Defensive Programming: Using an Annotation Toolkit to Build
DoS-Resistant Software

Xiaohu Qie, Ruoming Pang, and Larry Peterson
Princeton Unwversity

Abstract

This paper describes a toolkit to help improve the
robustness of code against DoS attacks. We observe
that when developing software, programmers primarily
focus on functionality. Protecting code from attacks is
often considered the responsibility of the OS, firewalls
and intrusion detection systems. As a result, many DoS
vulnerabilities are not discovered until the system is at-
tacked and the damage is done. Instead of reacting to
attacks after the fact, this paper argues that a better
solution is to make software defensive by systematically
injecting protection mechanisms into the code itself. Our
toolkit provides an API that programmers use to anno-
tate their code. At runtime, these annotations serve as
both sensors and actuators: watching for resource abuse
and taking the appropriate action should abuse be de-
tected. Experience with three widely-deployed network
services demonstrates the effectiveness of the toolkit.

1 Introduction

Denial-of-Service (DoS) attacks are a major source of
concern in the Internet. Unlike security break-ins that
obtain privileged access, DoS attacks are designed to
consume a, disproportionate amount of resources on the
target system by exploiting weakness in the network soft-
ware. When successful, such attacks make the system
unavailable to well-behaved users.

Common defenses against DoS attacks include using
firewalls and Intrusion Detection Systems (IDS) to moni-
tor network links for offending traffic, as well as applying
software patches to fix known vulnerabilities. For exam-
ple, setting up router filters to disable directed broad-
casts and blocking outgoing packets with spoofed source
IP address [5] can effectively shut down the smurf at-
tack. To address the problem that a widely deployed
BGP implementation tends to fail due to high routing
update volume [16], a route damping feature has been
added to BGP [10] implementations.

However, such defensive practices burden the system
administrator with making sure all systems have the up-
to-date patches installed and all firewalls are properly
configured. To make matters worse, even after a new
attack is recognized, it is not until the vulnerabilities
exploited by the attack are determined that a patch can
be developed.

We observe that many DoS vulnerabilities can be at-
tributed to the separation of software functionality and
protection. When developing software, programmers
primarily focus on functionality. Protection from attacks
is often considered the responsibility of the OS, firewalls,

and IDS, and thus not an immediate concern. As a re-
sult, many vulnerabilities in the code are not discovered
until the system is hit by an attack that exploits the
weakness. In other words, after the damage is done.

Instead of reacting to attacks after the fact, a bet-
ter solution is to make the software itself defensive, by
which we mean the programmer embeds general protec-
tion mechanisms into the software that offers systematic
and proactive protection against DoS attacks. Ideal de-
fensive software will guarantee availability even under a
previously unknown DoS attack.

Towards this goal, this paper describes our experience
developing mechanisms to help programmers systemat-
ically build robust software. The key idea is to insert
annotations into code that monitor and control the ex-
ecution of the program at runtime. These annotations
serve both as sensors that detect the anomaly, and actu-
ators that change the control flow of a program when it
detects that defense measures are necessary. The advan-
tage of annotations is that they allow us to adjust the
program’s behavior at a very fine granularity, thereby
making it is possible to confine the damage of an at-
tack without negatively affecting other aspects of the
program.

We have developed a toolkit consisting of an annota-
tion interface, a runtime library, and a set of compiler
extensions. A programmer uses the interface to annotate
code as a means of specifying a resource management
policy. Each annotation gives a hint regarding the code
path it is embedded in. The compiler extension sets
up the relationships between annotations by analyzing
the control flow graph of the program, and generates
necessary code to be executed at annotated points. At
runtime, appropriate monitor and control functions are
invoked as control flow passes through these annotations.

One important aspect of the annotation toolkit is that
it is designed to thwart common DoS attack character-
istics. Therefore, when using it, programmers do NOT
have to scan their code for a specific implementation
vulnerability and then fix it, as they do when writing a
software patch. Instead, they just follow some general
guidelines and reason about the resources used by the
program. We believe this feature significantly facilitates
proactive and systematic protection. In addition, anno-
tating is less intrusive than rewriting code, making it
especially valuable to protecting legacy software.

The paper makes two contributions. First, it stud-
ies the general question of how to develop defensive code
that protects itself from DoS attacks. In the process, this
paper identifies a class of attacks that exploits a vulner-

ability existing in many network servers, but that has
not received attention in the literature. Second, it de-
scribes a specific mechanism—the annotation toolkit—
that evolved from this study. We have implemented
the toolkit in Linux, and demonstrated how to annotate
widely deployed software, including the Linux TCP/IP
protocol stack, the Flash [9] web server, and the Linux
NIS servers. Our experience shows that we can signif-
icantly improve the robustness of software against DoS
attacks with relatively low programming effort.

2 Related Work

Our approach to writing defensive code draws on previ-
ous research in several areas. This section explains how
our work fits in this larger design space.

2.1 Intrusion Detection Systems

Anomaly detection uses statistics of normal behavior as
a baseline, and treats changes in these patterns as an
indication of an attack. For example, researchers have
demonstrated that examining the sequence of system-
calls made by an application is a viable approach to de-
tecting security violations due to bugs in the program
(mainly buffer overflows) [6, 13].

Our approach has the flavor of anomaly detection, but
with a focus on resource usage rather than security. Be-
cause the target of a DoS attack is some resource on the
victim system, we instrument the program to look for ir-
regularities in resource usage and actively participate in
resource management. In a way, we do not have to dis-
tinguish DoS attacks from other activities, the rationale
being that as long as resources are properly managed,
the damage any DoS attack can cause is limited.

One obvious question is why not just do profiling? We
think our toolkit is a more general solution. First, profil-
ing does not cover all important aspects of a program’s
behavior. The target resource of a DoS attack is not
necessarily CPU cycles; sometimes it can be application-
level objects. To offer protection, it is necessary to know
what the resource is, as well as where and how it is be-
ing used. Our annotation interface allows a program to
provide such information. Second, our goal is not only
detection, but also protection. Since an appropriate de-
fensive action is highly dependent on the functionality
and architecture of the program, the action has to be
specified at the source code level. Watching profiling
data can sometimes tell us the system is being attacked,
but without defense mechanism built into the program,
the only action left available is to kill the victim process,
which is a DoS attack in its own right. Third, getting
the average behavior from profiling data is not enough,
because even perfectly legitimate users can deviate sig-
nificantly from the average without attacking the system.
However, to infer the behavior distribution from profil-
ing data is a hard problem that does not have a good
answer for the general case.

2.2 OS Mechanisms

There has been an ongoing effort in the OS community
to build new mechanisms and specialized OS to provide
service differentiation and guarantees. For example, Re-
source Containers [2], are an abstraction that takes over
the process’ role as the primary resource principal. In
order to receive a CPU share, a process must bind to a
container associated with a certain activity. This mech-
anism allows multiple cooperating processes to bind to
the same container, as well as a process to change its
resource and schedule binding dynamically when it exe-
cutes on behalf of another activity, thus achieving flexi-
ble resource management through an additional level of
indirection. The Scout operating system [8, 14] uses a
similar abstraction—the path—as the primary resource
and schedule principal. Both systems have been shown
to be able to defend against certain flooding DoS attacks.
The improvement results from more accurate resource
accounting and service isolation.

Our API differs from the one of resource container’s
in how the defensive policy is specified in the software.
The resource container API requires a clear identifica-
tion of the resource principal or some knowledge about
the attack in order to offer protection. For example,
to defend against TCP SYN flooding attacks, the pro-
grammer needs to know that “TCP SYN packets from a
particular subnet are sent by attackers” so as to bind all
connections from that subnet to a container with a nu-
meric priority of zero [2]. In contrast, the design of our
annotation API guides user in identifying resource prin-
cipals. In particular, we observe that resource principals
should be program functionalities, rather than clients,
when there are too many or anonymous clients.

