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Abstract

This thesis presents the design and implementation of Event-driven State-machines Pro-

gramming (ESP)—a language for programmable devices. In traditional languages, like

C, using event-driven state machines forces a tradeoff that requires giving up ease of

programming and reliability to achieve high performance. ESP is designed to provide all

of these three properties simultaneously.

ESP provides a comprehensive set of features to support development of compact and

modular programs. The ESP compiler compiles the programs into two targets—a C file

that can be used to generate efficient firmware for the device; and a model that can be used

by a model-checking verifier like Spin to extensively test the firmware.

As a case study, we reimplemented VMMC firmware that runs on Myrinet network

interface cards using ESP. We found that ESP simplifies the task of programming with

event-driven state machines. It required an order of magnitude fewer lines of code than the

earlier implementation. We also found that model-checking verifiers like Spin can be used

to effectively debug the firmware. Our measurements show that the performance impact on

applications of using ESP is small.
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Chapter 1

Introduction

This thesis shows that a domain-specific language can greatly ease the task of program-

ming devices like network interface cards and hard disks. As devices are getting faster,

the overhead of using the main processor to do low-level device management becomes

significant. The overhead stems from the cost of interrupt processing and of having to

cross multiple buses to reach the device. To address this, some devices are equipped with

their own programmable processor and memory. This allows some of the functionality that

used to run on the main processor to be offloaded on to the processor on the device.

The task of writing firmware for these programmable devices is challenging for sev-

eral reasons. First, the programmable devices tend to have limited processing power and

memory resources but are required to deliver high performance. Second, they have to

constantly process external events and keep track of the progress of multiple events at the

same time. Finally, the firmware is trusted by the operating system and can directly write

to main memory. A bug in the firmware can corrupt the operating system and crash the

entire machine. Therefore, the firmware has to be reliable.

These devices are usually programmed using event-driven state machines in C. Concur-

rency is an effective way of structuring firmware for programmable devices. And the low

1
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overhead of event-driven state machines often makes them the only choice for expressing

concurrency in firmware. The ability of C to handle low-level details makes it a popular

choice for writing system software.

Using event-driven state machines in C to implement firmware makes an already diffi-

cult task of writing reliable, concurrent programs even more challenging. This is because

their low overhead is achieved by supporting only the bare minimum functionality needed

to write these programs. Although good performance can be achieved, the resulting pro-

grams are hard to maintain and hard to debug.

For example, the Virtual Memory Mapped Communication (VMMC) firmware [41]

for Myrinet [21] network interface was implemented using event-driven state machines

in C. The VMMC architecture delivers high performance communication to applications

running at user-level. It allows them to bypass the operating system by using programmable

network interface cards. Our experience with the VMMC firmware was that while good

performance could be achieved with this approach, the source code was hard to maintain

and debug. The implementation involved around 15600 lines of C code. Even after several

years of debugging, race conditions cause the machine to crash occasionally.

This thesis presents the design and implementation of the Event-driven State-machines

Programming (ESP)—a language for programmable devices. Unlike C which forces a

tradeoff that requires giving up ease of programming and reliability to achieve high perfor-

mance, ESP is designed to provide all of these three properties simultaneously.

As a case study, we reimplemented the VMMC firmware using ESP. We compared the

new implementation with the earlier implementation in C to evaluate the ESP language.

We found that ESP simplifies the task of programming with event-driven state machines. It

required an order of magnitude fewer lines of code than the previous implementation. We

also found that model-checking verifiers like Spin [55] can be used to effectively debug the
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firmware. Finally, our measurements show that the performance impact on applications of

using ESP is small. We have published some of these results [64, 63].

The rest of this chapter is organized as follows. Section 1.1 provides a brief description

of programmable devices. Section 1.2 explains the choices available to program these

devices. Section 1.3 describes the problems with the traditional approaches to program-

ming these devices in C. Section 1.4 presents the goals, approach and overview of ESP.

Section 1.5 describes the related work. Section 1.6 presents the outline for the rest of this

thesis.

1.1 Programmable devices

Traditionally, devices implement simple functionality that is usually implemented in hard-

ware. All the complexity is implemented in device drivers running on the main processor.

However, as devices get faster, it is increasingly harder for software running on the main

CPU to keep up with the devices. This is because the main CPU has to go across the

memory and I/O buses to reach the device and incurs several hundreds of cycles for each

access. In these situations, better performance can be achieved by implementing some of

the functionality on the device instead of on the main CPU [15, 97, 41, 96, 79, 95, 100, 2,

99].

To implement these increasingly sophisticated functionality on devices, these devices

are often equipped with a programmable processor and memory (Figure 1.1). Since the

processor resides directly on the card, it incurs a much smaller overhead to access the

device’s resources like DMA engines and device registers.

The code running on the device has to be fast. The processing power and memory on

the device tends to be at least an order of magnitude less than the main CPU and main

memory. Migrating code from the main CPU to the device involves a tradeoff between
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Figure 1.1: A machine with programmable devices

running the code on a faster processor that incurs higher overhead to access the device, and

running it on a slower processor that has faster access to the device. The slower the code

runs on the device, the smaller the benefit of migrating code to devices.

Devices equipped with general-purpose processors differ a great deal in the amount of

processing power and memory they possess. Some of them have a very small processing

core that can be used to implement only very simple functionality and that are often pro-

grammed in assembly (microengines on the Intel IXP [58]). Other devices [21, 58, 36,

77, 86, 3] have general-purpose processors powerful enough to implement complex tasks

but require the code running on them to be fast. This thesis addresses the task of writing

firmware for the latter class of devices.

1.2 Programming Programmable Devices

The firmware for programmable devices is often programmed using concurrency. Concur-

rent programs have multiple threads of control that coordinate with each other to perform
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a single task. The multiple threads of control provide a convenient way of keeping track

of multiple contexts in the firmware. For instance, network interface cards are required to

continuously respond to a variety of events such as requests from the main CPU, messages

arriving on the network, and timer interrupt. For better performance, processing of multiple

events is overlapped—a DMA might be transferring data to the main memory in response

to one event at the same time as a message is being sent out to the network in response to a

different event. In these situations, concurrency is used not to exploit parallelism but as an

effective way to structure a program that runs on a single processor.

Concurrent programs can be written using a variety of constructs like threads or event-

driven state machines. They differ in the amount of functionality provided and the perfor-

mance overhead involved.

Threads and Coroutines. A concurrent program is composed of a set of threads. Each

thread represents a sequential flow of control in the program. The difference be-

tween threads and coroutines is that coroutines cannot be preempted. Context switch

in coroutines occurs only at well-defined synchronization points in the program.

However, in both threads as well as coroutines, each thread has its own stack and

can context switch to another thread even when it is in a nested function call. This

frees the programmer from having to structure the program without worrying about

blocking. However, this convenience comes at a cost. A thread context switch is

slower because it involves saving and restoring all the registers including the stack

pointer and the program counter. Also, it requires more memory because a separate

stack has to be allocated for every thread.

Event-driven state machines. A concurrent program is composed of a set of state ma-

chines. Each state machine represents a sequential flow of control in the program.

The state machines communicate with each other by sending events. The basic differ-
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ence between threads and event-driven state machines is that all the state machines in

the program share a single stack. The context switch is fast because the only context

that needs to be saved and restored on a context switch is the program counter. In

addition, the memory requirements are lower because only one stack is needed for

the entire program.

Writing event-driven state-machines programs is more difficult. Having to share

a stack between the various state machines imposes restrictions on when a state

machine can block and transfer control to a different state machine. Since top-

level functions are the only points in the program where the stack does not store any

useful data (and can therefore be used by a different state machine without having to

save any data), state machines are allowed to block only in top-level functions. The

programmer has the burden of structuring the program so that it does not block in a

nested function call.

In languages like C that do not provide any support for event-driven state machines,

the need to share a single stack places additional burden on the programmer. They

require state machines to be specified explicitly. The sequential flow of control of

a state machine has to be broken up into several functions (handlers). The flow of

control between these functions is specified using function pointers (a more detailed

description is presented in Section 1.3). This makes event-driven state-machines

programs difficult to write, understand and debug.

Since high performance is essential in device firmware, the low overhead of event-

driven state machines makes them a compelling choice.
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Function Description

setHandler(sm,s,e,f) Sets function f to be the handler for event e when the state
machine sm is in state s

setState(sm,s) Moves state machine sm to state s
isState(sm,s) Checks if state machine sm is in state s
deliverEvent(sm,e) Deliver event e to state machine sm

Table 1.1: A typical event-driven state-machines library interface.

1.3 Programming Programmable Devices in C

Libraries to support event-driven state machines in C provide the bare minimum function-

ality necessary to write concurrent programs—the ability to block in a particular state and

to be woken up when a particular event occurs. A typical library interface is presented in

Table 1.1.

A program consists of multiple state-machines. Each state machine is specified us-

ing a set of handlers.1 For each state in a state machine, a handler is specified (using

setHandler2) for every event that is expected while in that state. Later, when an event oc-

curs, the corresponding handler is invoked by the library. The handler processes the event,

transitions to a different state (using setState) and blocks by returning from the handler.

The only way a state machine can block is by returning from the handler. A state machine

communicates with other state machines by generating events (using deliverEvent). All

the state machines share a single stack.

In the rest of this section, we use an example to illustrate the problems with program-

ming using event-driven state machines in C.



CHAPTER 1. INTRODUCTION 8

enum StateMachineT { SM1, SM2, . . . };
enum StateT { WaitReq, WaitDMA, WaitSM2, WaitSM1, . . . };
enum EventT { UserReq, DMAFree, SM2Ready, SM1Ready, . . . };
enum UserReqT { SendReq, UpdateReq, . . . };

ReqSM1 *reqSM1;
ReqSM2 *reqSM2;
int pAddr, *sendData;

main() {
. . .
// Initialize state machine SM1
setHandler( SM1, WaitReq, UserReq, handleReq);
setHandler( SM1, WaitDMA, DMAFree, fetchData);
setHandler( SM1, WaitSM2, SM2Ready, syncSM2);
setState( SM1, WaitReq); // Initial state
. . .

}

Figure 1.2: C example (part I): Initialization
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void handleReq() { // Request has arrived
switch ( reqSM1->type) {
case SendReq:
pAddr = translateAddr( reqSM1->vAddr);
if ( dmaIsFree())

fetchData();
else
setState( SM1, WaitDMA);

return; // Block state machine
case UpdateReq:
updateAddrTrans( reqSM1->vAddr, reqSM1->pAddr);

. . .
}

void fetchData() { // DMA is available
sendData = dmaData( pAddr, reqSM1->size);
if ( isState( SM2, WaitSM1))
syncSM2();

else
setState( SM1, WaitSM2);

}

void syncSM2() { // SM2 is ready for next request
reqSM2->data = sendData;
reqSM2->dest = reqSM1->dest;
deliverEvent( SM2, SM1Ready);
setState( SM1, WaitReq); // Wait for next request

}

Figure 1.3: C example (part II): Event handlers
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WaitSM2

UserReq executeevent handleReq()

WaitReq

event execute fetchData()DMAFree

Initial
State

WaitDma

event SM2Ready execute syncSM2()

Figure 1.4: C example which corresponds to code shown in Figures 1.2 & 1.3.

1.3.1 A Programming Example

The C code fragment (Figures 1.2 & 1.3 and illustrated in Figure 1.4) uses the event-driven

state-machines programming interface presented in Table 1.1. It implements the following

functionality. The state machine SM1 is responsible for handling requests from applications.

On receiving a request to send data, it DMAs the data from the user’s memory onto the

network card and hands it over to state machine SM2 (which is responsible for sending it

over the network). Then, SM1 waits for the next request. While processing the send request,

SM1 might need to block if the DMA is busy or if SM2 is not ready to accept the request.

During initialization, the handlers for different events are set up and the state machine

is initially in state WaitReq.

When a request from the user arrives (event UserReq), the corresponding handler

handleReq is triggered. Since the user specifies virtual address of the data, it is first

translated into physical address by calling function translateAddr that performs a table

lookup. Then, it checks if the DMA is available. If it is, it calls fetchData directly.

1A handler is a C function that takes no arguments and returns void.
2This is used only during initialization to set up the state machines.
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Otherwise, it sets the state of the state machine SM1 to WaitDMA and blocks. In this case,

fetchData will be called when the DMA becomes available (because it is the handler).

When fetchData is invoked, it DMAs the data from the application’s memory onto

the network card by calling dmaData. Then, it checks to see if the state machine SM2 is

ready to accept data. If it is, it calls syncSM2 directly. Otherwise, it sets the state of the

state machine SM1 to WaitSM2 and blocks. In this case, syncSM2 will be called when SM2

is finally ready to accept data.

When syncSM2 is invoked, the request is handed over to SM2 by updating global variable

reqSM2. Then an event SM1Ready is delivered to SM2. This will eventually cause the

corresponding handler in SM2 to be invoked. Finally, it sets the state of SM1 to waitReq and

waits for the next request.

1.3.2 Problems

There are several problems with this approach. First, the code becomes very difficult for

a programmer to understand because the code gets fragmented across several handlers.

In addition, the use of function pointers (handlers) to specify the state machine makes it

difficult for the C compiler to determine the control flow in the state machines and prevents

it from effectively optimizing the code. This forces the programmer to hand-optimize the

code for better performance.

Second, since the stack is shared, all the values that are needed later have to be saved

explicitly in global variables before a handler blocks. Data is passed between handlers

through global variables (e.g. pAddr, sendData). In addition, state machines communicate

with each other using global variables (e.g. reqSM2). It is very hard to get the right

synchronization to keep from clobbering data.
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Third, dynamically allocated data structures have to be managed explicitly. In a con-

current setting, this is hard to implement correctly when several state machines use the data

structure before it is eventually freed. Depending on the timing, a different state machine

might be the last one to use the data and, therefore, be responsible for freeing. When

necessary, explicit reference counts have to be maintained. It is easy to overlook the need

for adding reference counts to some data structures and introduce tricky allocation bugs

that are hard to find.

Fourth, functions are an inappropriate abstraction mechanism for programming with

state machines. This is because a state machine can block only by returning from a handler.

As the firmware evolves, there might be a need to block within a function that is not a

handler. For instance, in our original implementation, the function translateAddr was

implemented as a simple table lookup. However, as the firmware evolved, the table became

a cache of translations and the entire table was moved to the host memory. This meant that

if there was a miss in the translation cache, the translation had to be DMAed from the host

memory. But if the DMA was not available, it would need to block. This required extensive

rewrite of the code and addition of more states to the state machine. In general, the amount

of rewrite is proportional to the nesting depth of the function that wants to block.

Fifth, union datatypes are used extensively in these systems to encode different possible

requests. A lot of handlers have a switch statement to deal with different requests. For

instance, an application could request for a message to be sent (SendReq) or to update the

virtual to physical translation (UpdateReq). Since these requests are handled by the same

handler handleReq, their code had to be collocated even when it makes more sense for

these to be implemented in separate modules. A dispatch mechanism supported by the

language would simplify the implementation.

Finally, hand-optimized fast paths are often built into the system to speed up certain

requests. These fast paths rely on global information like the state of the various state
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machines and their data structures and violate every abstraction boundary. For instance, in

VMMC firmware, a particular fast path is taken if the network DMA is free and no other

request is currently being processed (this requires looking at the state of multiple state

machines). In addition, the fast path code updates global variables used for retransmission

and might have to update the state of several state machines. These fast paths complicate

the already complex state-machine code even further.

In summary, while good performance can be achieved when programming in C, these

programs are hard to write, maintain and debug.

1.3.3 Case Study: VMMC Firmware

The Virtual Memory-Mapped Communication (VMMC) firmware [41] was implemented

using event-driven state machines in C. We use it as a case study throughout this thesis.

The Virtual Memory-Mapped Communication (VMMC) architecture [20] delivers high-

performance on gigabit networks by using sophisticated network cards. It allows data to

be directly sent to and from the application memory (thereby avoiding memory copies)

without involving the operating system (thereby avoiding system call overhead). The

operating system is usually involved only during connection setup and disconnect.

The current VMMC implementation [41] uses the Myrinet [21] Network Interface

Cards. Myrinet is a packet-switched gigabit network. The Myrinet network card is con-

nected to the network through two unidirectional links of 160 Mbytes/s peak bandwidth

each. The actual node-to-network bandwidth is usually constrained by the PCI bus (133

Mbytes/s) on which the network card sits. The network card has a programmable 33-MHz

LANai4.1 processor, 1 Mbyte SRAM memory and three DMA engines to transfer data—

one to transfer data to and from the host memory; one to send data out onto the network;
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Figure 1.5: VMMC Software Architecture. The shaded regions are the VMMC
components.

one to receive data from the network. The card has a number of control registers including

a status register that checks for data arrival, watchdog timers and DMA status.

The VMMC software (Figure 1.5) has three components: a library that links to the

application; a device driver that is used mainly during connection setup and disconnect; and

firmware that runs on the network card. Most of the software complexity is concentrated

in the firmware code, which was implemented using event-driven state-machines in C. The

software development involved several man years. Most of the bugs encountered were

located in the firmware. Consequently, we wanted to reimplement the firmware using the

ESP language.

The VMMC software has been extensively used by a number of research projects. Sev-

eral standard high-level communication libraries including Remote Procedure Call (RPC) [17],

Shared Virtual Memory (SVM) [16], Sockets [37] and NX Message Passing [4] have

been implemented on top of the low-level API provided by VMMC. Several distributed

applications [59, 66] that run on a cluster have also used VMMC as the communication

mechanism.

Significant effort [42, 41, 18, 30] has been spent on implementing, maintaining, perfor-

mance tuning, and extending the functionality of VMMC. Our experience with program-
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ming VMMC firmware using event-driven state-machines in C makes it an ideal candidate

for a case study in this thesis.

1.4 Event-driven State-machines Programming (ESP)

ESP is a domain-specific language designed to support event-driven state-machines pro-

gramming on programmable devices. The rest of this section is organized as follows.

Section 1.4.1 describes the design goals of ESP. Section 1.4.2 outlines the approach taken

by ESP to meet the design goals. Section 1.4.3 presents an overview of the ESP compiler.

Section 1.4.4 presents a summary of the evaluation of ESP using the VMMC firmware as a

case study.

1.4.1 Goals

The design of ESP was driven by the following goals:

Ease of programming. The language should simplify event-driven state-machines pro-

gramming by addressing the problems described in Section 1.3.2. It should allow

concurrency to be expressed in a concise modular fashion. It should also provide

support for dispatch, dynamic memory management, and flexible interface to C.

Extensive testing. Concurrent programs often suffer from hard-to-find race conditions and

deadlock. However, the device firmware needs to be reliable because it is trusted by

the operating system. A bug in the device firmware can crash the entire machine.

ESP should support the use of model-checking verifiers so that the programs can be

tested extensively.

Low performance overhead. Good performance is crucial for the firmware running on

the programmable devices. ESP should minimize the overhead of using the language
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Figure 1.6: ESP Approach. The ESP compiler takes a program written in ESP (pgm.ESP)
and generates two types of files: models (pgm[1-N].SPIN) that can be used by the model
checker to extensively test the program; and optimized C code (pgm.C) that can be used
to generate the firmware. Shaded regions represent code that has to be provided by the
programmer.

features provided. It should permit aggressive optimizations to compile concurrent

programs to run efficiently on a single processor.

In traditional languages, like C, using event-driven state machines forces a tradeoff that

requires giving up ease of programming and reliability to achieve high performance. ESP

is designed to provide all of these three properties simultaneously.

1.4.2 Approach

To meet the design goals (Section 1.4.1), ESP takes the following approach (Figure 1.6).

First, ESP provides a number of features that simplify the task of programming the firmware

(pgm.ESP). Then, the ESP compiler generates models (pgm[1-N].SPIN) that can be used

by a model checker to debug and extensively test the firmware. Finally, the ESP compiler

generates optimized C code (pgm.C) that can be compiled into firmware that runs on the

device.
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Other domain-specific languages [14, 28, 12] that use model checkers for testing have

focused on expressing the control portion of the program. They leave data handling to be

performed externally using C. In contrast, ESP is designed not only to express the control

structure in a modular fashion but also to simplify data handling. This helps ESP in meeting

all three of its goals. First, the programmer is not burdened by having to separate the

data manipulation from the control portion of the program. Second, when the resource

constraints prevent the model checker from exhaustively checking the entire program, the

ESP compiler can be used to extract abstract (less detailed) models. More detailed models

can be used to test local properties of small subsystems while the less detailed models can

be used to test global properties of the entire system. Finally, having more of the program

expressed in ESP allows the ESP compiler to perform optimizations more effectively.

The ESP language (Section 2.3) uses processes to implicitly express state machines.

These processes use channels to communicate with each other. In addition, ESP has a

number of language features that simplify the task of writing device firmware.

The ESP compiler can automatically extract models that can be used by a model checker

to extensively test the program (Section 3.3). Currently, ESP uses the Spin model checker [55].

Spin is a flexible and powerful verification system designed to verify correctness of soft-

ware systems (Section 3.3.1). It systematically explores the state space of the system

and checks for violations of the specified property. The Spin models (pgm[1-N].SPIN)

generated by the ESP compiler can be used together with programmer-supplied Spin code

(test[1-N].SPIN) to verify different properties of the system. The programmer-supplied

Spin code generates external events such as network message arrival as well as specifies

the properties to be verified.

The ESP compiler uses C as the back-end language and generates optimized C code

(Section 4.3). The generated C code (pgm.C) can then be compiled together with the C

code provided by the programmer (help.C) to generate the executable. The programmer-
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supplied C code implements simple system-specific functionality like accessing device reg-

isters to check for network message arrivals. Since device manufacturers usually provide

a C compiler to write firmware for their devices, using C as the back-end language makes

ESP programs to be portable.

