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Abstract

Important programming language features require specific memory-management tech-

niques. General recursion requires the automatic stack allocation of local variables.

Higher-order functions and object-oriented techniques require sophisticated services,

such as garbage collection, to manage memory. When memory is a scare resource it

is important for the programmer to explicitly control memory management. Unfor-

tunately, a programmer can accidentally destroy important program properties and

violate the integrity of the program through memory management related errors.

By using modern type systems, we can expose low-level memory management

services to programmers and type-preserving compilers in a way that still guarantees

the integrity of the program. We can build more sophisticated memory management

services by using these low-level services in a way that provides useful guarantees

about program integrity.

I combine existing type systems with several standard type-based compilation

techniques to write strongly typed programs that include a function that acts as a

tracing garbage collector for the program. Since the garbage collector is an explicit

function, there is no need to provide a trusted garbage collector as a runtime service to

manage memory. Since the language is strongly typed, the standard type soundness

guarantee “Well typed programs do not go wrong” is extended to include the collector,

making the garbage collector an untrusted piece of code. This is a desirable property

for both Java and proof-carrying code systems.

I describe the technique in detail and report performance measurements for a

prototype system as well as present the proofs of type soundness for important subsets

of our system, and describe how to use types as a mechanism to manage memory in

explicit and safe ways.
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Chapter 1

Introduction

Techniques for managing memory have improved as programming languages have

evolved. Languages such as Fortran, which appeared as early as 1952, initially had

no support for dynamic allocation primitives. All of the memory used by a program

was accounted for and allocated statically before a program was run. This policy was

sufficient for numerical programs, but too restrictive in general.

The next major advance in memory management was found in Algol’s “pure

stack discipline,” which allowed the programmer to acquire memory at runtime for

temporary variables and reuse the space when the variables were no longer needed.

The pure stack discipline allowed for the development of structured programming

methodologies and block-structured languages as well as recursion. However, the

pure stack model is too limiting for some programs.

One of the most important contributions of Lisp was the introduction of the

garbage collector, which reclaimed unused “garbage” memory automatically without

any programmer intervention. The first garbage collection technique for Lisp was de-

scribed by McCarthy in 1960 [McC60]. Garbage collected systems allowed languages

to support first-class functions and object-oriented methodologies. More expressive

1
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memory management techniques allow for better programming language abstractions.

The focus of this work is how to apply modern type systems to provide similar

safe memory management facilities in a flexible way. Cardelli informally defines a

safe language as a language where no untrapped errors occur [Tuc97]. Lisp and Algol

are safe languages, while Fortran is not.

I will use safe mobile code systems as the motivating example for my work. How-

ever, this work has many applications beyond safe mobile code. The main result of

my work is a technique for programming a traditional stop-and-copy garbage collector

in a type-safe programming language. To do so efficiently requires the development of

several other safe memory-management techniques. I will demonstrate how modern

type systems make memory-management techniques that have been too dangerous to

use in safe languages explicit and safe.

1.1 Background

Cardelli informally defines a type to be an upper bound of the range of values a

program variable may assume during program execution [Tuc97]. Languages where

one can assign nontrivial bounds to a variable are referred to as typed languages. By

Cardelli’s definitions Fortran and Algol are typed languages. Lisp however is consid-

ered “untyped” or more properly unityped, since variables in Lisp can be bounded

by a single universal type which makes the bound trivial. Lisp is a safe language.

It achieves safety by dynamically verifying operations to prevent any occurrence of

untrapped errors. Algol is also safe. Algol rules out many but not all errors through

the use of a type system. Informally, type systems provide a set of rules to apply to

a program that rule out certain errors for any possible program execution. Type-safe

languages are safe programming languages that use type systems to rule out many
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errors.

Memory management errors. Memory-management errors can be benign, lead

to abnormal program termination, or lead to silent data corruption. Memory leaks

occur when one is unable to reclaim storage which is no longer needed. Dangling ref-

erences occur when certain memory cells which may still be referenced by an indirect

address are deallocated. Dangling references are not a problem if the program never

needs to inspect the memory cells referenced, but in practice most dangling refer-

ences will eventually lead to either an abnormal program error or data corruption.

If after memory cells are deallocated they are reused later, a dangling reference can

create a situation where the program is attempting to store two distinct values of

different type in the same space. This will eventually lead to data corruption, which

will silently cause the program to produce erroneous results. Many languages, such

as C and Pascal, that allow programmers to create dangling references through the

use of primitives such as free or dispose are unsafe because they allow for silent

data corruption.

Previous approaches to safe memory management. Languages that provide

safe memory management have relied on a set of ad-hoc rules associated with the

syntax of the programming language to guarantee the safe management of memory.

To achieve safe stack allocation in Algol, an assignment to a reference variable must

be the location of a variable whose scope is the same scope or an enclosing scope

of the variable being assigned to. The scope of a variable defines where it is valid

to textually refer to a defined variable. Scopes are often nested so that one scope

may enclose another. Algol guarantees that all references to locations refer to values

earlier in the stack of allocated variables.
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These ad-hoc rules are designed to enforce one particular policy for managing

the memory. In the case of Algol, the restrictions associate the lifetime of variables

with their scope. The lifetime of a variable or value is the duration of time during

the execution of a program when memory must be reserved to hold the value or the

variable. Later we will show one mechanism using type systems that associates the

lifetimes of variables with something independent of traditional variable scope. Using

another type system, we will show how other values with nested lifetimes can have

their memory managed in a stack-like way.

The pure stack model of Algol is too weak to support abstractions such as first-

class functions or object-oriented programming, because using the first-class functions

or objects typically requires the creation of values whose lifetime escape the scope of

the variables that defined them. Typically, Algol like languages may support these

features by providing programmers with a way of placing values whose storage escapes

the scope of their variables in a separately managed part of memory called the heap.

Memory allocated on the heap is usually managed explicitly by the programmer.

The programmer must explicitly place values whose lifetime escapes the scope of

their variables on the heap, and explicitly reclaim memory from the heap when it is

no longer in use. This is a difficult task to do correctly. Programming with explicit

managment of the heap memory often results in programs that use more memory

than necessary or programs which have subtle but catastrophic programming errors

related to dangling references.

Lisp was one of the first languages to provide these abstractions in a convenient

way through the use of a garbage collector, which managed the memory on the heap

automatically. A garbage collector automatically reclaims storage in a way that guar-

antees there are no dangling references. The absence of dangling references is impor-

tant to guarantee the safety of a programming language. Garbage collectors safely
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deallocate memory, by conservatively approximating the set of objects a program

may need to properly function. Garbage collectors still may retain objects which the

program may never reference in the future, leading to memory leaks.

Semantic garbage. Garbage collectors compute the set of all values that are reach-

able by a program at a particular point during the execution of the program. A value

is reachable if from the current point of execution there exists some sequence of

dereference operations that the program could perform that would access the value.

Just because there is a sequence of dereferences that may lead to a value does not

mean that the program will ever perform that particular set of dereferences. Being

reachable is a conservative approximation of the stronger property of being live.

A value is live during a particular point of program execution if the program will

access that value at some point in the future execution of the program. We will call

values that are not live semantic garbage. we will refer to values that are unreachable

simply as garbage. In the literature the word garbage almost always means unreach-

able and garbage collection refers to the process of reclaiming unreachable values.

The distinction between semantic garbage and ordinary garbage makes it clear that

there are some reachable values which are semantically garbage. Determining whether

an object is semantic garbage or live is an undecidable problem, since we must be

able to predict the future behavior of an arbitrary program. Therefore, all automatic

memory management schemes have situations where there is some semantic garbage

that is not reclaimed [MFH95]. This unreclaimed memory is leaked memory, which

is a benign memory management error.

In certain systems leaks can make garbage collectors unusable [Wen90]. In prac-

tice, however, leaks are not common enough to make garbage collectors unusable

[ADM98]. Leaks are not the only problem with garbage collectors. Garbage collec-
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tors either restrict certain compiler optimizations [Boe96] or require the optimizer

to provide them with a significant amount of extra information [DMH92]. Also the

collector can require a running program to incur significant extra overhead in order

to support the collector [TD94]. Collectors are difficult to use in highly concurrent

and time-sensitive systems. Until recently, however, garbage collection seemed to be

the only practical method of managing memory for safe programming languages with

first-class functions or objects.

Managing memory with types. Tofte and Talpin [TT94] describe a system that

uses types to prevent memory management errors in a language that supports first-

class functions. The system statically segregates objects into “regions” based on

automatic type inference. The type of the object tracks which region each object has

been assigned to. One can statically approximate which regions a program may need

to access. The region system also guarantees that the lifetimes of regions are nested, so

they can be managed in a stack fashion. Region-based type system have effectively

handled nontrivial ML programs [MLK] and have been adapted for programming

languages such as Java [Yat99]. Region systems are not the only mechanism that

uses types to manage memory. Linear type systems provide another approach [Wad90,

LM92, Bak92a, Abr93, Bak93], by guaranteeing that objects are uniquely referenced.

Some garbage collectors use extra type information to reclaim reachable values that

are semantic garbage [GG92].

In theory, both region systems and garbage collectors leak memory. However,

garbage collectors and region type systems leak memory under different situations,

which are sufficiently disjoint that it makes sense to combine the two systems to

achieve a system where more memory is reclaimed [Hal99]. One significant problem

with region systems is that it is hard for a programmer to determine if a given program
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will leak memory. Small program transformations can often lead to drastic changes

in asymptotic memory consumption.

Garbage collectors are not immune to similar problems but programmers who use

garbage collectors typically have an easier time reasoning about what memory is re-

tained. One, can also formalize under what rules certain transformations preserve the

asymptotic memory consumption of a program being garbage collected [App92a, pp.

133–145]. Garbage collectors provide programmers with a very simple programming

model, which has over the years proven acceptable. However, region systems also

have their merits despite their more complex programming model.

The most attractive feature of region-based systems is that their memory man-

agement primitives are simple when compared to a garbage collector. The simplicity

of these primitives is important. Simple primitives are easy to implement and verify

correct. This is especially important in systems where there should be a minimum

amount of trusted code, such as safe mobile-code systems.

1.2 Safe Mobile Code

Safe mobile-code systems allow programs to be distributed and run on remote host

machines [TSS+97, FGS96]. What makes mobile-code systems different from tradi-

tional distributed systems is that host machines in mobile-code systems communicate

by sending and receiving programs to execute from other host machines in the system.

Hosts in more traditional distributed systems communicate with a set of fixed data

messages which have a predetermined meaning and effect.

In mobile-code systems the host machines must be willing to run programs from

authors who are unknown or untrusted. Since the authors are unknown the host

machine cannot simply accept programs based on a known set of trusted authors.
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signature CHECKED_FS =

sig

exception InvalidHandle

val openFile : string → int

(* The following may abort with InvalidHandle *)

val read : int → string

val write : int → string → unit

val close : int → unit

end

Figure 1.1: An interface that relies on dynamic checking.

The host machine must guarantee that the programs it runs do not behave in a way

that violate the host’s notion of security [Kat97].

To achieve this a host may dynamically monitor the behavior of the program and

abort the program if it attempts to violate security. While dynamic checks are suffi-

cient, they can limit the performance of the overall system. Host systems must export

a set of primitives to the running program. Systems that rely on dynamic checks pro-

vide inexpressive and complex interfaces, since the interfaces must be designed so

that a malicious or buggy program cannot corrupt the host system.

Problems with dynamic checking. Consider the interface exported to a mobile

program to access a host’s file system. When a program requests the host open a

file, the host system typically returns a file handle to the program after verifying

that the program is allowed to access the file. In systems that use dynamic checking,

file handles are often represented as plain integers that are an index in a table that

contains private information, such as a cache or buffer for the file. The table is made

inaccessible to the program through hardware protection mechanisms. The situation

described so far is typical of a Unix environment. The interface exported by the host
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system can be summarize with the SML [Ull98] signature in Figure 1.1.

The file handle returned by the openFile function is an integer. All functions

that take the file handle as an argument cannot be sure that the file handle passed

to them was not “forged”. They cannot be sure whether the file handle is a value

that was actually returned by a valid request, or is an arbitrary integer created by

a malicious program attempting to perform an unauthorized operation. In such a

system each file operation must dynamically verify that the handle is valid and that

the request should be allowed to occur; if the handle is invalid the operation will fail

and signal an error by raising an exception. In a language without proper support

for exceptions our interface would be even more cluttered.

Each operation must check that the file handle is a valid index into the table of pri-

vate information. Knowing that a given integer is a valid index into the host’s private

table is not sufficient if the host wishes to execute more than one program at a time.

If several programs run concurrently, the host must keep a separate private table for

each program. If the host uses a single global table, a program could attempt to gain

access to the files of another program by simply trying to guess a valid index. Since

we now are maintaining separate private tables for each program, it becomes more

complex for cooperating programs to share open file handles since a file handle must

always be interpreted as an index relative to a particular program’s private table.

Capability based systems ameliorate some of these problems, by generating handles

to objects that are impossible or difficult to forge via hardware mechanisms or cryp-

tographic techniques [Lev84]. However, these systems are just a unified framework

for dynamic checking and are not without their own problems [Gon89].

Using data-encapsulation. Advocates of an object-oriented approach may point

out that for the example we have presented there is a natural solution involving data
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signature OBJECT_FS =

sig

(* object type *)

datatype obj = Obj of {read: unit → string,

write: string → unit,

close: unit → unit}
val openFile : string → obj

end

structure ObjectFS :> OBJECT_FS =

struct

fun openFile s = let

val fhandle = UnChecked.openFile s (* private to object *)

fun read () = UnChecked.read fhandle

fun write s = UnChecked.write fhandle s

fun close () = UnChecked.close fhandle

in {read=read,write=write,close=close}
end

end

Figure 1.2: An interface that uses data-encapsulation
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signature OBJECT_FS =

sig

(* object type *)

datatype obj = Obj of {read: unit → string,

write: string → unit,

close: unit → unit,

copy: obj → unit}
val openFile : string → obj

end

structure ObjectFS :> OBJECT_FS =

struct

datatype obj = ...

fun openFile s = let

val fhandle = UnChecked.openFile s

...

fun copy (Obj obj) = UnChecked.copy (fhandle, (* ?? *))

in Obj {read=read,write=write,close=close,copy=copy}
end

end

Figure 1.3: Failure of data-encapsulation.

encapsulation that avoids the problems of dynamic checking. Figure 1.2 expresses this

solution using higher-order functions rather than objects, but the idea is the same.

Although we can describe this approach in a typed framework, the notion of data

encapsulation is independent of any associated types and relies on lexical scoping.

The previously exposed file handle is now kept as hidden state, which only certain

functions may access. Our openFile function now returns a record of functions that

have exclusive private access to the state.

Data encapsulation and binary methods. Consider extending our interface

with a special function that reads one open file and writes the entire contents to

a different file. Such a function could be implemented using our existing read and

write primitives, but we will assume that for this operation a nontrivial performance
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improvement can be achieved by implementing the function at a lower level. For

example, if each open file has a buffer associated with it, we can use the read buffer of

one file as the write buffer of another. This avoids the need to allocate an extra buffer,

and avoids the need to copy data from one buffer into another. In a multi-threaded

environment we may want to guarantee that our primitive copy function is an atomic

operation, a property that cannot be achieved by using the existing primitives.

Figure 1.3 is an unsuccessful attempt at adding a copy method to our abstract

object. The body of the copy function cannot access the private data held in the

closure passed to it, doing so would violate the principles of lexical scope and data

encapsulation.

We simply cannot write such a function using strict data-encapsulation techniques.

Our copy function must inspect its own private data and the private data of another

object simultaneously. In our encoding using higher-order function, this is equivalent

to examining a value captured by a closure. Faced with this sort of problem, various

object-oriented languages relax the strict data-encapsulation rules, and include no-

tions of “friend functions”, “package scope”, “protected scope”, and “multi-methods”.

Using abstract types and type-checking. With the proper use of abstract types

we can avoid all of the problems mentioned so far. Consider Figure 1.4 where we have

introduced a new abstract type for file handles (fh). We can use our type-checker to

verify that our program never forges a file handle, and that the only values passed

to file operations are values returned from the openFile function [ZGM99]. If the

program fails to typecheck we refuse to run it.

Now when a file operation is requested we can carry out the operation without the

need to verify the validity of the handle. This lets us pass to our client program the

actual information needed to access a file, rather than indirecting through a private
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signature ABSTRACT_FS =

sig

type fh (* new abstract type *)

val openFile : string → fh

val read : fh → string

val write : fh → string → unit

val close : fh → unit

val copy : fh → fh → unit

end

structure AbstactFS :> ABSTRACT_FS =

struct

type fh = UnChecked.fh (* exported abstractly *)

fun openFile s = UnChecked.openFile s

fun read x = UnChecked.read x

fun write x s = UnChecked.write x s

fun close x = UnChecked.close x

fun copy (x,y) = UnChecked.copy (x,y)

end

Figure 1.4: An interface that uses abstract types
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table. Even when the extra indirection is useful for other reasons we can now avoid

the need for duplicating tables in the case of concurrently running programs. This

makes the implementation of sharing open files easier, since we can now interpret a

file handle with respect to one global table of open files.

We do not claim that all problems can be solved with type checking, but that type

checking and other static verification techniques give systems designers important

flexibilities not found in other approaches. Dynamic checking, data encapsulation

and abstract types are not mutually exclusive ideas. All of these ideas complement

each other. Systems must exploit all three to obtain good designs. For example Java

relies on all three approaches to guarantee the integrity of the host.

Although Java is a type-safe language, it requires dynamic checks and data-

encapsulation techniques to implement its security policy [Gos95]. Operations to

create file handles call into a library function referred to as the “Security Manager”

which checks if the current security policy allows the program to access a particular

file. If the Security Manager allows this to occur client programs receive a file handle

which they can directly access. Because of Java’s type safety guarantee that no file

handles can be forged future file access requests do not need to consult the Security

Manager. Avoiding the need to consult the Security Manager for every single file

operations such as a read or write requests allows the Security Manager to implement

very rich and complex policies for file access.

As well as relying on the standard data-encapsulation techniques seen in other

object-oriented languages Java’s security model controls the untrusted programs ac-

cess to library functions via “Class Loaders”. Class Loaders determine what library

functions are available to an untrusted program and define the binding of globally

visible names to actual values. Doing so allows the system to control how programs

share values.
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Figure 1.5: Reduced trusted computing base of Proof Carraying Code.

Other safety architectures. Systems such as Proof Carrying Code [Nec97] (PCC)

provide static verifiers that do not rely on traditional type checking mechanisms.

PCC systems verify properties about low-level optimized machine code by verifying

proofs. One advantage of the PCC approach, in comparison to the approach taken by

traditional Java systems, is that they have a smaller trusted computing base (TCB),

because they reason about optimized native machine code directly and not properties

of high-level bytecode.

Figure 1.5 compares the different verification architectures used by an idealized

PCC system and traditional Java systems. For all practical purposes, bytecode is

equivalent to the original source code. Given a bytecode program one must choose
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between interpreting the bytecode, which can be an order of magnitude slower, or

compiling the bytecode to machine code. Most systems compile the bytecode to

native machine code with a “just in time” compiler. However, since the Java bytecode

verifier inspects only the bytecode and not the resulting machine code, we must trust

that the compiler is correct. If the compiler incorrectly compiles the verified source

code, the fact the code has been verified is irrelevant. The CPU is not running the

verified source code, but incorrect output from a buggy compiler.

The approach advocated by PCC is to compile the source program with a certi-

fying compiler which produces a machine code executable and a certificate of safety.

The certificate is a machine checkable proof generated by the compiler that explains

to the verifier why the resulting machine code program is safe to run. Since what is

run on the CPU is what has been verified, the TCB only contains the verification in-

frastructure and the CPU which we assume executes our machine code in a way that

is consistent with the assumptions used by the safety proof. However, our program

must be provided access to some primitive functions to interact with our host. So the

TCB also includes the implementation of these primitives.

1.3 Components of the TCB

Figure 1.5 omits a few important details. Programs after being compiled by the

compiler or verified in a PCC system are not executed on a bare CPU. The running

program is linked with a runtime system that provides the implementation of the

various primitives that the host system provides to the running program. These

primitives include input and output services and interfaces for managing the memory

of the running program through the use of a garbage collector. The runtime primitives

and garbage collector are part of the TCB. Both Java and PCC verification approaches
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Lines of Source Code
Trusted Compilers Certifying Compilers

Java2 1.3 SDK Kaffe Bullet Ginseng FPCC
Classic Hotspot 2.1 1.0.6 Train (estimated)

Optimizing no yes no yes yes yes
Basic TCB 38,000 205,000 38,000 116,000 25,000 ≈ 3,000
Primitives 9,000 9,000 7,000 8,000 6,000 ≈ 1,000
Collector 7,000 16,000 2,000 11,000 ≈ 3,000 ≈ 3,000

Total 54,000 230,000 47,000 135,000 ≈ 34,000 ≈ 7,000

Percent of Total
Basic TCB 70% 89% 81% 86% ≈ 74% ≈ 43%
Primitives 17% 4% 15% 6% ≈ 18% ≈ 4%
Collector 13% 7% 4% 8% ≈ 8% ≈ 43%

Table 1.1: Comparison of the TCB size of various systems.

implicitly assume that the primitives of the system and garbage collector are correct

or at least well behaved. Table 1.1 summarizes the TCB sizes for various systems. All

of the systems above translate Java bytecode to native machine code. Some systems

rely on trusted compilers and bytecode verifiers1, while others use certifying compilers

and a PCC style verification architecture.

The Java 1.3 Software Development Kit can support several different compilers.

The “classic” compiler is a nonoptimizing compiler used by older releases of the SDK.

The Hotspot compiler is an alternative optimizing compiler that can be plugged into

the Java 1.3 SDK. Hotspot provides a more efficient garbage collector, but shares

the implementations of basic primitives used by the classic compiler. The “Bullet

Train” [Bul] system also is an optimizing compiler, while “Kaffe” [Kaf] is a less ag-

gressive compiler similar to the classic compiler. “Ginseng” [CLN+00] is an optimizing

compiler that produces certified machine code. The quality of code produced by Gin-

seng should be better than the code produced by the other nonoptimizing compilers.

1Kaffe lacks an implementation of a bytecode verifier. Adding one would increase the size of its

TCB by roughly another 4,000 lines.
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Ginseng can perform optimizations based on dataflow analysis and provide a proof

that such optimizations are safe. The FPCC system represents the best estimates for

a system based on the ideas of “Foundational Proof-carrying Code” [AF00, App01]

system that attempts to aggressively minimize the size of the TCB by using higher-

order logic and other semantic techniques. The FPCC, however, does not currently

exist as a usable system, so we provide the best estimates of code size based on an

incomplete prototype system.

The numbers in Table 1.1 represent the number of lines of source code for various

disjoint portions of the TCB, most of which is written in C or C++. Most of the

systems include a few routines written in assembly. Larger parts of the TCB of

Ginseng and FPCC include a set of axioms that define the logic used in the checking

proofs. The logics are specified using the Edinburgh Logical Framework (LF) [PS99].

For purposes of comparison, we consider one line of code written in C, C++, as-

sembly or LF to all be equivalent. In the table the category “Basic TCB” refers to all

the code associated with the JIT compiler and verifier, or the verifier by itself in the

case of Ginseng and FPCC. The “Primitives” category refers to the code needed to

implement the basic Object class and support the Java Native Interface [Lia99]. The

category “Collector” refers to code related to memory management. All of these num-

bers are based on a categorization of the source files without a detailed understanding

of all the various systems, so they should be viewed as rough approximations.

Line counts and total audit cost. We would like to understand how much effort

must be invested to be assured that a given system is indeed secure. Automated

tools can help simplify and factor the problem, but in the end we must finally rely

on human judgment [Tho84]. Estimating how many person hours must be spent to

audit a system may seem like an impossible task. However, every line of code in the
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system must be inspected. Therefore, all other things equal, a system with more lines

of code will take more time to verify than a system with fewer lines of code. Are all

lines of code are created equal? Examining a line of assembly code and understanding

what effect it has may take drastically more effort than the effort require to examine

a line of code written in C.

Many studies of programmer productivity demonstrate that programmers on av-

erage produce and debug a constant number of lines of code per day regardless of pro-

gramming language [Bro75]. This suggests that the ability of humans to reason about

programs is relatively language independent. If we assume that the effort involved

in auditing a program is proportional to the effort put into writing it and assume

that programmers develop lines of code at the same rate regardless of programming

language, we can safely mix line counts from different programming languages. Al-

though we are implicitly trusting the C and C++ compilers as well as the assembler

and linker [Tho84], we do not include them in the audit cost.

Observations about audit cost. Ginseng’s TCB is roughly half the size of the

nonoptimizing Java systems such as the Sun classic compiler and Kaffe. For systems

where the performance of these simple compilers is sufficient, the effort in carefully

auditing a standard compiler may not be any more difficult than auditing the verifi-

cation infrastructure of a system like Ginseng. The FPCC approach may significantly

reduce this auditing effort. However, in the case where we wish to have high perfor-

mance with strong safety guarantees, the certifying compiler approach has a clear

advantage to the approach of using a trusted compiler. We can see that trusted op-

timizing compilers balloon the TCB. Systems using certifying compilers can provide

optimizing compilers with an auditing effort roughly equivalent to or significantly less

than the auditing a nonoptimizing system. The number of lines needed to implement
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the primitives for systems with trusted compilers are all roughly the same.

Trusted garbage collectors. For systems that use trusted compilers, the garbage

collector is a small but significant percentage of the TCB. For systems that use cer-

tifying compilers, the garbage collectors are equally a small percentage. However, as

we see, optimizing compilers need more complex collectors. So as we add more opti-

mizations to our collector, it becomes a larger portion of the TCB. For an aggressive

FPCC-based system even a simple collector ends up being almost half the TCB. As

new techniques such as FPCC reduce the TCB in other ways, the collector becomes

a significant source of complexity.

1.4 Type-preserving Garbage Collectors

The main result of this dissertation is an approach to remove garbage collectors from

the TCB of safe mobile code systems. Using ideas from existing type systems we will

construct a type-preserving garbage collector. We can guarantee that the collector

preserves the types of the running program’s data structures. Traditionally a collector

is a primitive runtime service, outside the model of the programming language. The

type safety of running programs depends on the assumption that the collector does

not violate any program invariants. However, constructing proofs of correctness for

actual systems require a great deal of work. Our type-preservation guarantee does

not guarantee correctness but makes us more confident that our system is likely to

be correct, even when security is not our primary concern.

Proving correctness. Garbage collectors are typically written in low-level unsafe

languages such as C. Most garbage-collector algorithms discuss details in terms of

low-level bit and pointer manipulation operations. Morrisett, Felleisen et al. [MFH95]
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present a high-level semantics for garbage collection algorithms and prove the correct-

ness of various well known algorithms. However, in their semantics, garbage collection

is still viewed as an abstract operation that lies outside of the underlying language

being garbage collected. This approach allows them to discuss the purely algorithmic

issues without revealing the underlying implementation details.

We are only aware of one attempt to formally verify the correctness of a garbage

collected system. Swarup et al. [GMR+92] first specify the behavior of an determin-

istic abstract machine for Scheme, called the Microcoded Stored Byte Code Machine

(MSBCM). They also define the semantics for another abstract machine called the

Garbage-collected Stored Byte Code Machine (GSBCM). Next they define a relation

(') between the two machines. Their main theorem is that given initial related states

the two machines produce related results. They define a partial function on the states

of the GSBCM called GC which has the following property

SGSBCM ' SMSBCM

GC(SGSBCM) ' SMSBCM

That is the relation ' is preserved by the GC function. The GC function is a

Cheney-style [Che70] BFS copying collector specified in roughly 120 lines of Pre-

Scheme [RFG+92]. The main lemma that establishes the preservation of the state

correspondence requires eight pages of formal mathematics and English. The whole

proof of the correspondence between the MSBCM and GSBCM is twenty-six pages

of formal mathematics.

Nettles [Net92] provides an informal proof of correctness for an abstract BFS

Cheney style collector. He describes an abstract correctness criterion for a garbage
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collector using the Larch Shared Language (LSL) [GH93] which is a machine check-

able specification language. His specification of a correctness criterion is thirteen

pages of LSL specification. A function that meets the specification is guaranteed to

have copied all reachable data memory from a root set into a new memory, in such

a way that the copy is isomorphic to the original data. Nettles then provides an in-

formal proof that an eighty line collector, written in C, meets the specification. The

informal proof occupies eight pages of text. Nettles’s result guarantees only that the

collector will properly copy all data reachable from a root set. To establish correct-

ness of an entire system, we must be assured that the root set passed to the collector

is the right set of roots. Also, we are implicitly assuming that the program whose

memory is being garbage-collected can tolerate the fact that the collector has moved

objects to new locations. The results of Swarup et al. explicitly establish both these

facts for their system.

As we can see, establishing the correctness of very simple garbage collectors re-

quires a good deal of nontrivial effort. In both cases the proofs provided are not

directly machine-checkable. Building machine checkable proofs for a higher level of

assurance is likely to be a serious undertaking even for the small systems above. For

realistic systems that are at least two orders of magnitude bigger than the two toy

collectors described above, we believe than even informal verification will be imprac-

tical.

There are many implicit invariants that must be maintained for the garbage col-

lector to properly function. So even if we are willing to trust that a particular garbage

collector is correctly implemented, we should be suspicious whether all the implicit

invariants the garbage collector relies on are being observed by our program. Even

conservative garbage collectors, which have relatively simple interfaces, require that

subtle invariants must be preserved [Boe96].
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One attractive feature of region-based type systems is their simple runtime prim-

itives. Ideally, we would like to use a region-based type system to manage memory

in PCC systems [CWM99]. There already has been some progress made in this di-

rection. However, regions by themselves have not proven to be a particularly efficient

way to manage the same class of programs that garbage collectors currently do and

have other undesirable features when compared to garbage collectors. Can we have

the simplicity of region primitives yet all the benefits of a garbage collector?

Proving type preservation. Proving correctness, as we have shown, is quite dif-

ficult. For safe mobile-code systems the correctness of the collector is important

but not necessary to guarantee safety. Mobile-code systems rely on the integrity of

the type system to safely export objects to the client system. If we can guarantee

that the collector does not compromise the guarantees of the type system, our ver-

ification task may be simpler. Weakening our criteria in this way means that some

garbage-collection bugs may still exist, but that these bugs do not compromise the

type system.

Our approach is simple: make the collector a well typed function written in the

same typed intermediate language used by the compiler of the mutator’s source lan-

guage (the mutator is the program whose memory is being managed by the collector).

