Measuring the Web Using a Versatile Meta Information Crawler

Ting Liu

Abstract

In this paper, we present data which characterizes three
aspects of Web interactions: failures, timing performance,
and protocol compliance. We collected the data using our
Versatile Meta Information Crawler, which is designed to
acquire a wide sample of the Web, accurately recording its
behavior and performance, and building a large repository
of Web page meta information. We have crawled 300,000
Web pages under 130,000 domain names and 90,000 IP ad-
dresses that are dispersed throughout the Web. The major
findings are as follows. For failures, the likelihood of en-
countering a Web failure is 12%. DNS failures account
for 50% of all the communication failures, and “URL Not
Found”s account for 90% of all the transaction failures.
For timing performance, none of the communication phases
dominates the entire Web transaction. We examine each
phase in more detail to identify its empirical parameters.
For protocol compliance, persistent connections are not in-
dicated properly by major servers, and conditional GET is
not sufficiently supported. Based on the data, we suggest
a number of system improvements.

1 Introduction

With the rapid growth of the World Wide Web, measur-
ing and characterizing its behavior and performance has
become essential to understand its nature and find impli-
cations for its improvements. However, two fundamental
properties of the Web make this challenging. The Web is
dynamic; therefore actual measurements are needed to ac-
curately capture its live activities. The Web is made up of
a huge number of heterogeneous sites; therefore the mea-
surements must be extensive to reflect its entirety.

In this paper, we present a new approach to study the
Web using our Versatile Meta Information Crawler (abbre-
viated as VerMIC). This approach is aimed at accessing a
wide sample of the Web, accurately recording its behavior
and performance, and building a large repository of Web
page meta information. We consider VerMIC to be a pow-
erful research tool because of its extensive coverage, use of
actual measurement versus simulation, fined-grained and
user-oriented measurement, and flexible functionality.

Throughout our study, we seek to answer the following
questions:

e What failures are encountered on the Web, and how

Andrea LaPaugh

Larry Peterson

prevalent are they?

e What performance does the Web deliver, and what has
impact on this performance?

e How well are Web protocols complied with, and what
are the problems?

Our study yields the following main results:

e We characterize the prevalence of Web failures and find
that human-introduced errors are the most damaging
to the success of Web transactions.

e We evaluate the performance of static pages and dy-
namic pages, and identify the empirical parameters of
each communication phase.

e We examine the status of protocol compliance, and
point out where improvements can be made in the use
of protocol performance features.

The rest of this paper is organized as follows. Section 2
describes the methodology of our measurements. Section
3, 4, and 5 present the detailed statistical results for Web
failures, performance, and protocol compliance. These re-
sults suggest a number of promising system policies and
enhancements such as DNS and URL negative caching,
conservative use of redirections, parallelization of dynamic
page construction and transmission, discreet use of TCP
slow start, proper indication of persistent connections and
sufficient support for conditional GET. Our sugggestions
are discussed in detail in Section 6. Section 7 compares our
work with previous efforts. And we conclude in Section 8.

2 Versatile Meta Information

Crawler

This section describes the design of our meta information
crawler VerMIC in terms of its unique model and strategies.
We believe VerMIC is a powerful research tool because it
has the following instrumental properties.

First, the coverage of VerMIC is extensive and scalable
not only in terms of the volume of pages, but also in terms
of the number of administrative and geographical domains
of the Internet. This ensures our data is representative of
the entire Web.

Second, VerMIC uses actual measurements, not simula-
tions, to produce the most accurate characterization. It

gives on-the-spot reports and allows empirical modelling
and the identification of real-time real-world problems of
the Internet. This information can aid studies of pratical
issues and facilitate the design of simulation-based systems.

Third, the measurements of VerMIC are fine-grained and
user-oriented. Its measurements examine individual com-
munication phases of each Web transaction and every sin-
gle event of information delivery. Since measurements are
initiated as the activity of a typical end-user, they can il-
lustrate the current Web status as other end-users should
see it.

Finally, the functionality of VerMIC is flexible. It does
not rely on any existing information resource and can take
on various new features with little effort.

2.1 Model Used by VerMIC

In contrast with conventional Web crawlers whose sole tar-
get is the documents on the Web, VerMIC measures the
aspects of Web transactions. It regards a Web transaction
as consisting of five communication phases: the DNS Phase,
the Connection Phase, the Request Processing Phase, the
Response Transmission Phase, and the Redirection Phase
if applicable.

In the DNS Phase, the Web client tries to find out the
IP address of the Web site by engaging one or more name
servers to translate the domain name into an IP address.
The DNS request will either be resolved directly in the
cache of the local name server, or it will go to the root
name server, a second level name server, and so on, until
a match of the whole name is returned. After the domain
name translation, the client will try to establish a TCP
connection to the Web server by a three-way handshake in
the Connection Phase. Once the connection has been set
up, the client will send an HTTP request to the server,
who will in turn process the request and generate a cor-
responding HTTP message as the response. This is called
the Request Processing Phase. In the last step, the Re-
sponse Transmission Phase, the response will be sent over
the network to the client in a series of TCP packets. Under
certain circumstances, an HTTP request can be redirected
by the server to a different URL. If a request is redirected
multiple times, a single Web transaction will involve a se-
quence of hops. We use the Redirection Phase to represent
the communication for all the intermediate hops, and the
prior four phases refer to the last hop only, although in
practice they are repeated on each hop.

