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Abstract

Transferring active networking technology from the research arena to everyday deployment on
desktop and edge router nodes, requires a NodeOS design that simultaneously meets three
goals: (1) be embedded within a wide-spread, open source operating system; (2) allow non-
active applications and regular operating system operation to proceed in a regular manner,
unhindered by the active networking component; (3) offer performance competitive with that of
networking stacks of general purpose operating systems. Previous NodeOS systems, Bowman,
Janos, AMP and Scout, only partially addressed these goals. Our contribution lies in the design
and implementation of such a system, a NodeOS within the Linux kernel, and the demonstration
of competitive performance for medium and larger packet sizes. We also illustrate how such a
design easily renders to the deployment of other networking architectures, such as peer—to—peer

networks and extensible routers.

1 Introduction

A general architecture for active networks has evolved over the last few years [7,26]. This ar-
chitecture stipulates a three-layer stack on each active node, depicted in Figure 1. At the lowest
layer, an underlying operating system (NodeOS) multiplexes the node’s communication, memory,
and computational resources among the various packet flows that traverse the node. At the next
layer, one or more execution environments (EE) define a particular programming model for writing
active applications. To date, several EEs have been defined, including ANTS [29,30], PLAN [2,11],
SNAP [16], CANES [6] and ASP [5]. At the topmost layer are the active applications (AA) them-

selves. As evident from Figure 1, although more cumbersome for the user, an AA may access the
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Figure 1: The architecture of an active node: a Node Operating System above the Hardware
exports a NodeOS Interface; Execution Environments define a programming model for Active
Applications. EEs and AAs access the operating systems via the NodeOS Interface. With respect
to the network as a whole, a Management AA and a Management EE are the ones bootstrapped at
systems initialization, and manage AAs and EEs respectively. The NodeOS and the Management
EE necessarily maintain security on the node, while the Management AA as well as EEs and AAs
may implement their own security modules as an option.

NodeOS directly, forgoing EEs. From the application level perspective, such AAs may also be
regarded as single operation EEs.

In the realm of an active network, security risks are heightened at the level of end-to-end active
users, the active router node itself, the EEs and the active code that traverses the network, thereby
necessitating a security component at each of these layers [1,18]. Within an active node, the
NodeOS necessarily maintains security on the OS level, depicted as a mandatory security module.
EEs and AAs may also choose to maintain their own security mechanisms, depicted as optional
security modules.

Lastly, network control, monitoring and management is maintained by a Management EE
(MEE), the first EE started at system initialization, which necessarily loads, manages and co-
ordinates between subsequent EEs in the system, and maintains a mandatory security module.
SENCOMM [12] is a comprehensive example of such a MEE. It is also possible for a Management
AA (MAA) to exist, to similarly manage and coordinate between the AAs running on the node.
If such a MAA acts with a role, or forgoes EEs to control AAs directly accessing the NodeOS, it
would also maintain its own security module.

In order to transfer this powerful and flexible architecture from the research arena to wide scale

everyday deployment, we need to design a NodeOS whose active networking functionality can be



latent within a general purpose OS but, when necessary, implements this richer functionality with-
out compromising performance. Therefore, our NodeOS design should simultaneously meet three
goals: (1) be embedded within a wide-spread, open source operating system; (2) allow non-active
applications and regular operating system operation to proceed in a regular manner, unhindered
by the active networking component; (3) offer performance competitive with that of networking
stacks of general purpose operating systems.

Previous NodeOS systems Bowman [15], Janos [27], AMP [8] and Scout [19], only partially
addressed these goals. Our central contribution lies in the design and implementation of such a
system, a NodeOS within the Linux kernel, and the demonstration of how we maintain performance
comparable to Linux for routing on behalf of active applications. Besides contributing to decoupling
the NodeOS specification from EEs/AAs from above, and the NodeOS implementation from below,
we deliver a system with distinctly established protection boundaries between the AA/EE and
NodeOS space, in terms of memory management, process scheduling and security. The benefits of
our design are furthermore strengthened by the fact that it offers a straightforward mapping to
other networking architectures, such as peer—to—peer networks and extensible routers, which would
in turn lead to their deployment.

