
More Enforceable Security Policies

Lujo Bauer, Jarred Ligatti and David Walker
Department of Computer Science

Princeton University
Princeton, NJ 08544

Tech Report TR-649-02

June 17, 2002

Abstract

We analyze the space of security policies that can be enforced by mon-
itoring programs at runtime. Our program monitors are automata that
examine the sequence of program actions and transform the sequence
when it deviates from the specified policy. The simplest such automaton
truncates the action sequence by terminating a program. Such automata
are commonly known as security automata, and they enforce Schneider’s
EM class of security policies. We define automata with more powerful
transformational abilities, including the ability to insert a sequence of ac-
tions into the event stream and to suppress actions in the event stream
without terminating the program. We give a set-theoretic characteriza-
tion of the policies these new automata are able to enforce and show that
they are a superset of the EM policies.

1 Introduction

When designing a secure, extensible system such as an operating system that
allows applications to download code into the kernel or a database that allows
users to submit their own optimized queries, we must ask two important ques-
tions.

1. What sorts of security policies can and should we demand of our system?

2. What mechanisms should we implement to enforce these policies?

Neither of these questions can be answered effectively without understanding
the space of enforceable security policies and the power of various enforcement
mechanisms.

Recently, Schneider [Sch00] attacked this question by defining EM, a sub-
set of safety properties [Lam85, AS87] that has a general-purpose enforcement

1

mechanism - a security automaton that interposes itself between the program
and the machine on which the program runs. It examines the sequence of
security-relevant program actions one at a time and if the automaton recognizes
an action that will violate its policy, it terminates the program. The mechanism
is very general since decisions about whether or not to terminate the program
can depend upon the entire history of the program execution. However, since
the automaton is only able to recognize bad sequences of actions and then ter-
minate the program, it can only enforce safety properties.

In this paper, we re-examine the question of which security policies can be
enforced at runtime by monitoring program actions. Following Schneider, we
use automata theory as the basis for our analysis of enforceable security policies.
However, we take the novel approach that these automata are transformers on
the program action stream, rather than simple recognizers. This viewpoint
leads us to define two new enforcement mechanisms: an insertion automaton
that is able to insert a sequence of actions into the program action stream, and
a suppression automaton that suppresses certain program actions rather than
terminating the program outright. When joined, the insertion automaton and
suppression automaton become an edit automaton. We characterize the class
of security policies that can be enforced by each sort of automata and provide
examples of important security policies that lie in the new classes and outside
the class EM.

Schneider is cognizant that the power of his automata is limited by the fact
that they can only terminate programs and may not modify them. However, to
the best of our knowledge, neither he nor anyone else has formally investigated
the power of a broader class of runtime enforcement mechanisms that explic-
itly manipulate the program action stream. Erlingsson and Schneider [UES99]
have implemented inline reference monitors, which allow arbitrary code to be
executed in response to a violation of the security policy, and have demon-
strated their effectiveness on a range of security policies of different levels of
abstraction from the Software Fault Isolation policy for the Pentium IA32 ar-
chitecture to the Java stack inspection policy for Sun’s JVM [UES00]. Evans
and Twyman [ET99] have implemented a very general enforcement mechanism
for Java that allows system designers to write arbitrary code to enforce security
policies. Such mechanisms may be more powerful than those that we propose
here; these mechanisms, however, have no formal semantics, and there has been
no analysis of the classes of policies that they enforce. Other researchers have
investigated optimization techniques for security automata [CF00, Thi01], cer-
tification of programs instrumented with security checks [Wal00] and the use
of run-time monitoring and checking in distributed [SS98] and real-time sys-
tems [KVBA+99].

Overview The remainder of the paper begins with a review of Alpern and
Schneider’s framework for understanding the behavior of software systems [AS87,
Sch00] (Section 2) and an explanation of the EM class of security policies and
security automata (Section 2.3). In Section 3 we describe our new enforcement

2

mechanisms – insertion automata, suppression automata and edit automata.
For each mechanism, we analyze the class of security policies that the mecha-
nism is able to enforce and provide practical examples of policies that fall in that
class. In Section 4 we provide the syntax and operational semantics of a sim-
ple security policy language that admits editing operations on the instruction
stream. In Section 5 we discuss some unanswered questions and our continuing
research. Section 6 concludes the paper with a taxonomy of security policies.

2 Security Policies and Enforcement Mechanisms

In this section, we explain our model of software systems and how they execute,
which is based on the work of Alpern and Schneider [AS87, Sch00]. We define
what it means to be a security policy and give definitions for safety, liveness
and EM policies. We give a new presentation of Schneider’s security automata
and their semantics that emphasizes our view of these machines as sequence
transformers rather than property recognizers. Finally, we provide definitions
of what it means for an automaton to enforce a property precisely and conserva-
tively, and also what it means for one automaton to be a more effective enforcer
than another automaton for a particular property.

2.1 Systems, Executions and Policies

We specify software systems at a high level of abstraction. A system S = (A,Σ)
is specified via a set of program actions A (also referred to as events or program
operations) and a set of possible executions Σ. An execution σ is simply a finite
sequence of actions a1, a2, . . . , an. Previous authors have considered infinite
executions as well as finite ones. We restrict ourselves to finite, but arbitrarily
long executions to simplify our analysis. We use the metavariables σ and τ to
range over finite sequences.

The symbol · denotes the empty sequence. We use the notation σ[i] to
denote the ith action in the sequence (beginning the count at 0). The notation
σ[..i] denotes the subsequence of σ involving the actions σ[0] through σ[i], and
σ[i + 1..] denotes the subsequence of σ involving all other actions. We use the
notation τ ;σ to denote the concatenation of two sequences. When τ is a prefix
of σ we write τ ≺ σ.

In this work, it will be important to distinguish between uniform systems
and nonuniform systems. (A,Σ) is a uniform system if Σ = A? where A?
is the set of all finite sequences of symbols from A. Conversely, (A,Σ) is a
nonuniform system if Σ ⊂ A?. Uniform systems arise naturally when a program
is completely unconstrained; unconstrained programs may execute operations
in any order. However, an effective security system will often combine static
program analysis and preprocessing with run-time security monitoring. Such is
the case in Java virtual machines, for example, which combine type checking
with stack inspection. Program analysis and preprocessing can give rise to
nonuniform systems. In this paper, we are not concerned with how nonuniform

3

systems may be generated, be it by model checking programs, control or dataflow
analysis, program instrumentation, type checking, or proof-carrying code; we
care only that they exist.

A security policy is a predicate P on sets of executions. A set of executions
Σ satisfies a policy P if and only if P (Σ). Most common extensional program
properties fall under this definition of security policy, including the following.

• Access Control policies specify that no execution may operate on certain
resources such as files or sockets, or invoke certain system operations.