1.4.3 Compiler Architecture

Figure 1.7 presents the overall architecture of the ESP compiler. The compiler was imple-

mented using Standard ML of New Jersey (SML/NJ) and required around 7000 lines of

code. The compiler has three main components: a front end (1800 lines of code), a model

extractor (1200 lines of code), and an optimizing code generator (4000 lines of code). The

front end is responsible for scanning, parsing and type checking and generates a typed

abstract syntax tree (details in Section 4.3.1). The model extractor uses the typed abstract

syntax tree to generate models (details in Section 3.3.2). The optimizing code generator

translates the typed abstract syntax tree more suitable for optimizations, optimizes it, and

generates C code (details in Section 4.3).

1.4.4 Case Study: VMMC Firmware

VMMC Firmware (Section 1.3.3) is used as a case study to evaluate ESP. The new imple-

mentation that uses ESP is compared with the earlier implementation (which used event-

driven state machines in C) to show that ESP meets its three design goals (Section 1.4.1).

Detailed evaluation is presented in Sections 2.4, 3.4 and 4.4. A brief summary is presented

here.

Ease of Programming. ESP allows the VMMC firmware to be expressed as a modular

concurrent program. Concurrent programs are expressed concisely using processes

and channels. In addition, pattern matching on channels allows an object to be
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Figure 1.7: ESP Compiler Architecture
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dispatched transparently to multiple processes. A flexible external interface allows

ESP code to interact seamlessly with C code. Finally, a novel memory management

scheme allows an efficient and verifiably safe management of dynamic data.

The new implementation of VMMC firmware using ESP requires significantly fewer

lines of code than the earlier C implementation. The new implementation has 500

lines of ESP code together with around 3000 lines of C code. The C code performs

only simple operations like packet marshalling and handling device registers and all

the complexity is localized to the ESP code. This is a significant improvement over

the earlier implementation where the complex interactions were scattered over the

entire C code (15600 lines).

Extensive Testing. The ESP compiler generates Spin models (Section 1.4.2) that were

used to develop and extensively test the VMMC firmware using the Spin model

checker. Once the properties to be checked by the model checker are specified, the

model checker checks them automatically. As the firmware evolves, the properties

can be rechecked with minimal programmer effort.

Since developing code on the network card is often slow and painstaking, parts of the

firmware were developed and debugged entirely using Spin before being ported to the

network card. For instance, the retransmission protocol was implemented using this

approach. This greatly speeds up program development. The implementation of the

protocol using ESP took two days while the earlier implementation took over ten

days.

Spin was also used to exhaustively check the memory safety of the firmware. ESP

provides an explicit dynamic memory management interface that is efficient but

unsafe. By using Spin to verify safety, ESP provides the benefits of safety without

paying the runtime cost of implementing safety through garbage collection.
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Spin was able to identify several bugs that would cause the firmware to deadlock.

These bugs often triggered in certain rare circumstances and would have been fairly

difficult to find using conventional testing methods.

Low Performance overhead. The ESP compiler performs aggressive optimizations and

was used to generate efficient VMMC firmware. The performance of the new imple-

mentation using ESP was compared with the earlier implementation in C using both

microbenchmarks as well as applications.

Microbenchmark measurements show that the performance difference between the

firmware implementation using ESP and the earlier implementation using C is usu-

ally small. In some cases, the difference is significant. For instance, the ESP im-

plementation involves twice the latency of the C implementation when sending 4

byte messages. However, in this case, the entire difference is the result of the fast

paths in the C implementation that is not currently supported by ESP. To obtain a

fairer comparison, a version of the C implementation that does not include the fast

paths is also used. The measurements show that the ESP implementation performs

0–35 % worse in the latency microbenchmark and 12–25 % worse in the bandwidth

microbenchmark.

The performance impact of using ESP on applications is small. We measure the per-

formance of SPLASH2 applications [103] using the two firmware implementations.

Our measurements show that the applications run 3.5 % slower on average (10 % in

the worst case) when using the ESP version relative to the C version. They also show

that the fast paths in the C implementation have little impact on the applications’

performance.
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1.5 Related Work

Devices are usually programmed using event-driven state machines in languages like C and

sometimes in assembly. We are not aware of any other high-level language designed for

programming devices. However, a number of research projects have addressed some of the

same problems as ESP albeit in a different context. This section presents a brief survey of

the related work. They are discussed in more detail in Sections 2.2, 3.2, and 4.2.

A number of other domain-specific languages have taken an approach similar to ESP’s—

the compiler generates both models that can be used for debugging using a model checker

as well as executable code. However, they have been designed to support event-driven

state-machines programming for different domains. Esterel [14] is designed to model

the control of reactive systems. Teapot [28] is designed for writing coherence protocols.

Promela++ [12] is designed to implement layered network protocols. One of the main

differences between ESP and these languages is that these languages focus on the control

portion of the program; the data structures have to be handled externally using C. In

contrast, ESP is designed to simplify both the control portion as well as the data handling.

The Thompson’s format [57] is a simple extension to ANSI C to support event-driven state

machines. It also allows models to be extracted. However, it provides only minimal support

to aid programming.

A vast amount of research has focused on the theory and practice of concurrency. Lan-

guages like CSP [52] and Squeak [24] have been designed to explore the use of concurrency

to structure programs. However, these languages do not address debugging or efficient code

generation. A number of programming languages like Java [8], CML [88, 87], SR [6],

Newsqueak [81] provide support for concurrency. However, these languages are designed

to be very expressive and incur higher runtime overheads.
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1.6 Thesis Outline

The rest of this thesis is organized around the goals ESP set out to achieve. Chapter 2

presents the design of the ESP language and shows that it simplifies the task of writing

event-driven state-machines programs for devices. Chapter 3 describes how ESP programs

can be tested extensively using a model checker. Chapter 4 describes techniques used to

generate an efficient executable from ESP programs and presents performance measure-

ments that show that the impact of using ESP on applications is fairly small. Chapter 5

presents our conclusions.

Appendix A presents the ESP language reference. Finally, Appendix B describes the

structure of the VMMC firmware implemented using ESP.



Chapter 2

The ESP Language

The firmware for programmable devices is usually written using event-driven state ma-

chines (Section 1.1 and 1.2). This is because event-driven state machines support low-

overhead concurrency. The concurrency allows the firmware to keep track of the various

events being simultaneously processed by the device. The low overhead of using concur-

rency primitives allows the firmware running on relatively slow processors to keep up with

the high performance devices.

General-purpose languages like C include powerful language features like first-class

functions and gotos that can be used to program with event-driven state machines. How-

ever, these languages were not designed to simplify event-driven state-machines program-

ming. As a result, event-driven state-machines programs written in C are difficult to

implement, debug and maintain. The drawbacks of using C are discussed in detail in

Section 1.3.

This chapter presents the design of the ESP language. ESP is a domain-specific lan-

guage for writing firmware for programmable devices using event-driven state machines.

The VMMC firmware is used as a case study to demonstrate that ESP greatly simplifies the

task of programming these devices.

24
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The rest of this chapter is organized as follows. Section 2.1 discusses the background.

Section 2.2 describes the related work. Section 2.3 presents the design of the ESP language.

Section 2.4 presents our experience with using ESP to write VMMC firmware. Section 2.5

suggests directions for future research. Finally, Section 2.6 presents a summary.

2.1 Background

There are two approaches to writing event-driven state-machines programs:

Explicit. In explicit event-driven state-machines programs, a state machine is specified by

explicitly specifying its various components: the states that it can be blocked in; the

events that it responds to; handlers that specify the code that has to be invoked in

response to the events and that transition the state machine to its new state before

blocking. Languages, like C, that are not designed for event-driven state-machines

programming can support it only using an explicit interface. A typical interface was

presented in Section 1.3.

Explicit event-driven state-machines programming is a good match in domains like

memory coherence protocols and hardware controllers where the programming task

is specified as event-driven state machines. However, the explicit approach results in

fragmented code (Section 1.3.2) that makes it less readable. Language features like

continuations [28] and buffered channels [12] can be used to alleviate the fragmen-

tation problem.

Implicit. In implicit event-driven state-machines programs, state machines are specified

implicitly using processes and channels. Each process implicitly encodes a state

machine and represents a sequential flow of control in a concurrent program. A

process communicates with other processes by exchanging messages on channels.
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Since operations on channels can block, a process has to sometimes suspend waiting

for a channel operation to complete. In this setup, each location in a process where

it can block represents a separate state of that state machine. Events on channels like

message arrival cause a blocked process to resume execution until the next location

in the process where it blocks (state transition). Since the different state machines in

a event-driven state-machines program have to share a single stack (Section 1.2), the

processes have to obey a restriction—a process can block only at the top-level and

not in a nested function call. This ensures that a state machine does not have any

useful data on the stack while it is blocked and allows the same stack to be reused for

the next state machine that is scheduled to run. An example of implicit event-driven

state-machines program is presented in Section 2.3.1.

The implicit approach simplifies the programmers task by making event-driven state-

machines programming similar to message-passing style concurrent programs. It

provides a high-level abstraction and avoids the code fragmentation problem.

2.2 Related Work

This section describes a number of research projects that are related to the ESP language

and influenced its design.

Code Generation + Verification. A number of languages [14, 28, 12] have been de-

signed to support event-driven state-machines programming in other domains. They have

taken a similar approach of generating efficient executables as well as models that can be

used by a model checker. However, they differ from ESP significantly. One of the main

differences is that all these languages have been designed to address only the control portion

of the program. The complex data structures have to be manipulated externally using the
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C language. This design choice is motivated by the fact that the control portion of the

program is sufficient to check for some properties like absence of deadlocks and livelocks.

Esterel [14] was designed to model the control of reactive systems. It adopts the

synchronous hypothesis—the reaction to an external event is instantaneous—and ensures

that every reaction has a unique, and therefore, deterministic reaction. This makes the

programs easier to analyze and debug. The Esterel programs can be compiled to generate

both software and hardware implementations. It was used recently to efficiently implement

a subset of TCP protocol [25]. However, using Esterel to implement device firmware has

several drawbacks. First, the reactions are not instantaneous in practice. For instance,

if a DMA becomes available while an event was being processed, it cannot be used to

process the current event. The “DMA available” event would be registered on the next

clock tick and would be then available for use. This results in inefficient use of the

DMA. Second, the language provides some powerful constructs like parallelism at every

level. However, to satisfy the synchronous hypothesis, it forces some constraints on valid

programs. For instance, each iteration of a loop has to have a “time consuming” operation

like signal emission. In addition, this constraint has to be verifiable by the compiler. This

disallows simple loops that initialize an array. Third, the language is more naturally suited

to implementing synchronous hardware than software. It has a notion of a global clock that

ticks periodically. Processes communicate with each other emitting broadcast signals. In

each clock cycle, there should be a scheduling scenario that allows all the writers to write

to a signal before any readers of that signal can read it. Finally, the language is designed

to encode only the control portion of the program. The data handling has to be performed

externally using the C interface. This forces some of the complex tasks including memory

management to be implemented in C.

Teapot [28] is a language for writing coherence protocols that can generate efficient

protocols as well as verify correctness. It uses a single state machine (and not a group of
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communicating state machines) to keep track of the state of a coherence unit (a cache line

or a page). The state machine is specified explicitly using a set of handlers similar to the

C interface described in Table 1.1. However, they use continuations to reduce the number

states that the programmer has to deal with. While this approach works well when applied

to coherence protocol, it suffers from some of the problems described in Section 1.3.2 when

used to implement device firmware. It makes it difficult to write modular code because each

state (which is essentially the global state of the program) has to specify a response to all

the events that can occur in that state. Teapot also does not provide any support for complex

datatypes and dynamic memory management.

Specification languages like Promela [56] (which is used by Spin), Murphi [40], and

IOA [47] are used to specify event-driven state machines. These languages are designed to

precisely specify and to formally reason about programs. However, they are not designed

to be effective programming languages and lack some standard language features. For

instance, Promela does not support pointers and dynamic memory management that are

necessary for an efficient implementation.

Promela++ [12] is a language designed to implement layered network protocols. It is a

nonstrict extension of the Promela language that supports a restrictive form of pointers. The

network protocol is implemented as a sequence of layers. The adjacent layers communicate

using FIFO queues. Each layer specifies handlers to process the message arriving on its

queues. The queues have unbounded buffering. This allows the output operations on the

queues to be nonblocking. Although the layered framework works well for writing network

protocols, they are too restrictive for writing firmware code where the different modules

have much more complex interactions. Also, they do not provide any support for dynamic

memory management.

The Thompson’s format [57] is a simple extension to ANSI C to support event-driven

state-machines programming. The program is still written in C using goto and label
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statements. However, the extensions provided (identified by the @ prefix) simplify the

task of specifying dispatch tables and states. A preprocessor replaces these extensions with

the corresponding C code. A model checker was used to check software written in this

format [57]. Although this approach simplifies event-driven state-machines programming,

it does not address a number of issues including dynamic memory management and com-

munication between the state machines.

Concurrency Theory. Concurrent programs are more difficult to understand than se-

quential ones. A number of languages [52, 24] have been designed to explore the use

of concurrency to structure programs. Several process algebras [72, 53, 73] have been

proposed to better understand the nature of concurrency and to formally reason about

concurrent programs.

CSP [52] proposes the use of communicating sequential processes (CSP) as a funda-

mental program structuring method. It shows how CSP programs can be used to implement

a variety of constructs including subroutines, datatypes, bounded buffers and semaphores.

A CSP program consists of a set of processes that can communicate with each other only

by sending synchronous messages (rendezvous communication). Each of the processes is

completely sequential. However, CSP does not address some practical issues including

complex data types, dynamic memory management, external interface, debugging, and

efficient compilation.

Squeak [24] is a concurrent language for implementing graphical user interfaces. Its

semantics are formally specified. A Squeak program consists of a fixed number of pro-

cesses communicating through synchronous channels. The channels are known statically.

This allows the programs to be compiled efficiently. However, Squeak does not address

a number of features including complex data types, dynamic memory management and

debugging.
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A number of process algebras or calculi—like CCS [72], CSP [53, 89]1, and π-calculus [73]—

identify a small set of primitive operators that are sufficient to express concurrent programs

and use algebraic laws to formally reason about them. They focus on concurrent programs

with processes that communicate by sending message to each other rather than through

shared variables. These algebras serve as foundation for programming languages.

Concurrent Languages. A number of programming languages [8, 87, 6, 81] provide

support for concurrency. These languages are very expressive and use threads instead

of event-driven state machines to express concurrency. They allow dynamic process and

channel creations. They support both message-passing style communication as well as

shared-memory communication. However, due to their expressiveness, the runtime over-

head incurred is prohibitively high to allow their use to program devices.

Java [8], like most general-purpose programming languages, provides user-level threads

to express concurrency.

CML [88, 87] is a concurrent extension of ML [74] that supports first-class synchronous

operations. These operations are powerful enough to express a wide variety of communi-

cation abstraction including buffered channels, multicast channels, Ada-style rendezvous

and futures.

SR [6] is a language for parallel and distributed processing. It supports several virtual

machines that communicate using message-passing. Each virtual machine uses a separate

address space and can run multiple processes that communicate with each other using both

shared memory as well as message passing. This allows an SR program to run on a single

parallel machine or to be distributed across several machines.

Newsqueak [81] is a successor to Squeak [24] that includes a type system, dynamic

process and channel creation and blocking in functions.

1The CSP process algebra is distinct from the CSP programming language [52]
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OCCAM [91], a descendant of CSP, is designed to implement concurrent programs

that run on a parallel machine. The concurrency operator can be used at any level of the

program. This encourages the program to express concurrency so that all the nodes of the

parallel machine can be kept busy. OCCAM processes communicate with each other only

through synchronous channels. To support this, complex data types like arrays and records

are copied during assignment, thereby, avoiding pointer aliasing.

Neuron C [44] is an extension of ANSI C that is designed for a distributed environment.

A Neuron C program consists of state machines running on different nodes of a distributed

system communicating using channels.

Language Extensions. ESP uses C to handle low-level details like accessing special

device registers, dealing with volatile memory and marshalling packets that have to be

sent out on the network. Other studies [71, 78, 27] have proposed language extensions to

simplify low-level handling. These features are orthogonal to the current design of the ESP

language and can be incorporated into the language in the future.

Devil [71] is designed to make it easier to write device drivers. It is an interface

description language that specifies the communication with devices using device registers

and memory. A compiler automatically checks the consistency of the specification and

generates efficient low-level code.

The format of packets used by most protocols cannot be described using the type

system of most languages including C and ESP. This is because the packet format includes

variable length fields that depend on other fields. Therefore marshalling code has to be

written that translates data structures into packet formats before they can be sent out on the

network. Since doing this manually is tedious and error prone, some researchers [78, 27]

have proposed extending the type system to express the packet formats. Universal Stub

Compiler(USC) [78] allows a very precise description of layout of the data structures.
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However, it does not support variable-length fields. Packet Types [27] provides a more

expressive type system that supports layering of protocols by encapsulation, variable-length

fields and optional fields. However, it allows only unmarshalling of packets into C data

structures. It does not support marshalling of C data structures into packets.

Automatic Memory Management. Automatic memory management in safe program-

ming languages can be provided either through garbage collection [102] or by allowing ex-

plicit memory management using regions [93]. Garbage collection often involves runtime

overhead (both in terms of processor overheads as well as additional memory requirement)

that are unacceptable on programmable devices. Region-based memory management tech-

niques free memory when exiting dynamic contexts like procedures. This makes them

unsuitable for a language like ESP that does not have any dynamic context.

2.3 Language Design

The Event-driven State-machines Programming (ESP) language adopts several structures

from CSP [52] and has a C-style syntax. ESP supports event-driven state-machines pro-

gramming. It is designed to not only allow programs that are easy to write and understand

but also use model checkers to simplify debugging (Chapter 3) and generate fast executa-

bles (Chapter 4). As a result, the design of the language strikes a balance between the

following conflicting goals:

• Provide powerful and flexible language features that support compact, readable event-

driven state-machines programs.

• Allow the compiler to extract tractable models that can be used by the model checker.

The specification language used for specifying models support limited features. For

instance, they usually do not support pointers.
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type dataT = array of int
type sendT = record of { dest: int, vAddr: int, size: int}
type updateT = record of { vAddr: int, pAddr: int}
type userT = union of { send: sendT, update: updateT, . . . }

channel ptReqC: record of { ret: int, vAddr: int}
channel ptReplyC: record of { ret: int, pAddr: int}
channel dmaReqC: record of { ret: int, pAddr: int, size: int}
channel dmaDataC: record of { ret: int, data: dataT}
channel SM2C: record of { dest: int, data: dataT}
channel userReqC: userT // External (C) writer

process SM1 {
while ( true) {

in( userReqC, { send |> { $dest, $vAddr, $size}});
out( ptReqC, { @, vAddr});
in( ptReplyC, { @, $pAddr});
out( dmaReqC, { @, pAddr, size});
in( dmaDataC, { @, $sendData});
out( SM2C, { dest, sendData});
free( sendData);

}
}

Figure 2.1: ESP Example that implements the state machine presented in Section 1.3.1.

• Allow the compiler to generate fast executables.

This section discusses the design of the ESP language. A complete description of the

language is presented in Appendix A.

Figure 2.1 shows the ESP code that implements the example presented in Section 1.3.1.

Figure 2.2 presents some additional code that implements a page table. In this section, we

will use code fragments from these figures to illustrate the various language features.
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process PageTable { // virtual to physical address mapping
$table: #array of int = #{ TABLE_SIZE -> 0, . . . };
while ( true) {

alt {
case( in( ptReqC, { $ret, $vAddr})) {
// Request to look up a mapping
out( ptReplyC, { ret, table[vAddr]});

}
case( in( userReqC, { update |> { $vAddr, $pAddr}})) {
// Request to update a mapping
table[vAddr] = pAddr;

}
}

}
}

Figure 2.2: ESP code to implement a page table.

2.3.1 Processes

Concurrency in ESP is expressed using processes and channels. An ESP program consists

of a set of processes communicating with each other over channels.

Processes in ESP implicitly encode state machines—each location in the process where

it can block implicitly represents a state in the state machine (Section 2.1). For instance:

process add5 {
while( true) {

in( chan1, $i);
out( chan2, i+5);

}
}

The above process represents a state machine with 3 states. The first state is the initial

state at the start of the process. The second state is when it is blocked waiting on the in

operation on channel chan1. The third state is when it is blocked on the out operation on

channel chan2.
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The degree of concurrency supported by the ESP language determines the concurrency

overhead that is incurred at runtime. To minimize the concurrency overhead, ESP supports

concurrency only at the top level—each process is totally sequential. To reduce the over-

head even further, all processes in ESP are static. They cannot be dynamically started at

run time. This allows the compiler to optimize the programs more effectively.

2.3.2 Channels

Processes communicate with each other over channels. Messages are sent over the channel

using the out operation and received using the in operation. These operations can block.

For instance, a process trying to read on a channel will block till another process writes

to the channel. The alt statement allows a process to wait on in and out operations on

several different channels till one of them becomes ready to complete.

The alt statement in ESP traces its origin to guarded commands [39] that allows a

nondeterministic choice in sequential programs. An alternation statement includes a list

of guarded commands. A guarded command consists of a statement protected by a guard

(a boolean expression). Each execution of an alternation statement nondeterministically

chooses one of the statements whose guard evaluates to true and executes it. CSP [52]

extends the guarded commands to allow an input operation on the channel to be specified

in the guard in addition to a boolean expression. Languages like Amber [23] allow

both input and output operations in the guard. This introduces complications in a parallel

implementation [62]. However, ESP is targeted to run on a uniprocessor.