Every time a Web transaction is completed, VerMIC gen-
erates an exhaustive report that contains three transaction
records of interest.

2.1.1 Failure Record

The failure record contains any perceived failure and re-
lated diagnostic information. We differentiate between

communication failures and transaction failures. Any fail-
ure will prevent the Web transaction from proceeding to
completion.

DNS
Server

DNS
Failure
Client .

Connection
Failure

Server2
Redirection
Failure
ierveﬂ

Request
Processing
Failure

Response
Transmission
Failure

Figure 1: Communication Failures

Figure 1 summarizes all the communication failures that
VerMIC has encountered, They are described below.

DNS Failure In the DNS Phase, the domain name trans-
lation may fail and no IP address is returned. This is
indicated by an error returned from the name lookup.

Connection Failure In the Connection Phase, the three-
way handshake may fail and no connection is estab-
lished. This can be detected either immediately from
the feedback of the connecting socket or after a long
waiting period. We define a wait-based connection fail-
ure by a connection time-out of 30 seconds, which is
justified by the connection time distribution shown in
Section 4.

Request Processing Failure In the Request Processing
Phase, the server may fail to process the request and
generate no response. This can be detected either im-
mediately from a cut off of the connection or after a
long waiting period. In the second case, we set a re-
quest processing time-out to be 150 seconds to prevent
infinite waiting. This limit is also justified by the rel-
evant timing statistics.

Response Transmission Failure In the Response
Transmission Phase, the transmission may fail, and
only a partial response may be transmitted. This
can be detected in the same way as the Request
Processing Failure. We set a response transmission
time-out to be 30 seconds, which is the largest interval
between any pair of successive packets.

Redirection Failure In the Redirection Phase, a server
may fail to resolve the next hop so that the next re-
quest cannot be issued. In some cases, the server
does not provide any URL in a redirection mes-
sage. In other cases, the request has already gone
through many hops, even looping, and further redirec-
tion seems unpromising. We set the maximum number

of hops a Web transaction should experience to be 4,
and consider any additional attempted hops to be a
redirection failure.

Status Code Definition
404 URL Not Found
403 Forbidden (URL Not Accessible)
401 Unauthorized User
500 Internal Server Error
400 Malformed Request
Other N/A

Table 1: Transaction Failures

Table 1 enumerates the major transaction failures. In
contrast with the communication failures, the client is
notified of these failures through a successfully transmitted
response, and no more communication between the client
and the server is needed. The status code in the final
response directly indicates why the transaction has failed.

In Section 3, we will present the detailed statistical re-
sults of all the Web failures. The collection of the failure
records will help us identify which parts of the system can
be at fault and how frequently they are, and give indi-
cations of what measures should be taken to reduce their
effects.

2.1.2 Timing Record

The timing record contains the timing measurements of the
five communication phases. We define the durations of the
five phases to be the Redirection Time, the DNS Time, the
Connection Time, the Request Processing Time, and the
Response Transmission Time, respectively. And we defined
the duration of a Web transaction to be their sum.

Detour Hops

“=* Permanent Moves

Actual Hops

—* Temporary Moves

Figure 2: Actual Hops and Detour Hops

Rediretion Time A redirection message could indicate a
permanent URL move, meaning that future requests
should be directly sent to the new URL, or a tempo-
rary URL move, meaning that future requests should
still be sent to the original URL. In a sequence of redi-
rection moves, once a temporary move is encountered,
all the subsequent redirection hops of either type will
be part of future accesses as well. Therefore the hop
that issues the first temporary move, marked as h; in

Figure 2, should be the actual start point of the Web
transaction. Any subsequent permanent move should
be considered as temporary as well. We split the hops
into actual hops that are after and including h; and
detour hops that are before it. Only the actual hops
except the last one participate in the calculation of the
redirection time.

n—1,. . .
redirection time = iz timen, }f n>1
0 if n=1.

where timep, is the time spend on the ith actual hop.
The next four times refer to the last actual hop h,
only.

DNS Time To the first approximation, we define the
DNS time to be the time for name translation on h,,.
However, if the same name has occurred in the detour
path and has been cached in the local name server, the
DNS time on h,, will be much shorter than if the detour
path is skipped. Therefore, we adopt a calibration.

if (host nameq, == host namey,,) {
DNS time = DN S timegq,;
}

where d; is the first detour hop that has the same host
name as hy,.

Connection Time We define the connection time to be
the time to establish the connection on h,,.

Request Processing Time We define the request pro-
cessing time to be the interval between when the re-
quest to hy,, is sent and when the first response packet
from it is received.

Response Transmission Time We define the response
transmission time to be the time to transmit all the
rest of the packets, if any. We also record the size and
arrival time of each packet so that the transmission
pattern and rhythm is completely documented.

In Section 4, we will present the detailed statistical re-
sults of all the performance measurements. The collection
of the timing records will help us identify the empirical pa-
rameters of all the individual communication phases and
their interrelationships. This has implications for perfor-
mance improvements.

2.1.3 Protocol Record

At the time of writing, two versions of the HTTP protocol
are prevalent. HTTP /1.1 was recently standardized and is
young in terms of development and adoption. HTTP/1.0
has existed for a long time and is still influential.

The protocol record summarizes the protocol behavior of
the server in three aspects. The first aspect is whether the

server adheres to the syntactic requirements of the protocol.
The second one questions whether the server exploits the
performance features that the protocol offers. The third
aspect examines how many miscellaneous communication
features are relevant to the server.

