A Proof-Carrying Authorization System

Lujo Bauer

Michael A. Schneider

EdwardW. Felten

SecurdnternetProgrammingd-aboratory
Departmenof ComputerScience
PrincetonUniversity

TechReportTR-638-01

April 30,2001

Abstract

We describean infrastructue for distributed autho-
rization basedon the ideasof proof-carrying autho-
rization (PCA). PCAis more geneal and more flexi-
ble thantraditional distributedauthorizationsystems.
We extendPCAwith the notion of goalsand sessions,
andadda modulesystento the proof languaye. Our
framavork malesit possibleto locateand usepieces
ofthesecuritypolicythathavebeendistributedacross
arbitrary hosts. We provide a mehanismwhich al-
lows piecesof the securitypolicy to be hiddenfrom
unauthorizedclients. As a prototypeapplicationwe
havedevelopedmodulesthat extenda standad web
server and a standad web browser to use proof-
carryingauthorizationto contmol accesso webpages.
Thewebbrowsergeneatesproofsmedanicallyby it-
eratively fetching proof componentsintil a proof can
be constructed. We provide for iterative authoriza-
tion, by which a servercanrequire a browserto prove
a seriesof challenges. Our prototypeimplementation
includesa seriesof optimizationssut asspeculative
proving and modularizingand caching proofs, which
allows proof-carrying authorizationto be usedwith
minimal performanceand bandwidthoverheads.

1 Intr oduction

Distributed authenticatioris importantin systems
that cannothave their accesgolicy determinedby a

singletrustworthy setof administratorsin thesesys-
tems, different portionsof the accesolicy may be
controlledby differentparties. The relationshipsbe-
tweenthesepartiesandtheir respectie areasof con-
trol canbequitecomplex.

Distributed authenticatiorsystemg[7, 8, 12] can
provide aframevork underwhichit is possibleto im-
plementthesecomple policies.Oneexampleof such
a policy usesa delgyation. Supposea userAlice has
accesso afile f 0o, whichshehasbeenassignedy a
systemadministratar Alice wantsanotheruser Bob,
to have accesso thefile aswell. Ratherthanrequiring
theadministratoto make policy changedor f 00, the
distributedauthenticatiorsystemcouldallow Alice to
issueBob a (perhapgemporaryor restricted)delega-
tion, “Bob speakdor Alice, signedAlice”. Bob could
thenusethis delegationto access o0o.

Authenticationframevorks have sometimesbeen
describedusingformallogic [6, 10, 1]. In somecases
frameavorks were developedby first designingan ap-
propriatelogic andthenbuilding aroundit a system
that supportsit [5]. An exampleof this approachis
the Taosoperatingsystem 2, 3.

AppelandFeltenhave recentlyintroducedtheidea
of proof-carryingauthorizatioh (PCA) [4], anautho-
rization framewnork that is basedon a higherorder
logic (henceforthreferredto asthe AF logic). Their

ITheconcepwasoriginally introducedas“proof-carryingau-
thenticatiort, but sinceit dealswith authorizingaccessatherthan
authenticatingdentity, we have with the permissiorof the origi-
nal authorsrenamedt to “proof-carryingauthorizatiori.

higherorderlogic consistsof a standarchigherorder
logic extendedby averyfew rulesthatthey deemnec-
essanyfor definingoperatorsandlemmassuitablefor
asecuritylogic.

Appel and Felten proposethat an authorization
framework shouldbe composeaf the AF logic anda
setof operatorandrulesthatcompriseaparticularse-
curity logic. The operatorsaandrulesareexpressedn
the AF logic; operatorasdefinitionsandrulesaslem-
masthat canbe proven from thesedefinitions. Since
eachrule or operatorcanbe expressedlirectly in the
AF logic, systemsasedn the AF logic cancommu-
nicatewith eachotherevenif they usedifferentoper
atorsor inferencerules. This allows addingcomplex
security-polig rulesthat might not have beenimag-
inedwhenthe systemwasdesigned.

A higherorderlogic like the AF logic, however, is
not decidable ,which meansthat no decisionproce-
durewill always be ableto determinethe truth of a
true statementgven given the axiomsthat imply it.
This makesthe AF logic unsuitablefor usein tradi-
tional distributed authenticatioriramevorksin which
theseneris givenasetof credentialandmustdecide
whetherthey imply somestatementThisproblemcan
be avoidedin the sener by makingit the client’s re-
sponsibilityto generatgroofs. The sener mustnow
only checkthatthe proofis valid; this is not difficult
evenin anundecidabldogic. Eachclient cangener
ateproofsusinga decidablesubsebf inferencerules
specificto its application. The sener, usingonly the
commonunderlyingAF logic, cancheckproofsfrom
all clients,regardlesof theinferencerulesthey use.

Building anactualdistributed authorizatiorframe-
work basednanAF-stylelogic raisesanumberof is-
suesthatremainuntouchedr arenot fully addressed
by previouswork. Whatsetof definedoperatorsan
beusedto make a practicalsecuritylogic? Appeland
Feltenproposeseveral sets,eachwith its own advan-
tagesanddisadwantages.Whatis the minimal setof
rulesthe AF logic needgor theseoperatordo be de-
finable? How doesa proof goal correspondo a re-
questto accessaresourcef a proof givesits bearer
accesdo a protectedesourcehow do we ensurghat
a proofisn’t stolenor copied? Canproof-generation
becompletelyautomated? afterall, a proof-carrying
authorizationsystemis hardly usefulif it requiresa
user to manually constructproofs, in higher order

logic, to beauthorizedo accessa webpage.Canthe
securitypolicy — the setof factsnecessaryo make a
proof — be distributed in a way that makesit acces-
sible to legitimate usersbut not to attaclers? If all
thesequestionscan be answeredconstructrely, is it
possibleto build a systemthatis generakenoughto be
a significantimprovementover existing onesandyet
alsoefficientenoughto be of practicaluse?

We presentanimplementatiorof a distributed au-
thorization systemthat answersthesequestionsand
demonstrateshe feasibility of using proof-carrying
authorizationin real systems. Our applicationcon-
sistsof aweb sener thatallows accesgo pagesonly
if the web browser can demonstratehat it is autho-
rized to view them. The browser accomplisheghis
by mechanicallyconstructinga proof of a challenge
sentto it by the sener. Our systemsupportsarbitrar
ily comple delegation, the definition of local name
spacesandexpiration. We develop a framework that
lets the web browserlocateandusepiecesof the se-
curity policy (e.g., delgation statements}hat have
beendistributed acrossarbitrary hosts,and a system
for providing selectve accesgo thesepieces.

Theinfrastructurewe implementeds independent
of the particularapplicationwe choseto build on top
of it. Theapplicationis only anillustrationof how the
infrastructurecanbeused.

2 Example

Let us considerthe following scenario. Bob is a
professomwho teache€CS101. He hasput up a web
pagethathastheanswerso a midtermexamhis class
justtook. He wantsaccesgo the web pageto bere-
strictedto studentsn his class,and he doesnt want
thewebpageto beaccessibldefore8 PM.

Alice is a studentin Bob’s class. It's 9 PM.,
and she wantsto accessthe web page(http://
server/ m dterm htm) that Bob has put up.
Her web browsercontactghe sener andrequestghe
page/ m dt er m ht m . The sener, seeingthatthe
pageis PCA-protectedrespondswith a requestthat
Alice use an encrypted(HTTPS) connection. Al-
ice’s browser switchesto HTTPSandagainrequests
/mdterm htm (figurel, stepl).