The remainder of this paper is organized as follows. The next section describes the design
rationale and the recent key evolution of the NodeOS interface. Section 3 presents our architecture,
which consists of Scout paths, their embedding into the Linux kernel as Silk, connecting to devices
via the partner interface, and the functionality of two key device drivers communicating via the
partner interface: Geni, a driver for Scout paths, and Sockets, a driver for user space. Section 4
describes the NodeOS implementation, how Snow and Sockets were used to interface to NodeOS
API and user space respectively, and a brief description of the structure of the NodeOS module
in Silk. We evaluate our design and implementation in Section 5, and demonstrate how it can be
extended to conform to other networking paradigms in Section 6. Section 7 summarizes the related

work to date and Section 8 concludes the paper.

2 NodeOS Interface

While each EE exports its own interface to the A As, establishing a unified interface to the NodeOS
is an essential element to the Active Networks architecture. We have contributed to the design and
recent evolution of the NodeOS API specification [3], which has markedly influenced our NodeOS
architecture and implementation. We briefly describe the primary abstractions of the NodeOS
interface, outline the two kinds of data structures used, and highlight the recent evolution of the
interface, which rendered our architectural design possible — in terms of the nature of data structure
definitions, the arguments to the API function calls, and the two models for memory allocation

and thread management.



2.1 Abstractions

We define four primary abstractions: thread pools, memory pools, channels and files, encapsulating
the node’s computation, memory, communication and persistent storage, respectively; and a fifth
abstraction, the domain, aggregates control and scheduling for the other four abstractions. Seman-
tically, however, a particular domain does not necessarily subsume the instantiations of each of the
other abstractions, or all of their components. Rather, its relationship to the other abstractions is

summarized in Table 1, where we observe many-to-one, one-to-one and one-to-many mappings.

Domain Memory Pool
Domain —5 Thread Pool
Domain %  Channel
Domain 23  File Name Space

Table 1: Relationship of Domains to the Memory, Thread, Channel and Persistent Storage Abstractions

Channels are further characterized as either incoming, inChans, characterized by a demulti-
plexing key specifying the chain of protocols, a buffer pool for packet queueing, and a function
to handle the packets; or outgoing, outChans, characterized by a processing key specifying a chain
of protocols and the link bandwidth it’s allowed. Moreover, cut-through channels, cutChans, both
receive and transmit packets, and are characterized by the inChan/outChan pair since they can also
be constructed by concatenating the two. Cut-through channels are primarily motivated by the
desire to allow the NodeOS to forward packets without EE or AA involvement.

This abstraction set allows us to view channels and domains as collectively supporting a flow-
centric model: the domain encapsulates the resources that are applied to a flow, while the channel
specifies what packets belong to the flow and what function is to be applied to the flow. The packets
that belong to the flow are specified with a combination of addressing information and demulti-
plexing key, while the function that is to be applied to the flow is specified with a combination of
module names and the handler function.

Other, non-primary abstractions include events which could be scheduled by a domain, a heap
for memory management, packets to encapsulate the data that traverses a channel and the notion
of time which NodeOS provides to EEs and AAs.

2.2 Objects and Specifications

The two major data structures of the API, are specifications, with visible, well-defined fields, and
objects, which are opaque structures. The most important distinction being that, from the per-

spective of the NodeOS, the lifetime of a specification is a single APT call, while the lifetime of an



object is from its explicit creation via an API “create” call, until its explicit destruction, via an
APT “destroy” call.

For example, when creating a domain object via an_domainCreate, its an_Domain argument
is an opaque object, whose memory cannot be reused until the domain is destroyed; whereas its
an_ThreadPoolSpec argument is a specification, whose memory, can be reused immediately after
the an_domainCreate function returns.

As a result of these semantics, objects can be subcomponents of a specification, but not vice
versa. From the EE’s perspective, it must ensure that the specification and any storage it references
is not mutated or reclaimed until the NodeOS API function returns. This enables the EE to pass
the same specification to multiple APTs calls simultaneously.

From the perspective of the NodeOS, when a reference to a specification is passed as a parameter
to a NodeOS API function, the NodeOS may freely access the specification and any storage it
references, however it cannot modify it in any way. This guarantees that when the NodeOS API
function returns, the EE will be able to locate pointers to storage that it placed into the specification.