Garbage collection is no longer a primitive runtime service, uses no unsafe primitives,

and is part of our model of the programming language. Since the collector and mu-

tator are both well typed functions, if the underlying language is type safe, we are

guaranteed that the collector cannot compromise the type system. Our language uses

a region-based type system for safe primitive memory management. The collector is

built on top of these safe region primitives. Regions are used to implement the semis-

paces of a traditional copying collector. The region type system allows us to verify
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that it is safe for the collector to deallocate a semispace that contains only garbage.

Chapter 4 describes our approach in detail.

Does type preservation guarantee value preservation? One might suspect

that we have weakened the problem so much that the guarantees it provides are of

little practical value. Type preservation does not immediately imply that our collector

preserves the values of objects, just their type, but in richer type systems that include

dependent and singleton types [XP99, Cra99], type preservation does imply value

preservation. So in situations where value preservation is a critical property needed to

maintain the security of the system, we can formulate the value-preservation problem

as a type preservation problem in a singleton or dependently typed framework.

Comparison to region inference. Region systems and garbage collectors are in-

comparable in terms of their efficiency at reclaiming unused storage. Our collector

dynamically traces values at runtime, allowing for more fine-grain and efficient mem-

ory management than systems that use region inference alone, which in certain cases

may take asymptotically more space than a simple tracing garbage collector. From

a different perspective, our collector is merely a particular way of writing programs

in a language that uses regions as the primary memory management mechanism;

with this perspective our work is simply a more efficient way of utilizing existing

safe region-based memory management primitives, similar to the “double copying”

technique used to make certain region programs more efficient [TBE+98].

Formal treatment of collector interfaces. Many details of garbage collector

interfaces can be described in a high-level and type-safe way, using simple and stan-

dard typing constructs. In particular we describe one way to implement “stack walk-

ing” [DMH92] without an explicit table that maps the return address of a function
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to a stack frame layout. We are able to do this by encoding the table implicitly and

in a checkable way.

We can catch interface bugs, such as the failure to include a live value in the

root set or providing incorrect type information, at compile time. Statically catching

these bugs makes the system more secure, easier to debug, more flexible, and poten-

tially more efficient. Since the collector is not a fixed trusted piece of the system,

individual programs can provide a specialized collector which may improve program

performance.

1.5 Technical Challenges

Building a type-preserving collector does not rely on a single key technical advance,

but results from the combination of several advances in typed compilation. The

key issues that need to be addressed are safe explicit deallocation, copying, source

language abstractions, and pointer sharing.

Region type systems. Collectors must use some primitive memory management

service to allocate and deallocate memory. We must verify that the service used by the

collector is safe. The work on type-and-effect systems done by Tofte and Talpin, and

refined by others, provides type-safe explicit memory management [TT94, AFL95,

CWM99, BHR99]. We can use the memory-management primitives provided by a

region system to guarantee that the memory-management primitives used by our

collector are safe. The region type system guarantees that the memory reclaimed by

our collector is in fact garbage.

However, the original region-based type systems are not sufficiently expressive for

our purposes, and they contain extra features which are not needed for our purposes.
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In Chapter 3 we present a simplified region type system, and describe its formal

semantics, and sketch the type soundness of the language. The full proof can be

found in Appendix A.

Type-safe tracing. If the static type of every object is known at compile time, it is

easy to write a well typed function that produces a copy of the object with the same

type. However, when the type is not known at compile time, because of parametric

polymorphism or issues of separate compilation, this task becomes more challenging.

Fortunately, work in the area of intensional type analysis [CWM98, CW99, TSS00,

STS00] and other forms of ad-hoc polymorphism that use dictionary passing [WB89a]

provide type-safe solutions to this problem.

Dealing with data-abstraction. Traditional collectors violate data-abstraction

guarantees that are present in the source language. The “private” fields of an object

in Java or “private” environment of a closure in ML cannot remain private to the

garbage collector. We must decide whether we wish to preserve these abstraction

guarantees or violate data abstraction when performing garbage collection.

There are several well known techniques for type-preserving closure conversion

[MMH96, MWCG98, TO98]. Many of the schemes provide strong guarantees that

they preserve source level abstractions. In practice many compilers still must provide

extra type information that describes the layout of “abstract” objects for the garbage

collector, so claims of abstraction preservation break down at the level of the garbage

collector. Other closure conversion techniques for first-order target languages [TO98]

provide much weaker abstraction-preservation guarantees and make the layout of

closures explicit during translation. Intensional type analysis formalizes the passing of

extra type information (typically provided by the compiler for the garbage collector) in
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a fully type-safe way [CWM98]. We touch on some of the tradeoffs of these approaches

in Chapter 8.

Forwarding pointers. Pointer sharing is preserved by the use of forwarding point-

ers which provide an efficient way to implement a map from pointers in the from-space

to pointers in the to-space. This map is needed to copy an arbitrary graph of heap

objects from one space to the other. Any map, such as a hash table, can be used in

place of forwarding pointers. Dealing with forwarding pointers complicates reasoning

about safety, but we outline one approach for dealing with forwarding pointers in a

safe way. Our approach requires some inelegant ad-hoc reasoning, but our technique

is as efficient as current unsafe techniques and can be formally proven sound. We

discuss forwarding pointers in Chapter 5.

Stack allocation. Chapter 6 describes our experience with building a safe collec-

tor using our techniques. Unfortunately, our collector results in some performance

penalties compared to other collectors. In Chapter 7 we address the chief source of

the inefficiency, the inability to stack-allocate activation records. Using a linear type

system, we will demonstrate how to safely perform the stack allocation of activa-

tion records, as well as other common space-saving optimizations used by garbage

collectors that involve destructive update.

1.6 Contributions

The contributions of this dissertation are the following:

• We prove the soundness for a simplified region calculus that is more expressive

the previous region calculi (Chapter 3).
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• We demonstrate how to construct tracing garbage collectors that can be verified,

through static type checking, not to violate any typing invariants of the mutator.

Another important contribution of the work is the ability to think about garbage

collector interfaces in a statically checkable way (Chapter 4).

• We formally sketch the needed type theory to properly support forwarding

pointers (Chapter 5).

• We report the performance of a simple type-preserving garbage collector (Chap-

ter 6).

• We demonstrate how adding linearity constraints allows us to support stack

allocation of return continuations as well as other advanced control structures

in provably safe ways (Chapter 7).

• We discuss the extensions needed in a type system to fully support separate

compilation (Chapter 8).



Chapter 2

Traditional Techniques

2.1 Introduction

In order to better understand the issues involved, it is useful to understand how mem-

ory is managed traditionally. In this chapter, we will demonstrate several memory

management techniques for a simple list reverse program and describe the various

tradeoffs between them. To make things concrete, we will provide examples written

in C [KR88], which has a sufficiently low-level semantics to illustrate many important

issues.

After describing a simple program in C, we will discuss various ways to manage its

memory use. Our first approach will use low-level explicit memory management. The

explicit approach, while efficient, is fragile and requires a global program invariant

that is difficult to maintain. Our second technique uses local invariants that are

easier for the programmer to maintain, but which are still unchecked. Finally, we

will use a garbage collector that requires several invariants both global and local to

be maintained. However these invariants can be maintained automatically by the

compiler, so that the programmer need not worry about them.

29
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List reverse in C. The program for which will serve as our example is a simple list

reverse program. We begin by defining our representation of lists with the following

type declaration

typedef struct lst_s *lst;

struct lst_s { int hd; lst tl; };

A value of type lst is a pointer to a two element record whose first element (hd) is

an integer and second element (tl) is a list. Since a list is represented as a pointer

to a record, we will represent the empty list as the NULL pointer. To make our code

more abstract we define the following lst constant and constructor function.

const lst Nil = NULL;

lst Cons(int hd, lst tl) {
lst t = malloc(sizeof(struct lst_s));

t->hd = hd; t->tl = tl;

return t;

}

The constant Nil is simply the NULL pointer. The function Cons takes a head and

a tail and returns a new list after allocating space from the system heap to hold the

new list cell1.

We define our list reverse function as the following tail-recursive function

lst itrev(lst l, lst acc) {
if (l == Nil) return acc;

else {
int x = l->hd; lst xs = l->tl; /* deconstruct list */

lst new_acc = Cons(x,acc);

return itrev(xs,new_acc);

}
}

1We are omitting some error handling code, since our constructor does not properly handle the

case when memory is exhausted.
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The first argument (l) to our function is the list to be reversed. The second argument

(acc) is the accumulated reversed list. If we have completed reversing l, i.e. when l

== Nil, we simply return the list stored in acc. Otherwise, we place a new cell on the

accumulated list and recursively reverse the remaining list with the new accumulated

list. Since our function is tail recursive a good optimizing compiler should reduce the

code to a simple iterative loop.

Our program calls the function itrev in the following way

int main(int argc, char **argv) {
lst l = mklst(10);

lst rl = itrev(l,Nil);

prlst(rl);

return 0;

}

The function mklst makes a list of integers, which we implement with the following

recursive code:

lst mklst(int n) {
if (n == 0) return Nil;

else {
lst l = mklst(n - 1);

return Cons(n,l);

}
}

The function prlst simply prints the list and is implemented as follows

void prlst(lst l) {
if (l == Nil) return;

else {
int x = l->hd; lst xs = l->tl; /* deconstruct list */

printf("%d ",x); prlst(xs);

}
}



CHAPTER 2. TRADITIONAL TECHNIQUES 32

2.2 Manual Memory Management

In our example program no space is ever deallocated, so our program will hold on

to all of the cells in l and rl. This is twice as much space as needed. If we think

about the behavior of itrev carefully, we can do better. After deconstructing a list

cell into its head (x) and tail (xs) that particular list cell is no longer needed. We

can immediately recycle the space used and reduce our space usage by implementing

itrev as follows

lst itrev(lst l, lst acc) {
if (l == Nil) return acc;

else {
int x = l->hd; lst xs = l->tl; /* deconstruct list */

l->hd = x; l->tl = acc; /* reuse l for new cell */

return itrev(xs,l);

}
}

Also we can modify prlist so that it immediately returns space to the system after

it prints each list cell.

void prlst(lst l) {
if (l == Nil) return;

else {
int x = l->hd; lst xs = l->tl; /* deconstruct list */

free(l); /* reclaim storage */

printf("%d ",x); prlst(xs);

}
}

Programmers concerned about space consumption will reason at this level to reuse

memory. However, these sorts of space optimizations require certain global invariants

hold for them to be safe. In our program, every list cell is pointed to by exactly one

pointer.
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Figure 2.1: A shared list tail.

Consider Figure 2.1, where we have two lists that share a common tail, which

violates our single pointer invariant. If we applied our new list reverse function to

one of the lists, we would destroy the values of the other list. This will cause our

program to behave in unexpected ways. Consider the result of passing a shared list

to our prlst function; prlst will create dangling pointers.

The single pointer invariant is a global program property that is difficult for the

programmer to maintain. Programming with a single pointer invariant maybe in-

efficient, because it often requires the copying of data to maintain the invariant.

What’s worse, programming languages like C provide no support to help the pro-

grammer catch violations of the invariant. So this programming style is unsafe in

a language like C. However, there do exist languages that allow the programmer to

program safely with this style of programming through the use of linear type sys-

tems [Wad90, Bak92a, Hof00].

2.3 Arena Allocation

For programs that are allocation intensive, it is often better to use a storage allocator

based on arenas or memory pools [Ros67, WJNB95]. These are contiguous sequence of

memory for which allocation simply requires incrementing a pointer. Objects placed

in an arena cannot be deallocated individually. All the objects placed in an arena are
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typedef struct arena_s *arena;

arena arena_new(void);

void* arena_alloc(arena sp, unsigned nbytes);

void arena_free(arena sp);

Figure 2.2: A simple arena allocation interface.

deallocated at once when the entire arena is deallocated. Figure 2.2 describes a typical

arena-based allocation interface. Figure 2.3 provides a simple implementation of the

interface. Figure 2.4 depicts the representation of arenas used by the implementation.

An arena is represented as two pointers and a list of hunks that are a list of

allocated contiguous regions of memory. The alloc pointer points to the next un-

allocated address of memory. The limit pointer points to the last address that we

are allowed to allocate in the current hunk of memory. If we are unable to service a

request for data we simply allocate a new hunk large enough to service such a request

and retry the request. Notice, that our arena free function takes time linear in

the number of hunks to deallocate an arena. A more complex implementation, using

doubly linked lists, can reduce this cost to a constant factor. The implementation we

present is simple and easily verified correct.

Using our new arena allocation scheme will require us to parameterize our list

constructor and any other allocating function with an arena within which to request

memory from. Our new list interface needs to be modified as below

const lst Nil = NULL;

lst Cons(arena a, int hd, lst tl) {
lst t = arena_alloc(a,(sizeof (struct lst_s)));

t->hd = hd; t->tl = tl;

return t;

}

Since the itrev function allocates it must be modified as follows
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#define PTR_ADD(x,y) (((char *)(x))+(y))

#define HUNK_SIZE 4096

typedef struct hunk_s *hunk;

struct hunk_s { void *start; hunk rest; };
struct arena_s { hunk hunks; void *alloc; void *limit; };

static hunk add_hunk(unsigned sz,hunk rest) {
hunk h = malloc(sizeof(struct hunk_s));

h->start = malloc(sz); h->rest = rest;

return h;

}
static void free_hunks(hunk h) {

if(h == NULL) return;

else {
void *start = h->start; hunk rest = h->rest;

free(h); free(start); free_hunks(rest);

}
}

arena arena_new(void) {
arena a = malloc(sizeof(struct arena_s));

a->hunks = add_hunk(HUNK_SIZE,NULL);

a->alloc = a->hunks->start;

a->limit = PTR_ADD(a->alloc,HUNK_SIZE);

return a;

}
void* arena_alloc(arena a, unsigned sz) {

void *alloc = PTR_ADD(a->alloc,sz); void *ret = a->alloc;

if (alloc <= a->limit) { a->alloc = alloc; return ret; }
else {

unsigned h_sz = (sz > HUNK_SIZE ? sz : HUNK_SIZE);

a->hunks = add_hunk(h_sz,a->hunks);

a->alloc = a->hunks->start;

a->limit = PTR_ADD(a->alloc,h_sz);

return arena_alloc(a,sz);

}
}
void arena_free(arena a) { free_hunks(a->hunks); free(a); }

Figure 2.3: An Iimplementation of the arena interface.
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limit

allochunks

Figure 2.4: Representation of an arena.

lst itrev(arena a, lst l, lst acc) {
if (l == Nil) return acc;

else {
int x = l->hd; lst xs = l->tl;

lst new_acc = Cons(a,x,acc);

return itrev(a,xs,new_acc);

}
}

Likewise our function to construct our initial list is updated to the following

lst mklst(arena a, int n) {
if (n == 0) return Nil;

else {
lst l = mklst(a, n - 1);

return Cons(a, n, l);

}
}

Now that we have parameterized itrev and mklst with an allocation arena, we

can arrange to allocate the list created by mklst in a different arena from the one
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used by itrev. We can rewrite our program to take advantage of this extra flexibility

as seen below

int main(int argc, char **argv) {
arena a1 = arena_new(); /* allocate a1 */

arena a2 = arena_new(); /* allocate a2 */

lst l = mklst(a2,10);

lst rl = itrev(a1,l,Nil);

arena_free(a2); /* deallocate a2 */

prlst(rl);

arena_free(a1); /* deallocate a1 */

return 0;

}

Our program creates two different allocation arenas a1 and a2. It uses a1 to hold

the list created by itrev. It uses a2 to hold the list created by mklst. Since after

itrev returns, we never need to inspect the list created by mklst, arena a2 can be

immediately deallocated.

Unlike our previous attempts to manage memory, our program does not require

that a single pointer invariant be maintained. So we can safely use lists with shared

tails. Our arena-based system may also run significantly faster, since we are able to

amortize the cost of expensive allocation and deallocation operations. The memory

used by the list rl will be deallocated in several large hunks.

However, arena allocation techniques do not guarantee error free memory man-

agement. Consider, the following simple modification to our program

int main(int gc, char **argv) {
arena a1 = arena_new();

arena a2 = arena_new();

lst l = mklst(a2,10);

lst rl = itrev(a1,l,Nil);

arena_free(a2);

prlst(l); /* print original list also */

prlst(rl);
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arena_free(a1);

return 0;

}

The extra call to prlst is in error, since we have deallocated the space associated

with the list l when we freed arena a2. Region-based type systems can be used with

arena-based allocation techniques to prevent these errors. More surprisingly, certain

region-based systems can automatically convert naive programs, such as our original

program, into ones that use arena-based allocation [TT94].

2.4 Garbage Collection

There are a wide spectrum of garbage collection techniques. Wilson [Wil92] and

Jones [Jon96] provide comprehensive description for many of the widely used tech-

niques. However, both neglect the details of how garbage collectors are interfaced

with the programs being garbage collected. The details are omitted because they

have little impact on the algorithmic structure of the garbage-collection algorithms.

However, for actual implementations these details can be quite complex. Our main

purpose is to review how a simple collector is implemented, and illustrate the com-

plexity of the interface between a collector and program.

The underlying algorithm of our garbage collector will remain the same, but we will

discuss a range of different possible interfaces between the collector and program. We

will describe a precise stop-and-copy DFS collector. Our presentation of our collector

differs from the traditional literature, in that it uses techniques that are inefficient

in time and space, but only by constant factors. We hope to emphasize important

algorithmic details rather than using more clever encodings and implementations that

obscure important abstractions.
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Sources of interface complexity. Garbage collectors interfaces are complex, be-

cause the program whose memory is being managed must communicate to the collec-

tor information to locate the set of root variables that point to live data and allow

the collector to recursively traverse all values reachable from the root variables. Iden-

tifying the set of live root variables is difficult, because it requires compiler support.

Optimizing compilers must be careful to preserve interface invariants and communi-

cate information to the collector that is changed by optimization.

Accessing the stack frame. When a function calls another function it must save

local variables. These variables are saved on the stack. The local variables are poten-

tial roots. Since some compilers will save all local variables on the stack, including

those that are not needed after the call returns, a collector that assumes all stack

variables are roots may retain more live data than necessary. A compiler can emit

extra information to a collector that identifies dead variables which are allocated on

the stack frame. Some calling conventions allow functions to place local variables

in machine registers whose values are guaranteed to be preserved across a call. The

garbage collectors must be able to locate these register local variables also.

Figure 2.5 describes an abstract interface to stack frames sufficient for implement-

ing a garbage collector. It is based on the work of Ramsey et al. [JRR99], who

describe a minimal interface for building portable runtime systems. We use it to give

an explicit model of how a collector and mutator interact without revealing too many

low-level details.

Our interfaces makes several simplifying assumptions on how code is compiled and

laid out by the compiler and linker. We assume all local variables are saved into a stack

frame and not stored in callee-saved registers. Our simplification of Ramsey et al.’s

interface imposes many more restrictions on how code maybe compiled. To properly
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typedef struct frame_s* frame;

frame CallerFrame(void);

frame NextFrame(frame f);

void* FindVar(frame f, int i);

void* GetDescriptor(frame f);

void SetDescriptor(void *f,void *datum);

CallerFrame Return the stack frame of the caller of the current function or NULL if
there is no caller.

NextFrame Return the next frame in the chain of stack frames, or NULL if we have
reached the end.

FindVar Return the address of a local variable in a given frame or NULL if the variable
is not live. Local variables are indexed beginning from 0, based on the textual
order of their appearance in the source code. The first declared argument to a
function has index 0.

GetDescriptor Return the frame descriptor associated with this frame. (Used to
propagate type information.)

SetDescriptor Set the frame descriptor associated with the function whose address
is f. (Used to propagate type information.)

Figure 2.5: Abstract interfaces to stack frames.
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implement such an interface requires cooperation from the compiler. The compiler

must supply stack layout and variable liveness information to properly implement

FindVar. The compiler must also arrange for the program code to be laid out in

a way such that the return address on the stack can be use to identify the calling

function. Those interested in more details should read [JRR99].

Traversing values. Once we are able to examine stack frames and locate all the

potentially live variables, we must be able to traverse all reachable values from our

root set. The function FindVar returns a pointer to the address of a given variable,

but does not provide us with enough type information for us to distinguish between

an integer value and a pointer to a list. The approach to this problem adopted by

some systems is to use a variety of different tagging schemes [SH87, App92b, DEB94].

There are several efficient software and hardware-based approaches for tagging ob-

jects. However, all of these approaches introduce extra overhead. Tagging objects

also makes it difficult to interoperate across languages.

Another approach that avoids the needs for tags is to use type information avail-

able at compile time to identify the type of variables. These tagless garbage collec-

tors [App89, DMH92], need a way to communicate static type information to the

garbage collector. Our interface to stack frames provides us the necessary hooks to

communicate this type information to our garbage collector. By examining the re-

turn address stored in a stack frame we can discover which function created a given

frame [App89, DMH92]. Given a mapping from stack frames to the functions that

created them, we can associate arbitrary data to any given stack frame. The two

functions in our interface that allows this are SetDescriptor and GetDescriptor.

The SetDescriptor functions binds some arbitrary piece of data with a stack frame

based on the creating function, whose address is passed as its first argument. The
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original interface by Ramsey et al. uses a more flexible mechanism to establish the

binding.

To make our discussion concrete, we will demonstrate how to build a simple collec-

tor for our list reverse program. We will start with the arena allocation version of our

list reverse program, since we will need control over where objects are allocated. Our

collector at first will be tagless so that we do not need to change the representation

of our values to accommodate tagging. Later, we will modify our program to use a

relatively simple tagging scheme.

Interfacing with the collector. An important issue to decide is when the col-

lector will be invoked. We could arrange to have every use of the Cons primitive

determine if the collector should be invoked before allocating any memory. However,

such an approach would slow down the rate at which we could allocate data. Another

approach is to place checks for when to invoke a garbage collector in our program in

a way so that our program can only perform a bounded amount of allocation before

executing a check.

At each point where a collection may occur, we must be able to discover all the

program roots and have the appropriate type information needed by the collector.

These program points are called safe points in the garbage collection literature. The

occurrence of a safe point restricts the set of optimizations that a compiler may do

across the safe point [JRR99].

Since our garbage collector is tagless we need to provide it with type information

that describes the layout of every stack frame. We will describe the layout of each

stack frame with a string. The character ’ ’ represents a non-pointer variable that

does not need to be traced and the ’l’ will represent a variable of type lst. This

encoding can be extend to handle other types that need to be traced and is simple
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void gc(arena *from);

int need_gc(arena a);

. . .

lst itrev(arena a, lst l, lst acc) {
if(need_gc(a)) gc(&a); /* safe point */

if (l == Nil) return acc;

else {
int x = l->hd; lst xs = l->tl;

lst new_acc = Cons(a,x,acc);

return itrev(a,xs,new_acc);

}
}

lst mklst(arena a, int n) {
if(need_gc(a)) gc(&a); /* safe point */

if (n == 0) return Nil;

else {
lst l = mklst(a, n - 1);

return Cons(a, n, l);

}
}

. . .

void init_gc(void) {
SetDescriptor((void*)itrev,"_ll_ll");

SetDescriptor((void*)mklst,"__l");

. . .

}

Figure 2.6: Interfacing with the collector.
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void gc(arena *from) {
frame roots = CallerFrame();

arena to = arena_new(); /* initial */

update_roots(to,roots); /* update roots */

arena_free(*from); *from = to; /* flip */

}

torootsfrom

initial

update
roots

flip

Figure 2.7: A simple tagless collector.
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void update_roots(arena to,frame f) {
while(f != NULL) {

char *fdesc = GetDescriptor(f);

if(fdesc != NULL) {
int i = 0;

while(fdesc[i] != ’\0’) {
switch(fdesc[i]) {
case ’_’: break; /* skip */

case ’l’: {
lst *l = FindVar(f,i);

if(l != NULL) /* is variable live */

*l = copy_lst(to,*l); }
break;

default: abort(); /* error unknown type code */

}
i++; /* do next variable */

}
} else abort(); /* error no frame descriptor */

f = NextFrame(f); /* do the next frame */

}
}

lst copy_lst(arena a, lst l) {
if(l == Nil) return Nil;

else {
int x = l->hd; lst xs = l->tl;

lst new_l = copy_lst(a,xs);

return Cons(a,x,new_l);

}
}

Figure 2.8: Functions to update roots.
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to implement.

Figure 2.6 shows how to extend our function to use the interface we have de-

scribed. At each safe point we insert a test that calls the function need gc on the

current allocation arena. If the collector needs to be invoked, we pass the garbage

collector (gc) the address of the current allocation arena (a) so that the collector

can manipulate the arena. We also introduce a new function init gc which is called

before our program executes to propagate the information about stack frame layout

to the collector. For example the string " ll ll" describes the stack frame layout for

the function itrev. The first variable in the stack frame is the argument variable a,

which the collector should not traverse so we use the type “ ”. The next variable on

the stack frame is the argument variable l, which the collector should traverse so we

use the type “l”.

A simple tagless collector. Figure 2.7 provides an implementation of the gc

function that calls an auxiliary function update roots. Our collector is a copying

collector. It first creates a fresh allocation arena to. The update roots functions

walks the stack frames passed to it and updates each live value to point to a fresh

copy of that value in the to arena. Afterwards, all the data in the from arena is no

longer needed, so we can deallocate the arena. Finally we arrange for the to arena

to be the new allocation arena. Figure 2.8 contains the code to properly update the

roots to point to fresh copies in the to arena. It calls an auxiliary function copy lst

when it encounters a variable of the type lst.

Complications with optimizer. Notice that update roots modifies variables of

other functions saved on the stack frame. So when we return from the garbage

collector, variables are modified in a way that is not locally obvious. For example
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in the version of itrev in Figure 2.7 the argument variable l is never modified in

the body of the function. It may be potentially modified by a call to the collector.

However in the function mklst the argument n is invariant because our collector

modifies only variables of type lst. Any optimizing compiler must therefore be

aware of the special semantics of our garbage collector function and assume that l is

not invariant across the safe point while n is invariant across the safe point. Ramsey

et al. [JRR99] provide explicit hints to an optimizing compiler about what variables

are and are not invariant across a safe point. These hints are not checked, so even

though a variable is marked invariant there is no guarantee that it actually is.

Dealing with shared and cyclic values. Our simple collector does not properly

handle lists with shared tails. Rather than create dangling references, our simple

copy lst function duplicates shared tails. If copy lst is handed a cyclic list it will

loop. To solve this problem, we must keep track of when we have already copied a

list and avoid duplicating work. One way to do this is to simply remember pointer

values in a hash-table and consult the table before we copy a cell. This, however,

could be inefficient. A more traditional approach is to use forwarding pointers.

While copying an object a traditional collector places a forwarding pointer to the

copy so that if the object is seen again the collector can avoid recopying the object.

In systems that tag all their data, one can sometimes overwrite the tag or first field

of every object with a forwarding pointer, so there is no need to use any extra space.

However, sometimes an extra word must be reserved to hold a forwarding pointer.

For our tagless example it is easier to modify our representation to include an extra

field to hold the forwarding pointer.

Figure 2.9 shows the changes need to handle the shared and cyclic lists in their

full generality. Notice that the forwarding pointer field fwdp is initially set to Nil.



CHAPTER 2. TRADITIONAL TECHNIQUES 48

typedef struct lst_s *lst;

struct lst_s { lst fwdp; int hd; lst tl; };

. . .

lst copy_lst(arena a, lst l) {
if(l == Nil) return Nil;

else if(l->fwdp != Nil) return l->fwdp;

else {
int x = l->hd; lst xs = l->tl;

lst new_l = Cons(a,x,Nil); /* allocate new cell */

l->fwdp = new_l; /* set forwarding pointer */

new_l->tl = copy_lst(a,xs); /* update forwarded cell */

return new_l;

}
}

Figure 2.9: Handling shared and cyclic lists.

When it is non-nil we assume the value is a forwarded pointer. Our copy lst function

checks for a non-nil forwarding pointer before copying an object. To handle cyclic

lists properly, it must allocate a new list cell first, set the forwarding pointer to the

newly allocated cell, and then copy and update the tail of the current cell. Notice

that if the mutator sets the forwarding pointer of an object it can quite easily confuse

the collector.

Collector using tags. Our tagless collector needs type information about the vari-

ables in the stack frame. In this case it simply needs to identify all list objects, and

then use copy lst to move the lists into the new allocation arena. If we generalize our

collector to handle more programs, we will need a specialized copy function for every

different type. Therefore, we cannot implement a tagless garbage collector without

knowing in advance all the types of our program. For some languages such as Lisp

which are uni-typed this is not a problem, since every Lisp program only contains one
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typedef struct obj_s *obj;

typedef union { int n; obj p; } obj_or_int;

typedef struct desc_s *desc;

struct obj_s { desc d; obj_or_int f[1]; }; /* variable sized object */

struct desc_s { int len; char *tmap; };

obj mkObj(arena a,desc d) {
int sz = sizeof(struct obj_s) + (d->len - 1) * sizeof(obj_or_int);

obj x = arena_alloc(a,sz);

x->d = d;

return x;

}

Figure 2.10: Generic tagged object representation.

type. Languages may have several different types, we must be willing to generate a

garbage collector specialized for each program or resort to other techniques such as

tagging.

Tag-based techniques are conceptually the same as building a tagless collector for

a uni-typed language. First we must define a universal representation for all objects.

However, for systems like Lisp the universal representation is typically specialized for

a small set of different values used by Lisp. Our universal representation must be

generic enough to accommodate a wider set of values.

Figure 2.10 describes such a generic representation and the modified lst type

that uses the generic representation. The obj type is a pointer to a record whose first

element is an object descriptor followed by some unknown number of fields. Each

field can either be an integer or the address of another object. The type of each field

and the number of fields is determined by the object descriptor (d), which is a record

containing a length field followed by a string which describes the type of each field.

Figure 2.11 shows how a two-element list value is now represented with our new

generic type, as well as the implementation of the new constructor functions. The
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df[1]f[0]d

2

"io"

f[1]f[0]

typedef obj lst;

struct desc_s lst_desc = { 2 , "io" };
const lst Nil = NULL;

lst Cons(arena a, int hd,lst tl) {
obj t = mkObj(a,&lst_desc);

t->f[0].n = hd; t->f[1].p = tl;

return t;

}

Figure 2.11: Tagged list representation.
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lst copy_obj(arena a, obj x) {
if(x == NULL) return NULL;

else {
int i;

int len = x->d->len;

char *tmap = x->d->tmap;

obj new_x = mkObj(a,x->d);

for(i = 0; i < len; i++) {
switch(tmap[i]) {
case ’i’:

new_x->f[i].n = x->f[i].n;

break;

case ’o’:

new_x->f[i].p = copy_obj(a,x->f[i].p);

break;

default: abort(); /* error unknown type code */

}
}
return new_x;

}
}

Figure 2.12: Functions to copy tagged object representation.
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descriptor for the list (lst desc) describes lists objects as being objects with two

fields: the first is an integer, the second an object. Notice that all our list objects

share a common type descriptor. The type descriptor string (tmap) describes the type

of each field. The character ‘i‘ signifies that the fields holds an integer value, while

the character ‘o‘ signifies that a field holds a pointer, which maybe NULL or a pointer

to another object.