• Availability policies specify that if a program acquires a resource during
an execution, then it must release that resource at some (arbitrary) later
point in the execution.

• Bounded Availability policies specify that if a program acquires a resource
during an execution, then it must release that resource by some fixed point
later in the execution. For example, the resource must be released in at
most ten steps or after some system invariant holds. We call the condition
that demands release of the resource the bound for the policy.

• An Information Flow policy concerning inputs s1 and outputs s2 might
specify that if s2 = f(s1) in one execution (for some function f) then there
must exist another execution in which s2 6= f(s1).

2.2 Security Properties

Alpern and Schneider [AS87] distinguish between properties and more general
policies as follows. A security policy P is deemed to be a (computable) property
when the policy has the following form.

P (Σ) = ∀σ ∈ Σ.P̂ (σ) (Property)

where P̂ is a computable predicate on A?.
Hence, a property is defined exclusively in terms of individual executions.

A property may not specify a relationship between possible executions of the
program. Information flow, for example, which can only be specified as a con-
dition on a set of possible executions of a program, is not a property. The other
example policies provided in the previous section are all security properties.

We implicitly assume that the empty sequence is contained in any property.
For all the properties we are interested in it will always be okay not to run
the program in question. From a technical perspective, this decision allows us
to avoid repeatedly considering the empty sequence as a special case in future
definitions of enforceable properties.

Given some set of actions A, a predicate P̂ over A? induces the security
property P (Σ) = ∀σ ∈ Σ.P̂ (σ). We often use the symbol P̂ interchangeably as
a predicate over execution sequences and as the induced property. Normally,
the context will make clear which meaning we intend.

4

Safety Properties The safety properties are properties that specify that
“nothing bad happens.” We can make this definition precise as follows. P̂
is a safety property if and only if for all σ ∈ Σ,

¬P̂ (σ)⇒ ∀σ′ ∈ Σ.(σ ≺ σ′ ⇒ ¬P̂ (σ′)) (Safety)

Informally, this definition states that once a bad action has taken place (thereby
excluding the execution from the property) there is no extension of that exe-
cution that can remedy the situation. For example, access-control policies are
safety properties since once the restricted resource has been accessed the policy
is broken. There is no way to “un-access” the resource and fix the situation
afterward.

Liveness Properties A liveness property, in contrast to a safety property, is
a property in which nothing exceptionally bad can happen in any finite amount
of time. Any finite sequence of actions can always be extended so that it lies
within the property. Formally, P̂ is a liveness property if and only if,

∀σ ∈ Σ.∃σ′ ∈ Σ.(σ ≺ σ′ ∧ P̂ (σ′)) (Liveness)

Availability is a liveness property. If the program has acquired a resource, we
can always extend its execution so that it releases the resource in the next step.

Other Properties Surprisingly, Alpern and Schneider [AS87] show that any
property can be decomposed into the conjunction of a safety property and a
liveness property. Bounded availability is a property that combines safety and
liveness. For example, suppose our bounded-availability policy states that every
resource that is acquired must be released and must be released at most ten
steps after it is acquired. This property contains an element of safety because
there is a bad thing that may occur (e.g., taking 11 steps without releasing the
resource). It is not purely a safety property because there are sequences that
are not in the property (e.g., we have taken eight steps without releasing the
resource) that may be extended to sequences that are in the property (e.g., we
release the resource on the ninth step).

2.3 EM

Recently, Schneider [Sch00] defined a new class of security properties called EM.
Informally, EM is the class of properties that can be enforced by a monitor that
runs in parallel with a target program. Whenever the target program wishes
to execute a security-relevant operation, the monitor first checks its policy to
determine whether or not that operation is allowed. If the operation is allowed,
the target program continues operation, and the monitor does not change the
program’s behavior in any way. If the operation is not allowed, the monitor
terminates execution of the program. Schneider showed that every EM property

5

satisfies (Safety) and hence EM is a subset of the safety properties. In addition,
Schneider considered monitors for infinite sequences and he showed that such
monitors can only enforce policies that obey the following continuity property.

∀σ ∈ Σ.¬P̂ (σ)⇒ ∃i.¬P̂ (σ[..i]) (Continuity)

Continuity states that any (infinite) execution that is not in the EM policy
must have some finite prefix that is also not in the policy.

Security Automata Any EM policy can be enforced by a security automaton
A, which is a deterministic finite or infinite state machine (Q, q0, δ) that is
specified with respect to some system (A,Σ). Q specifies the possible automaton
states and q0 is the initial state. The partial function δ : A × Q→ Q specifies
the transition function for the automaton.

Our presentation of the operational semantics of security automata deviates
from the presentation given by Alpern and Schneider because we view these
machines as sequence transformers rather than simple sequence recognizers. We
specify the execution of a security automatonA on a sequence of program actions
σ using a labeled operational semantics.

The basic single-step judgment has the form (σ, q) τ−→A (σ′, q′) where σ and
q denote the input program action sequence and current automaton state; σ ′

and q′ denote the action sequence and state after the automaton processes a
single input symbol; and τ denotes the sequence of actions that the automaton
allows to occur (either the first action in the input sequence or, in the case that
this action is “bad,” no actions at all). We may also refer to the sequence τ as
the observable actions or the automaton output. The input sequence σ is not
considered observable to the outside world.

(σ, q) τ−→A (σ′, q′)

(σ, q) a−→A (σ′, q′) (A-Step)

if σ = a;σ′

and δ(a, q) = q′

(σ, q) ·−→A (·, q) (A-Stop)

otherwise

We extend the single-step semantics to a multi-step semantics through the fol-
lowing rules.

(σ, q) τ=⇒A (σ′, q′)

(σ, q) ·=⇒A (σ, q) (A-Reflex)

6

(σ, q) τ1−→A (σ′′, q′′) (σ′′, q′′) τ2=⇒A (σ′, q′)

(σ, q)
τ1;τ2=⇒A (σ′, q′) (A-Trans)

Limitations Erlingsson and Schneider [UES99, UES00] demonstrate that se-
curity automata can enforce important access-control policies including software
fault isolation and Java stack inspection. However, they cannot enforce any
of our other example policies (availability, bounded availability or information
flow). Schneider [Sch00] also points out that security automata cannot enforce
safety properties on systems in which the automaton cannot exert sufficient
controls over the system. For example, if one of the actions in the system is
the passage of time, an automaton might not be able to enforce the property
because it cannot terminate an action sequence effectively — an automaton
cannot stop the passage of real time.

2.4 Enforceable Properties

To be able to discuss different sorts of enforcement automata formally and to
analyze how they enforce different properties, we need a formal definition of
what it means for an automaton to enforce a property.

