework using the
example above. Our framework is independent of program-

4

〈componentDsc〉
〈name〉 compiler 〈/name〉
〈modules〉
〈item hash = “194CA77319” 〉 compiler.class 〈/item〉
〈item hash = “EF41900142” 〉 regAlloc.class 〈/item〉
〈/modules〉
〈exports〉
〈type〉
〈item〉 class compiler〈/item 〉
〈item〉 interface regAlloc〈/item〉
〈/type〉
〈property〉 〈item〉 prp type safety 〈/item〉
〈/property〉 〈/exports〉
〈imports〉
〈component〉
〈name〉 hashTable 〈/name〉
〈required〉
〈type〉 〈item〉 class hashtable 〈/item〉 〈/type〉
〈property〉
〈item〉 prp type safety 〈/item〉
〈item〉 prp efficient search 〈/item〉
〈/property〉 〈/required〉 〈/component〉 〈/imports〉

〈/componentDsc〉

Figure 2: A component description in XML

ming languages or programming environments; thus, the ex-
planation about the framework is language-neutral.

4. USER INTERFACE LANGUAGES
The user interface of our framework consists of two differ-
ent languages, one for describing components, and one for
describing code consumers’ security policies.

The user interface languages adopts the XML syntax; there-
fore they can be parsed by any XML parser and modified
with a simple text editor. For our framework, we developed
XML parsers for each language, producing our linking logic
from XML files. In this section, we will explain the syn-
tax and the semantics of the two description languages and
present their syntax by way of example.

4.1 Component description language
Going back to the example in Section 3, Alice must describe
the software component compiler to Bob’s linking system
in order to have it linked in his system.

Figure 4 shows the abstract syntax of the component de-
scription language, and the description of the component
compiler in our example might look like the example in
Figure 2.

4.1.1 〈componentDsc〉
This is a root tag for component description. 〈componentDsc〉
stands for the beginning of the description and 〈/componentDsc〉
stands for the end of the description.

4.1.2 〈name〉
This tag is used for specifying the name of the software
component. A component name is a local identifier of con-
venience for referring the component.

〈linkingPolicy〉
〈library〉
〈component〉
〈name〉 hashTable 〈/name〉
〈module〉
〈item hash = “9213317FCA”〉

hashtable1.class 〈/item〉 〈/module〉
〈exports〉
〈type〉
〈item〉 class hashtable 〈/item〉
〈/type〉 〈/exports〉 〈/component〉

〈component〉
〈name〉 hashTable 〈/name〉
〈module〉
〈item hash = “683EE18970”〉

hashtable2.class 〈/item〉 〈/module〉
〈exports〉
〈type〉
〈item〉 class hashtable 〈/item〉 〈/type〉
〈property〉
〈item〉 prp hash table 〈/item〉
〈item〉 prp efficient search 〈/item〉
〈/property〉 〈/exports〉 〈/component〉 〈/library〉

〈keyAuth〉
〈item〉 Diane 〈/item〉 〈/keyAuth〉

〈propertyServer〉
〈item〉 Emily 〈/item〉 〈/propertyServer〉

〈requiredPrps〉
〈item〉 prp type safety 〈/item〉
〈/requiredPrps〉 〈/linkingPolicy〉

Figure 3: A linking policy description in XML

4.1.3 〈modules〉
The module part of the description specifies which code files
compose the software component. Every entry of this part is
given by its name and the hash code of it. For example, the
example in Figure 2 shows that the component compiler
consists of two code files, called compiler.class and regal-
loc.class, and their cryptographic hash codes are store in
the component description.

Given binary files (programs or resources) and source pro-
gram files, code consumers can check the integrity of those
code files by recalculating their cryptographic hash codes,
and comparing with the hash codes sent by code producers.

4.1.4 〈exports〉
Components can export two kinds of things, type identifiers
(such as class names or function names) and properties. It
is very typical for a program to call functions, or to use
classes or structures outside of its scope. Usually linkers
find out what functions, classes, or structures are really ref-
erenced by consulting the symbol tables handed to them by
compilers. In some cases, all the identifiers defined within
a program are visible from the outside. With the Standard
ML/Compilation Manager [6], however, a programmer can
specify whether an identifier is visible from outside or not by

5

declaring a list of visible identifiers in its group description.
Similarly, with object-oriented programming languages such
as Java or C++, a programmer can control the visibility of
identifiers by putting access modifiers in its declaration.

In the component description language, the tag 〈type〉 is
used to enumerate the identifiers visible from outside. Some
identifiers are not visible from outside of a component if
they are not listed in the 〈exports〉 part, even if they are
defined within the component. The tag 〈property〉 is used
to enumerate the properties a component exports. For each
entry of the listed properties, a digitally signed assurance of
property authority should be provided.

4.1.5 〈imports〉
This part specifies what other components a component de-
pends on. Every entry of the import part consists of a brief
description of an imported component (call it an import
component description). The import component description
differs from the complete component description in that it
doesn’t have the module information, but contains the name
of a component and exported properties. The following tags
are used to build an import component description.

• 〈component〉 The tags 〈component〉 and 〈/component〉
are used to specify the beginning and the end of the
import component description.

• 〈name〉, 〈exports〉 The syntax and semantics of these
parts are the same as those of the complete component
description.

4.2 Linking policy description language
The linking policy description language allows system ad-
ministrators to set security policies that affect how applica-
tions run on their machines.

Figure 5 shows the abstract syntax of the language. The
linking policy which Bob announces in our example might
look like the example in Figure 3.

4.2.1 〈linkingPolicy〉
This is a root tag for a linking policy. 〈linkingPolicy〉 stands
for the beginning of the description and 〈/linkingPolicy〉
stands for the end.

4.2.2 〈library〉
The tag 〈library〉 is used for enumerating the library compo-
nent description of a code consumer, which a code provider
can import. The library component description is different
from the complete component description in that it doesn’t
have an import part. Since the library components are con-
sidered a part of a code consumer’s system (and hence they
are trusted), it is more important to specify what they pro-
vide to the outside of the system, than what they require
from other parts in the system.

• 〈component〉 This part specifies the description of
one library component. The library description begins
with the tag 〈component〉 under the tag 〈library〉 and
ends with the tag 〈/component〉.

• 〈name〉, 〈module〉, 〈exports〉 The syntax and se-
mantics of these tags are the same as those in the
complete component description.

4.2.3 〈keyAuth〉
The tags 〈keyAuth〉 and 〈/keyAuth〉 are used for enumerat-
ing the names of the key authorities whom a code consumer
trusts. Key authorities are responsible for providing the
bindings between a principal and its public key.

4.2.4 〈propertyServer〉
The tags 〈propertyServer〉 and 〈/propertyServer〉 are used
for enumerating the names of the property servers whom the
server trusts. As explained in Section 3, property servers are
responsible for providing the bindings between a property
and its property authorities.

4.2.5 〈requiredPrps〉
This part is used to specify the properties a code consumer
requires all the components from outside to have.

5. LINKING LOGIC
The linking logic of the secure linking framework is a higher-
order logic defined on top of PCA logic [2]; therefore the
semantics of each operator are expressed in terms of the
underlying PCA logic, and inference rules using operators
are then proved as lemmas. In this section, we explain how
we translate component descriptions and linking policies de-
scribed in the user interface languages into the linking logic,
and how we represent the linking decision procedure in the
linking logic.

5.1 Representing properties
In our framework, a code consumer announces in advance
which properties it requires from a foreign component. Code
providers are responsible for proving that their components
have the properties required by a code consumer. Therefore,
an essential part of the logic is to check if two properties
match each other.

In designing the logic for property matching, we had three
purposes. While implementing properties in the linking
logic, we wanted:

• to check if two properties match each other easily,

• to make adding new properties simple, and

• to isolate the implementation details of properties from
other parts of the linking logic.

We achieved the first goal by dividing property matching
into two parts, properties and property requests. In our
framework, a property request is a predicate of type prp req,
accepting an argument of type property; it returns true if the
argument matches the request it implements, and returns
false otherwise. The following is a general inference rule of
property matching:

rq = mk prp req(rprp)
prp eq(rprp, prp)

rq(prp)
prp match

6

ComponentDsc ::= componentDsc Name Modules Exports∗ Imports∗

Name ::= name NameId
Modules ::= modules ModuleIdItem+

Exports ::= exports Types∗ Properties∗

Imports ::= imports ImportComponentId∗

ImportComponentId ::= component Name RequiredPrps∗

RequiredPrps ::= required Types∗ Properties∗

NameId ::= String
ModuleIdItem ::= item HashCodeId ModuleName
Modulename ::= String
HashCodeId ::= hash String
Types ::= type TypeIdItem+

TypeIdItem ::= String
Properties ::= property PropertyIdItem+

PropertyIdItem ::= String
String ::= (0|1| . . . |a|b| . . . |z|A|B| . . . |Z| |)+

QuotedString ::= “String”

Figure 4: Abstract syntax of the component description language

LinkingPolicy ::= linkingPolicy Library∗ PropertyServer∗ RequiredPrps∗

Library ::= library ExportComponentId+

KeyAuthority ::= keyAuth ServerIdItem+

PropertyServer ::= propertyServer ServerIdItem+

RequiredPrps ::= requiredPrps PropertyIdtem∗

ExportComponentId ::= component Name Modules Exports∗

Name ::= name NameId
Modules ::= module ModuleIdItem+

Exports ::= exports Types∗ Properties∗

NameId ::= String
ModuleIdItem ::= item Name HashCodeId
HashCodeId ::= String
Types ::= type TypeIdItem+

TypeIdItem ::= String
Properties ::= property PropertyIdItem+

PropertyIdItem ::= String
ServerIdItem ::= String
String ::= (0|1| . . . |a|b| . . . |z|A|B| . . . |Z| |)+

QuotedString ::= “String”

Figure 5: Abstract syntax of the linking policy description language

7

The formula constructor mk prp req accepts an argument
rprp of type property and returns a predicate rq of type
prp req. Given a property prp as an argument, the predi-
cate rq checks if prp matches the property rprp, relying on
the predicate prp eq. That is, the predicate rq returns true
if and only if the result of applying rprp and prp to the
predicate prp eq is true. Since general property matching
depends on prp eq, the semantics of property matching also
depend on the semantics of prp eq. The predicate prp eq
returns true when two arguments are equal. Therefore, the
predicate preq returns true if and only if its argument is
equal to what the property rprp stands for.

By introducing the predicate type prp req as well as the
type property, we turn the procedure of checking property
matching into simple evaluation of a predicate. Thus, the
required properties in the linking policy of a code consumer
are encoded in the form of prp req, and a code producer
proves that the set of its exported properties is a superset of
the set of properties satisfying all the encoded predicates.

As shown in Section 3.1, there exist many different kinds of
properties. Therefore it is useful to make it possible to add
different properties and property requests to the framework
without changing the other parts of the linking logic. Ab-
stracting the types property and prp req helps achieve this
goal.

Users of our secure linking framework can add new proper-
ties to the framework easily. We will explain step by step
how a user can define some basic properties and their prop-
erty requests with an example. Figure 6 shows the inference
rules for component names.

First, the user defines a property for component names. Ev-
ery property has a unique name of type prp kind used as
a tag making itself distinguishable from other properties.
Suppose that a new property kind prp component name is
defined for the component name property. Second, the user
designs and implements a formula constructor for the prop-
erty. The formula constructor encodes the information of
the property, which can be used when checking property
matching. For the property prp component name, the for-
mula constructor mk prp component name accepts an iden-
tifier, the name of a component, and encodes this informa-
tion into the returned property.

After that, the user can complete the work by adding pred-
icates of type prp req, which are used to decide whether or
not a property matches the encoded property. Note that
more than one predicate of type prp req can be defined for
a property. By giving proper semantics to the predicates
of prp req, the user can have several different semantics for
property matching. This makes the property matching more
flexible. In case of the property prp component name, the
user might want to check if a software component has a
component name without caring what the exact component
name is. In the other case, however, the user might want to
check if a component has the exact name he wants.

Two different ways of checking one property can be ac-
complished by providing two different property requests for
one property. The inference rule name exists in Figure 6

prp kind(p, prp component name)
rq component name exists(p)

name exists

p name request = mk rq component name(p)
prp eq(p, q)
prp kind(q, prp component name)

p name request(q)
name match

Figure 6: Rules for component names

is used to check if a property given as an argument is a
prp component name property, building proofs of
rq component name exists. It doesn’t matter what compo-
nent name the argument has.

The inference rule name match is used for exact match-
ing. The predicate mk component name request builds a
property request p name requests from a property p whose
kind is prp component name. Then the property request
p name requests returns true if and only if a property q
given as argument is of kind prp component name and equal
to the encoded property p.

The last goal of our design is to separate the linking decision
part from type property and prp req implementation. By
separating these concerns, we increased the scalability and
flexibility of the framework.

While making a linking decision, property matching happens
in two places: a secure linker checks if a software component
exports all the required properties of a code consumer, and
if a code consumer’s library satisfies a foreign component’s
importing requests. Figure 7 shows the inference rules for
these two cases. The inference rule has prps i is used to
check if a set prpset of properties contains all properties
which makes all the property requests in a set rqset of prop-
erty requests. The inference rule xprt prps i checks if a com-
ponent description cdsc exports all the required properties
rqset of a code consumer, building proofs of the predicate
export required prps. The predicates export required prps re-
turns true if the set xprtset of exported properties satisfies
the predicate has property with the set rqset. The infer-
ence rule stsf imprt i checks if a library libList exports all
properties imprtList of a code producer’s importing prop-
erty requests. The predicate satisfy import rq returns true
if for every member iset in the list libList, there exists a
property set eset which is a member of libList, and makes
the predicate has property true with the set iset.

As shown in the rules in Figure 7, the semantics of these de-
cision predicates, export required prps and satisfy import rq,
depend on the predicate has property. Therefore, the pred-
icate has property is the only part concerned with the im-
plementation of property matching. Furthermore, even the
predicate has property checks if a property satisfies a given
property predicate. In other words, the predicate has property
depends only on the abstract part of types property and
prp req, not on the details of their implementation.

5.2 Translating description languages
As mentioned earlier, the XML parsers of the interface lan-
guages parse component descriptions and linking policies

8

∀rq.(rq ∈ rqset⇒ ∃p.rq(p))
has property(rqset,prpset)

has prps i

∀iset.(list member(imprtList, iset)⇒
∃eset.(list member(libList, eset)∧
has property(iset, eset)))
satisfy import rq(imprtList, libList)

stsf imprt i

xprtset = component dsc prps(cdsc)
has property(rqset,xprtset)
export required prps(rqset, cdsc)

xprt prps i

Figure 7: Rules for property matching

into the linking logic. In this section, we will explain how
to represent the descriptions in the linking logic.

5.2.1 Component description
A component description is usually turned into formulas in
the linking logic. The cryptographic hash codes of modules
are verified, and digitally signed certificates from key author-
ities, property authorities, or property servers are converted
into axioms in the logic after verifying their signatures.

A component description is encoded in the form of a set of
properties and a list of sets of property requests. The name
of a component, the set of exported type identifiers, and the
set of exported properties are all treated as properties and
encoded into instances of type property. These make up the
export part of the component.

The list of sets of property requests corresponds to the im-
port part of a component. Each set of property requests
stands for one imported component, and includes the prop-
erty requests for required properties such as a component
name. Since a software component usually imports more
than one component, the sets of property requests for im-
ported components form a list. By using a list rather than
using a set, we can handle some cases in which the order of
importing components is critical in making a linking deci-
sion.

Component descriptions can be combined by using the for-
mula constructor cdsc combine, which accepts two terms
of type component dsc and returns a term of type compo-
nent dsc. The export part of a combined component de-
scription is a union set of the export property sets of two
inputs, and the import part of it is a concatenated list of
the import lists of two inputs.

In addition, the linking logic provides a binary relation sub cdsc,
which determines one argument is a sub-component of the
other. Intuitively, a component description cdsc A is a sub-
component of a component description cdsc B if the export
part of cdsc A is a subset of the export part of cdsc B, and
the import part of cdsc A is a sublist of the import part of
cdsc B.

Figure 8 shows the inference rules of cdsc combine and sub cdsc.
The rules sub cdsc combine1 and sub cdsc combine2 show
that an input component description becomes a sub-component
of the resulting combined component description. The rules

sub cdsc refl and sub cdsc trans imply that the relation sub cdsc
is reflexive and transitive.

It is very useful to make it possible to combine component
descriptions, especially when considering digitally-signed cer-
tificates from property authorities. In our framework, a
component description with modules is required to be digi-
tally signed by property authorities to prove its safety during
the linking time. Property authorities announce what prop-
erties they can guarantee in the form of a set of property
requests. When signing, it is reasonable for a property au-
thority to want to sign only on the properties he can guar-
antee, rather than sign on all the properties a component
description exports. For example, a trusted compiler can
guarantee that modules with a given component description
are type-safe, but doesn’t want to, or is not able to, guar-
antee any other properties. This is the reason why we in-
clude the formula constructor cdsc combine and the binary
relation sub cdsc. After collecting component descriptions
assured by property authorities, a code producer combines
the small descriptions, and builds a complete component de-
scription It frees the property authorities from a burden of
assuring more properties of a component description than
they want.

5.2.2 Linking policy description
The linking policy is translated into two forms in the linking
logic, axioms and formulas. The names of property servers
and of key authorities are turned into axioms.

The library components are encoded as two lists in the link-
ing logic. The first list consists of sets of modules. Each
element of the list corresponds to the set of modules making
up a library component. The second list consists of sets of
properties. Each elements of the second list stands for the
set of exported properties of a library component. The name
of a library component, the exported type identifiers, and
the exported properties are encoded as a set of properties.
Since a code consumer usually provides more than one li-
brary component, they are put into a list. The linking logic
at linking time requires that every element in the library
component description list must be a proper description of
the corresponding element in the library component module
list.

At the same time, linking policies specify the properties re-
quired by code consumers. Each required property is trans-
lated into a corresponding predicate of type prp req. To-

9

subset(cdsc exp(A), cdsc exp(cdsc combine(A,B)))
cdsc combine export1

subset(cdsc exp(B), cdsc exp(cdsc combine(A,B)))
cdsc combine export2

sublist(cdsc imp(A), cdsc imp(cdsc combine(A,B)))
cdsc combine import1

sublist(cdsc imp(B), cdsc imp(cdsc combine(A,B)))
cdsc combine import2

sub cdsc(A, cdsc combine(A,B))
sub cdsc combine1

sub cdsc(B, cdsc combine(A,B))
sub cdsc combine2

sub cdsc(A,A)
sub cdsc refl

sub cdsc(A,B) sub cdsc(B,C)
sub cdsc(A,C)

sub cdsc trans

Figure 8: Semantics of cdsc combine and sub cdsc

gether they form a set. For example, if a code consumer re-
quires every foreign component to have a name, it is turned
into the predicate rq component name exists of Figure 6.