Upon receving this requestthe sener constructs
a challenge(a statementn the logic) which mustbe

Alice ©) Request midterm.html

Challenge @

—

(| / ® Request ACL

"Registrar.CS101"

®y

— ~~— <

mb == @ Proof
=

midterm.html

|®v

Cert. Authority
(Registrar)

Figure 1. Alice wantstoreadm dterm htm .

proven before the requestedJRL will be returned.
The sener returnsan “AuthorizationRequired’mes-
sage(figure 1, step2) which includesthe challenge,
“Youmustprove: Thesenersaysthatit's OK to read
/mdtermhtni

When Alice receves the response she examines
the challengeand attemptsto constructa proof. Un-
fortunately the attemptfails: Alice hasno ideahow
to goaboutproving thatit's OK to read/ m dt er m
ht M . She sendsanotherrequestto the sener:
“Pleasetell me who canread/ m dterm htm "
(step3)

Thesener’s reply (step4) tells herthatall the stu-
dentstaking CS101(the Ragistrarhasa list of them)
may accesghe page,aslong asit’s after 8 P.M. Sitill,
thatdoesnotgive herenoughinformationto construct
the proof. She contactsthe Registrar (step5), and
from him getsa certificateasserting; until the endof
the semesterAlice is taking CS101" (step6) Alice
hasnow collectedthefollowing facts:

e Thesener says,"After 8 PM., everyonetaking
CS10lmayaccesg mi dterm htm ”

e The Rgistrar says, “Until the end of the
semesterAlice is takingCS1071"

e The sener believes, “The time now after 8:55

P.M.” (Alice guesseghis, since her own clock
shawsit is 9:00PM.)

e Alice says,It' sOKtoread/ mi dterm htm ”
(Thisis relevantbecaus¢hesenerwill grantac-
cessonly to thoseclientswho asserthatit’s OK
to readtherequestedJRL.)

Finally, thereis enoughinformationto prove that
Alice shouldbe allowed to accesghe file. Oncea
proof is generated Alice sendsanotherrequestfor
/ midterm htm to theprover (step7). Thistime
sheincludesin therequesthechallengeandits proof.
Thesener checksthatthe proofis valid, andthat Al-
ice proved the correctchallenge.If both checkssuc-
ceedthesenerreturnstherequesteghage(step8).

3 Logic Design

A proof-carryingauthorizationsystemhasa core
logic (such as the AF logic) with an application-
specificlogic definedon top of it. The core logic
must be sufiiciently generalto encodea wide range
of application-specifitogics— thatis its primary pur
pose. On the other hand,it mustalso containrules
that male it possibleto defineinterestingand useful
application-specifitogics. For instanceary security
logicis likely to needaninferencerule thattransforms
adigital signaturanto a statemenin thelogic. There
is no corvenientway to definesucharule asa prov-
able lemmaor definition — so an appropriateaxiom
shouldbe madepartof thecorelogic.

A standardhigherorder logic comprisesthe ma-
jority of the corelogic. The choiceof the few non-
standardrules that we wish to add dependson the
functionality we wish the application-speéic logics
to have. We startthe descriptionof our systemthere-
fore,with adiscussiorof requirementsve hadfor our
application-specifitogic.

3.1 Application-SpecificOperators and Rules

The application-specificecuritylogic consistsof
operatorqe.g.,the speaksfooperator)andrulesthat
allow usto reasoraboutthem(e.g.,atransitvity rule
for speaksfar. In a typical securitylogic the rules
would representhe formal definitionsof the opera-
tors; in a PCA system,however, both the rulesand

A speaksfoB
B saysF

A saysF

A speaksfoB B speaksfoC
A speaksfoC

A says(A.s saysF)
A.ssaysF

Figure 2. We want our application-specifiop-
eratorsto be definedso that they interactac-
cording to theserules. A.s is shorthandfor
localnaméA,s). s is a string in A’s local
namespacefrom which A createshe principal
localnaméA, s).

the operatorsareexpressedn termsof the corelogic.

Sincethe ruleshave to be proven aslemmas the op-

eratoranustbedefinedin suchaway thatthelemmas
areprovable. Moreover, the operatoranustin some
casede definedsothatrulesotherthantheintended
onescannotbe proven. In a systemwith delegation,
for example, we must make surethat rights can be
delegatedonly in strictly allowed ways. Naively de-
finedoperatorouldresultin anattacler discovering
an unintendedvay to deleggateauthorityandusethis

discorery to breakthe securityof a system.

The desiradafor our application-specificlogic
werefairly straightforvard: principalsshouldbe able
to malke statementsdelegate authority and create
groupsor roles(we call themlocal namespaces)Fig-
ure2 liststheserequirementsasinferenceules.In ad-
dition, wewantedprincipalsto beableto drav conclu-
sionshasedn thethingsthey believe, andwe wanted
individuals(thatis, principalswith keys) to beableto
drawv strongerconclusionghan principalsthat repre-
sentrolesor groups.

We definethe requiredoperatorswith the goal of
beingableto prove theserulesbasedntheoperators’
definitions.A complicateddefinitionmaymalkeit eas-
ier to prove a particularlemma,but may alsomalke it
impossibleto prove lemmasthatinvolve several dif-
ferentoperatorsToo simplea definition,on the other
hand, might be insuficient to prove ary interesting

lemmasaboutthe operator

A saysF In additionto therulesin figure 2 it should
betruethata principal A saysary statementhat
is true. Also, if A saysthe formula X, andthe
formulayY is true,andX andY imply formulaZz,
thenA alsosaysZ —thisallows the principal A to
draw conclusiondasednits beliefs.

AsaysF = 3G. A(G)A(G—F)

A speaksbr B This operatoris usedfor delegation.
If principal A speaksfor principal B, then ary-
thing that A saysis spolenwith principal B's au-
thority.

AspeaksfoB = VF . (AsaysF) — (B saysF)

A.s The principal A.s (or localnaméA,s)) is a new
principal createdin A’'s local namespacefrom
the strings. Principal A controlswhat A.s says.
In our example, the principal registrar creates
theprincipalregistrar.cs101 andsignsaformula
like ‘key(“alice”) speaksfor(registrar‘cs101”)’
for eachstudentn theclass.

As(F) = VL. Inlike(L) — L(A)(S)(F)

The Inlike operatoris usedto breakthe recur
sionin the definition of localname The defini-
tion of Inlike looks complicatedbut is suchthat
Inlike(L) is truefor everyfunctionL thatbehaes
asalocalnameshould;thatis, for everyfunction
thatgenerates principal whoseauthority A can
delgyate. localnameis one of the operatorsex-
plicitly definedso thatit obeys only the set of
rulesthatwe requireof it; this makesits defini-
tion somevhat morecomplicatecandaddscom-
plexity to the proofsof lemmasaboutit.

Inlike(L) = VA,SF,G.
((AsaysG) and(G — (L(A)(S) saysF)))
— L(A)(S(F)

In additionto therulesfrom figure 2, we canprove
aslemmasotherinferencerulesthat might be helpful
for generatingproofs. For example,

A saysF F—>G
A saysG

saysimp

canbetrivially provenfrom thedefinitionof says.

signaturg¢publey, fmla, sig)
Key(publey) saysfmla

Key(A) says(F imp G)

signed

Key(A) saysF

Key(A) saysG key-imp-e
befordS)(T1) T2>T;
befordS) (1) Cororedt

Key(localhost) saysbeforegX)(T)

befordX) (T) timecontrols

Figure 3. Theseinferencerulesarein addition
to the standardulesof higherorderlogic. Note
that the Key(localhost) in the timecontols
ruleis not universallyquantified.