Syntactic Requirements Both HTTP/1.1 and
HTTP/1.0 have syntactic requirements that re-
inforce the format of their messages. Incorrect syntax
will directly lead to misinterpretation of the message
or more implementation efforts to accommodate its
malformation.

Performance Features Both HTTP/1.1 and HTTP/1.0
offer a number of features that are aimed at improving
the protocol performance. Persistent connections in-
troduced in HTTP/1.1 allow a client to make multiple
requests without waiting for each response. This tech-
nique is called pipelining in HTTP and can be used
to avoid roundtrip delays and reduce the number of
packets. Conditional GET, introduced in HTTP/1.0
and expanded in HTTP/1.1, allows conditional trans-
mission of the requested document. It is used by proxy
servers in cache validation to reduce the volume of
transmissions when the cached entry is up to date and
avoid extra roundtrips if it is stale. How widely these
features are supported directly determines how often
performance enhancements can be obtained.

Communication Features Both HTTP/1.1 and
HTTP/1.0 provide many other miscellaneous features
that are aimed at improving client-server communica-
tion. How many HTTP/1.1 innovations are adopted
and how many HTTP/1.0 legacies are present in
HTTP/1.1 is a good indication of which features
are desirable and should be inherited and further
developed.

In Section 5, we will present the detailed statistical re-
sults of all the aspects of protocol behavior. The collection
of the protocol records will help us understand how proto-
col features are used, and give guidance for the evolution
of protocols.

2.2 Strategies of VerMIC

VerMIC has a crawling strategy and a storage strategy. The
crawling strategy decides the order of the URLs to crawl.
Our goal is to crawl pages that are dispersed throughout
the Web so that our data is representative of the entire
Web. We are not interested in which URLs lead to the most
popular pages, as a conventional Web crawler might be.
Therefore, breadth-first is our primary crawling strategy.
This will open up as many Web territories as possible.

To further distribute visited URLSs, we cache the recently
visited domain names, and defer the next URL if its do-
main name is semantically related to any of the cached

ones. We tell the similarity between domain names using
prefix and suffix matching. For example, there is similar-
ity between www.yahoo.com and music.yahoo.com, and
between www.ebay.com and www.ebaycareers.com. This
method also prevents our crawler from generating an over-
whelming workload on a single server.

As the start point of the crawl, we select the 300 most
popular Web sites from www.100hot.com. These include
100 .coms, 100 .edus, .orgs, and .nets, and 100 Web sites
whose domain names are outside the United States. We
begin with popular sites rather than random sites because
they tend to have abundant links to other sites that have
little affiliation with the original sites, and hence are more
suitable to direct the crawl.

The storage strategy defines the organization of the
crawled data. Omne of our important decisions is to dis-
tinguish static pages and dynamic pages. Static pages are
retrieved from the server’s disk and passed to the client
without changes. Dynamic pages are generated by a pro-
gram run on the server when the page is requested and can
be different each time requested. Their different service
patterns suggest different performance details, which are
verified in Section 4.

Five-day Experiment Static | Dynamic
Pages Crawled 240,654 | 53,758
Domain Names Accessed | 128,121 | 19,725
IP Addresses Accessed 87,048 16,618

Table 2: Data Volume of Five-day Experiment

100000

80000

60000 \
40000 \
20000 \-
:\\\.\.
0
~ 2] ~ » L) ° A S 9 \J D D &
} 3 > » K
Pages Crawled on One Domain Name or One IP Ay N %v

IPs

Number of Domain Names or

| —s—Domain Name --&-IP Address ‘

Figure 3: Distribution of Static Pages across Domain
Names and TP Addresses

Table 2 shows the data volume of the five-day experi-
ment starting from November 23, 2001. To demonstrate
the effectiveness of our extensible crawling strategy, Fig-
ure 3 shows the distribution of static pages across domain
names and IP addresses. Figure 4 shows the partition of
major domains in crawled pages.

-MIL 1%
0%

.EDU
5%

.ORG
13%

.COM
56%

.NET
8%

|I:|.GOV H.COM [O.NET E1.ORG E.EDU B.MIL EOTHER

Figure 4: Partition of Major Domains

3 Web Failures

Based on the failure records of all the Web transactions,
we have the following results.

(1) The likelihood of encountering a Web failure is about
12%

(2) The chances for communication failures and transac-
tion failures are approximately the same

(3) DNS failures account for almost 50% of all the com-
munication failures

(4) ”URL Not Found”s account for almost 90% of all the
transaction failures

(5) Human-introduced errors are the most damaging to
the success Web transactions

In the rest of this section, we will present our analysis
only on static pages, because cases are similar for dynamic

pages.

3.1 Prevalence of Web Failures

Count %
Successful Transactions 240,654 | 85.9%
Communication Failure 14990 | 5.4%
Transaction Failures 17678 | 6.3%
Beyond Experimental Constraints | 6696 2.4%

Table 3: Prevalence of Web Failures

Table 3 shows the prevalence of Web failures. The likeli-
hood of encountering a Web failure is about 12%, and the
chances for communication failures and transaction failures
are approximately the same. Huge documents and those
protected by the robot exclusion protocol are listed as “be-
yond experimental constraints”.

3.2 Communication Failures

Table 4 shows the occurences of all the communication fail-
ures, of which DNS failures account for almost 50%.