Another difference between resource containers and
our toolkit is the granularity of protection. An impor-
tant contribution of resource containers is the separation
of resource principals and execution domains, but it does
not change the fact that process (or thread) is still the
execution domain, and resource management policies are
ultimately effected via process scheduling between differ-
ent domains. In case an execution domain multiplexes
among a set of resource principals, resource containers
reduce to a passive accounting facility. However, many
functionality-rich services, such as web servers and rout-
ing daemons, are single-process-event-driven. For these
applications, intra-process protection is more important,
since we do not want to penalize the entire process when
just one of the functions is supports is being abused. We
believe monitoring and controlling code paths is a nat-
ural, yet efficient way to provide intra-process resource
management. Using annotations, we can effectively iso-
late code paths corresponding to distinct functionalities,
and thus offer fine-grained intra-process protection.

A third difference is that our protection is not limited
to CPU scheduling, as we observe that non-renewable
resources cannot be protected by scheduling; they must
be recycled.

Finally, annotating code is more programmer-friendly

than imposing a new OS architecture or abstraction,
which often requires re-architecting code. This is es-
pecially true with Scout, which prescribes a particular
structure for implementing services.

2.3 Static Code Analysis

There has recently been much work in automatic detec-
tion of software errors and security bugs through static
code analysis. Recent work done by Engler et al. [3, 4]
introduced the technique of meta-level compilation. The
idea is that the software must obey certain rules for cor-
rectness, such as “kernel code cannot call blocking func-
tions with interrupts disabled” and “message handlers
must free their buffer before completing”. System soft-
ware programmers specify the rules in a high-level lan-
guage, and an extensible compiler then applies the rules
throughout the program source to check for violations.
Meta-level compilation is very successful in finding er-
rors in OS code, as well as a wide range of security bugs
using rules such as “do not dereference user pointer with-
out checking validity”. The authors found several DoS
possibilities in the kernel code they examined, but the
result is limited to a special case in which an attacker
controls the iterations of a kernel loop.

Static analysis alone is not sufficient for detecting DoS
attacks since such attacks do not necessarily rely on
software bugs. It is often the cumulative pressure on
resource that puts a system in peril, even though the
software itself is bug-free. Thus, besides examining how
the software is implemented, we must also watch how
it is erecuted. Such information can be only collected
at runtime with additional application or OS support.
Previous work in detecting race conditions in concurrent
programs [11] seems to support this point of view. Our
approach has the flavor of static analysis, but the main
difference is that we check for possible “rule” violations
at runtime, with a focus on resource usage.

3 DoS Attack Characterization

Researchers have studied may DoS attacks [12, 7]. What
is lacking, however, is an analysis of their common char-
acteristics: what they attack and how they attack it.
Such a characterization would help us understand the
signature of DoS attacks, and shed light on how to sys-
tematically and proactively write defensive software.
There are several well-known attacks on network soft-
ware, including the ICMP flood attack (send a large
number of ICMP echo packets at the target), TCP SYN
attack (flood the target with connection-open requests),
and Christmas Tree packets (overwhelm a target with
packets that have exceptional bits turned on in the
header—e.g., IP options—dictating the packet receive
special processing). A less well-known attack, which we
refer to as route cache poisoning involves an attacker
flooding a router with packets carrying a sequence of
nonsensical IP addresses (e.g., “1”7, “2”, “3”, and so on),
thereby blowing the router’s first level route cache, which
causes the router’s control processor to spend all its time

building new microcode and loading it into the switch
engine. This happens at the expense of the router re-
sponding to its neighbors’ routing probes, which causes
the neighbors to believe the router is down.

These examples illustrate that DoS attacks abuse a
legitimate service by sending a large volume of requests
at it, suggesting that rate limiting and load conditioning
[17] would be an effective defense. However, DoS attacks
can also be carried out in a way that renders rate limit-
ing strategies ineffective. The example in the following
section illustrates this possibility.

3.1 Slow TCP

Many TCP-based services follow the request-reply
paradigm. Since a server must set aside resources while
a client request is being processed, it is possible to ex-
haust the server’s resource by manipulating the opera-
tion of TCP. The idea behind the attack is for the client
to make the TCP connection as slow as possible. This
simple idea can be realized in three different ways.

First, a client can send the request very slowly. Since
TCP is byte stream without record boundaries, the
server cannot interpret the client’s request until all the
data is received. Suppose a request contains 2000 bytes,
and the TCP MSS is 1000 bytes. Under normal opera-
tion, the client would send the request in two packets. If
instead, the client sends the request one byte at a time,
which does not violate any protocol and application re-
quirements, it would take 2000 RTTs before the server
can start to process the request. The client can insert
additional delays between packets to further extend the
duration.

Second, once the server starts to send results back,
the client can receive the data very slowly, simply by
not opening the advertise window. The server side TCP
would interpret the closed window in the acknowledg-
ment packet as a signal that the client application is
temporarily busy, thus pause sending. ' The server will
not be able to send more data until the window is opened
again. Thus by abusing TCP’s flow control mechanism
the client can pace the rate of data sent by the server.

Third, the client can acknowledge the response very
slowing by pretending the packet was lost. Without see-
ing an acknowledgment, the server will retransmit. Sim-
ilar to the slow receiver, the client can pace the send-
ing rate of server by controlling when to acknowledge a
packet. In this scenario, the client abuses TCP’s reliable
transmission feature.

One target of the Slow TCP attack is web servers. Be-
ing a slow sender, an attacker can construct an extremely
long HTTP request (e.g., copy the header "UserAgent:
Slow TCP Sender \r\n” 5000 times) and send it at a
very low rate (e.g. 1 byte every 50 seconds). Being a
slow receiver or acker, an attacker just requests a big
file then nibbles the server’s output. The goal of the
attacker is to keep the connection alive as long as possi-

L After some time, the server TCP will send a 1-byte packet to
test if the client has consumed any data.

ble. Since the number of concurrent connections a web
server can maintain is limited, given sufficient number of
slow attackers, the server’s available connections will be
exhausted, and all subsequent requests will be denied.

We verified this idea experimentally by implement-
ing a HT'TP request generator that uses slow TCP, and
tested it against two popular web servers: Apache and
Flash [9]. The attack proves to be extremely effective.
Despite the fact that TCP has a keep-alive timer, the
Linux TCP implementation limits the number of re-
transmission attempts to 12, and both Apache and Flash
have built-in mechanisms to time-out idle connections,
all three forms of slow attacks are able tie up a connec-
tion for several days, causing the servers to disappear
from the net. We were also able to attack NIS servers in
a similar way.

In general, we believe such attacks are not limited
to TCP. For example, an attacker could disable a fire-
wall that provides NAT or Proxy services by repetitively
sending packets from all available ports to a random set
of destinations. Once the translation table on the fire-
wall is filled up, other users are effectively cut off from
the rest of the Internet.

3.2 Attacks Revisited

When characterizing DoS attacks, it is helpful to dis-
tinguish between two types of resources: renewable re-
sources, such as CPU cycles, the bandwidth of net-
work, disks, and buses; and nonrenewable resources, such
as processes, ports, buffers, PCBs, and locks. To at-
tack a renewable resource, the attacker continually con-
sumes the resource so that legitimate services do not
receive enough of the resource over time. This is usually
achieved by flooding the server with massive number of
requests in order to keep the target system busy. In con-
trast, if the target resource is nonrenewable, the attacker
tries to acquire as many resource as possible, and then
not release them. This form of attack does not require
flooding to make the target busy, in fact, the server is
basically idle.

In the rest of the paper we denote an attack target-
ing a renewable resource a busy attack, and an attack
targeting a nonrenewable resource an claim-and-hold at-
tack. although we note that some attacks cannot be
clearly placed in one category. For instance, the target
resource of SYN flooding attack is half-open connections,
which is a nonrenewable resource, but to exhaust this
particular resource, the attacker must keep the system
busy with a flood of new requests. In another example,
router cache poisoning succeeds when the router’s CPU
is overwhelmed, thus it is a busy attack, yet it works by
directly attacking the route cache, which is a nonrenew-
able resource.