The presence of nondeterminism raises the issue of fairness. When multiple guards

are true in an alternation statement, if the implementation always chooses one particular

guarded command, the other guarded commands can be starved out. This is referred to as

unfairness. Two types of fairness guarantees can be provided: weak fairness and strong



CHAPTER 2. THE ESP LANGUAGE 36

fairness [5]. Weak fairness guarantees that a guarded command will be chosen if the guard

remains continuously enabled. Strong fairness guarantees that a guarded command will

be chosen if the guard is enabled infinitely often. ESP provides strong fairness. It should

be noted that fairness does not imply that each of the enabled guarded statements will be

chosen with equal probability.

In ESP, communication over channels is synchronous or unbuffered—a process has

to be attempting to perform an out operation on a channel concurrently with another

process attempting to perform an in operation on that channel before the message can

be successfully transferred over the channel. Consequently, both in and out are blocking

operations.

Using synchronous channels has several benefits over asynchronous (or buffered chan-

nels). First, they simplify reasoning about message ordering on channels [7]. This is

especially true in ESP that does not impose any structure on the processes—any process

can communicate with any other process. For instance, if process A sends a message to

process B and then a message to process C, synchronous channels guarantee that process B

receives its message before process C. Second, they can be implemented more efficiently

than buffered channels. When buffering is required, it can be implemented explicitly by

the programmer (Appendix A.8). Third, both bounded and unbounded buffering are prob-

lematic [88]. With bounded buffering, the programmer has to still handle the eventuality

that a send operation has to block. With unbounded buffering, the memory overflow can

result. Finally, asynchronous (buffered) channels increase the size of state space that has to

be explored during model checking.

ESP Channels are static and are not first-class objects—they can neither be created

dynamically nor stored in variables nor sent over other channels. This design allows the

compiler to perform optimizations more effectively. For instance, it eliminates unnecessary

allocation associated with pattern matching (Section 4.3).
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ESP supports pure message passing communication over the channels. Allowing pro-

cesses to communicate over shared memory (using shared mutable data structures) would

require ESP to provide additional mechanism (like locks) to avoid race conditions.

Two aspects of ESP prevent sharing of data structures. First, ESP disallows global

variables. Each variable is local to a single process. Second, objects sent over channels are

passed by value. To support this efficiently, ESP allows only immutable objects to be sent

over channels. This applies not only to the object specified in the out operation but also to

all objects recursively pointed to by that object.

ESP supports immutable as well as mutable data structures. An immutable object

arriving on a channel can be mutated by first applying a cast operation to obtain a mutable

version of the object. Semantically, the cast operation causes a new object to be allocated

and the corresponding values to be copied into the new object. However, the compiler

can avoid creating a new object in a number of cases. For instance, if the compiler can

determine that the object being cast is no longer used afterwards, it can reuse that object

and avoid allocation.

2.3.3 Data Types and Control Constructs

In addition to basic types like int and bool, ESP supports complex data types like record,

union and array. This distinguishes it from other related domain-specific languages [14,

28, 12]. These languages are designed to express just the control portion of concurrent

programs. The complex data structures have to be managed externally in a language like

C. Although the control portion of a program is sufficient to check a number of properties

using a model checker, it burdens the programmers by requiring them to separate the control

and data portions of the program. In contrast, ESP is designed to not only to express the

control portion but also manipulation of data structures. This requires ESP to address a
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number of additional issues like dynamic memory management (Section 2.3.5), mutable

shared data structures (Section 2.3.2) and flexible external interface (Section 2.3.6).

ESP does not support recursive data types for two reasons. First, specification lan-

guages for model checkers do not support recursive data types. Second, sending recursive

data types by-value over channels involves additional run-time overhead.

A process in ESP is completely sequential. ESP provides standard control constructs

like if-then-else conditional statements and while loops found in traditional imperative

languages.

ESP does not support functions. Instead, it uses processes to support abstraction [52].

For example, consider the following code fragment from a process which implements a

page table which maps virtual addresses into physical addresses (Figure 2.1). The mapping

is maintained in the array table. When it receives a request to translate virtual address to

physical address, it uses the virtual address to look up the mapping and sends a reply back

to the requesting process. The variable ret identifies the process making the request so

that the reply can be directed back to it. The second case accepts requests to update the

mapping and updates the table.

alt {
case( in( ptReqC, { $ret, $vAddr})) {
// Request to look up a mapping
out( ptReplyC, { ret, table[vAddr]});

}
case( in( userReqC, { update |> { $vAddr, $pAddr}})) {
// Request to update a mapping
table[vAddr] = pAddr;

}
}

A pair of out and in operations can be used to mimic the behavior of functions calls

that expect return values. For instance:2

2@ is a constant that represents the process id of that process (Appendix A).
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out( ptReqC, { @, vAddr});
in( ptReplyC, { @, $pAddr});

On the other hand, functions that do not expect a return value can be modeled using a single

out operation as follows:

out( userReqC, { update |> { vAddr, pAddr}});

ESP processes are a more appropriate abstraction mechanism than functions for event-

driven state-machines programs for two reasons. First, a process can block on a channel

while a nested function cannot block (Section 2.1). This avoids problems that arise when

a function needs to block on a channel (Section 1.3.2). Second, the process abstraction

allows flexibility in scheduling computation. In the last example where no return values

are expected in response to the request to update the table, the code to update the table can

be postponed to be performed later.

2.3.4 Dispatch on Channels

One of the features of the ESP language is the use of pattern matching to support dispatch

efficiently. Pattern matching is used in languages like SML [74] to support expressive

switch statements. Other languages [56, 52, 89] have used pattern matching to support

dispatch. However, efficiency was not a concern in these languages.

ESP uses pattern matching to support dispatch. A channel in ESP can have multiple

processes receiving messages on it. Each receiver specifies a pattern in the in operation—

only those objects that match the pattern will be accepted by the receiver. An object sent

on the channel will be dispatched to the waiting receiver whose pattern matches the object.

For example, process A performs

in( userReqC, { send |> { $dest, $vAddr, $size}});
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to accept only “send” requests while a process B performs

in( userReqC, { update |> { $vAddr, $pAddr}});

to accept only “update” requests. When process C performs

out( userReqC, req);

the object will be delivered to process A or B depending on which of the two patterns it

matches.

Using pattern matching to support dispatch has several advantages. It frees the process

sending a message from having to examine it to determine the receiver. This not only

simplifies the sender process but also makes the program more modular. Details about

which objects a process is willing to receive is specified where it is more relevant (in the

receiver). In addition, this requires the patterns to be specified only once (in the various

receivers on the channel) instead of having to replicate dispatch code (in each sender on

that channel).

To support pattern matching efficiently, ESP requires that all the patterns used to receive

objects on a channel have to be disjoint—an object has to match exactly one pattern. In

addition, each distinct pattern can be used by only one process (possibly several times).

This allows a channel to be decomposed into a set of ports (Section 4.3.1). A channel can

have multiple readers and multiple writers while a port can have multiple writers but only

a single reader. In ESP, a channel together with a pattern specifies a port.

ESP does not require all the patterns specified on a channel to be exhaustive (even

though this would ensure that each object sent on the channel would have a unique destina-

tion) for two reasons. First, the complex data types have several useless patterns (usually

with one or more of their fields being nil) that would never get matched in a running

program. The programmer would have to write an “error” process that received objects
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of all these types. Second, ensuring that every object sent on a channel has a unique

destination does not guarantee that every send on the channel would succeed. A process

that has a statement to receive objects might never execute that statement.

2.3.5 Memory Management

The design of the memory management scheme in ESP was driven by two goals. First, the

programs should be safe. Bugs stemming from unsafety are difficult to find. The problem

is compounded by the fact that these programs are concurrent and run on devices with

minimal debugging support. Second, the memory management overhead has to be small.

Memory management schemes fall into two categories: automatic and explicit memory

management. On one hand, automatic memory management using garbage collection tech-

niques [102] provides safety but usually involves high overhead both in terms of amount of

memory and processing time). On the other hand, explicit memory management involves

lower overhead but are hard to program correctly with.

ESP provides a novel memory management scheme that provides safety as well as low

overheads. To manage dynamically allocated memory, it provides an explicit malloc/free-

style interface that incurs low overheads. It ensures safety using a model checker. The only

unsafe aspect of ESP is its explicit memory management scheme. The memory allocation

bugs can be eliminated using a model checker resulting in a safe ESP program.

The key observation is that allocation bugs are difficult to find because memory allo-

cation correctness is a global property of a program—the property cannot be inferred by

looking only at a single module of the program. A programmer has to examine the entire

program to make sure that all allocated objects are eventually freed and are not accessed

once freed.
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To rectify this, ESP makes memory allocation correctness a local property of each

process. Section 2.3.2 describes the design choices that ensure that no two processes

share any data structure. It should be noted that to support pure message passing-style

communication, it would have been sufficient to ensure that no two processes share any

mutable data structures. However, to make memory allocation correctness a local property,

ESP disallows sharing of even immutable data structures.

Making memory allocation correctness a local property allows the model checker to

verify the memory safety of each process separately (Section 3.3.4 and 3.4.2). In addition,

it promotes modular programming.

Objects sent over channels are passed by value. i.e. A deep copy of the object is

delivered to the receiving process3. Objects received over a channel are treated like newly

allocated objects and have to be later freed by that process. One possible complication

occurs when an object contains multiple links to another object. For instance, the sender

sends an array all of whose entries point to the same object. If the deep copy preserved

the pointer sharing, the receiver would have to be careful to free the object stored in the

object only once. However, if that process later sends a different array whose entries point

to different objects, the receiving process would have to free each of the entries. To avoid

this, the deep copy of ESP does not preserve any of the pointer sharing in objects being

sent over channels. So the receiving process can always perform a recursive free on objects

arriving over channels. In addition, the implementation does not have to incur additional

runtime overhead to preserve the pointer sharing.

ESP provides a malloc/free-style interface to manage dynamically allocated mem-

ory. The allocation syntax for various types of objects is presented in Section A.7. Two

primitives free and rfree (which performs free recursively) allow processes to free the

allocated objects.

3This is true only semantically. The ESP runtime never has to actually copy the object (Section 4.3.3)
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ESP allows dangling pointers (pointers to objects that have been already freed) during

program execution. If dangling pointers were not allowed, the program would have to

delete all pointers to a given object before that object could be freed. This would require

additional bookkeeping and would place unnecessary burden on the programmer. Although

ESP allows dangling pointers, it disallows the use of these pointers to access memory. This

ensures memory safety. In contrast, the usual approach to ensure memory safety is to

reclaim an object only if no pointers point to it. This avoids dangling pointer. The only

other approach that we are aware of that provides safety while allowing dangling pointers

is region-based memory management [93]. It uses the type system to guarantee that the

dangling pointers are not used at run time.

Memory allocation in ESP is a nonblocking operation. In a concurrent program, making

memory allocation blocking has some advantages. It allows a memory allocation request

in one process that does not find any memory available to block till another process frees

up some memory. Although this would lead to better memory utilization, it introduces

additional synchronization between the processes. This forces the programmer to treat

each allocation as potentially blocking and make sure that it does not cause the program to

deadlock.

2.3.6 External Interface

ESP has to support an interface to C code as well as to the testing code written in the

specification language of the model checkers (Section 1.4.2). ESP relies on C to implement

low-level details like accessing special device registers, dealing with volatile memory and

marshalling packets that have to be sent out on the network. In addition, ESP programs have

to interact with code written in the specification language of the model checkers (currently,

Spin) during debugging and testing (Figure 1.6).
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ESP uses channels to interface with both C as well as Spin code. Regular channels

have different processes reading from and writing to them. External channels have one

or more processes reading (or writing) at one end of the channel while C or Spin code

is writing (or reading) at the other end of the channel. External channels, like regular

channels, are synchronous. This is different from the traditional approaches that provide

an asynchronous interface. Some languages [24, 12] allow C code to be directly embedded

in the program while others [14, 28] allow functions that are implemented externally to be

invoked. Although Squeak [24] uses primitive channels for some external interaction, these

channels are not user definable and are built into the compiler.

Using channels to provide external interfaces has a number of advantages. First, ESP

processes often block on external events like arrival of user request or network pack-

ets. Using channels allows a process to use the existing constructs to block on external

events. Second, external code can also use the same dispatch mechanism built into channels

through pattern matching. Finally, it promotes modularity. For instance, if retransmission

is no longer required (Appendix B), the retransmission processes can be dropped and the

regular channels used to interact with it can be converted into external channels. Other

processes that were using these channels are not affected because they cannot tell the

difference between an external channel and a regular channel.

The external interfaces work as follows:

C interface. The C interface is illustrated by the following example.

type sendT = record of { dest: int, vAddr: int, size: int}
type updateT = record of { vAddr: int, pAddr: int}
type userT = union of { send: sendT, update: updateT}
channel userReqC: userT
interface userReq( out userReqC) { // C writer

Send( { Send |> { $dest, $vAddr, $size}),
Update( { Update |> $new})
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}

This declares an external interface UserReq that specifies an external writer on chan-

nel UserReqC. It also specifies a list of function suffix and pattern pairs.

To support a synchronous C interface on this channel, ESP requires two types of

functions to be provided: sync and transfer functions. The sync function has a

“IsReady” suffix (UserReqIsReady) and returns whether the C code is ready to

send data over the channel. The transfer functions are called to transfer data over

the channel after the corresponding “IsReady” function has indicated its readiness.

Each channel requires a single sync function to be provided. However, it requires a

separate transfer function for each pattern (UserReqSend and UserReqUpdate).

Each data transfer over an external channel involves a call to the sync function fol-

lowed by a call to one of the transfer functions. The second call has to be performed

immediately after the first one. It is not valid for the implementation to first check

the readiness of several different channels and then call the transfer functions on all

the channels that are ready. This is because invoking one of the transfer functions

may cause other external channels that were ready to be no longer ready.

The use of patterns on external channels serves two purposes. First, it supports

dispatch on external channels. Second, it minimizes the amount of allocation and

manipulation of ESP data structures that has to be done in C. For instance, by speci-

fying the entire pattern in UserReqSend, there is no need for that function to allocate

any ESP data structure. UserReqUpdate, on the other hand, will have to allocate,

correctly initialize and return a ESP record. This can not only introduce allocation

bugs in the system but also move the allocation beyond the reach of the ESP compiler,

thereby preventing the allocation from being optimized away.
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Spin Interface. The generated Spin model has to interface with testing Spin code that

is provided to the programmer (Section 1.4.2). Since Spin supports synchronous

channels, the ESP channels are simply translated into synchronous Spin channels.

The external Spin code can interact directly with the generated Spin model by reading

and writing to the appropriate channels.

2.4 Case Study: VMMC Firmware

The VMMC firmware is used as a case study to evaluate ESP (Section 1.3.3). The VMMC

firmware was reimplemented using ESP4 and compared with the earlier implementation

that used event-driven state machines in C.

The use of ESP resulted in firmware that was significantly easier to write, understand

and maintain. The earlier implementation includes about 15600 lines of C code (Around

1100 of these lines were used to implement the fast paths).5 In contrast, the new im-

plementation using ESP required 500 lines of ESP code together with around 3000 lines

of C code.6 The C code implements simple tasks like initialization, initiating DMA,

packet marshalling and unmarshalling and shared data structures with code running on

the host processor (in the VMMC library and the VMMC driver). All the complex state

machine interactions are restricted to the ESP code, which uses 8 processes and 19 channels

(Appendix B). This is a significant improvement over the earlier implementation where the

complex interactions were spread throughout the 15600 lines of hard-to-read code.

ESP addresses the problems that programmers face when programming with event-

driven state machines in C (Section 1.3.2). This can be observed by comparing the C code

4The implementation supports most of the VMMC functionality [41] (only the redirection feature is
currently not supported.

5To make a fair comparison, we counted only those lines of the earlier implementation that correspond to
functionality implemented in the new VMMC implementation using ESP.

6Currently, ESP does not support fast paths.
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fragment in Figures 1.2 & 1.3 with the equivalent ESP code fragment in Figure 2.1. ESP

addresses the problems as follows:

• ESP programs represent state machines implicitly using processes. This avoids code

fragmentation that results from having to specify state machines explicitly in C. In

addition, ESP uses processes to implement functions. This avoids the problem that

arises when a state machine needs to block in a nested function call.

• ESP processes can communicate only by sending messages to each other over chan-

nels. Channels provide well-defined interfaces between different processes. This

promotes modular programming, as a process is a modular unit in ESP. In C, the

state machines communicated using shared data structures.

• ESP supports dynamic memory to be managed in a modular fashion. Each process

independently manages its memory using an explicit malloc/free-style interface.

For instance, process SM1 can free sendData when it no longer needs it without

worrying about whether another process is still using it. Since the explicit interface

introduces unsafeness, a model checker is used to ensure safety (Chapter 3).

• ESP uses pattern matching to support dispatch on channels efficiently, so all the

code that processes that read on a channel do not have to be collocated. They can

be placed in the relevant modules. For instance, code that handle requests on the

channel userReqC are located in two different processes.

• ESP uses channels to interact with external code that is used to implement low-level

device handling in C. The use of channels provides a simple and powerful interface to

C code by leveraging features that are already built into ESP channels. These include

the ability to wait for events and dispatch to multiple processes.
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• ESP currently does not support fast paths. This is a subject for future research

(Section 4.5).

2.5 Future Work

ESP is designed to write firmware for a broad class of devices. It does not contain any

features specific to VMMC firmware or the Myrinet network card. However, so far ESP

has been used to only implement the VMMC firmware for the Myrinet network card. It

would be useful to further validate the design of ESP by using it to implement firmware for

other devices.

The current design of ESP has left out some language features like recursive data types

that were not found to be essential. However, experience with writing firmware for other

devices in the future could make a case for adding support for these features in ESP. In

addition, some low level device handling capability [71, 78, 27] can be added to ESP. This

will reduce the use of C in ESP programs even further.

2.6 Summary

Programming in ESP is significantly easier than programming with event-driven state ma-

chines in C. This addresses the first goal that ESP was designed to meet.

ESP allows programs to be written in concise, modular fashion. First, ESP programs

consist of processes communicating with each other over synchronous channels. A process

encodes a state machine implicitly and comprises a modular unit in a ESP program. Chan-

nels provide well-defined interfaces between the processes. Second, dynamic memory is

managed explicitly by ESP programs. However, a novel scheme allows each process to

independently manage its memory. This not only promotes modular programming but
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also allows a model checker to be used to verify safety in ESP programs. Third, pattern

matching is used to support dispatch on channels efficiently. Finally, channels are used to

provide a flexible and powerful interface to C code. Some of the low-level device handling

is currently implemented in C.

The VMMC firmware is used as a case study to evaluate ESP. It was reimplemented

using ESP and compared with the earlier implementation that used event-driven state ma-

chines in C. We found that ESP greatly simplifies the task of writing the firmware. It

required about five times less lines of code than the earlier C implementation. The earlier

implementation in C required 15600 lines of hard-to-read C code. The new implementation

in ESP required 500 lines of ESP code along with 3000 lines of C code. All the complex

interactions are contained in the ESP code—the portion written in C implement simple

low-level device handling.



Chapter 3

Developing and Testing using a Model

Checker

Device firmware has to be reliable, as it is trusted by the operating system. It has the ability

to write to any location in the physical memory. A stray memory write resulting from a bug

can corrupt critical data structures in the operating system and can crash the entire machine.

Writing reliable firmware for these devices using event-driven state machines is a chal-

lenging problem for three reasons. First, concurrent programs are inherently hard to write

correctly. Often, they have unforeseen interactions between the different sequential flows of

control resulting in race conditions. Second, the problem is compounded in languages like

C that are not designed to support event-driven state-machines programming. Event-driven

state-machines programs can be written in these languages using an explicit interface (Sec-

tion 1.3) which requires state machines to be specified explicitly using function pointers.

The resulting programs are difficult for the programmer to understand and for the compiler

to compile efficiently. To get good performance, the programmer is forced to perform some

optimizations manually. This introduces subtle bugs in the program. Third, very limited

debugging support is available on the devices.

50



CHAPTER 3. DEVELOPING AND TESTING USING A MODEL CHECKER 51

The earlier implementation of VMMC firmware [41] was implemented using event-

driven state machines in C. Our experience was that using event-driven state machines

in C was very error-prone and difficult to debug. Even after several man-years spent on

debugging the VMMC firmware, we continue to encounter bugs frequently. These bugs

are often due to race conditions that occur very infrequently and, are therefore, very hard

to find.

Model checking is a promising approach to building reliable concurrent software. Model

checkers take a model of the system and explore all possible interleaved executions of the

concurrent system. However, since the number of possible executions grows exponentially

with the size of the model, abstract models that hide details in the original system are

necessary. In addition, often only a fraction of the model can be explored. In spite of these

limitations, the systematic search performed by the model checker results in much more

extensive testing than traditional methods.

Model checkers require a model of the program to be provided. For model checking

to be effective, the model has to be reasonably small. General-purpose languages like

C include features like unsafe pointers and recursive data types that make it difficult to

extract tractable models automatically. The ESP language has been carefully designed so

that the ESP compiler can extract models that can be used for model checking. The VMMC

firmware is used as a case study to demonstrate the effectiveness of this approach.

The rest of this chapter is organized as follows. Section 3.1 discusses the background.

Section 3.2 describes the related work. Section 3.3 presents the model extraction process

using the ESP compiler. Section 3.4 presents our experience with using the Spin model

checker to debug VMMC firmware. Section 3.5 suggests directions for future research.