3.2 Corelogic

The basetypesin our logic are formulas, strings,
andintegers. Stringsare usedfor representingligi-
tal signaturespublic keys, andgoals,aswell asother
constructghatwe definefrom thebasicones.Integers
areusedfor describingtime.

Our logic hasseveral constructors. (1) The key
constructoiturnsa stringinto a principal. In our sys-
tem, a principal is just a predicateon formulas. (2)
Thegoal constructortakesasan argumenta list of
stringsandreturnsaformula. Principalsin our system
prove that they are authorizedto perform someac-
tion by demonstratinghatthey canderive aparticular
goal formulastatedin thesener’s challenge.Goals
aredescribedat greaterdengthin section3.3. (3) The
bef or e constructogenerateatermthatis meantto
describethe temporalstateof a hostsystem,usually
the sener thatwill be verifying the proof and grant-
ing or derying accessbef or e(S)(T) meanghatthe
time athostS (whichis describeddy a string) hasnot
yetreachedr.

Figure3 shavstheinferenceruleswe addto astan-
dardhigherorderlogic to make it suitablefor useas
acorelogic for a PCA system.We adda signedrule
that takes as a premisethe tuple (publey, fmla, sig),
wheresig is the digital signatureproducedby sign-
ing fmla with the private key correspondingo pub-

key, andgenerateshe formula P says fmla, where
P is the principal that correspondso the public key.?
An instanceof this rule existsfor eachtuplein which
sig is a valid signature. Its intuitive meaningis that
if aprincipal’s privatekey hassignedaformula,then
the principalsaysthatformula.

Unlikethe AF logic, ourcorelogic containsno sep-
arateinferencerule for the introductionof principals;
they areintroducedonly throughthe statementshey
sign(i.e.,thesignedrule).

The key_imp_e rule ensuresthat a principal can
draw conclusiondasednthestatement# believes—
it allows usto have modusponensnsidesays Thatis,
if A saysF andA saysG andF andG togethenmply
H thenA saysH. Thisrule mightlook out of placein
the corelogic, sincea morecomplicateddefinition of
says— onethatwe tried in an earlieriterationof our
logic was structuredsimilarly to the definition of lo-
calname for example— could achiare the samegoal.
Suchadefinition, however, would interactbadlywith
the definition of localname makingit impossibleto
prove lemmasthatmalke localnameuseful.

Theotherruleswe addareusedfor describingime
and implementingexpiration. Eachhostintroduces
a single befoe axiom that describeghe currenttime
on thelocal machine.To allow reasoningaboutrela-
tionshipsbetweenearlierandlatertimes,we addthe
rule before_gt, which tells us thatif the time at host
S hasnot yet reachedly, thenit alsohasnotreached
ary pointT, afterT;. Thetimecontolsrule allows the
hostthatis checkingthe proofto make truethe befoe
axiomsthatit says Thatis, if thehostsaystheaxiom,
thenthe axiom s true on that system. Rulessimilar
to thesetwo are necessaryn ary systemthat hasa
notionof time.

2Thereademwill notethatsays is not partof the corelogic;
it is one of the definitionsspecificto our application. The ac-
tual signedaxiomuseghedefiningformula, notthe abbreiation.
This may seemto tie the core logic to the application-specific
logic. However, thatis not really the case. The connectionbe-
tweenthetwo is merelythatthecorelogic shouldmaleit possible
to definedifferentandusefulapplication-specifi¢ogics. To that
end, it is helpful to study possibleapplication-specifitogics, as
we have done,beforesettlingon a corelogic.

3.3 Goalsand Sessions

In proof-carryingauthorizationa client that tries
to accessa resourceis issueda challenge- an arti-
ficial logicalformula— by thesenerthatownsthatre-
source.The challenges the goalthatthe client must
prove beforeit will begrantedaccesdo theresource.

Obviously thereneeddo bearelationshipbetween
a resourceand the goal statementhat representst.
The formula goal(foo) canbe usedto representhe
right to accesdile f oo. But if a proof of goal(foo)
givesits bearerthe right to accesd oo, how do we
prevent Oscarfrom stealinga proof that Alice once
madeandusingit ashis own? Thesenerwill merely
checkthat the proof is correct(i.e., thatit is a true
statement). It hasno mechanisnfor checkingwho
constructeda proof — such a mechanism,in fact,
would be contraryto the idea of proof-carryingau-
thorization.

To preventclientsfrom usingstolenproofs,asener
includesin its challengeto eachclient an identifier
(acryptographicallypseudorandorstring)thatsenes
to make that client’s proof goal unique. This means
thatclientsnow prove statementsike “I have theau-
thority to readthefile f oo with the uniqueidentifier
si d” (goal(foo)(sid)) insteadof just“l havetheau-
thority to readthefile f 00” (goal(foo)). Theiden-
tifier preventsclientsfrom usingstolenproofs, but it
doesnt precludehemfrom beingallowedto reusean
old proof.

If the identifier is a secretsharedonly by the
sener anda particularclient, the sener may electto
reusethe identifier in future challengesin this case,
the client canrespondwith a previously constructed
proof. The period of time during which a sener
choosedo reusean identifier we call a session;and
theidentifier, accordinglythe sessioridentifier

We discussthe securetransmissiorof the session
identifier and proofswhich might containit, in sec-
tion 4.2.

It is importantto notethatthe lengthof a session
may be longer or shorterthan a particularexchange
betweera clientanda sener. A sessions valid un-
til eitherthe sener or the client decideto expire the
sessiondentifier whichthey maydo atwill.

It is commonin securitylogics to have a contiols
rule to indicatethat a client is allowed to control a

particularresource.We find that the key_imp_e rule,
combinedwith uniguegoals,givesour systemenough
power to reasonaboutwhat principals say that the
contmols rule is no longerneeded.To gain accesdo
aresourceaclientin our system,nsteadof shaving
thatit contols aresourceprovesthatthe sener says
thattheclient shouldhave accesdo theresource.

4 The SystemExplained: A Narrati ve

The systemwe describecan be naturally divided
into a client part and a sener part (figure 4). The
bulk of theclient partis awebbrowser Therest—the
proxy sener andthe prover—arecomponentshaten-
ablethe web browserto usethe PCA protocol. The
browser itself remainsunmodified, and our system
doesnotuseary featureshatareuniqueto a particu-
lar browserversion.

The sener partof our PCA systemis built around
anunmodifiedApache)websener. Thewebseneris
PCA-enabledhroughtheuseof aservlietwhichinter
ceptsandhandlesall PCA-relatedrequests.The two
basictasksthattake placeon the sener’s sideduring
a PCA transactioraregeneratinghe propositionthat
needsto be proved and verifying that the proof pro-
vided by the client is correct. Eachis performedby
a separate&componentthe propositiongeneratorand
the checler, respectiely.

Throughoutthe restof this section,we will be de-
scribing various parts of the systemasthey are en-
counteredduring a transactionlike one describedn
figure 4. As arunningexamplewe will usethe sce-
nariointroducedn section2. Thetext of theexample
will beindentedandin italics to offsetit from the de-
scriptionof the system.

4.1 Client: Proxy Serwer

The job of the proxy sener is to be the interme-
diary betweena web browserthat hasno knowledge
of the PCA protocoland a web sener that is PCA-
enabled.An attemptby the browserto accessa web
pageresultsin a dialoguebetweenthe proxy andthe
sener that housesthe page. The dialogueis con-
ductedthrough PCA-enhanceHTTP—HTTP aug-
mentedwith headerghatallow it to corvey informa-
tion neededor authorizatiorusingthe PCA protocol.