Figure 2.12 contains a simple minded function that copies non-shared values of our

generic representation. We can extend our function to handle cyclic shared values,

by the use of forwarding pointers. However, unlike the untagged case, we do not

need to change our object representation. We simply reserve a special type descriptor

that represents a forwarded object, and use the first field of every object to hold the

forwarding pointer.

What can go wrong? We have now seen a relatively simple but complete garbage

collector. We can see that even for simple collectors, the interface with the program

is quite complex. The collector must have access to the stack frame and know which

variables are live. In both the tagged and untagged cases the mutator must provide

accurate type information so that the collector can traverse objects. The collector

and mutator must agree on how the type information is encoded. The optimizer of

the mutator must be aware of the special semantics of safe points. The mutator must

not mutate values used to implement forwarding pointers. Any error can cause our

collector to damage data so that our program fails in mysterious ways. Since our

collector is invoked infrequently these sorts of errors lead to bugs that are hard to

reproduce and localize. Luckily, all these details are typically hidden from the pro-

grammer and automatically maintained by the compiler, so although there is a great

deal of complexity involved in garbage collection it is hidden from the programmer.
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However the burden of getting these invariants right has not been eliminated; the

burden has been moved to the compiler writer. It is no small feat to get all of these

invariants correct. Our primary contributions are techniques that help the compiler

writer be assured that the needed invariants are in fact maintained, through the use

of static type checking.

Extending to polymorphic type systems. Up until now we have been dealing

with monomorphic type systems. Languages like ML that include parametric poly-

morphism introduce more complexities [App89, AFH94, Tol94], since the type of some

variables will not be known until runtime. There are three basic approaches: The

simplest is to simply remove the polymorphism by code duplication. This however

is not possible in languages which support polymorphic recursion as well as making

separate compilation more difficult. Another approach relies on passing type infor-

mation explicitly as the program runs, so that the appropriate type information is

made available at runtime [Tol94, TMC+96]. Passing and constructing the type in-

formation can affect performance of the system, so type-passing approaches are not

always ideal. The other basic approach is to choose a uniform tagged representation

for all values that maybe polymorphic [MDCB91, Ler92, Sha97].

Saving constant factors. There are several obvious ways to improve the simple

minded collector we have described above. Rather then using character strings to

encode type we can use compact bit strings. The functions to copy objects are

recursive and therefore need space on the stack to run. There are several approaches

that allow the recursive functions to run without an auxiliary stack [SW67, Che70,

SF98]. Since we only ever need two allocation arenas at any one time and they need

not be of unbounded size, the implementation of our allocation arenas could be made
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simpler and faster by representing each arena as a single contiguous piece of memory.

If our allocation arenas are contiguous, we can inspect the address of a pointer to

discover which arena contains the object. Using this check, we can avoid the need

for adding a special forwarding-pointer field for many types when building a tagless

system. All of these optimizations are commonly used. They are simply more efficient

implementations of the underlying abstractions we have so far presented.

2.5 Summary

We have illustrated several memory management techniques used in traditional sys-

tems. The first technique requires a global single pointer invaraint. Such an invariant

can be enforced using a linear typing discipline that we will discuss in Chapter 7.

Maintaining this single pointer invariant can lead to inefficiency because objects must

be copied rather than shared. The second technique allocates and deallocates objects

in groups called arenas. Arenas are simple to implement and can be used to manage

the storage of objects without needing to maintain a single pointer invariant. To use

arenas in a safe way requires other invariants be maintained. In Chapter 3 we will

discuss a type system that enforces these invariants. The third technique we have

discussed is the use of a tracing garbage collector.

Garbage collectors require many complex invariants be maintained. Collectors

complicate optimizations of programs, because they violate normal abstractions by

performing operations such as examining and modifying the stack frame. All of these

complex invariants can be maintained automatically by a compiler, but this just hides

the complexity from the programmer and moves it to the compiler writer. In Chapter

4 and Chapter 5 we will discuss how to use type systems to guarantee many important

invariants needed by a garbage collector.



Chapter 3

A Simple Region Calculus

3.1 Introduction

In Chapter 2 we described arena-based memory-management techniques. In this

chapter we describe a simple type system that provides for safe arena style-memory

management. Our type system is based on the region type systems developed first

by Tofte and Talpin [TT94]. The original motivation for the region type system

was to provide a memory management technique for higher-order languages that

had a simpler runtime model than traditional garbage-collection techniques. Their

system [TBE+98] compiles the full Standard ML language into programs that run

without a garbage collector. Memory is managed by automatically placing objects

with similar lifetimes in a region. Regions, like arenas, contain several objects and

are deallocated as a group in constant time.

Their approach was inspired by the pure stack allocation model of Algol [TH01].

The problem with a pure stack discipline is that stack-allocated values cannot safely

escape the lexical scope of their definitions. This prevents the safe use of higher-

order functions. In the Tofte and Talpin system values are allowed to escape the

55
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lexical scope of their definition. However, the type system associates with each value

a region variable which has an associated region scope. Values in the type system

are not allowed to escape the scope of the region variables. The scope of a region

variable is associated with the dynamic lifetime of the memory used to hold values

allocated in that region, just as the lexical scope of variables in Algol is associated with

their dynamic lifetime. Their system also support polymorphism over regions which

provides the language with extra flexibility not found in the Algol like languages. One

initial shortcoming of the region system, which has been addressed by later work, was

the LIFO region allocation policy. Like Algol the scopes and lifetimes of regions must

be nested in a way that allows the deallocation of only the most recently allocated

region.

Their system is based on a region inference algorithm, which attempts to auto-

matically place objects in regions so as to minimize the total memory consumption of

the program. Unfortunately, the algorithm is sensitive to the structure of the origi-

nal program in subtle ways that requires “region conscious” [TBE+98] programming.

Their region inference system is based on effect inference [TJ92], which allows one

to infer strong semantic properties of program based on the type of the programs.

In particular one can infer that a program after some point will never access a given

region and therefore all values in that region are semantic garbage. However, these

values may be reachable via some set of program roots. So the region system cre-

ates what might be considered dangling pointers in a traditional system. However,

these dangling pointers are safe, since the region system guarantees they will never

be dereferenced.

The original region calculus and garbage collectors that use a reachability rela-

tion to approximate liveness are incomparable in their ability to reclaim semantic

garbage. There are situations where the Tofte and Talpin system will reclaim se-
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mantic garbage that would be retained by a traditional garbage collector. Likewise,

their are cases where unreachable values are retained by region systems. Combining

region type systems and tracing garbage collectors seems to provide the benefits of

both systems [Hal99].

A simple region calculus. Since the original Tofte-Talpin calculus there have

been many different formulations of various region calculi [AFL95, CWM99, BHR99,

Yat99, ZG00, Cal01, CHT01]. For our purposes the region system need not be par-

ticularly advanced. We do not need to separate read and write effects, support effect

polymorphism, or allow for dangling pointers. All of these features are included in the

original Tofte-Talpin region calculus [TT94]. With the exception of [CWM99] most of

the various region calculi are formulated as type-and-effect systems. In these calculi

every expression has associated with it an inferred set of effects which represents an

estimate of the set of regions an expression may access. Rather than infer a set of

effects [CWM99] presents a region calculus where an expression is typed with respect

to a “capability context” that explicitly restricts the set of regions a given expression

may access. The primary difference between these two approaches is that the for-

mer is concerned with finding effect annotations which lead to more memory efficient

programs that do not require a garbage collector. Capability systems are designed

to verify that effects inferred by such systems are correct. We take the capability

view of regions since we are primarily interested in validating that a particular effect

assignment is valid.

Early deallocation. The original Tofte-Talpin calculus required that regions be

allocated and deallocated in a strict LIFO fashion. The most recently allocated region

must be the first region that is deallocated. Aiken, Fähndrich, and Levien [AFL95]
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present a static analysis that allows for early deallocation1 which allows for more

flexible non-LIFO policies. The capability calculus of [CWM99] also supports early

deallocation. For our type-preserving garbage collector early deallocation is critically

important. However, rather than simply using the capability calculus of [CWM99] we

derive a simpler and in some respects more expressive calculus that relies on dynamic

checking to handle certain aliasing issues that the capability calculus deals with in a

purely static way. We will discuss the aliasing issue later when we discuss our static

semantics.

3.2 Syntax

Figure 3.1 describes the abstract syntax of a capability-style region calculus. Previous

region calculi explicitly annotate every type and term with a region annotation to

precisely reflect a particular set of implementation details, such as the fact that most

objects do not fit in machine registers and must have auxiliary storage allocated for

them. Rather than “baking in” such a decision and cluttering our syntax we introduce

two term-level operators and a new type constructor. One term-level operator is

put[ρ](e) that evaluates it argument e and stores the resulting value into region ρ. If

the type of the argument e is of type τ the type of the resulting value is (τ at ρ).

The type constructor at describes objects of some type τ allocated in region ρ. The

operator get[ρ](e′) expects that its argument e′ evaluates to a value of type (τ at ρ).

It then fetches the value from region ρ and returns a value of type τ . The terms

put[ρ](e) and get[ρ](e) are inspired by the translation of Banerjee et al. [BHR99],

which translates a simplified effect based region calculus into a novel typed lambda

calculus. In the translation the effects of the original region calculus are encoded as

1Early in the sense of sooner than what a strict LIFO policy would allow.
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types τ ::= unit

| τ1
∆
→ τ2 function type with effect

| ∀ρ.τ region polymorphic type
| (τ at ρ) region annotated type
| Ans

terms e ::= x
| 〈〉
| (λx :τ.e)∆ effect annotated function
| (e1 e2)
| (Λρ.e) region abstraction
| (e[ρ]) region application
| letr ρ in e allocate new region
| put[ρ](e) put value in region
| get[ρ](e) get value from region
| only ∆ in e deallocate regions early
| (fixf :τ.v)
| haltτ

values v ::= 〈〉 | (λx :τ.e)∆ | (Λρ.e) | put[ρ](v)

region contexts ∆ ::= {} | {ρ1, . . . , ρn}

Figure 3.1: Abstract syntax.
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term level objects in the target calculus. A value allocated in region ρ is represented by

the syntactic term put[ρ](v). We treat region contexts (∆) as sets of region variables.

When a function ((λx : τ.e)∆) captures values in its closure we must account for

any regions needed to access those values by annotating the function with the set of

needed region variables. Function types are annotated with a corresponding set of

region variables needed to evaluate the body of a function. Since we have an explicit

region abstraction term (Λρ.e) and a separate fixed-point term in our language we

support polymorphic recursion over region variables. The term only ∆ in e is our

construct to support early deallocation. Our type-preserving garbage collector will

contain a mix of “direct style” and CPS-converted expressions. For that reason we

include the type Ans which is the return type for continuations, so that we can

distinguish between continuations and normal functions.

3.3 Dynamic Semantics

Figure 3.2 describes the dynamic semantics of our calculus in the style of Felleisen

and Wright [WF94]. We assume that all bound region variables are unique and

that substitution alpha renames variables to preserve this property. We introduce

the notion of a region stack, ranged over by R, which are a sequence of nested letr

expressions ending in a hole ([ ]). The notation R[e] represents a region stack with

the hole of the stack replaced by e. E ranges over control contexts. The notation

E[e] represents a control context with the hole of the control context replaced by

e. Programs consist of a series of letr bindings establishing an initial region stack

surrounding an expression to evaluate. Answers are a subset of program expressions

that consist of a single haltτ expression or a region stack enclosing a value.

We define two one step reduction relations. The relation 7→e performs local re-
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programs P ::= R[e]

answers A ::= R[v] | haltτ

control contexts E ::= [ ]
| (E e) | (v E)
| (E[ρ])
| put[ρ](E) | get[ρ](E)

region stacks R ::= [ ] | letr ρ in R

Expression Reductions

rdsbetav ((λx :τ.e)∆ v) 7→e e[v/x]
rdstapp ((Λρ.e)[ρ′]) 7→e e[ρ′/ρ]

rdsfix (fixf :τ.v) 7→e v[(fixf :τ.v)/f ]

Program Reductions

rdspure R[E[e1]] 7→P R[E[e2]] where e1 7→e e2

rdsletr R[E[letr ρ in e]] 7→P R[letr ρ in E[e]]
rdsget R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] 7→P R[letr ρ in R′[E[v]]]

rdsonly R[E[only ∆ in e]] 7→P R′∆[e]

rdshalt R[E[haltτ ′

]] 7→P haltτ where E 6= [ ]
rdsfree R[letr ρ in R′[e]] 7→P R[R′[e]] where ` R[R′[e]] wt

[ ]∆
def
= [ ]

(letr ρ in R)∆,{ρ} def
= (letr ρ in R∆,{ρ}) where ρ 6∈ ∆

Multi-step Reduction

mstprefl
P 7→∗

P P

P1 7→
∗
P P2 P2 7→

∗
P P3

mstptrans
P1 7→

∗
P P3

P1 7→P P2
mstprds

P1 7→
∗
P P2

Figure 3.2: Dynamic semantics.
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ductions on expressions, while the relation 7→P performs global reductions on whole

programs. The 7→e relation is the standard one step reduction relation for a pure

call-by-value lambda calculus. This local reduction relation is used in the definition

of the global program reductions by the rule rdspure. The global program reduction

rule rdsletr hoists an inner letr binding to the top-level region stack. Since we assume

all bound variables are unique, the region in the letr binding is guaranteed to be a

fresh variable. The rdsget rule converts a value allocated in region ρ to a pure value,

if the region ρ is currently bound by the enclosing region stack. The rdsonly rule

throws away the surrounding control context and continues evaluating its body in a

new region stack defined by the only expression. The notation R∆ is the smallest

region stack binding the variables in ∆.

The rdshalt rule immediately throws away the surrounding control context and

region stack and reduces to an answer. We impose the extra side condition on the

rdshalt rule that the surrounding control context is nontrivial in order to prevent our

abstract machine from repeatedly evaluating a haltτ expression. The rdsfree rule is a

nondeterministic rule that removes unneeded region bindings from the region stack.

A region binding is unneeded if removing the binding does not prevent rest of the

program from remaining well typed. Removing a region binding can only caused a

program to be untypable if the region variable previously bound by the binding occurs

free in the body of the expression. So an equivalent criteria would be that the region

variable is not free in the body of the binding. However, we use the typing judgment

as a side condition simply to avoid formalizing the notion of free region variable.

The relation 7→∗
P is the reflexive transitive closure of our single step program

reduction relation. Notice rdsfree implicitly allows for non-LIFO allocation policy,

already providing support for early deallocation, which makes the rdsonly rule seem

redundant. However, if we did not include the rdsonly rule we could not immedi-
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value environment Γ ::= {} | {x1 :τ1, . . . , xn :τn}

Judgement Meaning
` P wt P is a well typed program.
∆; Γ ` e :τ e has type τ under ∆; Γ. We always implicitly require ∆ ` Γ wfenv
∆ ` τ wf τ is a well formed type with respect to ∆.
∆ ` Γ wfenv Γ is a well formed value environment with respect to ∆.

Figure 3.3: Summary of typing judgements.

ately reclaim regions that are bound in the useless surrounding control context of an

expression for which we know will not return.

3.4 Static Semantics

Figure 3.3 summarizes the main typing judgments for our static semantics. Figure 3.4

contains the inference rules for the main typing judgments while Figure 3.5 defines

some auxiliary well formedness conditions. We use the notation ∆, ∆′ to represent

the union of two disjoint set of region variables and the notation Γ, {x : τ} to be the

extension of an environment mapping the variable x to the type τ where x does not

occur already bound in Γ.

The judgment ` P wt simply asserts that the closed program P has some valid

type. It holds only if the program P is well typed under an empty typing environment.

The judgment ∆; Γ ` e : τ asserts that the expression e has type τ under the value

environment Γ and the region context ∆. The judgment ∆ ` τ wf asserts that all

the free region variables in τ occur in ∆. The judgment ∆ ` Γ wfenv generalizes this

notion for value environments.

In Figure 3.4, to simplify our presentation of the rules for the judgment ∆; Γ ` e :τ ,
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` P wt

{}; {} ` P :τ
wte

` P wt

∆; Γ ` e :τ

htvar
∆; Γ, {x :τ} ` x :τ

htunit
∆; Γ ` 〈〉 :unit

∆ ` Γ wfenv ∆′ ` τ1 wf ∆′; Γ′, {x :τ1} ` e :τ2
htabs

∆, ∆′; Γ, Γ′ ` (λx :τ1.e)
∆′

:τ1
∆′

→ τ2

∆, ∆′; Γ ` e1 :τ1
∆′

→ τ2 ∆, ∆′; Γ ` e2 :τ1
htapp

∆, ∆′; Γ ` (e1 e2) :τ2

∆, {ρ}; Γ ` e :τ
httabs

∆; Γ ` (Λρ.e) :∀ρ.τ

∆, {ρ′}; Γ ` e :∀ρ.τ
httapp

∆, {ρ′}; Γ ` (e[ρ′]) :τ [ρ′/ρ]

∆ ` τ wf ∆, {ρ}; Γ ` e :τ
htletr

∆; Γ ` (letr ρ in e) :τ

∆, {ρ}; Γ ` e :τ
htput

∆, {ρ}; Γ ` put[ρ](e) : (τ at ρ)

∆, {ρ}; Γ ` e : (τ at ρ)
htget

∆, {ρ}; Γ ` get[ρ](e) :τ

∆ ` Γ wfenv ∆′; Γ′ ` e :Ans
htonly

∆, ∆′; Γ, Γ′ ` (only ∆′ in e) :Ans

∆ ` τ wf ∆; Γ, {f :τ} ` v :τ
htfix

∆; Γ ` (fixf :τ.v) :τ

∆ ` τ wf
hthalt

∆; Γ ` haltτ :τ

Figure 3.4: Main Typing Judgement
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∆ ` τ wf

wfunit
∆ ` unit wf

∆ ` τ1 wf ∆ ` τ2 wf
wfarrow

∆ ` τ1
∆
→ τ2 wf

∆, {ρ} ` τ wf
wfall

∆ ` ∀ρ.τ wf

∆, {ρ} ` τ wf
wfat

∆, {ρ} ` (τ at ρ) wf

wfAns
∆ ` Ans wf

∆ ` Γ wfenv

wfenvempty
∆ ` {} wfenv

∆ ` Γ wfenv ∆ ` τ wf
wfenvbv

∆ ` Γ, {x :τ} wfenv

Figure 3.5: Auxiliary typing judgements.
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we implicitly assume that region variables free in Γ occur in the region context ∆. If

we just assume that region variables in Γ occur in ∆ for the rules htvar and htunit

a simple inductive argument over the derivation of typing rules as presented will

show that if ∆; Γ ` e : τ then ∆ ` Γ wfenv. The only interesting cases are for the

rules such as htonly and htabs where we explicitly require the inductive hypothesis

(∆ ` Γ wfenv) to hold.

The typing rules in Figure 3.4 closely resemble the typing rules for a polymorphic

simply-typed lambda calculi, where type polymorphism has been replaced with region

polymorphism. The rules htabs differs for the standard rule in that we check the body

of the function in a value environment that contains a subset of the enclosing value

environment. We check the body in a value environment consisting of those bindings

whose free region variables are mentioned in the effect annotation for the function.

A similar restriction is placed on the htonly rule. A simple inductive argument will

establish the fact that any closed program of type Ans which evaluates to an answer

must evaluate to the answer haltAns. So informally speaking the requirement that the

body of the only ∆ in e expression be of type Ans means the body does not return.

Our dynamic semantics takes advantage of this fact by throwing away the unneeded

control context and region stack.

Because the typing rules htonly and htabs check subexpressions in a nonstandard

way the standard substitution lemma for terms does not hold. A more restrictive

substitution for values and fix expressions does hold. Since our calculus is call-by-

value the more restrictive lemma is sufficient to prove type soundness for our calculus.
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3.5 Early Deallocation

A realistic implementation of our abstract semantics must adopt adopt a “region pass-

ing” semantics, where region variables are bound to dynamic values at runtime, and

therefore region abstractions can not be erased. The only expression takes an arbi-

trary set of region variables. At runtime we simply note what regions are dynamically

bound to the region variables passed to the only expression and safely deallocate any

other regions, since they are not needed to evaluate the rest of the program. This dy-

namic approach to early deallocation of regions is a novel approach, which is simpler

than current static approaches to early deallocation and more expressive. The cost of

the deallocation operation is at worst linearly related to the number of live regions.

Region deallocation primitives in other system are constant time operations. So our

more flexible dynamic approach is not without its cost. But for our type-preserving

garbage collector this extra cost is negligible, since we can bound the number of live

regions to a small constant.

Consider the function

fun f[ρa, ρb](x:int at ρb):Ans =

free region ρa in (get[ρb](x) ; halt())

which uses a new free region operator that deallocates ρa before evaluating its body.

At first glance it would seem that region ρa is not used in the body of f so this early

deallocation of ρa is safe. However, consider the following calling context for f

letr ρ1, ρ2 in

if e then f[ρ1, ρ2](put[ρ1](1))

else f[ρ1, ρ1](put[ρ1](1))

The expression put[ρ](1) stores the integer into the region ρ1 and returns a refer-

ence to the integer. Notice that if we execute the first branch of the conditional then
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f behaves as expected. However, if we execute the second branch then at runtime the

region variables ρa and ρb are both bound to the same region and the program will

attempt to access a region which we have erroneously deallocated. To handle this

situation correctly we can use various typing disciplines to prevent programs from

deallocating region variables which may be aliased[CWM99]. The static approaches

do not incur any runtime overhead, but are relatively complex systems and would

disallow us from writing the program above.

Using our dynamic approach we write f as

fun f[ρa, ρb](x:int at ρb):Ans =

only ρb in (get[ρb](x) ; halt())

At runtime we determine what region is actually bound to ρb, and deallocate the

region bound to ρa if it is distinct from ρb. If ρa and ρb are bound to distinct regions

then we know that it is safe to deallocate the region associated with ρa since we do

not need it to evaluate the rest of the computation. It is not hard to implement

such a system in practice. In our prototype system all of the region primitives are

less than 200 lines of C. We simply reserve a “live-bit” for each region and mark all

regions bound in the context of the only expression as live. All other unmarked regions

can be reclaimed. This particular approach takes time proportional to the number

of total allocated regions in order to reclaim all the live regions. An alternative

implementation that uses doubly-linked lists of free and allocated regions can be

implemented whose runtime is proportional to the number of live regions.

This dynamic approach to region deallocation is similar to the work of Aiken and

Gay [GA98]. However, they use a relatively weak region type system and a more

expensive reference counting approach that requires updating a reference count for

each interregion store. Because our type system provides more guarantees we can

safely deallocate regions without needing to maintain any reference counts.
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3.6 Safety Properties

The safety properties of our language are standard. We include the full proofs of all

the theorems and lemmas in Appendix A. Here we only describe the main theorem

and associated lemmas. We begin with the definition of stuck programs

Definition 1 (Stuck Program) The evaluation of a program P1 is stuck if P1 is

not an answer and there is no P2 such that P1 7→P P2.

The main safety theorem is as follows

Theorem 1 (Type Soundness) If ` P1 wt, then there is no stuck P2 such that

P1 7→
∗
P P2.

The proof of our main theorem follows directly with a slightly stronger induction

hypothesis over the 7→∗
P relation and the application of Lemma 1.1 and Lemma 1.2.

Lemma 1.1 (Type Preservation of Programs) If ` P1 wt and P1 7→P P2, then

` P2 wt.

Lemma 1.2 (Progress) If ` P1 wt, then there exists P2 such that P1 7→P P2 or P1

is an answer, i.e. P1 is not stuck.

We do not have a general substitution lemma for terms but a restricted form which

only holds for values and fix expressions

Lemma 1.3 (Typing Under Term Substitution) If ∆; Γ ` e : τ and ∆; Γ, {x :

τ} ` e′ :τ ′ then ∆; Γ ` e′[e/x] :τ ′, where e = v or e = (fixf :τ ′′.v).

The following lemma allows us to throw away unneeded bindings and region variables

from our value environment and region context by inspecting the type of values and

fix expressions it is need in our proof of the substitution lemma for the htabs case.
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Lemma 1.4 (Region Context Strengthening) If ∆′ ` τ wf, ∆ ` Γ wfenv,

∆′ ` Γ′ wfenv, and ∆, ∆′; Γ, Γ′ ` e :τ where e = v or e = (fixf :τ.v) then ∆′; Γ′ ` e :τ

The remaining lemmas are used in the proof of the previous lemmas and are included

for completeness but are not technically interesting

Lemma 1.5 (Type Preservation of Expression) If ∆; {} ` e1 : τ and e1 7→e e2,

then ∆; {} ` e2 :τ .

Lemma 1.6 (Redex Decomposition) If ∆; {} ` e :τ then e is a value or e = E[r]

where r is a redux. A redux is any of the following forms:

1. ((λx :τ ′.e′)∆′′

v) where ∆ = ∆′, ∆′′

2. ((Λρ.e′)[τ ′])

3. (fixf :τ ′.v)

4. letr ρ in e′

5. get[ρ](put[ρ](e′))

6. only ∆′ in e′

7. haltτ
′

Lemma 1.7 (Canonical Forms) If ∆; Γ ` v : τ then one of the following must be

true.

1. τ = unit iff v = 〈〉

2. τ = τ1
∆′′

→ τ2 iff v = (λx :τ1.e)
∆′′

and ∆ = ∆′, ∆′′

3. τ = ∀ρ.τ ′ iff v = (Λρ.e)
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4. τ = (τ ′ at ρ) iff v = put[ρ](v′) and ∆ = ∆′, {ρ}

Lemma 1.8 (Typing Relation Implies Well Formedness) If ∆; Γ ` e : τ then

∆ ` τ wf.

Lemma 1.9 (Typing Under Region Variable Substitution) If ∆, {ρ′}, {ρ}; Γ `

e :τ then ∆, {ρ′}; Γ[ρ′/ρ] ` e[ρ′/ρ] :τ [ρ′/ρ].

Lemma 1.10 (Control Context Independence) If ∆; Γ ` E[e] :τ then ∆; Γ ` e :

τ ′.

Lemma 1.11 (Control Context Replacement) If ∆; Γ ` e1 :τ , ∆; Γ ` e2 :τ , and

∆; Γ ` E[e1] :τ
′ then ∆; Γ ` E[e2] :τ

′.

Lemma 1.12 (Region Stack Independence) If ∆; Γ ` R[e] : τ then there exists

∆′ such that ∆, ∆′; Γ ` e :τ .

Lemma 1.13 (Region Stack Replacement) There exists ∆′ such that if ∆, ∆′; Γ `

e1 :τ , ∆, ∆′; Γ ` e2 :τ , and ∆; Γ ` R[e1] :τ then ∆; Γ ` R[e2] :τ .

3.7 Summary

We have presented a type system that allows for reasoning about arena style mem-

ory management in a safe way. Our calculus is designed to check that a particular

assignment of values to regions is safe, unlike the original region type systems which

were geared toward region inference. Our system allows for early deallocation, which

is a critical feature needed by a garbage collector. We also believe the calculus itself

has applications beyond type-preserving garbage collection. We have established the

type soundness of our core calculus using standard syntactic techniques.



CHAPTER 3. A SIMPLE REGION CALCULUS 72

Tofte and Talpin established the soundness of their calculus through a rule-

based co-induction argument [TT94]. Recently there have been several different

reformulation that use different proof techniques to establish soundness [CWM99,

BHR99, ZG00, CHT01, Cal01]. Our calculus is inspired by the work of Banerjee,

Heintze, and Riecke [BHR99]. However, rather than using a denotational model

to establish soundness, we use the simpler syntactic techniques seen in other cal-

culi [CWM99, CHT01, Cal01]. Our small-step operational semantics resembles the

semantics of the store-less region calculus [CHT01] presented by Calcagno, Helsen

and Thiemann. However, we include an explicit set of valid regions during reduction

to model illegal accesses to dead values in a way similar to the big step semantics

presented by Calcagno et al. [Cal01]. Also our deallocation semantics differs signifi-

cantly from both approaches in that we do not allow for dangling pointers.

Our semantics allows for the early deallocation of regions, a feature found in only

two other region calculi [AFL95, CWM99]. Unlike Aiken et al. [AFL95] we guarantee

safety using a simple type soundness argument, rather the proving soundness of an

auxiliary static analysis which results in the safe insertion of explicit deallocation

operators into the original Tofte-Talpin region calculus. Unlike Crary et al. [CWM99]

we deal with region aliasing by using runtime checking. Also programs in our calculus

can be a mix of CPS and direct-style terms. No region calculus we know supports

both direct-style and CPS converted programs efficiently.



Chapter 4

A Type-Preserving Garbage

Collector

4.1 Introduction

In Chapter 3 we introduced a simple region calculus and established the soundness of

the language. Using a variant of the region calculus presented in Chapter 3, we will

show how to construct a garbage collector for a simple list reverse program written in

an ML-like language. We will be able to typecheck the resulting program and garbage

collector, and no unsafe primitives will be needed in the implementation. Along the

way, we will compare our garbage collector with the toy collector we presented in

Chapter 2. An important property of our garbage collector is that it is guaranteed

to preserve the types of the program being garbage collected.

A functional programing view of garbage collectors. Figure 4.1 illustrates a

simple two-space stop-and-copy collector. When the collector is invoked it is passed

three variables from, k, and roots, which are the current allocation space, the current

73
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fun gc(from, k, roots) =

if(need_gc(from)) then

let to = new_space() in

let roots’ = copy(from, to, roots)

in free_space(from) ; k(to, roots’)

else k(from, roots)

from to

initial

copy

flip

Figure 4.1: Traditional garbage collector.

continuation, and the set of live roots respectively. Heap values are allocated in

the current allocation space. The current continuation represents the “rest of the

program” and takes as arguments an allocation space and the live roots which point to

all the currently reachable data the program may wish to use. All the data reachable

from the live roots is allocated in the current allocation space.

The collector uses some heuristic to determine whether a garbage collection should

occur. If so, the collector creates a fresh allocation space (to) then makes a deep copy

of the live roots into the to-space. All the data reachable from the new roots (roots’)

should live in the to-space. The collector can now safely free the old from-space and

resume the program with the new allocation space and new live roots. Traditionally

this operation is called a “flip” because once the from-space is deallocated its storage

can immediately be reused as the next to-space, so the roles of the from-space and

to-space are reversed. The algorithm we have sketched above is a functional view

of the same algorithm presented in Chapter 2. Rather than mutating the roots in

place and mutating the allocation arena, our program simply creates fresh copies.