Finally, Section 3.6 presents a summary.
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3.1 Background

Model checking is a technique for verifying a system composed of concurrent finite-state

machines. Given a concurrent finite-state system, a model checker explores all possible

interleaved executions of the state machines and checks if the property being verified holds.

A global state in the system is a snapshot of the entire system at a particular point in

execution. The state space of the system is the set of all the global states reachable from

the initial global state. Since the state space of such systems is finite, the model checkers

can, in principle, exhaustively explore the entire state space.

Model checking verifiers can check for a variety of properties. These properties are

traditionally divided into safety and liveness properties. Safety properties are properties

that have to be satisfied in specific global states of the system. Assertion checking and

deadlock are safety properties. Assertions are predicates that have to hold at a specified

point in one of the state machines. This corresponds to the set of global states where

that state machine is at the specified point and the predicate holds. A deadlock situation

corresponds to the set of all the global states that do not have a valid next state. Liveness

properties are ones that refer to sequence of states. Absence of livelocks is a liveness

property because it corresponds to a sequence of global states where no useful work gets

done. Liveness properties are usually specified using temporal logics like Linear Temporal

Logic (LTL) and Computation Tree Logic (CTL).

The advantage of using model checking is that it is automatic. Given a model for

the system and the property to be verified, model checkers automatically explore the state

space. If a violation of the property is discovered, it can produce an execution sequence

that causes the violation and thereby helps in finding the bug.

There are two problems with using model checkers. First, the state space to be explored

is exponential in the number of processes and the amount of memory used. Therefore the
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resources required (CPU as well as memory resources) by the model checker to explore the

entire state space can quickly grow beyond the capacity of modern machines. Second, the

specification language supported by the model checkers provides limited functionality. It

is not straightforward to translate concurrent programs written in traditional programming

languages into the specification language of the model checkers.

Abstraction is the key to addressing both of these problems. Depending on the property

to be verified, a model that captures only the relevant details has to be extracted. For prop-

erties involving small subsystems, detailed models can be used. However, for properties

involving large subsystems, abstract models have to be used.

Models are usually extracted by hand. This process can be time consuming. In addition,

it is hard to be sure that the model accurately captures the actual system. Worse yet, as the

system evolves, the model has to be independently updated to reflect the changes. Hence,

the use of model checking verifiers is greatly simplified when the models can be extracted

automatically[57, 35].

3.2 Related Work

3.2.1 Model Extraction Approaches

Model extraction by hand. Several researchers have verified various aspects of operat-

ing systems using model checkers. These efforts involved extracting an abstract model of

the system by hand. Spin was used to verify the Interprocess Communication Subsystem in

Harmony [26] (a real time operating system) and the RUBIS microkernel [43]. The latter

study found that significant effort was needed in extracting the model. Spin was also used

to develop and verify a synchronization protocol for Plan 9 [83]. More recently, Spin was
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used to verify the IPC system of the Fluke OS [94]. All these studies found that the model

checking verifier was able to find some hard-to-find race conditions.

Automatic Model Extraction. To avoid the problems with model extraction by hand,

some researchers have extracted the models automatically from the source code. Teapot [28]

is a domain-specific language for implementing software cache coherence. It extracts a

model that can be used by the Murphi model checker [40]. Promela++ [12] is a language

for implementing layered protocols. Its compiler generates model that can be used by the

Spin model checker. Esterel [14] is a language for specifying synchronous reactive systems

and is primarily used in hardware design. The Esterel programming environment includes

verification tools like model checkers that can be used to test the programs. Esterel was

used to implement a subset of the TCP protocol [25]. They showed that Esterel could

be used to generate efficient code. However, they did not report any experience with the

verification tools.

In all these cases, the domain-specific language is used to encode the control structure of

the program. The rest of the program (data handling) is handled using a different language

(typically C). The compiler for these languages extracts a single model that reflects the

control structure of the program.

Java PathFinder [50] translates Java programs into Spin models. It handles a significant

subset of Java including dynamic object allocation, object reference, exception processing

and inheritance. However, it does not handle features like method overriding and overload-

ing. Also, it does not provide a way to abstract details so that a tractable model can be

extracted.

Verisoft [48] uses a different approach to perform model checking on a concurrent

system. Instead of trying to extract a model, it explores the state space of the system by

replacing the scheduler of the concurrent system. By controlling the scheduler, it can force
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the concurrent program to execute all possible interleavings. This allows it to apply model

checking to actual programs written in traditional languages like C (instead of a model).

The problem is that it can explore much smaller state spaces because it cannot use some of

the optimization techniques used by model checkers like Spin.

Automatic model extraction with support for abstraction. More recent efforts have

focused on extracting several abstract models to verify different properties in the system.

FeaVer [57] extracts Spin models from programs written in a C dialect that has simple

extensions to support event-driven state machines. The system allows the programmer to

specify pairs of C and Spin code patterns. When the C pattern is encountered during trans-

lation, the corresponding Spin code is generated. This approach automates the extraction of

abstract models. However, the translator does not have any semantic information to check

the validity of the translation. The system was used to debug the call processing software

for Lucent’s Pathstar access server.

Lie et. al. [67] use an approach similar to FeaVer [57] to extract Murphi [40] models

from C programs. It requires the programmer to specify two things: a set of patterns that

identify the C code that has to be captured in the extracted model, and transformations

that translate the identified C code into Murphi code. Unlike FeaVer, it uses program

slicing [101, 92] to extract additional code that affects the identified code. However, the

standard slicing algorithms have problems with C constructs like pointers, unions and

unstructured control flow. Like FeaVer, it cannot check the validity of the generated model.

Bandera [35] allows automatic extraction of finite state models from Java programs. It

uses techniques like program slicing [101, 92] and data abstraction to allow more tractable

models to be extracted. However, it was used to verify properties in a fairly simple program.

The SLAM project [10, 11] extracts a predicate abstraction to check assertions in

sequential programs written in C. A predicate abstraction is a model with only boolean
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variables that correspond to conditions in the original program. The assertion is checked

in the predicate abstraction using a model checker. Since the checker may generate false

positives, symbolic execution is used to verify the counterexamples generated by the model

checker. If the counterexample is invalid, the predicate abstraction is refined to eliminate

the counterexample. This approach has not yet been extended to handle concurrent pro-

grams.

3.2.2 Debugging System Software

A vast amount of research has focused on the problem of debugging system software. The

techniques used span language design, model checking, compiler analysis, and runtime

methods. In this section, we discuss some of the related work in this area.

As described in Section 3.2.1, model checkers have been used to debug system soft-

ware. Some have focused on debugging programs written in general purpose languages

like C, C++ and Java [26, 43, 83, 94, 50, 48, 57, 35]. Others have proposed domain-

specific languages that have been designed with model checking in mind [28, 12, 14], and

therefore, allow model checking to be more effective.

Meta-level Compilation [32, 46] provides a framework for extending a compiler with

application-specific code that can be used to statically check certain properties of that

application. It was used to look for bugs in several systems including the cache coherence

protocols for the FLASH multiprocessor and the Linux kernel. This technique requires

little change to the source code and has been able to find around 500 bugs in these systems.

The compiler extensions look for violations of properties like proper buffer allocation

and deallocation, and absence of deadlocks. However, these extensions perform only

intra-procedural analysis. In some instances, a separate global pass was used to combine

data gathered by the intra-procedural analysis of the different functions to check a global
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property. Since the static analysis is inexact, it can generate false positives. The bugs

reported have to be double-checked by the programmer. In addition, the limited scope of

intraprocedural analysis can generate false negatives.

Eraser [90] detects data races in multithreaded programs. It instruments the program

binary to check at runtime that a lock protects each shared variable access. It does not

impose any constraints on the programs, and therefore works on existing programs with

little modifications. However, the tool can detect only the data races that occur during

the debugging runs; it is the programmer’s responsibility to ensure that the program is run

with several different inputs so that it is tested thoroughly. In addition, the instrumentation

results in a factor of 10 to 30 slowdown in program execution. This can prevent some data

races in the program from occurring during debugging.

Programming language features can often prevent an entire class of bugs. For instance,

safe programming languages prevent a program from accessing a dynamically allocated

object after it has been freed. The Vault [38] language uses an expressive type system to

enforce high-level protocols in system software. The type system allows a module writer

to specify properties like “a read system call to read from a file can be called only after that

file has been opened using the open system call”.

Memory allocation bugs are notoriously difficult to find because they usually result

in memory corruption that leads to faulty behavior at a location in the program different

from the site of the bug. A number of tools [104] help in detecting memory allocation in

unsafe languages like C. For instance, the Purify [49] tool inserts code in the executable

that check for a number of bugs like invalid indices in array accesses and memory leaks.

This allows it to detect error when it happens at run time. However, it is the programmer’s

responsibility to run the executable with different inputs so as to exercise every possible

program path. A different approach [98] to find a more limited class of bugs (buffer

overruns) is to formulate the buffer overrun problem as a integer constraints problem and
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statically check for constraint satisfaction. A limitation of this approach is that it can flag

false-positives as well as false-negatives.

The alternate approach to dealing with memory allocation bugs (except memory leaks)

is to avoid them by using a safe programming language (Section 2.2).

3.2.3 Symbolic Model Checking

An alternative approach to explicitly exploring the entire state space is symbolic model

checking. The basic idea of symbolic model checking [70] is to compactly represent the

state space using Binary Decision Diagram (BDD). This allows the model checker to check

much larger models. While symbolic model checking is very effective for certain domains

like hardware circuits, it often does not perform better than explicit model checkers for

software systems.

3.3 Extracting Spin Models

ESP supports the use of model checkers to develop and test ESP programs. Models are

extracted automatically from ESP program by the ESP compiler. These can be used to

check different properties of the program. The ESP approach differs from the previous

efforts as follows:

Domain-specific Language. ESP is designed not only to simplify the task of program-

ming devices but also to make it easier to extract models. General-purpose languages

like C++ and Java have language features (complex pointer manipulation, exceptions

etc.) that are difficult to translate into the specification language of the model check-

ers [50, 57, 35].
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Support for Abstraction. Other domain-specific languages [28, 12, 14] extract a single

model from the program and use it for model checking. To avoid the state-space

explosion associated with very detailed models, these languages have been designed

to encode only the control structure of the program. In contrast, the ESP language

provides support for both control structure and data manipulation. The ESP compiler

uses abstraction to discard some unnecessary details and generate more tractable

models.

The ESP compiler (Figure 1.6) generates three types of models. The detailed models

contain all the details of the ESP program. Usually, these models can be used to check

properties of only small subsystems. The memory-safety models can be used to check

the program for memory allocation bugs. The abstract models contain only those

details of the ESP program that are relevant to the property being verified. These

models can be used to check for system-wide properties like absence of deadlocks.

This class of bugs usually involve several different processes. Therefore, these bugs

are especially hard to find. Abstract models were used to find several bugs in the

VMMC firmware that resulted in deadlocks (section 3.4.3).

The ESP compiler currently generates models that can be used by the Spin model

checker. However, the design of ESP is not tied to Spin. The ESP compiler can easily

be retargeted to generate models for other model checkers like Murphi [40].

The rest of this section is organized as follows. Section 3.3.1 presents a brief descrip-

tion of Spin and describes why it was chosen for checking ESP programs. Section 3.3.2

describes the ESP compiler stages involved in model extraction. Finally, Sections 3.3.3,

3.3.4 and 3.3.5 describes the procedure used to extract detailed, memory-safety and abstract

models respectively.
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3.3.1 Spin Model Checking Verifier

Spin [55] is a flexible and powerful model checker designed for software systems. Spin

supports high-level features like processes, rendezvous channels, arrays, and records. Most

other verifiers target hardware systems and provide a fairly different specification language.

Although ESP can be translated into these languages, additional state would have to be

introduced to implement features like the rendezvous channels using primitives provided

in the specification language. This would make the state-space explosion problem worse.

In addition, the semantic information lost during translation would make it harder for the

verifiers to optimize the state-space search.

Spin allows verification of safety as well as liveness properties. The liveness properties

in Spin are specified using Linear Temporal Logic (LTL).

Spin is an on-the-fly model checker and does not build the global state machine before

it can start checking for the property to be verified. In cases where the state space is too

big to be explored completely, it can do partial searches. It provides three different modes

for state-space exploration. The entire state space is explored in the exhaustive mode. For

systems with larger state spaces, the bit-state hashing mode performs a partial search using

significantly less memory. It uses the fact that state spaces are fairly sparse and uses a hash

function to obtain a much more compact representation for a state. However, since the

hash function can map two states onto the same hash, a part of the state space may not be

explored. This technique often allows very high coverage (> 98 %) while using an order

of magnitude less memory. The simulation mode explores single execution sequence in

the state space. A random choice is made between the possible next states at each stage.

Since it does not keep track of the states already visited and could explore some states

multiple times while never exploring some other states. However, the simulation mode in

Spin usually discovers most bugs in the system. Most simulators are designed to accurately
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mimic the system being simulated. Thus, hard-to-find bugs that occur infrequently on the

real system also occur infrequently on the simulators. The Spin simulator is different in

that it makes a random choice at each stage and is, therefore, more effective in discovering

bugs.

3.3.2 Compilation Stages

The ESP Compiler (Section 1.4.3) compiles the ESP program into optimized C code in

several stages (Section 4.3.1). The model extraction can be implemented at any of the

intermediate stages. However, the ESP compiler does this very early—right after type

checking—for several reasons. First, the Spin specification language does not support

pointers. Hence, the translation is much more difficult at the later stage because it would

require the compiler to carry some of the type information through the transformations on

the intermediate representations. Second, the addition of temporary variables during the

compilation increases the size of the state space that must be explored. A disadvantage of

this approach is that the model checker cannot catch any bugs introduced by the compiler.

The model extraction takes the abstract syntax tree generated by the type checker and

generates Spin models in two stages:

Abstraction Preprocessor. This stage is used only for extracting abstract models and is

bypassed during the extraction of detailed and memory-safety models. It drops the details

from the abstract syntax tree using the programmer specified abstractions (Section 3.3.5).

Model Generator. This generates Spin models from the abstract syntax tree.
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3.3.3 Extracting Detailed Models for Spin

The detailed models extracted by the ESP compiler contain all the details from the original

ESP program. These detailed models tend to have too much state to be able to perform

exhaustive exploration. However, these models are useful while developing and debugging

the system using the simulation mode in Spin. They can also be used to check for properties

in small subsystems.

The translation of ESP programs into Spin models is fairly straightforward with a few

exceptions. The problems in translation arise from the lack of support for pointers and

dynamic memory allocation in Spin.

Processes and Channels. ESP processes and channels can be directly translated into

Spin processes and rendezvous channels. Figure 3.1 shows a simple ESP process that

implements a mutual exclusion lock and Figure 3.2 presents the Spin model generated

by the ESP compiler. The entire body of an ESP process can be wrapped in an atomic

statement in the generated model. This allows Spin to make scheduling decisions only on

blocking operations on channels. This is valid because ESP processes cannot communicate

by updating shared variables. In the absence of the atomic statement, Spin would have to

make a scheduling decision after every statement. This would add new intermediate states,

thereby increasing the amount of state space to be explored.

Pointers and Dynamic Allocation. Variables in ESP store pointers to data objects. For

instance, in Figure 3.3, variables a1 and a2 point to the same array object. Since Spin

does not support pointers, the above ESP code fragment gets translated into the Spin code

shown in Figure 3.4. In the Spin code, variable a1 and a2 point to different array objects.

Therefore, the assignment a2 = a1 causes the entire object to be copied over.
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channel lock: int
channel unlock: int

process mutex {
$owner = -1; // No owner
while ( true) {

alt {
case( owner == -1, in( lock, owner)) {} // Do nothing
case( in( unlock, $p)) {

assert( p == owner);
owner = -1;

}
}

}
}

Figure 3.1: A ESP program

Although this works for immutable objects, this is insufficient for mutable objects.

For instance, in Figure 3.5, an update to b1 has to be visible to b2 which will not happen

automatically because b1 and b2 point to different array objects in the translated Spin code.

To address this, each object is assigned an objectId at allocation time. The objectId

is stored as an additional field in the object itself. When an object gets copied due to an

assignment operation, the objectId field also gets copied. This ensures that all objects in the

translated Spin code that share the same objectId represent a single object in the original

ESP code. When a mutable object gets updated in ESP code, the translated Spin code

includes code to check and update all other objects with the same objectId. The above ESP

code fragment gets translated into the Spin code shown in Figure 3.6.

An alternate approach to dealing with the lack of support for pointers and dynamic

memory allocation in Spin is to maintain arrays (“heaps”) of data objects of each type used

in the ESP program. Pointers in the ESP code would then be translated into indices into

the array of the corresponding type. An object allocation would allocate an unused index
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mtype = { OK, DONT_SEND, DONT_RECV};
chan lock [NUM_PROCESSES] = [0] of { mtype, int};
chan unlock [NUM_PROCESSES] = [0] of { mtype, int};

proctype mutex( int pid) {
int owner;
int p;
atomic {

owner = -1;
do

:: 1 -> { // true
if // Nondeterministic conditional
:: lock[pid] ? eval( (owner==-1) -> OK: DONT_RECV)), owner ->

skip // Do nothing
:: unlock[pid] ? OK, p -> {

assert( p == owner);
owner = -1;

}
fi

}
:: else -> break // Never executed
od

}
}

Figure 3.2: Spin model (detailed) generated from the ESP code shown in Figure 3.1

$a1: array of int = { -> 0, 2}; // Allocate
$a2 = a1; // Copy pointer

Figure 3.3: Code fragment I: Assigning immutable objects
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typedef intArray {
int length;
int contents[MAX_ARRAY];

};

// Variable declaration
intArray a1, a2;
int index;

// $a1 : array of int = −> 0, 2;
a1.contents[0] = 0; a1.contents[1] = 2; a1.length = 2;

// $a2 = a1;
a2.length = a1.length;
index = 0;
do
:: index < MAX -> {

a2.contents[index] = a1.contents[index];
index ++

}
:: else -> break
od;

Figure 3.4: Spin code corresponding to the ESP code fragment in Figure 3.3

$b1: #array of int = #{ -> 5, 11}; // Allocate
$b3: #array of int = #{ -> 12, 3}; // Allocate
$b2 = b1; // Copy pointer
b1[1] = 7; // Update

Figure 3.5: Code fragment II: Assigning mutable objects



CHAPTER 3. DEVELOPING AND TESTING USING A MODEL CHECKER 66

typedef intArray {
int length;
int objectId;
int contents[MAX_ARRAY];

};

intArray b1, b2, b3;
int index;

// $b1 : #array of int = # −> 5, 11;
b1.contents[0] = 5; b1.contents[1] = 11; b1.length = 2;
b1.objectId = NEW_ID();

// $b3 : #array of int = # −> 12, 3;
b3.contents[0] = 12; b3.contents[1] = 3; b3.length = 2;
b3.objectId = NEW_ID();

// $b2 = b1;
b2.length = b1.length;
b2.objectId = b1.objectId;
index = 0;
do
:: index < MAX -> {

b2.contents[index] = b1.contents[index];
index ++

}
:: else -> break
od;

// b1[1] = 7;
b1.contents[1] = 7;
if
:: b2.objectId == b1.objectId -> b2.contents[1] = 7
:: else -> skip
fi;
if
:: b3.objectId == b1.objectId -> b3.contents[1] = 7
:: else -> skip
fi;

Figure 3.6: Spin code corresponding to the ESP code fragment in Figure 3.5
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from that array while a free would release the index for later reuse. An assignment (b2 =

b1) would simply copy the index from variable b1 into variable b2 and an object update

(b2[3] = 7) would use the index stored in b2 to update the corresponding object.

This approach would yield a simpler translation than the one taken by the ESP compiler.

In addition, it can yield a more compact representation for each state. This is because

multiple pointers in ESP program often point to the same object and so the number of

different objects that are needed can be less than the number of pointers in the program.

However, this approach can result in an increase in the amount of state space that has to

be searched by Spin. This is because a state is stored in Spin as a state vector with all the

data objects laid out in a particular order. State equivalence is determined by comparing

the state vectors for equality. Thus, if an object gets assigned different indices at two

different points during a run of the program, it will appear as two different states to Spin

even when they represent the same state in the ESP program. The approach taken by the

ESP compiler would not suffer from this problem. Therefore, while the approach taken by

the ESP compiler might take longer to execute a state transition and use more memory to

store each state, it has to search a smaller amount of state space. The former involves linear

factors while the latter involves exponential factors.

Arrays. While ESP allows the size of the arrays to be determined at run time, Spin

requires it to be specified at compile time. This problem is addressed by using arrays

of a fixed maximum size when the size cannot be determined at compile time. The actual

length of the array is stored in a separate field in the object.

Unions. Spin does not support union types. Therefore, ESP unions are translated into

a record in which only one of its fields is ever valid. An additional field is added that

specifies which of the record fields is valid. All invalid fields in the union are zeroed out.
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This ensures that although extra memory is being used to store a union object, the amount

of state space that has to be searched remains unchanged.

Multiple Instantiations. The ability to run multiple instantiations of the generated Spin

model can be very useful during debugging. For instance, a setup where the VMMC

firmware on running on a cluster of machines that are communicating with each other can

be modeled by running multiple instances of a Spin model extracted from the VMMC

firmware and connecting them with Spin code that mimics the network. Cluster-wide

properties like absence of deadlocks can then be verified using this approach.

To support this, the ESP compiler generates Spin models that can be instantiated multi-

ple times. Each Spin process in the generated model has to be provided an instantiationId

when it is started. Each channel in the ESP program is translated into an array of Spin

channels and accessed by indexing using the instantiationId.