Client

Server

Web

HTTP | 5
proxy --

browser

Hint server

HTTP server

Figure 4. Thecomponent®f thesystem.

The browvseris completelyunavare of this dialogue;
it seesonly thewebpagereturnedattheend.

The proxyis meantto be a substitutefor abrowvser
plugin. We decidedto usea proxy insteadof a plugin
becausthisletsoursystenmbecompletelybrowserin-
dependentA productionmplementatiorwould prob-
ably replacethe proxy with a plugin. Like a plugin,
our proxy is meantto betightly coupledwith theweb
browser Unlike traditionalwebproxies,it is meantto
seneasingleclient, notasetof them. Thisis because
the proxy needsto speakon behalfof a client, per
hapssigning statementsvith the client’s private key
or identifying itself with the client’s public key. If a
sharedoroxy wereto be usedfor this purposeits abil-
ity to accesshe privateinformationof severalclients
would be a concern. Also, it would have to authen-
ticate client-sideconnectionsso that it would know
whichclient'sdata,or identity, to usefor PCAtransac-
tions. Suchauthenticatiorwould be at crosspurposes
with one of the goalsof our system—authorization
uncoupledrom authentication.

When Alice requeststo see the pagehttp://
server/ m dterm ht m , her browserforms the
requestindsendst to theproxy sener (figure4, step
1). The proxy sener forwardsthe requestwithout
modifying it.

4.2 Secur Transmissionand Sessiorldentifiers
Thesessiondentifieris asharedsecrebetweerthe

clientandsener. Theidentifieris usedin challenges
and proofs (including in digitally signedformulas

within the proofs)to make them specificto a single
session.This is importantbecausehe sener caches
previously proven challengesand allows clients to
presentthe sessiondentifier as a token that demon-
strateghatthey have alreadyprovidedthe sener with
aproof.

The sessionidentifier is a string generatedy the
sener using a cryptographicpseudorandonmumber
generatar Our implementatiorusesan 144-bitvalue
which is thenstoredusinga base-64encoding. (144
bitswaschoserbecaus¢hevaluecorvertsevenlyinto
thebase-64encoding.)

Sincethesessiondentifiermaybesuficientto gain
accesdo aresourcestealinga sessioridentifier akin
to stealinga proof in a systemwhere goalsare not
unique,compromiseghe security of the system. In
orderto keepthe sessioridentifier secret,communi-
cation betweenthe client and sener usesthe secure
protocolHTTPSinsteadof normalHTTP in all cases
whereasessiondentifieris sent.If theclientattempts
to make astandardHTTP requesfor aPCA-protected
page,the client is senta special*Authorization Re-
quired” messageavhich directsthe client to switchto
HTTPSandretry therequest.

As an efficiency measurethe client cachedoca-
tions of PCA-protectegagesandautomaticallyuses
HTTPS insteadof HTTP, shorteningthe transaction
by two messages- the HTTP messagethat would
fail andthe reply that directsthe client to switch to
HTTPS.we assumehatif a particularURL is PCA-
protected,then ary other URL which has the first
as a prefix is also PCA-protected. Thus this cache

typically would requireoneentry per PCA-protected
sener, ratherthanoneentry perPCA-protectegage.

Alice’s proxy contacts the sener, asking for
m dt erm ht m . Sincethatpageis PCA-protected
andthe proxy usedHTTP, the sener rejectsthe re-
quest. The proxy switchesto HTTPS and sendsthe
samerequestgain.

Make request

Figure 5. Clientflowchart.

4.3 Server: Proposition Generator and Iterati ve
Authorization

Whena client attemptsto accessa PCA-protected
web page,the sener replieswith a statemenbf the
theoremthatit wantsthe clientto prove beforegrant-
ing it access.This statementpr proposition,canbe
generatecutonomouslyit depend®nly onthe path-
nameof thefile thatthe clientis trying to accessand
onthesyntaxof thelogic in whichit is to beencoded.

generate challenges

check proof

Y

add to cache

Figure 6. Senerflowchart.

The sener’s proposition geneator provides the
sener with a list of propositions. The sener returns
the first unproven proposition. If the client success-
fully provesthatpropositionin a subsequentequest,
then the sener will reply with the next unproven
propositionas the challenge. This processof prov-
ing andthenreceving the next challengefrom a list
of unproven propositionds callediterative authoriza-
tion. Theprocesse®r theclientandsenerareshovn
in theflowchartsof figure 5 andfigure6.

Thisprocesgerminatesvheneithertheclientgives
up (e.g. cannotprove oneof the propositions)r has
successfullyproven all of the propositions,n which
caseaccesss allowed. If the client presentsa proof
which fails whenthe sener checkast, it is simply dis-
carded. In this case,the samechallengewill be re-
turnedtwice to theclient.

If the client recevesthe samechallengetwice, it
knows that althoughit “successfully” constructeda
prooffor thatchallengejt wasrejectedby the sener.
This meanghatoneof the client’s assumptionsnust
have beenincorrect. Theclientmaychooseo discard
someassumptiongandretry the proof process.

Our prototypeapplicationgenerates proposition
for eachdirectorylevel of the URL specifiedin the
client’s request. Since the sener returnsidentical
challengesegardlessof whethertherequesteabject
exists, returninga challengereveals no information
aboutthe existenceof objectsonthe sener.

Isolatingthe propositiongeneratofrom the restof
the sener makesit easyto adaptthe sener for other
applicationsof PCA,; usingit for anotherapplication
may requirenothingmorethanchangingthe proposi-
tion generatar

After receving the second,encryptedrequest,the
sener first generateghe sessionlD, “sid”. It then
passesherequestndthelD to thepropositiongener
ator. Thepropositiongeneratoreturnsalist of propo-
sitionsthat Alice mustprove beforesheis allowedto
seed mdtermhtm :

says @ (key @"server")
@ (goal @"http://server/" @"sid")

says @ (key @"server")
@ (goal @"http://server/mdtermhtm"
@"sid")

The syntaxof the examplecloselyfollows the actual
LF syntaxin which the proofs arewritten: all terms
arein prefix notationand applicationis explicit and
denotecby @

says @ (key @"server") @(goal @X @Y)

is therefore equialent to “Key(server) says
goal(X,Y).”

For the purposesf this example,we will deal only
with the secondchallenge. In reality, Alice would
first have to prove that she is allowed to access
http://server/, and only then could she try
to prove that sheis also allowed to accessht t p:
[lserver/mdtermhtn .

A benefitof iterative authorizations thatit allows
partsof thesecuritypolicy to behiddenfrom unautho-
rizedclients. Only whena challengehasbeenproven
will theclientbe ableto accesshefactsthatit needs

to prove the next challenge.ln the context of our ap-
plication this means for example,that a client must
prove thatit is allowedto access directorybeforeit
canevenfind out whatgoalit mustprove (andthere-
fore whatfactsit mustgather)to gainaccesgo a par
ticularfile in thatdirectory

4.4 Sewer: Challenges;Client: Proofs

For eachauthorizatiorrequestthe sener’s propo-
sition generatogenerates list of propositionsvhich
mustbe provenbeforeaccesss granted.Eachpropo-
sition containsa URL path and a sessionidentifier
Thesener checksto seeif eachpropositionhasbeen
previously proven by the client by checkinga cache
of previously proven challenges.If all of the propo-
sitions have beenproven, accessis allowed imme-
diately Otherwise,the first unprosen propositionis
returnedto the client asa challenge. Any otherun-
provenpropositionsarediscarded.