In a linear typing framework, these copies can be safely implemented as destructive

updates. The continuation k represents the return address of the calling function and

the variable roots represents the call stack.
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In order to guarantee that the from-space can be safely deallocated, we must be

certain that “the rest of the program” never accesses values allocated in the from-

space. If our program is written in continuation-passing style, we can easily enforce

this invariant by using the type system we described in Chapter 3. We can assign

the current continuation (k) a type that guarantees it does not access values in the

from-space.

A first-order ML-like language with regions. Our calculus in Chapter 3 can

easily be extended to include disjoint unions, records, and recursive types. After these

extensions our calculus is sufficiently powerful for implementing a type-preserving

garbage collector. The original calculus is higher-order but as we will see the higher-

order features of our calculus are not strictly needed in order to implement a type-

preserving garbage collector, and make writing a collector more difficult since the

garbage collector must copy values captured by the closure of a higher-order func-

tion. However, the safety of our higher-order calculus immediately implies the safety

of a first-order variant, and the proof techniques for the higher-order calculus are sim-

pler because there are fewer syntactic categories. The higher-order calculus also has

applications beyond our type-preserving garbage collector. However, to simplify our

presentation, we will use a first-order variant extended into a full ML like language

and use more traditional ML syntax in the remainder of our discussions.

Figure 4.2 contains a program that reverses a list of integers. The function itrev

takes two arguments l and acc both of type lst and returns a value of type lst.

The argument l holds the list to be reversed while acc holds the intermediate results.

The recursive call to itrev is a tail call, so we do not need to allocate a new stack

frame for this call. Note when the program first calls itrev the call is not a tail call,

so we must allocate a trivial stack frame for this call. As the function recursively
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type lst = Nil | Cons (int, lst)

fun itrev(l:lst, acc:lst):lst =

case l of Nil ⇒ acc

| Cons(hd,tl) ⇒
let acc’ = Cons(hd, acc)

in itrev(tl, acc’)

let l = Cons(1, Cons(2, ... )) in

let rl = itrev(l, Nil) (* non-tail call *)

in rl

1 2 3 4

1 2 3 4

1

1 2 3 4

2 1

l

acc

l

l
acc

acc

Figure 4.2: Iterative List Reverse

descends l the previous list cells, contained in the dotted box, become unreachable

and can be reclaimed. The function therefore, need only retain a constant amount of

live data in addition to the list itself.

Region inference would not allow us to immediately free each list cell in l after

we have traversed it. A region system would force us to hold onto all the cells

of l until the function returns acc. Type systems based on linear logic may give

us more fine-grain control over allocation and deallocation and allow us to capture

our reasoning for this particular instance, but they are fragile in the presence of

aliasing [Bak92a, Bak93, SWM00, WM00].

We will convert the program in Figure 4.2 into an equivalent program that includes

a function to garbage-collect dead values. The resulting program will remain well

typed. We will need to perform CPS and closure conversion to the program, to make

our informal reasoning about the stack and live values explicit. Afterwards, we will

perform a simple region annotation to the resulting program to make precise what

values live on the heap and when they are allocated. Finally, with this CPS-converted,

closure-converted, region-explicit program we can synthesize a function that acts as

a garbage collector for the program.
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type lst = Nil | Cons(int, lst)

fun itrev(k:lst → Ans, l:lst, acc:lst):Ans =

case l of Nil ⇒ k(acc) (* return *)

| Cons(hd, tl) ⇒
let acc’ = Cons(hd, acc)

in itrev(k, tl, acc’)

and ret_l(v:lst):Ans = (* return continuation *)

let rl = v (* bind return value rl *)

in rl ; halt() (* exit program *)

let l = Cons(1, ...) in

let k = ret_l

in itrev(k, l, Nil)

Figure 4.3: CPS-converted program.

4.2 CPS and Closure Conversion

If we CPS convert [Fis72, Plo75, Ste78, Kra87, App92a, Sab98] our source program

reasoning about the control flow of the program becomes explicit. Figure 4.3 is the

result of applying a standard CPS conversion to our source program. The itrev

function now takes a return continuation (k), which it calls with the return value of

the function. The single return continuation in our program is ret l which accepts

the result passed to and exits. Notice that all our functions now return the abstract

type Ans.

If we were to invoke our garbage collector in the body of itrev, the collector

would need to examine any data captured by the closure of the return continuation k.

This analogous to the problem of having a traditional collector examine a stack frame

for roots. Our garbage collector must have a description of the closure of k in order

to copy the closure. We can solve this problem, by performing a typed first-order

closure conversion algorithm as outlined by Tolmach and Oliva [TO98]. This form of

closure conversion is also known as “defunctionalization” which was described first in
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Higher-Order First-Order

let y = 1 in

let f = if e then (λx:int.x)

else (λx:int.x + y)

in f 1

type clos = C1 | C2(int)

fun apply (f, x) =

case f of C1 ⇒ x

| C2(y) ⇒ x + y

let y = 1 in

let f = if e then C1

else C2(y)

in apply (f, 1)

Figure 4.4: First-order closure conversion.

the untyped setting by Reynolds [Rey72].

Figure 4.4 illustrates Tolmach’s closure conversion technique, in which the layout

of every closure is made explicit. We also encode the result of a very simple control-

flow analysis [Shi91, Tol94] in the process of using Tolmach’s technique. The control-

flow analysis is however not completely free, as we need the whole program at this

point. This makes separate compilation difficult. However, with the addition of

extensible sums, we can perform closure conversion locally for each compilation unit

and merge units with little overhead [TO98].

Figure 4.5 contains our CPS-converted and closure-converted program along with

the control-flow graph we obtain from our control-flow analysis. In general each call

site of itrev will require one new data constructor to represent each distinct return

continuation.

Tagless garbage collection algorithms examine the return address of a function

stored in the stack frame in order to determine the layout of the stack frames [DMH92].

The transformation we have performed allows us to perform a similar operation.

The tag of each data-constructor acts as the return address, the type of the data-

constructor describes the stack layout, which is empty in this case. So we can replace



CHAPTER 4. A TYPE-PRESERVING GARBAGE COLLECTOR 79

type lst = Nil | Cons(int, lst)

type cont = Ret_rl

fun itrev(k:cont, l:lst, acc:lst):Ans = (* B *)

case l of Nil ⇒ apply(k, acc) (* B1 *)

| Cons(hd, tl) ⇒ (* B2 *)

let acc’ = Cons(hd, acc)

in itrev(k, tl, acc’)

and apply(k:cont, v:lst):Ans = (* C *)

case k of Ret_rl ⇒ (* C1 *)

let rl = v (* bind return value rl *)

in rl ; halt() (* exit program *)

let l = Cons(1, ...) in (* A *)

let k = Ret_rl

in itrev(k, l, Nil)

B

B1 B2

A

C

C1

Figure 4.5: CPS-converted and closure-converted program.

low-level table of bitmaps with a set of high-level type declarations.

The chief disadvantage of first-order closure conversion is that it makes separate

compilation more difficult. However, providing true separate compilation using stan-

dard higher-order techniques [MMH96, MWCG98] that preserve abstraction and have

better separate compilation properties is not as simple as it may seem. Even these

techniques must have a method of merging type information at link time or force

all objects to be uniformly tagged, which is often undesirable. We will discuss these

issues in Chapter 8.

4.3 Region Annotated

We have been informally arguing about where and when objects are allocated. Figure

4.6 shows our program with explicit region annotations. Notice that the type lst in

Figure 4.3 becomes a type constructor lst[ρ] parameterized by a region in which the

list lives. Since we can represent both the empty list and return continuation as single
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type lst[ρ] = Nil (* unboxed *)

| Cons(int, lst[ρ]) at ρ (* boxed *)

type cont[ρ] = Ret_rl (* unboxed *)

fun itrev[ρalloc](k:cont[ρalloc], l:lst[ρalloc], acc:lst[ρalloc]):Ans =

case l of Nil ⇒ apply(k, acc)

| Cons(hd, tl) ⇒
let acc’ = lst[ρalloc].Cons(hd, acc)

in itrev(k, tl, acc’)

and apply[ρalloc](k:cont[ρalloc], v:lst[ρalloc]):Ans = ...

letr ρheap in (* initial program heap *)

let l = lst[ρheap].Cons(1, ...) in (* heap allocate list *)

let k = cont[ρheap].Ret_rl (* create return continuation *)

in itrev[ρheap](k, l, lst[ρheap].Nil)

Figure 4.6: Program itrev after region annotation.

machine words we do not need to allocate space for them. We need to allocate space

only when constructing list cells with the Cons data-constructor; this is reflected in

the type Cons(int, lst[ρ]) at ρ.

Both the itrev and apply functions each take a single region parameter (ρalloc),

which corresponds to the allocation pointer in a normal untyped system. When we

allocate a new list cell we use the notation lst[ρheap].Cons(1,...) which instanti-

ates the region parameter (ρ) of the type constructor lst to ρheap and indicates that

the new list cell will be allocated in the region ρheap. We have assigned regions to

types so that values are allocated in one global region, which acts like a traditional

heap. When we call itrev we instantiate its region parameter ρalloc to ρheap. We

could apply a more refined local region analysis to avoid heap-allocating an object

when the lifetime of the object is locally obvious.

If the return continuation captured some live variables we would heap-allocate the

continuation. This approach simplifies the compilation of advanced control features

such as exceptions and first class continuations and also simplifies reasoning about
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type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](k:cont[ρalloc], l:lst[ρalloc], acc:lst[ρalloc]):Ans =

if need_gc[ρalloc]() then (*** safe point ***)

let roots = gc_cont[ρalloc].Ret_itrev(k, l, acc)

in gc[ρalloc](roots)

else ... (* body of original itrev *)

and apply[ρalloc](k:cont[ρalloc], v:lst[ρalloc]):Ans = ...

and gc[ρfrom](roots:gc_cont[ρfrom]):Ans = ...

...

Figure 4.7: Program itrev with safe point inserted.

safety. However, heap-allocating return continuations could impact performance in

an undesirable way. A system extended with linear types, along with a set of simple

syntactic restriction would allow us to stack allocate return continuations. In Chapter

7 we will discuss such a system.

4.4 GC Safe Points

Part of the interface between a garbage collector and the compiler is a description

of safe points. These are locations during the execution of the mutator where it is

safe to invoke the garbage collector. At these safe points the compiler usually emits

type information describing which values are live at the safe point. Compilers that do

optimizations must also be careful not to perform certain optimizations across safe

points. It is complicated to characterize precisely which optimizations are and are

not allowed [DMH92]. It requires that the compiler understand the special semantics

of what happens at a garbage-collection safe point.

In our framework all these issues are handled straightforwardly: since the garbage

collector is just a normal function, the compiler does not need to be modified to be
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type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ... and apply[ρalloc](...):Ans = ...

and gc[ρfrom](roots:gc_cont[ρfrom]):Ans =

letr ρto in

let roots’ = copy_gc_cont[ρfrom][ρto](roots) in

only ρto in (* deallocate ρfrom *)

case roots’ of

Ret_itrev(k, l, acc) ⇒ itrev[ρto](k, l, acc)

and copy_gc_cont[ρfrom, ρto](x:gc_cont[ρfrom]):gc_cont[ρto] = ...

...

Figure 4.8: “Flipping” from and to space.

aware of any special semantics. A garbage collector is just a function that takes some

data value. Figure 4.7 shows such a safe point in our program. Depending on some

heuristic the code either continues executing or packages the set of current live roots

into a return continuation for the garbage collector, described by the type gc cont.

With region types we are able to statically verify that the data value is actually

the set of live roots for the entire program. If a buggy compiler or optimizer did

not include all possible roots we would catch this error at compile time, since not

including a root would result in a scoping error or a violation of the region type

system. More importantly, we would be able to easily identify where the error was

by examining the code statically. Debugging these sorts of problems in a traditional

unsafe system is considerably more difficult, because being able to isolate a bug of

this sort in a large program is a serious challenge.
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4.5 A Safe Flip

Figure 4.8 contains the code for the garbage collector. It copies the roots into a

new region (ρto) then it implicitly deallocates the old region (ρfrom) and resumes the

program with the new roots and new region. The term only ρto in ... requires that the

body of the expression does not return, i.e. has type Ans, and can be safely evaluated

using only the region dynamically bound to ρto.

In this case it is obvious that ρto is distinct from ρfrom as it is a new fresh region.

A static type system that tracks the uniqueness of regions such as [CWM99] would be

sufficient, and our dynamic apporach is not strictly necessary in this case. However,

since the extra runtime overhead is negligible, we prefer our simpler dynamic approach

to the more complicated static system. We believe that we can integrate the explicit

deallocation techniques that use static typing to prevent region aliasing with our

implicit approach to give us the benefits of both approaches, so that we resort to this

dynamic approach when we are unable statically determine aliasing relationships.

4.6 Safe Copy Function

Figure 4.9 sketches the code for a naive copy function. The type of the copy function

guarantees that the function performs a deep copy. The copy function is not written in

continuation-passing style so it uses a stack while traversing the list. We could write

the copy function in continuation-passing style and heap-allocate all its temporary

space in a third region which we could reclaim after we are done. Alternatively if

we extend our type system with enough technical machinery so that we can recycle

the space used by the continuations we could implement what would amount to the

Deutsch-Schorr-Waite pointer reversal algorithm [SW67, Vei76, SF98, WM00].
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type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ... and apply[ρalloc](...):Ans = ...

and gc[ρfrom](...):Ans = ...

and copy_gc_cont[ρfrom, ρto](x:gc_cont[ρfrom]):gc_cont[ρto] =

case x of Ret_itrev(k, l, acc) ⇒
let k’ = copy_cont[ρfrom, ρto](k) in (* walk the "stack" *)

let l’ = copy_lst[ρfrom, ρto](l) in

let acc’ = copy_lst[ρfrom, ρto](acc)

in gc_cont[ρto].Ret_itrev(k’, l’, acc’)

and copy_lst[ρfrom, ρto](x:lst[ρfrom):lst[ρto] = ...

and copy_cont[ρfrom, ρto](x:cont[ρfrom]):cont[ρto] = ...

...

Figure 4.9: Copying roots.

Note that the function copy cont performs an operation equivalent to “walking

the stack”. Since we have CPS-converted and closure-converted our program, the

continuation k represents the current stack frame. It may be the case that we can

adapt the higher-order techniques [MMH96, MWCG98] to provide true abstraction

and separate compilation in the presence of a garbage collector by requiring each

abstract object to provide a method1 to copy or trace the object. It is not clear what

the software engineering and performance issues are for this technique so we consider

it to be future work. A more serious problem with our copy function is that it does

not preserve pointer sharing.

4.7 Problems with Sharing

Consider the data structure in the first half of Figure 4.10. If we were to apply our

garbage collection technique with a naive copy function it would convert the originally

1A closure can be thought of a an object with a single “apply” method.
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Shared Unshared

Figure 4.10: Shared vs. unshared values.

shared list of lists into an unshared version which uses more space. In the presence

of cyclic data structures our naive copy function would not terminate. Traditional

garbage collectors use forwarding pointers to preserve sharing. However, forwarding

pointers are not the only mechanism by which to do this.

Figure 4.11 outlines a copy function that uses an auxiliary hash table augmented

with one primitive to return the unique pointer address of an object. This approach,

while inefficient, demonstrates that the underlying algorithm needed to preserve shar-

ing is not inherently difficult to type. In Chapter 5 we will outline how to encode

forwarding pointers in a safe way.

4.8 Summary

Although our approach as presented is not practical for general-purpose systems, we

will show how practical systems can be built by extending our current outline. The

most important insights are that a general-purpose collector can be built on top of a

set of much simpler primitives. If standard type systems are too weak, we can rely

on runtime checking or simply add “the right lemma” and encode what amounts to a

small proof sublanguage to establish important preconditions needed for any ad-hoc
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prim objId : [α] α → int

tycon tbl :: Rgn → Typ → Typ → Typ = ...

fun newTbl[ρtbl, α, β](sz:int):tbl[ρtbl, α, β] = ...

fun inTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α):bool = ...

fun getTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α):β = ...

fun addTbl[ρtbl, α, β](t:tbl[ρtbl, α, β], key:α, val:β):unit = ...

type lst[ρ] = Nil | Cons(int, lst[ρ]) at ρ
type cont[ρ] = Ret_rl

type gc_cont[ρ] = Ret_itrev(cont[ρ], lst[ρ], lst[ρ]) at ρ

fun itrev[ρalloc](...):Ans = ...

...

and share_copy_lst[ρtbl, ρfrom, ρto]

(t:tbl[ρtbl, lst[ρfrom], lst[ρto]],x:lst[ρfrom]):lst[ρto] =

case x of Nil ⇒ lst[ρto].Nil

| Cons(hd, tl) ⇒
if inTbl[ρtbl, lst[ρfrom], lst[ρto]](x) then (* is forwarded? *)

getTbl[ρtbl, lst[ρfrom], lst[ρto]](x)

else let hd’ = hd in

let tl’ = share_copy_lst[ρtbl, ρfrom, ρto](t,tl) in

let x’ = lst[ρto].Cons(hd’,tl’)

in addTbl[ρtbl, lst[ρfrom], lst[ρto]](x,x’) ; (* set forwaded *)

x’

...

Figure 4.11: Preserving sharing with a hash table.
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reasoning that does not fit into a standard framework.



Chapter 5

Forwarding Pointers

5.1 Introduction

The easiest way to understand how to encode forwarding pointers is to start by en-

coding as many of the garbage-collector invariants as possible within the type system.

We will discover that the type system outlined so far can capture many important

invariants, but is not sufficiently expressive to capture them all precisely. However,

if we examine our partial solution we will gain enough insight to come up with a full

solution by extending our system with a single primitive.

Figure 5.1 sketches one approach to forwarding pointers. Some garbage collectors

may overwrite a field of the object, but to simplify our presentation we assume every

heap allocated object contains an extra word to hold a forwarding pointer which is

either NULL or a pointer to an object of the appropriate type in the to-space. Notice

that we have two different list types. The gc lst type describes the garbage collector’s

view of lists. From the garbage collector’s standpoint, lists are allocated in a from-

space containing forwarding pointers into objects in a to-space. It must be the case

that lists allocated in the to-space have forwarding pointers which are always set to

88
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tycon ref :: Rgn → Typ → Typ

type gc_lst[ρfrom, ρto] = Nil

| Cons(ref[ρfrom,fwd_ptr[ρto]], int, gc_lst[ρfrom, ρto]) at ρfrom

and fwd_ptr[ρto] = NULL | PTR(lst[ρto])

and lst[ρto] = Nil

| Cons(ref[ρto, fwd_null], int, lst[ρto]) at ρto

and fwd_null = NULL

fun itrev[ρalloc](...):Ans = ...

...

and share_copy_lst[ρfrom, ρto](x:gc_lst[ρfrom, ρto]):lst[ρto] =

case x of Nil ⇒ lst[ρto].Nil

| Cons(f, hd, tl) ⇒
(case deref[ρfrom](f) of NULL ⇒

let hd’ = hd in

let tl’ = share_copy_lst[ρfrom, ρto](tl) in

let l = lst[ρto].Cons(mkref[ρto](fwd_null.NULL), hd’ , tl’)

in f := l; l

PTR(l) ⇒ l)

Figure 5.1: Encoding forwarding pointers.

NULL. The lst type describes lists that the mutator operates on, and maintains the

invariant that the forwarding pointer is set to NULL. The fact that the forwarding

pointer is a mutable field which the garbage collector will mutate is captured by the

use of the ref constructor.

The function share copy lst takes objects of type gc lst and makes a copy of

type lst which preserves the underlying pointer sharing in the original gc lst. This

code handles only acyclic lists but can be extended to handle the cyclic case. At first

glance this would seem to be a complete solution; unfortunately there is one thorny

problem. If the mutator operates on objects of type lst how did we get an object of

type gc lst in the first place?

Ideally, we would like to argue that there is a natural subtyping relationship that

allows us to coerce objects of type lst into objects of type gc lst. For this to work

we need the ref constructor to be covariant. However, it is well known that covariant
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references are unsound. However, Java adopts this rule for arrays1 and achieves safety

by requiring an extra runtime check for every array update. We cannot adopt the

approach used by Java. This runtime check would prevent our garbage collector from

setting any forwarding pointer to a non-null value.

However, rather than disallowing unsafe updates to an object we can disallow

unsafe dereferences, more importantly we can disallow unsafe dereferences in a way

that does not require a runtime check for every access. Given a value of type lst,

if after casting it to a value of type gc lst our program never accesses any value of

type lst this cast is safe.

If our program is written in continuation-passing style, we can enforce this guar-

antee by making sure that after casting the value of type lst to a value of type gc lst

we pass the newly cast value immediately to a continuation that never accesses any

value of type lst. One way to guarantee this condition statically is to type the con-

tinuation that receives the cast value in a typing context where the type lst is not

bound.

Denying access to values of type lst after the program has performed a cast is too

restrictive to be useful. However, since both the lst and gc lst are region-annotated

types, we can achieve a similar sort of guarantee and still write useful programs by

revoking the right to the access the region where the type lst is allocated, using a

similar scoping trick. We can do this because after our garbage collector casts a lst

value to a gc lst value it never needs to examine the original value as a value of

type lst. After our garbage collector runs, the original lst value is garbage, so the

mutator never needs to access the region where the lst value was allocated. However,

if we deny access to the type lst by denying access to the region it lives in, where

is the value of type gc lst allocated? We solve this problem by introducing a new

1A ref cell can be thought of as a one-element array.



CHAPTER 5. FORWARDING POINTERS 91

“fake” region which is equivalent for the purposes of subtyping to the region we denied

access to but for all practical purposes appears to be a distinct fresh region.

To do this we must introduce a nonstandard and ad-hoc form of subtyping on

references. This allows for safe covariant references by using region variables to control

access to potentially unsafe pointer aliases. Given two types A and B where A is a

subtype of B and a region ρ the type ref[ρ, A] is a subtype of ref[ρ′, B] (where

ρ′ is a new “fake” region variable) provided that the rest of the program does not

access any values in region ρ. This rule is admittedly ad-hoc. Our approach is based

on the observation of Crary, Walker, et al. [CWM99] that region variables act like

“capabilities”. We use this observation to revoke all old references to the object and

allow access to the object only through references of the object’s supertype. It is

important to note that we still must at run time check that ρ is not aliased by any

other region variable, so that the new region variable ρ′ refers to a unique region.

This extra alias check is needed for this approach to be completely sound, but all our

alias checks would be unnecessary in the system of Crary, Walker, et al.

Next we formally describe our approach to forwarding pointers by exhibiting a

“simple” language that provides safe covariant references. To make any formal safety

claims we first must describe a language that has subtyping and region-allocated

mutable references. This is best done in stages. We will first describe a system with

a trivial subtyping relationship on boolean values, as an extension to our original

region calculus. Then we will extend our language to include region-allocated mutable

references. Finally, we will describe how to provide safe covariant references by the

addition of one new operator. The language we describe here is quite small and

impractical for use in a real system. However, the language highlights the key ideas

needed to extend the system to include more nontrivial features.
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Syntax

types τ ::= . . . | bool(b) | bool

terms e ::= . . . | b | | (if e1 e2 e3)

values v ::= . . . | b | mkbool(b)

booleans b ::= true | false

control contexts E ::= . . . | | (if E e1 e2)

Expression Reductions

rdsiftrue (if mkbool(true) e1 e2) 7→e e1

rdsiffalse (if mkbool(false) e1 e2) 7→e e2

Figure 5.2: Booleans with subtyping.

5.2 Subtyping on Booleans

Figure 5.2 describes the syntax and dynamic semantics needed to provide a very

simple form of subtyping over boolean values. We add two new type constructors

bool and bool(b) the intuitive subtyping relationships are

bool ≤ bool(false) bool ≤ bool(true)

Figure 5.3 describes the needed extensions to our typing relations. Rather than

adding a subsumption rule to our typing relation we introduce a coercion term

mkbool(e) that promotes an expression of type bool(b) into an expression of type

bool. Note that the values of type bool are of the form mkbool(b) while a value of

type bool(b) is of the form b. The if expression is defined over values of type bool.

This coercive interpretation of subtyping can be extended to include all the stan-

dard subtyping relationships [BH98, Cra00]. Relying on explicit coercions rather than

subsumption gives us control over what contexts subtyping can be used in. We will
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∆; Γ ` e :τ

. . .

∆; Γ ` e1 :bool ∆; Γ ` e2 :τ ∆; Γ ` e3 :τ
htif

∆; Γ ` (if e1 e2 e3) :τ

∆ ` τ wf

. . .

wfbool
∆ ` bool wf

wfibool
∆ ` bool(b) wf

Figure 5.3: Typing judgements for booleans with subtyping.

see later that covariant references are only safe in a particular context.

5.3 Region-Allocated References

Figure 5.4 describes the extensions to our semantics for region allocated references.

A (τ ref ρ) describes a mutable reference to a value of type τ allocated in region

ρ. Rather than introducing a new syntactic category for locations, we simply use

variables bound by a new expression letl. Our semantics does not support mutual

recursion, but by using letl bound variables to encode locations we avoid the need

to add a type for heaps to our typing relation, which allows us to reuse many of

our previous results unchanged in proving soundness for this extended calculus. The

expression deref dereferences a location into a value. The expression update[ρ] e1 :=
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Syntax

types τ ::= . . . | (τ ref ρ) region annotated reference

terms e ::= . . .
| letl x : (τ ref ρ) = e1 in e2 bind new location
| deref[ρ](e) dereference location
| update[ρ] e1 := e2; e3 update location and continue

values v ::= . . . | x

control contexts E ::= . . .
| letl x : (τ ref ρ) = E in e
| deref[ρ](E)
| update[ρ] E := e1; e2 | update[ρ] v := E; e

region stacks R ::= [ ] | letr ρ in H

heaps H ::= R | letl x : (τ ref ρ) = v in H

Program Reductions

[ ]∆
def
= [ ]

(letr ρ in H)∆,{ρ} def
= (letr ρ in H∆,{ρ}) where ρ 6∈ ∆

(letl x : (τ ref ρ) = v in H)∆,{ρ} def
= (letl x : (ρ ref τ) = v in H∆,{ρ}) where ρ 6∈ ∆

Rρ,H,x,τ,v,H′ def
= R[letr ρ in H[letl x : (τ ref ρ) = v in H ′]]

rdsderef Rρ,H,x,τ,v,H′

[E[deref[ρ](x)]] 7→P Rρ,H,x,τ,v,H′

[E[x]]
rdsletupd Rρ,H,x,τ,v,H′

[E[update[ρ] x := v′; e]] 7→P Rρ,H,x,τ,v′,H′

[E[e]]
rdsletl R[letr ρ in H[R′[E[letl x : (ρ ref τ) = v in e]]]] 7→P Rρ,H,x,τ,v,R′

[E[e]]

Figure 5.4: Regions and references.
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e2; e3 evaluates e1 to a location allocated in region ρ. It then updates the location

with the value of e2 and continues by evaluating e3. Since locations are first class

values we add them to the set of values also.

In our previous semantics region stacks were simply a set of nested letr bindings.

To model references we extend region stacks so that between letr bindings there exists

a possibly empty sequence of nested letl bindings which encodes a mapping between

locations and values. We redefine the meaning of R∆ appropriately. We also introduce

the notation Rρ,H,x,τ,v,H′

which represents a region stack containing a bound region,

ρ, which contains a heap, H, containing a location, x, bound to some value, v, of

type τ and some arbitrary subheap H ′. This definition will be useful when defining

our dynamic semantics. The rule rdsderef dereferences locations. The rule rdsletupd

updates and existing binding. The rule rdsletl lifts letl bindings up to the appropriate

heap.

Figure 5.5 contains the straightforward typing rules for our new constructs. Notice

that by using variables bound by letl to encode locations we avoid the need for a

separate heap type and can type locations using the standard htvar rule.

5.4 Covariant References

Now that we have a calculus with a very basic form of subtyping and mutable

references, we can introduce a new term to our language that allows for safe covariant

references. Figure 5.6 describes the needed extensions. The term gclemma evaluates

an expression e1 to a value of type (bool(b) ref ρ1) it then coerces that value into a

value of type (bool ref ρ2) where ρ2 is a new freshly bound region variable. It then

binds this value to a variable (x) and evaluates the body (e2) in a restricted region

environment (∆) and new region stack (R′). The new region stack (R′) is the same as
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∆; Γ ` e :τ

. . .

∆ ` (τ1 ref ρ) wf ∆; Γ ` e1 :τ1 ∆; Γ, {x : (τ1 ref ρ)} ` e2 :τ2
htletl

∆; Γ ` (letl x : (τ1 ref ρ) = e1 in e2) :τ2

∆, {ρ}; Γ ` e : (τ ref ρ)
htderef

∆, {ρ}; Γ ` deref[ρ](e) :τ

∆, {ρ}; Γ ` e1 : (τ1 ref ρ) ∆, {ρ}; Γ ` e2 :τ1 ∆, {ρ}; Γ ` e3 :τ2
htletupd

∆, {ρ}; Γ ` (update[ρ] e1 := e2; e3) :τ2

∆ ` τ wf

. . .

∆, {ρ} ` τ wf
wfref

∆, {ρ} ` (τ ref ρ) wf

Figure 5.5: Typing judgements for regions and references.
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Syntax

terms e ::= . . .
| gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in

let x = e1 in

only ∆ in e2

control contexts E ::= . . .
| gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in

let x = E in

only ∆ in e

rdsgclemma Rρ1,H,x′,bool(b),b,H′

[E[gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in

let x = x′ in

only ∆ in e]] 7→P R′[E ′[only ∆ in e[x′/x]]]
where R′ = (Rρ1,H,x′,bool,mkbool(b),H′

)[ρ2/ρ1]
and E ′ = (E)[ρ2/ρ1] and ρ1 6∈ ∆

rdsgclemmaerr R[E[gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in

let x = v in

only ∆, {ρ1} in e]] 7→P haltAns

Figure 5.6: Covariant references.
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∆; Γ ` e :τ

. . .

∆1, {ρ1} ` Γ1 wfenv

∆1, {ρ1}, ∆2; Γ1, Γ2 ` e1 : (bool(b) ref ρ1)

∆2, {ρ2}; Γ2, {x : (bool ref ρ2)} ` e2 :Ans
htgclemma

∆1, {ρ1}, ∆2; Γ1, Γ2 ` (gclemma

assume (bool(b) ref ρ1) isa (bool ref ρ2) in

let x = e1 in

only ∆2, {ρ2} in e2) :Ans

Figure 5.7: Typing judgements for covariant references.

the original region stack except we have replaced the binding of the particular boolean

reference with its supertype and also globally renamed the region variable ρ1 to ρ2.