5.3 Authenticating certificates
We use PCA logic [2] in order to encode authorities (key
authorities, property authorities or property servers), and
to verify certificates from the authorities. PCA logic pro-
vides some primitives of verifying digital signatures and of
representing authorities, such as signed, says, or controls.

The following is the inference rule used for verifying a cer-
tificate from a property authority.

key authority(ca)
keybind(caKey, ca)
property authority(ma)
signed(caKey, keybind(maKey,ma))
signed(maKey,module dsc(m,dsc))
valid sig component dsc(ma,m, dsc)

valid sig cdsc

By the rule valid sig cdsc, the predicate valid sig component dsc
holds; in other words, a secure linker believes that a prop-
erty authority ma assures that a component description dsc
describes a set m of modules if the following premises hold:
first, there should exist a key authority ca, and its public
key caKey trusted by a code consumer. Second, a property
authority ma should be trusted as a valid property authority.
Third, there should exist a key certificate signed by caKey
assuring the public key of ma is maKey. Finally, a code pro-
ducer provides a certificate from the property authority ma
signed by maKey assuring m is described by dsc.

If valid sig component dsc holds, then the certificate from
the authority ma is verified and believed true.

5.4 Making a linking decision
To link a component to other components of a code con-
sumer, a code producer must show that her component ex-
ports all the properties required by the code consumer. This
can be done by showing that the set of modules of the com-
ponent and its component description satisfy the predicate

ok to link with the linking policy specified by the code con-
sumer.

The inference rule ok to link i shows what steps a secure
linker should take to make a linking decision. The following
is the inference rule for linking decision.

signed component dsc(m,dsc, prqset)
provides enough prps(dsc, lib, libdsc)
exports required prps(prqset,dsc)
ok to link(m, dsc, lib, libdsc, prqset)

ok to link i

First, the linker examines if the given logical description
dsc of a component really represents the given set of mod-
ules m; if so, the code producer can prove that the predicate
signed component dsc holds. Second, the linker examines
if the component can obtain all the imported components
from the library lib and libdsc of the code consumer; if
so, the code producer can prove that the predicate pro-
vides enough prps holds. Last, the linker examines if the
component description exports all the required properties
prqset; if so, the code producer can prove that the predi-
cate exports required prps holds.

If the component description and modules satisfy the above
three conditions, in other words, if the code producer can
prove that those three predicates hold, linking is allowed;
otherwise, it is denied. All the decision steps are addressed
in the linking logic as operators and lemmas on top of PCA
logic, and all the lemmas are proved.

Given a proof from a code producer, a code consumer must
be able to verify the validity of the proof. Our framework
is built on the Twelf logical framework [10]. The Twelf sys-
tem is one of the implementations of the logical framework
LF [7], which allows the specification of logics. Since our
linking logic is written on top of PCA, an object logic of
LF, every term in our linking logic boils down to a term in
the underlying LF logic. Therefore, the proof provided by
a code producer is encoded as an LF term. The type of the
term is the statement of the proof; the body of the term is
the proof’s derivation.

10

By the Curry-Howard isomorphism, checking the correctness
of deriving the term that represents a proof is equivalent to
type checking of the term. If the term is well typed, then the
derivation is correct; hence, a code producer has succeeded
in proving the proposition. If the proof of a code producer
is checked, a secure linker of our framework will allow the
component with the proof to be linked.

6. TACTICAL PROVER
We have developed a tactical prover for our linking logic.
The prover is a logic program running on the Twelf logical
framework [10]. The goal to be proved is encoded as the
statement of a theorem, and axioms that are likely to be
helpful in proving the theorem are added as assumptions.
The prover generates a derivation of the theorem; this is the
proof that a code provider must send to a code consumer.

Our tactical prover consists of 30 tacticals and 58 tactics:
tactics, reducing goals to subgoals, and tacticals, providing
primitives for combining tactics into larger ones that can
give multiple proof-steps.

6.1 Soundness
By showing the soundness of logic, it is guaranteed that
every formula that is provable (or derivable) by the prover
(consisting of axioms and inference rules) is true in the logic.

Appel and Felty [3] showed that using a dependently typed
programming language can yield a partial correctness guar-
antee for a theorem prover: if it type-checks, then any proof
(or subproof) that it builds will be valid. Twelf is such
a higher-order dependently typed logic programming lan-
guage, and our prover is easily seen to be sound by the
method of Appel & Felty.

Although a dependent type system is very useful for show-
ing the soundness of a prover, it doesn’t guarantee that the
prover is complete. Next, we show the completeness of our
prover.

6.2 Completeness
In this section, we will prove that our tactical prover always
terminates and that it is complete. By proving the termina-
tion of the prover, we can guarantee that the prover returns
a result, regardless of the input. By proving the complete-
ness of the prover, we can make sure that the prover finds
a derivation for every true formula formed by the linking
logic.

The tactical prover in our framework consists of 30 tacticals
and their related tactics. The 30 tacticals are categorized
into three groups:

• a tactical which is used only for finding a proof from
a list of assumptions. Assumptions are given by code
consumers or authorities (key authorities, property au-
thorities or property servers), and believed true.

• tacticals which are used for finding a proof of a formula
without assumptions, relying only on the linking logic.

• tacticals which are used for finding a proof of a for-
mula, relying on the assumptions as well as the linking
logic.

As mentioned earlier, if certificates from authorities are ver-
ified, they are considered true, and translated into axioms
in the linking logic. These axioms make up a list of as-
sumptions for the prover. Therefore, the prover must be
able to search the assumptions and find proofs from the as-
sumptions. The tactical in the first group is used for that
purpose.

On the other hand, some goals can be proved successfully
by the tactics without relying on assumptions. In this case,
the prover doesn’t have to maintain a list of assumptions or
search the list; hence, simpler tacticals in the second group
are used to find the proofs.

The tacticals in the last group are more comprehensive, in
the sense that they use the tactical in the first group as well
as the tacticals in the second group in order to prove their
goal.

The tacticals and related tactics of each group are shown
in Appendix A. We related each formula constructor in the
linking logic to one tactical in the prover. That is, for a theo-
rem formed by a given constructor, the proof of the theorem
is derivable only by the related tactical in the prover. For
example, as shown in Appendix A, the formula constructor
ok to link is related to the tactical findproof. Therefore, any
theorem formed by ok to link is derivable only by using the
tactical findproof in the prover.

In the following sections, first we prove the termination of
the prover, then its completeness.

6.2.1 Proving termination
Proving the termination of the prover guarantees that the
prover always returns a result for any given input. If the
given input is derivable, then the prover will return the
derivation; otherwise, it reports failure. The termination of
the whole prover depends on the termination of the tacticals
it consists of, and the termination of each tactical depends
on the termination of the tactics using the tactical.

The ultimate goal of the prover is to find the derivation of
a theorem formed by the formula constructor ok to link, if
there exists such a derivation. There is only one tactical
findproof with which the prover can find the derivation of a
theorem of ok to link, and only the tactic ok to link pf uses
the tactical findproof. That means the prover always begins
proving by applying the tactic ok to link pf to a given input
goal. The prover uses the other tacticals or tactics to prove
subgoals built recursively along the way.

Thus, if the tactic ok to link pf terminates when applied to
any given input, then all calls to the tactical findproof must
terminate. This implies the prover always terminates. The
termination of the prover can thus be restated as the follow-
ing.

Theorem 1. The tactic ok to link pf terminates for any

11

given input.

We will briefly describe the proof of Theorem 1 here; the
full proof is provided in Appendix B.

Proof. Applying a tactic reduces a goal into zero or more
subgoals. Therefore, the termination of a tactic depends on
the termination of the subsequent calls to other tacticals.

To prove that applying every input theorem to the tactic
ok to link pf terminates, we have to show that all its subse-
quent calls to other tacticals terminate. This can be shown
by proving one by one from the bottom up that all relevant
tacticals (or their related tactics) in the prover terminate.

Proving that an individual tactical (or its related tactics) in
the prover terminates results in one of the following 3 cases:

• A tactic terminates if it doesn’t make any subsequent
calls to other tacticals.

The tactics in this category simply return the deriva-
tion of input goals and trivially terminate. Tactics
such as set emptyset pf, set equiv validper pf,
and list is nil nil pf fall into this class.

• A tactic terminates if every subsequent call to other
tacticals terminates.

The tactics in this category make subsequent calls for
proving the subgoals, but the calls are not recursive.
Therefore the termination of this kind of tactic de-
pends solely on the termination of the tacticals sub-
sequently called for proving subgoals. Tactics such
as ok to link pf, valid cdsc pf, and valid sig auth pf fall
into this class.

• A tactic terminates if every recursive call to the origi-
nal tactical terminates.

The tactics in this category make recursive calls for
proving subgoals, using the same tactical called for
proving a goal. By showing that the logical formu-
las for the subgoals are always subterms of the log-
ical formula of the original goal, we can prove that
a tactic of this kind terminates. We use induction
on the structure of the logical formulas for goals and
subgoals. Tactics such as prv prps cdsc combine pf,
set union1 pf, and set union2 pf fall into this class.

6.2.2 Proving the completeness
Since Gödel’s incompleteness theorem, it has been known
that a general higher-order logic is not complete. It is, how-
ever, still possible to show that our tactical prover is com-
plete, because we are considering only a subset of a general
higher-order logic.

As explained in the previous section, the ultimate goal of
the prover is to find a derivation of a theorem formed by
ok to link if it is true; if not, the prover must report failure.
We also pointed out that the tactic ok to link pf is the only

tactic applicable to theorems formed by ok to link. Hence,
the completeness of the prover can be stated as the following
theorem.

Theorem 2. The tactic ok to link pf finds a derivation
for every true theorem formed by ok to link.

We will outline the proof of Theorem 2 here; the full proof
is provided in Appendix C.

Proof. The completeness of a tactic depends on the com-
pleteness of the subsequent calls to other tacticals for prov-
ing subgoals.

To prove that applying every true input formula to the tactic
ok to link pf always results in a correct derivation, we have
to show that each subsequent call with a subgoal always
returns a correct derivation. We can show that by showing
every relevant tactical in the prover is complete from bottom
up one by one.

We designed the prover in order that proving theorems is
syntax-directed; in other words, for a theorem, the formula
constructors used in the theorem determine the tactical to
be used when proving the theorem. In Appendix A, every
tactical is listed with the related formula constructors.

For example, the formula constructor ok to link is related to
the tactical findproof, so theorems built from ok to link are
proved by applying findproof. In the same way, the formula
constructors singleton and set union are related to the tacti-
cal fp set, so theorems built from singleton and/or set union
are proved by applying the tactical fp set. In case of the tac-
tical fp signed keybind, two formula constructors, says and
keybind, are related to this tactical. That means the tacti-
cal fp signed keybind is used only for proving theorems which
use both of those formula constructors.

By saying that a tactical is complete, we intend for the tac-
tical to always find a derivation of any true formula built by
the related formula constructors.

Proving that an individual tactical in the prover is complete
is possible by showing all the tactics calling the tactical are
complete, and this comes down to one of the following three
cases:

• Tactics using the tactical search assmp

The tactical search assmp is used for finding a proof
from a list of assumptions, where each of the assump-
tions is an axiom considered true by the prover. Proofs
of theorems built from some formula constructors such
as key authority, signed, and library dsc can be found
only with the tactical search assmp.

Since the prover regards only the proofs in the list as
true, the truth of a given theorem depends completely
on whether or not a matching proof is in the assump-
tion list. Therefore proving the completeness of the
tactical search assmp and its related tactics, in turn,
proves that the prover always finds a proof if it is in a

12

given list of assumptions. This is proved by induction
on the length of the assumption list.

• Tactics calling other tacticals for proving subgoals

The tactics in this category make subsequent calls for
subgoals, but the calls are not recursive. Therefore the
completeness of this kind of tactics solely depends on
the completeness of the tacticals used for the subse-
quent calls.

Tactics such as ok to link pf, valid cdsc pf, and
valid sig auth pf fall into this class.

• Tactics calling the original tactical for proving sub-
goals

The tactics in this category make recursive calls for
proving subgoals using the same tactical it uses for
proving a goal.

We can prove that a tactic of this kind is complete by
showing that the logical formulas for the subgoals are
always subterms of the logical formula of the original
goal, and by using induction on the structure of the
logical formulas for goals and subgoals.

Tactics such as prv prps cdsc combine pf, set union1 pf,
and set union2 pf fall into this class.

7. CASE STUDY
In this section, we will show our linking logic is general and
expressive enough to address the linking decision procedure
of the .NET framework.

7.1 Version redirection in .NET
As mentioned earlier, the runtime system of .NET requires
every assembly to specify its name, its culture information,
its version number, the list of all the files in the assembly,
and type reference information. This information is stored
in the assembly’s manifest. It is quite straightforward to
represent this information in the linking logic as exported
properties of a component description explained in Section 5.

In addition, the runtime of the .NET framework allows de-
velopers or system administrators to specify the version of
an assembly to be used for linking. This enables assemblies
of the same name to co-exist within one system, and enables
developers or system administrators to use a different ver-
sion of an assembly of the same name at linking time. In
this section, we explain how this feature can be added to
our framework without significant modification of the link-
ing logic.

Users can specify assembly version redirection in configura-
tion files at different levels. Application configuration files,
machine configuration files, and publisher policy files are
used to redirect one version of assembly to another with the
same name. Configuration files allow developers to change
runtime settings without having to recompile applications,
and administrators to set policies that affect how applica-
tions run on their machines. Since configuration files are
written in XML, it is convenient to edit and parse them. An
example of a configuration file redirecting assembly versions

is shown in Figure 9. To redirect assembly versions in the
configuration file, the information for each assembly that de-
velopers want to redirect is put inside the 〈dependentAssembly〉
tag and the information identifying the assembly is inside
the 〈assemblyidentity〉 tag.

The original version of an assembly and the versions of de-
pendent assemblies are recorded automatically in the assem-
bly’s manifest at compile time. A linker decides which ver-
sion of an assembly is to be linked with the following steps:
First, the linker checks the original assembly reference to de-
termine what version was originally used. Second, it checks
all available configuration files to find applicable version
policies in a sequence of machine configuration files, pub-
lisher policy files and application configuration files. Lastly,
it determines the correct assembly version that should be
linked to the calling assembly, from the information of the
original assembly reference and any redirection specified in
the configuration files.

7.1.1 An example
We will present how to apply version policy in detail with
the example of Section 3. Suppose that a code consumer
is looking for a component (in fact, an assembly in .NET)
hashTable to link it to the component compiler from a code
producer. Originally the component compiler was built on
the component hashTable of version 1.5.0.0 and this infor-
mation is stored in the assembly manifest of compiler. Also
suppose that there exists a machine configuration file, whose
content is shown in Figure 9. To decide what version of com-
ponent hashTable will be used, first of all the code consumer
must determine what is the original version of hashTable
on which the component compiler was built. Then the
code consumer consults the machine configuration file to
see if it contains any version redirection for the component
hashTable. Since the machine configuration file contains a
version redirection for the component hashTable shown in
Figure 9, now the code consumer checks if the original ver-
sion of hashTable (in this case, 1.5.0.0) is within the range
affected by the redirection. The original version 1.5.0.0 of
hashTable lies in the specified range in the machine configu-
ration file (between 1.0.0.0 and 1.9.9.0), and thus this version
redirection affects the linking decision this time. Therefore,
the code consumer (or a secure linker of the code consumer)
must find another hashTable component whose version is
the new version specified in the machine configuration file
(in this case, 2.0.0.0).

If there exists no machine configuration file or if no redirec-
tion in the machine configuration file is effective, the code
consumer consults a publisher policy file and then an appli-
cation configuration file in the same way as stated above.
If there is no effective version redirection, the component
compiler is linked to hashTable on which it was initially
built.

7.1.2 Translating into our linking logic
In Section 5, we explained how to represent some entities
(such as component names) as properties and property re-
quests in our logic. In the same way, version information
and redirection requests are coded as properties and prop-
erty requests.

13

<configuration>
<runtime>

<assemblyBinding xmlns="run:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="hashTable"/>
<bindingRedirect oldVersion = "1.0.0.0 - 1.9.9.0"

newVersion = "2.0.0.0"/>
<dependentAssembly>

</assemblyBinding>
</runtime>

</configuration>

Figure 9: A configuration file of the .NET framework

¬isempty(vPolicy)
inrange(vPolicy.range, originalV er)

ver policy effective(vPolicy, orginalV er)
vp effective

ver policy effective(vrq.mch, vrq.org)
version eq(vrq.mch.newV er, v)

vrq(v)
machine level redir

¬ver policy effective(vrq.mch, vrq.org)
ver policy effective(vrq.pub, vrq.org)
version eq(vrq.pub.newV er, v)

vrq(v)
publisher level redir

¬ver policy effective(vrq.mch, vrq.org)
¬ver policy effective(vrq.pub, vrq.org)
ver policy effective(vrq.app, vrq.org)
version eq(vrq.app.newV er, v)

vrq(v)
app level redir

¬ver policy effective(vrq.mch, vrq.org)
¬ver policy effective(vrq.pub, vrq.org)
¬ver policy effective(vrq.app, vrq.org)
version eq(vrq.org, v)

vrq(v)
no redir

Figure 10: Inference rules for version redirection

Version information is of type version, an alias of type prop-
erty, and built by using the formula constructor mk prp version.
The constructor mk prp version takes four numbers as argu-
ments, standing for a major version number, a minor version
number, a build number and a revision number respectively.

A redirection request is a predicate of type ver req, an alias
of type prp req. It takes an argument of type version and
returns true if the argument satisfies the redirection request
it implements. The constructor mk prp req version builds a
predicate of type ver req out of four input arguments: the
original version against which a calling assembly is built,
version redirection information from an application configu-
ration file, version redirection information from a publisher
policy file, and version redirection information from a ma-
chine configuration file.

The version redirection information has the type ver policy,
consisting of two parts, affected old versions and a new tar-
get version. The old version part can have two alternative
formats, specifying either one version, or a range of ver-

sions. The formula constructor mk ver policy simple is used
for building a term of type ver policy out of an old version
and a new target version. On the other hand, the formula
constructor mk ver policy intv is used for building a term
of type ver policy out of a range of old versions and a new
target version.

To represent a range of versions, we introduce a type ver range.
The constructor mk ver range makes a term of type ver range
out of two arguments of type version, each of which stands
for the beginning of the range and the end of the range re-
spectively.

The linking decision procedure of the .NET framework is
translated into a set of lemmas in our linking logic. The
inference rules for version redirection are shown in Figure 10.