These “exceptions” are not special cases, but in fact,
a general phenomenon due to the duality between busy
and claim-and-hold attacks. Often in mending one vul-
nerability, we open the system to another vulnerabil-
ity. For example, the Apache web server sets a limit

of 150 connections to protect itself from runaway re-
source consumption, yet by enforcing this limit, con-
nections become a “scarce” resource and the program
is potentially vulnerable to claim-and-hold attacks. On
the other hand, to protect nonrenewable resources, the
system must perform a recycling function when the re-
source becomes unavailable. This function itself could
become an accessory in a busy attack if it is not resource-
controlled. This is the weakness exploited by the route
cache poisoning attack. Clearly, a general defense mech-
anism must protect the system from both types of vul-
nerabilities at the same time; watching only one type of
attacks is not sufficient.

4 Defense Strategies

Our strategy is to divide a program into services and
balance resource usage among services, thereby confining
the impact of an attack to the individual service being at-
tacked. We consider both renewable and non-renewable
resources, in turn.

4.1 Busy Attack Defense
4.1.1 Services and Code Paths

There is often a clear correspondence between services
and program code paths, and in many cases, a service
is implemented by a particular function and associated
subroutines. For example, each ICMP service is handled
by a distinct function with name icmp_<service> (e.g.
icmp_echo). We would like to divide a program into ser-
vices according to code paths, but it is unclear how to
have the compiler automatically do this. Therefore, we
ask programmers to annotate the service entry functions
in their programs. We have also built a set of compiler
tools to help user check coverage and consistency of ser-
vice annotations.

We assume each service is performed by a function.
When this is not the case, the programmer must extract
the part of code that performs the service, and wrap it in
a separate function. Our experience with the Flash web
server and the Linux TCP/IP code suggests there are
few places we need to do the extraction and all of them
are straightforward. The benefit of marking functions
instead of arbitrary code regions as services is that the
user need only annotate service entry points. Our com-
piler can then automatically annotate the corresponding
service exit points, thereby reduce the overall program-
mer workload. Also, the service hierarchy structure is
clearly represented by the function call graph.

Services can be disjoint or nested. For example, TCP-
send and UDP-send are disjoint services, while the ser-
vice of IP option processing is nested inside IP process-
ing. Nested services allow the programmer to divide a
coarse-grain service into finer-grain sub-services. Divid-
ing services in this way has the advantage of confining
the damage of an attack within a smaller range. (When
a nested service tries to over-use some resource, action
is taken only on the inner-most service that directly uses
the resource, for fear that doing anything to the parent

SERVICE 1

(a) Option 1

(b) Option 2

(c) Option 3

Figure 1: Rate Limit

services may over-penalize sibling services.) For exam-
ple, if we further divide the service of IP option handling
into a sub-service for every type of IP option, then when
the code dealing with one type of option is vulnerable,
all other IP options can be still be handled normally.

Since services correspond to code paths, we can con-
trol resource usage of a service by rate-limiting execution
on its code paths, especially the “expensive” ones. For
example, the Linux kernel checks a rate limit when de-
ciding whether to send out an ICMP packet. We can
view the act of changing program execution paths based
on resource usage as intra-process “scheduling” among
services. However, it is hard to precisely tell how ex-
pensive code paths are, and we do not know which code
path will be attacked, so there are two interesting ques-
tions in rate-limiting code paths: (1) where to place rate
controllers that change execution paths; and (2) how to
decide the rate limit, or more generally, how to decide
whether or not to switch out of current code path each
time execution reaches the rate controller.

4.1.2 Placement of Rate Controllers

Placing rate controllers in an ad hoc way may leave holes
to be exploited. Putting them everywhere (e.g., at every
branch point) also does not work. First, rate limit viola-
tions need to be handled in program-specific ways, so it
takes programmer effort to write handlers for rate con-
trollers. Placing rate controllers everywhere places an
increased burden on program writers. Second, placing
rate controllers everywhere incurs too much execution
time overhead, especially when they are placed on fre-
quently executed paths.

Since the goal is to control resource usage, the first
option we considered is to put rate controller before re-
source consumption, as shown in Figure 1(a). However,
this approach does not balance resource usage among
the sharing services. Furthermore, aborting the service
operation at that particular location may not be easy.
To address both problems, we argue that service entry
points are the right place to put rate controllers (Fig-
ure 1(b)). Since a service is the unit of fault isolation,

activities within the same service share fate, and there-
fore it is better to not begin processing a service request
if it cannot acquire enough resources to finish. Also, it is
usually easier to abort or delay processing a service re-
quest at the entry point than in the midst of processing.

A potential trade-off here is that sometimes at the
service entrance we may not be able to precisely predict
whether a request can get enough resource. However,
we observe that in all busy attacks we know of, a service
must be invoked at a high rate in order to exhaust system
resource. Therefore, the effect of this inaccuracy is mi-
nor, because it matters only when the service is about to
reach its resource quota. In other words, rate precision
is not so important in DoS defense, as we are not mak-
ing QoS guarantees. To achieve better precision with
our approach, the programmer must define finer-grained
services.

4.1.3 Computing the Rate Limits

With rate controllers at service entries points, we need
to decide whether to admit a service or to reject it. Here,
we may let user specify a maximal rate for each service—
this is the most common approach used in existing sys-
tems. However, as we do not know where within the code
the actual vulnerabilities are, it requires much effort and
experience to set an appropriate limit for each service,
and there is a risk of being either too conservative or too
optimistic. Furthermore, the choice is often host-specific
and cannot be easily shared or reused. The reason be-
hind this difficulty is that it is unclear how service rate
limits map onto actual resource usage.

Although neither option is satisfactory, they gave us
some insight into how to rate control code paths and let
us realize that a rate controller actually needs to be sep-
arated into two parts: an admission controller at service
entry, and a rate sensor where the resource is consumed.

We ask the user to specify where the program con-
sumes resources and set an overall rate limit on each
resource. Based on feed-back of resource usage, we rate
control the services so that resources are utilized near the
rate limit, while giving each service a fair share (shown

in Figure 1(c)). Further details on how to compute each
service’s share are presented in the next section.

4.1.4 Controlling Continuous Resource

The discussion to this point assumes that resources are
always consumed at particular locations of the program.
However, we distinguish between two types of renew-
able resources: discrete, which includes almost all re-
newable resource except CPU time (e.g. network/disk
bandwidth); and continuous, which includes CPU time.
Unlike discrete resources, CPU time is spent continu-
ously as the program executes, and so needs to be man-
aged differently.

Consider a simple scenario in which we want to limit
the time spent in a particular function to less than 10%
of the total time spent executing the program. The
straightforward time control may not give us what we
really want because (1) the function may be invoked by
more than one services and we do not want any of them
to monopolize the time quota for the function by invok-
ing the function a lot of times; and (2) the function may
invoke several independent services, and if one of them
takes a lot of execution time on each invocation, other
services will get less time.

For the first case, we consider the function to be a dis-
crete resource that is shared by parent services, and ap-
ply the rate control method described above. The second
case can also be handled by balancing time usage among
services invoked by the function, though it is trickier as
services can be nested. Howewver, the real difficulty lies in
distinguishing between the two cases—whether the func-
tion 1is invoked too frequently, or the function takes too
much time to execute on each invocation. In order to
make this distinction, we need program-specific knowl-
edge of the normal rate that the function should be in-
voked and how much time the function should take on
each “normal” invocation. The former can be specified
as a discrete resource rate limit, and the later can be
given with a time limit on each invocation. With the
time limit, we use a simple heuristic to find the service
in which we spend too much time: it picks the service
inside which the execution time passes the deadline. As
a heuristic, this approach may not be the best method,
but it is easy to understand and implement, and works
well in practice.

4.2 Claim-and-Hold Attack Defense

In order to consume renewable resources, the attacking
activity must be active, i.e., executing code on the CPU.
This observation has greatly simplified our solution to
defend busy attacks, as all we need to control is the ex-
ecution frequency and duration of different code paths.
Protecting nonrenewable resources, however, is a differ-
ent story. Attackers holding the resource do not neces-
sarily have to remain active once the resource is acquired.