We also globally rename the region variable ρ1 to ρ2 in the current control context.

Both these operations are purely notational and have no real operational effect in a

realistic implementation, but are needed in our abstract semantics to guarantee type

preservation.

The reduction rule rdsgclemma is safe if and only if x′ does not occur in the body of

e. We can be assured of this fact when ρ1 is not in ∆. If x′ did occur in e and ρ1 is not

in ∆ this would violate the assumption that e is well typed. Figure 5.7 describes the

typing rule needed as a precondition for safety. Notice that we statically require that

ρ1 not be a member of ∆2, {ρ2}, this is a necessary but not sufficient restriction to

guarantee safety, because of region aliasing. We must check at runtime that aliasing

has not violated this constraint. If it has we must abort our computation using the

rdsgclemmaerr rule.
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5.5 Summary

In order to preserve pointer sharing in the underlying language efficiently, we must

support forwarding pointers. To support forwarding pointers in a safe way we must

safely transition between the mutator’s and collector’s view of a value. Doing so

requires some ad-hoc reasoning, which is encodable in our framework. We use regions

as capabilities to disallow access to unsafe aliases after we cast a value from the

mutator’s data-invariant and the collector’s data-invariant. Our approach is similar

in spirit to the one taken by Monnier et al. [MSS01]. In their approach they use a

different encoding of forwarding pointers, and transition between the mutator’s and

collector’s data-invariant using more standard scoping techniques.

Related work. The basic intuitions used in our approach to forwarding pointers

and Monnier et al. are the same. There must be some mechanism to disallow aliases to

objects with incompatible types. We rely on region annotated references to control

the aliasing. Monnier et al. only allow one live value of the appropriate type to

exist after their cast. Our approach avoids some technical difficulties encountered

by Monnier et al.’s approach. In particular for their type-preservation argument to

hold they must define a notion of minimally sufficient heap. That is a heap that

contains just enough bindings for an expression to be well typed. They basically,

need to show that they can strengthen their typing context by throwing away needless

bindings without destroying typability. We use a slightly more general lemma in our

soundness result for our region calculus in order to properly type only expressions.

Type-preservation in our framework reduces to the fact that all our typing rules hold

under alpha renaming.

Our approach is also slightly more expressive as we allow more than one value to
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survive across a cast. We also allow values to live in several different regions before and

after a cast. This extra flexibility requires an additional runtime check. However, we

believe that in order to support the integration of type-preserving garbage collection

and region based memory management we must support this more general mechanism.



Chapter 6

Performance Evaluation

6.1 Introduction

The type-preserving collectors we have described so far have the same asymptotic

complexity as existing trusted garbage collectors. However, we should not neglect

constant factors and other important pragmatic issues. We have built an experimental

system that includes a type-preserving garbage collector in order to understand the

performance issues involved. In this chapter we will describe our initial experience

with our system and identify potential performance penalties with our approach.

We will first compare the performance of our type-preserving garbage collector to a

traditional collector using a set of simple microbenchmarks. Then we will validate

the observations we make with a larger macrobenchmark.

Input programs. For our microbenchmarks we have chosen several programs seen

in the literature on region-based memory management. They are the following:

ackermann Ackermann’s function (n = 3, m = 6) [TT94]

fib Recursive Fibonacci (n = 33)

101
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sumit Tail recursive sum of the first n integers (n = 1000) [TT94]

sum Recursive sum of the first n integers (n = 1000) [TT94]

hsum Sum the value in a heap-allocated list (n = 1000) [TT94]

appel1 Program designed to demonstrate issues of space complexity (n = 1000)

[TT94]

appel2 Program designed to demonstrate issues of space complexity (n = 1000)

[TT94]

inline Inline variant of appel1 (n = 1000) [TT94]

quicksort Quicksort randomly generated list (n = 1000) [TT94]

itrev Recursively build a list of integers and reverse the result using a tail recursive

list reverse function (n = 10, 000)

share-copy Build and reverse a shared list of lists (n = 10, 000)

These programs are not a representative workload. However, they are sufficient for

a preliminary evaluation. It is important to note that our safe collector for appel1,

appel2, and inline uses asymptotically less space than approaches based on region

inference. Our safe collector is also more robust in that both appel1 and inline have

similar space characteristics which is not the case in the original Tofte-Talpin system.

For our macrobenchmark we have chosen a slightly modified version of life [App92a,

page 179]. We will discuss the details of our modifications when we discuss the results

of our macrobenchmark.
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Compiler. We have modified the back end of the MLton [MLT] compiler to accept

source programs that include a type-preserving garbage collector. The MLton com-

piler emits C code that is then processed by the system C compiler to produce a

runnable program. MLton has a breath-first-search (BFS) precise copying collector.

The compiler also stack-allocates the environments of return continuations.

The MLton front end translates ML programs into a first-order monomorphic in-

termediate language. The back end then performs optimizations on a CPS-based

representation of the front end’s intermediate language. Finally, it emits code to be

compiled by the system C compiler. The resulting program is linked with a library

of primitives that includes a garbage collector. We have designed a first-order inter-

mediate language which has a region type system. Our language can be used as the

target language of the MLton front end as well as the source language for the back

end. So our extensions sit between the front end and back end of MLton. This is not

the most ideal situation – it would be better to work with the optimized output of

the back end – but it simplifies some engineering details.

As outlined in Chapter 4 we CPS-convert and closure-convert the original pro-

gram. We then region-annotate the resulting program and build a specialized type-

preserving garbage collector for it. After every phase we type-check the result to

guarantee that the phase has not violated the type safety of the system. However,

to minimize the need to modify the back end of MLton we transform all region-type

variables into expression-level variables. So a function of the form

fun f[ρ](...):Ans = ...

is transformed into

fun f’[](r:rhandle,...):Ans = ...
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Our translation replaces the normal MLton allocation primitives with allocation

primitives that take a region handle as an extra argument. After this translation

we are still able to type-check the resulting program, but since we have eliminated

all of our region-typing constructs and converted them into a term-level objects,

type checking no longer guarantees safety. The main goal of these experiments is to

understand the performance impact of our approach and not to build a system with

a minimal trusted computing base. Therefore, we have not invested the effort needed

to add a region type system throughout all phases of the compiler. We consider this

to be an area for future work.

Compiling source programs. The source programs for all our microbenchmarks

are monomorphic and either already first-order or easily converted to a first-order

form. Rather than passing these programs through the MLton front end, which may

transform our programs in uncontrollable ways, we feed the source programs directly

into our first-order intermediate language with regions, using our own trivial front

end. These programs are then fed to the MLton back end after a type-preserving

garbage collector has been added. Our type-preserving garbage collector is written

as a depth-first-search (DFS) copy function that uses a stack to manage the auxiliary

storage needed for the recursive traversal. For our macrobenchmark we use the output

of the MLton frontend as the input to the phases that add a type-preserving garbage

collector.

For each source programs we collect data for the following variants:

orig Original program passed directly to MLton, run with MLton’s unsafe collector

cps Program run through CPS transform and first-order closure conversion, run with

MLton’s unsafe collector
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orig cps gc-tbl gc-fwd
ackermann 9 1,530 1,017 1,524
fib 9 137 98 131
sumit 9 9 2 3
sum 9 3,009 2,002 3,003
hsum 3,009 3,009 3,005 4,007
appel1 2,009 5,013 4,006 7,008
appel2 2,009 5,013 4,006 7,008
inline 2,009 3,012 2,005 3,007
quicksort 3,025 3,025 2,004 3,005
itrev 30,025 30,025 20,007 30,008
share-copy 50,025 50,025 40,012 60,020

Total 92,147 103,807 78,164 118,725

Table 6.1: Maximum number of live words in the heap.

gc-tbl Same as cps using a type-preserving collector with hash table to preserve

sharing

gc-fwd Same as cps using a type-preserving collector and forwarding pointers which

require an extra word of space for each object

6.2 Microbenchmarks

Retention of heap data. For our microbenchmarks we arrange for the garbage

collector to be invoked at every safe point and instrument the collector to keep track

of the maximum number of four-byte words copied by the collector. The first column

(orig) of Table 6.1 shows that for programs that are not tail recursive, stack allocat-

ing return continuations results in less heap data. We are using a simple flat-closure

representation; more advanced closure representation techniques can significantly re-

duce the amount of allocation [AS00]. For tail-recursive programs, such as sumit

and itrev, there is little or no difference between the first column and the others.
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If we compare the second column (cps) with the remaining columns we see that

type-preserving collectors, with a few exceptions, do not retain any extra live data.

There is a small constant difference between the MLton collector and the other type-

preserving collectors because the MLton collector is copying a constant amount of

auxiliary system data. All the objects in the gc-tbl case are smaller by one word,

because these objects do not need either type tags or space reserved for a forwading

pointer. Programs in the gc-tbl case retain fewer live words because objects are

smaller.

The type-preserving collector that uses forwarding pointers also uses an extra word

for a forwarding pointer, and because forwarding pointers are mutable values certain

unboxing and flattening optimizations the MLton backend can apply to both the cps

and gc-tbl programs are not performed for gc-fwd. Therefore, for programs such

as appel1 and appel2 the versions compiled with forwarding pointers allocate more

objects. If we generated the type-preserving garbage collector after the unboxing and

flattening optimization were performed, this difference should disappear. Ignoring the

inefficiency caused by disabling certain optimizations, it seems our type-preserving

collectors are equally efficient in reclaiming unused space.

Performance of collectors. Because each approach results in different allocation

patterns and object sizes, simply comparing program execution time is not a good

way to measure the efficiency of the garbage collector. For example if a program

allocates a small amount of data on the heap the overall performance of the program

will be largely independent of the garbage collector’s efficiency. Moreover, we can

always reduce the impact of garbage collection time by allowing a program to use

more memory so that the collector is invoked less frequently. Approaches which allow

for smaller objects such as the gc-tbl case may speed up some programs even though
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cycles/object (std. err.) cycles/word (std. err.)
cps 103 (2.11) 18 (0.09)
gc-tbl 112 (4.09) 31 (0.18)
gc-fwd 9 (4.56) 31 (0.20)

Table 6.2: Estimated cycle costs for copying.

using a hash table makes copying an object an expensive operation. The space savings

in object size may result in fewer invocations of the collector and thus better overall

performance.

Rather than measuring program execution time, we will estimate the copying

performance our collectors, by assuming the following model:

gc time = c1 · objects collected + c2 · words collected

This assumes that total garbage collection time is simply the sum of time spent

collecting each object and that the time spent collecting each object is some constant

amount plus the cost collecting each word of the object. We have estimated the per-

object and per-word costs by artificially varying both the object size and number of

objects collected for our set of programs and then performing a least-squares fit over

the data.

We manipulate object sizes by padding objects with needless words. We increase

the number of objects collected by varying how often the collector is invoked. We

increase the number of collections by simply forcing collector to run after the program

has crossed a fixed number of safe points. We use a special hardware register to

measure the number of elapsed machine cycles. We also track the number of objects

and words copied during each collection. We exclude fib and sumit since they retain

so little live data. Table 6.2 is the result of applying a least squares fit to our data.
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We also report the standard error of each parameter. We omit numbers for the orig

case since it is using exactly the same unsafe collector as cps.

Since the unsafe collector is interpreting tags it has a high per-object cost. Our

tagless scheme allows us to avoid any tag-interpretation overhead, so the per-object

cost for gc-tbl reflects the cost of the hash table lookup. For gc-fwd our per-object

cost is significantly lower than the two previous collectors.

The unsafe collector in cps is using a system-optimized memcpy function which

allows it to have a much smaller per-word cost. Our safe collector is copying objects

with a series of naive loads and stores. For objects smaller than eight words our safe

collector using forwarding pointers is more efficient than the default unsafe MLton

collector. We must add a caveat that with such small programs we are ignoring

important caching and paging effects in our analysis.

6.3 Macrobenchmark

Our microbenchmarks suggest that the raw copying performance of a type-preserving

collector using forwarding pointers is faster than the default unsafe collector for small

objects. We also observe that stack-allocating the closures of return continuations

can reduce the workload on the collector significantly. We want to check whether

these observations generalize to a larger and more realistic program. Therefore, we

have measured the performance of a modified version of life [App92a, page 179]. We

removed the use of polymorphic equality for this benchmark as well as removing the

routine that prints the resulting board, but have kept the computational core of the

program. Since our prototype system does not yet handle exceptions, we also have

removed all exceptions from the program.

We take the modified SML source code of life and use the MLton front end to
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program allocated collector copied
objects words objects words

orig 2,535,270 7,416,127 222,755 654,320
cps 40,929,057 176,361,759 8,760,603 23,273,826
gc-tbl 54,262,922 151,630,608 11,051,256 19,562,814
gc-fwd 54,261,068 205,885,881 9,810,287 27,185,673

Table 6.3: Allocation and collector workload for life.

program collector
real ms cpu ms sys ms real ms cpu ms sys ms

orig 819 730 89 118 110 8
cps 9680 8405 1275 4140 3856 284
gc-tbl 14179 13357 822 7204 6463 741
gc-fwd 8108 7926 182 1664 1605 59

Table 6.4: Execution times for life benchmark.

collector
measured ms estimated ms measured/estimated

orig 118 69.89 1.41
cps 4140 2659.43 1.36
gc-tbl 7204 3667.66 1.49
gc-fwd 1664 1855.37 0.88

Table 6.5: Accuracy of model.
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transform the program into a monomorphic first-order program suitable for our type-

preserving garbage collector. We compile the program in the same way we compiled

our microbenchmarks. We use the same default dynamic heap resizing policy of MLton

for all the collectors. Table 6.3 and 6.4 shows the results of our experiments.

Allocation and collector workload. Table 6.3 shows that the orig case allocates

much less heap data. This significantly reduces the workload placed on the collector.

The cps, gc-tbl, and gc-fwd cases all allocate a different number of objects because

of the interactions with the MLton optimizer. Objects in the gc-tbl case are smaller

by one word which is reflected in the number of words allocated. Because all the

collectors are using a heap resizing policy based on the ratio of live data and the

current heap size, the gc-tbl case is actually running with a smaller heap. However,

this smaller heap causes the collector to be invoked more frequently resulting in more

work for the collector. This is reflected in the larger number of words copied by the

gc-tbl collector. If we ran the programs with a fixed heap size or adjusted the ratio

for gc-tbl we may see gc-tbl actually perform better than the cps and gc-fwd cases.

Program and collector execution times. Table 6.4 shows that the reduced

collector workload and other secondary benefits of stack allocation results in a signif-

icantly faster runtime for orig than for the other programs. This suggests that stack

allocation is an important technique we must be able to support. The gc-tbl has the

worst runtime, because of the overhead of using a hash table and higher frequency

of collection. The gc-fwd case is roughly 15% faster than the cps case. Notice also

that cps seems to be spending significantly more time dealing with system interrupts.

Examining the paging behavior of these programs we discover that cps is incurring

nine times as many page faults as gc-fwd. We believe this is due to our DFS garbage
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collection algorithm compared to the BFS algorithm used by cps. DFS base collec-

tion algorithms have been shown to result in better locality properties compared to

BFS algorithms [Jon96, pp. 132– 133]. Our life benchmark seems to confirm the

basic qualitative predictions of our microbenchmarks.

Accuracy of our quantitative model. Table 6.5 shows the difference between the

measured real time of the various garbage collectors and the estimated real time based

on the performance model and inferred parameters from Table 6.2. Unfortunately,

our performance model seems to be very inaccurate for all of the different collectors.

However, observe that the direction of the errors suggest that our performance model

is overly optimistic for all of the collectors except for the gc-fwd case in where our

model seems to be pessimistic.

The most plausible explanation for the difference between our model and reality

would be locality-related effects. Both the orig and cps collectors have bad locality

properties because of their BFS algorithm. The gc-tbl collector exhibits bad locality

because of the use of a hash table. Our gc-fwd collector because of its DFS algorithm

should have quite good locality, and may even exhibit some benefits from prefetching.

6.4 Summary

Our type-preserving collectors also do not retain more data than traditional collectors.

However, they interact badly with certain unboxing and flattening optimizations, so

it is better to generate a type-preserving collector after representation optimizations.

Our experiments suggest that being able to support stack allocation is an important

requirement. Our tagless type-preserving collector using forwarding pointers seems

to have better raw copying performance than a traditional collector which interprets
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tags, if object sizes are small. We also have some evidence that suggests such a

type-preserving collector has better locality properties. In Chapter 7 we will discuss

how we can support stack allocation without destroying our safety guarantees. Our

comparisons are not entirely fair since our type-preserving collectors are using extra

auxiliary space during garbage collection. The default MLton collector runs in constant

auxiliary space. However, we believe we can adopt ideas in the existing literature to

make our collectors safely run in constant space [SW67, Che70, SF98].



Chapter 7

Stack Allocation

7.1 Introduction

Our preliminary results show that heap allocating return continuations can cause some

programs to allocate significantly more data on the heap. This heap-allocated data

must be garbage collected, placing an extra workload on our type-preserving collector.

This workload is not placed on garbage collected systems which stack allocate return

continuations. If we heap allocate return continuations we can implement advanced

control features such as first-class continuations so that both creating and invoking

a continuation is a constant time operation [HDB90]. Heap allocated continuations

make implementing advanced control structures such as coroutines and exception

handlers simple and efficient. However, for programming languages that do not need

all these advanced control structures, heap allocating return continuations may not

be an ideal solution [App87, MR94, AS96].

Previously, we have placed every return continuation into our global allocation

region. However, unlike ordinary heap-allocated objects we know that once a re-

turn continuation is created it will be invoked exactly once. The original CPS-based

113
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compilers performed simple escape analysis to discover which continuations could

be safely stack allocated [Ste78, Kra87]. Other systems used dynamic checking to

prevent “one-shot” continuations from being invoked more than once [BWD96].

Others have already studied the semantics of treating continuations as linear ob-

jects [Fil92, PP00, BORT00]. Some systems provide explicit type-safe support for

stack allocation [MCGW98]. All of these approaches have treated the environment

of a return continuation as a private abstract value. However, for the purpose of

a type-preserving garbage collector we must deal with the explicit representation of

continuations and their environment so that the garbage collector may examine and

trace roots accessible from the variables captured in the environment of the continu-

ation. So we treat return continuations as data structures which happen to have an

associated apply function that interprets the meaning of the continuation.

Review of CPS-based compilation. Figure 7.1 illustrates the compilation of a

simple program that computes a list of integers. Observe that there are two function

calls, both of which are nontail calls. When the nontail call labeled A in the source

program is executed there are no variables that need to be preserved across the call.

When the nontail call labeled B is executed we must save the value of n and the

previous return address of the function across the call. After CPS converting the

source program these observations about what values must be preserved across the

call become more apparent.

In the CPS-converted code the return address for the function is represented ex-

plicitly as the return continuation that is now an extra argument to the mklst func-

tion. The return continuation bound to the variable ret simply halts the program.

Notice that this continuation captures no free variables in its body. The second return

continuation bound to the variable k’ in the body of mklst creates a new list cell and
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Source Program

type lst = Nil | Cons (int, lst)

fun mklst(n:int):lst =

if n = 0 then Nil

else let l = mklist(n-1) (* non-tail call B *)

in Cons(n,l)

(* main program *)

let l = mklst(10) (* non-tail call A *)

in l

CPS Converted

type lst = Nil | Cons (int, lst)

type cont = lst → Ans

fun mklst(k:cont, n:int):Ans =

if n = 0 then (k Nil)

else let k’ = (fn l ⇒ k (Cons(n,l)))

in mklist(k’, n-1)

(* main program *)

let ret = (fn l ⇒ l ; halt())

in mklst(ret, 10)

Heap Allocated Closures

type lst = Nil | Cons (int, lst)

type cont = Ret | MkLstK (int, cont)

fun mklst(k:cont, n:int):Ans =

if n = 0 then apply(k,Nil)

else let k’ = MkLstK(n,k)

in mklst(k’,n-1)

and apply(k:cont, l:lst):Ans =

case k of

MkLstK(n,k) ⇒ apply(k,Cons(n,l))

| Ret ⇒ l ; halt()

(* main program *)

let ret = Ret

in mklst(ret, 10)

Figure 7.1: Compilation of mklst program.
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invokes the return continuation of mklst. Notice that this continuation contains two

free variables n and k. This makes our observation about what values must be pre-

served across the call explicit. Any value that occurs free in the return continuation

of the CPS-translated program must be preserved across a function call in the source

program. After we perform a first-order closure conversion the set of free variables in

every return continuation becomes even more obvious.

After first-order closure conversion each of our return continuations is represented

as a data-structure and a block of code in a global dispatch function (apply). The

type cont in the closure-converted code includes a constructor for every unique re-

turn continuation. The free variables needed by that return continuation are the

values carried by each constructor. It is this cont data-structure that a collector

must trace at runtime to locate live values. If we performed closure conversion us-

ing standard higher-order techniques [MMH96, MWCG98] the collector would not be

able to explicitly trace roots in the return continuation.

Special properties of return continuations. In a language without exceptions

or first-class continuations, after CPS and first-order closure conversion the type used

to represent the closures of return continuations will be of the following form

type cont =

K0

| K1 (..., cont)

| K2 (..., cont)

...

| Kn (..., cont)

Specifically each constructor of a return continuation type will contain at most one

value whose type is used to represent a continuation. This is because there is never

more than one return continuation live at any time [DDP00]. In the body of every
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function a continuation is either passed to another function unchanged, used in the

creation of another continuation value or invoked by passing the value to a function

such as apply. Functions like apply completely deconstruct the continuation value.

Since every continuation value occurs at most once in every constructor the type

that describes continuation closures looks very much like a list. The head of each cell

of our “continuation list” contains the set of free variables captured by the continua-

tion and the tail is simply the previously captured continuation value. Because there

is never more than one continuation value live at any point in the program, every cell

in our continuation list is pointed to exactly once. This property allows us to represent

a continuation as an unrolled data structure so that it can be allocated in a contigu-

ous sequence of memory cells. This means we can “cdr-code” [Han69, CG77, SRA94]

our continuation values.

Figure 7.2 shows a type declaration for a set of first-order return continuations

and a particular continuation value, along with two possible representations for that

continuation value. The linked representation corresponds to a naive heap-based

representation. The unrolled representation corresponds to a more efficient repre-

sentation based on the special properties of return continuations. Notice that the

unrolled representation uses a contiguous sequence of memory locations and does not

need to include pointers to the next cell in the chain. The next cell can be determined

by examining the tag of the current cell and then computing the location of the ad-

dress of the next cell based on the size of the current cell. The unrolled representation

therefore uses less space, because it does not have to include pointers to the next cell.

It also will likely have better cache locality because it is using a contiguous sequence

of memory locations.
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Return Continuations

type cont =

K0

| K1 (int, cont)

| K2 (int, int, cont)

| K3 (int, int, cont)

K1(0, K3(1, 2, K2(3, 4, K0)))

Linked Representation

K1 0 K3 1 2 K2 3 4 K0

Unrolled Representation

K1 0 K3 1 2 K2 3 4 K0

Figure 7.2: Representation of return continuations.
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Operations on unrolled lists. Each unrolled continuation list can be represented

as a contiguous array of words with an index indicating which is the first unallocated

word in the array. When a new cell is added we simply increment the index appropri-

ately checking for overflow. If we do not have enough space in our array to allocate a

new word, we simply allocate a fresh array and copy the old contents into our freshly

allocated array. Since there are no pointers into the interior of our array we can im-

mediately reclaim the space from our old array. Deconstructing an element from our

unrolled list is implemented as a simple pointer decrement. In short, our unrolled list

is implemented as a stack and adding a new element is equivalent to a push operation

while removing an element from our list is equivalent to a pop operation. However,

for this implementation to work properly we are relying on the fact that there are no

pointers into the interior of our unrolled list. In the next section we will discuss how

to use linear type systems to guarantee this.

7.2 Linear Type Systems

Linear type systems are based on ideas from linear logic developed by Girard [Gir87].

Linear logics are resource-conscious logics. Traditional logics allow unrestricted du-

plication and discarding of hypotheses. In particular the “structural rules” of con-

traction and weakening are implicit in the formulation of nonlinear logics. Typically

these rules are implicitly introduced by treating the logical context (Γ) as a set of

formulas. If we treat the logical context as an unordered sequence of formulas, i.e. a

multiset, the structural rules of weakening and contraction would be

Γ, A,A ` B
Contraction

Γ, A ` B

Γ ` B
Weakening

Γ, A ` B
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The contraction rule can be read informally as “Two of the same hypothesis are just

as good as one”. The weakening rule can be read informally as “An extra hypothesis

never hurts.” In linear logics these rules do not hold in general. In linear logics two

hypothesis are not just as good as one, and adding an extra unneeded hypothesis will

prevent certain propositions from being proven.

Linear logics control the use of hypotheses in proofs explicitly. Linear logics encode

standard nonlinear logics by adding an “of course” modality (!A). Linear logics only

allow the rules of contraction and weakening to be applied to nonlinear hypotheses

which are indicated by the use of the (!A) modality. The rules of contraction and

weakening become explicit axioms in linear logic.

From logic to types. Using the proposition-as-types correspondence one can in-

terpret the ideas of linear logic as a type system used to reason about resource con-

sumption in a programming language. This idea is not particularly new and has

been studied in depth by others [Laf88, LM92, Abr93, TW99]. Linear type sys-

tems have been put forward as one method of avoiding the need for garbage col-

lectors [Laf88, Bak92a, Hof00]. Linear type systems provide an explicit method of

managing storage for objects. By carefully controlling the use of values, linear type

systems allow programmers to manage memory explicitly. Unfortunately, the seman-

tics of programming languages based on linear type system often require objects be

completely copied in order to maintain a “single-pointer property”. This requirement

limits the efficiency of pure linear programming languages [Laf88, Bak93].

Programming languages based on linear type systems are no replacement for gen-

eral purpose garbage collection. However, for our particular application treating

return continuations as linear values is sufficient. This is because at no point in

the program should there ever be more than one reference to it. In languages with
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first-class continuations there are situations where we must promote the current con-

tinuation to a nonlinear value. The operational semantics we will adopt for this

promotion will force us to completely copy the continuation so that we can maintain

the single pointer invariant. These copy operations are exactly the same copy oper-

ations performed in traditional systems that support stack allocation and first-class

continuations [HDB90]. So the copies needed in our linear framework merely reflect

the existing state of the art.

A linear assembly-language. To make our discussion concrete we will specify a

simplified linear assembly-language1. Our language is a CPS-converted linear lambda

calculus, with nonlinear integer values and linear lists. We use linear lists as a stand-

in for return continuations. To keep our discussion focused, our language does not

provided any constructs for recursion, but adding first-order functions is a straight-

forward extension.

Figure 7.3 describes the abstract syntax of our linear assembly language. Although

we have a type for linear integers (int), we only provide operations and constants for

nonlinear integers (!int). We also include polymorphic lists (L(τ)) which we treat

linearly. A program consists of a triple of memory (M), registers (R), and a term

to be evaluated (e). Figure 7.4 describes both the static and dynamic semantics

of our language. In our semantics a list is represented as an address in registers

which refers indirectly to a list value in memory. The transition stepcons is the only

rule that allocates new values in our memory. The other list operations perform in-

place updates of previously allocated lists in memory. Notice that the rule stepcasenil

explicitly deallocates the list.

Figure 7.4 has the corresponding typing rules for our language. It is important

1Our assembly language is actually much more like a fragment of Static Single-Assignment form.
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Syntax

variables x, y, z ::= . . .

addresses a, b, c ::= . . .

types τ ::= int | L(τ) | !τ

terms e ::= done

| let x =!i in e
| let x = y−!1 in e
| (if0 x then e1 else e2)
| let x = nil in e
| let x = cons(y, z) in e
| (case x of nil ⇒ e1, cons(y, z) ⇒ e2)

values v ::= a | i

heap values hv ::= nil | cons(v, hv)

value env Γ ::= · | Γ, x :τ

memory M ::= · | M [a :=hv]

registers R ::= · | R[x :=v]

programs P ::= (M, R, e)

Figure 7.3: Syntax for Linear Assembly Langauge.
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Dynamic Semantics

stepdone (M, R, done) 7→ (M, R, done)
stepi (M, R, let x =!i in e) 7→ (M, R[x := i], e)
stepdec (M, R[y := i], let x = y−!1 in e) 7→ (M, R[y := i][x := i − 1], e)
stepif0 (M, R[x :=0], (if0 x then e1 else e2)) 7→ (M, R[x :=0], e1)
stepifi (M, R[x := i], (if0 x then e1 else e2)) 7→ (M, R[x := i], e2) i 6= 0
stepnil (M, R, let x = nil in e) 7→ (M [a :=nil], R[x :=a], e) a 6∈ dom(M)
stepcons (M [a :=hv], R[y :=v][z :=a], let x = cons(y, z) in e)

7→ (M [a :=cons(v, hv)], R[y :=v][x :=a], e)
stepcasenil (M [a :=nil], R[x :=a], (case x of nil ⇒ e1, cons(y, x) ⇒ e2))

7→ (M, R, e1)
stepcasecons (M [a :=cons(v, hv)], R[x :=a], (case x of nil ⇒ e1, cons(y, x) ⇒ e2))

7→ (M [a :=hv], R[y :=v][z :=a], e2)

Static Semantics

Γ ` e

wfdone
Γ ` done

Γ, x : !int ` e
wf i

Γ ` let x =!i in e

Γ, y : !int, x : !int ` e
wfdec

Γ, y : !int ` let x = y−!1 in e

Γ, x : !int ` e1 Γ, x : !int ` e2
wf if0

Γ, x : !int ` (if0 x then e1 else e2)

Γ, x :L(τ) ` e
wfnil

Γ ` let x = nil in e

Γ, x :L(τ) ` e
wfcons

Γ, y :τ, z :L(τ) ` let x = cons(y, z) in e

Γ ` e1 Γ, y :τ, z :L(τ) ` e2
wfcasel

Γ, x :L(τ) ` (case x of nil ⇒ e1, cons(y, z) ⇒ e2)

Figure 7.4: Semantics for Linear Assembly Langauge.
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Stack-allocated Continuations

type lst = Nil | Cons (int, lst)

lintype cont = Ret | MkLstK (int, cont)

fun mklst(k:cont, n:int):Ans =

if n = 0 then apply(k,Nil)

else let k’ = MkLstK(n,k)

in mklst(k’,n-1)

and apply(k:cont, l:lst):Ans =

lincase k of

MkLstK(n,k) ⇒ apply(k,Cons(n,l))

| Ret ⇒ l ; halt()

(* main program *)

let ret = Ret

in mklst(ret, 10)

Figure 7.5: Stack-allocated continuations.

to remember that our value environments do not have implicit rules for contraction

and weakening of values of type !int. Later we will add explicit rules and term level

operators to provide for contraction and weakening. As is standard, we assume that

all variables are unique within our value environment. It is worth comparing the rules

wfdec and wfcons to understand the difference between rules for linear and nonlinear

values. In the rule wfdec we type the subterm of the decrement expression in a value

environment where we have extended the original environment with a new binding

(x : !int). In the rule wfcons we type the subterm in an environment where we add

a binding (x : L(τ)) and remove two bindings (y : τ and z : L(τ)). The removal of

bindings prevents the subterm from accessing pointers to the older version of the list.