The inference rule vp effective shows how to check whether
or not a given version policy affects finding a target assem-
bly. Suppose that a version originalVer is the version of
an original assembly to be linked, and there exists a version
policy vPolicy. If vPolicy is not empty and originalVer
is within the old version range specified in vPolicy, then
the predicate ver policy effective holds and vPolicy is con-
sidered to be effective.

The inference rule machine level redir shows the case when
there exists a version redirection request vreq, and the ver-
sion policy field mch of vreq is effective. If the version v of
a target assembly matches the new version in mch, then v
satisfies vreq, and the assembly of version v is used in the
later phase of linking.

Other inference rules, publisher level redir, app level redir
and no redir show that the version redirection with con-
figurations of low priority. Each rule requires that higher
version policies are not effective as well as the version policy
of interest is effective. This means a version policy would af-
fect version redirection only when all of the version policies
of higher priority were not effective.

Shown in this section, it is possible to encode a security
model in our linking logic by expressing its primitives as a
set of definitions, and then encoding and proving the pro-
cessing rules as lemmas. Our linking logic provides a way for
describing different security models in a single logic based
on a well-defined higher order logic; thus, it enables those
security models to interoperate in a principled way.

14

7.2 Key certificates
Signing codes guarantees the integrity of the codes by digital
signatures and key certificates. A certificate is an electronic
document used to identify some entities such as an individ-
ual, a server or a company to associate that identity with a
public key.

In the security model of the .NET framework, a code pro-
ducer can sign an assembly with his public key. This adds
the encrypted public key and the resulting signature to its
assembly manifest. Then, the .NET runtime verifies the
digital signature of an assembly using the public key in its
assembly manifest.

However, signing with a self-announcing public key doesn’t
provide any level of trust, which enforces the security model
to provide a way of reasoning about the hierarchy of trust.
As already explained, a code producer can get a certificate of
his public key from a third-party key authority after prov-
ing his identity to the authority. Since different authori-
ties could use different formats for their certificates, it is
inevitable that a secure system must support as many for-
mats as possible for interoperability.

In case of the security model of the .NET framework, it sup-
ports several standard public key certificate formats, includ-
ing X.509. The key certificates are embedded in a specific
location in an assembly manifest by the compiler at compile
time and then used by a code consumer to authenticate the
assembly later.

The assembly-manifest format accommodates a specific set
of key certificate formats. Tying public-key infrastructure
so closely to version management results in a less flexible
system than expected: future users with a different PKI will
not be able to take advantage of code signing in .NET. Our
linking logic can separate these issues in a more modular
way.

We showed already in Section 7.1 that security models of
different decision policies can be translated into our linking
logic and operate with each other smoothly on the level of
the underlying logic. In the remaining part of this section,
we will explain how to express the authentication with key
certificates independent of underlying linking decision pro-
cedures.

To address principal-public key bindings, our linking frame-
work has a formula constructor keybind for translating var-
ious key certificate formats into a formula in the linking
logic. It takes two arguments, the name of a principal and
its public key. The formula holds if and only if the second
argument is the public key of the first argument.

The statement keybind(name, pubkey) is made out of dif-
ferent key certificate formats by the trusted part of a code
consumer. Since translating format-specific key certificates
is not part of the linking logic, a new key certificate format
can be added to the linking framework later without the
necessity of changing the linking logic. This increases the
scalability of the linking framework. The following is the
complete rule for verifying digital signatures.

key auth(ca)
keybind(ca, caKey)
signed(caKey, keybind(pname,pkey))
signed(pkey, stmt)

says(pname, stmt)
valid sig

This rule means that it is believed that the principal pname
says stmt if there exists a trusted key authority ca, its public
key caKey, a key certificate, saying that the public key of the
principal pname is pkey, and stmt is signed with a key pkey.

Having verified the digital signatures with this inference
rule, none of the remaining part of the linking procedure
depends on the formulas built by keybind or signed. By in-
troducing the format-neutral constructor keybind and letting
only a small part of the logic use digital signature-specific
constructors such as keybind or signed, we can successfully
separate the logic of verifying digital signatures from the
other parts of the linking logic.

8. CONCLUSION
We have developed a framework for secure linking systems
based on PCA. In this scheme, the burden of proving rights
to access the shared resources of a code consumer is put on
a code producer rather than on the code consumer unlike in
traditional distributed authentication frameworks.

In our framework, a code consumer announces its linking
policy to protect its system from malicious code from out-
side. The policy can include properties, for example compo-
nent names, valid hash code of programs, version informa-
tion, and so on, which code consumers thinks important for
the system safety. To link a software component to other
components in a code consumer and to execute it, a provider
of the component should submit a proof that the component
has the properties required by the code consumer.

Our linking logic consists of basic formula constructors and
inference rules based on the logic of PCA. Linking decision
procedures of a code consumer, system-specific linking poli-
cies, and description of software components of code produc-
ers are translated into the linking logic. A proof of secure
linking is formed out of the linking logic, and checked by
a trusted proof checker in a code consumer. If the accom-
panying proof is valid, a software component is allowed to
be linked to other components in the system of the code
consumer.

In addition, adopting higher-order logic of PCA makes our
linking logic general and flexible. We showed that our logic
is expressive enough to encode the linking procedures of the
.NET framework. Due to this expressiveness, it is possible to
encode various security models into our logic, and to enable
different security models to interoperate conveniently.

Trying to give a formal description of a real-world system
gives us insight into the system. We found that it is better
to seperate digital signature verification and its key certifi-
cate management from other linking decision to increase the
scalability and interoperability of the .NET framework.

We introduced a way a code consumer can require high-level
properties from outside software components, and check the

15

exported properties of a software component with certifi-
cates from third party authorities. Our framework enhances
the security of a system during linking time, giving more
control to linking decisions.

9. REFERENCES
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin.

A calculus for access control in distributed systems.
ACM Transactions on Programming Languages and
Systems, 15(4):706–734, September 1993.

[2] A. W. Appel and E. W. Felten. Proof-carrying
authentication. In 6th ACM Conference on Computer
and Communications Security, November 1999.

[3] A. W. Appel and A. P. Felty. Dependent types ensure
partial correctness of theorem provers. Journal of
Functional Programming, Accepted for publication.

[4] L. Bauer, A. W. Appel, and E. W. Felten.
Mechanisms for secure modular programming in java.
Technical Report CS-TR-603-99, Department of
Computer Science, Princeton University, July 1999.

[5] L. Bauer, M. A. Schneider, and E. W. Felten. A
general and flexible access-control system for the web.
In Proceedings of the 11th USENIX Security
Symposium, August 2002.

[6] M. Blume and A. W. Appel. Hierarchical modularity.
ACM Transactions on Programming Languages and
Systems, 21:812–846, 1999.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. Journal of the Association for
Computing Machinery, 40:143–184, January 1993.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addision Wesley, second edition, 1999.

[9] G. Necula. Proof-carrying code. In Proceedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Langauges (POPL ’97),
January 1997.

[10] F. Pfenning and C. Schürmann. System description:
Twelf – a meta-logical framework for deductive
systems. In Proceedings of the 16th International
Conference on Automated Deduction (CADE-16),
pages 202–206, July 1999.

[11] D. S. Platt. Introducing Microsoft .NET. Microsoft
Press, 2001.

[12] E. Wobber, M. Abadi, M. Burrows, and B. Lampson.
Authentication in the Taos operating system. ACM
Transactions on Computer Systems, 12(1):3–32, 1994.

16

APPENDIX
A. TACTICALS AND TACTICS
A.1 search assmp
operators signed, keybind, key authority, prp server, module authority, library dsc

search assmp (A by P,Γ) A P
initpf

search assmp Γ A P

search assmp (X,Γ) A P
init2pf

A.2 fp string valid
operator string valid

fp string valid (string valid(mk str1(ch))) string valid mk str1
string valid mk str1 pf

fp string valid (string valid(str)) P
fp string valid (string valid(mk str(ch, str))) (string valid mk str P)

string valid mk str pf

A.3 fp ide valid
operator ide valid

fp string valid (string valid(str)) P
fp ide valid (ide valid(mk ide(str))) (ide valid mk ide P)

ide valid mk ide pf

A.4 fp emptyset
operator isempty

fp emptyset (isempty(emptyset)) set isempty emptyset
set empty pf

A.5 fp set
operators set union, singleton

fp set (X∈singleton(X)) singleton elem
singleton refl pf

fp set (X∈S1) P
fp set (X∈set union(S1, S2)) (set union i1 P)

set union1 pf

fp set (X∈S2) P
fp set (X∈set union(S1, S2)) (set union i2 P)

set union2 pf

A.6 fp validper
operator validper

fp validper (validper(module eq)) module eq validper
module eq valdiper pf

fp validper (validper(set equiv)) set equiv validper
set equiv validper pf

A.7 fp validper refl
operators module eq, set equiv

fp validper refl (module eq(m,m)) module eq refl
module eq refl pf

fp validper refl (set equiv(s, s)) set equiv refl
set equiv refl pf

A.8 fp list nil
operator list is nil

fp list nil (list is nil(list nil)) list is nil nil
list is nil nil pf

i

A.9 fp list valid
operator list valid

fp validper validper(eq) P1
fp list nil (list is nil(l)) P2

fp list valid (list valid(eq, l)) (list valid nil P1 P2)
list valid nil pf

fp validper refl (eq(hd, hd)) P1
fp list valid (list valid(eq, tl)) P2

fp list valid (list valid(eq, (list cons(eq, list cons(eq, hd, tl))))) (list valid cons P1 P2)
list valid cons pf

A.10 fp prp valid
operator prp valid

fp ide valid (ide valid(name)) P
fp prp valid (prp valid(mk prp(name))) (mk prp valid P)

mk prp valid pf

A.11 fp prp match
operators mk prp req, rq component name exists, mk rq component name, rq hash code checked, rq export id exsits

fp prp valid (prp valid(mk prp(pname))) P
fp prp match (mk prp req(mk prp(pname),mk prp(pname))) (mk prp req refl P)

mk req refl pf

fp prp match (rq component name exists(mk cname(n))) req mk cname
req mk cname pf

fp ide valid (ide valid(n)) P
fp prp match (mk rq component name(mk cname(n),mk cname(n))) (req mk cname′ P)

req mk cname′ pf

fp prp match (rq hashcode checked(mk hash prp(h))) req mk hash prp
req mk hash prp pf

fp prp match (rq export id exists(mk ide prp(i))) req mk ide prp
req mk ide prp pf

A.12 fp cdsc valid
operator component dsc valid

fp list valid (list valid(set equiv, imp)) P
fp cdsc valid (component dsc valid(mk cdsc(exp, imp))) (mk cdsc valid P)

mk cdsc valid pf

fp cdsc valid (component dsc valid(d1)) P1
fp cdsc valid (component dsc valid(d2)) P2

fp cdsc valid (component dsc valid(cdsc combine(d1, d2))) (cdsc valid P1 P2)
cdsc combine valid pf

A.13 fp signed keybind
operator says and keybind

search assmp Γ (keybind(ca, caKey)) P1
search assmp Γ (signed(caKey,keycert(prn, pkey, pinfo))) P2

fp signed keybind Γ (says(ca, keybind(prn, pkey))) (signed keycert e P1 P2)
keycert pf

A.14 fp signed auth
operator says and prp auth

fp signed keybind Γ (says(ca, (keybind(auth, authKey))))) P1
search assmp Γ (signed(authKey, prp auth(prn, rset))) P2
search assmp Γ (key authority(ca)) P3

fp signed auth Γ (says(auth, prp auth(prn, rset))) (signed stmt e P1 P2 P3)
prp auth pf

ii

A.15 fp signed dsc
operator says and module dsc

fp signed keybind Γ (says(ca, (keybind(auth, authKey))))) P1
search assmp Γ (signed(authKey,module dsc(m,dsc))) P2
search assmp Γ (key authority(ca)) P3

fp signed assmp Γ (says(auth,module dsc(m,dsc))) (signed stmt e P1 P2 P3)
component dsc pf

A.16 fp valid sig auth
operator valid sig prp auth

search assmp Γ (key authority(ca)) P1
search assmp Γ (keybind(ca, caKey)) P2
search assmp Γ (prp server(pa)) P3
fp signed keybind Γ (says(ca, keybind(pa, paKey))) P4
fp signed auth Γ (says(pa, prp auth(ma, prp))) P5

fp valid sig auth Γ (valid sig prp auth(ma, prp)) (vsig auth i P1 P2 P3 P4 P5)
valid sig auth pf

A.17 fp valid sig cdsc
operator valid sig component dsc

search assmp Γ (key authority(ca)) P1
search assmp Γ (keybind(ca, caKey)) P2
search assmp Γ (module authority(ma)) P3
fp signed keybind Γ (says(ca, (keybind(ma,maKey)))) P4
fp signed dsc Γ (says(ma,module dsc(m,dsc))) P5

fp valid sig cdsc Γ (valid sig component dsc(ma,m, dsc)) (valid sig cdsc i P1 P2 P3 P4 P5)
valid sig cdsc pf

A.18 fp signed by ma
operator signed by ma

fp valid sig auth Γ (valid sig prp auth(ma, rqset)) P2
fp valid sig cdsc Γ (valid sig component dsc(ma,m, dsc)) P3
fp set (rq∈rqset) P1

fp signed by ma Γ (signed by ma(m,dsc, rq)) (sma i ma rqset P1 P2 P3)
signed by ma pf

A.19 fp as cdsc combine
operator signed rq

fp cdsc valid (component dsc valid(d1)) P1
fp cdsc valid (component dsc valid(d2)) P2
fp as cdsc combine Γ (signed rq(m,d1, rq)) P3

fp as cdsc combine Γ (signed rq(m,cdsc combine(d1, s2), rq)) (as cdsc cmbn i1 P1 P2 P3)
sig rq cdsc combine i1 pf

fp cdsc valid (component dsc valid(d1)) P1
fp cdsc valid (component dsc valid(d2)) P2
fp as cdsc combine Γ (signed rq(m,d2, rq)) P3

fp as cdsc combine Γ (signed rq(m,cdsc combine(d1, s2), rq)) (as cdsc cmbn i2 P1 P2 P3)
sig rq cdsc combine i2 pf

fp signed by ma Γ (signed by ma(m,mk cdsc(exp, imp), rq)) P
fp as cdsc combine Γ (signed rq(m,mk cdsc(exp, imp), rq)) (as singleton P)

sig rq sng pf

A.20 fp as set union
operator all signed

fp emptyset (isempty(s)) P
fp as set union Γ (all signed(m,dsc, s)) (as emptyset P)

all sig emptyset pf

fp as set union Γ (all signed(m,dsc, s1)) P1
fp as set union Γ (all signed(m,dsc, s2)) P2

fp as set union Γ (all signed(m,dsc, set union(s1, s2))) (as union P1 P2)
all sig set union pf

fp as cds combine Γ (signed rq(m,dsc, rq) P
fp as set union Γ (all signed(m,dsc, singleton(rq))) (all signed iP)

all sig pf

iii

A.21 fp valid cdsc
operator signed component dsc

fp cdsc valid (component dsc valid(dsc)) P1
fp as set union Γ (all signed(m,dsc, rqset)) P2

fp valid cdsc Γ (signed component dsc(m,dsc, rqset)) (valid cdsc i2′ P1 P2)
valid cdsc pf

A.22 fp valid lib
operator valid library

fp list nil (list is nil(lib)) P1
fp list nil (list is nil(libdsc)) P2

fp valid lib Γ (valid library(lib, libdsc)) (valid library nil P1 P2)
valid lib nil pf

fp valid lib Γ (valid library(libtl, libdsctl)) P1
search assmp Γ (library dsc(m,dsc)) P2
where lib = list cons(modules eq,m, libtl) and libdsc = list cons(set equiv, dsc, libdsctl)

fp valid lib Γ (valid library(lib, listdsc)) (valid library cons P1 P2)
valid lib cons pf

A.23 fp has prps set union ′
operator has prp

fp has prps set union′ (has prp(rq, p1)) P

fp has prps set union′ (has prp(rq, set union(p1, p2))) (has prp set union i1 P)
has prp union1 pf

fp has prps set union′ (has prp(rq, p2)) P

fp has prps set union′ (has prp(rq, set union(p1, p2))) (has prp set union i2 P)
has prp union2 pf

fp prp match (prp match(rq, prp)) P
fp has prps set union′ (has prp(rq, singleton(prp))) (has prp singleton i P)

has prps singleton pf

A.24 fp has prps set union
operator has property

fp emptyset (isempty(rqset)) P
fp has prps set union (has property(rqset,prpset)) (has proeprty emptyset P)

has prps emptyset pf

fp has prps set union (has property(r1, prpset)) P1
fp has prps set union (has property(r2, prpset)) P2

fp has prps set union (has property(set union(r1, r2), prpset)) (has proeprty set union i3 P1 P2)
has prps set union pf

fp has prps set union′ (has prp(rq, prpset) P
fp has prps set union (has property(singleton(rq), prpset) (has property i′ P)

has prps pf

A.25 fp exp prps′
operator exp rprp

fp exp prps′ (exp rprp(rq, c1)) P

fp exp prps′ (exp rprp(rq, (cdsc combine(c1, c2)))) (exp rprp cdsc combine i1 P)
exp rprp cdsc i1 pf

fp exp prps′ (exp rprp(rq, c2)) P

fp exp prps′ (exp rprp(rq, (cdsc combine(c1, c2)))) (exp rprp cdsc combine i2 P)
exp rprp cdsc i2 pf

fp has prps set union′ (has prp(rq, exp)) P

fp exp prps′ (exp rprp(rq,mk cdsc(exp, imp))) (exp rprp i′ P)
exp rprp cdsc pf

iv

A.26 fp exp prps
operator export required prps

fp emptyset (isempty(rset)) P
fp exp prps (export required prps(rset, dsc)) (exp rprps empty P)

export rprps empty pf

fp exp prps (export required prps(r1, dsc)) P1
fp exp prps (export required prps(r2, dsc)) P1

fp exp prps (export required prps(set union(r1, r2), dsc)) (exp rprps set union P1 P2)
export rprps set union pf

fp exp prps′ (exp rprp(rq, dsc)) P
fp exp prps (export required prps(singleton(rq), dsc)) (exp rprps i P)

export rprps sng pf

A.27 fp st imprt cdsc
operator satisfy imprt cdsc

fp has prps set union (has property(imp,exp)) P
fp st imprt cdsc (satisfy imprt cdsc(imp, list cons(set equiv, exp, explist))) (satisfy imprt cdsc hd P)

satisfy imprt hd pf

fp list valid (list valid(set equiv, explist)) P1
fp st imprt cdsc (satisfy imprt cdsc(imp, explist)) P2

fp st imprt cdsc (satisfy imprt cdsc(imp, list cons(set equiv, exp, explist))) (satisfy imprt cdsc tl P1 P2)
satisfy imprt tl pf

A.28 fp st imprt
operator satisfy import req

fp list nil (list is nil(implist)) P
fp st imprt (satisfy import req(implist, libdsc)) (stsf imprt nil P)

satisfy imprt nil pf

fp st imprt cdsc (satisfy imprt cdsc(imp, libdsc)) P1
fp st imprt (satisfy import req(imptl, libdsc)) P2
where implist = list cons(eq, set equiv, imp, imptl)

fp st imprt (satisfy import req(implist, libdsc)) (stsf imprt cons P2 P1)
satisfy imprt cons pf

A.29 fp prv prps
operator provide enough prps

fp list valid (list valid(set equiv, imp)) P1
fp valid lib Γ (valid library(lib, libdsc)) P2
fp st imprt (satisfy import req(imp, libdsc)) P3

fp prv prps Γ (provide enough prps(mk dsc(exp, imp), lib, libdsc)) (prv prps i P1 P2 P3)
prv prps pf

fp cdsc valid (component dsc valid(c1)) P1
fp cdsc valid (component dsc valid(c2)) P2
fp prv prps Γ (provide enough prps(c1, lib, libdsc)) P3
fp prv prps Γ (provide enough prps(c2, lib, libdsc)) P4

fp prv prps Γ (provide enough prps(cdsc combine(c1, c2), lib, libdsc)) (prv combine P1 P2 P3 P4)
prv prps cdsc combine pf

A.30 findproof
operator ok to link

fp valid cdsc Γ (signed component dsc(m,dsc, rqset)) P1
fp prv prps Γ (provide enough prps(dsc, lib, libdsc)) P2
fp exp prps (export required prps(rqset, dsc)) P3

findproof Γ (ok to link(m,dsc, lib, libdsc, rqset)) (ok to link i P1 P2 P3)
ok to link pf

v

B. TERMINATION OF THE PROVER
In this section, we prove Theorem 1 by showing that all the
tacticals on which the tactic ok to link pf depends terminate.
In other words, we show the termination of the call to the
tactical findproof by showing calling the dependent tacticals,
fp prv prps, fp valid lib and fp exp prps always terminate,
and so do other recursively dependent tacticals.