3.3.4 Extracting Memory-Safety Models for Spin

The memory-safety models generated by the ESP compiler can be used to check for mem-

ory allocation bugs in the program. These models are essentially detailed models (sec-

tion 3.3.3) with some additional Spin code inserted to check for validity of memory ac-

cesses. Therefore, they contain even more state than the detailed models. In spite of this,

these models can be usually used to exhaustively explore the state space for allocation bugs.

This is because the memory safety of each individual process can be checked separately

using the verifier (Section 2.3.5).

The memory-safety model includes additional code that checks the validity of each

object that is accessed. When a new object is allocated, an unused objectId (Section 3.3.3)

is assigned to the object. Before every object access, code is inserted in the model to check

that the object is live. Array accesses include additional code to check that the array index
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is within bounds. Union references include code to check that field being accessed is valid.

When an object is freed, all objects in the model with that same objectId are marked as

invalid by changing the objectId field to -1.

The memory-safety model checks for bugs like accessing an object after it has been

freed, double freeing an object, and using an invalid array index. In addition, it can also

find most memory leaks in a process. This is because a process in the generated model has a

bounded number of objects and the compiler can determine this bound. Arrays are the only

source of unbounded allocation in an ESP process, since ESP does not support recursive

data types. However, the ESP compiler imposes a bound on the maximum lengths of the

arrays during model extraction (Section 3.3.3), thereby bounding the number of objects in

the model. By constraining the model to only pick objectIds within this bound, any steady

memory leak can be detected. A steady leak will cause the model to run out of objectIds

during model checking.

3.3.5 Extracting Abstract Models for Spin

The abstract models generated by the ESP compiler omit some of the details that are

irrelevant to the particular property being verified. These models can have significantly

smaller state than the detailed models and can be used to find bugs in much larger systems.

The ESP compiler makes conservative approximations when generating abstract mod-

els. During abstraction, some of the values in the model might become undeterminable.

For instance, the value of a variable in the model that depended on another variable in

the original program that was discarded during abstraction will become undeterminable.

The compiler keeps track of these values and makes sure that the abstract model only

broadens the scope of model checking [55]. For instance, when the value of a condition

in a conditional statement cannot be determined, it can be replaced by a nondeterministic
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choice in the model. During model checking, both the branches of the conditional statement

will be explored. Although this might introduce new deadlocks into the model that do not

exist in the program (false positives), all the deadlocks in the program will be present in the

model allowing them to be identified during model checking.

The ESP program in Figure 3.7 will be used to illustrate the extraction process. The

program implements the following functionality:

• Process pageTable translates virtual addresses to physical addresses. It maintains a

table that maps virtual page numbers into physical page numbers. It accepts transla-

tion requests on channel reqC and sends replies on channel replyC. Since a region

of contiguous virtual memory can map onto a set of noncontiguous physical pages,

each request sent on channel reqC can yield multiple replies on channel replyC. The

last reply is identified by the last field in the reply.

• Process transfer computes a pair of vaddr and size that identifies a region in

virtual memory. It sends a request on reqC to translate it into physical addresses. It

then receives the physical addresses on channel replyC and uses it to transfer data.

• Since other processes might be sending requests on channel reqC, the caller field

on the channels reqC and replyC is used to match the replies with the request.

@transfer is a constant that represents the process id for the process transfer.

The rest of this section describes how abstract models are extracted and used in ESP.

It starts with a description of the types of abstractions that are supported by the compiler.

Then, it discusses the techniques used by the ESP compiler to extract the abstract models.

Finally, it uses the example in Figure 3.7 to show how a property, namely the absence of

deadlocks, can be verified using an abstract model.
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#define TABLE_SIZE 100
#define PAGE_SIZE 4096
#define PAGE(a) ( (a) / PAGE_SIZE)
#define OFFSET(a) ( (a) % PAGE_SIZE)
#define ADDR(p) ( (p) * PAGE_SIZE)
type reqT = record of { caller: int, addr: int, size: int}
type replyT = record of { caller: int, last: bool, addr: int, size: int}
channel reqC : reqT
channel replyC : replyT

process pageTable {
$table : #array of int = #{ TABLE_SIZE -> 0 . . . };
// Omitted : Code to initialize the table
while ( true) {

in( reqC, { $caller, $vaddr, $size});
assert( !OFFSET(vaddr)); // Assumes vaddr is page aligned
$done: bool = false;
while( !done) {
$paddr : int = ADDR(table[PAGE(vaddr)]); // Look up physical address
$chunk : int = PAGE_SIZE;
if ( size < PAGE_SIZE) chunk = size; // Calculate size
size = size - chunk;
done = ( size == 0);
out( replyC, { caller, done, paddr, size}); // Send reply

}
}

}

process transfer {
while ( true) {
// Omitted : Code that generates values for variables vaddr and size
out( reqC, { @transfer, vaddr, size});
$last : bool = false;
while( !last) {

in( replyC, { @transfer, last, $paddr, $chunk});
// Omitted : Code to transfer chunk bytes at address paddr

}
}

}

Figure 3.7: Another ESP program.
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The abstractions to be performed by the compiler have to be specified by the pro-

grammer. ESP currently allows the programmer to specify the following two types of

abstractions.

Replacing Types. It allows a complex type to be replaced by a much simpler type. This

can be done either by specifying an alternative type for the variables individually or

by specifying an alternative type in a type declaration. For instance, if the original

program contained the following type declaration:

type replyT = record of {
caller: int, last: bool, addr: int, size: int

}

then the programmer can specify the following abstraction:

replace type replyT = record of { caller: int, last: bool}

Currently, ESP requires the replacement type to be a supertype of the original type.

Essentially, it allows fields from records and unions to be dropped.

Replacing a complex type by a simpler type can significantly reduce the amount of

state in the model. For instance, the code to implement the retransmission protocol

accepts packets that are implemented as a union of the different types of packets that

have to be sent. However, as the content of the packet makes little difference to the

correctness of the retransmission code, the complex datatype representing the packet

can often be replaced by a simpler type in the abstract model. The amount of state

can also be reduced if the size of the arrays in the model can be reduced. Often, the

size of arrays affects only performance and not correctness.

Dropping Variables. Some variables that do not affect the validity of a property being

checked can be dropped altogether. For instance, a table that keeps track of the
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mapping between virtual and physical addresses in the main memory might not be

relevant when checking the firmware for deadlocks. The variable table in process

pageTable can be dropped by specifying the following abstraction:

drop pageTable $table

Once the abstractions have been specified by the programmer, the ESP compiler uses

them to generate abstract models. First the compiler performs a type-checking phase during

which it determines a type for every expression in the original program (without taking the

abstractions into account). Then the model generator phase can apply the abstractions to

each of the statements of this fully-typed program independently.

The abstractions specified can cause some of the expressions in a statement to have an

indeterminable value. In these situations, the ESP compiler uses nondeterminism to make

conservative approximations that strictly generalizes the scope of model checking. The

various expressions in a statement can be classified into two classes: left-exp and right-exp.

They are handled as follows:

left-exp. A left-exp is an expression that is used to determine a memory location to which

a value will be stored. These expressions appear on the left side of the assignment

statements and in in operations on channels. Consider the following statements:

a = b;
a[i].last = d;

where variable a has the type

type tableT = #array of #record of {
first: int, last: int

}
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In the simplest cases, when a left-exp becomes undeterminable, the statement can

be simply discarded during model extraction. For instance, if the variable a is

dropped by the abstraction, the first statement a = b; becomes irrelevant and can

be discarded. This is because the only side effect of that statement is to the variable

a. Similarly, if the last field is dropped from the type tableT, the second statement

can be discarded during model extraction. This is because all objects of that type no

longer have the last field. As a result, the statement has no remaining side effect in

the generated model.

The most general case that has to be handled occurs in the second statement when

variable a or variable i is dropped. In this case, the object pointed to by a[i] is being

mutated, and the change would be visible to any other pointer that was pointing to the

same object. To handle this case, the compiler has to determine a list of pointers to

which a[i] could be aliased. For each of these pointers, the generated model has to

include a nondeterministic statement that either updates the object to which it points

or does not update that object.

Nondeterministically updating one of a large set of objects can dramatically increase

the amount of state space that has to be explored. It can also result in false-positive

bugs being introduced into the model. A number of techniques can be used to narrow

the list of pointers to which a[i] can be aliased. First, only pointers of the same type

as a[i] have to be considered. Second, only pointers within the same process can be

aliased to a[i], since processes in ESP do not share objects. Third, in the case where

only variable i is dropped, only objects pointed to by an entry in array a needs to be

considered. Finally, alias analysis can be used to further reduce the list of pointers.

If compile-time analysis can determine that the pointer a[i] is not aliased to any
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other pointer, the situation reduces to the simple case where the statement is simply

discarded.

right-exp. All expressions that are not left-exp expressions are right-exp expressions. These

generate values to be used at various points in the programs. They appear on the right

side of the assignment statements, in conditionals of if and while statements, and

in out operations on channels.

During abstraction, the value of a right-exp expression can become undeterminable.

Ideally, such an expression should be replaced by one that nondeterministically re-

turns a valid value of the type of that expression. This will cause the model checker

to try all possible valid values during the state space exploration.

For boolean expressions, only two values are possible and a nondeterministic choice

between the two can be made. Therefore, a boolean expression in a conditional

statement (like an if statement) whose value can no longer be computed is replaced

by a nondeterministic statement [55]. During model checking, both the branches of

the conditional statement will be explored.

For nonboolean expressions, trying all possible valid values would be computation-

ally very expensive during model checking. It is also usually unnecessary because

a small set of values can effectively explore the entire space. However, there is

no general way for the ESP compiler to determine the set of values that would be

sufficient to cover the entire state space. The ESP compiler relies on the programmer

to supply the set of values. For each type in program (except boolean) for which the

abstract model needs a nondeterministic value, a channel is generated in the abstract

model. When a value is needed, the model performs a read operation on the channel.

The programmer is responsible for supplying values on the channel.
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replace type reqT = record of { caller: int}
replace type replyT = record of { caller: int, last: bool}
drop pageTable $table, $vaddr, $size, $paddr, $chunk
drop transfer $vaddr, $size, $paddr, $chunk

Figure 3.8: Abstraction 1

To illustrate the use of abstract models to check for a property, we will use the ESP

program in Figure 3.7. We will check for the absence of deadlocks in the program.

The abstraction in Figure 3.8 can be used to check the program for the absence of dead-

locks. Using the abstraction, the ESP compiler generates an abstract model (Figures 3.9 and

3.10). The abstraction drops all variables except caller and done in process pageTable

and last in process transfer. It also replaces the types of the two channels. During

abstraction, the value of the boolean variable done becomes indeterminate because its value

depends on the value of the variable size that was dropped. The compiler translates the

statement

done = ( size == 0);

into Spin code that nondeterministically assigns either values true or false to it as fol-

lows:

if
:: skip -> done = 0
:: skip -> done = 1
fi

The Spin model checker can exhaustively explore the entire state space (12 states!) and

determine that there are no deadlocks. In contrast, if a detailed model were used, the model

checker would have to potentially explore a large number of states (by trying all possible

values for vaddr and size) to determine that there were no deadlocks.
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mtype = { OK, DONT_SEND, DONT_RECV};
typedef reqT { int nil; int caller; };
typedef replyT { int nil; int caller; bool last; };
chan reqC [NUM_PROCESSES] = [0] of { mtype, reqT };
chan replyC [NUM_PROCESSES] = [0] of { mtype, replyT };

proctype pageTable( int pid) {
int caller; bool done;
atomic {

do
:: 1 -> {

reqC[ pid] ? OK, 0, caller;
done = 0;
do
:: ( !done) -> {

if // Nondeterministically assign a value to done
:: skip -> done = 0
:: skip -> done = 1
fi;
replyC[pid] ! OK, 0, caller, done

}
:: else -> break
od

}
od

}
}

Figure 3.9: Abstract Spin model (Part I). It was generated from the ESP program in
Figure 3.7 using the abstraction in Figure 3.8
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proctype transfer( int pid) {
bool last;
atomic {

do
:: 1 -> {

reqC[pid] ! OK, 0, 1;
last = 0;
do
:: ( !last) -> replyC[pid] ? OK, 0, 1, last
:: else -> break
od

}
od

}
}

Figure 3.10: Abstract Spin model (Part II). It was generated from the ESP program in
Figure 3.7 using the abstraction in Figure 3.8

replace type reqT = record of { caller: int}
replace type replyT = record of { caller: int}
drop pageTable $table, $vaddr, $size, $paddr, $chunk, $done
drop transfer $vaddr, $size, $paddr, $chunk, $last

Figure 3.11: Abstraction 2
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Since the compiler makes conservative approximations when generating abstract mod-

els, the model checker will not miss a deadlock because of a programmer error in specifying

an abstraction. However, a programmer error can cause a spurious deadlock to be flagged.

For instance, the abstraction in Figure 3.11 results in a spurious deadlock because the

programmer dropped the variable done by mistake. Consequently, any bugs detected by

the model checker have to be double checked by the programmer.

Finally, we can introduce a deadlock in the program by replacing the line

$done: bool = false;

by the line

$done: bool = ( size == 0);

This will cause a deadlock if the size specified on channel reqC is 0. The model checker

will find the bug using either of the two abstractions.

3.4 Case Study: VMMC Firmware

The earlier C implementation of VMMC firmware contains bugs even after several man-

years have been spent on developing and debugging it. Therefore, the VMMC firmware was

reimplemented using ESP (Section 2.4). The Spin model checker was used extensively to

develop and test the new VMMC firmware.

The model checker was used throughout the development process. Traditionally, model

checking is used to find hard-to-find bugs in working systems. However, since developing

firmware on the network interface card involves a slow and painstaking process, we used

the Spin simulator to implement and debug it. Once debugged, the firmware can be ported

to the network interface card with little effort.
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Description ESP Abstraction Generated Type of Test
Program Specification Model Model Code

Retransmission Protocol 197 - 454 Detailed 73

Safety of reliableSend 230 - 1198 Safety 45
Safety of reliableRecv 152 - 664 Safety 41
Safety of localReq 172 - 742 Safety 67
Safety of remoteReq 167 - 882 Safety 85
Safety of remoteReply 177 - 715 Safety 104

Absence of Deadlocks 453 108 2202 Abstract 128

Table 3.1: Sizes (in lines) of the various files used to debug the VMMC firmware. The
second column shows the size of the portion of program relevant for the particular model.
The third column shows the number of lines required to specify the abstraction. The fourth
column shows the size of the model generated by the ESP compiler. The fifth column
shows the type of the model generated. The last column shows the number of lines of Spin
test code that was required.

As described earlier, Spin test code (test[1-N].SPIN in figure 1.6) has to be written to

check for different properties. The code not only specifies the property to be verified but

also simulates external events such as network message arrival. This size of the test code

is usually fairly small. Abstract models further simplify the task of writing the test code

because they require smaller data structures to be sent over channels. Table 3.1 presents

the sizes of the test code and the abstraction specifications that had to be written to debug

VMMC firmware. It also shows the size of the models generated by the ESP compiler.

Each test code has to be written only once but can be used repeatedly to recheck the

system as the software evolves. Since the models are extracted automatically, rechecking

the software requires little programmer effort.

The Spin model checker was very useful in developing and testing the VMMC firmware.

The rest of this section describes some of the situations where the model checker was

effectively used and summarizes our experience with using the model checker.
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Figure 3.12: Setup used to debug the retransmission protocol. The shaded regions represent
Spin code provided by the programmer.

3.4.1 Implementing Retransmission Protocol

VMMC firmware implements a simple well-known retransmission protocol to reliably

deliver packets even when packets are dropped by the networking hardware. The protocol

implemented was a sliding-window protocol with piggyback acknowledgement. The code

that implemented the retransmission protocol was developed and debugged entirely using

the Spin model checker before being ported to run on the network interface card.

The retransmission subsystem (which involved two processes) was developed sepa-

rately. The ESP compiler extracted a detailed model that was used for debugging. The

setup is shown in Figure 3.12. Two instances of the model were used to mimic two

machines communicating over the network. The programmer provided test code to drive

the model. First, for each instance of the model, a process (packet generator) constantly

generates packets that have to be reliably sent over the network. A separate process (packet

sink) accepts all network packets that it is given. The packet generator process includes a

sequence number in every packet. The packet sink process checks to see that all messages

sent are received exactly once and in the correct order by examining the sequence numbers.

Second, a pair of processes implements a lossy network. To simulate lost packet, the

network process nondeterministically drops a packet.
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Process Name No. of States Time Memory Used
Stored Matched (in sec) (in MBytes)

reliableSend 11118 316725 67.6 34.45
reliableRecv 124 220 0.1 25.13
localReq 167 61 0.1 25.30
remoteReq 2315 3510 0.9 26.87
remoteReply 8565 7312 2.3 30.55

Table 3.2: Checking for memory safety in the VMMC firmware using Spin. In each case,
the entire state space was explored in the exhaustive mode in Spin. The stored column
shows the number of unique states encountered while the matched column shows the
number of states encountered that had already been visited before.

The Spin simulator was used to debug the retransmission protocol. As explained earlier

(Section 3.3.1), the simulator is fairly effective in finding bugs. The new implementation

took two days to be written, debugged, and then ported to run successfully on the card. The

earlier implementation (that used C) had taken over ten days to develop and debug. This

demonstrates that ESP greatly simplifies the task of programming the firmware compared

to C. The comparison of the effort required in the two implementations is fair because the

protocol implemented was a standard one that is described in textbooks [80]. Two different

graduate students performed the two implementations. This discounts the possibility that

the second implementation was faster because of the experience gained during the first

implementation.

3.4.2 Verifying Memory Safety

ESP takes a novel approach to providing memory safety (Section 2.3.5). Instead of sup-

porting safety through garbage collection, ESP supports an explicit malloc/free-style

interface to support dynamic memory management. Although this interface is unsafe,

model checking can be used to verify memory safety. To allow this, ESP is designed
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so that the memory safety is a local property of each process. This allows memory safety

of each process to be verified separately without running into state-space explosion.

The ESP compiler generates memory-safety models that include code to check the

validity of memory accesses. These models were used to verify memory safety of each

of the processes in the VMMC firmware. Since each process can be checked separately,

the models were small enough to be exhaustively explored using the Spin model checker.

The ESP model generated catches not only bugs due to invalid memory accesses but also

most of the memory leaks.

Table 3.2 presents the amount of state that had to be explored to check for memory

safety in each of the ESP processes in VMMC firmware.1 For every process, the entire

state space could be explored using exhaustive search mode in Spin. The biggest process

(reliableSend) required 67.6 seconds of processor time and 34.45 Mbytes of memory.

The memory safety bugs in the VMMC firmware had already been eliminated by the

time the ESP compiler was modified to support the memory-safety models. Spin was used

to check an earlier version of the firmware that had an allocation bug. The verifier easily

identified the bug. To further check the effectiveness of using the memory-safety models,

a variety of memory allocation bugs were inserted manually in the program. These bugs

either access objects after they were freed or use an invalid array index or introduce memory

leaks. Spin was able to quickly find the bug in every case.

3.4.3 Checking for Absence of Deadlocks

System-wide deadlocks are often a result of complex interactions in the program and can be

difficult for programmers to find. Therefore, the use of model checking to find these bugs is

important. We used an abstract model (section 1.4.2) to check for deadlocks in the firmware

1The processes not listed in the table did not involve any dynamic allocation.
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because state-space explosion made it difficult to use detailed models. However, even with

the abstract model, an exhaustive search was not possible, so only partial searches were

performed.

Even with the partial search, Spin found seven bugs in the firmware. The first bug

was due to a circular dependency involving 3 processes that resulted in a deadlock. Once

identified, the deadlock was avoided by eliminating the cycle.

The second bug involved a situation when the sliding window in the retransmission

protocol was full and, therefore, not accepting any new messages to be sent to the net-

work. This eventually led to no new data packets being accepted from the network. Since

incoming messages were delivered in FIFO order, an explicit acknowledgement message

that could unlock the system was trapped behind a data packet resulting in a deadlock. To

fix this problem, packets have to be dropped occasionally to allow the explicit acknowl-

edgements to get through.

Two other bugs uncovered were similar to the bug that was discussed in the example in

Section 3.3.5. They would result in deadlocks if the application requested a zero-byte data

transfer.

Model checking allows bugs to be uncovered early in the debugging process. This is

highlighted by the fact that several bugs found by Spin would not have been discovered

using conventional testing as long as our VMMC implementation was used on all the

machines in the network. These bugs could only be triggered when the firmware was used

to communicate with other VMMC implementations that were either malicious or buggy.

Since the VMMC architecture requires the firmware on other machines to be untrusted,

these are bugs that have to be fixed.

The remaining bugs discovered involved receiving unexpected messages or not re-

ceiving expected messages. The first bug involved receiving acknowledgments with in-

valid acknowledgement numbers. This was fixed by first checking for the validity of
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Spin Search Limiting No. of States Time Memory Used
Mode Resource Stored Matched (hr:min:sec) (in MBytes)

Exhaustive Memory 117351 265492 0:01:24 268.35
Bit-state Hashing CPU Time 22574700 77165900 3:57:30 167.92

Table 3.3: Checking for the absence of deadlocks in the VMMC firmware using Spin.
In both cases, the state-space exploration could not be completed because of resource
constraints. The stored column shows the number of unique states encountered while the
matched column shows the number of states encountered that had already been visited
before.

the acknowledgement numbers before using them. The second bug involved receiving

an unexpected import reply message. These messages are usually received in response to

an import request. An unexpected reply would deadlock the system. The problem was

fixed by adding code that discarded these unexpected messages. The final bug involved not

receiving a reply to an import request. We had been aware of this bug but had not fixed it

yet. Including a timeout will eliminate this bug.