We say that an automaton A precisely enforces a property P̂ on the system
(A,Σ) if and only if ∀σ ∈ Σ,

1. If P̂ (σ) then ∀i.(σ, q0)
σ[..i]
=⇒A (σ[i+ 1..], q′) and,

2. If (σ, q0) σ′=⇒A (·, q′) then P̂ (σ′)

Informally, if the sequence belongs to the property P̂ then the automaton should
not modify it. In this case, we say the automaton accepts the sequence. If the
input sequence is not in the property, then the automaton may (and in fact
must) edit the sequence so that the output sequence satisfies the property.

Some properties are extremely difficult to enforce precisely, so, in practice,
we often enforce a stronger property that implies the weaker property in which
we are interested. For example, information flow is impossible to enforce pre-
cisely using run-time monitoring as it is not even a proper property. Instead of
enforcing information flow, an automaton might enforce a simpler policy such
as access control. Assuming access control implies the proper information-flow
policy, we say that this automaton conservatively enforces the information-flow
policy. Formally, an automaton conservatively enforces a property P̂ if con-
dition 2 from above holds. Condition 1 need not hold for an automaton to
conservatively enforce a property. In other words, an automaton that conserva-
tively enforces a property may occasionally edit an action sequence that actually
obeys the policy, even though such editing is unnecessary (and potentially dis-
ruptive to the benign program’s execution). Of course, any such edits should

7

result in an action sequence that continues to obeys the policy. Henceforth,
when we use the term enforces without qualification (precisely, conservatively)
we mean enforces precisely.

We say that automaton A1 enforces a property P̂ more precisely or more
effectively than another automaton A2 when either

1. A1 accepts more sequences than A2, or

2. The two automata accept the same sequences, but the average edit dis-
tance1 between inputs and outputs for A1 is less than that for A2.

3 Beyond EM

Given our novel view of security automata as sequence transformers, it is a short
step to define new sorts of automata that have greater transformational capabil-
ities. In this section, we describe insertion automata, suppression automata and
their conjunction, edit automata. In each case, we characterize the properties
they can enforce precisely.

3.1 Insertion Automata

An insertion automaton I is a finite or infinite state machine (Q, q0, δ, γ) that
is defined with respect to some system of executions S = (A,Σ). Q is the set
of all possible machine states and q0 is a distinguished starting state for the
machine. The partial function δ : A×Q→Q specifies the transition function as
before. The new element is a partial function γ that specifies the insertion of a
number of actions into the program’s action sequence. We call this the insertion
function and it has type A×Q→ ~A×Q. In order to maintain the determinacy of
the automaton, we require that the domain of the insertion function is disjoint
from the domain of the transition function.

We specify the execution of an insertion automaton as before. The single-
step relation is defined below.

(σ, q) τ−→I (σ′, q′)

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a;σ′

and δ(a, q) = q′

(σ, q) τ−→I (σ, q′) (I-Ins)

if σ = a;σ′

and γ(a, q) = τ, q′

1The edit distance between two sequences is the minimum number of insertions, deletions
or substitutions that must be applied to either of the sequences to make them equal [Gus97].

8

(σ, q) ·−→I (·, q) (I-Stop)

otherwise

We can extend this single-step semantics to a multi-step semantics as before.

Enforceable Properties We will examine the power of insertion automata
both on uniform systems and on nonuniform systems.

Theorem 1 (Uniform I-Enforcement)
If S is a uniform system and insertion automaton I precisely enforces P̂ on S
then P̂ obeys (Safety).

Proof: Assume (anticipating a contradiction) that an insertion automaton I
enforces some property P̂ that does not satisfy (Safety). By the definition
of safety, there exists a sequence τ such that ¬P̂ (τ) and an extension σ such
that P̂ (τ ;σ). Without loss of generality, consider the action of I when it has
seen an input stream consisting of all but the last symbol in τ . Now, when
I is confronted with the last symbol of an input sequence with prefix τ , the
automaton can do one of three things (corresponding to each of the possible
operational rules).

• Case (I-Step): I accepts this symbol and waits for the next. Unfortu-
nately, the input sequence that is being processed may be exactly τ . In
this case, the automaton fails to enforce P̂ since ¬P̂ (τ).

• Case (I-Ins): I inserts some sequence. By taking this action the au-
tomaton gives up on enforcing the property precisely. The input sequence
might be τ ;σ, an input that obeys the property, and hence the automaton
unnecessarily edited the program action stream.

• Case (I-Stop): As in case (I-Ins), the automaton gives up on precise
enforcement.

Hence, no matter what the automaton might try to do, it cannot enforce P̂
precisely and we have our contradiction.

�

If we consider nonuniform systems then the insertion automaton can enforce
non-safety properties. For example, reconsider the scenario in the proof above,
but this time in a carefully chosen nonuniform system S ′. In S ′, the last action
of every sequence is the special stop symbol and stop appears nowhere else in S ′.
Now, assuming that the sequence τ does not end in stop (and ¬P̂ (τ ; stop)), our
insertion automaton has a safe course of action. After seeing τ , our automaton
waits for the next symbol (which must exist, since we asserted the last symbol of
τ is not stop). If the next symbol is stop, it inserts σ and stops, thereby enforcing
the policy. On the other hand, if the program itself continues to produce σ, the
automaton need do nothing.

9

It is normally a simple matter to instrument programs so that they conform
to the nonuniform system discussed above. The instrumentation process would
insert a stop event before the program exits. Moreover, to avoid the scenario
in which a non-terminating program sits in a tight loop and never commits any
further security-relevant actions, we could ensure that after some time period,
the automaton receives a timeout signal which also acts as a stop event.

Bounded-availability properties, which are not EM properties, have the same
form as the policy considered above, and as a result, an insertion automaton
can enforce many bounded-availability properties on non-uniform systems. In
general, the automaton monitors the program as it acquires and releases re-
sources. Upon detecting the bound, the automaton inserts actions that release
the resources in question. It also releases the resources in question if it detects
termination via a stop event or timeout.

We characterize the properties that can be enforced by an insertion automa-
ton as follows.

Theorem 2 (Nonuniform I-Enforcement)
A property P̂ on the system S = (A,Σ) can be enforced by some insertion
automaton if and only if there exists a function γp such that for all executions
σ ∈ A?, if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Proof: (If Direction) We can construct an insertion automaton that precisely
enforces any of the properties P̂ stated above. The automaton definition follows.

• States: q ∈ A?∪{end} (the sequence of actions seen so far, or end if the
automaton will stop on the next step)

• Start state: q0 = · (the empty sequence)

• Transition function (δ):

Consider processing the action a.
If our current state q is end then stop (i.e., δ and γ are undefined and
hence the rule (I-Stop) applies).
Otherwise our current state q is σ and we proceed as follows.

– If P̂ (σ; a) then we emit the action a and continue in state σ; a.

– If ¬P̂ (σ; a) and P̂ (σ) and ∀σ′ ∈ Σ.σ; a ≺ σ′ ⇒ ¬P̂ (σ′) then we
simply stop.