B.1 Tactical search assmp
The tactical search assmp takes two inputs and one output:
given a list of assumptions and a formula to be proven, it
returns the derivation of the formula if exists. Otherwise it
returns failure.

There are two tactics calling the tactical search assmp, the
tactic initpf and the tactic init2pf. In case of the tactic initpf,
it always terminates since it doesn’t require any further calls
to other tacticals.

The termination of the tactic init2pf is proved by induction
on the length of the assumption list. The base case is a list
of length zero. Since there is no assumption to search, the
tactic init2pf always returns failure. Hence, calling to the
tactic init2pf terminates in the base case.

For the inductive step, suppose that calling to the tactic
init2pf with a list Γ of length k terminates. Then calling to
the tactic init2pf with a list (X , Γ) of length k+ 1 is always
reduced to the call to the tactic init2pf with a list Γ of length
k. By the induction hypothesis, calling to the tactic init2pf
with Γ of length k terminates. Therefore calling to the tactic
init2pf with a list (X , Γ) of length k+ 1 always terminates.

By induction, the tactic init2pf always terminates. Since
the tactics initpf and init2pf always terminate, the tactical
search assmp always terminates.

B.2 Tactical fp string valid
Given a formula of the formula constructor string valid, the
tactical fp string valid returns the derivation of the formula.

The formula constructor string valid accepts a formula of
type string as input. There exist two formula constructors
for type string:

• mk str1 : char → string.

• mk str : char → string → string.

The formula constructor mk str1 is used to construct a for-
mula of type string from a formula of type char. The only
way to construct a bigger formula of type string from a for-
mula of type string is using the constructor mk str. The
constructor mk str returns a new string formula after adding
the input char formula to the head of another input string
formula.

The termination of the tactical fp string valid can be proved
by induction on the structure of an input formula of the for-
mula constructor string valid. The base case occurs when
the input formula is formed by the formula constructor mk str1.
This is the case when the tactic string valid mk str pf is
called. The call to the tactic string valid mk str1 pf always

terminates since it does not require any further call to other
tacticals.

For the inductive step, suppose that calling the tactical
fp string valid with a formula string valid(str) terminates.
Calling the tactical fp string valid with the formula
string valid(mk str(ch, str)) is always reduced to calling the
tactical fp string valid with a formula string valid(str) by the
tactic string valid mk str pf. By the inductive hypothesis,
calling the tactical fp string valid with a formula string valid(str)
always terminates.

Hence, calling the tactical fp string valid with a formula
formed by the constructor string valid always terminates by
induction.

B.3 Tactical fp ide valid
The tactical fp ide valid returns the derivation of a formula
formed by the formula constructor ide valid.

The formula constructor ide valid takes a formula of type
ide as input, and there exists only one formula constructor
in the linking logic which can build a formula of type ide.
The formula constructor mk ide constructs a formula of type
ide from a formula of string: mk ide : string → ide.

For a formula of the formula constructor ide valid and the
formula constructor mk ide, the tactic ide valid mk ide pf is
the only matching tactic, and applying ide valid mk ide pf
is always reduced to calling the tactical fp string valid with
a formula string valid(str).

Calling the tactical fp string valid with a formula string valid(str)
always terminates as proved in the previous section. Hence
calling the tactical fp ide valid with a formula formed by the
formula constructor ide valid always terminates.

B.4 Tactical fp emptyset
Since it doesn’t spawn any further calling to other tacticals,
calling the tactical fp emptyset always terminates.

B.5 Tactical fp set
Given a formula formed by the formula constructors single-
ton and set union, the tactical fp set returns the derivation
of the formula. The formula constructor singleton is used to
make a set of only one element and the formula constructor
set union is used to make a union set out of two sets.

The termination of the tactical fp set is proved by induc-
tion on the structure of the input formula of the formula
constructor singleton and set union.

The base case occurs when the set consists of only one el-
ement. Since the formula constructor singleton is used to
make a singleton set, the only applicable tactic is the tactic
singleton refl pf. Since singleton refl pf does not spawn call-
ings to other tacticals, calling the tactical fp set terminates
in the base case.

For the inductive step, suppose that calling the tactical
fp set terminates with a formula X ∈ S1 and a formula X ∈ S2.
Calling the tactical fp set with a formula X ∈ set union(S1,S2))
matches one of the following two different cases.

vi

B.5.1 Tactic set union1 pf
If the tactic set union1 pf is applied to the formula, the call-
ing is reduced to calling the tactical fp set with the formula
X ∈ S1. By the inductive hypothesis, it terminates.

B.5.2 Tactic set union2 pf
If the tactic set union2 pf is applied to the formula, the call-
ing is reduced to to calling the tactical fp set with the for-
mula X ∈ S2. By the inductive hypothesis, it terminates.
Therefore calling the tactical fp set terminates in the induc-
tive step.

By induction, calling the tactical fp set with a formula of
formula constructors singleton and set union always termi-
nates.

B.6 Tactical fp validper
Calling the tactical fp validper is axiomatic in the sense that
it doesn’t cause any further calling to other tacticals. Given
the formula validper(module eq), calling fp validper always
returns a proof and terminates. Similarly, given the formula
validper(set equiv), calling fp validper always returns a proof
and terminates.

B.7 Tactical fp validper refl
Calling the tactical fp validper refl is also axiomatic. Given
the formula module eq(m,m) and the formula set equiv(s,s),
calling fp validper refl always returns a proof and termi-
nates.

B.8 Tactical fp list nil
Given the formula list is nil(list nil), the tactical fp list nil
always returns a proof without calling other tacticals by
the tactic list is nil nil pf. Thus, calling fp list nil always
terminates.

B.9 Tactical fp list valid
The tactical fp list valid returns a derivation of a formula
formed by the formula constructor list valid. The input of
list valid is a formula standing for a list for a given type T.
There exist 2 formula constructors for type list T :

• list nil : list T.

• list cons : T → (list T) → (list T).

The constructor list nil returns a nil list, and the construc-
tor list cons returns a new list after adding the given head
element to the tail list.

The termination of the tactical fp list valid is proved by in-
duction on the structure of the input formula of list valid.

The base case occurs when the input of list valid is a nil
list. Only the tactic list valid nil pf is applicable for the base
case. Calling the tactical fp list valid with an input formula
list valid(eq,l) is reduced to calling the tactical fp validper
with a formula validper(eq) and calling the tactical fp list nil
with a formula list is nil(l). Since calling fp validper and call-
ing fp list nil terminate as proved earlier, applying the tac-
tic list valid nil pf terminates. Hence, calling the tactical
fp list valid terminates in the base case.

For the inductive step, suppose that calling the tactical
fp list valid with a formula list valid(eq, tl) terminates when
l = list cons(eq, hd, tl). Then calling the tactical fp list valid
with the formula list valid(eq, l) is always reduced to calling
the tactical fp validper refl with a formula eq(hd, hd) and
calling the tactical fp list valid with a formula list valid(eq,tl).
Calling fp validper refl always terminates as proved earlier,
and calling fp list valid with a formula list valid(eq,tl) termi-
nates by the inductive hypothesis. So calling the tactical
fp list valid terminates in the inductive step.

By induction, calling the tactical fp list valid always termi-
nates.

B.10 Tactical fp prp valid
Calling the tactical fp prp valid with a formula formed by
the formula constructor prp valid is always reduced to call-
ing the tactical fp ide valid with a formula formed by the for-
mula constructor ide valid. Since calling the tactical fp ide valid
with a formula formed by ide valid always terminates as
proved earlier, calling the tactical fp prp valid with a for-
mula formed by prp valid always terminates.

B.11 Tactical fp prp match
The tactical fp prp match is called with five different for-
mula constructors, mk prp req, rq component name exists,
mk rq component name, rq hashcode checked and
rq export id exists. There exist five tactics corresponding to
each formula constructor respectively.

B.11.1 Tactic mk req refl pf
Calling the tactical fp prp match with a formula formed by
mk prp req is always reduced to calling the tactical fp prp valid
with a formula formed by prp valid.

As already shown, calling fp prp valid with a formula of
prp valid always terminates. Therefore applying the tactical
mk req refl pf always terminates.

B.11.2 Tactic req mk cname pf
Calling fp prp match with a formula formed by the formula
constructor rq component name exists doesn’t require any
further calls to other tacticals. Hence applying the tactic
req mk cname pf always terminates.

B.11.3 Tactic req mk cname′ pf
Calling fp prp match with a formula formed by
mk rq component name is always reduced to calling the tac-
tical fp ide valid with a formula of the formula constructor
ide valid. As shown already, calling fp ide valid with a for-
mula of ide valid always terminates. Therefore, applying the
tactic req mk cname′ pf always terminates.

B.11.4 Tactic req mk hash prp pf
Calling fp prp match with a formula formed by
rq hash code checked doesn’t require any further calls to other
tacticals. Hence applying the tactic req mk hash prp pf al-
ways terminates.

B.11.5 Tactic req mk ide prp pf

vii

Calling fp prp match with a formula formed by
rq export id exists doesn’t require any further calls to other
tacticals. Hence applying the tactic req mk ide prp pf al-
ways terminates.

By induction, calling the tactical fp prp match always ter-
minates.

B.12 Tactical fp cdsc valid
The tactical fp cdsc valid returns a derivation of a formula
formed by the formula constructor component dsc valid. The
input of component dsc valid is a formula of type compo-
nent dsc. There exist two formula constructors for type
component dsc:

• mk cdsc : (set property) → (list (set property)) → com-
ponent dsc.

• cdsc combine : component dsc→ component dsc→ com-
ponent dsc.

The constructor mk cdsc builds a formula of type compo-
nent dsc out of a set of exported properties and a list of
sets of imported properties. The constructor cdsc combine
returns a formula of type component dsc out of two formulas
of type component dsc.

The termination of the tactical fp cdsc valid is proved by in-
duction on the structure of the input formula of the formula
constructor component dsc valid.

The base case occurs when an input formula of cdsc valid is
built by using mk cdsc. Only the tactic mk cdsc valid pf is
applicable in this case. Applying mk cdsc valid pf is always
reduced to calling the tactical fp list valid with a formula
formed by the formula constructor list valid. As we already
showed in the earlier part, calling the tactical fp list valid
with a formula of list valid always terminates. Hence, calling
fp cdsc valid with a formula of mk cdsc always terminates,
and then calling fp csc valid terminates in the base case.

For the inductive step, suppose that calling fp cdsc valid
with a formula cdsc valid(d1) and calling fp cdsc valid with a
formula cdsc valid(d2) terminate. Then calling fp cdsc valid
with a formula cdsc valid(cdsc combine(d1, d2)) is always re-
duced to calling fp cdsc valid with a formula cdsc valid(d1)
and calling fp cdsc valid with a formula cdsc valid(d2). These
two calls terminate by the induction hypothesis. Therefore
calling fp csc valid terminates in the inductive step.

Hence, calling the tactical fp cdsc valid always terminates
by induction.

B.13 Tactical fp signed keybind
Calling the tactical fp signed keybind with a list Γ of as-
sumptions and a formula formed by the formula construc-
tors says and keybind is always reduced to calling the tactical
search assmp with Γ and a formula of keybind and calling
search assmp with Γ and a formula of signed. As already
shown, calling search assmp with those two formula con-
structors always terminates. Therefore applying the tactic
keycert pf always terminates.

B.14 Tactical fp signed auth
Calling the tactical fp signed auth with a list Γ of assump-
tions and a formula of the formula constructors says and
prp auth is always reduced to calling the tactical
search assmp with Γ and a formula of key authority, call-
ing the tactical fp signed keybind with Γ and a formula of
says and keybind, and calling search assmp with Γ and a for-
mula of signed. As already shown, calling fp signed keybind
with a formula of says and keybind terminates, and calling
search assmp with a formula of key authority or signed al-
ways terminates. Therefore applying the tactic prp auth pf
always terminates.

B.15 Tactical fp signed dsc
Calling the tactical fp signed assmp with a list Γ of assump-
tions and a formula of the formula constructors says and
module dsc is always reduced to calling the tactical
search assmp with Γ and a formula of key authority, calling
the tactical fp signed keybind with Γ and a formula of says
and keybind, and calling search assmp with Γ and a formula
of signed. As already shown, calling fp signed keybind with
a formula of says and keybind always terminates, and call-
ing search assmp with a formula of key authority or signed
always terminates. Therefore applying the tactic compo-
nent dsc pf always terminates.

B.16 Tactical fp valid sig auth
Calling the tactical fp valid sig auth with a list Γ of assump-
tions and a formula of the formula constructor
valid sig prp auth is reduced to five calls to other tacticals:

• calling the tactical search assmp with Γ and a formula
of key authority,

• calling the tactical search assmp with Γ and a formula
of keybind,

• calling the tactical search assmp with Γ and a formula
of prp server,

• calling the tactical fp signed keybind with Γ and a for-
mula of says and keybind, and

• calling the tactical fp signed auth with Γ and a formula
of says and prp auth.

As proved earlier, calling the tactical search assmp with a
formula of key authority or prp server, calling the tactical
fp signed keybind with a formula of says and keybind, and
calling the tactical fp signed auth with a formula of says
and prp auth always terminates. Hence applying the tac-
tic valid sig auth pf always terminates.

B.17 Tactical fp valid sig cdsc
Calling the tactical fp valid sig cdsc with a list Γ of assump-
tions and a formula of the formula constructor
valid sig component dsc is reduced to following 5 calls to
other tacticals:

• calling the tactical search assmp with Γ and a formula
of key authority,

• calling the tactical search assmp with Γ and a formula
of keybind,

viii

• calling the tactical search assmp with Γ and a formula
of module authority,

• calling the tactical fp signed keybind with Γ and a for-
mula of says and keybind, and

• calling the tactical fp signed dsc with Γ and a formula
of says and module dsc.

As proved earlier, calling the tactical search assmp with a
formula of key authority, keybind, or module authority, call-
ing the tactical fp signed keybind with a formula of says and
keybind, and calling the tactical fp signed dsc with a for-
mula of says and module dsc always terminates. Therefore
applying the tactic valid sig cdsc pf always terminates.

B.18 Tactical fp signed by ma
Calling the tactical fp signed by ma with a list Γ of assump-
tions and a formula of the formula constructor signed by ma
is reduced into following calls to other tacticals:

• calling the tactical fp valid sig auth with the list of the
assumptions and a formula of valid sig prp auth,

• calling the tactical fp valid sig cdsc with the list of the
assumptions and a formula of valid sig component dsc,
and

• calling the tactical fp set with a formula of singleton
and/or set union.

As already shown, calling the tactical fp valid sig auth with
a list Γ of the assumptions and a formula of the formula con-
structor valid sig prp auth, calling the tactical fp valid sig cdsc
with a list Γ of the assumptions and a formula of the formula
constructor valid sig component dsc and calling the tactical
fp set with a formula of the formula constructors singleton
and set union always terminates. Therefore applying the
tactical signed by ma pf always terminates.

B.19 Tactical fp as cdsc combine
Given a list Γ of assumptions and a formula of the for-
mula constructor signed rq, the tactical fp as cdsc combine
returns the derivation of the formula.

The input of the formula constructor signed rq consists of
a formula standing for a set of type module, a formula of
type component dsc and a formula of type prp req. The tac-
tical fp as cdsc combine reasons about different cases of the
second input formula of type component dsc. The termi-
nation of the tactical fp as cdsc combine can be proved by
induction on the structure of the second input formula.

As already shown in the proof of the tactical fp cdsc valid,
there exist two formula constructors for type component dsc:
mk cdsc and cdsc combine.

The base case occurs when the second input formula of the
formula constructor signed rq is built using the construc-
tor mk cdsc. In this case, only the tactic sig rq sng pf is
applicable. Applying the tactic sig rq sng pf is always re-
duced to calling the tactical fp signed by ma with the list
Γ of assumptions and a formula of the formula construc-
tor signed by ma. As already shown, calling the tactical

fp signed by ma with a list of assumptions and a formula
of the formula constructor signed by ma always terminates.
Therefore calling the tactical fp as cdsc combine with a for-
mula of signed rq terminates in the base case.

For the inductive step, suppose that calling the tactical
fp as cdsc combine with a list Γ of assumptions and a for-
mula signed rq(m, d1, rq) terminates, and calling the tactical
fp as cdsc combine with a list Γ of assumptions and a for-
mula signed rq(m, d2, rq) terminates.

There are two applicable tactics for a formula signed rq(m,
cdsc combine(d1, d2), rq): sig rq cdsc combine i1 pf and
sig rq cdsc combine i2 pf.