Stack allocation of return continuation. Figure 7.5 is a CPS-converted and

closure-converted version of our original mklst program. The program is identical to

the version that heap allocates return continuations except that the continuation type
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is declared to be a linear type with the lintype declaration. The apply function now uses

lincase to pattern match against the linear continuation. Because the continuation

type cont is treated linearly we can represent it as an unrolled value. Since the

storage for linear values is managed explicitly, linear values do not need to be heap

allocated.

7.3 Compiling Advanced Control Structures

Supporting first-class continuation. If we wish to support advanced control

structures such as call-with-current-continuation we must be able to treat our linear

lists which represent return continuations as nonlinear values. Figure 7.6 describe the

needed extensions to support nonlinear values. The first two new terms copy and kill

are general operators on nonlinear values. They represent explicit contraction and

weakening rules similar to the terms found in Benton et al [BBdH93]. The kill term

can be thought of as a static hint that a particular variable is dead. Notice that copy

does not in fact perform a copy of a list value, but merely copies its address.

Benton et al. include two operators called “promote” and “derelict” which are used

to convert linear values to nonlinear values and vice versa. Their constructs operate

on arbitrary values. A general promotion rule would require that the promoted value

contain no free linear variables. However, in our assembly language the only values

are free variables. Instead of standard promotion and dereliction terms we introduce

two nonstandard terms freeze and thaw whose operational behavior is similar to the

primitives used in existing systems that support first-class continuations and are

limited only to lists. The freeze operator is basically a no-op2. However, in our static

semantics we have converted a linear value into a nonlinear value. Since we have no

2It is actually a needless register to register move which a coalescing register allocator should

remove.
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Syntax

terms e ::= . . .
| copy x as y, z in e
| kill x in e
| let x = freeze(y) in e
| let x = thaw(y) in e

Dynamic Semantics

stepcopy (M, R[x :=v], copy x as y, z in e) 7→ (M, R[y :=v][z :=v], e)
stepkilli (M, R[x := i], kill x in e) 7→ (M, R, e)
stepkilla (M [a :=hv], R[x :=a], kill x in e) 7→ (M, R, e)
stepfreeze (M [a :=hv], R[y :=a], let x = freeze(y) in e)

7→ (M [a :=hv], R[x :=a], e)
stepthaw (M [a :=hv], R[y :=a], let x = thaw(y) in e)

7→ (M [a :=hv][b :=hv], R[y :=a][x :=b], e) b 6∈ dom(M)

Static Semantics

Γ ` e

Γ, y : !τ, z : !τ ` e
wfcopy

Γ, x : !τ ` copy x as y, z in e

Γ ` e
wfkill

Γ, x : !τ ` kill x in e

Γ, x : !L(τ) ` e
wf freeze

Γ, y :L(τ) ` let x = freeze(y) in e

Γ, x :L(τ) ` e
wfthaw

Γ, y : !L(τ) ` let x = thaw(y) in e

Figure 7.6: Extended Linear Assembly Langauge.
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Source Program

type lst = Nil | Cons (int, lst)

fun mklst(uk:lst cont,n:int):lst =

if n < 0 then throw(uk,Nil)

else if n = 0 then Nil

else let l = mklist(uk,n-1)

in Cons(n,l)

(* main program *)

let l = letcc uk in mklst(uk,10)

in l

CPS Converted

type lst = Nil | Cons (int, lst)

type cont = lst → Ans

type ucont = cont

fun mklst(k:cont, ucont:uk, n:int):Ans =

if n < 0 then (uk Nil)

else if n = 0 then (k Nil)

else let k’ = (fn l ⇒ k (Cons(n,l)))

in mklist(k’, uk, n-1)

(* main program *)

let ret = (fn l ⇒ l ; halt()) in

let uk = ret

in mklst(ret, uk, 10)

Figure 7.7: Compilation of mklst with first-class continuations.

primitive operators on nonlinear lists the only thing we can do with a nonlinear list

is to duplicate or store its address in other values. Finally, our thaw term converts

our “frozen” list back into a linear value by creating a copy and returning a unique

pointer to the copy.

Compiling first-class continuations. Figure 7.7 contains a variation of our mklst

program that uses first-class continuations and the same program after CPS con-



CHAPTER 7. STACK ALLOCATION 128

version with explicit control semantics. Our modified mklst function takes a user

continuation (uk) as a parameter. In the body of the function we invoke the user

continuation with the value Nil when the integer passed to it is less than zero. We

invoke mklst with a user continuation provided by a letcc binding which binds the

current continuation to the variable uk. The CPS-converted version of the program

makes the semantics of our source program explicit. Notice that our CPS-converted

version of the program takes two continuations, k, which was inserted by the CPS

transform, and uk, which is a user continuation from our source program. Notice how

the letcc construct is compiled. We bind uk to the return continuation (ret) created

by the CPS transform. Now that we have made the desired control semantics explicit,

we need to choose a method to represent the continuations.

Figure 7.8 contains two approaches. The first uses heap-allocated linked continu-

ations. In this model all continuations are heap allocated and capturing and invoking

a continuation are both constant time operations. Unfortunately, as we have pointed

out, before heap allocating all continuations increases the workload of the garbage

collector and is not an ideal solution if the use of first-class continuations is not fre-

quent. The other approach treats return continuations as linear values so that they

can be allocated in a stack like way. User continuations are linear values that have

been turned into nonlinear values. We distinguish between linear types that have

been converted into nonlinear types with the “!” operator from types that were never

linear in the first place. So we have two different incompatible kinds of nonlinear

type. This distinction allows us to represent objects that were never linear in the

first place as linked data-structures, while treating linear values promoted to non-

linear values as simply pointers to an underlying linear object which maybe freely

duplicated. The version that uses linear continuations is basically the same as the

heap allocated version except that there are explicit freeze and thaw coercions inserted
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Heap Allocated Continuations

type lst = Nil | Cons (int, lst)

type cont = Ret | MkLstK (int, cont)

fun mklst(k:cont, uk:cont, n:int):Ans =

if n < 0 then apply (uk,Nil)

else if n = 0 then apply(k,Nil)

else let k’ = MkLstK(n,k)

in mklst(k’,n-1)

and apply(k:cont, l:lst):Ans =

case k of

MkLstK(n,k) ⇒ apply(k,Cons(n,l))

| Ret ⇒ l ; halt()

(* main program *)

let ret = Ret in

let uk = ret

in mklst(ret, uk, 10)

Stack Allocated Continuations

type lst = Nil | Cons (int, lst)

lintype cont = Ret | MkLstK (int, cont)

lintype ucont = !cont

fun mklst(k:cont, uk:ucont, n:int):Ans =

if n < 0 then let k = thaw uk in apply (k,Nil)

else if n = 0 then apply(k,Nil)

else let k’ = MkLstK(n,k)

in mklst(k’,n-1)

and apply(k:cont, l:lst):Ans =

lincase k of

MkLstK(n,k) ⇒ apply(k,Cons(n,l))

| Ret ⇒ l ; halt()

(* main program *)

let ret = Ret in

let uk = freeze ret in

let ret = thaw uk in

in mklst(ret, uk, 10)

Figure 7.8: Implementing first-class continuations.
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Source Program

type lst = Nil | Cons (int, lst)

fun mklst(n:int):lst =

if n < 0 then raise Fail

else if n = 0 then Nil

else let l = mklist(n-1)

in Cons(n,l)

(* main program *)

let l = mklst(10) handle Fail ⇒ Nil

in l

CPS Converted

type lst = Nil | Cons (int, lst)

type cont = lst → Ans

type econt = unit → Ans

fun mklst(k:cont, eh:econt, n:int):Ans =

if n < 0 then eh ()

else if n = 0 then k Nil

else let k’ = (fn l ⇒ k (Cons(n,l)))

in mklist(k’,eh,n-1)

(* main program *)

let ret = (fn l ⇒ l ; halt()) in

let eh = (fn () ⇒ ret Nil)

in mklst(ret, eh, 10)

Figure 7.9: Compilation of mklst program with exceptions.

that copy and restore our representation of the control stack appropriately. The copy

makes the work needed to capture and invoke a continuation proportional to the size

of the control stack. We believe our calculus is expressive enough to encode hybrid

schemes [HDB90] that bound the amount of copying needed to a constant factor.

Compiling exceptions. First-class continuations are powerful control structures

that can be used to implement many other control structures. However, many lan-
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guages do not fully support them because they are hard to implement efficiently when

return continuations are stack allocated. Exception-handling mechanisms are more

common since they are easy to implement efficiently in the presence of stack-allocated

return continuations.

Figure 7.9 shows a modified version of mklst that uses exceptions. The CPS-

converted version of mklst makes the control semantics of exceptions explicit. For

simplicity we assume there is only one exception (Fail) that can be raised. In the

CPS-converted version the mklst function is passed two continuation arguments. The

first is the standard return continuation (k). The other continuation is the exception

handler (eh) and is invoked to signal an error. Notice that the initial exception handler

for the program invokes the initial return continuation (ret) to return a value. In

general an exception handler will always either invoke the return continuation for the

expression that it handles or invoke the current exception handler.

Figure 7.10 describes a straightforward implementation using heap-allocated con-

tinuations. Notice that the initial return continuation (ret) is passed to mklst and

used by initial exception handler. This prevents us from treating return continuation

as linear objects, using the linear type system we have presented so far. Implement-

ing exceptions in this way is quite simple, but again puts a larger workload on the

garbage collector. One positive aspect is that installing a handler and invoking the

handler are both constant time operations.

Stack unwinding. Figure 7.11 presents a different implementation scheme that

allows for stack allocation of return continuations. It exploits the fact that there is

a one-to-one mapping between exception handlers and return continuations. We can

uniquely identify an exception handler by associating it with the return continuation

of the expression which it handles. Using this fact we can stack allocate return
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Heap-allocated Continuations

type lst = Nil | Cons (int, lst)

type cont = Ret | MkLstK (int, cont)

type econt = HandleTop (cont)

fun mklst(k:cont, eh:econt, n:int):Ans =

if n < 0 then eapply eh

else if n = 0 then apply(k,Nil)

else let k’ = MkLstK(n,k)

in mklist(k’,eh,n-1)

and apply(k:cont, l:lst):Ans =

case k of

MkLstK(n,k) ⇒ apply(k,Cons(n,l))

| Ret ⇒ l ; halt()

and eapply(e:econt):Ans =

case k of

HandleTop k ⇒ apply(k,Nil)

(* main program *)

let ret = Ret in

let eh = HandleTop(ret)

in mklst(ret, eh, 10)

Figure 7.10: Heap-allocated continuations.
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Stack Unwinding

type lst = Nil | Cons (int, lst)

lintype cont = Ret | MkLstK (int, cont)

fun mklst(k:cont, n:int):Ans =

if n < 0 then eapply k

else if n = 0 then apply(k,Nil)

else let k’ = MkLstK(n,k)

in mklist(k’,n-1)

and apply(k:cont, l:lst):Ans =

lincase k of

MkLstK(n,k) ⇒ apply(k,Cons(n,l))

| Ret ⇒ l ; halt()

and eapply(e:cont):Ans =

lincase k of

MkLstK(n,k) ⇒ eapply(k)

| Ret ⇒ apply (Ret, Nil)

(* main program *)

let ret = Ret

in mklst(ret, 10)

Figure 7.11: Stack unwinding.

continuations and invoke exception handlers by simply unwinding the current chain

of return continuations until we find a return continuation that has an exception

handler associated with it. The function eapply is the stack unwinding function that

determines what exception handler is invoked by unwinding the exception handler.

Our type system will allow us to use one of these pointers but not both simultaneously.

Figure 7.12 sketches how such a system would work. Every function now takes

a control state argument which is an additive pair of either the return continuation

or the exception handler. Notice that when we build the initial control state (cs)

we build an additive pair whose first component and second component both refer

to the same linear value ret. Just as in the logical rule for additive pairs our type
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Stack Cutting

type lst = Nil | Cons (int, lst)

lintype cont = Ret | MkLstK (int, cont)

lintype econt = HandleTop (cont)

lintype cstate = cont & econt

fun mklst(cstate:cs, n:int):Ans =

if n < 0 then eapply #2(cs)

else if n = 0 then apply(#1(cs),Nil)

else let cs’ = (MkLstK(n,#1(cs)) & #2(cs))

in mklist(cs’,n-1)

and apply(k:cont, l:lst):Ans =

lincase k of

MkLstK(n,k) ⇒ apply(k,Cons(n,l))

| Ret ⇒ l ; halt()

and eapply(e:econt):Ans =

lincase k of

HandleTop k ⇒ apply(k,Nil)

(* main program *)

let ret = Ret in

let cs = (ret & HandleTop(ret))

in mklst(cs, 10)

Figure 7.12: Stack cutting.

systems allows us to use the same resource twice. To invoke an exception we select

one component of the pair and either return or invoke an exception handler. Also,

note that when we build a new control state (cs’) we are allowed to decompose the

old additive pair twice, because constructing a new pair allows us to duplicate the

linear resources in the current typing context. We must place a few extra restrictions

on additive pairs to make sure our operational model is sound, just as we have with

freeze and thaw which are specialized versions of well-known linear logical operators.
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7.4 Summary

Using the ideas from linear logic we can encode many of the important resource

constraints needed to verify the safety of many advanced control features. We have

shown how to encode the major techniques for first-class continuations and exception

handlers. User-level thread packages which explicitly manage stacks on a per thread

basis are also encodeable with the framework we have outlined. What is more impor-

tant is that our system is flexible enough so that one can choose different techniques

for implementing first-class continuations, exception handling, stack allocation, and

threads simultaneously. We have provided the basic abstractions from which more

complicated structures can be built in a way that allows us to maintain the underly-

ing type-safety guarantees. The idea of using linear continuations to implement many

advanced control structures efficiently is not new. Ramsey and Peyton Jones [RJ00]

outline a similar idea in a low-level compiler intermediate language. Their system is

not type safe and they do not enforce the linearity constraints required. Our type

system is not particularly novel either. However, our decision to represent the control

stack as an explicit data-structure provides clean semantics for previously low-level

operations of runtime systems. Since our system is type-safe we give the compiler

more implementation flexibility in implementing advanced control structures without

compromising safety or efficiency.



Chapter 8

Separate Compilation

8.1 Introduction

The type-preserving garbage collector that is outlined in Chapter 3, unfortunately, as-

sumes the compiler has access to the whole program at compile time. There are many

whole-program compilation systems that perform aggressive optimizations which re-

quire access to the entire program [Dea96, CJW00]. However, whole-program com-

pilation is not acceptable in many situations. In this chapter we will describe how

to relax the whole-program assumption by adapting existing approaches to support

a more modular compilation scheme.

Cardelli [Car97] presents one of the few formal accounts of separate compilation.

Unfortunately, Cardelli abstracts the problem of separate compilation to the problem

of typechecking program fragments in isolation. In Cardelli’s model program frag-

ments are programs with free identifiers. Cardelli formally describes how to compute

typing assignments to free identifiers and proves some interesting properties about his

model of separate compilation. Cardelli’s model of separate compilation hides many

important implementation issues. We wish to understand the issues of separate com-

136
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Abstract Model Traditional Unix
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Figure 8.1: Separate-compilation architectures.

pilation at a level that exposes many more pragmatic issues.

Separate compilation architectures. Figure 8.1 depicts our abstract model of

how program fragments are combined to form a whole program and a particular

instantiation of our model found in a traditional Unix environment. We refer to

program fragments as modules. For modules to be compiled separately they must

import information from a compilation environment which is shared across modules.

The compilation environment is built from information exported by modules into the

environment. Each module is converted to an object by use of a compiler. Objects

are linked to create a complete program by a linker. Although we use traditional

terms to suggest their roles in the process of separate compilation it is important to

think of them in completely abstract ways. A compiler is any function that converts

program fragments to objects which themselves are abstract values consumed by a
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linker to produce a program.

We will refer to a specific choice of compilation environment, module, compiler,

object, linker, and program as a separate compilation architecture. Architectures

differ primarily in how work is divided between the compiler and linker, as well as

what information is contained in the compilation environment.

For example in a traditional Unix environment modules export .h files that define

the compilation environment. Modules themselves are simply C programs. The

compiler is the just the standard C compiler (cc) which produces object files. Object

files are machine code with relocation and symbol information. The linker is the

normal Unix linker (ld) which merges object files by relocating machine code and

patching symbol information to produce a runnable program. In this architecture,

the compiler does the majority of the work while the linker’s job is relatively simple,

and only type information is shared in the compilation environment.

Properties of separate compilation architectures. Figure 8.2 describes two

different separate compilation architectures that can be built from the standard Unix

tool set. They both demonstrate certain bad properties we wish to avoid. One of

the architectures is tardy, since it delays too much work until link time. The other

architecture is fragile since it reveals so much information in the compilation envi-

ronment that changes to a module may require the recompilations of other modules.

In the tardy architecture the compiler simply produces objects by leaving the mod-

ule untouched. The compiler does no work and forces the linker to do the actual

compilation.

Some tardy architectures. While tardy architecture seems useless, it is very

close to the separate compilation architecture used by mobile-code systems such as
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Tardy Fragile
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Figure 8.2: Tardy and fragile architectures.

Java. The Java bytecode compiler does a minimal amount of work when it converts

Java source code to Java bytecode. Java bytecode, for all practical purposes, is

preparsed Java source code. The Java “Just In Time” compiler plays the role of a

linker by combining several Java bytecode files into an executable program. Many

other systems have similar architectures [SW92, Fer95]. Delaying work until link time

has the advantage of enabling link-time optimizations that could not be performed

by the compiler [Fer95, Dea96]. So some amount of tardiness is not a bad thing.

Fragile architectures. In general any work done at compile time can be moved to

link time, since at link time more information is available to the linker than the com-

piler. We can always avoid some tardiness in our architecture by exporting more in-

formation in the compilation environment. We would like to move a minimal amount

of information into the compilation environment, since revealing too much informa-
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tion to other modules destroys the modularity of our system. The fragile architecture

in Figure 8.2 represents an extreme case where the compilation environment contains

the actual source code of every module.

In this scenario, the compiler can examine the code for B.c while compiling A.c.

It produces an object file only for A.c, but having access to B.c allows the compiler to

perform some optimizations such as inlining calls from B.c that could only previously

be done at link time. To guarantee some amount of sanity the compiler should include

a checksum of the compilation environment it used when compiling A.c and B.c. At

link-time the linker should check that the checksum for the compilation environment

used to compile the modules separately is the same. If they differ linking should fail.

Unfortunately, a small change to B.c may require that A.c be recompiled if we wish

for linking to proceed.

Fragile compilation architectures are found in languages such as C++ which force

users to export the actual source code of small functions they wish to inline across

modules at compile time. More transparent systems that export small functions

across modules exists for languages like Standard ML [BA97].

Opportunities for optimization. The amount of information in the compilation

environment and the amount of work we are willing to perform at link time constrains

the set of optimizations we can perform on programs and the overall quality of the

code produced. At compile time the set of optimizations we can perform is limited

primarily by the amount of information available to the compiler from the compilation

environment. At link time we have access to the whole program so in theory any valid

optimization can be performed. However, if we wish linking to be “fast” then the set

of optimization we perform is limited by the amount of time available. For example,

if our notion of a “fast” linker is any linker that runs in linear time with respect to its
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Figure 8.3: Linking architectures and garbage collection.

input1 then we cannot perform quadratic optimizations such as graph-coloring based

global register allocation.

Separate compilation architectures and garbage collection. So far we have

been talking about separate compilation architectures in a general way. Garbage

collectors add additional complications. If we wish our garbage collector to precisely

locate all the program roots and be able to trace the program heap it must be provided

with global type information. The problem a garbage collector faces is similar to the

problems faced by debuggers.

Compilers typically include information needed for debugging in the object files

they produce. Linkers merge the information into a global table so that at run time

a debugger has access to information about all the program modules that provide

debugging information. A garbage collector needs approximately the same informa-

tion as a debugger, but it must have it for every module in the program, not just

those which are willing to provide it. Figure 8.3 depicts the situation in terms of our

1We must assume some resonable complexity bounds on the compiler’s output for our notion of

fast to be useful.
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previous linking architecture. Typically the garbage collection information cannot

be exported into the shared compilation environment, since much of the informa-

tion the garbage collector needs, such as the precise data layout of values and stack

frames is available only after compilation, especially if the compiler is performing

optimizations [DMH92, JRR99].

In the presence of optimization compilers omit debugging information because

maintaining that information becomes difficult. Compilers that support garabage

collection cannot omit information because that would cause the collector to fail. The

compiler must preserve the information in the presence of optimization or deliberately

disable optimizations [DMH92, Cop94].

Preserving abstraction. Debuggers inspect program state that is hidden from

normal programs. For example, a function typically cannot examine its calling context

at runtime and determine what function is its caller. A function that violates this

abstraction boundary can behave in unexpected ways [App96]. However, debuggers

can provide a backtrace of function invocations. In this respect the debugger violates

the abstractions provided by the language. Garbage collectors also examine the calling

context and other data in a way that violates the source abstractions of the language.

Informally one can think of an abstraction gurantee as a gurantee of data privacy.

Data privacy guarantees are useful to preserve during the process of compilation.

Many typed-based compilation techniques seem to provide strong abstraction guar-

antees [MMH96, MWCG99, MCGW98, Gle00]. However, none of these techniques

have properly considered the role of the garbage collector, since the collector, like a

debugger, is outside the model they consider. Now that our collector is part of the

model of our langauge we must decide what to do about abstraction guarantees. We

can either make the fact the garbage collector violates these abstractions explicit or



CHAPTER 8. SEPARATE COMPILATION 143

Linker work Fragile changes
WP Compile program and build

copy function
Any modification

ES Build jump tables and merge
copy function

Dispatch function signature

ITA Merge type information link
with collector

New type constructors

WP = Whole program with first-order closure conversion
ES = Extensible Sums with first-order closure conversion

ITA = Intensional Type Analysis with higher-order closure conversion

Table 8.1: Comparison of various linking approaches.

attempt to preserve the abstraction guarantees in the presence of garbage collection.

Three different architectures. Table 8.1 describes different architectures for sup-

porting separate compilation in the presence of garbage collection. For each architec-

ture we describe what work must be done at link time and what changes may cause

the recompilation of every module in the system.

Whole program compilation with first-order closure conversion is the technique

we have described in Chapter 3. The “linker” (which is actually the compiler) must

compile the entire program and build a global copy function needed by the garbage

collector at “link time”. Potentially any change to a single module file may require

recompilation of all modules. Because of the first-order closure conversion the source

level abstractions are not preserved.

All of the architectures described in the table have been used in realistic systems to

support separate compilation in higher-order languages such as ML. We will focus our

discussion primarily on how to extend these existing techniques for type-preserving

garbage collection. We have already described how to extend type-preserving garbage

collection techniques to whole-program compilation in Chapter 3. So we will focus

on the remaining two approaches.
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compilation environment

type lst = Nil | Cons (int, lst)

val mklst : int → lst (* exported by module A *)

module A module B

fun mklst(n:int):lst =

if n = 0 then Nil

else Cons(n,mklist(n-1))

fun itrev(l:lst, acc:lst):lst =

...

(* program entry point *)

let l = mklst(10) in

let rl = itrev(l, Nil)

in rl

Figure 8.4: Separate-compilation example.

8.2 Extensible Sums

Figure 8.4 describes two modules. The first module A defines and exports a function

(mklst) into the compilation environment while module B calls the function (mklst).

These two modules will serve as our running example throughout this section. We will

describe how to separately compile each module using extensible sums and first-order

closure-converstion techniques.

What are extensible sums? An extensible sum is like an ordinary tagged union

except that new constructors can be added in a modular and local way. Excep-

tions in ML are one such example of an extensible sum. An exception declara-

tion creates a new constructor that injects values into a single universal exception

type. Extensible sums are an instance of more general mechanisms commonly seen

in object-oriented langauges. They can be generalized to allow for a hierarchy of

extension [RR96, Gle99]. For our purpose we can describe our technique using noth-

ing more complicated then ML-style exceptions as extensible sums. We will in fact
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object A

imports

type lst = Nil | Cons (int, lst)

type cont = exn

val topApply : (cont, lst) → Ans

exports

val mklst : (cont, int) → Ans

val mklst_apply : (cont, lst) → Ans

exception MkLst_K(int, cont)

is

fun mklst(k:cont, n:int):Ans =

if n = 0 then topApply(k,Nil)

else let k’ = MkLst_K(n,k)

in mklist(k’,n-1)

and mklst_apply(k:cont, l:lst):Ans =

case k of

MkLst_K(n,k) ⇒ topApply(k,Cons(n,l))

Figure 8.5: Object for module A.

use a more restrictive form of exceptions which are not generative2 and can only be

declared globally. Adding these restrictions allows us to choose a representation of

exceptions at link time that allows for efficient dispatch.

Extensible sums for separate compilation. Figure 8.5 is the result of our com-

piler applying a CPS and first-order closure conversion to the source of module A.

It represents an object in our architecture. Our object is very much like the linkset

described by Cardelli [Car97]. The object consists of a set of import and export dec-

larations as well as the code that implements the exported declarations. All objects

will be in CPS and closure-converted form. Such a form is very close to machine

code [Kel95, App98].

Object A imports the two type definitions that describe the representations of

2In ML each exception declaration introduces a dynamically unique constructor, requiring a fresh

tag to be created at runtime.
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object B

imports

type lst = Nil | Cons (int, lst)

type cont = exn

val topApply : (cont, lst) → Ans

val mklst : (cont, int) → Ans

exports

val itrev_apply : (cont, lst) → Ans

exception ItRev_K1

exception ItRev_k2

is

fun itrev(k:cont, l:lst, acc:lst):Ans =

case l of Nil ⇒ topApply(k, acc)

| Cons(hd, tl) ⇒
let acc’ = Cons(hd, acc)

in itrev(k, tl, acc’)

and itrev_apply(k:cont, v:lst):Ans =

case k of

ItRev_K1 ⇒
let k = ItRev_K2 in

let l = v

in itrev(k,l,Nil)

| ItRev_K2 ⇒
let rl = v

in rl ; halt()

mklst(ItRev_K1, 10)

Figure 8.6: Object for module B.
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program

type lst = Nil | Cons (int, lst)

type cont = exn

exception MkLst_K(int, cont)

exception ItRev_K1

exception ItRev_k2

fun mklst (...):Ans = ...

and itrev(...):Ans = ...

and mklst_apply (...):Ans = ...

and itrev_apply(...):Ans = ...

and topApply(k:cont,v:lst):Ans =

case k of

MkLst_K ⇒ mklst_apply(k,v)

| ItRev_K1 ⇒ itrev_apply(k,v)

| ItRev_K2 ⇒ itrev_apply(k,v)

Figure 8.7: Merged program.

lists and that describes the representation of continuation closures as exceptions. It

imports one function topApply which is a global dispatch function. This function will

be supplied by the linker. It will examine its continuation argument and invoke an

appropriate local dispatch function. It exports the CPS version of the mklst function

and a local dispatch function mklst apply. Notice that the mklst function calls

topApply to invoke its continuation parameter. If we could locally determine all the

call sites of mklst we could replace the topApply function with a specialized version.

Tolmach describes this and other potential optimizations that use local control flow

information [TO98].

Figure 8.6 contains the code for the compiled object for module B. Notice that

both objects must agree on the type signature for topApply and the lst type or

linking will fail. If we changed our compilation technique so that the type of the

global dispatch function topApply changed we would have to recompile all modules.

Notice that in general we will need a different topApply for every distinct return type

in the original source program. Therefore there needs to be an agreed-upon protocol
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for naming the global apply function based on the type of its argument. This is

no different from the “name mangling” linker conventions found for languages that

support overloading.

Figure 8.7 contains the full program created by merging the definitions. The linker

in the process must build code that implements topApply, which calls the appropriate

module specific dispatch function. At link time when all the exception constructors

for program are known we can use unique integers as tags for the constructors and

implement dispatch on constructors as a jump table. Given the stylized representation

of each dispatch function a single global jump table can be built by merging the local

dispatch functions. We could reduce this to the cost of an indirect jump by choosing

a different tagging scheme and relying on the fact that after merging the dispatch

function topApply is the only function that deconstructs exceptions, but later when

the garbage collector must also deconstruct exceptions our scheme will break. So we

must resort to a slightly slower approach.

Extension need for type-preserving garbage collection. Extending our ap-

proach for type-preserving garbage collection is not particularly difficult. The garbage

collector needs the ability to copy every value. So just as with the topApply function

we break the problem into small modular pieces requiring each module to implement

a function that handles the types defined in that module. Figure 8.8 describes how

such a scheme would be implemented.

