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Abstract

We describean infrastructure for distributed autho-
rization basedon the ideasof proof-carryingautho-
rization (PCA).PCA is more general andmore flexi-
ble thantraditionaldistributedauthorizationsystems.
WeextendPCAwith thenotionof goalsandsessions,
andadda modulesystemto theproof language. Our
framework makesit possibleto locateandusepieces
of thesecuritypolicythathavebeendistributedacross
arbitrary hosts. We provide a mechanismwhich al-
lows piecesof the securitypolicy to be hiddenfrom
unauthorizedclients. As a prototypeapplicationwe
havedevelopedmodulesthat extenda standard web
server and a standard web browser to use proof-
carryingauthorizationto control accessto webpages.
Thewebbrowsergeneratesproofsmechanicallyby it-
eratively fetching proof componentsuntil a proof can
be constructed. We provide for iterative authoriza-
tion, bywhich a servercanrequirea browserto prove
a seriesof challenges. Our prototypeimplementation
includesa seriesof optimizations,such asspeculative
proving andmodularizingandcaching proofs,which
allows proof-carrying authorizationto be usedwith
minimalperformanceandbandwidthoverheads.

1 Intr oduction

Distributed authenticationis importantin systems
that cannothave their accesspolicy determinedby a

singletrustworthy setof administrators.In thesesys-
tems,differentportionsof the accesspolicy may be
controlledby differentparties. The relationshipsbe-
tweenthesepartiesandtheir respective areasof con-
trol canbequitecomplex.

Distributed authenticationsystems[7, 8, 12] can
provide a framework underwhich it is possibleto im-
plementthesecomplex policies.Oneexampleof such
a policy usesa delegation. Supposea userAlice has
accessto afile foo, whichshehasbeenassignedby a
systemadministrator. Alice wantsanotheruser, Bob,
to haveaccessto thefile aswell. Ratherthanrequiring
theadministratorto makepolicy changesfor foo, the
distributedauthenticationsystemcouldallow Alice to
issueBob a (perhapstemporaryor restricted)delega-
tion, “Bob speaksfor Alice, signedAlice”. Bobcould
thenusethisdelegationto accessfoo.

Authenticationframeworks have sometimesbeen
describedusingformal logic [6, 10, 1]. In somecases
frameworksweredevelopedby first designinganap-
propriatelogic and thenbuilding aroundit a system
that supportsit [5]. An exampleof this approachis
theTaosoperatingsystem[2, 3].

AppelandFeltenhave recentlyintroducedtheidea
of proof-carryingauthorization1 (PCA) [4], anautho-
rization framework that is basedon a higher-order
logic (henceforthreferredto asthe AF logic). Their

1Theconceptwasoriginally introducedas“proof-carryingau-
thentication,” but sinceit dealswith authorizingaccessratherthan
authenticatingidentity, we have with thepermissionof theorigi-
nal authorsrenamedit to “proof-carryingauthorization.”



higher-orderlogic consistsof a standardhigher-order
logic extendedby averyfew rulesthatthey deemnec-
essaryfor definingoperatorsandlemmassuitablefor
asecuritylogic.

Appel and Felten proposethat an authorization
framework shouldbecomposedof theAF logic anda
setof operatorsandrulesthatcompriseaparticularse-
curity logic. Theoperatorsandrulesareexpressedin
theAF logic; operatorsasdefinitionsandrulesaslem-
masthat canbeproven from thesedefinitions. Since
eachrule or operatorcanbeexpresseddirectly in the
AF logic, systemsbasedon theAF logic cancommu-
nicatewith eachotherevenif they usedifferentoper-
atorsor inferencerules. This allows addingcomplex
security-policy rulesthat might not have beenimag-
inedwhenthesystemwasdesigned.

A higher-orderlogic like theAF logic, however, is
not decidable,which meansthat no decisionproce-
durewill alwaysbe able to determinethe truth of a
true statement,even given the axiomsthat imply it.
This makes the AF logic unsuitablefor usein tradi-
tional distributedauthenticationframeworksin which
theserver is givenasetof credentialsandmustdecide
whetherthey imply somestatement.Thisproblemcan
be avoidedin the server by makingit the client’s re-
sponsibilityto generateproofs. Theserver mustnow
only checkthat theproof is valid; this is not difficult
even in an undecidablelogic. Eachclient cangener-
ateproofsusinga decidablesubsetof inferencerules
specificto its application.Theserver, usingonly the
commonunderlyingAF logic, cancheckproofsfrom
all clients,regardlessof theinferencerulesthey use.