The sener constructsa reply with a statuscode
of “Unauthorized”. This is a standardHTTP re-
sponsecode(401)[9]. Theresponséncludesthere-
quiredHTTP headeffield “WWW-Authenticate’with
anauthenticatiorschemeof “PCA” andthe unproven
propositionasits singleparameter

Oncetheclienthasconstructed proof of thechal-
lenge,the client makes anotherHTTPS request(this
can be done with the sameTCP connectionif al-
lowed by keep-ale) containing the challengeand
proof. The challengeis includedin an “Authoriza-
tion” request-headdield, andthe proofis includedin
aserieof “X-PCA-Proof’ request-headdields. The
sener checksthatthe proof provesthe suppliedchal-
lenge,addsthechallengéo its cacheof provenpropo-
sitions,andthenbeginsthe checkingprocessagain.

It is sometimegossiblefor a client to guesswhat
the challengewill be. In thatcasejt cantry to prove
the challengeavenbeforethe sener malesit (we call
this prove-aheador speculatie proving). The proof
canthenbe sentto the sener as part of the original
requestlf theclientguesseaorrectly the sener will
accepithe proof without first sendinga challengeto
theclient.

The first propositionin the exampleis the one stat-
ing thatthesenersaysthatit’'sOK toreadht t p: / /
server/ . Thesenercheckswhetherit hasalready

beenprovenandmovesonto the next one. (Remem-
berthatfor thepurpose®f theexamplewe're concen-
trating only on the secongproposition;the authoriza-
tion procesdor eachis identical.) The next proposi-
tion stateghatthe senersaysit’s OK to readht t p:
/I server/ m dterm htm . Thisonehasnt been
provenyet, sothesenerconstructanHTTPresponse
thatincludesthis propositionasa challengeandsends
it to Alice. Thisis step5 of figure 4.

4.5 Client: Prover

In the courseof a PCA conversationwith a sener,
the proxy needsto generatgoroofsthat will demon-
strateto the sener that the client shouldbe allowed
accesdo a particularfile. This taskis independent
enoughfrom therestof the authorizatiorprocesghat
it is convenientto abstractit into a separatecompo-
nent. During a PCA corversationthe client may need
to prove multiple statementsthe processof proving
eachis left to the prover.

The core of the prover in our systemis the Twelf
logical framework [14]. Proofsare generatecby a
logic programthat usestactics. The goal that must
be provenis encodedasthe statemenof a theorem.
Axioms that are likely to be helpful in proving the
theoremare addedas assumptions. The logic pro-
gramgenerates derivation of thetheoremthisis the
“proof” thatthe proxy senddo thesener.

The tacticsthat define the prover roughly corre-
spondto theinferencerulesof theapplication-specific
logic. Togethemwith thealgorithmthatusesthem,the
tacticscomprisea decisionprocedurethat generates
proofs— for our systemto alwaysfind proofsof true
statementghisdecisionproceduranustbedecidable.

A tacticfor proving A speaksfo€ would beto find
proofs of A speaksfoB andB speaksfolC andthen
usethe transitvity lemmafor speaksfar Othertac-
tics might be usedto guidethe searchfor thesesub-
goals. The orderin which tacticsare appliedaffects
their effectiveness.Caremustalsobe taken to avoid
situationsin whichtacticsmightguidethe proverinto
infinite (or finite but time-consumingbrancheghat
dont necessariljjeadto a proof. The prover in our
systemis ableto automaticallygeneratgroofswhen-
everthey exist.

If this werea production-strengtimplementation
of a PCA systemwe would likely have implemented

10

thetheoremprover in Java. The capabilitiesof Twelf
are far greaterthan what we need; a custom-made
theoremprover that had only the requiredfunction-
ality would be morelightweight. It could alsobe en-
gineeredso that a failed attemptto prove a theorem
would explainto theuserin the users own termswhy
acceszould not be granted.The adwantageof Twelf,
ontheotherhand,is thattheencodingof thetacticsis
concise.Sincethetacticsarecloselytied to thelogic,
Twelf madet mucheasietto experimentwith changes
to the logic without having to spendmuch effort in
adaptinghetheoremproverto it.

In additionto generatinghe proof of a goal given
to it by the proxy, the prover’s job is to find all the
assumptionshatarerequiredby the proof. Assump-
tions neededo generatea proof might include state-
mentsmadeby the sener aboutwho is allowed to
access particularfile, statementsboutclock skew,
statementdy which principalsdelegate authority to
otherprincipals,or statementsf goal. While someof
thesemight be known to the proxy, andwould there-
fore have beenprovided to the prover, othersmight
needto be obtainedrom webpages.

Sincefetchingassumptiongrom thewebis arela-
tively time-consumingprocesghundredsof millisec-
ondsis alongtime for a singlestepof aninteractve
authorizationthat shouldbe transparento the user),
the prover cachegheassumptionsor futureuse.The
prover also periodically discardsassumptionavhich
have not beenrecentlyusedin successfuproofs.

4.6 Client: Iterati ve Proving

Theclientis responsibldor proof geneation. The
client may not alwaysbe ableto generatea proof of
the challengeon thefirst try. It may needto obtain
additionalinformation, suchassigneddelegationsor
otherfacts, beforethe proof canbe completed. The
processof fetching additionalinformation and then
retrying the proof processs callediterative proving.
The processioesnot affectthe sener, andterminates
whena proofis successfullygenerated.

Proofgeneratiorcanbedividedinto two phasesin
thefirst phasefactsaregatheredin thesecongphase,
straightforvard prover rules are usedto testif these
factsare suflicient to prove the challenge.If so,the
proofis returned.Otherwise the phasesrerepeated,

first gatheringadditionalfactsandthenreproving, un-
til eithera proofis successfullygeneratedor until no
new factscanbefound.

Thefact-gatheringphasenvolvestheclientgather
ing four basictypesof facts.

Self-signed Assumptions The first type of facts
comesfrom theclientitself. Theclientcansignstate-
mentswith its own privatekey, andthesemaybe use-
ful in constructingproofs. Often, for example, it is

necessaryor the client to sign part of the challenge
itself andusethis asanassumptionn the proof.

Alice will signthe statement

goal @"http://server/mdtermhtm" @"sid"

Applying the signatue axiom to this statementvill
yield

says @ (key @"alice")
@ (goal @"http://server/mdtermhtm"
@"sid")

Armed with this assumptior{fand no others,so far),
Alice triesto provethechallenge.Theattempffailsin
the client (i.e., no proof is constructedso nothingis
sentto the sener); Alice realizeghatthis assumption
by itselfisn’t sufficientto generate proofsoshetries
to collectmorefacts.(Steps6 and8 of figure4.)

Goal-orientedfacts Thesecondypeof factsis typ-
ically (thoughnot necessarilyprovided by thesener.
While generatingpropositionsand checking proofs
areconceptuallythetwo main partsof the sener-side
PCA infrastructurea PCA-enabledsener may want
to carry out a numberof othertasks. One of these
is managingpiecesof the securitypolicy. To gener
atea proof thatit is authorizedto accessa particular
web page,a client will have to know which princi-
palshave accesdo it. Suchinformation,sinceit de-
scribeswvhich principalshave directaccesso apartic-
ular goal,we call goal-orientedacts.

In our implementationthe sener keepsthis infor-
mationin access-contrdists. Entriesfrom thesdists,
encodedn a mannertthatmalkesthemsuitablefor use
asassumptionsareprovidedto theclient on demand.
They arenotgivenoutindiscriminately however. Be-
fore providing a goal-orientedact, the sener usesan

11

additional PCA exchangeto checkthat the client is
authorizedo accesghefact.