As with our previous example we assume our compiler produces an object which

has been CPS and closure converted. Additionally, the code has also been region

annotated so safe points have been inserted that call our garbage collector. At each

safe point we must package up the set of currently live roots. Here we use an exception

packet to represent an abstract root set. Note that exceptions are allocated in a
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object A

imports

type lst[ρ] = Nil | Cons (int, lst[ρ]) at ρ
type cont[ρ] = exn at ρ
type gc_cont[ρ] = exn at ρ
val topApply : ∀ ρ.(cont[ρ], lst[ρ]) → Ans

val need_gc : ∀ ρ.() → Ans

val gc : ∀ ρ.gc_cont[ρ] → Ans

val gcCopy : ∀ ρ1,ρ2.gc_cont[ρ1] → gc_cont[ρ2]

exports

val mklst : ∀ ρ.(cont[ρ], int[ρ]) → Ans

val mklst_apply : (cont[ρ], lst[ρ]) → Ans

val mklst_copy : ∀ ρ1,ρ2.(exn[ρ1],exn[ρ2]) → Ans

exception MkLst_K[ρ](int, cont[ρ])
exception Ret_MkLst[ρ](cont[ρ], int)

is

fun mklst[ρ](k:cont[ρ],n:int):Ans =

(* safe point *)

if need_gc[ρ]() then

gc[ρ](gc_cont[ρ].Ret_MkLst(k,n)
else ...

and mklst_apply[ρ](k:cont[ρ],l:lst[ρ]):Ans = ...

and mklst_copy[ρ1][ρ2](k:cont[ρ1]):cont[ρ2] =

case k of

MkLst_K(n,k) ⇒
let n’ = n in

let k’ = gcCopy[ρ1][ρ2](k)

in exn[ρ2].MkLst_K(n’,k’)

| Ret_MkLst(k,n) ⇒
let k’ = gcCopy[ρ1][ρ2](k) in

let n’ = n

in exn[ρ2].Ret_MkLst(k’,n’)

Figure 8.8: Object for module A.
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program

type lst[ρ] = Nil | Cons (int, lst[ρ]) at ρ
type cont[ρ] = exn[ρ]
exception MkLst_K[ρ](int, cont[ρ])
exception Ret_MkLst[ρ](cont[ρ], int)

exception ItRev_K1[ρ]
exception ItRev_k2[ρ]
exception Ret_ItRev[ρ](cont[ρ], lst[ρ], lst[ρ])
fun mklst[ρ](...):Ans = ...

and itrev[ρ](...):Ans = ...

and mklst_apply[ρ](...):Ans = ...

and itrev_apply[ρ](...):Ans = ...

and topApply[ρ](...):Ans = ...

and mklst_copy[ρ1][ρ2](k:cont[ρ1]):cont[ρ2] = ...

and itrev_copy[ρ1][ρ2](k:cont[ρ1]):cont[ρ2] = ...

and lst_copy[ρ1][ρ2](l:lst[ρ1]):lst[ρ2] = ...

and gc[ρfrom](roots:gc_cont[ρfrom]):Ans =

letr ρ1 in

let roots’ = gcCopy[ρfrom][ρto](roots) in

only ρto in (* deallocate ρfrom *)

case roots’ of

Ret_MkLst(k, n) ⇒ mklst[ρto](k, n)

| Ret_Itrev(k, l, acc) ⇒ itrev[ρto](k, l, acc)

and gcCopy[ρ1][ρ2](k:cont[ρ1]):cont[ρ2] =

case k of

ItRev_K1 ⇒ itrev_copy[ρ1][ρ2](k)

| ItRev_K2 ⇒ itrev_copy[ρ1][ρ2](k)

| MkLst_K ⇒ mklst_copy[ρ1][ρ2](k)

Figure 8.9: Merged program.
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particular region. Also note that the declaration

exception MkLst K[ρ](int, cont[ρ])

is our notation for an exception constructor parameterized by ρ and that the region

variable occurring immediately to the right of the constructor name is a binding

occurrence of the region variable.

The code in Figure 8.8 assumes the existence of three new functions. The need gc

function is a simple predicate to determine whether a collection should take place.

If a collection should take place the current live roots are packaged up in an excep-

tion packet and the gc function is called. The gc function will be provided at link

time as well as the gcCopy function, which will locally be used here to implement a

copy function that handles only the locally defined types. Just as with the case for

topApply there also needs to be a protocol for “name mangling” so that there is a

canonical copy function to call for every type.

Figure 8.9 shows the merged program which includes our type-preserving garbage

collector. At link time the linker must merge the various copy functions into a global

copy function and emit code for the garbage collector which must examine the excep-

tion packets used to package the roots to determine what function to return to after

completing a collection. This information can be encoded in a naming convention or

simply as extra data passed to the linker in the object.

Problems with extensible sums approach. Since we have encoded many values

by using the exn type as a univeral value our type-preservation guarantee says less

about the overall correctness of the original program. By using hierarchical extensible

sums, we can regain many of the typing guarantees we have lost by injecting values

into a universal type. Also with hierarchical sums at link time we can determine
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which pattern matches are potentially non-exhaustive and reject programs that may

fail because of non-exhaustive matches at link time. However, all these are minor

modifications of the underlying approach.

The extensible sum approach to separate compilation relies on relatively simple

and well understood typing constructs. The fact that the linker must merge and build

a garbage collector at link time reflects the fact that in many garbage collected systems

type information must be merged at link time to provide a consistent global view.

It, unfortunately, does not preserve all the source language abstraction guarantees

we would like, but those violations of abstraction are precisely the same violations of

abstraction need by traditional tracing garbage collectors and debuggers. At worst

the merging of code at link time and abstraction violations seen in the extensible

sum approach merely reflect existing problems in any system that claims to support

tagless garbage collection and separate compilation [JRR99]. We have simply made

those problems explicit.

One significant limitation of our approach is that it does not allow for the efficient

separate compilation of polymorphic functions. Separately compiling polymorphic

functions efficiently has been an active area of research. For languages that do not

support parametric polymorphism we believe the extensible sum approach is more

than adequate.

8.3 Intensional Type Analysis

Separate compilation and polymorphism. There are a variety of solutions for

compiling polymorphism. They can be broadly divided into two approaches, het-

erogenous or homogeneous [OW97]. In the heterogenous approach each use of a poly-

morphic function at a given type results in the specialization of that function at that
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type. In the homogeneous approach there is simply one version of the function used

at all types. For example, C++ templates require heterogenous semantics. ML style

polymorphism allows for either heterogenous or homogeneous approaches, but most

ML systems use homogeneous encodings.

The heterogenous approach. To achieve separate compilation in a system that

adopts a heterogenous approach, such as C++, requires that exported generic3 func-

tions must be included in the compilation environment so that clients of the function

can expand and compile the code. This means generic functions may have the same

problems of fragility that explicitly globally inlined functions do. Depending on the

sophistication of the system, a change to a generic function may require the full re-

compilation of every module that depends on it. At the very least each specalized

copy of the code must be recompiled. Another problem is that often a generic func-

tion is applied several times to the same type across modules. Systems that use the

heterogenous approach usually provide some mechanism to share the code of generic

functions typically via a cache of previously compiled functions. However, if a generic

function is instantiated at many different distinct types, code blow-up is still a prob-

lem.

The chief advantage of a heterogenous approach is that it allows for a maximum

amount of code optimization. Since the compiler knows at compile time precisely

what type a generic function is applied to and knows precisely what the generic

function is it can produce an optimized copy of the function specalized for a specific

type.

3We use the term generic to mean polymorphic which is more consistent with C++ terminology.
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The homogenous approach. Traditionally, homogeneous systems must compile

polymorphic functions by choosing a universal representation for all objects passed to

polymorphic functions. This has good separate compilation properties. Polymorphic

functions can be compiled exactly once. The compiled code can be shared by all

modules that wish to use the function at any type. The source code for the function

need not be exported to other modules in the compilation environment. Changes are

local to the definition of the functions and do not need to be propagated to clients of

the function. However, code quality may suffer since the universal representation is

not optimal for all types. For example some ML systems force floating point values

to be passed by reference rather than passing the values directly in the floating point

registers of the machine.

There is quite a deal of literature about how to effectively compile polymorphic

functions in a homogenous fashion. The simplest approach is to choose a universal

representation for all values and incur a performance penalty [MDCB91]. There

are various coercion-based approaches that ameliorate the performance penalty of

the uniform representation approach by using efficient specialized representations

when possible and coercing to and from a universal representation only when calling

unknown polymorphic functions [Ler92, Sha97].

The homogenous approach and runtime type dispatch. Finally, there has

been a great deal of research into handling polymorphism via runtime type dis-

patch. While the previously homogeneous approaches have attempted to make poly-

morphic functions independent of the runtime representation of values, approaches

that use runtime type dispatch solve the problem by making polymorphic functions

representation-aware. Polymorphic values carry runtime type information with them

so functions can determine the appropriate type-specific behavior at runtime. Again
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val flat_i : int → int

val flat_pii : (int × int) → (int × int)

val flat_ppii : ((int × int) × int) → (int × int × int)

val flat_pipi : (int × (int × int)) → (int × int × int)

val flat_ppiipii : ((int × int) × (int × int)) → (int × int × int × int)

val flat_pppiiipii : (((int × int) × int) × (int × int)) →
(int × int × int × int × int)

...

Figure 8.10: Flattening pairs.

Typerec Append[...][...] = ...

Typerec Flat[(α × β)] = Append[Flat[α]][Flat[β]]
| Flat[α → β] = Flat[α] → Flat[β]
| Flat[α] = ...

val flat : α → Flat[α]

Figure 8.11: Flattening pairs with ITA.

these type-dispatch techniques incur an extra cost for polymorphic functions that

can be eliminated with link-time specialization. There are several approaches to

runtime type dispatch. Intensional Type Analysis (ITA) [HM95, Wei01] is per-

haps the most sophisticated. The most important feature of ITA is that at compile

time one can verify the type correctness of code that performs runtime type dis-

patch. There are various flavors of ITA that lift restrictions found in the original

systems [CWM98, CW99, TSS00, STS00].

Assigning types to type-dispatching functions. Another important feature of

ITA is that it allows the expression of typing constraints not possible with normal

parametric polymorphism by providing for inductive reasoning at the level of types.

Such reasoning lets us encode certain “metatheorems” about types that could not be

expressed directly before.
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One such metatheorem is the fact that a set of nested pairs can be converted into

a single flat tuple. One could attempt to encode this metatheorem in our language

by exhaustively writting down a set of functions. (See Figure 8.10) We cannot ever

hope to complete such a list since there are an countably infinite set of possible types.

However, a very simple inductive proof on the structure of types can show this fact. It

is perhaps not too surprising that in a language that allows for runtime type dispatch

we can write a function that can generically flatten an arbitrary series of nested pairs

into a flat tuple. With ITA not only can we write such a function but we can directly

express its type, which is a bit surprising since as one can see by inspecting Figure

8.10 the result type of each function is related to the argument type of the function

in a rather complex way.

In ITA such relationships are represented as primitive recursive functions over the

structure of primitive types. In Figure 8.11 the function Flat defines an inductive

function from primitive types to primitive types that performs case analysis on the

structure of the type to compute the flatten version of an arbitrary type. It calls

an auxiliary inductively defined function (Append) from types to types. Given this

type function we can now assign a type to a flatten function (flat) that takes a

value of any type (α) and returns a value whose type is the result of applying our

type function to the input type of our function Flat[α]. We do not wish to discuss

all the formalities of ITA in detail and refer the reader to the literature for a more

formal treatment [HM95, TSS00, Wei01]. The simple intuition that ITA allows for

the definition of types that manipulate types will be sufficient for our discussions.

Just as the type int → int is an abstract description of a function that takes an

integer and returns an integer, the type α → Flat[α] abstractly describes the behav-

ior of a function that takes a value and produces another value whose type structure

is related to the type structure of its argument in a predetermined way. Typecheck-
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Typerec SubstR[ρ][(α × β)] = (SubstR[ρ][α] × SubstR[ρ][β])
| SubstR[ρ][α → β] = (SubstR[ρ][α] → SubstR[ρ][β])
| SubstR[ρ][α at _] = (SubstR[ρ][α]) at ρ
| SubstR[ρ][int] = int

val deep_copy : ∀ ρ1,ρ2.SubstR[ρ1][α] → SubstR[ρ2][α]

Figure 8.12: Substituting region variables with ITA.

Typerec Id[(α × β)] = (Id[α] × Id[β])
| Id[α → β] = Id[α] → Id[β]
| Id[int] = int

Figure 8.13: Identity Typerec.

ing in systems that support ITA is a decidable problem. ITA allows polymorphic

functions to exploit specialized representations and avoids the need to treat values

passed to polymorphic functions in a uniform way. It allows for the definition of type

transforming functions.

ITA and garbage collection. Given the expressiveness of ITA it is not surpris-

ing that it can be used implement and typecheck the tracing function of a garbage

collector which simply must be able to traverse a value of any type at runtime. If we

extend our ITA system to handle regions we can now properly describe the type of

the copy function used by a type-preserving garbage collector.

Figure 8.12 describes the SubstR type constructor. The inductive definition sub-

stitutes every occurrence of every region variable with another determined by its

argument. We can understand the type of the function deep copy to mean that

given an arbitrary object whose components are allocated in region ρ1 return an ob-

ject with the same structure but allocated in region ρ2. The use of ITA gurantees

that the function has completely copied the value out of the region.

In ITA there are many subtleties with the representation of runtime type infor-
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mation in particular type representations must be computed at runtime. While all

the subtleties can be addressed they add a great deal of extra complexity to the sys-

tem. It is also not clear what parts of an ITA system can be easily formally verified

and thus remain outside of the trusted computing base. Even if we ignore all these

implementation details there are also a few subtleties with using ITA to implement

type-preserving garbage collectors.

Figure 8.13 describes a simple inductive definition Id which simply maps a type

back to itself. Under the definition of type equivalence in many ITA systems the

Id function applied to a primitive constructor behaves in a natural way. However,

when applied to an uninstantiated type variable the standard type equivalence rules

do not allow us to treat Id[α] as identical to α. The difficulty is caused because ITA

systems treat Id[α] as a normal form. From this fact we can derive the following set

of equations

Id[α × β] ≡ Id[α] × Id[β]
Id[α → β] ≡ Id[α] → Id[β]
Id[int] ≡ int

Id[α] 6≡ α

So far we have only been performing type analysis on ground types. A garbage

collector must be able to perform case analysis on existentially quantified types used

to hide the representation of closures. Extending ITA to handle quantified types has

been examined by others [CW99, TSS00, STS00]. However, even with an ITA system

extended to handle quantified types we still require some extra machinery. The last

equation above is essence of the following problematic equation

SubstR[ρ1][SubstR[ρ2][α]] 6≡ SubstR[ρ1][α]

which prevents us from handling existentially quantified type variables needed in the

copying of closures. Monnier, Saha et al [MSS01] describe a solution to this problem
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by stratifying the type system into a language of types and tags. Tags only contain

information about the structure of a value and do not provide information about

where values are allocated. They use a specialized ITA constructor Sρ(τ) that maps

tags into region-annotated types. They discuss other pragmatic details needed to use

ITA for garbage collection. Their system allows for traditional separate compilation

so that the linker does almost no extra work.

Although ITA is a powerful idea it requires nontrivial techniques to formalize

as well as complex and delicate primitives to implement. While it violates fewer

abstraction guarantees than our extensible sum approach it also violates data privacy

which can be troubling when type systems are use to enforce security guarantees.

8.4 Summary

We have outlined some of the issues in understanding precisely what tradeoffs there

are in various different separate compilation architectures. Realistically, a program-

ming environment can provide different tradeoffs by choosing to delay some work

until link time or make the system more fragile. We have described one separate

compilation scheme to support type-preserving garbage collectors that uses extensi-

ble sums and linker support. The extensible sums approach is sufficient for compiling

monomorphic languages. For polymorphic languages sophisticated type systems that

support intensional type analysis are sufficient. However, intensional type analysis is

not without its complexity. Both these approaches violate important data-abstraction

guarantees which we would like to preserve.
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Conclusions and Future Work

We have shown how to use new type systems to solve old problems related to memory

management. Type systems allow for explicit memory management in ways that stat-

ically guarantee the integrity of the system. These integrity guarantees are important

for secure mobile code systems. As well as reducing the amount of code that must

be trusted in a secure system, we have made the system more flexible since there is a

smaller set of inflexible assumptions in the system design. Programmers can also be

given more explicit control over memory management policy. Debugging the compiler

interface to the runtime system becomes easier.

We have shown how to build efficient garbage collectors on top of simpler, less

flexible memory management services. We developed type systems that guarantee

the simpler services are used in ways that do not violate program integrity. Our

system improves on previous approaches by using a dynamic runtime approach to deal

with certain soundness problems that have previously been addressed with complex

static type systems. In the process of building a copying garbage collector, certain

issues such as the violation of program abstraction become explicit. Our approach

suggests ways to freely mix explicit memory management techniques with automatic

160
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techniques in a safe and flexible way.

The prototype system we built has identified important performance problems,

in particular the need to support forwarding pointers and stack allocation. We have

shown how to extend our basic approach to solve these performance problems. As

well as describing how to extend our technique to provide better separate compilation

properties.

Extending to other languages. The core idea of building a garbage collector

from simpler primitives is not dependent on the programming language involved.

The issues we encounter in handling higher-order functions are similar to issues that

must be addressed when handling object-oriented languages. If we extend our core

region calculus to handle existentially quantified types and polymorphism, we can

adapt our ideas to almost any programming language.

Extending to other garbage collection algorithms. At a high-level, garbage

collection algorithms move objects from one abstract set to another. Particular

garbage collection algorithms differ in how these abstract sets of objects are im-

plemented. In our type-preserving collector each abstract set of objects corresponds

to a region. Our technique is not dependent on any particular implementation of the

region primitives.

In the past regions have been implemented as contiguous allocation arenas. If we

implement regions as doubly-linked lists of objects rather than contiguous allocation

arenas, we can build a “fake copying” collector [Wan89]. The “fake copying” scheme

forms the basis for incremental techniques such as Baker’s Treadmill [Bak92b]. We

may be be able to use this observation as the basis for building safe incremental

collectors.
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The mark bits used in mark-sweep and mark-compact collectors can also be seen

as simple set membership bits. We believe that with an appropriate implementa-

tion of the underlying region primitives, mark-sweep and mark-compact collection

schemes could be implemented. There has already been work to extend our result to

generational garbage collection schemes [MSS01]. However, if we integrate existing

region-based techniques with our system, we may not need the full complexity of a

generational garbage collection system to achieve good performance [Hal99].

Building realistic systems and proofs. We have sketched many extensions

needed for a realistic system, but their still is a great deal of work to be done in

order to incorporate all these ideas into a coherent system. The challenge, however,

is not to build a system, but to build a simple system. Constructing a soundness

proof for such a system will be quite challenging. Ideally we would like to use the

machine checkable semantic techniques developed by for Foundational Proof-carrying

Code [App01] to construct rigorous machine checkable proofs for our system.

Preserving abstraction. We have tried to emphasize, but have not fully explored,

issues related to abstraction. Can we guarantee that all the source level data privacy

guarantees are maintained even in the presence of a garbage collector? How can two

systems that each come with their own storage management strategies interoperate?

We believe these are fundamental questions that may lead to new insights in how to

construct large, efficient, and robust systems.

One approach to these problems is based on dictionary passing [WB89b]. What

makes this approach attractive is that it preserves many more data-privacy guaran-

tees than the previous approaches discussed. In this approach abstract objects are

compiled into self copying values, so that a type-preserving garbage collector can
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copy an object by simply invoking a function provided by the value. The contents of

the value remain abstract to the collector. Formalizing the needed type systems for

this approach is not particularly difficult. However, it is not clear what the runtime

performance of such a system would be, since copying every object now involves a

function call. This may degrade the performace of the system in an unacceptable

way.



Appendix A

Proof of Safety Properties

Theorem 1 (Type Soundness) If ` P1 wt, then there is no stuck P2 such that
P1 7→

∗
P P2.

Proof. By structural induction on derivations of P 7→∗
P P ′ and Lemma 1.1 (Type

Preservation of Programs) and Lemma 1.2 (Progress)

Induction Hypothesis: We need the following stronger induction hypothesis: If `
P1 wt and P1 7→

∗
P P2 then P2 is not stuck and ` P2 wt.

case mstprefl
P 7→∗

P P

By assumption ` P wt and by Lemma 1.2 P is not stuck.

case
P1 7→

∗
P P2 P2 7→

∗
P P3

mstptrans
P1 7→

∗
P P3

1. ` P1 wt By assumption

2. P1 7→
∗
P P2 By assumption

3. P2 7→
∗
P P3 By assumption

4. ` P2 wt By IH with (1) and (2)

It follows that ` P3 wt and P3 is not stuck By IH with (4) and (3)

case
P1 7→P P2

mstprds
P1 7→

∗
P P2

164
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1. ` P1 wt By assumption

2. P1 7→P P2 By assumption

3. ` P2 wt By Lemma 1.1 with (1) and (2)

4. P2 is not stuck By Lemma 1.2 and (3)

It follows that ` P2 wt and P2 is not stuck By (3) and (4)

Lemma 1.1 (Type Preservation of Programs) If ` P1 wt and P1 7→P P2, then
` P2 wt.

Proof. By case analysis of P1 7→P P2

Consdier the cases of P1 7→P P2

case rdspure R[E[e1]] 7→P R[E[e2]] where e1 7→e e2

1. ` R[E[e1]] wt By assumption

2. e1 7→e e2 By assumption

3. {}; {} ` R[E[e1]] :τ By (1) and inversion of wte

4. {}, ∆′; {} ` E[e1] :τ By Lemma 1.12 and (3)

5. {}, ∆′; {} ` e1 :τ ′ By Lemma 1.10 and (5)

6. {}, ∆′; {} ` e2 :τ ′ By Lemma 1.5 with (5) and (2)

7. {}, ∆′; {} ` E[e2] :τ By Lemma 1.11 with (5), (6), and (4)

8. {}; {} ` R[E[e2]] :τ By Lemma 1.13 with (4), (7), and (3)

Therefore ` R[E[e2]] wt By wte and (8)

case rdsletr R[E[letr ρ in e]] 7→P R[letr ρ in E[e]]

1. ` R[E[letr ρ in e]] wt By assumption

2. {}; {} ` R[E[letr ρ in e]] :τ By (1) and inversion of wte

3. {}, ∆′; {} ` E[letr ρ in e] :τ By Lemma 1.12 and (2)

4. {}, ∆′; {} ` letr ρ in e :τ ′ By Lemma 1.10 and (3)

5. {}, ∆′, {ρ}; {} ` e :τ ′ By (4) and inversion of htletr

6. {}, ∆′, {ρ}; {} ` letr ρ in e :τ ′ By (4) and weakening

7. {}, ∆′, {ρ}; {} ` E[letr ρ in e] :τ By (3) and weakening

8. {}, ∆′, {ρ}; {} ` E[e] :τ By Lemma 1.11 with (6), (5), and (7)

9. {}, ∆′ ` τ wf By (3) and Lemma 1.8
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10. {}, ∆′; {} ` letr ρ in E[e] :τ By htletr with (9) and (8)

11. {}; {} ` R[letr ρ in E[e]] :τ By Lemma 1.13 with (3), (10), and (2)

Therefore ` R[letr ρ in E[e]] wt By wte and (11)

case rdsget R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] 7→P R[letr ρ in R′[E[v]]]

1. ` R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] wt By assumption

2. {}; {} ` R[letr ρ in R′[E[get[ρ](put[ρ](v))]]] :τ By (1) and inversion of wte

3. {}, ∆′; {} ` E[get[ρ](put[ρ](v))] :τ By Lemma 1.12 and (2)

4. {}, ∆′; {} ` get[ρ](put[ρ](v)) :τ ′ By Lemma 1.10 and (3)

5. {}, ∆′; {} ` put[ρ](v) : (τ ′ at ρ) By (4) and inversion of htget

6. {}, ∆′; {} ` v :τ ′ By (5) and inversion of htput

7. {}, ∆′; {} ` E[v] :τ By Lemma 1.11 with (4), (6), and (3)

8. {}; {} ` R[letr ρ in R′[E[v]]] :τ By Lemma 1.13 with (3), (7), and (2)

Therefore ` R[letr ρ in R′[E[v]]] wt By wte and (8)

case rdsonly R[E[only ∆′′ in e]] 7→P R′∆′′

[e]

1. ` R[E[only ∆′′ in e]] wt By assumption

2. {}; {} ` R[E[only ∆′′ in e]] :τ By (1) and inversion of wte

3. {}, ∆; {} ` E[only ∆′′ in e] :τ By Lemma 1.12 with (2)

4. {}, ∆; {} ` only ∆′′ in e :τ ′ By Lemma 1.10 with (3)

5. {}, ∆′, ∆′′; {} ` only ∆′′ in e :Ans
Because by inspection of htonly

∆ = ∆′, ∆′′

6. ∆′′; {} ` e :Ans By (5) inversion of htonly

7. {}; {} ` R′∆′′

[e] :Ans By definition of R′∆′′

Therefore ` R′∆′′

[e] wt By wte with (7)

case rdshalt R[E[haltτ ′

]] 7→P haltτ where E 6= [ ]

1. ` R[E[haltτ ′

]] wt By assumption

2. {}; {} ` R[E[haltτ ′

]] :τ By (1) and inversion of wte

3. {} ` τ wf By Lemma 1.8 with (2)

4. {}; {} ` haltτ :τ By hthalt with (3)

Therefore ` haltτ wt By wte with (4)
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case rdsfree R[letr ρ in R′[e]] 7→P R[R′[e]] where ` R[R′[e]] wt

Trivial since by assumption ` R[R′[e]] wt

Lemma 1.2 (Progress) If ` P1 wt, then there exists P2 such that P1 7→P P2 or P1

is an answer, i.e. P1 is not stuck.

Proof. Because ` P1 wt impiles {}; {} ` R[e] : τ . By Lemma 1.12 ∆; {} ` e : τ so
by case analysis on the conclusions of Lemma 1.6

Consdier the cases of Lemma 1.6

case e = v

If e is a value than P1 is an answer.

case e = E[r] where r = ((λx :τ ′.e′)∆′

v)

P1 reduces to P2 using rdspure with rdsbetav.

case e = E[r] where r = ((Λρ.e′)[ρ′])

P1 reduces to P2 using rdspure with rdstapp.

case e = E[r] where r = (fixf :τ ′.v′)

P1 reduces to P2 using rdspure with rdsfix.

case e = E[r] where r = letr ρ in e′

P1 reduces to P2 using rdsletr.

case e = E[r] where r = get[ρ](put[ρ](v))

P1 reduces to P2 using rdsget.

case e = E[r] where r = only ∆′ in e′

P1 reduces to P2 using rdsonly.

case e = E[r] where r = haltτ ′

If E 6= [ ] then P1 reduces to P2 using rdshalt with rdsfix. If E = [ ] then P1 is
an answer.

Lemma 1.3 (Typing Under Term Subsitution) If ∆; Γ ` e : τ and ∆; Γ, {x :
τ} ` e′ :τ ′ then ∆; Γ ` e′[e/x] :τ ′, where e = v or e = (fixf :τ ′′.v).
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Proof. By structural induction on the derivations of ∆; Γ, {x :τ} ` e′ :τ ′.

Induction Hypothesis: If ∆; Γ ` e : τ and ∆; Γ, {x : τ} ` e′ : τ ′ then ∆; Γ ` e′[e/x] : τ ′,
where e = v or e = (fixf :τ ′′.v).

case htvar
∆; Γ, {x :τ} ` x :τ

Because e′ = x, τ ′ = τ and x[e/x] = e therefore ∆; Γ ` e :τ by assumption

case htvar
∆; Γ, {x :τ}, {y :τ ′} ` y :τ ′

Because e′ = y, y[e/x] = y therefore ∆; Γ, {y :τ ′} ` y :τ ′ by htvar

case htunit
∆; Γ, {x :τ} ` 〈〉 :unit

Because e′ = 〈〉 , τ ′ = unit, and 〈〉[e/x] = 〈〉 therefore ∆; Γ ` 〈〉 :unit by htunit

case
∆′ ` (Γ′, {x :τ}) wfenv ∆′′ ` τ1 wf ∆′′; Γ′′, {y :τ1} ` e′′ :τ2

htabs

∆′, ∆′′; (Γ′, {x :τ}), Γ′′ ` (λy :τ1.e
′′)∆′′

:τ1
∆′′

→ τ2

Because Γ = Γ′, Γ′′, ∆ = ∆′, ∆′′, e′ = (λy : τ1.e
′′)∆′′

, τ ′ = τ1
∆′′

→ τ2, and
(λy :τ1.e

′′)∆′′

[e/x] = (λy :τ1.e
′′[e/x])∆′′

1. ∆′′; Γ′′, {y :τ1}τ ` e′′ :τ2 By assumption

2. e′′[e/x] = e′′ Because (1) implies that x is not free in e′′

Therefore ∆′, ∆′′; Γ′, Γ′′ ` (λy :τ1.e
′′)∆′′

:τ1
∆′′

→ τ2 By assumption

case
∆′ ` Γ′ wfenv ∆′′ ` τ1 wf ∆′′; (Γ′′, {x :τ}), {y :τ1} ` e′′ :τ2

htabs

∆′, ∆′′; Γ′, (Γ′′, {x :τ}) ` (λy :τ1.e
′′)∆′′

:τ1
∆′′

→ τ2

Because Γ = Γ′, Γ′′, ∆ = ∆′, ∆′′, e′ = (λy : τ1.e
′′)∆′′

, τ ′ = τ1
∆′′

→ τ2, and
(λy :τ1.e

′′)∆′′

[e/x] = (λy :τ1.e
′′[e/x])∆′′

1. ∆′, ∆′′; Γ′, Γ′′ ` e :τ By assumption

2. ∆′ ` Γ′ wfenv By assumption

3. ∆′′ ` τ1 wf By assumption

4. ∆′′; Γ′′, {y :τ1}, {x :τ} ` e′′ :τ2 By assumption and exchange

5. ∆′′ ` Γ′′ wfenv By assumption implicit in (4)
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6. ∆′′; Γ′′ ` e :τ By Lemma 1.4 with (3), (2), (5),
and (1) N.B. here is where we use
the fact that e = v or e = (fixf :
τ ′.v′)

7. ∆′′; Γ′′, {y :τ1} ` e′′[e/x] :τ2 By IH with (6) and (4)

Therefore ∆′, ∆′′; Γ′, Γ′′ ` (λy :τ1.e
′′[e/x])∆′′

:τ1
∆′′

→ τ2 By htabs with (2),
(3) and (7)

case
∆′, ∆′′; Γ, {x :τ} ` e1 :τ1

∆′′

→ τ2 ∆′, ∆′′; Γ, {x :τ} ` e2 :τ1
htapp

∆′, ∆′′; Γ, {x :τ} ` (e1 e2) :τ2

Because ∆ = ∆′, ∆′′, e′ = (e1 e2), τ ′ = τ2, and (e1 e2)[e/x] = (e1[e/x] e2[e/x])

1. ∆′, ∆′′; Γ ` e :τ By assumption

2. ∆′, ∆′′; Γ, {x :τ} ` e1 :τ1
∆′′

→ τ2 By assumption

3. ∆′, ∆′′; Γ, {x :τ} ` e2 :τ1 By assumption

4. ∆′, ∆′′; Γ ` e1[e/x] :τ1
∆′′

→ τ2 By IH with (1) and (2)

5. ∆′, ∆′′; Γ ` e2[e/x] :τ1 By IH with (1) and (3)

Therefore ∆′, ∆′′; Γ ` (e1[e/x] e2[e/x]) :τ2 By htapp with (4) and (5)

case
∆, {ρ}; Γ, {x :τ} ` e′′ :τ ′′

httabs
∆; Γ, {x :τ} ` (Λρ.e′′) :∀ρ.τ ′′

Because e′ = (Λρ.e′′), τ ′ = ∀ρ.τ ′′, and (Λρ.e′′)[e/x] = (Λρ.e′′[e/x])