Building anactualdistributedauthorizationframe-
work basedonanAF-stylelogic raisesanumberof is-
suesthatremainuntouchedor arenot fully addressed
by previous work. Whatsetof definedoperatorscan
beusedto make a practicalsecuritylogic? Appeland
Feltenproposeseveralsets,eachwith its own advan-
tagesanddisadvantages.What is the minimal setof
rulestheAF logic needsfor theseoperatorsto bede-
finable? How doesa proof goal correspondto a re-
questto accessa resource?If a proof givesits bearer
accessto a protectedresource,how do we ensurethat
a proof isn’t stolenor copied?Canproof-generation
becompletelyautomated?– afterall, aproof-carrying
authorizationsystemis hardly useful if it requiresa
user to manually constructproofs, in higher order

logic, to beauthorizedto accessa webpage.Canthe
securitypolicy – thesetof factsnecessaryto make a
proof – be distributed in a way that makes it acces-
sible to legitimate usersbut not to attackers? If all
thesequestionscanbe answeredconstructively, is it
possibleto build asystemthatis generalenoughto be
a significantimprovementover existing onesandyet
alsoefficient enoughto beof practicaluse?

We presentan implementationof a distributedau-
thorizationsystemthat answersthesequestionsand
demonstratesthe feasibility of using proof-carrying
authorizationin real systems. Our applicationcon-
sistsof a webserver thatallows accessto pagesonly
if the web browser candemonstratethat it is autho-
rized to view them. The browser accomplishesthis
by mechanicallyconstructinga proof of a challenge
sentto it by theserver. Our systemsupportsarbitrar-
ily complex delegation, the definition of local name
spaces,andexpiration. We developa framework that
lets the webbrowserlocateandusepiecesof these-
curity policy (e.g., delegation statements)that have
beendistributed acrossarbitraryhosts,anda system
for providing selective accessto thesepieces.

The infrastructurewe implementedis independent
of theparticularapplicationwe choseto build on top
of it. Theapplicationis only anillustrationof how the
infrastructurecanbeused.

2 Example

Let us considerthe following scenario. Bob is a
professorwho teachesCS101. He hasput up a web
pagethathastheanswersto amidtermexamhisclass
just took. He wantsaccessto thewebpageto be re-
strictedto studentsin his class,andhe doesn’t want
thewebpageto beaccessiblebefore8 P.M.

Alice is a student in Bob’s class. It’s 9 P.M.,
and she wants to accessthe web page(http://
server/midterm.html) that Bob has put up.
Her webbrowsercontactstheserver andrequeststhe
page/midterm.html. Theserver, seeingthat the
pageis PCA-protected,respondswith a requestthat
Alice use an encrypted(HTTPS) connection. Al-
ice’s browserswitchesto HTTPSandagainrequests
/midterm.html (figure1, step1).

Upon receiving this request,the server constructs
a challenge(a statementin the logic) which mustbe
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Figure 1. Alice wantsto readmidterm.html.

proven before the requestedURL will be returned.
Theserver returnsan“AuthorizationRequired”mes-
sage(figure 1, step2) which includesthe challenge,
“Youmustprove: Theserversaysthatit’sOK to read
/midterm.html.”

When Alice receives the response,sheexamines
thechallengeandattemptsto constructa proof. Un-
fortunately, the attemptfails: Alice hasno ideahow
to go aboutproving thatit’s OK to read/midterm.
html. She sendsanother requestto the server:
“Pleasetell me who can read/midterm.html.”
(step3)

Theserver’s reply (step4) tells her thatall thestu-
dentstakingCS101(the Registrarhasa list of them)
mayaccessthepage,aslong asit’s after8 P.M. Still,
thatdoesnotgiveherenoughinformationto construct
the proof. Shecontactsthe Registrar (step5), and
from him getsa certificateasserting,“until theendof
the semester, Alice is taking CS101.” (step6) Alice
hasnow collectedthefollowing facts:

m The server says,“After 8 P.M., everyonetaking
CS101mayaccess/midterm.html.”

m The Registrar says, “Until the end of the
semester, Alice is takingCS101.”

m The server believes, “The time now after 8:55

P.M.” (Alice guessesthis, sinceher own clock
shows it is 9:00P.M.)

m Alice says,“It’ sOK to read/midterm.html.”
(This is relevantbecausetheserverwill grantac-
cessonly to thoseclientswho assertthat it’s OK
to readtherequestedURL.)

Finally, thereis enoughinformation to prove that
Alice shouldbe allowed to accessthe file. Oncea
proof is generated,Alice sendsanotherrequestfor
/midterm.html to the prover (step7). This time
sheincludesin therequestthechallengeandits proof.
Theserver checksthat theproof is valid, andthatAl-
ice proved thecorrectchallenge.If bothcheckssuc-
ceed,theserver returnstherequestedpage(step8).