Failure Type Count %
DNS Failures 7397 | 49.3%
Connection Failures 5143 | 34.3%
Redirection Failures 1517 | 10.1%
Response Transmission Failures 486 3.2%
Request Processing Failures 447 3.0%

Table 4: Communication Failures

3.2.1 DNS Failures

We consider two possible causes for DNS failures. One
is that the domain name is invalid, and the other is that
there’s an internal error in the name server hierachy. Since
in practice, each zone in the domain hierarchy is imple-
mented in two or more name servers for the sake of redun-
dancy, we speculate that a system error is much less likely
than a bad name. To verify this, we re-crawled all the 7397
pages that had DNS failures, and only 43 of them recovered
in the second attempt.

All names, including invalid ones, were obtained from
crawled pages. The invalid names either had a typing error
when created or became invalid afterwards. We conclude
the main source of DNS failures is insufficient human main-
tenance on Web pages. Also, since following the links in
one page to browse other pages is the common behavior
of Web users, we expect that the number of occurences of
DNS failures encountered by typical Web users is at the
same level as our experience.

We find that the average time to return a DNS failure is
2 seconds.

3.2.2 Connection Failures

Diagnostic Count

Connection Time-out | 3988

Connection Refused 1054
Routing Problem 93
Other 8

Table 5: Connection Failures

Table 5 shows the classification of the connection failures.
A connection time-out could occur when the remote host is
not in place, or is temporarily not responding, or is too busy
to accept the connection. To verify which of the three cases
is the most probable, we repeatedly probed the servers that
had connection time-out. It turned out that 80% of the
remote hosts were permanantly gone.

A refused connection could occur when the remote host
is alive but there’s no server application to accept the in-
coming connections. Although this has rarely occurred, a
routing problem can also block the connection establish-
ment.

These numbers show that the main source of connection
failures is human misconfiguration of devices, not the phys-
ical limitation of devices.

3.2.3 Redirection Failures

Diagnostic Count
More Than 4 Hops Attempted | 1488
Next Hop Not Provided 29

Table 6: Redirection Failures

Table 6 shows the classification of the redirection failures.
The two sub-cases have been described in Section 2.

3.2.4 Response Transmission Failures

Diagnostic Count
Response Transmission Time-out 449
Connection Closed 37

Table 7: Response Transmission Failures

Table 7 shows the classification of the response transmis-
sion failures. A connection could be closed by the server
when the server withdraws the transmission before its com-
pletion; no reason is given. A response transmission time-
out could occur when the network is heavily congested and
the transmission is too slow. A heavily congested network
can also cause a connection time-out or a request processing
time-out if the packet cannot be delivered within a reason-
able period of time. However, we believe that its effect
is much more evident here. In the connection phase and
the request processing phase, only a single packet is trans-
mitted in a roundtrip. However, in the response transmis-
sion phase, a burst of packets could be transmitted in a
roundtrip and result in high loss rate and long delay.

3.2.5 Request Processing Failures

Diagnostic Count
Request Processing Time-out 275
Connection Closed 106
Other 66

Table 8: Request Processing Failures

Table 8 shows the classification of the request process-
ing failures. Failures of this type rarely occurred, mean-
ing a successful name translation and a successful connec-
tion setup almost insure an active and capable Web server.
However, in the case that the server is overloaded and can-
not respond promptly, a request processing time-out will
be issued. In other cases, we find that the server refuses

to process the request and closes the connection with no
reason given.

3.3 Transaction Failures

Diagnostic Count %
URL Not Found 15807 | 89.4%
Forbidden (URL Not Accessible) | 982 5.6%
Unauthorized User 281 1.6%
Internal Server Error 235 1.3%
Malformed Request 160 0.9%
Other 213 1.2%

Table 9: Transaction Failures

Table 9 shows the occurences of all the transaction fail-
ures, of which “URL Not Found”s account for almost 90%.

As the most common types of transaction failures, “URL
Not Found”s are caused by invalid URLs, and “Forbidden”s
are caused by inaccessible URLs. The invalid and inacces-
sible URLs were obtained from the crawled pages, as were
all other URLs. Therefore, the main source of transaction
failures is of human origin, such as inaccurate URL cita-
tions and citations to URLs that no longer exist.

4 Performance Measurements

Based on the timing records of all the successful Web trans-
actions, we have the following results.

(1) The redirection time of dynamic pages is three times
as much as that of static pages; the request process-
ing time is twice as much; but the whole duration is
only 27% longer

(2) None of the communication phases dominates the
entire Web transaction

(3) The redirection time grows proportionally with the
number of intermediate hops; in the case of three
intermediate hops, the average is 66% of the total
time

(4) For dynamic pages, the request processing time
grows linearly with the page size; while for static
pages, the request processing time is almost constant.