In our systemthe client queriesthe sener for
goal-orientedfacts for each challengeit needsto
prove. Goalsare describedoy URLS, so the sener
requiresPCA authorizationfor a directory beforeit
will return the goal-orientedfacts that describeac-
cesgo files/directoriesnsidethatdirectory Thegoal-
orientedfactthatdescribesccesso therootdirectory
is freely returnedto ary client. In this way, a clientis
forcedto iteratively prove authorizatiorto eachdirec-
tory level onthesener.

Since her first attemptat generatinga proof didn’t
succeedAlice sendsa messagéo the senerrequest-
ing goal-orientedfacts abouthtt p://server/
m dt erm html . Upon receving the request,the
sener first checkswhetherAlice has demonstrated
that shehasaccesdo htt p: / / server/ . It does
this by generatina list of assumptionstherewill be
only a singleassumptionn the list) andthencheck-
ing whetherAlice hasprovenit. After determining
thatAlice is allowed acces4go the root directory the
senergivesto Alice a signedversionof the statement

not (before @"server" @(8 P.M))

im (says @(localnamre @(key @"registrar")
@"cs1l01")

@"http://server/mdtermhtm"

@"sig"))

imp (goal @"http://server/mdtermhtm" @"sig")

@ (goal

Alice translatest into, “Server says:‘If it is not be-
fore 8 PM., anda CS101studentsaysit’s OK to read
m dt erm ht nl , thenit’'s OK to readm dt er m
htm 7

Fetchingthe ACL entry from the sener is also de-
scribedby steps2 throughb of figure4.

Sewver Time In orderto generatgroofswhich in-
clude expiring statementsthe client must malke a
guessabout the sener’s clock. The third type of
factsis the client’s guessaboutthe time which will
be shaving on the sener’s clock at the instant of
proofchecking.If theclientmakesanincorrectguess,
it might successfullygeneratea proof which is re-
jectedby the sener. (An incorrectguessaboutthe
sener’s clock is the only reasorfor rejectinga prop-
erly formed, sinceit is the only “fact” the the sener
might not accept.) In this case,the client adjustsits
guessaboutthe sener’s clock and begins the proof
generatiorprocessagain.

In order to use the goal-orientedassumptionit re-
ceived from the sener, Alice mustalsoknow some-
thing aboutthe currenttime. Sinceit’'s 9 PM. by
herclock, sheguesseghatthe sener believesthatthe
time is before9:05R M. andafter8:55PM. This cor
respondso theassumption

before @"server"
not (before @"server"

@(9:05 P.M) and
@(8:55 P.M))

Armed with the self-signedassumption,the goal-

oriented assumption, and the assumption about
time, Alice againtries proving that she can access
m dterm htm . Again, she discosers that she

doesnt have enoughfactsto constructa proof. She

knows that RegistrarCS101can accesghe file, but

shedoesnt know how to extendthe accesgprivilege

to herself.

Key-oriented facts The fourth type of factscome
from hintsthatareembeddedn keys andthatenable
factsto bestoredon aseparatéperhapsentralizedbr
distributed)sener. Concatenatedith eachpublickey
is a list of URLs which containfactsrelevant to that
key (perhapsmaintainedby the key-holder). These
factsmight be signeddelegations for example.

At eachfact-fetchingstep,the client examinesall
of the keys referencedin all of the facts already
fetched. Eachkey is examinedfor embeddedhints.
Then the client fetchesnew factsfrom all of these
hint URLs. (The client maintainsa cacheso that
hint URLs are not accessednorethanonce.) In the
next iteration (if anotheriterationis required),these
new factswill be examinedfor additionalhint URLS,
which will then be fetched. In this way, the client
doesa breadth-firstsearchfor new facts,alternating
betweensearchingone additionaldepthlevel and at-
temptingto constructa proof with the currentsetof
facts.

Although the proof didn’t succeed Alice can now
use the hints from her facts to try to find addi-
tional factsthat might help the proof. Bob’s sener’s
key and the Rejistrars key are embeddedn the
factsAlice hascollected. In eachkey is encodeda
URL that describesa location (it can be ary loca-
tion) at which the owner of that key publishesad-
ditional facts. Bob's sener’s key, heretoforegiven
askey @"server" actuallyhastheformkey @
"server;http://server/hints/".

12

Beforegiving up, Alice’s prover follows theseURLs
to seeif it canfind ary new factsthat might help.
This is shavn as step 7 of figure 4. Following the
hint in the Registrar’s key, Alice downloadsa signed
statementvhich shetranslatesnto the assumption

says @(key @"registrar") @
(before @"registrar" @(end of senester)

imp (speaksfor @(key @"alice")
@ (l ocal namre @ (key @"registrar")
@"cs101")))

This factdelegatesto Alice theright to speakon be-
half of RegistrarCS101:“The Registrarsaysthatun-
til the end of the semesterwhatever Alice sayshas
the sameweightasif RegistrarCS101saidit.”

Following thehintin Bob’ssener'skey, Alice obtains
anew factthattells herthe clock skew betweerBob’s
senerandthe Registrar

Alice now finally has enoughfacts to generatea
proof that demonstrateghat she is authorizedto
readhttp://server/mdtermhtm . Alice
makesa final requestto accest t p: / / server/
m dt erm ht ml , this time including in it the full
proof.

4.7 Sewer: Proof Checking

The Theory. After it learnswhich propositionit
mustprove, the client generates proof and sendsit
to thesener. If theproofis correct,thesener allows
the client to accesghe requestedveb page. Proofs
arechecled using Twelf. The proof provided by the
client is encodedasan LF term[11]. The type (in
the programminganguagesensepf thetermis the
statementbof the proof; the body of the term is the
proof sderivation. Checkingthatthederiationis cor
rectamountgo typecheckingthetermthatrepresents
theproof. If thetermis well typed,theclienthassuc-
ceededn proving the proposition.

As is the casefor the client, using Twelf for proof
checkingis overkill, sinceonly thetype-checkingal-
gorithm is used. The proof checler is part of the
trustedcomputingbaseof the system. To minimize
the likelihood that it containsbugs that could com-
promisesecurity it shouldbe assmallandsimpleas
possible.Several minimal LF type checlers have al-
readybeenor will shortlybeimplemented[1B oneof
thesecouldsene asthe proof checler for our system.

LF termscaneither have explicit type ascriptions
or beimplicitly typed. An implicitly typedversionof
theand.introductionlemmain ourlogic hasthisform:

and_i : pf A->pf B->pf (A and B)
= [pl][p2] forall _i ...

Onewith explicitly ascribedypes:

and_i : {A'tmforn} {B:tmforn} pf A

-> pf B
-> pf (and A B)
=[Atmfornml [B:tmfornj
[P1: pf Al [P2:pf B] forall_i ...

Note thatthe explicitly-typed versionmay needto
introducemorethat onetype annotationpervariable.
This canleadto exponentialincreasen thesizeof the
proofs. The implicitly-typed versionis much more
concise,but suffers from a different problem. The
typeinferencealgorithmthatthesenerwould needto
runis undecidablewhich could causecorrectproofs
not to be acceptedor the sener to the tied up by a
complicatedproof.

The LF communityis currentlydevelopinga type
checlerfor semi-eplicitly typedLF termsthatwould
solve bothproblems Its type-inferencalgorithmwill
be decidable,andthe level of type ascriptionit will
requirewill notcauseaxponentialcodeblowup. Until
it becomeswvailable,our systemwill requireproofsto
beexplicitly typed.