– If ¬P̂ (σ; a) and σ; a 6∈ Σ and P̂ (σ; a; γp(σ; a)). then emit a and
continue in state σ; a

• Insertion function (γ): Consider processing the action a in state q = σ.

– If ¬P̂ (σ; a) and ¬P̂ (σ) and ∀σ′ ∈ Σ.σ; a ≺ σ′ ⇒ ¬P̂ (σ′) then insert
γp(σ) and continue in state end.

10

If σ is the input so far, the automaton maintains the following invariant
Invp(q).

• If q = end then the automaton has emitted σ; γp(σ) and P̂ (σ; γp(σ)) and
the next action is a and ∀σ′ ∈ Σ.σ; a ≺ σ′ ⇒ ¬P̂ (σ′).

• Otherwise, q = σ and σ has been emitted and either P̂ (σ) or (¬P̂ (σ) and
σ 6∈ Σ and P̂ (σ; γp(σ))).

The automaton can initially establish Invp(q0) since our definition of a prop-
erty assumes P̂ (·) for all properties. A simple inductive argument on the length
of the input σ suffices to show that the invariant is maintained for all inputs.

Given this invariant, it is straightforward to show that the automaton pro-
cesses every input σ ∈ Σ properly and precisely enforces P̂ . There are two
cases.

• Case P̂ (σ):
Consider any prefix σ[..i]. By induction on i, we show the automaton
accepts σ[..i] without stopping, inserting any actions or moving to the
state end.
If P̂ (σ[..i]) then the automaton accepts this prefix and continues.
If ¬P̂ (σ[..i]) then since σ[..i] ≺ σ (and P̂ (σ)), it must be the case that
σ[..i] 6∈ Σ and P̂ (σ[..i]; γp(σ[..i])). Hence, the automaton accepts this
prefix and continues.

• Case ¬P̂ (σ):
Invp and the automaton definition imply that whenever the automaton
halts (because of lack of input or because it stops intentionally), P̂ (σo)
where σo is the sequence of symbols that have been output. Hence, the
automaton processes this input properly as well.

(Only-If Direction) Define γp(σ) to be some τ such that P̂ (σ; τ) (and unde-
fined if no such τ exists). We consider any arbitrary σ ∈ A? such that ¬P̂ (σ)
and show that one of the following must hold.

1. ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Consider any case in which 1. does not hold. Then, ∃σ ′ ∈ Σ.σ ≺ σ′ ∧ P̂ (σ′), so
by definition of γp, P̂ (σ; γp(σ)). All that remains to show that 2. holds in any
case in which 1. does not is that σ 6∈ Σ (given that some insertion automaton I
enforces P̂ , ¬P̂ (σ), σ ≺ σ′, and P̂ (σ′)).

By the first part of the definition of precise enforcement, I must not make
any edits when supplied σ′ as input. This excludes the use of rules I-Ins and
I-Stop, so I only steps via rule I-Step on input σ′. At any point during I ’s
processing of σ (where σ ≺ σ′), exactly these same I-Step transitions must
be made because the input sequence may later be extended to σ′. Therefore,

11

(σ, q0) σ=⇒I (·, q′) for some q′. Assume (for the sake of obtaining a contra-
diction) that σ ∈ Σ. Then, by the second part of the definition of precise
enforcement and the fact that (σ, q0) σ=⇒I (·, q′), we have P̂ (σ), which violates
the assumption that ¬P̂ (σ). Thus, σ 6∈ Σ as required, and case 2. above must
hold whenever 1. does not.

�

Limitations Like the security automaton, the insertion automaton is limited
by the fact that it may not be able to be able to exert sufficient controls over a
system. More precisely, it may not be possible for the automaton to synthesize
certain events and inject them into the action stream. For example, an automa-
ton may not have access to a principal’s private key. As a result, the automaton
may have difficulty enforcing a fair exchange policy that requires two computa-
tional agents to exchange cryptographically signed documents. Upon receiving
a signed document from one agent, the insertion automaton may not be able
to force the other agent to sign the second document and it cannot forge the
private key to perform the necessary cryptographic operations itself.

3.2 Suppression Automata

A suppression automaton S is a state machine (Q, q0, δ, ω) that is defined with
respect to some system of executions S = (A,Σ). As before, Q is the set of
all possible machine states, q0 is a distinguished starting state for the machine
and the partial function δ specifies the transition function. The partial function
ω : A×Q→{−,+} has the same domain as δ and indicates whether or not the
action in question is to be suppressed (−) or emitted (+).

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = +

(σ, q) ·−→S (σ′, q′) (S-StepS)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = −

(σ, q) ·−→S (·, q) (S-Stop)

otherwise

We extend the single-step relation to a multi-step relation using the reflex-
ivity and transitivity rules from above.

12

Enforceable Properties In a uniform system, suppression automata can
only enforce safety properties.

Theorem 3 (Uniform S-Enforcement)
If S is a uniform system and suppression automaton S precisely enforces P̂ on
S then P̂ obeys (Safety).

Proof (sketch): The argument is similar to the argument for insertion au-
tomata given in the previous section. If we are attempting to enforce a property
P̂ , we cannot allow any sequence τ such that ¬P̂ (τ), even though there may
be an extension σ such that P̂ (τ ;σ). Any step of S when processing the final
symbol of τ would result in either accepting τ (despite the fact that ¬P̂ (τ)) or
giving up on precise enforcement altogether.

�

In a nonuniform system, suppression automata can once again enforce non-
EM properties. For example, consider the following system S.

A = {aq, use, rel}
Σ = {aq; rel,

aq; use; rel,
aq; use; use; rel}

The symbols aq, use, rel denote acquisition, use and release of a resource.
The set of executions includes zero, one, or two uses of the resource. Such a
scenario might arise were we to publish a policy that programs can use the
resource at most two times. After publishing such a policy, we might find a bug
in our implementation that makes it impossible for us to handle the load we
were predicting. Naturally we would want to tighten the security policy as soon
as possible, but we might not be able to change the policy we have published.
Fortunately, we can use a suppression automaton to suppress extra uses and
dynamically change the policy from a two-use policy to a one-use policy. Notice
that an ordinary security automaton is not sufficient to make this change because
it can only terminate execution.2 After terminating a two-use application, it
would be unable to insert the release necessary to satisfy the policy.

We can also compare the power of suppression automata with insertion au-
tomata. A suppression automaton cannot enforce the bounded-availability pol-
icy described in the previous section because it cannot insert release events that
are necessary if the program halts prematurely. That is, although the suppres-
sion automaton could suppress all non-release actions upon reaching the bound
(waiting for the release action to appear), the program may halt without releas-
ing, leaving the resource unreleased. Note also that the suppression automaton

2Premature termination of these executions takes us outside the system S since the rel
symbol would be missing from the end of the sequence. To model the operation of a security
automaton in such a situation we would need to separate the set of possible input sequences
from the set of possible output sequences. For the sake of simplicity, we have not done so in
this paper.