We have intentionally defined both specifications and objects as pointer types in a uniform way.
The distinction lies not in how they are defined, but rather in where they are defined. Specification
structures need to be defined in the EE, and are therefore explicitly defined in the NodeOS API
document [3]. Object structures, on the other hand, are defined in the NodeOS, since they need to

remain implementation dependent, and as such, opaque to the API.
2.3 Arguments to API Calls

Arguments to API call functions can be standard C types, such as void *, char * pointers to
functions, such as void (*f)(void * arg), objects, such as an_Domain, or specifications, such as
an_ThreadPoolSpec.

Our decision to define both object and specification types as pointers allow us to pass them
both by reference, as pointer type arguments. However, in the case of objects, the EE declares a

pointer type of the form
typedef struct an_GenericObject * an_GenericTypeObject

in order to be able to make API calls with objects as arguments.

This recent change in the NodeOS API design provides three advantages. First, it allows for a
set of portable header files, shared among various EEs. Second, this preserves the opaqueness of
the objects from the EE’s standpoint, thus allowing for different implementations of the NodeOS.
And finally, as certain object types, such as the security credentials, become better understood,
they could be migrated into specifications without changing the API !, thus preserving backward
compatibility with all existing EEs and AAs.

Tt would be a simple matter of adding their structure definitions to the EEs’ common header files.



2.4 Memory and Thread Management

Another key change was introducing implicit and ezplicit models for memory allocation and thread
management. The former, and predictably more common case, delegates both to the NodeOS. The
implicitly allocated objects will be automatically freed by the NodeOS when the corresponding
destroy call is made, and all associated threads are also automatically destroyed.

The second, explicit model, serves the so called “trusted EEs”, where the EEs and NodeOS
are tightly coupled, sharing security and protection boundaries. In this case, the EE may wish
to explicitly manage the memory used by the NodeOS for EE—created objects, and allocate its
threads. It thus passes an appropriately—sized chunk of memory to all object create calls for the
NodeOS to use. When such an explicitly allocated object is destroyed, the NodeOS tears down any
internal state associated with the object and stored in the object memory, but does not free the
memory.

This approach to the NodeOS specification allows for both trusted and untrusted EE imple-

mentations and gives the desired freedom in NodeOS design.
2.5 An API Example

The NodeOS API is specified via a portable set of header files, in C or in Java, consisting of
type definitions for the objects, specifications and its API functions. For example, the header file

includes the following definition for incoming channel creation

an_InChan an_inchanCreate(void * mem, an_Domain d, an_DemuxKey dmxKey, char protspec, char
addrspec, an_NetSpec netspec, an_ChanRecvFunc deliverfunc, void * deliverarg );

as well as for the an_NetSpec specification

typedef struct an_NetSpec {

int maxthreads;
unsigned int bandwidth;
int npbufs;

an_PacketBuffer * pbufs;
} * an_NetSpec_t;

Additionally, EEs (or AAs directly) declare the opaque objects in a separate, non-portable
header file, since they are only fully visible within the NodeOS, such as

typedef struct an_Domain * an_Domain_t;

3 Architecture

Our philosophy is that the provision of a modular networking tool-kit, coupled with good interface

design to different system components, results in easy and efficient development of various network-



ing architectures and services. The development essentially becomes a straightforward translation
of one interface to another.

At the core of our architecture, is the observation that Scout paths [17] closely resemble the en-
capsulation of the primary abstractions of the NodeOS Interface. This observation has inspired the
earlier work of implementing a NodeOS within the Scout stand—alone OS [19]. Moreover, architect-
ing NodeOS around Scout paths results in employing the same mechanism for both the traditional
and active forwarding services, thereby meeting our design goal of integrating the NodeOS interface
in a manner that does not negatively impact our ability to forward non-active packets.

Unlike the Scout NodeOS implementation [19] however, and in line with our goal of employing
a general purpose and wide spread OS, we embed the Scout path abstraction into Linux, known
as “Scout in Linux Kernel” (Silk). This necessarily establishes user/kernel space boundaries, thus
requiring a mechanism to communicate between them, the Scout paths, and other I/O devices.

In what follows, we explain the architecture of each these components and how they fit together

to provide a NodeOS that meets our stated goals.
3.1 NodeOS Abstractions to Scout Paths

Designed to encapsulate I/O flows, a Scout path [17] is a structured system activity that provides
an explicit abstraction for early demultiplexing, early packet dropping when flow queues are full,
resource accounting per flow, explicit flow scheduling, as well as extensibility in adding new protocols
and constructing new network services. Each Scout path consists of a string of protocol modules,
and encapsulates a particular flow of data, such as a single TCP connection.