Further state-space exploration using Spin did not uncover any more bugs. As stated

earlier in this section, resource constraints prevented Spin from exploring the entire state

space. Table 3.3 presents the amount of state space that could be explored using the

resources available. In the exhaustive mode, Spin had to abort the search after 84 seconds

because it ran out of memory. In the bit-state hashing mode, Spin ran for 3 hours and 57

minutes before the search was terminated by the user.

3.4.4 Discussion

Partial searches are fairly effective in finding bugs in the concurrent programs. This is

because the state machine being explored is usually much larger than necessary; each state

of the minimal state machine is represented multiple times. Techniques like abstraction and

optimizations like partial-order reduction [54] try to eliminate some of this redundancy.



CHAPTER 3. DEVELOPING AND TESTING USING A MODEL CHECKER 86

However, significant redundancy remains because the size of the state space is exponential

in the size of the model. For instance, a variable i whose value ranges from one to ten but

has no bearing on the property can result in each state of the minimal state machine being

explored ten times. Even a partial search that explores a small fraction of the state space

can cover a significant fraction of the minimal state machine.

The objectIds are a source of unnecessary increase in state space to be explored in

models generated by the ESP compiler. The problem stems from the fact that a given

object in the program can get assigned different objectIds depending on the scheduling

decisions made prior to its allocation. The result is that a single “state” manifests itself

as several different states in the state space. This problem can be easily solved by adding

a new feature to the Spin model checker. Spin would have to allow some variables in

the model to be marked as store-only. These variables would be a part of each stored

state but would not be used when comparing two states for equality. Then, the objectIds

could be marked as store-only. In the absence of the store-only feature in Spin, several

optimizations can be made to alleviate the problem. First, objectIds are necessary for all

objects only in memory-safety models. In detailed and abstract models, the objectIds are

necessary only for the mutable objects. In these models, the ESP compiler can choose to

not assign objectIds to immutable objects. Second, a separate objectId table can be used for

each type in each process, since two pointers can point to the same object only if they have

the same type and belong to the same process. This will reduce the number of different

objectIds a given object can get assigned.

The model checker is effective in catching subtle bugs from race conditions. The

implementation of VMMC firmware in ESP was designed to avoid the bugs encountered

in the earlier implementation in C. In addition, the ESP language allowed the complex

interactions in the system to be implemented concisely (< 500 lines). Therefore, it was

surprising when the model checker uncovered several bugs that could deadlock the system.
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This highlights the limitations of careful code inspection by the programmer and the bene-

fits of using tools like model checker that explore the various possible scheduling scenarios

systematically.

The model checker catches bugs early in debugging process. In the earlier VMMC

firmware implementation, we encountered new bugs every time we tried a different class

of applications or ran it on a bigger cluster. The Spin model checker caught several bugs

in the VMMC firmware implementation that would not have been detected by traditional

debugging methods until much later (Section 3.4.3).

No bugs were encountered in the new version of the VMMC firmware while running

the applications. In contrast, one of the applications still does not run to completion using

an earlier version of the VMMC firmware implemented using C.

3.5 Future Work

One interesting direction for future research is to explore the tradeoff of using a radically

different model checker like Verisoft [48] (Section 3.2.1). Verisoft does not require a

model to be provided. Instead it takes a concurrent program and explores its state space

by manipulating the scheduler. It can be used to model check programs written in any

language including C. However, since it treats the concurrent program as a black box, it

cannot perform certain optimizations that are performed by model checker like Spin. As a

result, the size of the state space it can explore is smaller.

The use of Verisoft would allow more freedom to the language designer. Since a

model is no longer necessary, the design of the language would no longer be constrained

by the specification language of the model checker. Even when a model is not needed,

the compiler can aid the model checker in a number of ways. In addition to generating

an executable that is optimized for efficient execution, it can generate other executables
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that allow the model checker to more effectively explore the state space. It can also use

techniques described in this chapter to generate executables that check for memory safety

or use abstraction. This is different from the way Verisoft is currently used—the same

executable is used for model checking as well as for regular execution.

3.6 Summary

The Spin model checker can be used to develop and extensively test ESP programs. This

satisfies the second goal that ESP was designed to meet.

The use of model checker was greatly simplified because the models were automatically

extracted from the ESP programs by the ESP compiler. Automatic model extraction not

only increases our confidence that the model accurately reflects the program but also allows

the program to be rechecked with little effort whenever changes are made to it.

ESP uses the model checker throughout the development process. Traditionally, model

checkers are used to find the hard to find bugs from a mostly-debugged system. However,

the ESP programs are often developed and debugged entirely using the model checker.

Once debugged, they are run on the devices. This approach avoids the slow and painstaking

process of debugging the firmware by running it on the device.

VMMC firmware is used as a case study to evaluate the effectiveness of using a model

checker to develop and extensively test device firmware. The new implementation of the

VMMC firmware in ESP used the Spin model checker. Our experience is summarized

below.

The ESP compiler extracts three types of models. They are:

Detailed. A detailed model retains all the details in the original ESP program. It is used

during the early debugging stages using the simulator mode in the Spin model checker.

It can also be used to exhaustively check small subsystems for bugs.
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A detailed model was used to develop and debug the retransmission protocol in the

VMMC firmware using the Spin simulator. It was developed entirely using Spin

before it was ported to run on the network card. The entire development process took

2 days. This is significantly better that the earlier implementation in C which took

around 10 days.

Memory Safety. A memory-safety model allows the Spin model checker to verify the

memory allocation correctness of the ESP program. The novel design of ESP allows

the model checker to check each process independently to ensure the memory safety

of the entire program. Checking the various processes one at a time makes the model

less vulnerable to state-space explosion.

The Spin model checker was able to perform an exhaustive exploration of the state

space of each of the processes in the VMMC firmware. It identified a bug in an

earlier version of firmware. It also found all the memory allocation bugs—like double

freeing, accessing an object after it has been freed and memory leaks—that were

deliberately inserted into the firmware.

Abstract. The abstract models generated are more compact and tractable because they

omit some details in the ESP program that are irrelevant to the property being ver-

ified. The compiler uses programmer annotations to generate conservative abstract

models. The models are conservative in that they retain all the bugs in the original

ESP programs. However, they might generate false positives.

Abstraction was essential for obtaining models that could be used for identifying

bugs that result from violation of system-wide properties. State-space explosion pre-

vented the use of detailed models to check for system-wide properties like absence of

deadlocks in the VMMC firmware [64]. The abstract models were used successfully

to identify seven bugs in the firmware that could cause it to deadlock.
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State-space explosion is a constant problem when using model checkers. Often only

a partial state-space exploration is possible due to resource constraints. In these cases, it

is impossible to be sure that all the bugs in the system have been identified. However,

even a partial systematic search by the model checker results in more extensive testing than

traditional testing methods and can be invaluable in debugging concurrent systems.



Chapter 4

Generating Efficient Code

Good performance is crucial to device firmware—the performance of the device firmware

determines the fraction of the hardware performance that can be delivered to the applica-

tions.

Device firmware can achieve good performance by using event-driven state machines

in C but requires significant programming effort (Section 1.3). Usually, function pointers

are used to encode state machines in C. This makes it difficult for C compilers to effectively

optimize these programs. As a result, the programmer is forced to manually perform

some of these optimizations. This not only requires significant programmer effort but also

introduces bugs into the programs.

ESP compiler can compile the ESP programs to generate efficient code. ESP provides a

number of language features to simplify event-driven state-machines programming (Chap-

ter 2). However, these features are designed so that the compiler can effectively compile

them. This frees the programmer from having to manually optimize the programs.

VMMC firmware is used as a case study to measure the performance impact of using

ESP. Microbenchmarks as well as applications are used to compare the performance of

91
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the two implementations of the firmware: the new implementation that uses ESP, and the

earlier implementation that used C.

The rest of the chapter is organized as follows. Section 4.1 presents existing techniques

used to compile a concurrent program to run efficiently on a single processor. Section 4.2

discusses the related work. Section 4.3 describes the techniques used by the ESP compiler

to generate efficient code. Section 4.4 measures the performance impact of using ESP

instead of C to implement the VMMC firmware. Section 4.5 discusses compiler optimiza-

tions that we intend to explore in the future to further improve the performance of the ESP

programs. Section 4.6 summarizes the chapter.

4.1 Background

There are two main approaches to compiling a concurrent program to run efficiently on

a single processor: automata-based and process-based approach. The automata-based

approach [24, 14, 31, 84] essentially treats each process in the concurrent program as a

state machine and combines all the state machines in the program to generate a single

global state machine. The global state machine does not contain any concurrency and

can be translated directly into sequential machine code. The advantage of this approach

is that all the concurrency is compiled away and the program incurs no runtime overhead

to support concurrency. The code generated is extremely fast. However, the global state

machine generated can be, in the worst-case, exponential in the size of the individual state

machines. Some optimization techniques [31, 25] alleviate the code blowup problem by

identifying and eliminating some of the duplicated code. Still, the code blowup remains

exponential in the worst-case.

The process-based approach [82, 45] generates the code for the different processes

separately and dynamically context switches between them. Since these processes are
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essentially state machines, only a small amount of state (just the program counter register)

needs to be saved and restored during a context switch. The stack and the other registers

are used only temporarily and do not have any useful state that needs to be saved before a

context switch. Although the process-based approach has a runtime overhead, the overhead

is fairly low.

4.2 Related Work

A number of concurrent languages have compilers that compile a concurrent program to

run efficiently on a single processor.

Esterel [14] is a synchronous language designed to model the control of concurrent

systems (Section 2.2). Earlier Esterel compilers [14, 31] used the automata-based approach

to generate code. More recently, gate-based compilers [13] have been implemented. They

avoid the code blowup that occurs using the automata-based compiler but incur a runtime

overhead. The gate-based compilers translate1 an Esterel program into a synchronous

circuit and then generate code from the circuit. However, the translation of an efficient

synchronous hardware circuit into efficient software is nontrivial and involves runtime

overheads [45]. Process-based compilers [45] have also been implemented for Esterel.

However, they can handle only a subset of valid Esterel programs—those in which a valid

schedule for the concurrent Esterel program can be determined statically.

Edwards et. al. [45] evaluates the tradeoff of using each of the three approaches—

automata-based approach, gate-based approach, and process-based approach—for compil-

ing Esterel programs. As expected, the automata-based compiler [14] generates the fastest

code but the size of the executable can be 2–3 orders of magnitude larger than the other

1The gate-based compilation technique applies to synchronous languages like Esterel and is not applicable
to ESP.
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approaches. The gate-based compiler [13] generates fairly compact code but can be 4–100

times slower than the automata-based compiler. The process-based approach generates

code that is only twice as slow as the automata-based approach but yields the smallest

executables.

Newsqueak [81] (Section 2.2) supports processes and synchronous channels and uses

a process-based approach [82] to generate sequential code. Some of the techniques used

in the implementation are similar to those used in ESP. However, context switches and

rendezvous are more expensive operations in Newsqueak.

Squeak [24](Section 2.2) uses the automata-based approach to generate sequential code.

It considers all possible interleavings of the concurrent program. At each stage, one of the

unblocked processes is executed for one step. A random number generator is used to select

a process when multiple processes are ready for execution.2

Filter Fusion [84] uses the automata-based approach to fuse filters. A concurrent

program is expressed as a sequence of filters where only adjacent filters communicate with

each other. A sequential program is obtained by successively fusing pairs of adjacent filters

into a single filter using a technique similar to that used in Esterel compilers [14].

Integrated Layer Processing (ILP) [33] is an implementation technique for improving

the performance of layered network protocols. The protocol is implemented as a sequence

of layers in which each layer manipulates the data in the packet and hands it to the next

layer. ILP reduces the number of data accesses by combining the packet manipulation loops

of different layers into one or two integrated processing loops [1, 22]. ILP is appropriate

for layers that manipulate the data portion of the large packets (like checksum computation

and encryption). However, performing operations that need to examine entire packets

are too computationally expensive to be performed on the slow processor on the devices.

2In contrast, Esterel programs are deterministic—all possible schedules yield the same result. Therefore,
it does not require a random selection at each stage.
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These operations are usually performed either on the host processor or by special-purpose

hardware engines on the devices.

4.3 Generating Optimized Code

The ESP compiler compiles an ESP program into optimized C code (Figure 1.6). It uses

the process-based approach to generate a sequential code from a concurrent program. To

perform whole-program analysis, the compiler requires the entire program to be available

during compilation.

The ESP compiler uses C as the back-end language. It compiles an ESP program into

one large C function which looks like an assembly program. Each statement in the function

performs simple operations like three-operand arithmetic operation or a transfer of control

to a different part of the function using a goto statement.

Using C as the back-end language has several advantages. First, it makes the ESP

compiler portable to different devices with little effort since most device vendors provide

a C compiler for their device. Second, the ESP compiler can rely on the C compiler to do

register allocation and benefit from optimizations performed by it.

4.3.1 Compilation Stages

The ESP compiler (Figure 1.7) was implemented using SML/NJ. The different modules

that are involved in code generation are as follows:

Scanner & Parser. This module reads in an ESP program and builds an Abstract Syntax

Tree (AST).
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Type Checker. The type checker traverses the AST and checks for type correctness in

the program. Since ESP allows types to be unspecified when they can be inferred, the type

checker also performs simple type inferencing on a per-statement basis.

Convert to IR. The high-level AST is converted into a low-level intermediate represen-

tation (IR) that is more suitable to performing optimizations.

The channels (in the AST) are translated into ports (in the IR). A channel can have

multiple readers and multiple writers while a port can have multiple writers but only a

single reader. In ESP, each reader on a channel has to use a separate disjoint pattern to read

from it (Section 2.3). Therefore, each channel represents a group of ports where each port

is identified by the pattern being used by the reader.

All patterns are eliminated during this translation of the channels into ports. The sender

on a channel matches the data to be sent against all the possible patterns and sends the

values to the appropriate port. This eliminates the unnecessary allocation associated with

pattern matching. For instance, if a sender allocated a record with two fields to send it over

a channel and the receiver uses a pattern to receive the two fields, the ESP compiler avoids

the allocation by sending unboxed values over the channel.

Each operation (in and out) on a channel is broken down into 2 operations in the IR.

The syncOp operation synchronizes the sender and receiver. The transferOp operation

transfers the data from the sender to the receiver. Data to be sent is computed after the

syncOp operation. This avoids unnecessary computation when a process is waiting on

multiple channels using the alt statement. For instance, if an object has to be allocated

before being sent over the channel, the allocation is postponed so that the allocation does

not happen if one of the other alternatives succeeds.

High-level control constructs like while loops etc. are translated into low-level control

constructs like goto. All high-level data constructs like record and array are translated
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into a uniform low-level object representation. However, the processes in the ESP program

are kept separate, so the IR consists of a set of processes. Each process has simplified

control and data constructs and communicates with other processes by sending data on the

ports.

Optimizers. The optimizers perform standard optimizations like constant folding, copy

propagation and dead-code elimination on a per-process basis. Each optimizer expects an

IR as an input and generates an optimized IR, so the various optimizers can be applied a

number of times in sequence.

Although most C compilers also perform these optimizations, the ESP compiler can-

not rely on the C compiler to effectively perform the optimizations on the generated C

code. This is because all the processes are combined into a single C function during code

generation. The semantic information lost during code generation makes it hard for the C

compiler to perform these optimizations effectively.

Code Generation. The ESP compiler uses the process-based approach (Section 4.1) to

combine all the processes into a single C function. It uses the process-based approach to

avoid the exponential code blowup associated with automata-based compilers (Section 4.2).

In addition, unlike Esterel, all legal ESP programs can be compiled using the process-based

approach.

4.3.2 Scheduling

The run-time system performs nonpreemptive scheduling; context switches are performed

during blocking operations (reading from and writing to channels). The runtime system

maintains a ready list of processes that are ready to execute. When there are no ready

processes, it executes an idle loop. The idle loop polls for messages on external channels
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on which processes are blocked. When a message becomes available, it unblocks the

corresponding process and restarts it by jumping to the location where it had blocked. The

process then executes till it reaches a channel operation. At this point, it has to synchronize

with another process to complete the channel operation before it can continue. If more than

one choice is available, the scheduler picks one of those processes randomly and performs

the channel operation. At this point, both the synchronizing processes are ready to execute.

This scheduling policy picks one of these two processes to continue execution and inserts

the other one into the ready list. When an executing process blocks, the next process in the

ready list is chosen to execute. This is repeated till there are no processes left in the ready

queue. Then the execution returns to the idle loop.

To avoid starvation, ESP uses a simple FIFO scheduling policy. The only distinguishing

feature is that after a synchronization operation, it always chooses the process receiving on

the channel to continue. The sending process is inserted into the ready list. At first glance,

this might appear to introduce starvation. For instance, two processes can repeatedly send

messages to each messages to each other could starve other processes out. However,

this cannot happen because after a synchronization operation, the sending process will be

queued behind other ready processes.

External channels require additional care to avoid introducing starvation. First, for

internal channels, the runtime system maintains the invariant that each port can have either

reader or writers but not both blocked on it. If a writer arrives at a synchronization point

and finds a reader waiting on the port, the writer can deduce that there are no other writers

waiting on that port. Hence, the writer does not have to check for other writers before

synchronizing with the reader. However, it is difficult to maintain this invariant for the

external channels since an external event can cause the external end of the port to become

ready for synchronization at any instant. Therefore, an additional check has to be performed

to ensure fairness on external channels.
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Second, a message on an external channel could get ignored for long periods of time.

New external messages are detected at two locations. A running process checks for the

availability of new messages on channels; if none are available, it blocks on the channel.

Subsequently, when the control reaches the idle loop, the idle loop checks for new messages

on each of the external channels. The problem with this is that if one or more processes

are continuously receiving external messages, the control will not return to the idle loop.

As a result, other processes that blocked on other external channels do not get restarted

even when new messages are available on them. To avoid this problem, the ESP scheduler

periodically returns the control to the idle loop even if the ready queue is not empty.

4.3.3 Memory Management

From the programmer’s perspective, each process has its own set of objects that have to

be managed separately for each process (Section 2.3). Each process allocates its objects

and frees them (using free and rfree). Objects sent over the channels are deep copied

before being handed to the receiving processes. Therefore, objects arriving over a channel

are treated like newly allocated objects that have to be later freed by that process.

The implementation uses a reference-counting scheme to manage the objects. Although

semantically, processes do not share objects, the implementation shares objects between

processes for efficiency—copying objects is computationally expensive. The runtime sys-

tem maintains reference counts to keep track of the number of processes sharing the object.

Recursive increment and decrement operations on cyclic data structures require additional

bookkeeping to avoid infinite loops. However, ESP does not allow cyclic data structures,

and allows these operations to be implemented efficiently.

Normal allocation causes objects to be allocated and their reference count initialized to

one. When an object is sent over a channel, the reference count of the object is recursively
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incremented (thereby avoiding the expensive deep copy operation) before giving it to the

receiving process. When a process frees an object, its reference count is decremented by

one. The object is actually deallocated only when all the processes have freed it and the

reference count is zero.

The deep copy performed when a data structure is sent over a channel does not preserve

pointer sharing (Section 2.3.5). This has two benefits. First, it allows the copying semantics

to be implemented efficiently; a simple recursive increment of reference count suffices. An

object that is pointed to multiple times within the data structure will have its reference count

incremented multiple times. Second, it allows the correctness of the memory allocation to

be a local property of each process. If pointer sharing were preserved, the receiving process

would need to know about the sharing to check that the data structure was correctly freed.

However, it cannot determine the sharing because pointer comparisons are not allowed

in ESP. The example in Figure 4.1 illustrates the problem with copying semantics that

preserves pointer sharing.

A cast of an immutable object into a mutable object can require copying the object.

This is because a program can detect object sharing by mutating it at one location and

observing the change at another location. However, the cast operation is fairly uncommon

in ESP programs. In addition, the copying is not always necessary. The copy can be

often avoided when a cast is necessary but the program is written carefully (to allow the

compiler to optimize it). For instance, if the reference count of the immutable object is one

(no other process is holding that object) and the object is freed immediately after the cast,

the compiler can avoid the copy and use the same object.

Several design choices in the ESP language allow the implementation to share objects

while providing the illusion of the disjoint set of objects. First, only immutable objects can

be sent over channels. Therefore, the program cannot detect that the object is being shared

by mutating it in one process and observing the change in another process. Second, objects
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type entryT = record of { v: int}
channel shareC: array of entryT

process process1 {
in( shareC, $a);
assert( length(a) == 2);
free( a[1]);
$b = a[0];

}

process process2 {
$p1: entryT = { 11 };
$p2: entryT = { 13 };
out( shareC, { -> p1, p2});

}

process process3 {
$p: entryT = { 5 };
out( shareC, { -> p, p});

}

Figure 4.1: An example to illustrate the problems with copying semantics that preserves
pointer sharing. Process process1 expects an array of two elements on the channel shareC.
Once it receives it, the process frees one of the entries and proceeds to use the other entry.
If process process2 sends an array on the channel, process1 would execute correctly
because the two entries point to different objects. However, if process process3 sends an
array on the channel, process1 will try to access the record after it has freed it resulting in
an error.
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type entryT = record of { v: int}
channel countC: array of entryT

process processA {
$p1: entryT = { 2 };
$p2: entryT = { 3 };
$a = { -> p1, p2};
out( countC, a);
$v1 = p1.v;

}

process processB {
in( countC, $b);
free( b[0]);

}

Figure 4.2: An example that shows that the traditional reference counting scheme is not
sufficient for ESP.

cannot be compared for pointer equality. This prevents the program from comparing the

pointer for two different objects and detecting that the implementing is using the same

object to represent both of them. Finally, ESP does not support recursive data types

and therefore the program cannot have cyclic data structures. This means that recursive

reference count increments does not have to deal with infinite loops due to cyclic data

structures and can therefore be implemented cheaply.