13

cannot simply suppress resource acquisitions and uses because this would mod-
ify sequences that actually do satisfy the policy, contrary to the definition of
precise enforcement. Hence, insertion automata can enforce some properties
that suppression automata cannot.

For any suppression automaton, we can construct an insertion automaton
that enforces the same property. The construction proceeds as follows. While
the suppression automaton acts as a simple security automaton, the insertion
automaton can clearly simulate it. When the suppression automaton decides to
suppress an action a, it does so because there exists some extension σ of the
input already processed (τ) such that P̂ (τ ;σ) but ¬P̂ (τ ; a;σ). Hence, when
the suppression automaton suppresses a (giving up on precisely enforcing any
sequence with σ; a as a prefix), the insertion automaton merely inserts σ and
terminates (also giving up on precise enforcement of sequences with σ; a as a pre-
fix). Of course, in practice, if σ is uncomputable or only intractably computable
from τ , suppression automata are useful.

There are also many scenarios in which suppression automata are more pre-
cise enforcers than insertion automata. In particular, in situations such as the
one described above in which we publish one policy but later need to restrict
it due to changing system requirements or policy bugs, we can use suppression
automata to suppress resource requests that are no longer allowed. Each sup-
pression results in a new program action stream with an edit distance increased
by 1, whereas the insertion automaton may produce an output with an arbitrary
edit distance from the input.

Before we can characterize the properties that can be enforced by a sup-
pression automaton, we must generalize our suppression functions so they act
over sequences of symbols. Given a set of actions A, a computable function
ω? : A?→A? is a suppression function if it satisfies the following conditions.

1. ω?(·) = ·

2. ω?(σ; a) = ω?(σ); a, or
ω?(σ; a) = ω?(σ)

A suppression automaton can enforce the following properties.

Theorem 4 (Nonuniform S-Enforcement)
A property P̂ on the system S = (A,Σ) is enforceable by a suppression au-
tomaton if and only if there exists a suppression function ω? such that for all
sequences σ ∈ A?,

• if P̂ (σ) then ω?(σ) = σ, and

• if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ P̂ (ω?(σ′))

14

Proof: (If Direction) As in the previous section, given one of the properties
P̂ described above, we can construct a suppression automaton that enforces it.

• States: q ∈ A? × {+,−} (the sequence of actions seen so far paired
with + (−) to indicate that no actions have (at least one action has) been
suppressed so far)

• Start state: q0 = 〈·,+〉

• Transition function (for simplicity, we combine δ and ω):

Consider processing the action a.
If the current state q is 〈σ,+〉 then

– If P̂ (σ; a), then we emit the action a and continue in state 〈σ; a,+〉.
– If ¬P̂ (σ; a) and ∀σ′ ∈ Σ.σ; a ≺ σ′ ⇒ ¬P̂ (σ′) then we simply halt.

– Otherwise (i.e., ¬P̂ (σ; a) and ∃σ′ ∈ Σ.σ; a ≺ σ′ ∧ P̂ (σ′)),

∗ if ω?(σ; a) = ω?(σ) we suppress a and continue in state 〈σ; a,−〉.
∗ and finally, if ω?(σ; a) = ω?(σ); a we emit a and continue in state
〈σ; a,+〉.

Otherwise our current state q is 〈σ,−〉.

– If P̂ (ω?(σ)) then stop.

– Otherwise (i.e., ¬P̂ (ω?(σ))),

∗ if ω?(σ; a) = ω?(σ) then suppress a and continue in state 〈σ; a,−〉.
∗ and finally, if ω?(σ; a) = ω?(σ); a then emit a and continue in

state 〈σ; a,−〉.

If σ is the input so far, the automaton maintains the following invariant
Invp(q).

• If q = 〈σ,+〉 then

1. ω?(σ) has been emitted.

2. (P̂ (σ) and ω?(σ) = σ) or (¬P̂ (σ) and ω?(σ) = σ and σ 6∈ Σ and
∀σ′ ∈ Σ.σ ≺ σ′ ⇒ P̂ (ω?(σ′))).

• If q = 〈σ,−〉 then

1. ω?(σ) has been emitted.

2. P̂ (ω?(σ)) or (¬P̂ (ω?(σ)) and ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ P̂ (ω?(σ′)) and
σ 6∈ Σ).

The automaton can initially establish Invp(q0) since our definition of a prop-
erty assumes P̂ (·) for all properties and ω?(·) = · for all suppression functions.
A simple inductive argument on the length of the input σ suffices to show that
the invariant is maintained for all inputs.

15

Given this invariant, it is straightforward to show that the automaton pro-
cesses every input σ ∈ Σ properly and precisely enforces P̂ . There are two
cases.

• Case P̂ (σ):
This case is similar to the analogous case for insertion automata. We
prove the automaton accepts the input without stopping or suppressing
any actions by induction on the length of the sequence.

• Case ¬P̂ (σ):
As before, Invp implies the automaton always stops in the state in which
the automaton output σo satisfies the property. This implies we process
σ properly.

(Only-If Direction) Define ω?(σ) to be whatever sequence is emitted by the
suppression automaton S on input σ. We first show that this is indeed a suppres-
sion function. Clearly, ω?(·) = ·. When processing some action a after having
already processed any sequence σ, the automaton may step via S-StepA, S-
StepS, or S-Stop. In the S-StepA case, the automaton emits whatever has
been emitted in processing σ (by definition, this is ω?(σ)), followed by a. In the
other cases, the automaton emits only ω?(σ). Hence, ω? is a valid suppression
function.

Now consider any arbitrary σ ∈ A?. By the definition of precise enforcement,
automaton S does not modify any sequence σ such that P̂ (σ), so we have
satisfied the requirement that if P̂ (σ) then ω?(σ) = σ. All that remains is to
show that if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ P̂ (ω?(σ′))

Consider any case where ¬P̂ (σ) and 1. does not hold (i.e., ∃σ′ ∈ Σ.σ ≺
σ′ ∧ P̂ (σ′)). Analogous to the case for insertion automata, because P̂ (σ′), S
may only process σ′ with S-StepA and therefore only processes σ (which may
later be extended to σ′) with S-StepA. Hence, (σ, q0) σ=⇒S (·, q′) for some q′.
Since S enforces P̂ and ¬P̂ (σ), it must be the case that σ 6∈ Σ.

Finally, by the definition of ω? and the second part of the definition of precise
enforcement, ∀σ′ ∈ Σ.P̂ (ω?(σ′)), implying in case 2. above that ∀σ′ ∈ Σ.σ ≺
σ′ ⇒ P̂ (ω?(σ′)). Therefore, 2. indeed holds whenever 1. does not.