1. ∆; Γ ` e :τ By assumption

2. ∆, {ρ}; Γ, {x :τ} ` e′′ :τ ′′ By assumption

3. ∆, {ρ}; Γ ` e′′[e/x] :τ ′′ By IH with (1) and (2)

Therefore ∆; Γ ` (Λρ.e′′[e/x]) :∀ρ.τ ′′ By httabs and (3)

case
∆, {ρ′}; Γ, {x :τ} ` e′′ :∀ρ.τ ′′

httapp
∆, {ρ′}; Γ, {x :τ} ` (e′′[ρ′]) :τ ′′[ρ′/ρ]

Because e′ = (e′′[ρ′]), τ ′ = τ ′′[ρ′/ρ], and (e′′[ρ′])[e/x] = (e′′[e/x] ρ′)

1. ∆; Γ ` e :τ By assumption

2. ∆ ` ρ′ wf By assumption

3. ∆; Γ, {x :τ} ` e′′ :∀ρ.τ ′′ By assumption

4. ∆; Γ ` e′′[e/x] :∀ρ.τ ′′ By IH with (1) and (3)
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Therefore ∆; Γ ` (e′′[e/x][ρ′]) :τ ′′[ρ′/ρ] By httapp with (2) and (4)

case
∆ ` τ ′ wf ∆, {ρ}; Γ, {x :τ} ` e′′ :τ ′

htletr
∆; Γ, {x :τ} ` (letr ρ in e′′) :τ ′

Because e′ = letr ρ in e′′ and letr ρ in e′′[e/x] = letr ρ in e′′[e/x]

1. ∆; Γ ` e :τ By assumption

2. ∆ ` τ ′ wf By assumption

3. ∆, {ρ}; Γ, {x :τ} ` e′′ :τ ′ By assumption

4. ∆, {ρ}; Γ ` e′′[e/x] :τ ′ By IH with (1) and (3)

Therefore ∆; Γ ` letr ρ in e′′[e/x] :τ ′ By letr with (2) and (4)

case
∆′, {ρ}; Γ, {x :τ} ` e′′ :τ ′′

htput
∆′, {ρ}; Γ, {x :τ} ` put[ρ](e′′) : (τ ′′ at ρ)

Because ∆ = ∆′, {ρ}, e′ = put[ρ](e′′), τ ′ = (τ ′′ at ρ), and put[ρ](e′′)[e/x] =
put[ρ](e′′[e/x])

1. ∆′, {ρ}; Γ ` e :τ By assumption

2. ∆′, {ρ}; Γ, {x :τ} ` e′′ :τ ′′ By assumption

3. ∆′, {ρ}; Γ ` e′′[e/x] :τ ′′ By IH with (1) and (2)

Therefore ∆′, {ρ}; Γ ` put[ρ](e′′[e/x]) : (ρ at τ ′′) By htput with (3)

case
∆′, {ρ}; Γ, {x :τ} ` e′′ : (τ ′ at ρ)

htget
∆′, {ρ}; Γ, {x :τ} ` get[ρ](e′′) :τ ′

Because ∆ = ∆′, {ρ}, e′ = get[ρ](e′′), get[ρ](e′′)[e/x] = get[ρ](e′′[e/x])

1. ∆′, {ρ}; Γ ` e :τ By assumption

2. ∆′, {ρ}; Γ, {x :τ} ` e′′ : (ρ at τ ′) By assumption

3. ∆′, {ρ}; Γ ` e′′[e/x] : (ρ at τ ′) By IH with (1) and (2)

Therefore ∆′, {ρ}; Γ ` get[ρ](e′′[e/x]) :τ ′ By htget with (3)

case
∆′ ` Γ′, {x :τ} wfenv ∆′′; Γ′′ ` e′′ :Ans

htonly
∆′, ∆′′; Γ′, {x :τ}, Γ′′ ` (only ∆′′ in e′′) :Ans

Because ∆ = ∆′, ∆′′, Γ = Γ′, Γ′′, e′ = only ∆′′ in e′′ and τ ′ = Ans

1. ∆′′; Γ′′ ` e′′ :Ans By assumption

2. e′′[e/x] = e” Because (1) implies x is not free in e′′
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Therefore ∆′, ∆′′; Γ′, Γ′′ ` only ∆′′ in e′′ :Ans By assumption

case
∆′ ` Γ′ wfenv ∆′′; Γ′′, {x :τ} ` e′′ :Ans

htonly
∆′, ∆′′; Γ′, Γ′′, {x :τ} ` (only ∆′′ in e′′) :Ans

Because ∆ = ∆′, ∆′′, Γ = Γ′, Γ′′, e′ = only ∆′′ in e′′, only ∆′′ in e′′[e/x] =
only ∆′′ in e′′[e/x], and τ ′ = Ans

1. ∆′, ∆′′; Γ′, Γ′′ ` e :τ By assumption

2. ∆′′; Γ′′, {x :τ} ` e′′ :Ans By assumption

3. ∆′ ` Γ′ wfenv By assumption

4. ∆′′ ` Γ′′, {x :τ} wfenv By implicit assumption

5. ∆′′ ` τ wfenv By (4) and inversion of wfenvbv

6. ∆′′; Γ′′ ` e :τ By Lemma 1.4 with (5), (3), (4), and (1)

7. ∆′′; Γ′′ ` e′′[e/x] :Ans By IH with (6) and (2)

Therefore ∆′, ∆′′; Γ′, Γ′′ ` only ∆′′ in e′′[e/x] :Ans By htonly with (3) and
(7)

case
∆ ` τ ′ wf ∆; Γ, {τ :x}, {f :τ ′} ` v :τ ′

htfix
∆; Γ, {τ :x} ` (fixf :τ ′.v) :τ ′

Because e′ = (fixf :τ ′.v) and (fixf :τ ′.v)[e/x] = (fixf :τ ′.v[e/x])

1. ∆; Γ ` e :τ By assumption

2. ∆ ` τ ′ wf By assumption

3. ∆; Γ, {f :τ ′}, {x :τ} ` v :τ ′ By assumption of htfix

4. ∆; Γ, {f :τ ′} ` v[e/x] :τ ′ By IH with (1) and (3)

Therefore ∆; Γ ` (fixf :τ ′.v[e/x]) :τ ′ By htfix with (2) and (4)

case
∆ ` τ ′ wf

hthalt
∆; Γ, {x :τ} ` haltτ ′

:τ ′

Because e′ = haltτ
′

and haltτ
′

[e/x] = haltτ ′

by assumption ∆ ` τ ′ wf therefore
∆; Γ ` haltτ

′

:τ ′ by hthalt

Lemma 1.4 (Region Context Strengthening) If ∆′ ` τ wf, ∆ ` Γ wfenv, ∆′ `
Γ′ wfenv, and ∆, ∆′; Γ, Γ′ ` e :τ where e = v or e = (fixf :τ.v) then ∆′; Γ′ ` e :τ
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Proof. By induction on derivations of ∆, ∆′; Γ, Γ′ ` e :τ .

Induction Hypothesis: If ∆′ ` τ wf, ∆ ` Γ wfenv, ∆′ ` Γ′ wfenv, and ∆, ∆′; Γ, Γ′ `
e :τ where e = v or e = (fixf :τ.v) then ∆′; Γ′ ` e :τ

case htunit
∆, ∆′; Γ, Γ′ ` 〈〉 :unit

Trivial since ∆′ ` Γ′ wfenv therefore ∆′; Γ′ ` 〈〉 :unit by htunit

case
∆ ` Γ′ wfenv ∆′ ` τ1 wf ∆′; Γ, {x :τ1} ` e′ :τ2

htabs

∆, ∆′; Γ′, Γ ` (λx :τ1.e
′)∆′

:τ1
∆′

→ τ2

Because τ = τ1
∆′

→ τ2,

1. ∆′ ` τ1 wf By assumption

2. ∆′; Γ′, {x :τ1} ` e′ :τ2 By assumption

3. {} ` {} wfenv By wfenvenpty

Therefore {}, ∆′; {}, Γ′ ` (λx :τ1.e
′)∆′

:τ1
∆′

→ τ2 By htabs with (3), (1), and
(2)

case
∆, ∆′, {ρ}; Γ, Γ′ ` e′ :τ ′

httabs
∆, ∆′; Γ, Γ′ ` (Λρ.e′) :∀ρ.τ ′

1. ∆′ ` ∀ρ.τ ′ wf By assumption

2. ∆ ` Γ wfenv By assumption

3. ∆′ ` Γ′ wfenv By assumption

4. ∆, ∆′, {ρ}; Γ, Γ′ ` e′ :τ ′ By assumption

5. ∆′, {ρ} ` τ ′ wf By (1) and inversion of wfall

6. ∆′, {ρ} ` Γ′ wfenv By (3) and weakening

7. ∆′, {ρ}; Γ′ ` e′ :τ ′ By IH with (5), (2), (6), and (4)

Therefore ∆′; Γ′ ` (Λρ.e′) :∀ρ.τ ′ By httabs with (7)

case
∆, ∆′′, {ρ}; Γ, Γ′ ` v′′ :τ ′

htput
∆, ∆′′, {ρ}; Γ, Γ′ ` put[ρ](v′′) : (τ ′ at ρ)

Because ∆′ = ∆′′, {ρ} and τ = (τ ′ at ρ)

1. ∆′′, {ρ} ` (τ ′ at ρ) wf By assumption

2. ∆ ` Γ wfenv By assumption
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3. ∆′′, {ρ} ` Γ′ wfenv By assumption

4. ∆, ∆′′, {ρ}; Γ, Γ′ ` v′ :τ ′ By assumption

5. ∆′′, {ρ} ` τ ′ wf By (1) and inversion of wfat

6. ∆′′, {ρ}; Γ′ ` v′ :τ ′ By IH with (5), (3), (2), and (4)

Therefore ∆′′, {ρ}; Γ′ ` put[ρ](v′) : (τ ′ at ρ) By htput with (6)

case
∆, ∆′ ` τ wf ∆, ∆′; Γ, Γ′, {f :τ} ` v′ :τ

htfix
∆, ∆′; Γ, Γ′ ` (fixf :τ.v′) :τ

1. ∆′ ` τ wf By assumption

2. ∆ ` Γ wfenv By assumption

3. ∆′ ` Γ′ wfenv By assumption

4. ∆′ ` Γ′, {f :τ} wfenv By wfenvbv with (3) and (1)

5. ∆, ∆′; Γ, Γ′, {f :τ} ` v′ :τ By assumption

6. ∆′; Γ′, {f :τ} ` v′ :τ By IH with (1), (2), (4) and (5)

Therefore ∆′; Γ′ ` (fixf :τ.v′) :τ By htfix with (1) and (6)

Lemma 1.5 (Type Preservation of Expression) If ∆; {} ` e1 : τ and e1 7→e e2,
then ∆; {} ` e2 :τ .

Proof. By case analysis of e1 7→e e2

Consdier the cases of e1 7→e e2

case rdsbetav ((λx :τ1.e)
∆′′

v) 7→e e[v/x]

Because ∆ = ∆′, ∆′′ and {} = {}, {}

1. ∆′, ∆′′; {}, {} ` ((λx :τ1.e)
∆′′

v) :τ2 By assumption

2. ∆′, ∆′′; {}, {} ` (λx :τ1.e)
∆′′

:τ1
∆′′

→ τ2 By (1) and inversion of htapp

3. ∆′, ∆′′; {}, {} ` v :τ1 By (1) and inversion of htapp

4. ∆′′; {}, {x :τ1} ` e :τ2 By (2) and inversion of htabs

5. ∆′, ∆′′; {}, {}, {x :τ1} ` e :τ2 By (4) and weakening

It follows that ∆′, ∆′′; {}, {} ` e[v/x] :τ2 By Lemma 1.3 with (3) and (5)

case rdstapp ((Λρ.e)[ρ′]) 7→e e[ρ′/ρ]

Because ∆ = ∆′, {ρ′}
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1. ∆′, {ρ′}; {} ` ((Λρ.e)[ρ′]) :τ ′[ρ′/ρ] By assumption

2. ∆′, {ρ′}; {} ` (Λρ.e) :∀ρ.τ ′ By (1) and inversion of httapp

3. ∆′, {ρ′}, {ρ}; {} ` e :τ ′ By (2) and inversion of httabs

4. ∆′, {ρ′}; {}[ρ′/ρ] ` e[ρ′/ρ] :τ ′[ρ′/ρ] By Lemma 1.9 with (2)

It follows that ∆′, {ρ′}; {} ` e[ρ′/ρ] :τ ′[ρ′/ρ] Because {}[ρ′/ρ] = {}

case rdsfix (fixf :τ.v) 7→e v[(fixf :τ.v)/f ]

1. ∆; {} ` (fixf :τ.v) :τ By assumption

2. ∆; {}, {f :τ} ` v :τ By (1) and inversion of htfix

It follows that ∆; {} ` v[(fixf :τ.v)/f ] :τ By Lemma 1.3 with (1) and (2)

Lemma 1.6 (Redex Decomposition) If ∆; {} ` e :τ then e is a value or e = E[r]
where r is a redux. A redux is any of the following forms:

1. ((λx :τ ′.e′)∆′′

v) where ∆ = ∆′, ∆′′

2. ((Λρ.e′)[τ ′])

3. (fixf :τ ′.v)

4. letr ρ in e′

5. get[ρ](put[ρ](e′))

6. only ∆′ in e′

7. haltτ
′

Proof. By structural induction on well typed closed e

Induction Hypothesis: If ∆; {} ` e :τ then e is a value or e = E[r] where r is a redux.

case e = 〈〉

e is a value

case e = (λx :τ ′.e′)∆′′

where ∆ = ∆′, ∆′′

e is a value

case e = (Λρ.e′)

e is a value
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case e = put[ρ](v)

e is a value

case e = (v1 v2)

Since e is well typed by inversion of htapp v1 has type τ1
∆′′

→ τ2 where ∆ = ∆′, ∆′′.
From Lemma 1.7 we conclude that v1 = (λx : τ ′.e′)∆′′

. Therefore E = [ ] and
r = ((λx :τ ′.e′)∆′′

v2).

case e = (v e′)

By IH e′ = E ′[r′]. Therefore E = (v E ′) and r = r′

case e = (e′ e′′)

By IH e′ = E ′[r′]. Therefore E = (E ′ e′′) and r = r′

case e = (v[τ ′])

Since e is well typed by inversion of httapp v has type ∀ρ.τ ′. From Lemma 1.7
we conclude that v = (Λρ.e′). Therefore E = [ ] and r = ((Λρ.e′)[τ ′])

case e = (e[τ ′])

By IH e = E ′[r′]. Therefore E = (E[τ ′]) and r = r′

case e = letr ρ in e′

Let E = [ ] and r = letr ρ in e′

case e = put[ρ](e′)

By IH e′ = E ′[r′]. Therefore E = put[ρ](E ′) and r = r′

case e = get[ρ](v)

Since e is well typed by inversion of htget v has type (τ ′ at ρ) From 1.7 we
conclude that v = put[ρ](v′). Therefore E = [ ] and r = get[ρ](put[ρ](v′))

case e = get[ρ](e′)

By IH e′ = E ′[r′]. Therefore E = get[ρ](E ′) and r = r′

case e = only ∆′ in e′

Let E = [ ] and r = only ∆′ in e′

case e = (fixf :τ ′.v′)

Let E = [ ] and r = (fixf :τ ′.v′)
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case e = haltτ

Let E = [ ] and r = haltτ

Lemma 1.7 (Canonical Forms) If ∆; Γ ` v : τ then one of the following must be
true.

1. τ = unit iff v = 〈〉

2. τ = τ1
∆′′

→ τ2 iff v = (λx :τ1.e)
∆′′

and ∆ = ∆′, ∆′′

3. τ = ∀ρ.τ ′ iff v = (Λρ.e)

4. τ = (τ ′ at ρ) iff v = put[ρ](v′) and ∆ = ∆′, {ρ}

Proof. By inspection of the typing judgments for τ

case τ= unit

Follows from inversion of htunit

case τ= τ1
∆′′

→ τ2

Follows from inversion of htabs

case τ = ∀ρ.τ ′

Follows from inversion of httabs

case τ = (τ ′ at ρ)

Follows from inversion of htput

Lemma 1.8 (Typing Relation Implies Well Formedness) If ∆; Γ ` e : τ then
∆ ` τ wf.

Proof. By structural induction on derivations of ∆; Γ ` e :τ .

Induction Hypothesis: If ∆; Γ ` e :τ then ∆ ` τ wf.

case htvar
∆; Γ, {x :τ} ` x :τ

∆ ` Γ, {x : τ} wf by implicit assumption. Therefore ∆ ` τ wf by ∆ ` Γ, {x :
τ} wf and inversion of wfenvbv

case htunit
∆; Γ ` 〈〉 :unit

∆ ` unit wf by wfunit
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case
∆′ ` Γ′ wfenv ∆′′ ` τ1 wf ∆′′; Γ′′, {x :τ1} ` e′ :τ2

htabs

∆′, ∆′′; Γ′, Γ′′ ` (λx :τ1.e
′)∆′′

:τ1
∆′′

→ τ2

Because ∆ = ∆′, ∆′′ and Γ = Γ′, Γ′′

1. ∆′′ ` τ1 wf By assumption

2. ∆′′; Γ′′, {x :τ1} ` e′ :τ2 By assumption

3. ∆′′ ` τ2 wf By IH with (2)

4. ∆′′ ` τ1
∆′′

→ τ2 wf By wfarrow with (1) and (3)

Therefore ∆′, ∆′′ ` τ1
∆′′

→ τ2 wf By weakening

case
∆′, ∆′′; Γ ` e1 :τ1

∆′′

→ τ2 ∆′, ∆′′; Γ ` e2 :τ1
htapp

∆′, ∆′′; Γ ` (e1 e2) :τ2

Because ∆ = ∆′, ∆′′ and Γ = Γ′, Γ′′

1. ∆′, ∆′′; Γ′, Γ′′ ` e1 :τ1
∆′

→ τ2 By assumption

2. ∆′, ∆′′ ` τ1
∆′′

→ τ2 wf By IH with (1)

Therefore ∆′, ∆′′ ` τ2 wf By (2) and inversion of wfarrow

case
∆, {ρ}; Γ ` e′ :τ ′

httabs
∆; Γ ` (Λρ.e′) :∀ρ.τ ′

1. ∆, {ρ}; Γ ` e′ :τ ′ By assumption

2. ∆, {ρ} ` τ ′ wf By IH with (1)

Therefore ∆ ` ∀ρ.τ ′ wf By wfall with (2)

case
∆′, {ρ}; Γ ` ρ′ :∀e′.τ ′

httapp
∆′, {ρ}; Γ ` (ρ′[ρ]) :τ ′[ρ/e′]

Because ∆ = ∆′, {ρ′}

1. ∆′, {ρ′}; Γ ` e′ :∀ρ.τ ′ By assumption

2. ∆′, {ρ′} ` ∀ρ.τ ′ wf By IH with (1)

3. ∆′, {ρ′}, {ρ} ` τ ′ wf By (2) and inversion of wfall

Therefore ∆′, {ρ′} ` τ ′[ρ′/ρ] wf By induction on the derivations of
∆′, {ρ′}, {ρ} ` τ ′ wf and (3)
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case
∆ ` τ wf ∆, {ρ}; Γ ` e′ :τ

htletr
∆; Γ ` (letr ρ in e′) :τ

∆ ` τ wf by assumption

case
∆′, {ρ}; Γ ` e′ :τ ′

htput
∆′, {ρ}; Γ ` put[ρ](e′) : (τ ′ at ρ)

Because ∆ = ∆′, {ρ}

1. ∆′, {ρ} ` e′ :τ ′ By assumption

2. ∆′, {ρ} ` τ ′ wf By IH with (1)

Therefore ∆′, {ρ} ` (τ ′ at ρ) wf By wfat with (2)

case
∆′, {ρ}; Γ ` e′ : (τ ′ at ρ)

htget
∆′, {ρ}; Γ ` get[ρ](e′) :τ ′

Because ∆ = ∆′, {ρ}

1. ∆′, {ρ} ` e′ : (τ ′ at ρ) By assumption

2. ∆′, {ρ} ` (τ ′ at ρ) wf By IH with (1)

Therefore ∆′, {ρ} ` τ ′ wf By (2) and inversion of wfat

case
∆′ ` Γ′ wfenv ∆′′; Γ′′ ` e′ :Ans

htonly
∆′, ∆′′; Γ′, Γ′′ ` (only ∆′′ in e′) :Ans

Because ∆ = ∆′, ∆′′, ∆′, ∆′′ ` Ans wf by wfAns

case
∆ ` τ wf ∆; Γ, {f :τ} ` v :τ

htfix
∆; Γ ` (fixf :τ.v) :τ

∆ ` τ wf by assumption

case
∆ ` τ wf

hthalt
∆; Γ ` haltτ :τ

∆ ` τ wf by assumption

Lemma 1.9 (Typing Under Region Variable Subsitution) If
∆, {ρ′}, {ρ}; Γ ` e :τ then ∆, {ρ′}; Γ[ρ′/ρ] ` e[ρ′/ρ] :τ [ρ′/ρ].
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Proof. By structural induction on the derivations of ∆, {ρ′}, {ρ}; Γ ` e :τ .

Induction Hypothesis: If ∆, {ρ′}, {ρ}; Γ ` e :τ then ∆, {ρ′}; Γ[ρ′/ρ] ` e[ρ′/ρ] :τ [ρ′/ρ].

Lemma 1.10 (Control Context Independence) If ∆; Γ ` E[e] :τ then ∆; Γ ` e :
τ ′.

Proof. By induction on the structure of E

Induction Hypothesis: If ∆; Γ ` E[e] :τ then ∆; Γ ` e :τ ′.

case E = [ ]

Because E[e] = e and τ = τ ′ therefore ∆; Γ ` e :τ by assumption

case E = (E ′ e′)

Because E[e] = (E ′[e] e′) and ∆ = ∆′, ∆′′

1. ∆′, ∆′′; Γ ` (E ′[e] e′) :τ By assumption

2. ∆′, ∆′′; Γ ` E ′[e] :τ1
∆′′

→ τ By (1) and inversion of htapp

Therefore ∆′, ∆′′; Γ ` e :τ ′ By IH and (2)

case E = (v E ′)

Because E[e] = (v E ′[e]) and ∆ = ∆′, ∆′′

1. ∆′, ∆′′; Γ ` (v E ′[e]) :τ By assumption

2. ∆′, ∆′′; Γ ` E ′[e] :τ1 By (1) and inversion of htapp

Therefore ∆′, ∆′′; Γ ` e :τ ′ By IH and (2)

case E = (E ′[ρ′])

Because E[e] = (E ′[e][ρ′])

1. ∆; Γ ` (E ′[e][ρ′]) :τ By assumption

2. ∆; Γ ` E ′[e] :∀ρ.τ ′′ By (1) and inversion of httapp

Therefore ∆; Γ ` e :τ ′ By IH and (2)

case E = put[ρ](E ′)

Because E[e] = (ρ E ′[e]) and ∆ = ∆′, {ρ}

1. ∆′, {ρ}; Γ ` put[ρ](E ′[e]) :τ By assumption

2. ∆′, {ρ}; Γ ` E ′[e] :τ ′′ By (1) and inversion of htput
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Therefore ∆′, {ρ}; Γ ` e :τ ′ By IH and (2)

case E = get[ρ](E ′)

Because E[e] = (ρ E ′[e]) and ∆ = ∆′, {ρ}

1. ∆′, {ρ}; Γ ` get[ρ](E ′[e]) :τ By assumption

2. ∆′, {ρ}; Γ ` E ′[e] :τ ′′ By (1) and inversion of htget

Therefore ∆′, {ρ}; Γ ` e :τ ′ By IH and (2)

Lemma 1.11 (Control Context Replacement) If ∆; Γ ` e1 :τ , ∆; Γ ` e2 :τ , and
∆; Γ ` E[e1] :τ

′ then ∆; Γ ` E[e2] :τ
′.

Proof. By induction on the structure of E

Induction Hypothesis: If ∆; Γ ` e1 : τ , ∆; Γ ` e2 : τ , and ∆; Γ ` E[e1] : τ ′ then
∆; Γ ` E[e2] :τ

′.

case E = [ ]

Because E[e2] = e2 and τ = τ ′ therefore ∆; Γ ` e2 :τ by assumption

case E = (E ′ e′)

Because E[e1] = (E ′[e1] e′) and ∆ = ∆′, ∆′′

1. ∆′, ∆′′; Γ ` e1 :τ By assumption

2. ∆′, ∆′′; Γ ` e2 :τ By assumption

3. ∆′, ∆′′; Γ ` (E ′[e1] e′) :τ ′ By assumption

4. ∆′, ∆′′; Γ ` E ′[e1] :τ1
∆′′

→ τ ′ By (3) and inversion of htapp

5. ∆′, ∆′′; Γ ` e′ :τ1 By (3) and inversion of htapp

6. ∆′, ∆′′; Γ ` E ′[e2] :τ1
∆′′

→ τ ′ By IH with (1), (2), and (4)

Therefore ∆′, ∆′′; Γ ` (E ′[e2] e′) :τ ′ By htapp with (6) and (5)

case E = (v E ′)

Because E[e1] = (v E ′[e1]) and and ∆ = ∆′, ∆′′

1. ∆′, ∆′′; Γ ` e1 :τ By assumption

2. ∆′, ∆′′; Γ ` e2 :τ By assumption

3. ∆′, ∆′′; Γ ` (v E ′[e1]) :τ ′ By assumption

4. ∆′, ∆′′; Γ ` v :τ1
∆′′

→ τ ′ By (3) and inversion of htapp
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5. ∆′, ∆′′; Γ ` E ′[e1] :τ1 By (3) and inversion of htapp

6. ∆′, ∆′′; Γ ` E ′[e2] :τ
′ By IH with (1), (2), and (5)

Therefore ∆′, ∆′′; Γ ` (v E ′[e2]) :τ ′ By htapp with (4) and (6)

case E = (E ′[ρ′])

Because E[e1] = (E ′[e1][ρ
′]) and ∆ = ∆′, {ρ′}

1. ∆′, {ρ′}; Γ ` e1 :τ By assumption

2. ∆′, {ρ′}; Γ ` e2 :τ By assumption

3. ∆′, {ρ′}; Γ ` (E ′[e1][ρ
′]) :τ ′ By assumption

4. ∆′, {ρ′}; Γ ` E ′[e1] :∀ρ.τ ′′ By (3) and inversion of httapp

5. ∆′, {ρ′}; Γ ` E ′[e2] :∀ρ.τ ′′ By IH with (1), (2), and (4)

Therefore ∆′, {ρ′}; Γ ` (E ′[e2][ρ
′]) :τ ′ By httapp with (5)

case E = put[ρ](E ′)

Because E[e1] = put[ρ](E ′[e1]) and ∆ = ∆′, {ρ}

1. ∆′, {ρ}; Γ ` e1 :τ By assumption

2. ∆′, {ρ}; Γ ` e2 :τ By assumption

3. ∆′, {ρ}; Γ ` put[ρ](E ′[e1]) :τ ′ By assumption

4. ∆′, {ρ}; Γ ` E ′[e1] :τ
′′ By (3) and inversion of of htput

5. ∆′, {ρ}; Γ ` E ′[e2] :τ
′′ By IH with (1), (2), and (4)

Therefore ∆′, {ρ}; Γ ` put[ρ](E ′[e2]) :τ ′ By htput with (5)

case E = get[ρ](E ′)

E[e1] = get[ρ](E ′[e1]) and ∆ = ∆′, {ρ}

1. ∆′, {ρ}; Γ ` e1 :τ By assumption

2. ∆′, {ρ}; Γ ` e2 :τ By assumption

3. ∆′, {ρ}; Γ ` get[ρ](E ′[e1]) :τ ′ By assumption

4. ∆′, {ρ}; Γ ` E ′[e1] :τ
′′ By (3) and inversion of of htget

5. ∆′, {ρ}; Γ ` E ′[e2] :τ
′′ By IH with (1), (2), and (4)

Therefore ∆′, {ρ}; Γ ` get[ρ](E ′[e2]) :τ ′ By htget with (5)

Lemma 1.12 (Region Stack Independence) If ∆; Γ ` R[e] : τ then there exists
∆′ such that ∆, ∆′; Γ ` e :τ .
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Proof. By induction on the structure of R

Induction Hypothesis: If ∆; Γ ` R[e] :τ then there exists ∆′ such that ∆, ∆′; Γ ` e :τ .

case R = [ ]

Because R[e] = e and ∆ = ∆, {} therefore ∆; Γ ` e :τ by assumption

case R = letr ρ in R′

Because R[e] = letr ρ in R′[e]

1. ∆; Γ ` letr ρ in R′[e] :τ By assumption

2. ∆, {ρ}; Γ ` R′[e] :τ By (1) and inversion of htletr

3. ∆, {ρ}, ∆′′; Γ ` e :τ By IH with (2)

Therefore ∆, ∆′; Γ ` e :τ By (3) where ∆′ = {ρ}, ∆′′

Lemma 1.13 (Region Stack Replacement) There exists ∆′ such that if
∆, ∆′; Γ ` e1 :τ , ∆, ∆′; Γ ` e2 :τ , and ∆; Γ ` R[e1] :τ then ∆; Γ ` R[e2] :τ .

Proof. By induction on the structure of R

Induction Hypothesis: There exists ∆′ such that if ∆, ∆′; Γ ` e1 : τ , ∆, ∆′; Γ ` e2 : τ ,
and ∆; Γ ` R[e1] :τ then ∆; Γ ` R[e2] :τ .

case R = [ ]

When ∆′ = {} because R[e2] = e2 and ∆, ∆′ = ∆ therefore ∆; Γ ` e2 : τ by
assumption

case R = letr ρ in R′

When ∆′ = {ρ} because R[e1] = letr ρ in R′[e1]

1. ∆, {ρ}; Γ ` e1 :τ By assumption

2. ∆, {ρ}; Γ ` e2 :τ By assumption

3. ∆; Γ ` letr ρ in R′[e1] :τ By assumption

4. ∆ ` τ wf By (3) and inversion of htletr

5. ∆, {ρ}; Γ ` R′[e1] :τ By (3) and inversion of htletr

6. ∆, {ρ}, ∆′′; Γ ` e1 :τ By Lemma 1.12 with (1)

7. ∆, {ρ}, ∆′′; Γ ` e2 :τ By Lemma 1.12 with (2)

8. ∆, {ρ}; Γ ` R′[e2] :τ By IH with (6), (7), and (3)

Therefore ∆; Γ ` letr ρ in R′[e2] :τ By htletr with (4) and (8)
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