The Practice. Checkingthe proof provided by the
client, however, is not quite assimpleasjust passing
it throughanLF typechecler. Thebodyof anLF term
is the proof of the propositionrepresentedy its type.
If theterm hasonly a type ascriptionbut no body; it
representanaxiom. Thatthe axiommaytype check
doesnot meanthatwe wantto allow it aspartof the
proof. If we wereto do so, the client could respond
to a challengeby sendingan axiom that assertedhe
propositionit neededo prove; obviously we wouldnt
wantto accepthisstatemenasproofof thechallenge.
In addition, the sener mustverify that the signature
axiomsusedby the proof actually hold; thatis, that
ary digital signaturesarevalid andsignwell-formed
statements.
To solve theseproblems,the sener preprocesses

the client’s proof beforepassingt to a type checler.
Thepreprocessdirst makessurethatall of theterms

13

thatmale uptheproof have bothatypeandabody A
proofthatcontainsllegal axiomsis rejected.

Next, two specialtypesof axiomsareinsertednto
the proof asnecessaryThefirst typeis usedto make
propositionsaboutdigital signaturesandthe second
type is usedto make propositionsregarding time.
Theseare required since the proof checler cannot
checkdigital signaturesor time statementslirectly.
The client insertsinto the proof placeholderdor the
two typesof axiomsit canuse.Thesener makessure
that eachaxiom holds, generatesan LF declaration
that representst, andthen replacesthe placeholder
with areferenceo thedeclaration.

For digital signatures,the client insertsinto the
proof a propositionof the specialform “#signature
key, formula, sig’. (Eachof the fieldsis encodedn
bases4for transmission.hesenercheckghatsigis
avalid signaturemadeby the key key for theformula
formula If so,the#signaturestatemenits replacedy
anaxiomassertinghatkey signedformula

To make statementsabouttime, the clientinsertsa
propositionof the specialform “#now”. The prepro-
cessingstagereplaceghe#now with anaxiomassert-
ing the currenttime (in secondsince1970). Axioms
of this form are necessaryvhen signedpropositions
includeanexpirationdate for example.

Oncetheproofhasbeenparsedo make sureit con-
tainsnoaxiomsandspecialaxiomsof thesgwo forms
have beenreintroducedthe proofis checledto make
sureit actuallyprovesthechallenge (Theproof might
be a perfectlyvalid proof of someotherchallenge!)
If this final checksucceedsthenthe whole proof is
passedo anLF typechecler; in ourcasethisis again
Twelf.

If all of thesecheckssucceedthenthechallengds
insertednto thesener’s cacheof provenpropositions.
Thesenerwill eitherallow accesgo the page(if this
wasthelastchallengean thesener’s list) or returnthe
next challengeto theclient.

To avoid re-checkingproofs, all correctly proven
propositionsare cached. Some of them may use
time-dependentr otherwiseexpirablepremises—the
could be correctwhen first checled but false later.
If such proofs, insteadof being retransmittedand
recheclked,arefoundin thecachetheir premisesnust
still be checledbeforeauthorizatioris accepted.

The sener receves Alice’s requestfor mi dt er m

ht M andgenerates list of propositionsthat need
to be proven beforeaccesss granted. Only the last
propositionis unprosen, and its proof is included
in Alice’s request. The sener expandsthe #signa-
ture and #now propositions,and sendsthe proof to
the type-checkr. The proof checkssuccessfullyso
the sener insertsit in its cache; Alice won't have
to prove this propositionagain. Finally, the sener
checkswhetherAlice proved the correctchallenge,
which shehas. Thereareno morepropositiondeft to
be proven, Alice hassuccessfullyproventhat sheis
authorizedto readhtt p: //server/ nm dterm

ht M . Thesenersendgherequesteghageto Alice.

5 Module system

Since proofs are meantto be both generatedand
checled completelyautomatically mary of the tra-
ditional software-engineeringeasonsfor needinga
module systemare absent,sincethey are often mo-
tivatedby making codeeasierfor a humanprogram-
merto read. Still, thereremaingoodreasongo allow
proofsto be modular For one,sincethetrustedcom-
putingbaseof thechecleris composeaf thesmallest
possiblenumberof axioms,mostof therulesusedin
constructingthe proofswill be lemmasproven from
the axioms. Many clientswill usethesesamelem-
masin their proofs; mostproofs, in fact, are likely
to include the samebasic set of lemmas. We have
addedto the proof languagea simple modulesystem
thatallows usto abstractheselemmasfrom individ-
ual proofs. Insteadof having to includeall the lem-
masin eachproof, the module systemallows them
to be importedwith a statementike basi cl em =
#include http://server/lemmuas.elf. If
the lemmaspeaksf or _t r ans, for example, re-
sides in the basi cl em module, it can now be
referencedfrom the body of the proof as basi -
cl em speaksf or t r ans. Insteadndividually by
eachclient, abstractinghe lemmasinto modulesal-
lows themto be maintainedand publishedby a third
party A company, for instancecanmaintainasingle
setof lemmasthatall its employeescanimport when
trying to prove that they are allowed to accesgheir
payrollrecords.

To make theexamplesn theprevioussectionmore
understandablewe have omitted from them refer

14

encesto modules. In reality, eachproof senthy a
clientto a sener would be prefixedby a#i ncl ude
statementor a modulethat containedthe definitions
of, for example,says, speaksf or, | ocal nane
andthelemmaghatmanipulatehem,aswell asmore
basiclemmas.

Aside from the administratire advantagesan im-
portant practical benefit of abstractinglemmasinto
moduless increaseefficiengy, bothin bandwithcon-
sumedduring proof transmissiorandin resourcex-
pendedfor proof checking. Insteadof transmitting
with each proof several thousandsof lines of lem-
mas, a client merely insertsa #i ncl ude declara-
tion which tells the checler the URL (we currently
supportonly modulesthat are accessiblevia HTTP)
at which the module containingthe lemmascan be
found. Beforethe proofis transmittedrom the client
to thesener, thelabelunderwhich the moduleis im-
portedis modifiedso thatit containsthe hashof the
semanticcontent(thatis, a hashthatis somevhatin-
dependenbf variable namesand formatting) of the
importedmodule. This way the checler knows not
only whereto find themodule but canalsoverify that
the prover andthe checler agreeonits contents.

When the checler is processinga proof and en-
countersa #i ncl ude statement,it first checks
whethera module with that URL hasalreadybeen
imported. If it hasbeen,andthe hashof the previ-
ouslyimportedmodulematcheghe hashin the proof,
thenproof checkingcontinuesnormallyandthe proof
canreadilyreferencdemmaddeclaredn theimported
module. If the hashesdo not matchor the module
hasnt beenimported,the checler accessethe URL
and fetchesthe module. A module being imported
is validatedby the checler in the sameway that a
proof would be. Sincethey’re identifiedwith content
hashesmultiple versionsof a modulewith the same
URL cancoeist in thechecler’s cache.

Since importing a module is somethingthat is
doneactwely by the sener, it raisesthe possibility of
denial-of-servicattacks.n designinghecheclerwe
have assumedhatit is the client’s responsibilityto
make surethat ary modulesit includesin its proofs
are readily accessible. The checler takes appropri-
ateprecautiongo guarditself againstproofsthatmay
containmodulesthatendlesslymport othermodules,
cyclical import statementsandothersimilar attacks.