We can therefore characterize a path by its sequence of modules, a demultiplexing key, and
the resource limits placed on the path (such as queue lengths, CPU cycle share, bandwidth). As
such, this closely maps to the information required by the NodeOS: a domain is a container for
the necessary resources (channels, threads, and memory), while a channel is specified by giving the
desired processing modules and demultiplexing keys. As a consequence, we are able to design a
NodeOS module to perform a simple mapping between Scout path operations to domain, channel,
thread, and memory operations.

To demonstrate this concept, consider Figure 2, which portrays four examples of Scout paths.
Both ends of a path are delineated by the Geni (Generic Interface) module, which abstracts the
device and communication interfaces to the path framework, performs the demultiplexing, and
maintains input and output queues at each end.

The first, non-NodeOS path, corresponds to a single TCP connection going through Ethernet,
IP and TCP processing, respectively. From the bottom, packets arrive via the network interface,
while standard user space applications connect to this path via the socket interface at the top.

Transforming this scenario to one where, say UDP, packets are controlled via the NodeOS Interface,
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Figure 2: Four Scout paths interfacing with user space via Sockets: a TCP path, a NodeOS path
via UDP and two raw video paths, from a camera and onto a framebuffer

we simply chain a NodeOS module that performs the path—-to—NodeOS-Interface functionality
mapping above the UDP module. The result is the NodeOS path shown.

We can also construct raw paths, as depicted in Figure 2, where no protocol modules are chained
to the path, resulting in very fast data forwarding. For example, in one case, packets are generated
via a video camera, arrive on the camera interface, and are sent to the application via the socket
interface. Geni abstracts the interfaces on each end, and maintains queues if buffering is needed.
Likewise, the other raw path portrays an application that sends packets via the socket interface to

be displayed via the framebuffer interface on video screen.
3.2 Silk

Conforming with our first design goal of using an established, open source OS, we chose to design our
NodeOS within the Linux kernel, via Silk [4], which encapsulates the Scout path architecture into
a loadable Linux module. In order to meet our second design goal, requiring that we preserve the
ability to download and run standard non-active applications, Silk provides its own path scheduler
and thread package that coexists with the Linux CPU scheduler.

The major advantage of permitting the coexistence of two OS schedulers, is that it enables the
scheduler that is virtually in control, in our case, Silk, to not only decide what share of the CPU
to assign to Linux, but to also maintain its own suite of schedulers for scheduling Scout paths,
such as fixed priority, Earliest Deadline First (EDF), Weighted Fair Queueing (WFQ), and Best
Effort Real Time (BERT). By choosing an appropriate class of schedulers, such as fixed priority,
we can implement elaborate quality of service (QoS) processing via the NodeOS interface, (such as
providing packet streams with guarantees on the system’s resources, for example CPU, bandwidth,

memory pools, threads and queues), while still servicing best effort packets at line speeds [20].



3.3 Partner Interface

Stand-alone Scout must include a separate driver for every device it uses. Silk on the other hand,
in theory, has access to a plethora of Linux drivers. In practice, however, since Silk is really an
embedded OS in its own right, a separate Scout module would be necessary to interface to every
such driver. As the number of these devices increases, such a design becomes neither efficient nor
scalable.

Instead, we designed a uniform and symmetric interface for intelligent devices, called the partner
interface [28], applicable to all the heterogeneous devices within an OS. The key idea is that rather
than rewrite the Silk drivers for all the Linux interfaces to file systems, devices (such as network
cards), and various user level APIs (such as sockets), thus effectively redoing all the work done
within the general OS for this specific embedded module, we unify all the drivers into the partner
interface, where they all exchange a common data structure, the partner vector, and assume a

symmetric partner modus operandis after OS initialization, as portrayed in Figure 3.
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Figure 3: The execution thread is at partner driver A. Therefore, partner driver A executes its
active partner interface, threreby invoking the passive partner operations of device B.

The partner interface consists of five operations: open, close, push, pull and control; for opening
and closing a device driver, sending and receiving data to and from the driver, and controlling
the data flow, respectively. Partner operations exchange an aggregate internal data structure,
the partner vector, or pvec, which is designed to simultaneously be an aggregate of one or more
of aggregate internal representations of any device driver (such as iovecs, sk_buffs, frame_buftfers,
etc.), and enable data manipulation among different device drivers without memory copying.