Protecting nonrenewable resources is essentially a pro-
cess of specifying a replacement policy: when the re-
source becomes exhausted, which ones should be re-

claimed. Resources can be reclaimed either periodi-
cally or when some event indicates recycling is neces-
sary. Thus, the problem boils down to one of deciding
what metrics should be used to decide what resources to
reclaim and when such operations should be performed.

4.2.1 Metrics

Consider the Slow TCP attack against web servers; the
resource in question is the server connection. In both the
Apache and Flash implementations, there is no explicit
replacement policy. The connection resource is returned
when the client request is completed. If the connection
table is full, the server simply rejects new requests. How-
ever, both of these systems have defense mechanisms to
address this problem. For example, Flash has two build
time parameters, CGI_TIMELIMIT and IDLEC_TIMELIMIT.
The former caps the maximum running time of a CGI
program forked by a client request, and the latter con-
trols the maximum period a client can be idle. When
either limit is exceeded, the connection is dropped and
resources associated with this connection are freed.

The weakness of this simple mechanism lies in the fact
that an attacker can trick the server into thinking it is
still in the middle of a request, thereby holding resource
without triggering the timers. Alternatively, to guaran-
tee availability, we could choose to tear down the oldest
connection when the connection table becomes full. The
problem with this approach is that it is biased against
clients on a slow link, or those downloading a large file.

A better solution is to measure how well a client is
making use of the resources it has acquired, and combine
this information with other metrics such as age. One
client should be allowed to hold resources longer than
others, as long as it has a good reason. We use progress
to denote such a metric. The exact form of progress
is highly dependent on the resource and application in
question, but in general, a proper progress metric should
reflect how the principal holding a resource is making use
of it, and it should increase proportionally with time. In
the web server example, how many bytes the server has
sent to the client could be used to construct the progress
metric.

A replacement policy also has to specify when to re-
claim resources. Since recycling itself could be an expen-
sive operation, uncontrolled invocations also open up the
possibility of busy attacks, which is what we saw in the
route cache poisoning attack. We use a metric pressure
to control the invocation of the reclaim function. Intu-
itively, resources should be recycled when the pressure
on it exceeds a certain threshold, which could be caused
either by too many clients requesting the resource, or no
clients releasing the resource.

For a particular resource that needs protection in a
specific program, programmers can develop other met-
rics that fit better into the situation. As a general
toolkit, we currently only support interfaces to keep
track of progress and pressure.

4.2.2 Placing Sensors and Controllers

There are often well-defined points in the program where
nonrenewable resources are accessed. If resource alloca-
tors and deallocators are defined, we can place annota-
tions inside them to track the principals that hold the
resource. This is also the place to watch for pressure: an
unsuccessful allocator call is a sign that the resource has
become scarce. Some abstract nonrenewable resources
are not accessed via an explicit function interface, in
which case we need the programmer to specify where
the resource is acquired and released.

Progress is typically tracked in two ways. If the princi-
pal in question generates output of some kind, the unit of
the output is a natural progress metric; e.g., how many
bytes read/written by a server process, how many pack-
ets forwarded on a tunnel, etc. Progress sensors should
be placed where the output is generated. Under another
scenario, an entire task can be broken into stages, where
progress is made when the task moves from one stage
to the next. For example, the Flash web server breaks
client request processing into three stages: request read-
ing and parsing, back-end processing, and result send-
ing. Some stages can be further divided depending on
the operations required by a particular request (e.g, re-
questing a hot file vs. a cold file). A stage is represented
by a unique “handler” associated with a connection. In
this example, progress sensors can be placed where the
connection handler is changed.

When an event causes the pressure to exceed a tol-
erable level, we may need to control resource usage by
performing a reclamation. We also need to examine the
pressure periodically, as it could build up even in the
absence of activity. This implies that we need to in-
sert a resource checkpoint that is periodically visited by
the control flow. For most server programs this is not
a problem as they are iterative by nature. An impor-
tant issue, however is that when an action is taken, is
must not leave the server in an inconsistent state; e.g.,
not free all resources associated with an activity, or con-
tinue to reference a principal that is no longer valid due
to the reclamation. We do not have a general solution
to the problem, except that by imposing transaction se-
mantics the risk of inconsistency can be reduced. In
other words, the checkpoint should be placed outside all
functions that are considered atomic.

Additionally, when placing a resource controller we
need to consider how often it is visited by the program
control flow. If the interval is not properly bounded,
we effectively lose control on the resource. One way to
preserve granularity is to use the techniques presented in
the previous section, such as the time-controller, to limit
the branches leaving the checkpoint. But under extreme
situations, for instance an attacker causing the program
to enter an infinite loop, we could still lose control. We
considered other alternatives, such as using timer sig-
nal to perform resource checking, but it is extremely
hard to perform resource reclamation in a signal han-
dler while still guaranteeing such operations do not lead

to inconsistencies. We consider this as one limitation of
intra-process protection; sometimes we need to depend
on inter-process protection provided by the OS. In other
words, there is a trade-off between absolute control and
preserving the original program structure.

5 Annotation Toolkit

This section describes our annotation toolkit in detail,
focusing first on the annotations themselves, and then
on the underlying implementation.

5.1 Renewable Resource Management

The toolkit includes includes annotations that are used
to denote admission control upon service entry, plus an-
notations that serve as sensors for monitoring rate and
time limits. We consider each in turn.

SERVICE_ADMISSION (min_rate)
The user marks a function as the entry point for a ser-
vice, specifying the minimum rate at which that service
is allowed to proceed. For example, the following is from
the service that satisfies cold cache requests in the Flash
web server:
SRCode
ProcessColdRequest (httpd_conn* hc)
¢ if (ISERVICE_ADMISSION(3))

return SR_PLEASE_TRY_AGAIN_LATER;

/* rest of the function ... */

}

This annotation does not directly change the execu-
tion path of the program, but returns a hint on whether
the service should be admitted based on its resource us-
age, allowing the program to (1) do necessary cleanup
before aborting, (2) delay servicing the request, or (3) ig-
nore the hint. The annotation takes parameter min_rate
and always returns 1 when the service is invoked below
the minimal rate, regardless whether the service has used
up its resource quota. This allows users to guarantee
service rate for some important services under resource
contention.

RATE_CONTROL (max_rate, weight)

This annotation is used to specify the maximal weighted
rate for a particular code path. For example, in order
to rate-limit the packet and byte rates of ICMP, we may
annotate the code with the following lines before ICMP
pushes a packet to IP:

if (!RATE_CONTROL (sysctl_icmp_max_msg_rate, 1))
icmp_msg_rate_violation++;

if (!RATE_CONTROL (sysctl_icmp_max_byte_rate, msg_size))
icmp_byte_rate_violation++;

ip_build_xmit(...);

RATE_CONTROL can be placed any where in the pro-
gram, unlike SERVICE_ADMISSION which must be put at
function entries. It returns a hint on whether the current
measured rate of the code path is within the specified
maximal rate. However, it is completely legitimate for
programmer to ignore the hint (as in the example above)
if the limit is not strict. This is because the annotation

sends feed-back to the service admission point, thereby
eventually limiting resource usage to the specified rate.

TIME_CONTROL (max_time)

This annotation is used to control the execution time of a
code path on each invocation. It is applied on functions
in the same way as SERVICE_ADMISSION . For example, to
control the execution time of an event handler in Flash
web server, we extract the invocation of the event han-
dler into a separate function and annotate the function
with TIME_CONTROL so that admission to services invoked
by event handlers will be bounded by the time limit.

static void LaunchHandler(...)
{
TIME_CONTROL (handlerTimeLimit) ;
handler (tempConn, i, do_what);
}

5.2 Nonrenewable Resource Management

The toolkit also includes a set of annotations that both
demark the allocation and freeing of nonrenewable re-
sources, and check to see if resources need to be re-
claimed.