�

Limitations Similarly to its relatives, a suppression automaton is limited by
the fact that some events may not be suppressible. For example, the program
may have a direct connection to some output device and the automaton may be
unable to interpose itself between the device and the program. It might also be
the case that the program is unable to continue proper execution if an action is
suppressed. For instance, the action in question might be an input operation.

16

3.3 Edit Automata

We form an edit automaton E by combining the insertion automaton with the
suppression automaton. Our machine is now described by a 5-tuple with the
form (Q, q0, δ, γ, ω). The operational semantics are derived from the composition
of the operational rules from the two previous automata.

(σ, q) a−→E (σ′, q′) (E-StepA)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = +

(σ, q) ·−→E (σ′, q′) (E-StepS)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = −

(σ, q) τ−→E (σ, q′) (E-Ins)

if σ = a;σ′

and γ(a, q) = τ, q′

(σ, q) ·−→E (·, q) (E-Stop)

otherwise

We again extend this single-step semantics to a multi-step semantics with
the rules for reflexivity and transitivity.

Enforceable Properties As with insertion and suppression automata, edit
automata are only capable of enforcing safety properties in uniform systems.

Theorem 5 (Uniform E-Enforcement)
If S is a uniform system and edit automaton E precisely enforces P̂ on S then
P̂ obeys (Safety).

Proof (sketch): The argument is similar to that given in the proofs of Uni-
form I- and S-Enforcement. When confronted with processing the final action
of τ such that ¬P̂ (τ) but P̂ (τ ;σ) for some σ, E must either accept τ (despite
the fact that ¬P̂ (τ)) or give up on precise enforcement altogether.

�

The following theorem provides the formal basis for the intuition given above
that insertion automata are strictly more powerful than suppression automata.
Because insertion automata enforce a superset of properties enforceable by sup-
pression automata, edit automata (which are a composition of insertion and
suppression automata) precisely enforce exactly those properties that are pre-
cisely enforceable by insertion automata.

17

Theorem 6 (Nonuniform E-Enforcement)
A property P̂ on the system S = (A,Σ) can be enforced by some edit automaton
if and only if there exists a function γp such that for all executions σ ∈ A?, if
¬P̂ (σ) then

1. ∀σ′ ∈ Σ.σ ≺ σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Proof: (If Direction) By the Nonuniform I-Enforcement theorem, given any
function γp and property P̂ satisfying the requirements stated above, we may
build an insertion automaton I = (Q, q0, δ, γ) to enforce P̂ . Then, we can
construct an edit automaton E = (Q, q0, δ, γ, ω), where ω is defined to be + over
all of its domain (the same domain as δ). Clearly, E and I enforce the same
property because whenever I steps via I-Step, I-Ins, or I-Stop, E respectively
steps via E-StepA, E-Ins, or E-Stop, while emitting exactly the same actions
as I . Because I enforces P̂ , so too must E.

(Only-If Direction) This direction proceeds exactly as the Only-If Direction
of the proof of Nonuniform I-Enforcement.

�

Although edit automata are no more powerful precise enforcers than inser-
tion automata, we can very effectively enforce a wide variety of security policies
conservatively with edit automata. We describe a particularly important appli-
cation, the implementation of transactions policies, in the following section.

3.4 An Example: Transactions

To demonstrate the power of our edit automata, we show how to implement
the monitoring of transactions. The desired properties of atomic transactions
[EN94], commonly referred to as the ACID properties, are atomicity (either the
entire transaction is executed or no part of it is executed), consistency preser-
vation (upon completion of the transaction the system must be in a consistent
state), isolation (the effects of a transaction should not be visible to other con-
currently executing transactions until the first transaction is committed), and
durability or permanence (the effects of a committed transaction cannot be
undone by a future failed transaction).

The first property, atomicity, can be modeled using an edit automaton by
suppressing input actions from the start of the transaction. If the transaction
completes successfully, the entire sequence of actions is emitted atomically to
the output stream; otherwise it is discarded. Consistency preservation can be
enforced by simply verifying that the sequence to be emitted leaves the system
in a consistent state. The durability or permanence of a committed transaction
is ensured by the fact that committing a transaction is modeled by outputting
the corresponding sequence of actions to the output stream. Once an action has
been written to the output stream it can no longer be touched by the automaton;

18

furthermore, failed transactions output nothing. We only model the actions of
a single agent in this example and therefore ignore issues of isolation.

���������
n)

a≠
���������

_) ∧
a≠pay(_)

a

-n

+n

pay(n)
���������

n) ; pay(n)

���������
n) ; pay(n)

pay(n)

���������
n)

¬pay(n)

warning

a≠
�	�
�����

_) ∧
a≠pay(_)

a

� ���������
k) ∧ k≠n) ∨ pay(_)

Figure 1: An edit automaton to enforce the market policy conservatively.

To make our example more concrete, we will model a simple market system
with two main actions, take(n) and pay(n), which represent acquisition of n
apples and the corresponding payment. We let a range over other actions that
might occur in the system (such as window-shop or browse). Our policy is
that every time an agent takes n apples it must pay for those apples. Payments
may come before acquisition or vice versa. The automaton conservatively en-
forces atomicity of this transaction by emitting take(n); pay(n) only when the
transaction completes. If payment is made first, the automaton allows clients to
perform other actions such as browse before paying (the pay-take transaction
appears atomically after all such intermediary actions). On the other hand, if
apples are taken and not paid for immediately, we issue a warning and abort the
transaction. Consistency is ensured by remembering the number of apples taken
or the size of the prepayment in the state of the machine. Once acquisition and
payment occur, the sale is final and there are no refunds (durability).

Figure 1 displays the edit automaton that conservatively enforces our market
policy. The nodes in the picture represent the automaton states and the arcs
represent the transitions. When a predicate above an arc is true, the transition
will be taken. The sequence below an arc represents the actions that are emitted.
Hence, an arc with no symbols below it is a suppression transition. An arc with
multiple symbols below it is an insertion transition.

4 A Simple Policy Language

In this section we describe the syntax and semantics of a simple language for
specifying edit automata.

19

4.1 Syntax

A program in our language consists of the declaration of automaton state and
transition function. The state is described by some number of state variables
s1, . . . , sn, which are assigned some initial values v1, . . . , vn. We leave the value
space unspecified. Normally, it would include all values found in a full-fledged
programming language.

We specify two transition functions in order to differentiate between internal
events, which are events or program actions under the control of the security
automaton, and external events, which the security automaton cannot suppress
(or synthesize and insert). We use the metavariable iin to denote internal events
and iex to denote external events. Each transition function is a sequence of
nested if-then-else statements. The guard of each statement consists of boolean
predicates over the current state and the most recently read instruction. Guards
can be combined using standard boolean algebra. We assume some set of atomic
predicates p and a suitable evaluation function for these predicates. If, when
evaluating a transition function, none of the guards evaluate to true then the
automaton halts.