B.19.1 Tactic sig rq cdsc combine i1 pf
Applying the tactic sig rq cdsc combine i1 pf is always re-
duced to calling the tactical fp cdsc valid with formulas com-
ponent dsc valid(d1) and component dsc valid(d2), and call-
ing the tactical fp as cdsc combine with Γ and a formula
signed rq(m, d1, rq). Calling the tactical fp cdsc valid with a
formula of component dsc valid always terminates as shown
before, and calling fp as cdsc combine with Γ and a formula
signed rq(m, d1, rq) terminates by the induction hypothesis;
thus applying the tactic sig rq cdsc combine i1 terminates.

B.19.2 Tactic sig rq cdsc combine i2 pf
Applying the tactic sig rq cdsc combine i2 pf is always re-
duced to calling the tactical fp cdsc valid with formulas com-
ponent dsc valid(d1) and component dsc valid(d2), and call-
ing the tactical fp as cdsc combine with Γ and a formula
signed rq(m, d2, rq). Calling the tactical fp cdsc valid with a
formula of component dsc valid always terminates as shown
before, and calling fp as cdsc combine with Γ and a formula
signed rq(m, d2, rq) terminates by the induction hypothesis;
thus applying the tactic sig rq cdsc combine i2 terminates.

Therefore calling the tactical fp as cdsc combine with a list
of assumptions and a formula of signed rq terminates in the
inductive step.

Hence by induction calling the tactical fp as cdsc combine
with a list of assumptions and a formula of the formula con-
structor signed rq always terminates.

B.20 Tactical fp as set union
Given a list of assumptions Γ and a formula of the formula
constructor all signed, the tactical fp as set union returns
the derivation of the formula.

As mentioned, the input of the formula constructor all signed
consists of a formula standing for a set of type module, a for-
mula of type component dsc and a formula standing for a set
of type property. The tactical fp as set union reasons about
different cases of the third input formula.

The termination of calling the tactical fp as set union with
a formula all signed(m, dsc, rqset) can be proved by induc-
tion on the structure of rqset of the formula constructor
all signed:

B.20.1 Case of empty set

ix

The tactic all sig emptyset pf is applied when rqset is empty.
Applying the tactic all sig emptyset pf is reduced to calling
the tactical fp emptyset with a formula isempty(rqset). Since
calling the tactical fp emptyset with a formula of isempty ter-
minates, applying the tactic all sig emptyset pf terminates.

B.20.2 Case of non-empty set
The base case occurs when rqset is built using the formula
constructor singleton. The tactic all sig pf is the only tactic
applicable in this case. Applying the tactic all sig pf with a
list of assumption Γ and a formula of all signed(m, dsc, single-
ton(rq)) is reduced to calling the tactical fp as cdsc combine
with a formula signed rq(m, dsc, rq). Since calling the tacti-
cal fp as cdsc combine with a formula of the formula con-
structor signed rq always terminates, applying the tactic
all sig pf terminates in the base case.

For the inductive step, suppose that calling the tactical
fp as set union with a list of assumptions Γ and a formula
all signed(m,dsc, s1) terminates, and and calling the tactical
fp as set union with Γ and a formula all signed(m,dsc, s2)
terminates.

Then calling the tactical fp as set union with Γ and a for-
mula all signed(m,dsc, set union(s1,s2)) is reduced to calling
the tactical fp as set union with Γ and a formula
all signed(m,dsc, s1), and calling the tactical fp as set union
with Γ and a formula all signed(m,dsc, s2) by the tactic
all sig set union pf.

Since calling the tactical fp as set union with Γ and
all signed(m,dsc, s1) and calling the tactical fp as set union
with Γ and all signed(m,dsc, s2) terminate by the induction
hypothesis, applying the tactic all sig set union pf termi-
nates.

By induction, the tactical fp as set union terminates when
the third input formula is not empty.

Hence by induction on cases, calling the tactical fp as set union
with a list of assumptions and a formula of the formula con-
structor all signed terminates.

B.21 Tactical fp valid cdsc
Given a list of assumptions and a formula of the formula
constructor signed component dsc, the tactical fp valid cdsc
returns the derivation of the formula.

Calling the tactical fp valid cdsc with a formula
signed component dsc(m,dsc,rqset) is always reduced to call-
ing the tactical fp cdsc valid with component dsc valid(dsc),
and calling the tactical fp as set union with
all signed(m,dsc,rqset). As proved already, those two calls
always terminates. Hence calling the tactical fp valid cdsc
always terminates.

B.22 Tactical fp valid lib
Given a list of assumptions and a formula of the formula
constructor valid library, the tactical fp valid lib returns the
derivation of the formula.

The input of the formula constructor valid library consists

of a list lib whose elements are set of type module and a list
libdsc whose elements are of type component dsc.

If the lengths of the two input lists are different, the num-
bers of list cons and list nil of two lists is also different.
That means, during proving, fp valid lib can be called with
two input lists when the first input list of valid library is
built by list cons although the second input list is built by
list nil, vice versa. In either case, there exist no tactics of
fp valid lib. Thus the prover terminates with reporting fail-
ure.

If the lengths of the two input lists are the same, the termi-
nation of the tactical fp valid lib with a list of assumptions
and a formula of valid library is be proved by induction on
the structure of the input lists.

The base case occurs when two input lists are nil. The
tactic valid lib nil pf is applied in this case, and applying
the tactic valid lib nil pf is reduced to calling the tactical
fp list nil with a formula list is nil(lib) and calling the tactical
fp list nil with a formula list is nil(libdsc).

Since the tactical fp list nil always terminates with a formula
of list is nil, applying the tactic valid lib nil pf terminates.
Therefore calling the tactical fp valid lib with a list of as-
sumptions and a formula of valid library terminates in the
base case.

For the inductive step, suppose that calling the tactical
fp valid lib with a list of assumptions Γ and a formula
valid library(libtl, libdsctl) terminates where lib = list cons(m, libtl)
and libdsc = list cons(dsc, libdsctl).

Then calling the tactical fp valid lib with Γ and a formula
valid library(lib, libdsc) is reduced to calling fp valid lib with
Γ and a formula valid library(libtl, libdsctl) and calling the
tactical search assmp with Γ and a formula library dsc(m,dsc)
by the tactic valid lib cons pf.

We already prove that calling the tactical search assmp with
a list of assumptions and a formula of library dsc always ter-
minates. Calling the tactical fp valid lib with Γ and a for-
mula valid library(libtl, libdsctl) terminates by the induction
hypothesis.

Therefore applying the tactic valid lib cons pf terminates;
in other words, calling the tactical fp valid lib with a list of
assumptions and a formula of valid library terminates in the
inductive step.

Hence, calling the tactical fp valid lib with a list of assump-
tions and a formula of valid library always terminates by
induction.

B.23 Tactical fp has prps set union′
Given a formula of the formula constructor has prp, the tac-
tical fp has prps set union′ returns the derivation of the for-
mula.

The input of the formula constructor has prp consists of a
formula of type prp req and a formula standing for a set of
type property. The tactical fp has prps set union′ reasons

x

about different cases of the second input formula.

B.23.1 Case of empty set
If the second input formula of the formula constructor has prp
is a empty set, then there exists no tactic applicable. Hence
the prover terminates with reporting failure.

B.23.2 Case of non-empty set
As shown in Section B.5, there exist two formula construc-
tors for non-empty sets : singleton and set union. The ter-
mination of the tactical fp has prps set union′ can be proved
by induction on the structure of the second input formula
of has prp.

The base case occurs when the second input formula of
has prp is built using the formula constructor singleton. Only
the tactic has prps singleton pf is applicable in this case.
Applying the tactic has prps singleton pf is always reduced
to calling the tactical fp prp match with a formula of prp match.
As already shown, calling the tactical fp prp match with a
formula of prp match always terminates. Therefore calling
the tactical fp has prps set union′ with a formula of has prp
terminates in the base case.

For the inductive step, suppose that calling the tactical
fp has prps set union′ with a formula has prp(rq, p1) termi-
nates, and calling the tactical fp as cdsc combine with a for-
mula has prp(rq, p2) terminates. There are two applicable
tactics:

• Tactic has prps union1 pf
Applying the tactic has prps union1 pf is always re-
duced to calling the tactical fp has prps set union′ with
a formula has prp(rq, p1). This call terminates by the
induction hypothesis; thus applying the tactic
sig rq cdsc combine i1 terminates.

• Tactic has prps union2 pf
Applying the tactic has prps union2 pf is always re-
duced to calling the tactical fp has prps set union′ with
a formula has prp(rq, p2). This call terminates by the
induction hypothesis; thus applying the tactic
sig rq cdsc combine i2 terminates.

Therefore calling the tactical fp has prps set union′ with a
formula of has prp terminates in the inductive step.

Hence, calling the tactical fp has prps set union′ with a for-
mula of the formula constructor has prp always terminates
by induction.

B.24 Tactical fp has prps set union
Given a formula of the formula constructor has property, the
tactical fp has prps set union returns the derivation of the
formula.

The input of the formula constructor has property consists
of a formula standing for a set of type prp req and a formula
standing for a set of type property. The tactical
fp has prps set union reasons about different cases of the
first input formula.

The termination of calling the tactical fp has prps set union
with a formula has property(rqset, prpset) can be proved by
induction on the structure of the first input formula rqset of
has property.

B.24.1 Case of empty set
The tactic has prps emptyset pf is applied when rqset is empty.
Applying has prps emptyset pf is reduced to calling the tac-
tical fp emptyset with a formula isempty(rqset). Since calling
fp emptyset with a formula of isempty terminates, applying
has prps emptyset pf terminates.

B.24.2 Case of non-empty set
The base case occurs when rqset is built using the formula
constructor singleton. The tactic has prps pf is the only tac-
tic applicable in this case. Applying has prps pf with a for-
mula has property(singleton(rq), prpset) is reduced to calling
the tactical fp has prps set union′ with a formula has prp(rq,
prpset). Since calling fp has prps set union′ with a formula
of has prp always terminates, applying has prps pf termi-
nates.

For the inductive step, suppose that calling fp has prps set union
with a formula has property(r1, prpset) terminates, and call-
ing fp has prps set union with a formula has property(r2, prpset)
terminates.

Then calling the tactical fp has prps set union with a for-
mula has property(set union(r1,r2), prpset) is reduced to call-
ing the tactical fp has prps set union with a formula
has property(r1, prpset), and calling the tactical
fp has prps set union with a formula has property(r2, prpset)
by the tactic has prps set union pf.

Since calling the tactical fp has prps set union with the for-
mulas has property(r1, prpset) and has property(r2, prpset)
terminate by the induction hypothesis, applying the tactic
has prps set union pf terminates.

By induction, the tactical fp has prps set union terminates
when the first input formula of has property is not empty.

Hence by induction on cases, calling the tactical
fp has prps set union with a formula of the formula con-
structor has property terminates.

B.25 Tactical fp exp prps′
Given a formula of the formula constructor exp rprp, the
tactical fp exp prps′ returns the derivation of the formula.

The input of the formula constructor exp rprp consists of a
formula of type prp req and a formula of type component dsc.
The tactical fp exp prps′ reasons about different cases of the
second input formula of type component dsc. The termina-
tion of the tactical fp exp prps′ can be proved by induction
on the structure of the second input formula.

As shown in Section B.12, there exist two formula construc-
tors for type component dsc: mk cdsc and cdsc combine.

The base case occurs when the second input formula of the
formula constructor exp rprp is built using the constructor

xi

mk cdsc. Only the tactic exp rprp cdsc pf is applicable in
this case. Applying the tactic exp rprp cdsc pf with a for-
mula exp rprp(rq, mk cdsc(exp, imp)) is always reduced to
calling the tactical fp has prps set union′ with a formula
has prp(rq, exp). As shown already, calling the tactical
fp has prps set union′ with a formula of has prp always ter-
minates. Therefore calling the tactical fp exp prps′ with a
formula of exp rprp terminates in the base case.

For the inductive step, suppose that calling the tactical
fp exp prps′ with a formula exp rprp(rq, c1) terminates and
calling the tactical fp exp prps′ with a formula exp rprp(rq,
c2) terminates. There are two applicable tactics for a for-
mula exp rprp(m, cdsc combine(c1, c2), rq):

B.25.1 Tactic exp rprp cdsc i1 pf
Applying the tactic exp rprp cdsc i1 pf with a formula
exp rprp(m, cdsc combine(c1, c2), rq) is always reduced to
calling the tactical fp exp prps′ with exp rprp(rq, c1). This
call terminates by the induction hypothesis; thus applying
the tactic exp rprp cdsc i1 pf terminates.

B.25.2 Tactic exp rprp cdsc i2 pf
Applying the tactic exp rprp cdsc i2 pf with a formula
exp rprp(m, cdsc combine(c1, c2), rq) is always reduced to
calling the tactical fp exp prps′ with a formula exp rprp(rq,
c2). This call terminates by the induction hypothesis; thus
applying the tactic exp rprp cdsc i2 pf terminates.

Therefore calling the tactical fp exp prps′ with a formula of
exp rprp terminates in the inductive step.

Hence calling the tactical fp exp prps′ with a formula of the
formula constructor exp rprp always terminates by induc-
tion.

B.26 Tactical fp exp prps
Given a formula of the formula constructor export required prps,
the tactical fp exp prps returns the derivation of the formula.

The input of the formula constructor export required prps
consists of a formula standing for a set of type prp req and
a formula of type component dsc. The tactical fp exp prps
reasons about different cases of the first input formula.

The termination of calling the tactical fp exp prps with a
formula export required prps(rqset, dsc) can be proved by in-
duction on the structure of the first input formula rqset of
the formula constructor export required prps.

B.26.1 Case of empty set
The tactic export rprps empty pf is applied when rqset is
empty. Applying export rprps empty pf is reduced to call-
ing the tactical fp emptyset with a formula isempty(rqset).
Since calling fp emptyset with a formula of isempty termi-
nates, applying export rprps empty pf terminates.

B.26.2 Case of non-empty set
The base case occurs when rqset is built using the formula
constructor singleton. The tactic export rprps sng pf is the
only tactic applicable in this case. Calling export rprps sng pf

with a formula export required prps(singleton(rq), dsc) is re-
duced to calling the tactical fp exp prps′ with a formula
with a formula exp rprp(rq, dsc). Since calling fp exp prps′

with a formula of exp rprp always terminates, applying ex-
port rprps sng pf terminates.

For the inductive step, suppose that calling fp exp prps with
a formula export required prps(r1, dsc) terminates, and call-
ing fp exp prps with a formula export required prps(r2, dsc)
terminates.

Then calling the tactical fp exp prps with a formula
export required prps(set union(r1,r2), dsc) is reduced to call-
ing the tactical fp exp prps with a formula
export required prps(r1, dsc), and calling the tactical fp exp prps
with a formula export required prps(r2, dsc) by the tactic ex-
port rprps set union pf.

Since calling fp exp prps with export required prps(r1, dsc)
and calling fp exp prps with export required prps(r2, dsc) ter-
minate by the induction hypothesis, applying the tactic ex-
port rprps set union pf terminates.

By induction, the tactical fp exp prps terminates when the
first input formula is not empty.

Hence, calling the tactical fp exp prps with a formula of the
formula constructor export required prps terminates by in-
duction on cases.

B.27 Tactical fp st imprt cdsc
The tactical fp st imprt cdsc returns a derivation of a for-
mula of the formula constructor satisfy imprt cdsc.

The input of the formula constructor satisfy imprt cdsc con-
sists of a formula standing for a set of prp req, and a for-
mula standing for a list of sets of property. The tactical
fp st imprt cdsc reasons about different cases of the second
input formula.

B.27.1 Tactic satisfy imprt hd pf
Calling satisfy imprt hd pf with a formula
satisfy imprt cdsc(imp, list cons(set equiv, exp, explist)) is re-
duced to calling the tactical fp has prps set union with a
formula has property(imp, exp).

Since fp has prps set union always terminates with a for-
mula formed by has property, the tactic satisfy imprt hd pf
always terminate.

B.27.2 Tactic satisfy imprt tl pf
The termination of calling the tactical fp st imprt cdsc with
a formula satisfy imprt cdsc(imp, l) can be proved by induc-
tion on the length of list l. As shown in Section B.9, there
exist two formula constructors for lists : list nil and list cons.

The base case occurs when the length of a list is zero. Since
there is no matching tactic, the prover simply terminates af-
ter reporting failure. Therefore calling fp st imprt cdsc with
a formula of satisfy imprt cdsc terminates in the base case.

For the inductive step, suppose that calling fp st imprt cdsc
with a formula satisfy imprt cdsc(imp, explist) terminates where

xii

the length of explist is k. Then calling fp st imprt cdsc with
satisfy imprt cdsc(imp, list cons(set equiv, exp, explist) is re-
duced to calling the tactical fp list valid with list valid(set equiv,
explist), and calling fp st imprt cdsc with satisfy imprt cdsc(imp,
explist). Calling fp list valid with a formula of list valid al-
ways terminates as shown before, and calling fp st imprt cdsc
with satisfy imprt cdsc(imp, explist) terminates by the induc-
tive hypothesis; therefore calling fp st imprt cdsc with a for-
mula of satisfy imprt cdsc terminates when the length of the
second input list is k + 1.

By induction, the tactical fp st imprt cdsc with a formula of
satisfy imprt cdsc always terminates.

B.28 Tactical fp st imprt
Given a list of assumptions and a formula of the formula con-
structor satisfy import req, the tactical fp st imprt returns
the derivation of the formula.

The input of the formula constructor satisfy import req con-
sists of a formula standing for a list of sets of prp req, and a
formula standing for a list of sets of property.

The termination of the tactical fp st imprt with a formula
satisfy import req(implist, libdsc) can be proved by induction
on the structure of the first input list implist.

The base case occurs when the first input list is nil. The
tactic satisfy imprt nil pf is applied in this case, and apply-
ing satisfy imprt nil pf to satisfy import req(list nil, libdsc)
is reduced to calling the tactical fp list nil with a formula
list is nil(list nil).

Since the tactical fp list nil always terminates with a formula
of list is nil, applying satisfy imprt nil pf terminates.

For the inductive step, suppose that calling the tactical
fp st imprt with a formula satisfy import req(imptl, libdsc)
terminates where implist = list cons(set equiv, imp, imptl). Then
calling the tactical fp st imprt with a formula satisfy import req(implist,
libdsc) is reduced to calling the tactical fp st imprt cdsc with
a formula satisfy imprt cdsc(imp, libdsc), and calling the tac-
tical fp st imprt with a formula
satisfy import req(imptl, libdsc) by the tactic
satisfy imprt cons pf.