(5) The common 5-20KB pages have the worst response
transmission throughput due to the effect of TCP
slow start

(6) The response transmission of approximately 13% of
pages have only a single packet in the first roundtrip,
which may cause a 200ms delay of the next roundtrip

4.1 Static Pages vs. Dynamic pages

Figure 5 shows the average timing values of static and dy-
namic pages. There are two interesting characteristics in

Static

< E T
NN\ . I
& & & e‘}g fo‘ "
e < & NS SR
&) o) A
IS & o Q_wgé\"
¢ < &°° °
] 2
<&

Figure 5: Static Pages vs. Dynamic Pages

this figure. First, two timing components of dynamic pages
are much larger than those of static pages, but the en-
tire Web transaction of dynamic pages is not significantly
slower. The average redirection time of dynamic pages is
more than three times as much as that of static pages.
This is because the server program that processes the dy-
namic page request often generates local redirections. In
some cases, it transforms an external URL to an internal
one. In other cases, it hands over this request to another
program. Both will cause the client to re-send the request
to a new URL. The average request processing time of dy-
namic pages is almost twice as much as that of static pages.
This is because the server program that processes the dy-
namic page request has to generate the page on the fly
instead of retrieving an existing one. However, the entire
Web transaction of dynamic pages is only 27% slower than
static pages. This is because dynamic DNS time is only
two thirds of static DNS time and all other timing compo-
nents of static pages and dynamic pages are comparable.
We have no hypothesis for the difference in DNS times.
Second, none of the timing components dominates the en-
tire Web transaction. This is true for both static pages and
dynamic pages. For static pages, the response transmission
time has the largest share, which is 30% of the total time in
average. For dynamic pages, both the request processing
time and the response transmission time are the largest,
each taking 30% of the total time.

4.2 Redirection Time

Number of Intermediate Hops %
0 74.1%
1 17.9%
2 5.5%
3 2.4%

Table 10: Multiple Redirection Hops

Table 10 shows the occurences of multiple redirection
hops by percentage. Figure 6 shows the relationship be-
tween the redirection time and the number of intermediate
hops. Both of these are based on dynamic pages. We have

]
2

2500

i -
3
; o =
£ 2000 e
o T oS
2 = /
£ 1500 £ E -
g =u 1]
s / H 4
T 1000 & Fos /
I~
] £ /
g ¢ 01
H H
3 -
- 0 0

T T T
0 1 2 3 1 2 3

)

Number of Interm ediate Hops Number of Interm ediate Hops

Figure 6: Redirection Time vs. Number of Intermediate
Hops

similar results for static pages. The redirection time has a
proportional growth with the number of intermediate hops,
and its percentage of the total time has a linear growth with
it. In the case of three intermediate hops, its percentage
is as much as 66%, This is surprising, considering that it
means two thirds of the transaction time is spent looking
for the right URL.

4.3 DNS Time

60000 2"'|5 ms

50000 }

40000 A /:\

<
¥ 30000
[y

\\
L1

/
20000 /
/

10000

» > 3] LY ~ - S 3 3 3 o o S
ISR R S g g g
DNS Time in ms 2

Figure 7: Page Distribution of DNS Time

Figure 7 shows the page distribution of DNS time, based
on static pages. We have similar results for dynamic pages.
We find three peaks in the curve. We believe these match
the three levels of name lookup. Specifically, the first peak
represents the DNS requests satisfied by local name servers,
the second peak represents the DNS requests forwarded
to and resolved by root name servers, and the third peak
represents the DNS requests redirected to the second level
name servers. If this conjecture is true, we have the follow-
ing interesting conclusions. First, the difference in the cost
of name translation by the different domain name levels is
large: increasing by multiplicative factors of 20 to 50. Sec-
ond, the percentages of the DNS requests resolved respec-
tively by local name servers, root name servers, and the
second and even upper-level name servers are 24%, 67%,
and 9%.

4.4 Connection Time

Figure 8 shows the page distribution of connection time
based on static pages. We have similar results for dynamic

100000

80000

, /\
P
£ X

T
» > % 5 L T 2 I Y & @ 5 \J S) Y
. » o N Vv * \Q ,‘,Q ‘,ﬂ QQ F\,“h ‘,5“ “E

N
Connection Time in ms

Figure 8: Page Distribution of Connection Time

pages. The flattened part on the right side of the curve
justifies that the 30-second connection time-out we set is
reasonable.

4.5 Request Processing Time

1500

2000 1

1500

e /._///

Average Request
Processing Time inms

200-300 300-400

Document Size in KB

0-100 100-200 400-500

‘- -4 - Static Pages —=—Dynamic Pages |

Figure 9: Request Processing Time vs. Document Size

In Figure 9, the flat curve for request processing time vs.
document size for static pages suggests that for large doc-
uments transmission is begun before the full document is
read from disk. The linear dependence of request process-
ing time with document size for dynamic pages suggests
that dynamic pages are fully constructed before transmis-
sion is begun. The average request processing time of 400-
500KB dynamic pages is 3 times as much as that of 0-
100KB dynamic pages, and 10 times as much as that of
400-500KB static pages. This further explains the differ-
ence between average request processing time for static and
dynamic pages as shown in Figure 5.

4.6 Response Transmission Time and
Throughput

Figure 10 shows that the response transmission time grows
proportionally to the response transmission size. This
agrees with our expectation. However, this figure does not
provide the details for the transmissions whose sizes are
below 100KB. These transmissions are actually the most
common cases as shown in Table 11. Should the conclusion
be different for them?