Each device driver must provide its side of the partner interface, thus translating its internal
functionality to the partner operations. This allows communication flows established within a
system to uniformly access the networking stack (e.g. via the Geni driver in the case of Scout paths),
where data is forwarded or modified. Alternatively, if neither buffering nor additional processing
is required, raw data can flow directly between a network interface card and an application via

sockets due to the common partner interface.



Two particular partner drivers in Silk, Geni for Scout paths and Sockets for user space, are of

special interest to the design of our NodeOS, and are therefore discussed in more detail below.
3.4 Geni: Scout Parnter Driver

From the partner interface standpoint within Silk, Scout paths are viewed as a device, and Geni,
the driver to that device. Geni is conceptually architected to perform three major functions: (1)
implement the partner operations, thereby translating partner operations to operations on Scout
paths, such as pathCreate, pathDelete, demux, deliver and drop, and vice versa, respectively; (2)
demultiplex the incoming packets, thus mapping network flows onto Scout paths (which the NodeOS
modules maps to channels), and abstracting their forwarding functionality and (3) multiplex packets

from the end of a particular path onto their target output devices, such as a network card or a

socket.
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Figure 4: Scout’s partner interface, Geni, connects Scout paths to network and media devices, file
systems and socket interfaces

A schematic picture of Geni within Silk is given in Figure 4, illustrating how Geni interfaces
Scout paths to interact to the other drivers via the partner interface. Portrayed are the partner
drivers of each interface from Geni’s side and the other device’s side, packet multiplexing and
demultiplexing. The examples shown are network devices, file systems, video and audio devices, as
well as the drivers that bridge the Linux kernel and user space, sockets.

Within Geni, the partner operations open, close, push and pull are roughly mapped to the
Scout operations pathCreate, pathDelete, deliver and dequeue, respectively. As for the partner ct/
operation, Geni translates it to the corresponding control operation on either a path, a particular
Scout module, or on the Silk OS itself. Consequently, for active packets, the ct/ translates to an

operation on the NodeOS module.
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Device partner interfaces are depicted as the small rectangles in Figure 4. Each such dark
rectangle conceptually represents an instantiation of Geni partnered with a particular device driver.
To illustrate this point, consider again the Scout paths depicted in Figure 2. For the TCP and
NodeOS paths, the bottom and top Geni modules are instantiations of Geni partnering with the
network and socket partners, respectively. In the case of raw paths, the bottom and top modules

are instantiations of Geni’s partnering with the video and socket partners, respectively.
3.5 Sockets: User Space Partner Driver

The standard UNIX socket interface bridges user space applications with kernel networking stacks.
In our architecture, Silk hijacks the kernel networking stack from Linux, while still employing the
socket driver (via the partner interface) to communicate with user space.

Like any partner driver, the socket partner driver translates the socket API functions, such as
socket, bind, listen, connect, read, write, select and ioctl, to the five partner interface operations,
and vice versa, also transforming the data from iovecs to pvecs and back. In compliance with our
design goal of allowing non-active applications to run unhindered by the NodeOS functionality,
the socket partner intercepts all Linux application calls that use standard networking protocols via
the socket API, such as calls on the PF_INET family, and passes their processing on to Silk. This
allows unmodified legacy applications to access TCP and UDP paths transparently. For a detailed
description of the socket partner driver, the reader is referred to [28].

To handle active applications on the other hand, Silk provides a new, PF_.SCOUT protocol
family, which is registered with Linux at system initialization. The socket partner interfaces to Scout
paths via Geni, as illustrated in Figure 2. Like the PF_INET family, the PF_SCOUT protocol family
has to be exposed to user space, by the socket driver. It is noteworthy that via this mechanism,
our design extends to experimental and non-standard protocols beyond active networking. All that

is needed is implementing the corresponding protocol as a module chained into a Scout path.