We already prove that calling the tactical fp st imprt cdsc
with a formula of satisfy imprt cdsc always terminates. Call-
ing the tactical fp st imprt with satisfy import req(imptl, libdsc)
terminates by the induction hypothesis.

Therefore applying fp st imprt to a formula of satisfy import req
terminates in the inductive step.

Hence, calling the tactical fp st imprt with a formula of sat-
isfy import req always terminates by induction.

B.29 Tactical fp prv prps
Given a list of assumptions and a formula of the formula
constructor provide enough prps, the tactical fp prv prps re-
turns the derivation of the formula.

The input of the formula constructor provide enough prps

consists of a formula of type component dsc, a formula stand-
ing for a list of sets of module, and a formula standing for
a list of sets of property. The tactical fp prv prps reasons
about different cases of the first input formula. The ter-
mination of calling the tactical fp prv prps with a list of as-
sumptions and a formula provide enough prps(dsc, lib, libdsc)
can be proved by induction on the structure of the first input
formula dsc of the formula constructor provide enough prps.

As shown in Section B.12, there exist two formula construc-
tors for type component dsc: mk cdsc and cdsc combine.

The base case occurs when dsc is built using the formula
constructor mk cdsc. The tactic prv prps pf is the only tac-
tic applicable in this case. Calling prv prps pf with a list Γ of
assumptions and a formula provide enough prps(mk dsc(exp,
imp), lib, libdsc) is reduced to calling the tactical fp list valid
with a formula list valid(set equiv, imp), calling the tactical
fp valid lib with Γ and a formula valid library(lib, libdsc), and
calling the tactical fp st imprt with a formula
satisfy import req(imp, libdsc). Since calling fp list valid with
a formula of list valid, calling fp valid lib with a list of as-
sumptions and a formula of valid library, and calling fp st imprt
with a formula of satisfy import req always terminate as
proved before, applying the tactic prv prps pf terminates.

For the inductive step, suppose that calling fp prv prps with
a list Γ of assumptions and a formula provide enough prps(c1,
lib, libdsc) terminates, and calling fp prv prps with Γ and a
formula provide enough prps(c2, lib, libdsc) terminates.

Then calling the tactical fp prv prps with Γ and a formula
provide enough prps(cdsc combine(c1, c2), lib, libdsc) is re-
duced to calling fp cdsc valid with component dsc valid(c1),
calling fp cdsc valid with component dsc valid(c2), calling the
tactical fp prv prps with Γ and a formula provide enough prps(c1,
lib, libdsc), and calling fp prv prps with Γ and a formula pro-
vide enough prps(c2, lib, libdsc) by the tactic
prv prps cdsc combine pf.

Since calling fp cdsc valid with a formula of component dsc valid
always terminates as proved earlier, and calling fp prv prps
with provide enough prps(c1, lib, libdsc) and provide enough prps(c2,
lib, libdsc) terminates by the induction hypothesis, applying
the tactic prv prps cdsc combine pf terminates.

Hence, calling the tactical fp prv prps with a list of assump-
tions and a formula of provide enough prps terminates by
induction.

B.30 Tactical findproof
Given a list of assumptions and a formula of the formula con-
structor ok to link, the tactical findproof returns the deriva-
tion of the formula.

Calling the tactical findproof with a list Γ of assumptions
and a formula ok to link(m, dsc, lib, libdsc, rqset) is always
reduced to calling the tactical fp valid cdsc with Γ and a for-
mula signed component dsc valid(m, dsc, rqset), calling the
tactical fp prv prps with Γ and a formula provide enough prps(dsc,
lib, libdsc), and calling the tactical fp exp prps with a for-
mula export required prps(rqset, dsc).

xiii

As proved earlier, calling to calling fp valid cdsc with a list
of assumptions and a formula of signed component dsc valid,
calling fp prv prps with a list of assumptions and a formula
of provide enough prps, and calling fp exp prps with a for-
mula of export required prps always terminate.

Hence calling the tactical findproof with a list of assumptions
and a formula of ok to link always terminates. 2

C. COMPLETENESS OF THE PROVER
We will prove Theorem 2 by proving all the tacticals on
which the tactical ok to link pf depends are complete.

C.1 Tactical search assmp
The tactical search assmp is related to the formula con-
structors singed, key bind, key authority, prp server, mod-
ule authority and library dsc.

The tactical search assmp is used for finding a proof from a
list of assumptions, which are axioms believed true by the
prover. Therefore, for the formula constructors related to
the tactical search assmp, whether or not any formula from
these constructors is true depends on whether or not a proof
of the formula is in the list of assumptions.

We can prove that the tactical search assmp is complete, i.e.,
it always finds the proof (or a derivation) of a true formula
of related formula constructors by showing that the tactical
search assmp always find a proof if it is in the assumption
list.

There are two tactics calling the tactical search assmp: initpf
and init2pf. The tactic initpf is always called before the tac-
tic init2pf is called.

The tactic initpf determines the first element of the list is
the proof which the prover is currently looking for. If so,
it returns the proof; otherwise it reports failure. The tactic
init2pf is applied only after applying the tactic initpf fails.
That means the first element of the assumption list is not
the proof the prover is looking for. So the tactic init2pf
searches the tail of the list of assumptions for the proof of
the formula.

We can prove the completeness of the tactical search assmp
by induction on the length of the assumption list.

C.1.1 Case of nil assumption list
Every formula of the related formula constructors is consid-
ered true if and only if the proof of it is in the assumption
list. Therefore a nil assumption list means that there exists
no true formula for the given constructors. This makes the
proposition vacuously true.

C.1.2 Case of non-nil assumption list
The base case is when the length of the assumption list is
one, in other words, it is the case when calling search assmp
with an assumption list, (A by P, nil) and a true formula
A. Since formulas of the related constructors are considered
true only when their proofs are in the assumption list, there
exists one true formula A in this case.

The tactical search assmp finds the proof of the true formula
A by the tactic initpf; thus search assmp is complete in the
base case.

For the inductive step, suppose that the tactical search assmp
is complete on any assumption list of length k.

For any assumption list of length k + 1, with a true for-
mula A, first, the prover calls the tactic initpf to see if the
first element of the assumption list is the proof of A. If so,
it returns the proof from the list. Otherwise, the prover
calls the tactic init2pf. The tactic init2pf calls the tactical
search assmp with the tail of the assumption list of length
k. By the induction hypothesis, the tactical search assmp is
complete on an assumption list of length k, i. e., it always
finds the proof of any true formula from an assumption list
of length k. Therefore the tactical search assmp is complete
for an assumption list of length k + 1.

By induction, the tactical search assmp always finds a proof
from a list of assumptions. Hence, the tactical search assmp
is complete.

C.2 Tactical fp string valid
The tactical fp string valid is related to the formula con-
structor string valid. The input of the formula constructor
string valid is a formula of type string and there exists two
formula constructors for type string:

• mk str1 : char → string.

• mk str : char → string → string.

The constructor mk str1 is used to construct a formula of
type string from a formula of type char. The formula built
by mk str1 can be considered as a string of length 1. The
only way to construct a bigger formula of type string is using
the constructor mk str. The constructor mk str returns a
new formula of type string after adding the input formula
of type char to the head of another input formula of type
string.

The completeness of the tactical fp string valid can be proved
by induction on the structure of the input formula of string valid.

The base case occurs when an input formula is formed by the
formula constructor mk str1. If the input formula is true,
then the prover always returns the proof string valid mk str1
using the tactic string valid mk str1 pf. Therefore, in the
base case, the tactical fp string valid always find the proof
of a true formula of the formula constructor string valid.

For the inductive step, suppose that the tactical fp string valid
returns the proof of a true formula string valid(str). We
can make a new and bigger formula of type string by us-
ing the formula constructor mk str. Then calling the tacti-
cal fp string valid with a true formula string valid(mk str(ch,
str)) is always reduced to calling the tactical fp string valid
with string valid(str) by the tactic string valid mk str pf. By
the induction hypothesis, the tactical fp string valid can find
the proof of string valid(str). Therefore the tactical fp string valid
can find the proof of string valid(mk str(ch, str)).

xiv

By induction, the tactical fp string valid always find a proof
of a true formula formed by string valid; thus it is complete.

C.3 Tactical fp ide valid
The tactical fp ide valid is related to the formula constructor
ide valid.

The formula constructor ide valid takes a formula of type
ide, and there exists only one formula constructor in the
linking logic which can build a formula of type ide. The
formula constructor mk ide constructs a formula of type ide
from a formula of string: mk ide : string → ide.

For a true formula ide valid(mk ide(str)), the tactic
ide valid mk ide pf is the only applicable tactic and applying
the tactic ide valid mk ide pf is always reduced to calling the
tactical fp string valid with a formula string valid(str).

Since the tactical fp string valid is complete on the formula
constructor string valid, calling the tactical fp string valid
with a true formula string valid(str) always finds the proof.

Hence calling the tactical fp ide valid with a true formula of
ide valid always finds the proof; thus, the tactical fp ide valid
is complete on ide valid.

C.4 Tactical fp emptyset
The tactical fp emptyset is related to the formula construc-
tor isempty. In the linking logic, there is only one true for-
mula isempty(emptyset) for the tactical fp emptyset and the
tactical fp emptyset always returns the proof set empty pf
by the tactic set empty pf.

Therefore the tactical fp emptyset is complete.

C.5 Tactical fp set
The tactical fp set is related to the formula constructors,
singleton and set union:

• singleton : T → (set T).
• set union : (set T) → (set T) → (set T).

For a given type T, the constructor singleton returns a set
of single element, and the constructor set union returns a
union set of two sets. In the linking logic, the constructor
set union is the only operator on sets for making a bigger
set.

The completeness of the tactical fp set can be proved by
induction on the structure of the formulas of the formula
constructors singleton and set union.

The base case occurs when a set consists of only one ele-
ment. Since the formula constructor singleton is used to
make a singleton set, the only applicable tactic is the tactic
singleton refl pf. The tactical fp set always find the proof
of a true formula of singleton by applying the tactic single-
ton refl pf; thus, the tactical fp set is complete in the base
case.

For the inductive step, suppose that the tactical fp set finds
the proof of a formula X ∈ S1 if the formula is true, and

the tactical fp set also finds the proof of a formula X ∈ S2 if
the formula is true. Calling the tactical fp set with a true
formula X ∈ set union(S1,S2) falls into one of the following
two cases:

C.5.1 Tactic set union1 pf
If the formula X ∈ S1 is true, calling the tactical fp set with
X ∈ set union(S1,S2) is reduced to calling the tactical fp set
with X ∈ S1 by the tactic set union1 pf. By inductive hy-
pothesis, the tactical fp set finds the proof of X ∈ S1.

C.5.2 Tactic set union2 pf
If the formula X ∈ S1 is not true, then the formula X ∈ S2
must be true since the formula X ∈ set union(S1,S2) is true.
Therefore calling the tactical fp set with X ∈ set union(S1,S2)
is reduced to calling the tactical fp set with X ∈ S2 by the
tactic set union2 pf. By inductive hypothesis, the tactical
fp set finds the proof of X ∈ S2.

By induction, the tactical fp set always finds the proof of a
formula of set union; thus, the tactical fp set is complete in
the inductive step.

Hence the tactical fp set is complete on singleton and set union
by induction.

C.6 Tactical fp validper
The tactical fp validper is related to the formula construc-
tor validper. There are two true formulas for the tacti-
cal fp validper in the linking logic: validper(module eq) and
validper(set equiv). The tactical fp validper returns the proof
module eq validper by using the tactic module eq validper pf
if an input formula is validper(module eq), and it returns the
proof set equiv validper by using the tactic set equiv validper pf
if an input formula is validper(set equiv).

Therefore the tactical fp validper is complete.

C.7 Tactical fp validper refl
The tactical fp validper refl is related to the formula con-
structors module eq and set equiv. For the formula con-
structor module eq, there is only one true formula mod-
ule eq(m,m) in the linking logic. The tactical fp validper refl
returns the proof module eq refl by using the tactic mod-
ule eq refl pf. For the formula constructor set equiv, there is
only one true formula set equiv(s,s) in the linking logic, and
the tactical fp validper refl returns the proof set equiv refl
by using the tactic set equiv refl pf.

Therefore the tactical fp validper refl is complete.

C.8 Tactical fp list nil
The tactical fp list nil is related to the formula construc-
tor list is nil. In the linking logic, there is only one true
formula list is nil(list nil) for the tactical fp list nil. The tac-
tical fp list nil always returns the proof list is nil nil by the
tactic list is nil nil pf.

Therefore the tactical fp list nil is complete.

C.9 Tactical fp list valid

xv

The tactical fp list valid is related to the formula constructor
list valid. The input of the formula constructor list valid is
a formula standing for a list of a given type T. There exist
2 formula constructors for type list T :

• list nil : list T.

• list cons : T → (list T) → (list T).

The constructor list nil returns a nil list. The constructor
list cons returns a new list after adding a given head element
to a tail list, and using the constructor list cons is the only
way of making a new and longer list out of an existing list
in the linking logic.

The completeness of the tactical fp list valid can be proved
by induction on the structure of input formulas of the for-
mula constructor list valid.

The base case occurs when an input list is nil. Calling the
tactical fp list valid with a true formula list valid(eq, list nil)
is reduced to calling the tactical fp validper with a formula
validper(eq), and calling the tactical fp list nil with a for-
mula list is nil(list nil) by the tactic list valid nil pf. Since
the tactical fp validper and the tactical fp list nil are com-
plete as proved earlier, the tactical fp list valid always finds
the proof of list valid(eq, list nil); thus, it is complete in the
base case.

For the inductive step, suppose that calling the tactical
fp list valid with a true formula list valid(eq, tl) finds the
proof when l = list cons(eq, hd, tl). Calling fp list valid with
a true formula list valid(eq, l) is always reduced to calling
the tactical fp validper refl with a formula eq(hd, hd), and
calling the tactical fp list valid with list valid(eq,tl) by the
tactic list valid cons pf. Calling the tactical
fp validper refl always finds a proof of formulas built by the
formula constructors module eq and set equiv as proved ear-
lier, and calling the tactical fp list valid finds the proof of
list valid(eq,tl) by the inductive hypothesis. So calling the
tactical fp list valid finds the proof of list valid(eq, l).

By induction, the tactical fp list valid always find a proof
of a true formula formed by list nil and list cons; thus the
tactical fp list valid is complete.

C.10 Tactical fp prp valid
The tactical fp prp valid is related to the formula construc-
tor prp valid. The formula constructor prp valid takes a
formula of type property, and it checks the validity of the
input which is built by the formula constructor mk prp.

For a true formula prp valid(mk prp(pname)), the tactic
mk prp valid pf is the only applicable tactic, and applying
the tactic mk prp valid pf is always reduced to calling the
tactical fp ide valid with a formula ide valid(pname).

Since the tactical fp ide valid is complete on the formula
constructor ide valid, calling the tactical fp ide valid with a
true formula ide valid(pname) always finds the proof.

Hence calling the tactical fp prp valid with a true formula
of prp valid and mk prp always finds the proof; thus, the

tactical fp prp valid is complete on prp valid and mk prp.

C.11 Tactical fp prp match
The tactical fp prp match is related to five different formula
constructors mk prp req, rq component name exists,
mk rq component name, rq hashcode checked
and rq export id exists. There exist five tactics correspond-
ing to each formula constructor in the prover, and the tacti-
cal fp prp match is complete on those five formula construc-
tors by induction on cases.

C.11.1 Tactic mk req refl pf
The formula constructor mk prp req takes two formulas of
type property built by the constructor mk prp and checks if
two formulas exactly match each other.

Calling the tactical fp prp match with a true formula
mk prp req(mk prp(pname), mk prp(pname)) is always reduced
to calling the tactical fp prp valid with a formula
prp valid(mk prp(pname)) by the tactic mk req refl pf. Since
the tactical fp prp valid is complete on the formula construc-
tors prp valid and mk prp, calling the tactical fp prp valid
with prp valid(mk prp(pname)) always finds the proof.

Hence calling the tactical fp prp match with a true formula
of mk prp req and mk prp always finds the proof; thus, the
tactical fp prp match is complete on mk prp req and mk prp.

C.11.2 Tactic req mk cname pf
The formula constructor rq component name exists takes a
formula of type property built by the constructor mk cname
and checks if the prp kind of the input formula is
prp component name. In the linking logic, using the con-
structor mk cname is the only way of making a formula of
type property whose prp kind is prp component name. This
means a true formula of rq component name exists always
has an input formula built by the constructor mk cname.

Calling the tactical fp prp match with a true formula
rq component name exists(mk cname(n)) always finds the proof
req mk cname by the tactic req mk cname pf. Therefore the
tactical fp prp match is complete on the formula constructor
rq component name exists.

C.11.3 Tactic req mk cname′ pf
The formula constructor mk rq component name takes two
formulas of type property, each of which is built by the
constructor mk cname, and checks if two formulas exactly
match each other as well as if their prp kind is
prp component name. In the linking logic, using the con-
structor mk cname is the only way of making a true formula
of type property whose prp kind is prp component name. This
means a true formula of the formula constructor
mk rq component name always has two input formulas built
by the constructor mk cname.

Calling the tactical fp prp match with a true formula
mk rq component name(mk cname(n), mk cname(n)) is always
reduced to calling tactical fp ide valid with a formula ide valid(n)
by the tactic req mk cname′ pf. Since the tactical fp ide valid
is complete on the formula constructor ide valid, calling the
tactical fp ide valid with ide valid(n) always finds the proof.

xvi

Hence calling the tactical fp prp match with a true formula
of mk rq component name always finds the proof; thus, the
tactical fp prp match is complete on mk rq component name.

C.11.4 Tactic req mk hash prp pf
The formula constructor rq hashcode checked takes a for-
mula of type property built by the constructor mk hash prp,
and checks if the prp kind of the input formula is prp hash code.
In the linking logic, using the constructor mk hash prp is the
only way of making a true formula of type property whose
prp kind is prp hash code. That means a true formula of
the constructor prp req hashcode checked always has an in-
put formula built by the constructor mk hash prp.

Calling the tactical fp prp match with a true formula
rq hashcode checked(mk hash prp(h)) always finds the proof
req mk hash prp by the tactic req mk hash prp pf. There-
fore the tactical fp prp match is complete on the formula
constructor rq hashcode checked.

C.11.5 Tactic req mk ide prp pf
The formula constructor rq export id exists takes a formula
of type property built by the constructor mk ide prp, and
checks if the prp kind of the input formula is prp export ids.
In the linking logic, using the constructor mk ide prp is the
only way of making a true formula of type property whose
prp kind is prp export ids. That means, a true formula of the
constructor rq export id exists always has an input formula
built by the constructor mk ide prp.