To answer this question, we measure the response trans-
mission throughput over a wide range of response transmis-
sion sizes. Figure 11 shows that the smallest transmisions

23000

20000

15000

Average Response

Transmission Time in ms

10000 /\/
£000
o
“S “N “Q ‘S QQ ““ QS QQ “h
oy) » = o by o &
e > q)““/ %h{ R & .,5{ @“/ (\@” @{ & N
Response Transmission Size in KB
Figure 10: Response Transmission Time vs. Response

Transmission Size

Response Transmission Size %
Below 2KB 9.9%
2-5KB 14.6%
5-10KB 19.3%
10-20KB 23.9%
20-50KB 24.9%
50-100KB 5.6%
Above 100KB 1.8%

Table 11: Occurences of Response Transmission Sizes in
Percentage

have the best performance, and the common medium-sized
transmissions (5-20KB) have the worst performance. We
speculate that this phenomenon is related to the transmis-
sion mechanisms of TCP. Usually, small pages that involve
only a couple of roundtrips are dominated by the TCP slow
start phase. They do not have enough time to detect and
fully utilize the network capacity. Bigger files, on the other
hand, can get over the slow start, and enter the period in
which the TCP congestion control stablizes the transmis-
sion. This explains the rising half of the curve. To explain
the falling half of the curve, we need to consider two cases.
When a number of packets are sent back to back in a single
roundtrip, there will be an instant peak throughput. For
tiny pages, this is the final throughput, since they can be
contained in the very few packets that are sent together
even in the slow start phase. When packets are sent in
separate and small groups with long intervals in between,
the throughput should be very low. This is the case for
medium pages.

To verify our speculation, we try to charaterize the re-
sponse transmission pattern and see if pages are mostly
sent with a “slow” start, a “fast” start, or a “random”
start. To do this, we define the estimated roundtrip time
to be either half of the connection time or the typical 100ms
cross-country roundtrip time, whichever is smaller. If we
see a packet interval bigger than the estimated roundtrip
time, we determine that the pair of packets are sent in two
different roundtrips. This allows us to distinguish the pack-
ets in the initial burst. Figure 12 shows a uniformly good
adoption of ”slow” start across all types of pages. From

Mbps
™
///

________-r}-.n-’_"l’L—‘LSl

Average Response
Transmission Throughput in

—egg——— 0¥

T T
<=2 2~5 5~10

T
10~20

T T T
20~50 50~100 >100

Response Transmission Size in KB

Figure 11: Response Transmission Throughput vs.

sponse Transmission Size

100% -
90% -

Re-

-

850%

i
.

.

70% .

\
Y

7

60% -

e

L
LI

=

AN\

50% /

/

N

i

Vi

40%

=

-
x&&&t\\;&&s

AN

N

30% - ’

20% -

NI

L
AR

ADHMINI

L

Nk
N

/

N

|

10% -+
0%

55555

1020

20--50 50100 =100

Document Size in KB

[J1 Packet in Initial Burst
E12~5 Packets in Initial Burst

#Z12 Packets in Initial Burst
B >5 Packets in Initial Burst

records of all the successful Web transactions, we have the
following results.

(1) The syntactic requirements are fulfilled by most
servers, but there do exist a number of serious in-
compliances

(2) Persistent connections are widely supported, but its
announcement is sometimes confusing

(3) Conditional GET, the fundamental technique for
Web caching, is not sufficiently supported

(4) Some communication features are frequently ex-
ploited, while others are rarely touched

In the rest of this section, we will present our analysis
only of static pages, because cases are similar for dynamic

pages.

5.1 Syntactic Requirements
Web Server | Apache | Microsoft | Netscape
Count 48 2014 11

Invalid End-of-Line Marker (Total = 2811)

Figure 12: Number of Packets in Initial Burst

this figure, we also find a response transmission problem
in the current practice. About 13% of the pages have only
one packet in their first roundtrip. If the client side enables
delayed-ACK, this single initial packet will not be acknowl-
edged until the client has waited the full 200ms delay for
a second packet, thus causing a 200ms delay in the next
roundtrip.

5 Protocol Compliance

160000 -

140000 4

120000 4

100000 4

80000

Pages

60000 4

40000 4

20000 <

[muTTRIL0 OHTTP1Y |

Figure 13: Use of HTTP/1.1 and HTTP /1.0 in Major Web
Servers

Figure 13 shows the current use of HTTP/1.1 and
HTTP/1.0 in major Web servers. Based on the protocol

Web Server

Apache

Microsoft

Netscape

Count

712

1436

315

Non-absolute URL (Total = 2729)
Table 12: Non-compliance to Syntactic Requirements

Table 12 shows two common incompliances to syntac-
tic requirements. In both HTTP protocols, the end-of-line
marker CRLF is the delimiter of the message header and
the message body. It is also the delimiter of the fields
within the message header and the delimiter of the multi-
parts within the message body. However, some servers use
invalid end-of-line markers such as bare CR and bare LF.
This makes it hard for the client to distinguish the differ-
ent structures in the response message. Another common
syntactic requirement in both HTTP protocols is the use
of an absolute URL in the “location” header field. How-
ever, some servers use a URL that is relative to a local one.
This forces URL bookkeeping by the client to translate the
relative URL into an absolute one. We also encountered
62 pages that had no protocol version number in the mes-
sage header. Due to this, we were unable to predict the
protocol behavior of those servers and take the appropri-
ate actions. The last problem we find is that some servers
do not recognize the requested URL in the absolute URL
format, although this is required for transition to future
protocol versions. We re-crawled 5000 static pages twice,
using relative requested URLs the first time and absolute
requested URLs the second time. It turned out that 504
pages accepted the first but refused the second.

5.2 Performance Features

5.2.1 Persistent Connections

100%

80%

60%

40%

20%

0%

Apache Microsoft Netscape Other

| [IPersistent il Vague EINon-persistent |

Figure 14: Announced Support for Persistent Connections
by HTTP/1.1 Servers

Figure 14 shows the announced support for persis-
tent connections by HTTP/1.1 servers. Apparently, this
displays heterogeneous behaviors across different servers.
Most of Apache servers claim persistent connections, some
of them claim non-persistent connections, and few of them
are vague by not indicating anything. Few of Microsoft-
IIS servers and Netscape-Enterprise servers claim persis-
tent connections, and most of them are vague. Our study
of this phenomenon focuses on the vague class.