4 Implementation

We assembled all the components of our architecture to implement the NodeOS functionality within
Silk, and expose the NodeOS API to the EEs and AAs in Linux user space. The overall imple-
mentation in its entirety is depicted in Figure 5. In line with our design philosophy, the underlying
mechanism of our NodeOS design is to provide a mapping from the existing system components
and interfaces, to ones we architected and implemented so as to provide the active networking
functionality. Specifically, a mapping from a user space AA or EE to an active path and vice versa

occurs as follows:

11
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Figure 5: Overall NodeOS implementation in Silk: NodeOS API is provided for user space; Snow
translates it to the socket API calls; the Socket partner driver translates that to the partner
operations, which communicate with Geni; Geni sets up and drives the active path in Silk, which
includes a NodeOS module.

To further elaborate on the implementation of the various components of our functional mapping
in user space, Linux kernel to partner devices, and within a Scout path, we walk through an example
of the creation of an incoming channel.

To create an incoming channel, an EE or AA calls the function

an_inchanCreate(mem, domain, dmxKey, protspec, addrspec, netspec, deliverfunc, deliverarg );

Since our architecture stipulates using the UNIX Socket API to cross the user/kernel bound-

ary in Linux (making it consistent with non-NodeOS application calls), we implement a set of
Silk NodeOS Wrappers (Snow) to convert the AA/EE calls from the NodeOS to the Socket APIs,

depicted in Figure 5. Snow translates all NodeOS calls into ioct/ calls on a socket file descrip-

12



tor, of type PF_.SCOUT family, with the corresponding NodeOS API function and its arguments.

Continuing with our example, to create a channel, Snow would invoke

fd = socket (PF_SCOUT, NOT_USED, pathTemplateNo);
ioctl(fd, NODEOS_INCHAN_CREATE, argListPtr );

Linux then converts these socket/ioct! calls at the user level to a sequence of kernel level calls.
Namely, the socket call becomes a, sys_socket call, which invokes sock_create to allocate memory for

the socket structure, and subsequently invoking the create call, as follows:

sys_socket(PF_SCOUT, NOT_USED, pathTemplateNo );
sock_create(PF_SCOUT, NOT_USED, pathTemplateNo, sock_str );

create(sock_str, pathTemplateNo );

The corresponding user space ioct/ call, on the other hand, translates to the invocation of the

following two kernel function calls in sequence

sys_ioctl(7d, NODEOS_INCHAN_CREATE, arglistPtr );
ioctl(inode, file, NODEOS_INCHAN_CREATE, argListPtr );

After the socket/ioct! calls cross the user/kernel boundary in Linux, our socket partner driver
needs to convert the respective Linux kernel function calls to the partner interface, so that it
can then communicate with the corresponding Scout path via Geni. The socket create call is
implemented by setting up a Silk socket structure, with corresponding operations and state. On
the other hand, all joct/ calls are translated to the partner ct/ operation. In our example, the socket

partner driver invokes the following control operation on Geni as its partner

ctl(Geni, NULL, NODEOS_INCHAN_CREATE, arglListPtr, sizeof(arglList) );

For every control operation invoked on the Geni partner driver, Geni decides whether it is a
control operation on a particular path, a module or on the Silk OS itself. In our case, it always
translates to control operations on the NodeOS module. Specifically, Geni converts the above call

to
ctl(NodeOS, INCHAN_CREATE, argListPtr, sizeof(arglList) );

Once a call reaches the NodeOS module, it translates the NodeOS API functionality of setting
up channels, maintaining domains, thread and memory pools into their corresponding operations

on Scout paths. Thus, in our example, finally, the NodeOS module invokes pathCreate with the

appropriate arguments to setup the Scout path.
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5 Evaluation

Our experiments were conducted on 1.5GHz Pentium-4 machines, with a 256K cache, and 512MB
RAM, connected to a 100Mbps network link via one to four 100Mbps Tulip cards. Each data point
represents the average obtained for 10,000 packets, on three distinct runs.

To evaluate the robustness of our NodeOS router, we generated an increasing amount of packets
on the two 100Mbps input ports, causing the router to forward to the other two 100Mbps output
ports, to avoid input/output port contention. We were able to sustain line speed throughputs for
packet sizes from 1 to 1400 bytes of payload, for three types of forwarding paths; (1) IP cut-through
paths, representing the minimal router resources consumed to forward IP packets; (2) UDP cut-
through paths, similar to null proxies, which forward UDP packets through Silk within the kernel;
and (3) UDP active paths, where UDP packets cross into user space, and are processed via the
NodeOS module in Silk. In other words, our router implementation coupled with the prototype
hardware cannot be saturated with 200Mbps link speeds. This illustrates the robustness of our

router and gives us ample resources for the additional functionality that we seek.
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Figure 6: Packet latency for three different forwarding paths (IP cut-through, UDP cut-through
and UDP active paths), with the latency cost of one 100Mbps Ethernet hop.