6 Conclusion

In this paperwe describean authorizationsystem
for web bronvsersandweb senersthatwe have built
usinga proof-carryingauthorizationframevork. Our
applicationis implementedsadd-onmoduledo stan-
dardwebbrowsersandwebsenersanddemonstrates
thatit is feasibleto usea proof-carryingauthoriza-
tion framework asa basisfor building real systems.
We shav that suchsystems,n which the burdenof
proof is placedon the client, canreapthe benefitsof
usinga higherordersecuritylogic (flexibility andex-
tensibility) without beinghamperedy its traditional
weaknesse@indecidability).

We improve uponpreviouswork on proof-carrying
authorizationby addingto the framewvork a notion
of stateandenhancinghe PCA logic with goal con-
structsand and a module system. The additionsof
state(throughwhatwe call sessionsandgoalsarein-
strumentalin making PCA practical. We alsointro-
ducemechanismghat allow senersto provide only
selectve accesgo securitypolicies,whichwasacon-
ceptwholly absentfrom the original work. In addi-
tion, we refinethe corelogic to make it more useful
for expressinginterestingapplication-speéc logics,
and we definea particularapplication-specifidogic
thatis capableof servingasa securitylogic for areal
distributedauthorizatiorsystem.

Our applicationallows piecesof the securitypol-
icy to be distributed acrossarbitrary hosts. Through
the processof iterative proving the client repeatedly
fetchesproof componentantil it is ableto construct
a proof. This mechanismallows the sener policy to
be arbitrarily comple, controlledby a large number
of principals,andspreadover anarbitrarynetwork of
machinesn a secureway. Sinceproof components
canthemselesbeprotectedpursystenavoidsreleas-
ing the entire securitypolicy to unauthorizectlients.
Iterative authorization,or allowing the sener to re-
peatedlychallengeheclientwith new challengesiur
ing asingleauthorizatiortransactionprovidesagreat
dealof flexibility in designingsecuritypolicies.

Although our systemhasa greatdeal of flexibil-
ity, we have beensuccessfuin reducingthe inher
entoverheadto a minimum, demonstratinghat it is
possibleto use proof-carryingauthorizationto build
an efficient authorizationsystem. To this end, our

15

systemusesspeculatte praoving—clients attemptto
guesssener challengesandgenerateroofsaheadof
time, drasticallyreducingthe exchangebetweenthe
client andthe sener. The client also cachesproofs
andproof componentgo avoid the expenseof fetch-
ing themandregeneratinghe proofs. The sener also
cachesproofs, which avoids the needfor a client to
producethe sameproof eachtime it triesto accessa
particularobject. A modulesystemin the proof lan-
guageallows sharedemmaswhich comprisehebulk
of the proofs,to be transmittedonly if the sener has
notprocessethem,saving bothbandwidthandproof-
checkingoverhead.

Ongoingwork includesfurtherdevelopmenif our
prototype application. We will investigatethe use
of oblivious transferand other protocolsfor fetching
proof componentsvithout revealing unnecessarin-
formationandfurther refine our securitylogic to re-
duceits trustedbaseand increaseits generality In
additionto allowing clientsto import lemmasfrom a
third party, we would like to devise a methodfrom
allowing themto import actual proof rules as well.
We arealsoexploring theideaof usinga higherorder
logic asabridgebetweersecuritylogicsin away that
would enableauthenticatioriramevorksbasedn dif-
ferentlogicsto interactandshareresources.

References

[1] M. Abadi. On SDSI’s linked local hame spaces.
Journal of ComputerSecurity 6(1-2):3-21,0ctober
1998.

[2] M. Abadi, M. Burrows, B. Lampson,and G. D.
Plotkin. A calculusfor accessontrolin distributed
systems. ACM Transactionson ProgrammingLan-
guages and Systems 15(4):706—734, September
1993.

[3] M. Abadi, E. Wobber M. Burrows, and B. Lamp-
son.Authenticationin the TaosOperatingSystem.In
Proceeding®f the 14thACM Symposiunon Operat-
ing SystenPrinciples pages256—269,Systemske-
searctCentelISRC,DEC,Dec.1993.ACM SIGOPS,
ACM Press.TheseproceedingsrealsoACM Oper
ating System®Review, 27,5.

[4] A. W. Appel andE. W. Felten. Proof-carryingau-
thentication. In Proceedingsof the 6th ACM Con-
ferenceon Computerand Communication§ecurity
SingaporeNovember1999.

[5] D.Balfanz,D. Dean,andM. Spreitzer A securityin-
frastructurefor distributedJava applications.In 21th

IEEE ComputerSocietySymposiunon Reseath in

Securityand Privacy, Oakland,CA, May 2000.

M. Blaze,J. Feigenbaumand M. Strauss.Compli-

ancecheckingin the PolicyMaker trust-management

system.In Proceeding®f the 2nd Financial Crypto

Confeence volume 1465of Lectuie Notesin Com-

puter ScienceBerlin, 1998.Springer

J.-E.Elien. Certificatediscovery using SPKI/SDSI

2.0certificates.Masters thesis Massachusettsisti-

tute of TechnologyMay 1998.

C. M. Ellison, B. Frantz, B. Lampson,R. Rivest,

B. M. ThomasandT. Ylonen. SPKICertificateThe-

ory, Septembe 999. RFC2693.

R. T. Fielding, J. Gettys,J. C. Mogul, H. Frystyk,

L. Masinter P. Leach,and T. Berners-Lee.Hyper

text TransferProtocol— HTTP/1.1 IETF - Network

Working Group, The Internet Society June 1999.

RFC2616.

J. Y. Halpernand R. van der Meyden. A logic for

SDSI's linkedlocal namespaces.In Proceedingof

the12thlIEEE ComputerSecurityFoundationsibrk-

shop pagesl11-122 Mordano,ltaly, June1999.

R. Harper F. Honsell,andG. Plotkin. A frameawork

for defining logics. Journal of the Associationfor

ComputingMachinery, 40(1):143-184Jan.1993.

[12] International TelecommunicationdJnion. ITU-T
recommendatioiX.509: The Directory: Authentica-
tion Framevork. TechnicaReportX.509,ITU, 1997.

[13] G. C. Necula. Compilingwith Proofs PhD thesis,
Carngyie Mellon University, Oct. 1998. Availableas
TechnicalReportCMU-CS-98-154.

[14] F PfenningandC. Schirmann. Systemdescription:
Twelf: A meta-logicalframework for deductve sys-
tems. In H. Ganzinger editor, Proceedingsof the
16thInternationalConfeenceon Automatededuc-
tion (CADE-16-99) volume 1632 of LNAI, pages
202-206Berlin, July 7-101999.Springer

[6]

[7]

(8]

9]

(10]

(11]

16

A Axioms of the Core Logic

Axioms of the higherordercorelogic of our PCA
system.Exceptfor the lastfour, they arestandardn-
ferencerulesfor higherorderlogic.

A B
AAB

ANB
A

ANB

B ande?2

andi andel

or.il or.i2

A B
AVB AV B
2 e
C or_e

AvB

(Al

A—

A—-B A

imp_i 5

5 imp_e

A(Y) Y notoccurringin VX.A(X)

. .
VX AK) forall_i

VX.A(X)

ACT) forall_e ﬁreﬂ

H(2)

congr

signaturépubley, fmla, sig)
Key(publey) saysfmla

Key(A) says(F imp G)

signed

Key(A) saysF

Key(A) saysG key-imp.e
beforgS)(T1) T2>Ti
befordS (1) Cororedt

Key(localhost) saysbeforgX)(T)
beforegX)(T)

timecontrols