Web Server Apache | Microsoft | Netscape
Vague 330 38082 9190
Vague and Alive 287 37970 9073

Table 13: Vague and Alive Connections by HTTP/1.1
Servers

100%

80%

60%

40%

0%

T T T

Apache Microsoft Netscape Other

l [Persistent EINon-persistent ‘

Figure 15: Actual Support for Persistent Connections by
HTTP/1.1 Servers

Table 13 provides the number of pages for which the con-
nections are still alive after the transmission has been com-
pleted, out of the number of all vague pages. This shows
that, in most cases, HTTP/1.1 servers mean “persistent”
by being vague. Therefore, accounting for this, we re-draw
Figure 14 as Figure 15. This time, the figure displays ho-
mogeneous behaviors across different servers. The differ-
ence between the two figures shows that Apache servers
indicate persistent connections explicitly, while Microsoft

10

and Netscape servers indicate persistant connections by not
denying persistance. But these different behaviors when
encountered by the client would be very confusing.
Another interesting observation is that a lot of
HTTP/1.0 servers also claim persistent connections despite
that this feature is formally specified only in HTTP/1.1.

5.2.2 Conditional GET

Page Status Count
Modified 352
Not Cachable 204
Unmodified | Message Header Returned 2532
and Cachable | Full Document Returned 1911

Table 14: Responses for Conditional GET Requests

Our actual crawl always use the unconditional GET
method. However, a problem shows up when we try to up-
date our data using the conditional GET method. Many
servers do not recognize the time validator in the condi-
tional GET message, and return the full document even if
it has not changed. Therefore, we re-crawled 5000 static
pages twice, using the unconditional GET the first time,
and the conditional GET immediately after. Table 14
shows that among the 4443 unmodified and cachable pages
for which only message headers should be returned, 1911
pages were actually returned in full documents.

5.3 Communication Features

Feature % Feature %
Content Type | 99.9% | Content Location | 6%
Date 99.5% Expires 5%
Server 98.5% Vary 1%
Content Length | 62% | Content Language | 0.3%
Last Modified | 58% | Content Encoding | 0.1%
ETag 52% Allow 0.1%
Cache Control | 11% Content MD5 0.0%

Table 15: Usage Percentages of Communication Features

Feature | % in HTTD/1.1 | % in HTTP/1.0
Keep Alive 3% 60%
Pragma 6% 1%
Content Base 0.0% 0.0%

Table 16: Usage Percentages of Legacy Features

Table 15 shows the sorted usage percentages of commu-
nication features. Some features are frequently exploited
for better communication, while others are rarely touched.

6 System Suggestions

Based on our characterizations of the Web, we have the
following suggestions for Internet improvements.

6.1 DNS Negative Caching Revalidation

Danzig [5] showed that DNS negative caching could achieve
only marginal performance improvement on the root DNS
servers. However, we would like to advocate this mecha-
nism for Web transactions with two arguments. First, as
is shown in Section 3, DNS failures account for 50% of the
communication failures. We believe that this number will
steadily increase in the future. This is because with the
tremendous growth of the Web, the maintenance work on
the Web will become more and more challenging, resulting
in more and more invalid host names. Second, as is shown
in Section 4 and Section 3, the average DNS time of success-
ful Web transactions is 359ms for static pages and 233ms
for dynamic pages, while the average time for a DNS fail-
ure to return is 2 seconds. Therefore, if the negative results
are cached in the local name server, not only the amount
of DNS traffic will be greatly reduced, but also on average
the perceived latency of the return of DNS failures will be
much shorter.

6.2 URL Negative Caching on Extensible
Routers

As is shown in Section 3, “Not Found”s account for 90% of
the transaction failures. We believe that this number will
also increase in the future due to the increased difficulty in
maintaining the Web. In the light of DNS negative caching,
we propose the investigation of URL negative caching on
extensible routers to resolve this problem. Specifically, ex-
tensible routers, which understand the HTTP protocols,
can record the unsuccessful URLs to prevent future re-
quests. We believe that this mechanism will save a lot of
network traffic and provide much faster response to invalid
requests.

6.3 Tradeoff of Redirections

In the original design of the HTTP protocol, a redirec-
tion message is used to convey that the document has been
moved. But today, people use redirection messages to im-
plement load balancing by switching the jobs on a busy
server to an idle one, to delay the request processing by
redirecting to the same place, and to gain more hits on
the site by wiring to other sites through local URLs. As
is shown in Section 4, these strategies deteriorate the per-
formance to a large extent. Therefore, if performance is
an important metric in the site design, conservative use of
redirections should be considered.

11

6.4 DPossibility of Reducing Request Pro-
cessing Time

As is shown in Section 4, the linear dependence of request
processing time with document size put large dynamic doc-
uments at great disadvantage. Therefore, if parallelization
of dynamic page construction and transmission is possible,
significant enhancement will be achieved.

6.5 Discreet use of TCP Slow Start on 5-
20K Pages

As is shown in Section 4, the common 5-20K pages have
the lowest response transmission throughput due to the
effect of TCP slow start. Therefore, we suggest that servers
differentiate medium pages from small and large ones when
using the TCP slow start. A “faster” start for medium
pages may achieve much better performance.