In our second experiment, we turn to latency measurements of the three aforementioned for-
warding paths, which we depict for varying packet sizes in Figure 6. To put this evaluation in
perspective, we include the latency component for a 100Mbps Ethernet hop per packet (half the
latency cost is attributed to the sender and half to the receiver). We observe that latency linearly

increases with packet size. The UDP cut-through path is only marginally more costly than its
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minimal IP counterpart. The difference between the UDP cut-through and active paths is approx-
imately 15 psec, which quantifies the overhead of two components: crossing into user space and
back from Silk (the bulk of this overhead), and the NodeOS Scout module (minimal portion of
overhead). We also plot the relative cost of forwarding active packets through the router, which

starts at 33% for minimal packet sizes, and gradually drops to 11% for maximum size packets.
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Figure 7: Wavelet dropper application invoking RTP and RTCP paths from user space. Source,
intermediate and sync nodes execute the wavelet encoder, adaptor and decoder, respectively.

To demonstrate how an active application with distinct data and control plane components
makes use of our NodeOS architecture, we setup a third experiment that implements the wavelet
dropper [9] on three machines — the source, intermediate, and sync nodes, representing the wavelet
encoder, transcoder and decoder, respectively, as illustrated in Figure 7. The wavelet transcoder
(or dropper) divides a wavelet encoded video stream into multiple layers. Depending on the level
of congestion experienced at a router, high-frequency packet layers are dropped. Scout’s RTP [24]
protocol module records the number of packets successfully forwarded per flow, while the RTCP [24]
protocol module uses this information to determine the available forwarding rate, and from this,
the cutoff layer for forwarding, which it then sends back to the data forwarder.

We measured the latency for a wavelet video stream, encoded into maximum size Ethernet
packets, from source (camera) to destination (video) via an intermediate transcoder node, with

no network congestion, to be 306usec. To assure this latency is independent of our particular
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implementation of the wavelet algorithm (as well as the EE it would be running on, in practice),
we factored out the time spent in the user space wavelet encoder, transcoder and decoder modules,
thereby only reporting the remaining relevant part of this configuration, including the two network
hops, as well as the three roundtrip crossings from kernel to user space. The network latency
accounted for 236usec, or 77% of this cost, demonstrating that our NodeOS implementation, along
with its ability to process packets at line speeds, was efficient in providing the extra RTP/RTCP

functionality within the kernel, and crossing into user space for setting up the active video streams.

6 Design Extensibility

An important feature of our base design is that apart from providing a NodeOS that meets our
design goals, it enables us to deploy other systems with different networking architectures. One

example is that we can embed a hierarchical extensible router into our framework, as shown in
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Figure 8: Mapping our NodeOS architecture to that of an Extensible Router — active packets can
make use of the entire router hierarchy for data and control flows.

That particular extensible router [25] is comprised of connecting the Pentium, on which we run
Silk, via the PCI bus to a network processor, namely an Intel IXP1200, which in turn consists of
a StrongARM and a set of six MicroEngines executing in parallel. This results in four execution
levels (shown in Figure 8), partitioning the router functionality among the hardware and software

in concert, and corresponds to four distinct classes of paths through the system, from the fastest,
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at the lowest MicroEngine level, to the slowest, crossing into user space. From Silk’s side, the PCI
bus bridging to the IXP is accomplished via a special partner driver, vera.o [14].

Under such a setup, we view the NodeOS as the OS of the distributed extensible router, roughly
spanning the lower three execution levels of Figure 8. Consequently, our design permits the NodeOS
APT abstractions to take advantage of the entire hierarchical OS of the prototype router, with its
ability to process packets at line speeds, despite the added extensibility and functionality.