RESOURCE_DECL(resid)
This annotation declares a nonrenewable resource that
needs protection, where resid is a unique identifier. The
annotation initializes a data structure to represent the
resource. This annotation should be placed in the ini-
tialization part of a program.

RESOURCE_ACQUIRED (resid, p, amt)
RESOURCE _RELEASED(resid, p, amt)

These two annotations take an opaque pointer and the
amount of resource being accessed. The pointer serves to
identify the principal; it is usually an application-specific
data structure. The annotation also records the times-
tamp of the operation in order to calculate the duration
of resource being held by the principal.

PRESSURE(resid, amt)

This annotation records pressure on the resource caused
by discrete events, such as a new request being denied
due to the lack of resources. The second argument can
be used to express the severity of the situation.

RESOURCE _UNAVAILABLE(resid)
RESOURCE_AVAILABLE((resid)

Some applications disable new requests as soon as the
resource is used. In this scenario, pressure cannot be
tracked in a discrete fashion. Instead, pressure accu-
mulates continually over time when no resources are re-
leased. These two annotations are used in such situa-
tions.

PROGRESS(resid, p, amt)

This annotation updates the progress metric of a prin-
cipal. The use of the opaque pointer “p” should
be consistent with that in RESOURCE_ACQUIRED and
RESOURCE_RELEASED.

RESOURCE _CHECKPOINT (resid, callback,
min_pressure, min_progress)

This annotation is the resource controller that performs
recycling. By default, it takes resources back from
the principal making the least progress. Programmers
can configure the operation with two additional param-
eters: min_pressure specifies that actions should be
taken only when the pressure exceeds certain threshold;
min_progress restricts the actions to be taken only upon
principals making less progress than the parameter. By
setting different thresholds, a programmer can control
the frequency of recycling and give principals that have
already made significant progress an allowance to finish
the task. Programmers also need to specify a callback
function that is invoked by the controller. It should free
resources associated with a principal (identified by the
opaque pointer), but can also be used to log activity for
offline analysis.

5.3 Implementation Details

Each annotation is implemented as a C-macro, and is
linked with an instance of a corresponding data struc-
ture. Key data structures in our toolkit include service,
rate controller, time controller, resource and principal,
with each maintaining a different set of counters.

A service structure contains a rate counter for service
entry rate so that it can tell whether the entry rate is
below the minimal rate given in the annotation. It also
contains flags to indicate resource or time control vio-
lation by the service. The rate counter is reset to zero
at the end of every period (a period lasts for one second
in our prototype). The violation flag is also adjusted
periodically.

To account resource usage of services, global variable
current_service points to the service currently being ex-
ecuted. As services can be nested, the variable is up-
dated on each service entry and exit. (Our compiler
extension will insert service exit calls corresponding to
SERVICE ADMISSION annotations.) The following gives
pseudo-code for service admission and exit:

do_service_admission (svc_id, min_rate) {

if (at the end of period)
adjust rate and time violation;

update service entry counter;

check_time_limit();

set current_service to svc_id;

if (service within min_rate || there is no violation)
return 1;

return 0;

}

do_service_exit () {
check_time_limit();
set current_service to parent service;

}

The rate controller structure contains a rate counter
for each service that uses the rate controller, and a
counter for the overall rate. In addition, it maintains
a shared rate limit for services: whenever a rate counter
of any service exceeds the shared rate limit, the service
is marked with a rate-control violation flag, and its sub-
sequent admissions will be rejected until the end of the
period (with the exception of services that are admitted
because they are below the minimal service rate). The

shared rate limit is adjusted at the end of each period
with additive increase / multiplicative decrease (AIMD)
depending on whether the overall rate exceeds the given
limit on the controller. Below is the pseudo-code for rate
controller:
do_rate_control(rate_id, max_rate) {
if (at the end of period)
adjust shared limit AIMD (total rate counter, max_rate);
update per service and total rate counters;
if (per service counter > shared limit) {
set rate violation on current_service;
return 0;

}

return (rate_counter(rate_id) <= max_rate);

Adjusting the shared rate limit dynamically allows
more flexible rate control than computing the limit with
min-max algorithm, which assumes that every service
obeys the shared limit. The programmer may allow some
service to use more resources than the common share—
by overriding it with minimal service rate or ignoring
the result of SERVICE_ADMISSION —but the shared rate
limit is adjusted to a level so that the overall rate still
matches the specified limit. This allows users to make
application-specific decision on resource allocation other
than purely “fair” sharing.

Like the SERVICE_ADMISSION annotation, the scope of
a TIME CONTROL annotation includes the current func-
tion and all its subroutines. At entry TIME_CONTROL
computes and stores a deadline in global variable
current_deadline. When TIME_CONTROL is applied in a
user-space process, the time-stamp is obtained by get-
ting process usage time (which is process time plus sys-
tem time on behalf on the process) in order to ex-
clude the impact of process scheduling. (In contrast,
SERVICE_ADMISSION and RATE_CONTROL uses wall time.)
Within the scope of time-control, the current time is
compared against current_deadline (see the pseudo-code
for check_time_limit below) at each service entry and
exit. If the deadline is missed, the current service is
marked as the violating service and following services
will not check the deadline any more. The service being
marked as the violating service will be rejected admis-
sion for some penalty period (with the same exception of
minimal service rate), at which time violation flag on the
service is reset to 0. The duration of the penalty period
depends on by how much time the service violates the
time limit.
do_time_control(max_time) {

current_deadline = current_usage_time + max_time;

passed_deadline = 0;

}

check_time_limit() {
if (!passed_deadline &% current_usage_time > current_deadline) {
time_violation(current_service) +=
penalty(current_usage_time - current_deadline);
passed_deadline = 1;
}
}

The implementation of the interface for nonrenew-
able resource management is straight-forward. Most
macros simply update the pressure or progress counter

in the data structure representing a resource or a
principal. As an example, we give pseudo-code for
RESOURCE_CHECKPOINT:

resource_checkpoint (resid, callback, min_pressure, min_progress)
{
update_pressure(resid) ;
if (pressure(resid) > min_pressure) {
for (each pri holding the resource) {
update_age (pri) ;
usage(pri) += (time_now - last_timestamp) * held_amt(pri);
norm_progress (pri) = abs_progress(pri) / usage(pri);
if (norm_progress(pri) < worst_progress) {
worst_progress = norm_progress(pri);
worst_pri = pri;
}
}
if (worst_progress < min_progress)
(*callback) (worst_pri) ;
}
}

The only trick in the code is that comparisons are
made in normalized_progress, rather than absolute_-
progress, as reported directly by the application via
the PROGRESS macro. The reason is that comparing
absolute_progress is not fair to young principals that
have not yet received enough time to make progress. In-
tuitively, a principal holding resources for a longer period
of time should have made better progress.

5.4 Compiler Support

Because code path annotations are tightly coupled with
program control flow structure, we instrumented gcc and
built some small tools to help users annotate their code.
In general, the compiler automatically adds auxiliary an-
notations to complete those marked by user, and links
the code annotation with the toolkit data structures. It
also checks consistency of annotations and gives warn-
ing on suspicious discrepencies. We also built a tool to
identify potential program vulnerabilities, but it has not
been very successful as currently it gives too many false
positives.

gee builds a syntax tree for each function body after
parsing. We added our extension to a hook between pars-
ing and intermediate language (RTL) generation. The
compiler extension traverses syntax trees to look for ser-
vice/time control annotations and function exit points.
When a function is marked with a service/time control
annotation, the compiler inserts a call to the correspond-
ing service/time control exit functions before each func-
tion exit.

The instrumented gcc also writes the control flow
graph to a file. Our code path analyzer then reads this
file and gives warnings for following cases: (1) there is
a path from an entry function to a rate-control anno-
tation that does not go through any service admission
annotation, and (2) there are some expensive operations
enclosed by a time-control annotation and not enclosed
by any service admission annotation.