The main body of the transition function consists of assignments to state
variables and commands to emit a sequence of instructions. We assume some set
of functions f that compute values to be stored in a state variable or instructions
to be emitted by the automaton. Each sequence of commands ends with a
command to continue evaluation in the next state without consuming the current
input symbol (next), to continue in the next state and to consume the input
(consume;next), or to halt (halt).

The following BNF grammar describes the language syntax.

P ::= let
states :
s1 = v1
...
sn = vn

transitions :
λiex.T
λiin.T

in
run

end

T ::= if B then S else T | halt

B ::= p(s1, . . . , sn, i)
| B1 ∧ B2 | B1 ∨ B2 | ¬B

S ::= sk = G ; S
| emit(G) ; S
| next
| consume; next
| halt

G ::= f(s1, . . . , sn, i)

4.2 Operational Semantics

In order to specify the execution of our program, we need to define the system
configurations that arise during computation. A system configuration M is a
4-tuple that contains the instruction stream being read by the automaton, a

20

(σ, q, F,C) τ7−→ (σ′, q′, F,C′)

a ∈ external
(a;σ, q, (λjex.t, λjin.t′), ·) ·7−→ (a;σ, q, (λjex.t, λjin.t′), [a/jex]t)

(Sem-Lam-Ex)

a ∈ internal
(a; σ, q, (λjex.t, λjin.t′), ·) ·7−→ (a;σ, q, (λjex.t, λjin.t′), [a/jin]t′)

(Sem-Lam-In)

[v1/s1, . . . , vn/sn]B ⇓ true
(σ, {s1 = v1, . . . , sn = vn}, F, if B then S else T) ·7−→ (σ, {s1 = v1, . . . , sn = vn}, F, S)

(Sem-Bool-T)

[v1/s1, . . . , vn/sn]B ⇓ false
(σ, {s1 = v1, . . . , sn = vn}, F, if B then S else T) ·7−→ (σ, {s1 = v1, . . . , sn = vn}, F, T)

(Sem-Bool-F)

[v1/s1, . . . , vn/sn]G ⇓ v
(σ, {s1 = v1, . . . , sn = vn}, F, sk = G ; S) ·7−→ (σ, {s1 = v1, . . . , sn = vn}[sk 7→ v], F, S)

(Sem-State-Update)

[v1/s1, . . . , vn/sn]G ⇓ a1, . . . , ap ∀k, 1 ≤ k ≤ p, ak ∈ internal
(σ, q, F,emit(G) ; S)

a1,...,ap7−→ (σ, q, F, S)
(Sem-Emit)

a ∈ external
(a; σ, q, F, consume; next) a7−→ (σ, q, F, ·)

(Sem-Consume-Ex)

a ∈ internal
(a; σ, q, F, consume; next) ·7−→ (σ, q, F, ·)

(Sem-Consume-In)

(σ, q, F,next) ·7−→ (σ, q, F, ·)
(Sem-Next)

a ∈ external
(a; σ, q, F,halt) a7−→ (nil, q, F, ·)

(Sem-Halt-Ex)

a ∈ internal
(a; σ, q, F,halt) ·7−→ (nil, q, F, ·)

(Sem-Halt-In)

(σ, q, F,C)
τ
7−→∗ (σ′, q′, F,C′)

(σ, q, F,C)
·
7−→∗ (σ, q, F,C)

(Sem-Refl)

(σ, q, F,C)
τ17−→ (σ′, q′, F,C′) (σ′, q′, F,C′)

τ2
7−→∗ (σ′′, q′′, F,C′′)

(σ, q, F,C)
τ1;τ27−→∗ (σ′′, q′′, F,C′′)

(Sem-Trans)

(σ, P) τ=⇒ (σ′, q, F,C)

(σ, {s1 = v1, . . . , sn = vn}, (λjex.t, λjin.t′), ·)
τ
7−→∗ (σ′, q, F,C)

(σ, P) τ=⇒ (σ′, q, F,C)
(Sem-Setup)

where P = let states : s1 = v1, . . . , sn = vn ; transitions : λjex.t, λjin.t′ in run end

Figure 2: Operational semantics.

21

set of state variables, the pair of functions that describe transitions for input
symbols, and the program expression currently being evaluated. We use the
metavariable F to range over the pair of functions and the metavariable C to
range over the program expression under evaluation.

When paired with an action stream, the program gives rise to a machine
configuration in natural way. We specify the execution of our language using
the following judgments.

M1
τ7−→M2 configuration M1 emits τ when

evaluating to configuration M2

M1
τ

7−→∗ M2 configuration M1 emits τ when
evaluating to configuration M2
(in many steps)

(σ, P) τ=⇒M sequence σ and program P emit τ
when evaluating to configuration M
(in many steps)

B ⇓ b B evaluates to boolean b
G ⇓ v G evaluates to v

The operational semantics of our language are given in Figure 2.
Rules Sem-Lam-Ex and Sem-Lam-In describe how the automaton begins

processing the topmost instruction of the input stream. Control flow differs
based on whether the instruction is external or internal. We begin evaluating the
appropriate transition expression by substituting the current instruction for the
formal parameter that represents it. We postpone removing the instruction from
the instruction stream because we will later wish to use it to guide evaluation
according to the type of the instruction.

If the program expression currently being evaluated is a guarded statement,
we begin by reducing the boolean guard to true or false as described by rules
Sem-Bool-T and Sem-Bool-F. Since the boolean guard contains predicates
over the the current state, this involves substituting into it the current values
of the state variables. Evaluating the guards may also involve some standard
boolean algebra. Due to space constraints, we have omitted these standard
rules.

If a guard evaluates to true, we evaluate the body of the guarded statement.
This may involve updates of state variables by functions parameterized over the
current state. Rule Sem-State-Update describes the update of a state vari-
able and the necessary substitutions. In addition, the statement may include
emitting instructions to the output stream. Rule Sem-Emit describes the emis-
sion of internal instructions. The emission of external instructions is not under
the control of the programmer and is done automatically as described by rules
Sem-Consume-Ex and Sem-Halt-Ex.

The last step in evaluating the transition function can be to consume the
instruction from the input stream before starting to process the next instruc-
tion, to reevaluate the transition function with the current instruction and the
updated state, or to halt the automaton. As mentioned above, if the instruction
read from the input stream is external, it is automatically emitted to the output

22

stream before it is consumed. In order to halt the automaton, we transition to
a system configuration in which the rest of the input stream is ignored.