Traditional reference counting schemes maintain the counts on the objects differently

from the one used by ESP. In the traditional scheme, the reference counts are incremented

only at the root and decremented recursively only when the reference count of the object

becomes zero. Our earlier paper [64] suggested that this would be sufficient for ESP too. It

turns out that this is not sufficient. Consider the example in Figure 4.2. Till the point when

the objects are sent over the channel countC, both schemes would have kept the same
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reference counts on all the objects; each of the three objects (pointed to by the variables

p1, p2, and a) would have a reference count of one. However, on performing the send

operation on the channel countC, the traditional scheme will increment the reference count

of only the array object while the ESP scheme will increment the reference count of each of

the three objects. If the scheduler chooses to schedule the process processB first, then the

free statement will be executed. With the traditional scheme, this will cause the reference

count of the object pointed to by p1 to go to zero, thereby freeing the object. This will

generate an error when the process processA is scheduled to run and it tries to access the

variable p1. With the ESP scheme, the reference count of the object pointed to by p1 will be

decremented from two to one, and so the object will not be freed. This allows the process

processA to later access it.

4.4 Case Study: VMMC Firmware

In this section, we compare the performance of the earlier VMMC implementation (vmm-

cOrig) with the performance of the new implementation using ESP (vmmcESP). Since

ESP does not currently support fast paths3, we also present the performance of the earlier

implementation with the fast paths commented out (vmmcOrigNoFastPaths). This allows

us to separate the actual cost of using ESP (the difference between vmmcESP and vmm-

cOrigNoFastPaths) from the benefit of using fast paths (the difference between vmmcOrig

and vmmcOrigNoFastPaths).

Microbenchmarks as well as applications are used to measure the three implementa-

tions of VMMC: vmmcOrig, vmmcOrigNoFastPaths, and vmmcESP. On one hand, the

microbenchmarks measure specific aspects of the communication like latency and band-

width by stressing them. This allows them to isolate and understand the cost of using ESP.

3Section 4.5 examines the problem of supporting fast paths in ESP.
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However, they represent a worst-case scenario. On the other hand, the actual performance

impact is one that is observed by the application. The applications usually exhibit more

complex communication patterns than the microbenchmarks. They are also less sensitive

to the firmware performance.

4.4.1 Microbenchmark Performance

Microbenchmarks. Three microbenchmarks are used to measure the performance of the

performance of the three implementations of ESP. Each microbenchmark involves running

it on two different machines that communicate with each other using VMMC.

The Latency microbenchmark measures the latency of sending a message of a particular

size between two machines. This is measured using a simple pingpong program that sends

a message back and forth between the two machines. The latency is computed as:

RoundTripTime
2

The Bandwidth microbenchmark measures the bandwidth that can be achieved between

two machines when sending messages of a particular size. This is measured by using a

program on one machine to continuously send messages of that size to a program on the

second machine that is repeatedly receiving the messages. The bandwidth is computed as:

NumMessagesSent×MessageSize
TimeElapsed
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Figure 4.3: Latency microbenchmark

The Bidirectional Bandwidth microbenchmark measures the total bandwidth between

two machines when both the machines are sending messages of a particular size simulta-

neously. The bidirectional bandwidth is computed as:

(NumMessagesSent+ NumMessagesReceived)×MessageSize
TimeElapsed

Platform. All microbenchmarks measurements use a pair of PCs. Each PC has a 300

MHz Pentium processor, 128 MB memory and a Myrinet network interface card with a

LANai 4.x 33 MHz processor and 1 MB on-board SRAM memory. The nodes are directly

connected to each other using a Myrinet cable. The PCs run Windows NT 4.0.

Performance. Figures 4.3, 4.4 and 4.5 present the microbenchmark performance.4 In

each case, the x-axis shows the message size.

The Latency microbenchmark (Figure 4.3) shows that vmmcESP is around twice as

slow as vmmcOrig for 4 byte messages and 38 % slower for 4 Kbyte messages. However,

4The graphs have some discontinuities at the 32/64 byte boundary as well as at 4/8Kbyte boundary. The
former is because small messages of 32 bytes and less are handled separately as a special case. The latter is
because the page size is 4Kbytes.
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Figure 4.4: One-way bandwidth microbenchmark
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Figure 4.5: Bidirectional bandwidth microbenchmark

vmmcESP is only 35 % slower than vmmcOrigNoFastPaths in the worst case (for 64 byte

messages) and has comparable performance for 4 byte and 4 Kbyte messages.

The Bandwidth microbenchmark (Figure 4.4) shows that vmmcESP delivers 41 % less

bandwidth as vmmcOrig for 1 Kbyte messages and 14 % for 64 Kbyte messages. However,

vmmcESP is only 25 % slower than vmmcOrigNoFastPaths for 1 Kbyte messages and 12 %

for 64 Kbyte messages.

The Bidirectional Bandwidth microbenchmark (Figure 4.5) shows that vmmcESP de-

livers 23 % less bandwidth as vmmcOrig for 1 Kbyte messages but similar performance

for 64 Kbyte messages. Also, vmmcESP is 20 % slower than vmmcOrigNoFastPaths for

1 Kbyte messages but similar performance for 64 Kbyte messages.
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Figure 4.6: Experimental setup

Uniprocessor
Application Problem Size Execution Time Base Speedups

(in seconds)
FFT 1 Million Points 3.97 2.95
LUContiguous 2048 x 2048 Matrix 139.48 9.53
WaterSpatial 15625 Molecules 118.09 5.62
WaterNsquared 1000 Molecules 14.39 4.04
BarnesSpatial 8192 Particles 103.42 13.59
Volrend head 314.98 4.76

Table 4.1: SPLASH2 Applications

The microbenchmark performance shows that vmmcESP performs significantly worse

that vmmcOrig in certain cases (latency of small messages). However, most of the perfor-

mance difference is due to the fast paths. Also, the fast paths are more effective when the

communication pattern is simpler. The performance difference is significantly less in the

bidirectional bandwidth microbenchmark where the firmware has to deal with messages

arriving on the network as well as the host at the same time. In the other two microbench-

marks, the firmware has to deal with only one type of message at a given instant.
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4.4.2 Application Performance

Applications. Figure 4.6 shows the experimental setup used to run the applications. The

SPLASH2 applications [103] run on a cluster of SMP nodes using the VMMC software to

communicate. These applications run on top of the Shared Virtual Memory (SVM) [18]

library that, in turn, runs on top of the VMMC library. The VMMC software architecture

is discussed in Section 1.3.3.

The applications in the SPLASH2 suite [103] are parallel applications that use shared-

address space to communicate with each other. The versions of these applications used

in this study have been restructured to perform well on a cluster of loosely connected

nodes [60]. The restructuring involved simple changes to decrease the amount of com-

munication (by padding, aligning and reordering fields in the data structures) and synchro-

nization (by algorithmic changes to reduce the amount of locking used). The SPLASH2

applications and the corresponding problem sizes used are listed in Table 4.1.

The Shared Virtual Memory (SVM) [18] library provides a shared-address space ab-

straction in software on a cluster whose nodes cannot access each other’s physical memory

directly. Since the VMMC implementation that used ESP (vmmcESP) currently imple-

ments only the VMMC interface described in [41], we use a version of the SVM library

that uses only that VMMC interface.5

Platform. All applications measurements were made using a cluster of four SMP PCs.

Each PC has four 200 MHz Pentium processors, 1 GB memory and a Myrinet network

interface card with a LANai 4.x 33 MHz processor and 1 MB on-board SRAM memory.

The nodes are connected by a Myrinet crossbar switch. The PCs run Windows NT 4.0.

5Some of the other extensions [18] to VMMC that were proposed to further improve the performance of
SVM are currently not supported.



CHAPTER 4. GENERATING EFFICIENT CODE 109

FFT LUContiguous WaterSpatial WaterNsquared BarnesSpatial Volrend

SPLASH2 Application

0

4

8

12

16

Sp
ee

du
p

vmmcOrig

vmmcOrigNoFastPaths

vmmcESP

1.00

1.00

1.00

1.00

1.00

1.00

0.99

0.98

1.04

0.99

1.01

0.90

0.97

0.95

1.04

0.98

0.96

Figure 4.7: SPLASH2 Application Performance: Speedup on 16 processors (four 4-way
SMP nodes). The number on the top of each bar shows the relative speedup compared to
vmmcOrig.
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Performance. The performance of the SPLASH2 applications is presented in Figure 4.7.

The Y-axis shows the application speedup when running on 16 processors. As before,

the performance of the applications is shown for each of the three versions of VMMC:6

vmmcOrig, vmmcOrigNoFastPaths, and vmmcESP.

The performance hit of using ESP is the difference between the performance of the

applications when using the vmmcOrigNoFastPaths and the vmmcESP versions. Figure 4.7

shows that the average performance difference7 between the two versions is 3.5 %. Only

two applications incur more than 5 % performance hit: FFT (10 %) and Volrend (5 %).

The performance benefit to the applications of the fast paths in vmmcOrig is the dif-

ference between the performance of the applications when using the vmmcOrig and the

vmmcOrigNoFastPaths versions. Figure 4.7 shows that the fast paths have little impact on

these applications. The largest benefit is observed in WaterSpatial (2 %).

4.4.3 Discussion

Applications incur a smaller performance hit compared to microbenchmarks for two rea-

sons. First, the microbenchmarks represent applications that spend 100 % of their time

communicating, while most real applications spend only a fraction of their time communi-

cating and are, therefore, less sensitive to VMMC performance. Second, applications are

often fairly insensitive to certain communication parameters like latency and bandwidth

and more sensitive to other parameters like host overhead and interrupt costs [69, 19, 18].

The VMMC firmware does not affect the latter parameters as these are determined by code

(OS, VMMC device driver and library) running on the host CPU.

6The FFT performance when using the vmmcOrigNoFastPaths version is not shown because a bug in that
implementation prevents that application from running to completion

7For FFT, we use vmmcOrig to conservatively approximate vmmcOrigNoFastPaths performance.
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Some applications can be made to run significantly faster by adding the right function-

ality on the network interface card. For instance, a similar set of SPLASH2 applications

observed a 37% increase in performance when additional network support was added to

VMMC to avoid asynchronous protocol processing in the SVM library [18]. In this respect,

ESP can help improve applications’ performance by making it easier to experiment with

and to add new functionality to the firmware.

The fast paths implemented in vmmcOrig have a small impact on the application per-

formance even though they have a significant benefit in the microbenchmarks for several

reasons. The two reasons presented in the previous paragraph apply in this case too. In

addition, fast paths are often fairly brittle. They are often designed to provide better

performance in simple situations that are expected to occur very frequently. However,

communication intensive applications cause high contention in the network card with com-

plex communication patterns. As a result, the fast paths do not get taken very often in the

applications. This is indicated by the measurements reported in an earlier study [18] that

found the actual message latency measured when running the different applications varied

between three times to ten times slower than the microbenchmarks measurements for small

messages. Section 4.5.1 presents a general discussion of fast paths: how more robust fast

paths can be built and how they can be supported in ESP.

4.5 Future Work

4.5.1 Fast paths

Fast paths provide better performance to commonly executing paths in the program (Fig-

ure 4.8). Modular programs are more reusable, readable, and maintainable. However, they
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Figure 4.8: A fast path bypasses a modular program. Blocks representing the fast path
components are shaded.

usually incur additional overhead when the program execution crosses a module boundary.

Fast paths avoid this overhead in the common cases.

A fast path consists of two components: A predicate that identifies a common case, and

specialized code that is optimized to efficiently handle the common case. The specialized

code corresponds to the execution path in the modular program that would have been taken

in the absence of the fast path. It is composed of the code fragments extracted from several

different modules. This allows fast paths to avoid module-crossing overheads. This also

makes them more amenable to compiler optimizations.

Languages like C do not provide support for fast paths. However, they allow fast paths

to be implemented manually by the programmer—the programmer can insert a predicate

in the program to check for the common case and transfer control to the specialized code.

The programmer is responsible for providing specialized code that is equivalent to the
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corresponding path in the program. This violates modularity and makes the fast paths error

prone.

ESP currently does not support fast paths. Since ESP enforces modularity, it prevents

fast paths from being implementing manually by the programmer. To support fast paths in

ESP, the following three questions need to be answered.

How to select fast paths? For fast paths to be effective, the fast paths have to be executed

a significant percentage of time, i.e., the fast paths have to be common.

There are two main approaches to selecting the fast paths. First, the commonly executed

paths can be identified by profiling the running program. Past research on path profiling [9,

65] has focused on sequential programs, and need to be extended to work for concurrent

programs. The advantage of this approach is that fast paths are identified during the actual

running of the program. The disadvantage is that some of the scheduling choices made

(like the order in which the external events are processed) influence which paths are more

common. This is especially true for a language like ESP because additional scheduling

decisions are made to schedule the various processes in the concurrent program. The right

scheduling policy can help the fast path be executed more often.

Second, since the programmer has some intuition on how the program behaves, the

programmer can annotate the program to specify the fast paths and provide hints for the

right scheduling policy. They also provide the programmer more control over program

execution. Some languages [25, 12] provide limited annotation capability—they allow

the conditional statements to be tagged to indicate whether it usually evaluates to true or

false. The problem with program annotations is that it places additional burden on the

programmer. In addition, the programmer intuition is often wrong.

The approach that is likely to work best for ESP is probably a combination of the two

approaches. The programmer can specify the fast paths and provide hints on the right
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scheduling policy while program profiling can be used to check that the annotations were

useful.

How to generate fast paths? Once a fast path is identified as a pair of predicate and

path through the program, the ESP compiler has to extract the path. This is a challenging

problem for several reasons.

First, it is hard to statically determine that the predicate specified always corresponds

to the path specified. One option is to insert checks in the code to verify it at run time,

and thereby, paying a runtime cost. The alternative is to trust the specification and risk

introducing bugs in the program. A model checker can be used to check the specification

in this case.

Second, the fast path involves code that is extracted from different processes and thereby

makes some scheduling decisions. The ESP compiler has to ensure that it does not intro-

duce starvation in the program.

A number of research projects [85, 75, 68] investigate the use of fast paths in sequential

programs.

The Synthetix project [85] manually generated fast paths in the HP-UX operating sys-

tem. They show that file system calls like read can be speeded up by generating specialized

code for it based on invariants and quasi-invariants that are available when the file is

opened.

The Scout operating system [75] makes paths an explicit abstraction mechanism to

improve resource allocation and scheduling decisions. It uses compiler optimizations like

outlining, cloning, and path inlining improve the performance of the fast paths [76]. How-

ever, since the paths are dynamically created, the compiler cannot always optimize these

paths. To address this, the compiler generates optimized code for some paths. When a path
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is created at runtime, if the runtime system can determine that optimized code is available

for that path, it uses the optimized code.

Formal methods can be used to build optimized fast paths [68] in the Ensemble net-

work architecture [51]. A protocol stack consists of a sequence of protocol layers. The

NuPRL [34] system was used to semiautomatically extract a fast path from the protocol

stack. It ensures that the fast path generated is provably semantically equal to the protocol

stack when the fast path predicate holds.

How to support robust fast paths? Our experience with fast paths in VMMC firmware

shows that it is difficult to build robust fast paths. One often ends up with fast paths that

help simple applications like the microbenchmarks but have little impact on applications.

The more specific the fast path predicate, the more specialized and efficient fast path will

be. However, it also means that the predicate will be satisfied less often. It is often difficult

to identify the right point in the tradeoff.

One possible solution to this problem is to build a number of fast paths with increasing

degrees of specialization. This would mean that the program could benefit from the more

aggressive fast paths when the predicate holds but would still benefit from the less aggres-

sive fast paths when they do not. Unlike when programming in C, building a number of

fast paths in ESP would require only a small amount of programmer effort because of the

compiler support for fast paths.

4.5.2 Compiler Optimizations

A number of compiler optimizations can further improve the performance of the generated

code. First, the data-flow analysis can be extended to perform interprocess analysis—it

currently analyzes each process separately. These optimizations should be fairly effective
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for ESP programs for two reasons: the channels in ESP are static (Section 2.3.2); processes

communicate only using channels.

Second, the automata-based approach (Section 4.1) can be adapted to perform process

inlining selectively. The automata-based approach combines all the processes into a single

process, thereby avoiding process context switching overheads. However, it results in

significant increase in code size. In contrast, process inlining would combine only some of

the processes. For instance, when a process is used to implement a function (Section 2.3.3),

process inlining would inline that process into each of the calling processes.

4.6 Summary

The ESP compiler compiles the ESP programs into code that incurs low performance

overhead at runtime. This meets the third goal that ESP was designed to meet.

The ESP compiler compiles a concurrent ESP program to run efficiently on a single

processor. It uses a process-based approach to compile the concurrent program to run on

a single processor. A context switch is fairly lightweight and only involves saving and

restoring the program counter. The language design allows the compiler to aggressively

optimize the programs. The language is fairly static—all the processes and channels are

know at compile time. This allows the compiler to implement pattern-matching over

channels efficiently. Although messages sent over channels are passed by value, the runtime

system uses a reference counting allocator to avoid actually copying the messages. Creating

a copy of the messages on each message send operation would be inefficient.

VMMC firmware was used as a case study to measure the performance impact of using

ESP instead of C to write device firmware. The performance of the new implementation

that uses ESP is compared with the earlier implementation that used C. The performance is

measured using both microbenchmarks as well as applications.
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Microbenchmarks measurements show that the performance difference between the

firmware implementation using ESP and the earlier implementation using C is usually

small. In some cases, the difference is significantly high. For instance, the ESP im-

plementation involves twice the latency of the C implementation when sending 4 byte

messages. However, in this case, the entire difference is the result of the fast paths in the

C implementation that is not currently supported by ESP. To obtain a fairer comparison,

a version of the C implementation that does not include the fast paths is also used. The

measurements show that the ESP implementation performs 0–35 % worse in the latency

microbenchmark and 12–25 % worse in the bandwidth microbenchmark.

The performance impact of using ESP on applications is small. We measure the per-

formance of SPLASH2 applications using the two firmware implementations. Our mea-

surements show that the applications run 3.5 % slower on average (10 % in the worst case)

when using the ESP version relative to the C version. They also show that the fast paths in

the C implementation have little impact on the applications’ performance.



Chapter 5

Conclusions and Future Directions

This thesis presents the design and implementation of ESP—a domain-specific language

for programmable devices. ESP was designed to meet the following three goals:

Ease of Programming. ESP should make it easier to write device firmware using event-

driven state machines. It should allow the firmware to be expressed concisely and in a

modular fashion. It should minimize the use of C by allowing the bulk of the program

to be written in ESP. It should support dispatch, dynamic memory management, and

a flexible external interface to C.

Extensive Testing. Device firmware is trusted by the operating system and can write to

any address in the physical memory. A bug in the firmware can compromise the

integrity of the entire machine. As a result, the firmware needs to be extensively

tested to ensure reliability. This is challenging for two reasons. First, the use of

concurrency makes it difficult to find bugs resulting from race conditions. Second,

very limited debugging support is available on these devices.

Low Performance Overhead. The effectiveness of the device firmware depends on the

speed with which it can respond to events occurring on the devices. ESP should

118
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minimize the overhead incurred when using the language features it provides. In ad-

dition, it should allow aggressive compiler optimization to generate fast executables.

Event-driven state machines is C meets only one of these three goals listed above.

Traditionally, event-driven state machines in C are used to develop firmware for these

devices. For instance, the earlier implementation of VMMC firmware was programmed

using event-driven state machines in C. Our experience with VMMC firmware showed

that event-driven state machines in C meets only the performance goal. The programs are

hard to write, maintain and debug. This is because C forces state machines to be specified

explicitly. In addition, since the C compiler cannot optimize these programs effectively,

the programmer is forced to perform these optimizations manually. This further degrades

the readability of the code. This also introduces subtle bugs into the program. Even after

several man-years spent on debugging the VMMC firmware, we continue to encounter bugs

frequently.

ESP meets all three of its goals. It has a number of language features that allow

development of compact and modular programs. The Spin model checker is used to develop

and extensively test the programs. It uses models that are generated automatically by

the ESP compiler. Once debugged, ESP programs can be compiled into efficient device

firmware using the ESP compiler.

The VMMC firmware is used as a case study to evaluate ESP. The VMMC firmware

was reimplemented using ESP and compared against the earlier implementation that used

C. In the rest of this chapter, we present our conclusions and discuss directions for future

research.
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5.1 Language Support for Ease of Programming

ESP is designed to simplify event-driven state-machines programming. State machines

are specified implicitly using processes. The processes communicate with each other by

sending messages on channels. ESP provides a number of novel language features. First,

it provides an explicit malloc/free-style interface to dynamically allocate memory. To

make it easier to perform the allocation correctly, ESP allows each process to manage its

allocation independently. This allows a model checker like Spin to exhaustively check for

allocation bugs in the program. Second, pattern matching is used to support dispatch on

channels efficiently. Third, channels are used to provide a flexible and powerful interface

to C.

The ESP compiler was implemented using Standard ML of New Jersey (SML/NJ) and

required around 7000 lines of code.

The VMMC firmware was reimplemented using ESP. It required 500 lines of ESP code

together with 3000 lines of C code. The portion of the program written in C was used to

implement simple low-level operations like accessing device registers and volatile memory.