6 Evaluation

We experimentally tested our toolkit on widely deployed
software: the Flash web server, Linux kernel networking

code, and NIS (yellow page) server. For each example,
we annotate the code by asking ourselves the same set of
questions—what services need to be separated and what
resources need protection. We then tested the robust-
ness of both the unmodified and annotated servers un-
der various attacks. We found that both busy and claim-
and-hold attack vulnerabilities exist in all test cases, and
that by exploiting these vulnerabilities, an attacker could
either disable, or seriously degrade the level of service.
The annotated servers are much more resilient under the
attacks, which demonstrates the generality and effective-
ness of our toolkit. We also found situations where our
toolkit has difficulty in providing protection to the de-
sirable level. We identify some as implementation issues
that can be improved by extending our toolkit, while
others are fundamental limitations of our approach.

6.1 Flash Web Server
6.1.1 Annotating Flash Web Server

Flash [9] is a web server with a single-process-event-
driven architecture. The main loop launches connection
handlers on I/O events. We first annotated every han-
dler function called in main loop as a service entry point.
Since some of these handlers implement more than one
independent functions—e.g., it may either read a file
or execute a CGI program—we mark nested services
in top-level services by functionality (e.g., CGIStuff).
There are also some functions that contain loops or make
system calls (and thus have potential to be attacked).
One such example is MakeCrossedString, which con-
catenates parts of a cross-buffer string. Such functions
are also marked as separate services for fault isolation. A
fourth class of functions perform non-critical tasks—e.g.,
ReduceCacheIfNeeded—which we also mark as services.
Altogether, we annotated 46 services.

To limit time spent in each event handler func-
tion invocation, we extract the handler function call
in main loop and place it in a separate function,
called LaunchHandler, and annotate this function with
TIME_CONTROL .

All nonrenewable resources in Flash are consumed on
behalf of a connection, which is itself a nonrenewable re-
source. Flash disables new requests when numConnects
reaches the upper limit. The following code illustrates
how we annotated function AcceptConnections—we in-
sert two sensors to track usage and pressure on the con-
nection resource. Note the pointer to the http_conn data
structure is used as the principal identifier.
int AcceptConnections(int cnum, int acceptMany) {

httpd_conn* c;

do {

PrepareConnOnAccept(c, newConnFD, &sin);
numConnects++;
RESOURCE_ACQUIRED (HTTPCONN, c, 1);

} while (numConnects < maxConnects && acceptMany);

if (numConnects >= maxConnects) {

DisallowNewClients();
RESOURCE_UNAVAILABLE (HTTPCONN) ;

A typical HTTP connection goes through three

10

phases: request reading and parsing, back-end pro-
cessing (fetch a file from disk or execute a CGI
program), and result sending. A connection makes
progress when it moves to the next phase or sends out
bytes. Thus, progress sensors are inserted where the
“state” of a connection changes and data is sent out:
DoConnReadingBackend and DoSingleReadBackend are
two examples of functions with embedded progress sen-
sors.

DoConnReadingBackend (httpd_conn* ¢, int fd, int doReqReading)
{
switch(ProcessRequestReading(c)) {
case PRR_DONE:
PROGRESS (HTTPCONN, c, 10000); /* end of request reading */
break; /* switch connection to the next phase */

)
}

DoSingleWriteBackend(httpd_conn* c, int fd, int testing)
sz = writev(c->hc_fd, ioBufs, numI0Bufs);

PROGRESS (HTTPCONN, c, sz); /* Ok, we wrote something. */

Finally, we explicitly declare the connection resource
before entering the server loop and insert a checkpoint
inside the loop. The annotated main loop is shown be-
low. DoneWithConnection is a Flash-provided resource
deallocator, here conveniently used as the callback func-
tion for connection recycling. The choice of the param-
eters min_pressure and min_progress are explained in
Section 6.1.2.

void MainLoop(void) {
RESQOURCE_DECL (HTTPCONN) ;
for (;;) { /* Main loop. */
RESOURCE_CHECKPOINT (HTTPCONN, DoneWithConnection, 5, 500);
for each I/0 event { Launchhandler(handler, tempConn, ...); }
if (!newClientsDisallowed) AcceptConnections(-1, TRUE);
}
}

6.1.2 DoS Vulnerabilities and Defense
Slash Attack

Flash is a very robust program: disk operations and CGI
jobs are separated into helper processes rather than per-
formed by the main process, thereby allowing the OS
to protect the main process. Flash also has some built-
in mechanisms to control its resource consumption; e.g.
calls to fork() are already rate-limited. However, it
is extremely difficult to write a bug-free program, and
Flash is not an exception. We found the following code
in function ExpandSymlinks, which parses a “cold” URL
that is not in server’s hot URL cache:

/* Remove any leading slashes. */
while (rest[0] == */?)
{
(void) strcpy(rest, &(rest[1]));
—-restlen;

}

The loop has time complexity quadratic to number of
leading slashes. As Flash does not limit the length of a
URL, a URL with many leading slashes takes a lot time
to parse: it takes 150ms on a PIII 700 machine to remove

10,000 leading slahes from a URL; 7 such requests per
second is enough to saturate an un-annotated server.

Our attacker is a simple program that sends HTTP
request “GET /////...//id” to the Flash server, where
id = 1,2,3,... to avoid duplicate URLs. Under attack,
the un-annotated server soon reaches maximal number
of connections. Following connection requests enter a
connection queue waiting to be accepted. The server
will accept a connection for every 150ms. Thus server
response time is greater than connection request queue
length x150ms.

Slash attack serves our purpose well because it shows
that implementation mistakes that lead to DoS vulnera-
bility may appear at unexpected locations in source code.
Ad hoc protection is not likely to cover such a vulnerabil-
ity and we need a systematic approach for DoS defense.
Importantly, we had to find this problem to know how to
attack the system, but we did not need to have knowledge
of this bug when annotating the code.

StartRequest

IRegularFile Stuff” ProcessColdRequest | I ScheduleDirHelp | | SendDirRedirect I

l CGIStuff | IProcessColdRequestBackendZ I
T

——_———Yo
I
|ExpandSym]inks:

Figure 2: Position of ExpandSymlinks in Flash service
hierarchy

For a Flash server that is already annotated with
service marks and a time control (of 20 ms) on
LaunchHandler, the attack has no effect on requests
of hot URLs. The annotations recognizes that service
ProcessColdRequestBackend? (see Figure 2) takes too
much time on each invocation and rate limits the service
depending on how much time it takes for each invocation.
The connection is closed on service admission rejection,
so that connections do not accumulate over time. Service
ProcessColdRequestBackend?2 is not invoked for “hot”
URLs. By limiting CPU spent for cold URLs, we insure
access to hot pages under slash attack.

no attacker 4.3 ms
attacker #slash = 0 4.3 ms
attacker #slash = 10000, original 25,000 ms
attacker #slash = 10000, annotated 5.1 ms

Table 1: Flash response time under slash attack

Table 1 compares the average response time for a
“hot” 10KB file for both original Flash and annotated
Flash, when the server is under slash attack. The slash

11

attacker sends 10 requests per second to saturate the
Flash server. We first measured response time to a single
client without any attacker present. We then measured
response time to client when there is a competing client;
i.e. the attacker sends ten requests per second but with
zero leading slash in URL. The third row shows response
time from an unprotected Flash server under attack, a
5000x slow down. The last row shows the response time
from an annotated Flash server. The small increase of
response time for annotated Flash under attack is be-
cause Flash processes a cold URL periodically and thus
delays the hot request for up to 150ms. Despite this
small fluctuation, the response time from an annotated
Flash server does not change by much on average under
slash attack.

On the other hand, access to cold URLs is limited
for annotated Flash under slash attack. The proba-
bility of success for a cold request is linear to the ra-
tio between the user request rate and the attack re-
quest rate. For example, if an attacker sends ten re-
quests per second (which is enough to saturate an unpro-
tected server) and the user sends one request per second,
then with probability 50% it takes no more than than
log0.5/10g0.9 = 6.57 requests to access a cold URL.
However, since nothing prevents the attacker from send-
ing requests at a higher rate, clients may not be able to
access “cold” pages in many attempts. This phenomenon
shows that the effectiveness of fault isolation depends on
service granularity, and sometimes depends on program
classification granularity. If Flash were to further clas-
sify requests into ones with short URLs and those with
long URLs, the impact of a slash attack would be further
limited.