6.6 Improved Use of Protocol Perfor-
mance Features

As is shown in Section 5, different servers claim persistent
connections in different ways. This may cause confusion in
protocol communication, compromise the potential benefit
of this performance feature, and cost more implementation
efforts to accomodate the variances. In the same section,
we also point out that the support for conditional GET is
not strong. This will directly limit the applicability of Web
caching. Based on these two problems, we call for better
use of protocol performance features.

7 Related Work

We compare our work and previous efforts in two primary
aspects, the methodology of measurement and the object
of investigation.

The methodologies for Web measurements can be classi-
fied into two categories. The first one conducts a passive
analysis on traces, which can be from Web servers [1] or
local area networks [6]. A deficiency with the passive mea-
surements is the lack of flexibility as they completely rely
on the existing information resources. The second cate-
gory, which includes VerMIC, conducts an active probe by
injecting stimulus into the Web. For example, Keynote Sys-
tems [11] and Krishnamurthy [9] set up a number of testing
agents in a wide area and issue HTTP requests to the des-
ignated Web sites. This fixed set of Web sites limits the
scalability of these studies in comparison to our use of Ver-
MIC. A seeming problem with VerMIC is its location bias
resulting from its single point of initiating requests rather
than having testing agents in several locations. However,
we argue that, assuming the Web is well distributed, its
general characteristics observed at all locations should be
homogeneous.

The Web has been the object of many studies, but only
some aspects of our investigation have been addressed pre-
viously. There have been no previous formal studies of
failures in the communication phases of a Web transac-
tion. The interests of past work in performance have been
focussed on the response transmission phase, specifically
bulk throughput, packet delay, packet loss rate, and band-
width between hosts. No earlier study identifies the empir-
ical parameters of all the individual communication phases
and synthesizes them to produce an intergrated view of the
partition of their impacts, as is done here. Krishnamurthy
[9] presented a systematic analysis of protocol compliance,
and directly motivated the protocol compliance part of our
work. We have made new discoveries in this area, taking
advantage of our extensive and scalable infrastructure.

8 Conclusion

In this paper, we characterize the Web in three aspects:
Web failures, timing performance, and protocol compli-
ance. Our results capture the current status of the Web,
and have implications for system improvements. However,
our study still leaves open a number of interesting ques-
tions. The potential of DNS negative caching and URL
negative caching still requires more investigation. The
feasibility of parallelization of dynamic page construction
and transmission for heterogeneous request processing pro-
grams is still not clear. And some of our observations can’t
be explained. We hope future work will give answers to
them.

References

[1] Martin F. Arlitt and Carey L. Williamson. Web server
workload characterization: The search for invariants.
In Proceeding of the 1996 Conference on Measurement
and Modeling of Computer Systems, pages 126-137,
1996.

Hari Balakrishnan, Mark Stemm, Srinivasan Seshan,
and Randy H. Katz. Analyzing stability in wide-area
network performance. In Proceeding of the 1997 Con-
ference on Measurement and Modeling of Computer
Systems, pages 2-12, 1997.

[2]

[3] Paul Barford and Mark Crovella. Measuring web per-
formance in the wide area. Technical Report BU-CS-
99-004, Boston University, Computer Science Depart-
ment, 1999.

[4] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. Computer

Networks and ISDN Systems, 30(1-7):107-117, 1998.

12

[5]

Peter B. Danzig, Katia Obraczka, and Anant Kumar.
An analysis of wide-area name server traffic. In Pro-
ceeding of the 1992 Conference on Communications,
Architectures and Protocols, pages 281-292, 1992.

Fred Douglis, Anja Feldmann, Balachander Krishna-
murthy, and Jeffrey Mogul. Rate of change and other
metrics: a live study of the world wide web. In Pro-
ceeding of the 1997 USENIX Symposium on Internet
Technologies and Systems, 1997.

J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. RFC 2616 - Hypertext Transfer
Protocol - HTTP/1.1, 1999.

Van Jacobson. Congestion avoidance and control.
In Proceeding of the 1988 Symposium on Communi-
cations, Architectures and Protocols, pages 314-329,
1988.

Balachander Krishnamurthy and Martin Arlitt. PRO-
COW: Protocol compliance on the web—a longitudi-
nal study. In Proceeding of the 2001 USENIX Sympo-
stum on Internet Technologies and Systems, 2001.

Steve Lawrence and C. Lee Giles. Accessibility of in-
formation on the web. Nature, 400:107-109, 1999.

Chris Loosley, Richard L. Gimarc, and Amy C. Spell-
mann. E-commerce response time: A reference model.
In Proceeding of The Computer Measurement Group’s
2000 International Conference, 2000.

Stephen Manley and Margo Seltzer. Web facts and
fantasy. In Proceeding of the 1997 USENIX Sympo-
stum on Internet Technologies and Systems, 1997.

Henrik Frystyk Nielsen, James Gettys, Anselm Baird-
Smith, Eric Prud’hommeaux, Hakon Wium Lie, and
Chris Lilley. Network performance effects of http/1.1,
cssl, and png. In Proceeding of the ACM SIGCOMM
97 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
1997.

Vern Paxson. End-to-end routing behavior in the
internet. IEEE/ACM Transactions on Networking,
5(5):601-615, 1997.

Vern Paxson. End-to-end internet packet dynamics.
IEEE/ACM Transactions on Networking, 7(3):277-
292, 1999.