In contrast, the earlier implementation in C required 15600 lines of C code. The ESP

implementation was significantly easier than the C implementation. It required a factor of

five fewer lines of code. In addition, all the complex interactions in the ESP implementation

were confined to the 500 lines of ESP code. In the earlier implementation in C, the complex

interactions were scattered over the entire program.

A number of things remain to be done. First, ESP can be extended to support low-

level operations [71, 78, 27]. It currently uses C to perform these operations. Second,

ESP has so far been used to write firmware for a single device (Myrinet network interface

card). Experience with writing firmware for other devices is necessary to further validate

the effectiveness of ESP.
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5.2 Extensive Testing using a Model Checker

Model-checking verifiers like Spin can be used to develop and extensively test ESP pro-

grams. The ESP compiler automatically extracts Spin models for use by the model checker.

This greatly reduces the effort required in using the model checker. This allowed the model

checker to be used not just to find subtle deadlocks late in the development process—it was

used for initial development as well. This allows the programmer to avoid the slow and

painstaking process of developing the firmware on the device itself. To deal with the state-

space explosion problem, the ESP compiler generates several different models that can

be used for different purposes: detailed models are usually used in the simulation mode

during the initial development; memory-safety models are used to check for allocation

bugs; abstract models are used to check system-wide properties like absence of deadlocks.

The Spin model checker was used to develop and debug the new implementation of

VMMC firmware in ESP. Spin was used to implement a retransmission protocol. The new

implementation in ESP took around 2 days (compared to the earlier implementation in C

which took around 10 days). Spin was also used to exhaustively check the firmware for

memory allocation bugs. It found an allocation bug in an early implementation of the

firmware. It also found all the allocation bugs that were manually inserted to verify its

effectiveness. Finally, Spin was used to identify seven bugs in the firmware using abstract

models. These bugs could cause the firmware to deadlock.

One interesting direction for future research is to explore the tradeoff of using a radi-

cally different model checker like Verisoft [48]. Verisoft does not require a separate model

to be provided—it uses the concurrent program itself as the model and explores the state

space by controlling the scheduler at runtime. This would allow more freedom in the

language design.
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5.3 Generating Efficient Code

The ESP compiler compiles ESP programs to generate efficient firmware. A context switch

is fairly lightweight because the only context that needs to be saved and restored is the

program counter. The design of the language facilitates aggressive optimizations. It allows

a reference-counting allocator to be used to implement “sending messages over channel

by-value” semantics without actually creating a copy of the message. In addition, since

the processes and channels are known at compile time, pattern matching over channels is

implemented very efficiently.

Measurements using VMMC firmware as a case study indicate that the performance

impact of using ESP instead of C to write device firmware is small. Since ESP does not

currently support fast paths, the performance difference between the two implementations

can be broken down into two components: impact of not supporting fast paths in ESP,

and impact of using ESP instead of C. For microbenchmark, measurements show that the

ESP version performs 0–35 % worse in the latency microbenchmark and 12–25 % worse

in the bandwidth microbenchmark. For SPLASH2 applications, using ESP results in a

performance hit of 3.5 % on average. The measurements also indicate that the fast paths

in the C implementation have little impact on application performance even though they

sometimes make a significant impact on the microbenchmarks (latency of 4 byte messages

is improved by a factor of two due to the fast paths).

A number of compiler optimizations can be added to the ESP compiler to further

improve the performance of the generated code. The data-flow analysis can be extended

to perform inter-process optimizations. In addition, optimizations like process inlining

can avoid the process context-switch overheads in some cases. Finally, ESP compiler

can provide support for fast paths. However, this will require research to answer several

challenging problems. First, the compiler would have to identify the fast paths in the
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concurrent program. Second, the compiler will have to extract the fast path and optimize

it. Third, the fast paths have to be robust so that they benefit not only the microbenchmarks

that have simple communication patterns but also the applications.



Appendix A

The ESP Language Reference

This appendix describes Event-driven State-machines Programming (ESP)—a language

for programmable devices. ESP is designed to simplify the task of implementing reliable

high-performance firmware for these devices.

A.1 Lexical Issues

Identifier: An identifier is a sequence of letters, digits and underscores starting with a

letter. Identifiers in ESP are case sensitive. In this appendix, the symbol id represents

an identifier.

Keywords: A keyword is a reserved identifier that has a special meaning in ESP. In this

appendix, a keyword is shown in bold.

Comments: ESP supports C++ style comments. Comments are enclosed between ’/*’ and

’*/’ or between ’//’ and the end of the line.

124
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A.2 Notation

This appendix presents the grammar of ESP using the following notation:

[ x ]? ⇒ 0 or more x
[ x ]+ ⇒ 1 or more x
[ x ]? ⇒ 0 or 1 x
[ x ],+ ⇒ 1 or more x separated by ’,’
( x | y | z ) ⇒ x or y or z. For e.g.,

P → ( x | y | z )
is the same as

P → x
→ y
→ z

A.3 Program

program → [ dec ]?

dec → typeDec
→ channelDec
→ processDec
→ interfaceDec

A program consists of a sequence of type, channel and process declarations. The

concurrent program specifies a set of processes that communicate with each other using

channels.

A.4 Data Types

The syntax of types and type declarations in ESP is

typeDec → type id = ty
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ty → int
→ bool
→ id
→ [ # ]? record of { tyFields }
→ [ # ]? union of { tyFields }
→ [ # ]? array of ty

tyFields → [ id : ty ],+

Named Types: Two built-in types int and bool are predefined. Other named types can

be defined using previously defined (or built-in types). Each type declaration creates

a new type that is type-incompatible with all other types. ESP does not support

recursive types, so ESP programs cannot have any circular data structures.

Records and Unions: Record and union types specify a sequence of named fields. All the

fields of a nonnil record are valid. Exactly one field of a nonnil union is valid. The

order of fields in records and unions are significant.

Only the valid field of a union can be read. Writing to a different field of a mutable

union invalidates all other fields.

Arrays: An array is an indexed list of objects of a particular type. The length of the array

is not specified in the type but is determined during array allocation at run time.

Mutable Types: ESP supports both mutable and immutable version of records, arrays and

unions. A ’#’ is used to indicate that the type is mutable.

Examples: In the following code, sendT and updateT are immutable record types, userT

is an immutable union type and tableT is a mutable array type.

type sendT = record of { dest: int, vAddr: int, size: int}
type updateT = record of { vAddr: int, pAddr: int}
type userT = union of { send: sendT, update: updateT}
type tableT = #array of int
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A.5 Channels

Channels in ESP are declared as follows:

channelDec → channel id : ty

Channels provide the only way for processes to communicate with each other. Channels

are synchronous, i.e, there is no buffering on the channels. Also, only immutable types can

be specified for a channel.

A.6 Processes

Processes in ESP are specified as follows:

processDec → process id compoundStmt

A process represents a sequential flow of control and is specified by the compoundStmt.

Since the processes do not need a stack, they implicitly encode a state machine. Process

cannot be dynamically created.

A.7 Expressions

expr → constant
→ lValue
→ primOp ( lValue )
→ allocation
→ expr : ty
→ expr :: ty
→ expr bOp expr
→ uOp expr
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constant → numericConst
→ @ [ id ]?
→ ( true | false )
→ nil

allocation → [ # ]? { [ expr ],+ }
→ [ # ]? { id |> expr }
→ [ # ]? { expr -> expr ... }
→ [ # ]? { -> [ expr ],+ }

bOp → ( <= | < | == | != | >= | > )
→ ( & | | | << | >> )
→ ( && | || )
→ ( + | - | * | / | % )

uOp → ( ! | ˜ | + | -)

primOp → length

Expression: An expression is a side-effect-free (other than allocation) piece of code that

evaluates to a value.

Constant: numericConst are integer constants. @ SM1 is an integer constant that uniquely

identifies process SM1. When the optional process name is left out, it defaults to the

current process. true and false are boolean constants. nil is a constant that is

valid for arrays, records and unions.

Allocation: A record is allocated by specifying the values for its fields in order. A union is

allocated by specifying the valid fields and the value for that fields separated by ’|>’.

An array can be allocated two ways and is identified by ’->’ in the expression. First,

a size and a value (obtained by computing the specified expression once) is provided

that is used to initialize all the entries. Second, all the entries are specified. A mutable

version of a data structure can be allocated using the ’#’ prefix.

Note that a data structure cannot be allocated and dereferenced in the same expres-

sion. For instance, {->1,3,2}[2] is invalid.
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Types: The type of any expression can be specified using the ’:’ separator.

Type Cast: An object can be cast to a different type using the cast operation (specified

using ’::’). Not all casts are valid. ESP allows a mutable object to be cast into

an immutable object and vice versa. A cast operation causes allocation and returns

a semantic deep copy of the object being cast (as described in Section A.9). The

programmer is responsible for freeing objects allocated during the cast.

Operators: Operators in ESP have the same precedence and associativity as in C [61].

However, ESP disallows pointer comparisons.

lValue → id
→ lValue . id
→ lValue [ expr ]
→ lValue : ty

lValueNew → $ id

pattern → lValue
→ lValueNew
→ pattern : ty
→ constant
→ _
→ { [ pattern ],+ }
→ { id |> pattern }

l-value: An l-value is an expression that specifies a memory location that may be read and

written. As in C, the ’.’ is used to access fields of records and unions and ’[]’ is used

access an array entry. A ’$’ prefix specifies a new variable declaration in the current

scope.

Pattern: A pattern provides a convenient way to access the components of a data structure.

When the pattern matches the data structure, the l-values in the pattern are assigned

the corresponding values in the data structure. The rest of the pattern is used for
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pattern matching. The components that correspond to a ’ ’ in the pattern are ignored.

A pattern should have at least one l-value.

As in ML, patterns and allocations use similar syntax. They can be distinguished

based on their position in a statement. They are considered a pattern when they

occur in a l-value position and cause allocation when they occur in a r-value position.

For instance:

$sr: sendT = { 7, 54677, 1024};
$ur1: userT = { send |> sr};
$ur2: userT = { send |> { 5, 10000, 512}};
{ send |> { $dest, $vAddr, $size}}: userT = $ur2;

In the above code, the first line initializes sr to a newly allocated record. The second

line initializes ur1 to a newly allocated union with a valid send field1 that points to

the record in sr. The third line initializes ur2 to a newly allocated union with a valid

send field that points to a newly allocated record. The fourth line has a pattern on

the left hand side and pattern matching causes variables dest, vAddr and size to be

initialized to 5, 10000 and 512 respectively.

In ESP, patterns are also used to support dispatch on channels (Section A.8).

New variables: ’$’ declares a new variable in the current scope. All variables have to be

initialized during variable declaration.

A.8 Statements

stmt → pattern = expr ;
→ assert ( expr ) ;
→ procName ( lValue ) ;
→ if ( expr ) stmt else stmt
→ while ( expr ) stmt

1Exactly one field of a union has to be valid
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→ break ;
→ compoundStmt
→ chanOp ;
→ alt { [ case ( expr , chanOp ) stmt ]+ }

compoundStmt → { [ stmt ]? }

chanOp → in ( id , pattern )
→ out ( id , expr )

procName → free | rfree

Standard Statement: ESP supports the standard statements like assignment, if-then-else,

while and break statements supported by most imperative languages.

Simple Type Inferencing: ESP allows the type of an expression to be unspecified when it

can be inferred from its context in the statement. For instance, types do not have to

be specified in the following variable declarations.

$i = 36; // int
$a = #{ -> 5, 4, 1}; // #array of int

However, the following statements need to specify the type.

$b: #array of int = nil;
$r: record of { count: int, init: bool} = { 5, false};

Operations on Channels: Processes can write to a channel using the out statement and

read from the channel using the in statement. A process specifies a pattern when

reading from a channel. Then only objects that match the pattern will be delivered to

that process.

A channel can have multiple writers and multiple readers. However, the processes

reading from a particular channel have to satisfy two properties. First, the set of

patterns specified on the channel have to be disjoint. This means that every object
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sent on the channel will match at most one pattern. Second, each distinct pattern can

be used by only one process (possibly several times).

The alt statement allows a process to wait on in and out operations on several

different channels. However, for each execution of an alt statement, only the actions

associated with a single channel are performed. In the case where multiple channels

are ready, a single channel is selected. The channel selection algorithm need not be

fair (it may favor performance critical channels), but must prevent starvation. The

following is a code fragment from a process that implements a FIFO queue. The

macros FULL, EMPTY and INCR have the expected functionality. The first alternative

accepts new messages and inserts them at the tail of the queue. The second alternative

sends the message at the head of the queue and then removes it from the queue. Note

that the first alternative is disabled when the buffer is full and second is disabled

when the buffer is empty.

channel chan1: int
channel chan2: int

process buffer {
$Q = #{ SIZE -> 0, . . . };
$tl = 0;
$hd = 0;

while ( true) {
alt {

case( !FULL, in( chan1, Q[tl]) { INCR(tl); }
case( !EMPTY, out( chan2, Q[hd])) { INCR(hd); }

}
}

}

Namespaces: There are four separate namespaces in ESP, one for each of types, channels,

processes and variables.
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Scope Rules: Types, channels and processes are defined only at the top-level scope. Only

variables can be defined in nested scopes. A variable can be redefined in a nested

scope but not in the same scope. However, all identifiers can be accessed from the

same or a deeper-nested scope.

ESP does not support global variables, so variables cannot be defined at the top level.

ESP programs are lexically scoped. New nested scopes are introduced by

• Compound statements.

• Body of the while loop.

• Each branch of the if statement.

• Each case of the alt statement introduces a pair of nested scopes. The first

nested scope includes the chanOp. The second nested scope is nested inside the

first and is introduced by the body of that case.

In the following example, variables i and b declared in the same scope.

channel c1: bool
process p1 {

while ( true) {
$i = 0;
in( c2, $b);

}
}

The following code illustrates the nested scopes introduced by an alt statement.

channel c2: bool
channel c3: int

process p2 {
while ( true) {
$b = true; // Defining b.
alt {

case ( in( c3, $j)) {}
case ( in( c2, $b)) { // Redefining b in a nested scope.
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$c = b; // b is accessible here.
$b = 5; // Redefining b in a nested scope.
$k = j; // Error. j not accessible here.

}
}

}
}

A.9 Memory Management

Object Allocation: Objects are allocated using the syntax described in Section A.7.

Objects on Channels: The receiving process receives a deep copy of the object that was

sent to it over the channel. The deep copy performed does not preserve any pointer

sharing that was present in the sent object. Objects received over a channel are similar

to a newly allocated object and have to be freed by the receiving process.

Casting Objects: A deep copy of the object (like objects on channels) is returned by the

cast operation.

Freeing Objects: The set of objects accessible to each process is disjoint. Each process

is responsible for freeing its own objects using free and rfree operations. Each

object has to be freed exactly once. The free operation frees just the object being

specified. The rfree operation recursively frees the object being specified. It should

be noted that rfree does not check to see if an object has already been freed. So,

if an array was allocated and all entries point to a single record, rfree will free that

record multiple times. This is an error and can cause the program to crash at runtime.

Anonymous Allocation: An anonymous allocation is one that the programmer never ac-

quired a pointer to. The only place this can occur is when an object is allocated in an

out statement to be sent over the channel. A process is not responsible for freeing

anonymous allocation.
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C interface: C functions implementing in operation on channels might be passed ESP

objects. Similarly, C functions implementing out operation on channel might need to

allocate and return a new object. To continue to have access to these objects even after

a function has returned, the function has to invoke the link library function provided

by the ESP library. This will prevent the ESP runtime from freeing the objects while

the C code is still using it. In addition, unlink and alloc library functions allow the

C code to relinquish linked objects and allocate new objects respectively. C functions

are not allowed to mutate the ESP objects.

A.10 External Interface

interfaceDec → interface ( ( in | out ) id ) cInterface
cInterface → { [ id ( pattern ) ],+ }

External channels provide a synchronous interface to external code written in C or Spin.

An external channel has ESP processes reading (or writing) from it while C code writes (or

reads) values on that channel. An external channel specifies exactly one interface. For

example:

type sendT = record of { dest: int, vAddr: int, size: int}
type updateT = record of { vAddr: int, pAddr: int}
type userT = union of { send: sendT, update: updateT}
channel userReqC: userT
interface userReq( out userReqC) { // C writer
Send( { Send |> { $dest, $vAddr, $size}),
Update( { Update |> $new})

}

defines a channel with an external writer.
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Interface to C. The cInterface is used to specify the interface with C code. It includes

a list of id and pattern pairs. The $ prefix in the pattern indicates a parameter to be

passed to the C function. The patterns in the cInterface are not fully general patterns

(Section A.7)—an lValue is not permitted in these patterns.

For an external channel, ESP requires two types of C functions to be provided. The

first type has a “IsReady” suffix and returns whether the channel has data to send/receive.

The second type of function is called after the first one has indicated if it is ready to

communicate. In the previous example, the following functions have to be provided by

the programmer:

int UserReqIsReady( void);
void UserReqSend( int *dest, int *vAddr, int *size);
void UserReqUpdate( int **new);

UserReqIsReady should return 0 when it has nothing to send. When it has something

to send, it returns an integer that specifies which one of the patterns is ready. Depending

on the return value, one of the two functions (UserReqSend and UserReqUpdate) will be

invoked.

External in channels differ from external out channel in two ways. First, the IsReady

function just returns whether or not the channel is willing to accept data. Then any C writer

on that channel can write to it. In addition, it does not need to pass pointers since the

parameters will not be modified. So, all the parameters have one fewer level of indirection.

Interface to Spin. Spin code interacts with ESP code by directly reading and writing on

the userReqC channel.
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VMMC Firmware in ESP

This chapter provides an overview of the implementation of VMMC firmware using ESP.

The implementation of the VMMC firmware required 500 lines of ESP code together with

around 3000 lines of C code. The ESP code uses 8 processes and 19 channels. Figure B.1

presents a schematic representation of the code. Table B.1 and Table B.2 provide a brief

description about the processes and channels respectively. Details about the functionality

implemented by the firmware are discussed in [41, 42].

The following example illustrates the interactions between the various processes and

channels. Consider a request by an application on machine A to remote fetch data from

machine B. This should cause some data on machine B to be read and transferred back to

machine A. This will involve the following steps:

1. On machine A, process localRequest receives the application’s request and gen-

erates a remote fetch request packet to be sent to machine B. The packet is sent on

channel C7. Details necessary to process the reply to the packet is sent on channel

C6.

137
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remoteRequest

reliableReceiver

remoteReplylocalRequest

reliableSender

Channel

Process

C11

C1 C2 C3
C4

C5

C6

C7 C8

C9 C10

C12

UTLB

timer

Figure B.1: VMMC Firmware using ESP. The channels that have only readers or only
writers are external channels that are used to interface with C. One process (ETLB) and
seven external channels (C13-C19) have been omitted from this figure for simplicity.

Process Description

localRequest Handles requests from the application to send/receive data.
remoteRequest Handles requests arriving on the network to send/receive data.
remoteReply Handles replies arriving on the network in response to a request sent.
UTLB Translates virtual addresses to physical addresses [29].
ETLB Translates virtual addresses to physical addresses for exported regions.
reliableSender A component of the retransmission protocol that accepts packets

to be sent on the network.
reliableReceiver A component of the retransmission protocol that accepts packets

arriving on the network.
timer Generates timeouts for the retransmission protocol.

Table B.1: Description of the processes used
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Channel Description

C1 Requests from the application to send/receive data.
C2 Requests to the UTLB.
C3 Replies from the UTLB.
C4 Request to the DMA to read/write data.
C5 Data that has been read by the last DMA request.
C6 Relevant state pertaining to a request sent that requires a reply.
C7 Packet to be sent out to the network reliably.
C8 Packet received from the network reliably.
C9 Acknowledgement send/receive timeouts.
C10 Details of the last packet received/acknowledged.
C11 Packet to be sent out to the network.
C12 Packet received from the network.
C13 Request to lookup the export table.
C14 Result of the export table lookup.
C15 Periodically generates a clock tick for use by the timer.
C16 Returns a node identifier for the network card.
C17 Request to update the import table.
C18 Requests to the ETLB.
C19 Replies from the ETLB.

Table B.2: Description of the channels used
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2. Process remoteReply reads the details about the request on channel C6 and waits for

the reply.

3. Process reliableSender reads the packet on channel C7 and sends it to the network

by writing it to channel C11. It then waits for an acknowledgement. Processes

reliableSender and reliableReceiver implement a simple sliding window pro-

tocol with piggyback acknowledgement.

4. If a timeout occurs, process timer sends a timeout message on channel C9.

5. If a timeout message arrives on channel C9 before an acknowledgement is received,

process reliableSender resends the packet.

6. On machine B, process reliableReceiver receives the packet, checks to see if it

has a valid sequence number and sends it out on channel C8. If the packet includes a

piggyback acknowledgement, it send it to process reliableSender on channel C10.

7. Process remoteRequest reads the remote fetch request from channel C8. It looks

up the export table using channels C13 and C14 to validate the request and determine

the physical address of the requested data. It uses channels C4 and C5 to access the

DMA engine and transfer data from the host memory to the network card. It then

composes a reply packet that includes the data and sends it on channel C7.

8. Process reliableSender reads the packet on channel C7 and sends it to the network

using channel C11.

9. On machine A, process reliableReceiver receives the reply packet, checks to see

if it has a valid sequence number and sends it out on channel C8.

10. Process remoteReply receives the reply packet on channel C8. It uses channels

C2 and C3 to communicate with process UTLB to translate the virtual addresses to
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physical addresses. It uses channels C4 to access the DMA engine to write the data

received into the applications memory. It then notifies the application that the remote

fetch operation was successfully completed using channel C4.
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