Slow TCP Attack

In unmodified Flash, the connection resource is recy-
cled by an idle timer associated with each connection.
The default time-out value CGI_TIMELIMIT is 500 sec-
onds. The timer is reset by any event on the socket, such
as data arrival or TCP send buffer becoming available.
Thus, to launch a successful claim-and-hold attack, an
attacker only needs to generate an event before the 500
second timer expires. Once the available connections run
out, the unmodified Flash server enters the “denial-of-
service” mode, disallowing new clients. Our Slow TCP
based clients can easily cause the situation to persist for
days without generating very much network traffic.

By comparison, the annotated Flash server is able
to recover from the “denial-of-service” mode by recy-
cling connections. Our current toolkit implementation
uses a sliding window to record pressure history. Set-
ting min_pressure to 5 instructs the server to reclaim
resources from unproductive connections after it has
been disallowing new clients for about 5 seconds. The
progress of each client is tracked as follows: when a con-
nection moves from one stage to another the absolute
progress of the connection is incremented by a numer-
ical value of 10000; when the connection is in the final

result sending stage, its absolute progress increases as
the bytes being successfully written. In conjunction with
the min_progress of 500, the server enforces the follow-
ing policy: a client should not stay in one stage (other
than the last one) for more than 20 seconds, otherwise
its normalized progress will drop below 10000/20 = 500
and be considered “unproductive”. Once in the final
stage, the client should read at least 500 bytes of the
server’s response per second. With these resource lim-
its, well-behaved clients including those on a slow link go
largely unaffected, but claim-and-hold attackers are no
longer able to tie up server resources for unreasonably
long periods of time.

Note that by specifying a single progress-and-pressure
threshold, we may not be able to completely elimi-
nate the vulnerability to Slow TCP attacks. Attack-
ers can still open many connections and make each re-
quest proceed slowly while staying just above the ac-
ceptable progress threshold. To solve this problem, the
programmer can specify a more refined defensive pol-
icy with the toolkit: for example, under resource pres-
sure, at most one third of the connections can be “very
slow”, another one third can be “slow”, while the rest
have to be “fast” connections. This can be accomplished
by putting more than one checkpoints with multi-level
progress-and-pressure thresholds, so that the server will
recycle resources more aggressively under higher pres-
sure.

6.1.3 Overhead

Regarding programming overhead, we added in total
57 annotations into Flash source, which has more than
12,000 lines of code. In terms of request response time
or server bandwidth we did not observe noticeable per-
formance degradation caused by annotation. Table 2
reports the number of annotation primitives invoked on
a typical HTTP request and the general cost of each an-
notation. The number of annotations executed varies
depending on the file’s size and whether it is in server
cache, which affects the call graph, the number of server
iterations, and the number of outgoing packets. The cost
of each annotation is given in the number of instructions
and “timestamp” operations. The exact cost of times-
tamp depends on whether the code being annotated is
in kernel or user-space.

Primitives Invocations | Instructions/
per HTTP timestamps
connection per call

SERVICE Entry/Exit 13— 31 63/2

RATE_CONTROL n/a 25/1

TIME_CONTROL iterations 36/2

RESOURCE_ACQUIRED 1 62/1

RESOURCE_RELEASED 1 42/0

PROGRESS 2 + pkts 23/0

RESOURCE_CHECKPOINT | <terations 12171

per principal

Note the 121 instructions is the worst-case cost of
RESOURCE_CHECKPOINT when the pressure is high and
each connection is checked. Also not shown in the table
is certain background processing of the toolkit library,
which executes once per second for each annotation and
contains less than 20 instructions per invocation.

6.2 Linux Networking Code
6.2.1 Annotating Linux Network Code

We annotated part of Linux 2.4 network code to pro-
tect network outgoing bandwidth. Our goal is to insure
that no single network activity can monopolize outgoing
network bandwidth. (For incoming network bandwidth,
protection on local host may not be enough, however, we
may want to limit CPU time spent on incoming packets
for hosts with high-bandwidth network connections.)

Initially, we marked service entries at the “send mes-
sage” function of each protocol; e.g. udp_sendmsg. This
gives us protocol isolation. However, icmp reply is
an interesting case since it is called by multiple func-
tions for sending different types of ICMP messages, e.g.
icmp_echo and icmp_timestamp. To have fault isola-
tion between different types of ICMP messages, we push
the service entry at icmp_reply into functions for ev-
ery type of ICMP message that calls icmp_reply. For
example, icmp_echo is now a service entry function,
while icmp_reply is no longer marked as a service en-
try. icmp_send presents another interesting case: it is
called at 13 locations to report different network errors.
To prevent one type of error from suppressing others, we
wrap each call site as a service. In total, we marked 27
services.

Since we may not be able to get notification about
delivery of packets for protocols like ICMP, we can-
not apply congestion control to manage bandwidth, as
the Congestion Manager does [1]. Instead, we simply
rate-limit messages from all protocols except TCP.2 On
code paths that call ip_build xmit, we insert a call to
ip_rate_control, which is defined as follows:

static __inline_
{
int res = 1;
if (!'RATE_CONTROL (sysctl_ip_max_msg_rate, 1)) {
res = 0; ip_msg_rate_violation++;

int ip_rate_control(int msg_size)

if (!RATE_CONTROL (sysctl_ip_max_byte_rate, msg_size)) {
res = 0; ip_byte_rate_violation++;
}

return res;

The user can adjust sysctl ip max msg rate and
sysctl_ip max byte_rate through the /proc file sys-
tem.

6.2.2 ICMP-Echo Flood Attack

To simulate ICMP-echo flood attack, the attacker sends
a flood of ICMP-echo packets to the victim using the

Table 2: Annotation Overhead

12

2Including TCP in rate-limiting does not work because TCP
will automatically back-off while other services are trying their
hardest to grab bandwidth.

’ping -f’ command. The attack has a 100Mb network
link and the victim is on a 10Mb link. The victim also
runs a Flash web server so that we can measure how it
is affected by the attack.

Without protection, access to Flash server on victim
machine was virtually blocked by the ICMP flood. How-
ever, the attack has almost no effect on an annotated vic-
tim, except the high loss rate for ICMP-echo messages.

6.3 NIS Server

This section studies ypserv—the yellow page server avail-
able on most UNIX systems. Even though the server
program itself is simple, it is interesting because it illus-
trates how different software architectures affect robust-
ness. ypserv is built on top of the RPC protocol [15].
Most RPC programs are built with RPC library and
tools like rpcgen, which handles complex tasks such as
packaging a call into a message, sending it over the net-
work, and server side message decoding. With the RPC
library, the programmer only needs to provide a function
that is called when a request arrives. The RPC package
is valuable for constructing distributed systems, but it
also comes with a potential disadvantage: its virtualiza-
tion gives programmers less control on the execution of
the program.

Linux ypserv-2.2 is a typical RPC server built us-
ing these tools. It starts by calling C lib func-
tions svcudp_create, svctcp._create, svc_register
and svc_run, which create transport channels, register
YP services, and start a server loop that waits for re-
quests. The main service routine ypprog 2 is passed to
svc_register as the callback function. ypprog-2 dis-
patches incoming calls to second level routines such as
ypprocmatch 2 _svc and ypproc_all 2 svc, and sends
results back by calling C lib function svc_sendreply.

Claim-and-Hold Attacks

A client program like ypcat requests the entire content
of a database from the server. The server handles the
request by calling ypproc_all 2 _svc. When shipping
bulk data over the network, ypserv uses TCP as the
transport protocol. We found the same vulnerability
to Slow TCP attacks also exists in ypserv. To verify
this, we built a customized version of ypcat that uses
Slow TCP as its transport. We set up a different num-
ber of ypcat attackers, each requesting a database of
150K bytes. While the attack is in progress, we test the
server’s availability by issuing “rpcinfo -[tu] server
ypserv” and normal ypcat commands from a different
machine. In addition to the latest version ypserv-2.2,
we also tested an earlier version ypserv-1.3. The main
difference between the two versions is that ypserv-1.3
executes ypproc_all_2 svc in aforked child process, and
keeps the number of children process below 40. The re-
sults are summarized in Table 3, where “Yes” means the
normal client successfully got a response from the server
and “No” means the server was unable to reply.