Another example is employing our base architecture to design a peer—to—peer (P2P) substrate
node, such as Pastry [21], as depicted in Figure 9. Pastry has an asymmetric but simple API,
where it exports two operations, pastrylnit for node joins, and route for routing messages among
the Pastry nodes; and to notify its applications about message delivery and forwarding, as well as a
change in the node’s leafSet status, newleafs. Two such applications are layered on top of Pastry
in Figure 9: PAST [22], a P2P storage management and caching systems, and SCRIBE [23], a P2P

publishing and subscription system.
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Figure 9: Employing our base architecture to design a Pastry P2P Node by providing a layer of
Silk Pastry Wrappers, and a Pastry module for Scout paths

To employ Pastry, only two components in our architecture need to be re-implemented for this
purpose: Silk Pastry Wrappers would replace Snow, and a Pastry module for Scout paths instead of
its NodeOS counterpart. All the other mapping mechanisms such as sockets, the partner interface
and Geni remain intact. We currently have such a system under development.

We intend to further extend the P2P capability of our architecture by embedding a P2P ap-
plication, such as PAST, into the kernel, for the sake of better performance. The architectural
implications of such a project are illustrated in Figure 10. The PAST API consists of three opera-
tions, insert, lookup and reclaim, to store, retrieve and destroy a file at the node, respectively.

To embed the PAST functionality in Silk, two changes need to be made to the components
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Figure 10: Employing our base architecture to design a Past P2P Node by providing a layer of Silk
PAST Wrappers, and a PAST module on top of Pastry for Scout paths

of Figure 9: Silk PAST Wrappers would replace the Silk Pastry layer, and a PAST module for
Scout paths would have to be additionally implemented to interface to its Pastry counterpart. We

envisage this as future work.

7 Related Work

To date, several NodeOS implementations have been reported. Bowman [15], runs on generic UNIX
substrate, and therefore cannot provide fine grained resource control. Additionally, being the first
NodeOS, it was developed in the early days of the specification and provides only a subset of the
interfaces.

Three other NodeOS implementations were discussed and compared in [19]. The first, imple-
mented within stand-alone Scout [17], is the closest to our Silk implementation, where channel
fucntionality is wrapped around Scout paths. However, no protection domains were maintained,
necessitating EEs and AAs to implement their own security. Another shortcoming is that Scout
is not a commonly used OS. Relative to that, the main shortcoming of our NodeOS in Silk is the
overhead of context switching for small packets, as we have seen in Section 5.

Janos [27] is based on the OSKit component base [10], where the NodeOS and EEs shared a
protection domain — running as a kernel on top of hardware or as one user space process on top of a
Unix OS. Such a single address space system cannot guarantee separation between concurrent EEs.
Finally, AMP [8] is layered on top of the MIT exokernel [13], and the NodeOS was implemented

within a user space OS library, with its own memory and thread management. Although this design

18



comparatively taxed system performance, its primary focus on security contributed several issues

to the ongoing design of the NodeOS interface.

8 Conclusions

We set out to design and build a NodeOS which would be embedded within a widely used OS, while
allowing non-active applications and regular OS operation to proceed in a regular manner, unhin-
dered by the active networking component, and at the same time offer performance competitive
with that of networking stacks of general purpose operating systerms.

Our central contribution was to simultaneously satisfy these design goals with our underlying
design mechanism: use established system components (namely Linux, Scout paths and Linux
device drivers) with well known interfaces (such as sockets and the module interface to Scout
paths), and construct mappings between those and the APIs and operations we designed for NodeOS
(namely the NodeOS API, Snow and the Partner Interface), thereby delivering kernel-level NodeOS
functionality from user space.

Additionally, we have contributed to decoupling the NodeOS specification from EEs/AAs from
above, and the NodeOS implementation from below, thereby delivering a portable set of header
files, allowing EE/AA/NodeOS modifications in any direction. this resulted in the additional
contribution of delivering a system with distinctly established protection boundaries between the
AA/EE and NodeOS space, in terms of memory management, process scheduling and security.

We demonstrated that our system is robust, sustaining line speed bandwidth for cut-through and
active flows that cross into user space, and measured that the relative overhead cost of forwarding
active paths within our NodeOS is around 11% for maximal size packets. Forwarding latencies were
shown to scale linearly with packet sizes for cut-through and active paths, ranging from 40usec to
145usec for minimal and maximum sized active packets, respectively. A prototype application that
uses the NodeOS API, the wavelet dropper, exhibited regular and expectable performance.

An additional contribution is the extensibility of our architecture. We demonstrate how to use
our base architecture to deploy a P2P system or an extensible router by only changing the user

space API from above, or extending the NodeOS to a hierarchical system from below, respectively.
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