4.3 Example

As an illustration of the use of our language to encode a security policy, we show
a possible way of encoding the transaction automaton. The code in Figure 3
corresponds exactly to the picture of the automaton in Figure 1.

let
states: apples = 0
transitions:
λ iex.halt
λ iin.

if ValidTransition(apples, iin)
then apples =

if(apples=0 ∧ iin=take(n)) then -n
else if (apples=0

∧ iin=pay(n)) then +n
else if (apples=+n ∧ iin 6= take()

∧ iin 6= pay()) then +n
else 0;

emit(getEmitActions(apples, iin));
consume;
next

else halt
in run end

getEmitActions(apples, iin) =
if (apples ≥ 0 ∧ iin 6= take()
∧ iin 6= pay()) then iin

else if (apples = -n ∧ iin=pay(n)) then
take(n);pay(n)

else if (apples = -n ∧ iin 6=pay(n)) then
warning

else if (apples = +n ∧ iin=take(n)) then
take(n);pay(n)

else ·

Figure 3: Specification of transaction automaton in Figure 1.

We assume the predicate ValidTransition(q,a) evaluates to true if and
only if a transition on input action a in state q is defined in the market automa-
ton. On valid transitions the state variable apples is updated, after which the
appropriate instructions, as calculated by function getEmitActions, are emitted
to the output stream.

4.4 Adequacy of Policy Language

Our policy language is sufficiently expressive to describe any edit automaton.
Consider the edit automaton E = (Q, q0, δ, γ, ω). We can encode this automaton

23

let
states : s = q0
transitions : λiex. halt

λiin. T
in

run
end

where T =

if (domδ (iin, s) ∧ (ω(iin , s) = +))
then s = δ(iin , s); emit(iin); consume; next
if (domδ (iin, s) ∧ (ω(iin , s) = −))
then s = δ(iin , s); consume; next
if (domγ (iin, s))
then
s = γstate(iin , s);
emit(γseq (iin, s));
next

else halt

Figure 4: General encoding of an edit automaton.

in the policy language provided we assume the existence of a set of values
for encoding automaton states as well as the following auxiliary functions and
predicates.
domδ(a, q) true if and only if δ is defined on a, q
domγ(a, q) true if and only if γ is defined on a, q
δ(a, q) implements E’s transition function
ω(a, q) implements E’s suppression function
γstate(a, q) produces the next state of γ
γseq(a, q) produces the inserted actions of γ

The encoding (Figure 4) uses a single variable s to represent the current
state. We have been implicitly assuming that all actions processed by our edit
automata are internal actions susceptible to insertion and suppression. Hence,
our program’s external transition function is trivial. The internal transition
function encodes the operations of the automaton rather directly.

5 Future Work

We are considering a number of directions for future research. Here are two.
Composing Schneider’s security automata is straightforward [Sch00], but

this is not the case for our edit automata. Since edit automata are sequence
transformers, we can easily define the composition of two automata E1 and
E2 to be the result of running E1 on the input sequence and then running E2
on the output of E1. Such a definition, however, does not always give us the
conjunction of the properties enforced by E1 and E2. For example, E2 might
insert a sequence of actions that violates E1. When two automata operate on
disjoint sets of actions, we can run one automaton after another without fear

24

���������� ��������� � ��� ���

��� �����!� �������"���#���$��� ���

 saf
�	���

�#������� liveness �#�����#�

EMEM�#�����#��#� ���

editing�#�����#�

saf
�	�!�

-liven
�����%�#�����#�

&�'#()�(*�+�,�-".�,#&�-$)�(&�/%01(*�/&�-$)	(.�*�,#-�.�,�&�-
ties

su
,#,#-�&�//�(.�*

,#-�.�,#/

EMEMEM,#-�.�,�/,#- .�,�/

Figure 5: A taxonomy of precisely enforceable security policies.

that they will interfere with one other. However, this is not generally the case.
We are considering static analysis of automaton definitions to determine when
they can be safely composed.

Our definitions of precise and conservative enforcement provide interesting
bounds on the strictness with which properties can be enforced. Although pre-
cise enforcement of a property is most desirable because benign executions are
guaranteed not to be disrupted by edits, disallowing even provably benign mod-
ifications restricts many useful transformations (for example, the enforcement
of the market policy from Section 3.4). Conservative enforcement, on the other
hand, allows the most freedom in how a property is enforced because every
property can be conservatively enforced by an automaton that simply halts on
all inputs (by our assumption that P̂ (·)). We are working on defining what

25

it means to effectively enforce a property. This definition may place require-
ments on exactly what portions of input sequences must be examined, but will
be less restrictive than precise enforcement and less general than conservative
enforcement. Under such a definition, we hope to provide formal proof for
our intuition that suppression automata effectively enforce some properties not
effectively enforceable with insertion automata and vice versa, and that edit au-
tomata effectively enforce more properties than either insertion or suppression
automata alone.

6 Conclusions

In this paper we have defined two new classes of security policies that can be
enforced by monitoring programs at runtime. These new classes were discovered
by considering the effect of standard editing operations on a stream of program
actions. Figure 5 summarizes the relationship between the taxonomy of security
policies discovered by Alpern and Schneider [AS87, Sch00] and our new editing
properties.

Acknowledgment

The authors are grateful to Fred Schneider for making helpful comments and
suggestions on an earlier version of this work.

References
[AS87] Bowen Alpern and Fred Schneider. Recognizing safety and liveness. Dis-

tributed Computing, 2:117–126, 1987.

[CF00] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by
program transformation. In Twenty-Seventh ACM Symposium on Prin-
ciples of Programming Languages, pages 54–66, Boston, January 2000.
ACM Press.

[EN94] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of database
systems. The Benjamin/Cummings Publishing Company, Inc., 1994.

[ET99] David Evans and Andrew Twyman. Flexible policy-directed code safety.
In IEEE Security and Privacy, Oakland, CA, May 1999.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997.

[KVBA+99] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath
Kannan, Insup Lee, and Oleg Sokolsky. Formally specified monitoring
of temporal properties. In European Conference on Real-time Systems,
York, UK, June 1999.

[Lam85] Leslie Lamport. Logical foundation. Lecture Notes in Computer Science,
190:119–130, 1985.

26

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and Systems Security, 3(1):30–50, February 2000.

[SS98] Anders Sandholm and Michael Schwartzbach. Distributed safety con-
trollers for web services. In Fundamental Approaches to Software Engi-
neering, volume 1382 of Lecture Notes in Computer Science, pages 270–
284. Springer-Verlag, 1998.

[Thi01] Peter Thiemann. Enforcing security properties by type specialization. In
European Symposium on Programming, Genova, Italy, April 2001.

[UES99] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. In Proceedings of the New Security Paradigms
Workshop, pages 87–95, Caledon Hills, Canada, September 1999.

[UES00] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack
inspection. In IEEE Symposium on Security and Privacy, pages 246–255,
Oakland, California, May 2000.

[Wal00] David Walker. A type system for expressive security policies. In Twenty-
Seventh ACM Symposium on Principles of Programming Languages,
pages 254–267, Boston, January 2000.

27