The results show that ypserv-2.2 become unresponsive

13

ypserv-2.2 ypserv-1.3
rpcinfo | ypcat | rpcinfo | ypcat
1 slow sender No No No No
1 slow reader No No Yes Yes
40 slow readers No No Yes No

Table 3: Server Availability under Slow ypcat attacks

under the presence of any slow ypcat attackers. This is
not surprising considering that it is an iterative server
handling only one call at a time. Interestingly, ver-
sion 1.3 with concurrency support also failed with just 1
slow sender, and damage was done to not only TCP but
UDP services as well. The reason is that svc_run essen-
tially implements a poll loop as in Flash, but using syn-
chronous I/O. When data arrives on a registered channel,
the RPC library tries to decode the request message. If
the request message is sent slowly, the main server pro-
cess blocks on a read system call until the entire message
arrives. During this time, the server is unable to reply
to new requests. The concurrency however did help the
server survive slow reader attacks, as they are handled
by children processes. When the number of slow read-
ers reaches the limit, ypcat started to fail, but the main
process continued to respond to rpcinfo and other YP
clients such as ypmatch.

We found that merely annotating ypserv does not give
us resilience to Slow TCP attack because the activities
we would like to monitor actually occur inside the RPC
library rather than the application. Therefore, we re-
ally need to annotate the RPC library. However, the
effectiveness of doing so is hampered by the library’s
use of synchronous I/0. We suggest that a more robust
RPC library implementation should employ the architec-
ture of the Flash web server, in which (1) low-level stub
functions are processed in non-blocking handlers, and
(2) user applications like ypserv are invoked as helper
processes. If these changes were made, our annotation
toolkit would effectively protect the RPC library.

Busy Attacks

There is an easy way to busy attack a ypserv-2.2 NIS
server when there is a big database: simply invoke many
“ypcat <big database>” simultaneously to ask the ser-
vice to send the whole database over network. For a
database of size 1.7MB, it takes about 20ms for server
to complete the transmission, during which the server
does not process any other request because of RPC’s
mutual exclusion property. Attacking a NIS server with
ypcat flood virtually blocks all NIS operations using
TCP, e.g. rpcinfo. Operations that use UDP will still
go through because they are in a different queue than
TCP in select ().

We annotated the NIS server by wrapping each NIS
operation as a service so that YP_ALL requests (sent by
ypcat) will not consume all the resources. An anno-
tated NIS server continues to respond to other YP re-
quests under ypcat attack, except that access to YP_ALL
is very slow. However, this is not satisfactory because

YP_ALL access to database group is required for each log-
in. Since group is usually a very small database, it is
not vulnerable to ypcat attack. Generally we do not
want to let ypcat attacks on large databases affect ac-
cess to small databases. Since there are usually only
a small number of databases on a NIS server, we can
solve this problem by associating a “dynamic” service
for each type of operation on each database. Thus ypcat
group and ypcat passwd will belong to separate ser-
vices. To support dynamic service, we need only one
new primitive: DYN_SERVICE_ADMISSION(svc_id, min_
rate) which is same as SERVICE_ADMISSION except that
it takes an extra parameter svc_id for service id.

7 Conclusions

This paper presents defensive programming as a new ap-
proach to offer proactive DoS attack protection. After
first identifying two basic types of DoS attacks—busy
and claim-and-hold—we build a toolkit that provides an
interface programmers use to annotate their code. With
compiler assistance, annotations are translated into run-
time sensors and actuators that watch for resource abuse
and take the appropriate action should abuse be de-
tected. The main strengths of this approach is that it
offers fine-grained intra-process protection, can be sys-
tematically applied to existing code, protects software
from unknown attacks, and puts a minimal burden on
the programmer.

Like any mechanism, however, the effectiveness of our
approach depends on whether a good defensive policy
can be specified, which is the responsibility of the pro-
grammer. Our experience with DoS attacks and appli-
cations has greatly influenced the design of the annota-
tion interface in order to accommodate the most com-
mon policies, but the interface is by no means complete.
Hopefully, as we gain more experience with attacks and
different systems, we will be able to further extend and
refine the API.

Another limitation of the approach is there may be
situations that require resource scheduling within a pro-
cess. With our toolkit, the user defines resource overload
conditions with a limit on each resource, the assumption
being that there exists some limit under which resource
consumption is always fine. However, sometimes it is
desirable to be able to change the order that we allocate
resources to services. For example, in addition to speci-
fying a rate limit for all non-TCP packets, we may want
to bump TCP packets to the front of the transmission
queue. Not being able to schedule resource sometimes
forces the user to be more conservative in specifying re-
source limits. To be able to schedule resources we need
support for concurrency within a process, so that the
program execution can save the state of the current task
and switch to another one.

Another interesting direction to explore is adding in-
teraction between user and kernel space. We can imagine
putting resource sensors inside the kernel to achieve more
precise control on kernel resource consumption, while let-

14

ting actuators take actions in user-space programs to
achieve intra-process resource management.

8
(1]

REFERENCES

D. Andersen, D. Bansal, D. Curtis, S. Seshan, and

H. Balakrishnan. System Support for Bandwidth
Management and Content Adaptation in Internet
Applications. In Proceedings of the Fourth USENIX
Symposium on Operating System Design and
Implementation (OSDI), Februray 2000.

G. Banga, P. Druschel, and J. C. Mogul. Resource
Containers: A New Facility for Resource Management in
Server Systems. In Proceedings of the Third USENIX
Symposium on Operating System Design and
Implementation (OSDI), Februray 1999.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
System Rules Using System-Specific, Programmer-Written
Compiler Extensions. In Proceedings of the Fourth USENIX
Symposium on Operating System Design and
Implementation (OSDI), October 2000.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code. In Proceedings of the 18th

ACM Symposium on Operating Systems Principles, October
2001.

P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP Source
Address Spoofing. Request for Comments (RFC) 2267,
January 1998.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A Sense of Self for Unix Processes. In Proceedings of the
1996 IEEE Symposium on Computer Security and Privacy,
May 1996.

K. Kendall. A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems. Master Thesis,
MIT, June 1999.

D. Mosberger and L. L. Peterson. Making Paths Explicit in
the Scout Operating System. In Proceedings of the Second
USENIX Symposium on Operating System Design and
Implementation (OSDI), pages 153-167, October 1996.

V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An Efficient
and Portable Web Server. In Proceedings of the USENIX ’99
Annual Technical Conference, June 1999.

Y. Rekhter and T. Li. A Border Gateway Protocol 4
(BGP-4). Request for Comments (RFC) 1771, March 1995.
S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and

T. Anderson. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. ACM Transactions on Computer
Systems, 15(4):391-411, 1997.

C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford,

A. Sundaram, and D. Zamboni. Analysis of a Denial of
Service Attack on TCP. In Proceedings of the 1997 IEEE
Symposium on Computer Security and Privacy, May 1997.
A. Somayaji and S. Forrest. Automated Response Using
System-Call Delays. In Proceedings of the 9th USENIX
Security Symposium, August 2000.

O. Spatscheck and L. L. Peterson. Defending Against Denial
of Service Attacks in Scout. In Proceedings of the Third
USENIX Symposium on Operating System Design and
Implementation (OSDI), Februray 1999.

R. Srinivasan. RPC: Remote Procedure Call Protocol
Specification Version 2. Request for Comments (RFC) 1831,
August 1995.

C. Villamizar, R. Chandra, and R. Govindan. BGP Route
Flap Damping. Request for Comments (RFC) 2439,
November 1998.

M. Welsh, D. Culler, and E. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet
Services. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles, October 2001.

(10]

(11]

(12]