Calling the tactical fp prp match with a true formula
rq export id exists(mk ide prp(i)) always finds the proof
req mk ide prp by the tactic req mk ide prp pf; therefore the
tactical fp prp match is complete on the formula constructor
rq export id exists.

C.12 Tactical fp cdsc valid
The tactical fp cdsc valid is related to the formula construc-
tor component dsc valid. The input of component dsc valid
is a formula of type component dsc. There exist two formula
constructors for type component dsc:

• mk cdsc : (set property) → (list (set property)) → com-
ponent dsc.

• cdsc combine : component dsc→ component dsc→ com-
ponent dsc.

The constructor mk cdsc builds a formula of type compo-
nent dsc out of a set of exported properties and a list of
sets of imported properties. The constructor cdsc combine
returns a formula of type component dsc out of two formulas
of type component dsc.

The completeness of the tactical fp cdsc valid can be proved
by induction on the structure of the input formula of com-
ponent dsc valid.

The base case occurs when the input formula of the for-
mula constructor component dsc valid is built by the con-
structor mk cdsc. Calling the tactical fp cdsc valid with a

true formula component dsc valid(mk cdsc(exp, imp)) is al-
ways reduced to calling the tactical fp list valid with a for-
mula list valid(set equiv, imp) by the tactic mk cdsc valid pf.
Since the tactical
fp list valid is complete on list valid, the tactical fp list valid
always finds the proof of list valid(set equiv, imp).

Hence the tactical fp cdsc valid with the true formula com-
ponent dsc valid(mk cdsc(exp, imp)) always finds the proof;
thus the tactical fp cdsc valid is complete on the formula
constructor component dsc valid in the base case.

For the inductive step, suppose that calling the tactical
fp cdsc valid with a true formula component dsc valid(d1) al-
ways finds the proof, and calling fp cdsc valid with a true for-
mula component dsc valid(d2) always finds the proof. Call-
ing the tactical fp cdsc valid with a true formula compo-
nent dsc valid(cdsc combine(d1, d2)) is always reduced to by
the tactic cdsc combine valid pf calling the tactical fp cdsc valid
with a formula component dsc valid(d1), and calling the tac-
tical fp cdsc valid with a formula component dsc valid(d2).

Then the tactical fp cdsc valid always finds the proof of
the true formula component dsc valid(cdsc combine(d1, d2))
since the tactical fp cdsc valid finds the proofs of compo-
nent dsc valid(d1) and component dsc valid(d2) by the induc-
tion hypothesis; thus the tactical fp cdsc valid is complete
on component dsc valid in the inductive step.

By induction, the tactical fp cdsc valid is complete on the
formula constructor component dsc valid.

C.13 Tactical fp signed keybind
The tactical fp signed keybind is related to the formula con-
structors says and keybind. In the linking logic, there are
three cases in which the formula built by says is true, and
each case depends on input formulas. Any formula built by
says is considered true if and only if the second argument of
the formula comes from the formula constructors keybind,
prp auth and module dsc.

But the tactical fp signed keybind is concerned with a for-
mula whose second argument is formed by keybind. This
means semantically that fp signed keybind finds a proof of
legitimate bindings between a principal and its public key.

Calling the tactical fp signed keybind with a list Γ of as-
sumptions and a true formula says(ca, keybind(prn, pkey))
is always reduced to calling the tactical search assmp with
Γ and a formula keybind(ca, caKey), and calling the tacti-
cal search assmp with Γ and a formula signed (caKey, keyc-
ert(prn, pkey, pinfo)) by the tactic keycert pf. Since the tac-
tical search assmp is complete on the formula constructors
signed and keybind, calling the tactical search assmp with
Γ and a formula keybind(ca, caKey) and calling the tacti-
cal search assmp with Γ and a formula signed (caKey, keyc-
ert(prn, pkey, pinfo)) always find the proof.

Hence calling the tactical fp signed keybind with a list of
assumptions and a true formula of the formula constructors
says and keybind always finds the proof; thus, the tactical
fp signed assmp is complete on says and keybind.

xvii

C.14 Tactical fp signed auth
The tactical fp signed auth is related to the formula con-
structors says and prp auth.

Calling the tactical fp signed auth with a list Γ of assump-
tions and a true formula says(auth, prp auth(prn, rset)) is
always reduced to calling the tactical fp signed keybind with
Γ and a formula says(ca, keybind(auth, authKey)), calling the
tactical search assmp with Γ and a formula key authority(ca),
and calling the tactical search assmp with Γ and a formula
signed (authKey, prp auth(prn, rset)) by the tactic prp auth pf.

Since the tactical fp signed keybind is complete on says and
keybind, and the tactical search assmp is complete on the
formula constructors key authority and signed, calling the
tactical fp signed keybind with Γ and says(ca, keybind(auth,
authKey)), and calling the tactical search assmp with Γ and
formulas key authority(ca) and signed (authKey, prp auth(prn,
rset)) always find the proofs.

Hence calling the tactical fp signed auth with a list of as-
sumptions and a true formula of the formula constructors
says and prp auth always finds the proof; thus, the tactical
fp signed auth is complete on says and prp auth.

C.15 Tactical fp signed dsc
The tactical fp signed dsc is related to the formula construc-
tors says and module dsc.

Calling the tactical fp signed dsc with a list Γ of assumptions
and a true formula says(auth, module dsc(m, dsc)) is always
reduced to calling the tactical fp signed keybind with Γ and a
formula says(ca, keybind(auth, authKey)), calling the tactical
search assmp with Γ and a formula key authority(ca), and
calling the tactical search assmp with Γ and a formula signed
(caKey, module dsc(m, dsc)) by the tactic component dsc pf.

Since the tactical fp signed keybind is complete on says and
keybind, and the tactical search assmp is complete on
key authority and signed, calling fp signed keybind with Γ
and says(ca, keybind(auth, authKey)), and calling search assmp
with Γ and formulas key authority(ca) and signed (auth, mod-
ule dsc(m, dsc)) always find the proofs.

Hence calling the tactical fp signed dsc with a list of as-
sumptions and a true formula of the formula constructors
says and module dsc always finds the proof; thus, the tacti-
cal fp signed dsc is complete on says and module dsc.

C.16 Tactical fp valid sig auth
Calling the tactical fp valid sig auth with a list Γ of assump-
tions and a true formula valid sig prp auth(ma, prp) is re-
duced to five calls to other tacticals:

• calling the tactical search assmp with Γ and a formula
key authority(ca),
• calling the tactical search assmp with Γ and a formula

keybind(ca, caKey),
• calling the tactical search assmp with Γ and a formula

prp server(pa),
• calling the tactical fp signed keybind with Γ and a for-

mula says(ca, keybind(pa, paKey)), and

• calling the tactical fp signed auth with Γ and a formula
says(pa, prp auth(ma, prp))

As proved earlier, the tactical search assmp is complete on
the formula constructors key authority, keybind and prp server,
the tactical fp signed keybind is complete on the formula
constructors says and keybind, and the tactical fp signed auth
is complete on the formula constructors says and prp auth.
Hence the tactic valid sig auth pf always finds the proof of
valid sig prp auth(ma, prp) with a list of assumptions; thus,
the tactical valid sig auth pf is complete on the formula con-
structor valid sig prp auth.

C.17 Tactical fp valid sig cdsc
Calling the tactical fp valid sig cdsc with a list Γ of assump-
tions and a true formula valid sig component dsc(ma, m, dsc)
is reduced to five calls to other tacticals:

• calling the tactical search assmp with Γ and a formula
key authority(ca),

• calling the tactical search assmp with Γ and a formula
keybind(ca, caKey),

• calling the tactical search assmp with Γ and a formula
module authority(ma),

• calling the tactical fp signed keybind with Γ and a for-
mula says(ca), keybind(ma, maKey)), and

• calling the tactical fp signed dsc with Γ and a formula
says(pa, module dsc(m, dsc))

As proved earlier, the tactical search assmp is complete on
the formula constructors key authority, keybind and mod-
ule authority, the tactical fp signed keybind is complete on
the formula constructors says and keybind, and the tactical
fp signed dsc is complete on the formula constructors says
and module dsc. Hence the tactic valid sig cdsc pf always
finds the proof of valid sig component dsc(ma, m, dsc) with
a list of assumptions; thus, the tactical valid sig cdsc pf is
complete on the formula constructor valid sig component dsc.

C.18 Tactical fp signed by ma
Calling the tactical fp signed by ma with a list Γ of assump-
tions and a true formula signed by ma(m, dsc, rq) is reduced
to three calls to other tacticals:

• calling the tactical fp valid sig auth with Γ and a for-
mula valid sig prp auth(ma, rqset)

• calling the tactical fp valid sig cdsc with Γ and a for-
mula valid sig component dsc(ma, m, dsc)

• calling the tactical fp set with a formula rq ∈ rqset

As proved earlier, the tactical fp valid sig auth is complete
on the formula constructor valid sig prp auth, the tactical
fp valid sig cdsc is complete on the formula constructor
valid sig component dsc, and the tactical fp set is complete
on the formula constructors singleton and set union.

The above three calls to these tacticals find the proofs of
the true formulas. Hence the tactic signed by ma pf always
finds the proof of signed by ma(m, dsc, rq) with a list of

xviii

assumptions; thus, the tactical fp signed by ma is complete
on the formula constructor signed by ma.

C.19 Tactical fp as cdsc combine
The tactical fp as cdsc combine is related to the formula
constructor signed rq.

The input of the formula constructor signed rq consists of a
formula standing for a set of type module, a formula of type
component dsc and a formula of type prp req. The tactical
fp as cdsc combine reasons about different cases of the sec-
ond input formula of type component dsc. The completeness
of the tactical fp as cdsc combine on signed rq is proved by
induction on the structure of the second input formula of
signed rq.

As already shown in the proof of the tactical fp cdsc valid,
there exist two formula constructors for type component dsc:
mk cdsc and cdsc combine.

The base case occurs when the second input formula of the
formula constructor signed rq is built using the construc-
tor mk cdsc. Calling the tactical fp as cdsc combine with
a list Γ of assumptions and a true formula signed rq(m,
mk cdsc(exp, imp), rq) is always reduced to calling the tac-
tical fp signed by ma with Γ and a formula
signed by ma(m, mk cdsc(exp, imp)) by the tactic sig rq sng pf.

As already shown, the tactical fp signed by ma always finds
the proof of a true formula of signed by ma with a list of
assumptions. Therefore the tactical fp as cdsc combine finds
the proof of signed rq(m, mk cdsc(exp, imp), rq) with Γ; thus
the tactical fp as cdsc combine is complete on signed rq in
the base case.

For the inductive step, suppose that the tactical
fp as cdsc combine finds the proof of a formula signed rq(m,
d1, rq) with a list Γ of assumptions if the formula is true, and
the tactical fp as cdsc combine finds the proof of a formula
signed rq(m, d2, rq) with Γ if the formula is true.

The only way of building a new formula of type compo-
nent dsc is using the formula constructor cdsc combine. There-
fore calling the tactical fp as cdsc combine with Γ and a true
formula signed rq(m, cdsc combine(d1, d2), rq) falls into one
of the following two cases:

C.19.1 Tactic sig rq cdsc combine i1 pf
If the formula signed rq(m, d1, rq) is true, calling the tactical
fp as cdsc combine with Γ and signed rq(m, cdsc combine(d1,
d2), rq) is reduced to calling the tactical fp as cdsc combine
with Γ and a formula signed rq(m, d1, rq), calling the tac-
tical fp cdsc valid with a formula component dsc valid(d1),
and calling the tactical fp cdsc valid with a formula compo-
nent dsc valid(d2) by the tactic
sig rq cdsc combine i1 pf.

By the induction hypothesis, the tactical fp as cdsc combine
finds the proof of signed rq(m, d1, rq) with Γ. Since the tacti-
cal fp cdsc valid is complete on the formula constructor com-
ponent dsc valid as shown before, the tactical fp cdsc valid
always finds the proofs of the formulas component dsc valid(d1)
and component dsc valid(d2).

C.19.2 Tactic sig rq cdsc combine i2 pf
If the formula signed rq(m, d1, rq) is not true, then the for-
mula signed rq(m, d2, rq) must be true, since the formula
signed rq(m, cdsc combine(d1, d2), rq) is true by the assump-
tion.

Calling the tactical fp as cdsc combine with Γ and signed rq(m,
cdsc combine(d1, d2), rq) is reduced to calling the tactical
fp as cdsc combine with Γ and a formula signed rq(m, d2,
rq), calling the tactical fp cdsc valid with a formula compo-
nent dsc valid(d1), and calling the tactical fp cdsc valid with
a formula component dsc valid(d2) by the tactic
sig rq cdsc combine i2 pf.

By the induction hypothesis, the tactical fp as cdsc combine
finds the proof of signed rq(m, d2, rq) with Γ. Since the tacti-
cal fp cdsc valid is complete on the formula constructor com-
ponent dsc valid as shown before, the tactical fp cdsc valid
always finds the proofs of the formulas component dsc valid(d1)
and component dsc valid(d2).

Therefore calling the tactical fp as cdsc combine finds the
proof of a true formula of the formula constructor signed rq;
thus the tactical fp as cdsc combine is complete on signed rq
in the inductive step.

Hence by induction the tactical fp as cdsc combine is com-
plete on the formula constructor signed rq.

C.20 Tactical fp as set union
The tactical fp as set union is related to the formula con-
structor all signed.

The input of the formula constructor all signed consists of
a formula standing for a set of type module, a formula of
type component dsc and a formula standing for a set of type
prp req. The tactical fp as set union reasons about different
cases of the third input formula. The completeness of the
tactical fp as set union on all signed is proved by induction
on the structure of the third input formula of all signed.

As already shown in Section C.5, there exist two formula
constructors for sets, singleton and set union.

Calling the tactical fp as set union with a list of assump-
tions and a true formula of all signed falls into the following
two cases.

C.20.1 Case of empty set
If the third input is an empty set, then calling fp as set union
with a list Γ of assumptions and a formula all signed(m, dsc,
emptyset) is reduced to calling the tactical fp emptyset with
a formula isempty(emptyset) by the tactic all sig emptyset pf.
Since fp emptyset is complete on the formula constructor
isempty, the call returns the proof of all signed(m, dsc, emp-
tyset).

C.20.2 Case of non-empty set
The base case occurs when the third input is built using the
constructor singleton. calling the tactical fp as set union
with a list Γ of assumptions and a true formula all signed(m,
dsc, singleton(rq)) is always reduced to calling the tactical

xix

fp as cdsc combine with Γ and a formula signed rq(m, dsc,
rq) by the tactic all sig pf.

As shown before, the tactical fp as cdsc combine always finds
a proof of a true formula of signed rq with a list of assump-
tions. Therefore the tactical fp as set union finds the proof
of all signed(m, dsc, singleton(rq)) with Γ; thus the tactical
fp as set union is complete on all signed in the base case.

For the inductive step, suppose that the tactical fp as set union
finds the proof of a formula all signed(m, dsc, rset1) with a
list Γ of assumptions if the formula is true, and the tactical
fp as set union finds the proof of a formula all signed(m, dsc,
rset2) with Γ if the formula is true.

The only way of building a new set out of two sets is using
the formula constructor set union. Therefore calling the tac-
tical fp as set union with Γ and a true formula all signed(m,
dsc, set union(rset1, rset2)) is always reduced to calling
fp as set union with Γ and a formula all signed(m, dsc, rset1)
and calling fp as set union with Γ and a formula all signed(m,
dsc, rset2) by the tactic all sig set union pf.

By the induction hypothesis, fp as set union finds the proofs
of all signed(m, dsc, rset1) and all signed(m, dsc, rset2) with
Γ. Hence the tactical fp as set union is complete on all signed
in the inductive step.

By induction, the tactical fp as set union is complete on the
formula constructor all signed.

C.21 Tactical fp valid cdsc
Calling the tactical fp valid cdsc with a list Γ of assumptions
and a true formula signed component dsc(m, dsc, rqset) is
reduced to two calls to other tacticals: Calling the tactical
fp cdsc valid with a formula component dsc valid(dsc), and
calling the tactical fp as set union with Γ and a formula
all signed(m, dsc, rqset)

As proved earlier, the tactical fp cdsc valid is complete on
the formula constructor component dsc valid, and the tacti-
cal fp as set union is complete on the formula constructor
all signed.

Since the above two calls to these tacticals find the proofs of
the true formulas, the tactic valid cdsc pf always finds the
proof of a true formula signed component dsc(m, dsc, rqset)
with a list of assumptions; thus, the tactical fp valid cdsc is
complete on the formula constructor signed component dsc.

C.22 Tactical fp valid lib
The tactical fp valid lib is related to the formula constructor
valid library. The input of the formula constructor valid library
is a formula standing for a list of sets of type module, and
a formula standing for a list of sets of type property. As
shown in Section C.9, there exist two formula constructors
for lists, list nil and list cons.

The completeness of the tactical fp valid lib can be proved by
induction on the structure of input formulas of valid library.
The semantics of valid library requires that two input for-
mulas should have the same length. That means, for a true
formula of valid library, the number of list cons and list nil

in the first input list is the same as that in the second input
list. Therefore, it never happens that the first input list is
built by list cons although the second input list is built by
list nil, vice versa.

The base case occurs when the input formulas of the for-
mula constructor valid library is built using the constructor
list nil. Calling the tactical fp valid lib with a list of as-
sumptions and a true formula valid library(lib, libdsc) is al-
ways reduced to calling the tactical fp list nil with a formula
list is nil(lib) and calling the tactical fp list nil with a formula
list is nil(libdsc) by the tactic valid lib nil pf. Since the tac-
tical fp list nil is complete on list is nil, fp list nil finds the
proofs of list is nil(lib) and list is nil(libdsc).

Therefore the tactical fp valid lib finds the proof of the true
formula valid library(lib, libdsc); thus fp valid lib is complete
on valid library in the base case.

For the inductive step, suppose that the tactical fp valid lib
finds the proof of a true formula valid library(libtl, libdsctl)
with a list of assumptions Γ, where lib = list cons(set equiv,m, libtl)
and libdsc = list cons(set equiv, dsc, libdsctl).

Calling the tactical fp valid lib with Γ and a true formula
valid library(lib, libdsc) is always reduced to calling the tacti-
cal search assmp with Γ and library dsc(m, dsc) and calling
the tactical fp valid lib with valid library(libtl, libdsctl) by the
tactic valid lib cons pf.

The tactical search assmp is complete on the formula con-
structor library dsc, so calling search assmp with library dsc(m,
dsc) returns the proof. The tactical fp valid lib finds the
proof of valid library(libtl, libdsctl) by the induction hypothe-
sis; thus the tactical fp valid lib is complete on valid library
in the inductive step.

By induction, the tactical fp valid lib is complete on the for-
mula constructor valid library.

C.23 Tactical fp has prps set union′
The tactical fp has prps set union′ is related to the formula
constructor has prp.

The input of the formula constructor has prp consists of a
formula of type prp req and a formula standing for a set of
type property. The tactical fp has prps set union′ reasons
about different cases of the second input formula.

The completeness of the tactical fp has prps set union′ on
has prp is proved by induction on the structure of the sec-
ond input formula of has prp. By the semantics of has prp,
the second input of it cannot be an empty set. That means
the second input formula is always built by the formula con-
structors singleton and set union.

The base case occurs when the second input formula of the
formula constructor has prp is built using the constructor
singleton. Calling the tactical fp has prps set union′ with a
true formula has prp(rq, singleton(prp)) is always reduced to
calling the tactical fp prp match with a formula prp match(rq,
prp) by the tactic has prp singleton pf.

xx

As already shown, the tactical fp prp match always finds the
proof of a true formula. Therefore the tactical
fp has prps set union′ finds the proof of has prp(rq, single-
ton(prp)); thus the tactical fp has prps set union′ is com-
plete on has prp in the base case.

For the inductive step, suppose that the tactical
fp has prps set union′ finds the proof of a formula has prp(rq,
p1) if the formula is true, and the tactical fp has prps set union′

finds the proof of a formula has prp(rq, p2) if the formula is
true.

The only way of building a set out of two sets is using the
formula constructor set union. Therefore calling the tac-
tical fp has prps set union′ with a true formula has prp(rq,
set union(p1, p2)) falls into one of the following two cases.

C.23.1 Tactic has prp sng union1 pf
If the formula has prp(singleton(rq), p1) is true, then calling
the tactical fp has prps set union′ with the formula has prp(rq,
set union(p1, p2)) is reduced to calling the tactical
fp has prps set union′ with has prp(rq, p1) by the tactic
has prp union1 pf. By the induction hypothesis, the tactical
fp has prps set union′ finds the proof of has prp(rq, p1).

C.23.2 Tactic has prps sng union2 pf
If the formula has prp(rq, p1) is not true, then the formula
has prp(rq, p2) must be true, since the formula has prp(rq,
set union(p1, p2)) is true by the assumption.

Calling the tactical fp has prps set union′ with the formula
has prp(rq, set union(p1, p2)) is reduced to calling the tacti-
cal fp has prps set union′ with has prp(rq, p2) by the tactic
has prp union2 pf. By the induction hypothesis, the tactical
fp has prps set union′ finds the proof of has prp(rq, p2).

Calling the tactical fp has prps set union′ finds the proof
of a true formula of has prp; thus fp has prps set union′ is
complete on has prp in the inductive step. By induction, the
tactical fp has prps set union′ is complete on the formula
constructor has prp.

C.24 Tactical fp has prps set union
The tactical fp has prps set union is related to the formula
constructor has property.

The input of the formula constructor has property consists
of a formula standing for a set of type prp req and a formula
standing for a set of type property. The tactical
fp has prps set union reasons about different cases of the
first input formula. The completeness of fp has prps set union
on has property is proved by induction on the structure of
the first input formula of has property.

As already shown in Section C.5, there exists two formula
constructors for sets, singleton and set union. Calling the
tactical fp has prps set union with a true formula falls into
the following 2 cases according to the form of the first input.

C.24.1 Case of empty set
If the first input formula is an empty set, then calling
fp has prps set union with a true formula has property(emptyset,

prpset) is reduced to calling the tactical fp emptyset with a
formula isempty(emptyset) by the tactic has prps emptyset pf.
Since the tactical fp emptyset is complete on the formula
constructor isempty, the call returns the proof of the for-
mula has property(emptyset, prpset).

C.24.2 Case of non-empty set
The base case occurs when the first input formula is built us-
ing the constructor singleton. Calling fp has prps set union
with a true formula has property rq(singleton(rq), prpset) is
always reduced to calling the tactical fp has prps set union′

with a formula has prp(rq, prpset) by the tactic has prps pf.

As already shown, the tactical fp has prps set union′ always
finds the proof of a true formula of has prp. Therefore
the tactical fp has prps set union finds the proof of the for-
mula has property rq(singleton(rq), prpset); thus the tactical
fp has prps set union is complete on has property in the base
case.

For the inductive step, suppose that fp has prps set union
finds the proof of a formula has property(rqset1, prpset) if
the formula is true, and the tactical fp has prps set union
finds the proof of a formula has property(rqset2, prpset) if
the formula is true.

The only way of building a new set out of 2 sets is using the
formula constructor set union. Therefore calling the tactical
fp has prps set union with a true formula
has property(set union(rqset1, rqset2), prpset) is always re-
duced to calling fp has prps set union with a formula
has property(rqset1, prpset) and calling fp has prps set union
with a formula has property(rqset2, prpset) by the tactic
has prps set union pf.

By the induction hypothesis, fp has prps set union finds the
proofs of has property(rqset1, prpset) and has property(rqset2,
prpset). The tactical fp has prps set union is complete on
has property in the inductive step.

By induction, the tactical fp has prps set union is complete
on has property.

C.25 Tactical fp exp prps′
The tactical fp exp prps′ is related to the formula construc-
tor exp rprp.

The input of the formula constructor exp rprp consists of
a formula of type prp req and a formula of type compo-
nent dsc. The tactical fp exp prps′ reasons about different
cases of the second input formula. The completeness of the
tactical fp exp prps′ on exp rprp is proved by induction on
the structure of the second input formula of exp rprp.

As already shown in the proof of the tactical fp cdsc valid,
there exists two formula constructors for type component dsc:
mk cdsc and cdsc combine.

The base case occurs when the second input formula of the
formula constructor exp rprp is built using the constructor
mk cdsc. calling the tactical fp exp prps′ with a true formula
exp rprp(rq, mk cdsc(exp, imp)) is always reduced to calling

xxi

the tactical fp has prps set union′ with a formula has prp(rq,
exp) by the tactic exp rprps cdsc pf.

As already shown, the tactical fp has prps set union′ always
finds the proof of a true formula of has prp. Therefore the
tactical fp exp prps′ finds the proof of the formula exp rprp(rq,
mk cdsc(exp, imp)); thus the tactical fp exp prps′ is complete
on exp rprp in the base case.

For the inductive step, suppose that the tactical fp exp prps′

finds the proof of a formula exp rprp(rq, d1) if the formula
is true, and the tactical fp exp prps′ finds the proof of a
formula exp rprp(rq, d2) if the formula is true.

The only way of building a new component dsc formula is
using the formula constructor cdsc combine. Therefore call-
ing the tactical fp exp prps′ with a true formula exp rprp(rq,
cdsc combine(d1, d2)) falls into one of the following two
cases.

C.25.1 Tactic exp rprp cdsc i1 pf
If the formula exp rprp(rq, d1) is true, calling the tactical
fp exp prps′ with the formula exp rprp(rq, cdsc combine(d1,
d2)) is reduced to calling fp exp prps′ with exp rprp(rq, d1)
by the tactic exp rprp cdsc i1 pf. By the induction hypoth-
esis, the tactical fp exp prps′ finds the proof of exp rprp(rq,
d1)

C.25.2 Tactic exp rprp cdsc i2 pf
If the formula exp rprp(rq, d1) is not true, then the formula
exp rprp(rq, d2) should be true in order to make the formula
exp rprp(rq, cdsc combine(d1, d2)) true. Calling the tactical
fp exp prps′ with exp rprp(rq, cdsc combine(d1, d2)) is re-
duced to calling the tactical fp exp prps′ with exp rprp(rq,
d2) by the tactic export rprps cdsc i2 pf. By the induc-
tion hypothesis, the tactical fp exp prps′ finds the proof of
exp rprp(rq, d2)

Therefore calling the tactical fp exp prps′ finds the proof of
a true formula of exp rprp; thus the tactical fp exp prps′ is
complete on exp rprp in the inductive step.

By induction, the tactical fp exp prps′ is complete on the
formulas of exp rprp.

C.26 Tactical fp exp prps
The tactical fp exp prps is related to the formula constructor
export required prps.

The input of the formula constructor export required prps
consists of a formula standing for a set of type prp req and
a formula of type component dsc. The tactical fp exp prps
reasons about different cases of the first input formula. The
completeness of the tactical fp exp prps on
export required prps is proved by induction on the structure
of the first input formula of export required prps.

As already shown in Section C.5, there exists three formula
constructors for sets, emptyset, singleton and set union.

Calling the tactical fp exp prps with a true formula falls into
the following 2 cases according to the form of the first input
formula.

C.26.1 Case of empty set
If the first input formula is an empty set, then calling fp exp prps
with a true formula export required prps(emptyset, dsc) is
reduced to calling the tactical fp emptyset with a formula
isempty(emptyset) by the tactic export rprps empty pf. Since
the tactical fp emptyset is complete on the formula construc-
tor isempty, the call returns the proof of the formula ex-
port required prps(emptyset, dsc)

C.26.2 Case of non-empty set
The base case occurs when the first input formula is built us-
ing the constructor singleton. Calling the tactical fp exp prps
with a true formula export required prps(singleton(rq), dsc)
is always reduced to calling the tactical fp exp prps′ with a
formula exp rprp(rq, dsc) by the tactic export rprps sng pf.

As already shown, the tactical fp exp prps′ always finds the
proof of a true formula of exp rprp. Therefore the tactical
fp exp prps finds the proof of export required prps rq(singleton(rq),
dsc); thus the tactical fp exp prps is complete on the formula
constructor export required prps in the base case.

For the inductive step, suppose that the tactical fp exp prps
finds the proof of a formula export required prps(rqset1, dsc)
if the formula is true, and fp exp prps finds the proof of
a formula export required prps(rqset2, dsc) if the formula is
true.

The only way of building a new set out of 2 sets is using the
formula constructor set union. Therefore calling the tactical
fp exp prps with a true formula
export required prps(set union(rqset1, rqset2), dsc) is always
reduced to calling fp exp prps with export required prps(rqset1,
dsc) and calling fp exp prps with export required prps(rqset2,
dsc) by the tactic export rprps set union pf.

By the induction hypothesis, fp exp prps finds the proofs of
export required prps(rqset1, dsc) and export required prps(rqset2,
dsc). Hence the tactical fp exp prps is complete on the for-
mula constructor export required prps in the inductive step.

By induction, the tactical fp exp prps is complete on the
formula constructor export required prps.

C.27 Tactical fp st imprt cdsc
The tactical fp st imprt cdsc is related to the formula con-
structor satisfy imprt cdsc. The input of satisfy imprt cdsc
is a set of type prp req and a list of sets of type property. As
mentioned in Section C.9, there exist two constructors for a
list type, list nil and list cons.

Calling the tactical fp st imprt cdsc with a true formula sat-
isfy imprt cdsc(imp, explist) semantically means searching a
matching list member from the list explist. Therefore the
completeness of the tactical fp st imprt cdsc can be proved
by induction on the length of explist.

Suppose that the tactical fp st imprt cdsc with a true for-
mula satisfy imprt cdsc(imp, explist). By the semantics of
satisfy imprt cdsc, explist in a true formula of satisfy imprt cdsc
cannot be a nil list.

The base case occurs when the length of explist is one. That

xxii

means, it is the case of explist = list cons(exp, list nil). Since
the formula satisfy imprt cdsc(imp, explist) is true, imp of
prp req must match the set exp of property. Therefore the
call is reduced to calling the tactical
fp has prps set union with a formula has property(imp, exp).
As proved in Section C.24, fp has prps set union always finds
the proof of has property. Hence fp st imprt cdsc always
finds the proof of a true formula of satisfy imprt cdsc in the
base case.

For the inductive step, suppose that fp st imprt cdsc finds
the proof of a true formula satisfy imprt cdsc(imp, explist) for
any imp when the length of explist is k.

Then calling fp st imprt cdsc with a true formula
satisfy imprt cdsc(imp’, list cons(set equiv, exp, explist)), the
length of whose second argument is k + 1, falls into the
following two cases.

C.27.1 Tactic satisfy imprt hd pf
It is the case when the set imp’ of prp req matches the set exp
of property. Then the call is reduced to calling the tactical
fp has prps set union with a formula has property(imp, exp)
by the tactic satisfy imprt hd pf.

Since fp has prps set union is complete on the formula con-
structor has property, fp st imprt cdsc finds the proof in this
case.

C.27.2 Tactic satisfy imprt tl pf
If the set imp’ of prp req doesn’t match the set exp of prop-
erty, then the tactic satisfy imprt tl pf is applied, and the
call is reduced to calling the tactical fp list valid with a for-
mula list valid(set equiv, imp), and calling the tactical
fp st imprt cdsc with a formula satisfy import cdsc(imp, ex-
plist).

The tactical fp list valid always finds the proof of a true
formula of list valid, and fp st imprt cdsc finds the proof of
satisfy import cdsc(imp, explist) by the induction hypothe-
sis; thus, the tactical fp st imprt cdsc finds the proof in the
inductive step.

By induction, the tactical fp st imprt cdsc is complete on
the formula constructor satisfy imprt cdsc.

C.28 Tactical fp st imprt
The tactical fp st imprt is related to the formula constructor
satisfy import req.

The input of the formula constructor satisfy import req is
a formula standing for a list of sets of type prp req and a
formula standing for a list of sets of type property. The
tactical fp st imprt reasons about different cases of the first
input formula. The completeness of the tactical fp st imprt
is proved by induction on the structure of the first input
formula of satisfy import req.

As shown in Section C.9, there exist two formula construc-
tors for lists, list nil and list cons.

The base case occurs when the input first formula of sat-
isfy import req is built using the constructor list nil. Calling

the tactical fp st imprt with a true formula
satisfy import req(list nil, libdsc) is always reduced to call-
ing the tactical fp list nil with a formula list is nil(list nil) by
the tactic satisfy imprt nil pf. Since the tactical fp list nil is
complete on list is nil, fp list nil finds the proof of
list is nil(list nil).

Therefore the tactical fp st imprt finds the proof of the true
formula satisfy import req(list nil, libdsc); thus fp st imprt is
complete on satisfy import req in the base case.

For the inductive step, suppose that the tactical fp st imprt
finds the proof of a true formula satisfy import req(imptl,
libdsc) where implist = list cons(set equiv, imp, imptl).

Calling the tactical fp st imprt with a true formula
satisfy import req(implist, libdsc) is reduced to calling the
tactical fp st imprt cdsc with a formula satisfy imprt cdsc(imp,
libdsc) and calling the tactical fp st imprt with a formula sat-
isfy import req(imptl, libdsc) by the tactic satisfy imprt cons pf.

The tactical fp st imprt cdsc is complete on satisfy imprt cdsc,
so calling fp st imprt cdsc with a true formula of
satisfy imprt cdsc returns the proof. The tactical fp st imprt
finds the proof of satisfy import req(imptl, libdsc) by the in-
duction hypothesis; thus the tactical fp st imprt is complete
on satisfy import req in the inductive step.

By induction, the tactical fp st imprt is complete on the
formula constructor satisfy import req.

C.29 Tactical fp prv prps
The tactical fp prv prps is related to the formula constructor
provide enough prps.

The input of the formula constructor provide enough prps is
a formula of type component dsc, a formula standing for a
list of type module and a formula standing for a list of sets of
of type property. The tactical fp prv prps reasons about dif-
ferent cases of the first input formula of type component dsc.
The completeness of the tactical fp prv prps is be proved by
induction on the structure of the first input formula.

As shown in Section C.12 There exist two formula construc-
tors for type component dsc, mk cdsc and cdsc combine.

The base case occurs when the first input formula of the
formula constructor provide enough prps is built using the
constructor mk cdsc. Calling the tactical fp prv prps with a
list Γ of assumptions and a true formula
provide enough prps(mk cdsc(exp, imp), lib, libdsc) is always
reduced to calling the tactical fp list valid with a formula
list valid(set equiv, imp), calling the tactical fp valid lib with
Γ and a formula valid library(lib, libdsc), and calling the tacti-
cal fp st imprt with a formula satisfy import req(imp, libdsc)
by the tactic prv prps pf. Since fp list valid is complete on
list valid, fp list valid finds the proof of list valid(set equiv,
imp). Similarly, fp valid lib finds the proof of valid library(lib,
libdsc) with Γ, and fp st imprt finds the proof of
satisfy import req(imp, libdsc).

Therefore the tactical fp prv prps finds the proof of the true
formula provide enough prps(mk cdsc(exp, imp), lib, libdsc)

xxiii

with Γ; thus fp prv prps is complete on provide enough prps
in the base case.

For the inductive step, suppose that the tactical fp prv prps
finds proofs of a true formula provides enough prps(c1, lib,
libdsc) and a true formula provides enough prps(c2, lib, libdsc).

Calling the tactical fp prv prps with a list Γ of assumptions
and a true formula provides enough prps(cdsc combine(c1, c2),
lib, libdsc) is always reduced to calling the tactical fp cdsc valid
with a formula cdsc valid(d1), calling the tactical fp cdsc valid
with a formula cdsc valid(d2), calling the tactical fp prv prps
with Γ and a formula provides enough prps(c1, lib, libdsc),
and calling the tactical fp prv prps with Γ and a formula
provides enough prps(c2, lib, libdsc) by the tactic
prv prps cdsc combine pf.

The tactical fp cdsc valid is complete on the formula con-
structor cdsc valid, so calling fp cdsc valid with true formu-
las cdsc valid(d1) and cdsc valid(d2) returns proof. The tac-
tical fp prv prps finds proofs of provides enough prps(c1, lib,
libdsc) and provides enough prps(c2, lib, libdsc) by the induc-
tion hypothesis; thus the tactical fp prv prps is complete on
provide enough prps in the inductive step.

By induction, the tactical fp prv prps is complete on the
formula constructor provide enough prps.

C.30 Tactical findproof
Calling the tactical findproof with a list Γ of assumptions
and a true formula ok to link(m, dsc, lib, libdsc, rqset) is
reduced to three calls to other tacticals:

• calling the tactical fp valid cdsc with Γ and a formula
valid component dsc(m, dsc, rqset)

• calling the tactical fp prv prps with Γ and a formula
provide enough prps(dsc, lib, libdsc)

• calling the tactical fp exp prps with a formula
export required prps(rqset, dsc)

As proved earlier, the tactical fp valid cdsc is complete on
the formula constructor valid component dsc, the tactical
fp prv prps is complete on the formula constructor
provide enough prps, and the tactical fp exp prps is com-
plete on the formula constructor export required prps.

Hence each tactical finds the proof of a true formula of its
relating formula constructor, and the tactic ok to link pf al-
ways finds the proof of a true formula ok to link(m, dsc, lib,
libdsc, rqset) with a list of assumptions; thus, the tactical
findproof is complete on the formula constructor ok to link.

2

xxiv