3 Logic Design

A proof-carryingauthorizationsystemhasa core
logic (such as the AF logic) with an application-
specific logic definedon top of it. The core logic
must be sufficiently generalto encodea wide range
of application-specificlogics– thatis its primarypur-
pose. On the other hand,it must also containrules
that make it possibleto defineinterestinganduseful
application-specificlogics. For instance,any security
logic is likely to needaninferencerulethattransforms
a digital signatureinto a statementin thelogic. There
is no convenientway to definesucha rule asa prov-
able lemmaor definition – so an appropriateaxiom
shouldbemadepartof thecorelogic.

A standardhigher-order logic comprisesthe ma-
jority of the core logic. The choiceof the few non-
standardrules that we wish to add dependson the
functionality we wish the application-specific logics
to have. Westartthedescriptionof oursystem,there-
fore,with adiscussionof requirementswehadfor our
application-specificlogic.

3.1 Application-SpecificOperators and Rules

The application-specificsecuritylogic consistsof
operators(e.g.,thespeaksforoperator)andrulesthat
allow usto reasonaboutthem(e.g.,a transitivity rule
for speaksfor). In a typical security logic the rules
would representthe formal definitionsof the opera-
tors; in a PCA system,however, both the rules and
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A speaksforB A saysF
B saysF

A speaksforB B speaksforC
A speaksforC

A says n A o s saysF p
A o ssaysF

Figure 2. We want our application-specificop-
eratorsto be definedso that they interact ac-
cording to theserules. A o s is shorthandfor
localnamen A q sp . s is a string in A’s local
namespacefrom which A createsthe principal
localnamen A q sp .

theoperatorsareexpressedin termsof thecorelogic.
Sincethe ruleshave to beproven aslemmas,theop-
eratorsmustbedefinedin suchawaythatthelemmas
areprovable. Moreover, the operatorsmust in some
casesbedefinedso that rulesotherthanthe intended
onescannotbe proven. In a systemwith delegation,
for example,we must make sure that rights can be
delegatedonly in strictly allowed ways. Naively de-
finedoperatorscouldresultin anattacker discovering
an unintendedway to delegateauthorityandusethis
discovery to breakthesecurityof asystem.

The desirada for our application-specificlogic
werefairly straightforward: principalsshouldbeable
to make statements,delegate authority, and create
groupsor roles(wecall themlocalnamespaces).Fig-
ure2 liststheserequirementsasinferencerules.In ad-
dition,wewantedprincipalstobeabletodraw conclu-
sionsbasedon thethingsthey believe,andwewanted
individuals(thatis, principalswith keys) to beableto
draw strongerconclusionsthanprincipalsthat repre-
sentrolesor groups.

We definethe requiredoperatorswith the goal of
beingableto provetheserulesbasedontheoperators’
definitions.A complicateddefinitionmaymakeit eas-
ier to prove a particularlemma,but mayalsomake it
impossibleto prove lemmasthat involve several dif-
ferentoperators.Too simplea definition,on theother
hand,might be insufficient to prove any interesting

lemmasabouttheoperator.

A saysF In additionto therulesin figure2 it should
betruethata principalA saysany statementthat
is true. Also, if A saysthe formula X, and the
formulaY is true,andX andY imply formulaZ,
thenA alsosaysZ – thisallows theprincipalA to
draw conclusionsbasedon its beliefs.

A saysF rts G o A n Gpvuwn G x F p
A speaksfor B This operatoris usedfor delegation.

If principal A speaksfor principal B, thenany-
thing thatA saysis spokenwith principalB’sau-
thority.

A speaksforB rzy F o�n A saysF p{x|n B saysF p
A.s The principal A o s (or localnamen A q sp ) is a new

principal createdin A’s local namespacefrom
thestring s. PrincipalA controlswhat A o s says.
In our example, the principal registrar creates
theprincipalregistrar.cs101, andsignsaformula
like ‘key(“alice”) speaksfor(registrar.“cs101”)’
for eachstudentin theclass.

A o sn F p}rzy L o lnliken L p$x L n Ap~n Sp~n F p
The lnlike operatoris usedto breakthe recur-
sion in the definition of localname. The defini-
tion of lnlike lookscomplicated,but is suchthat
lnliken L p is truefor everyfunctionL thatbehaves
asa localnameshould;thatis, for everyfunction
thatgeneratesa principalwhoseauthorityA can
delegate. localnameis oneof the operatorsex-
plicitly definedso that it obeys only the set of
rulesthatwe requireof it; this makesits defini-
tion somewhatmorecomplicatedandaddscom-
plexity to theproofsof lemmasaboutit.

lnlike n L p�r�y A q Sq F q G on"n A saysGp and n G x|n L n Ap~n Sp saysF p"p"px L n Ap~n Sp~n F p
In additionto therulesfrom figure2, wecanprove

aslemmasotherinferencerulesthatmight behelpful
for generatingproofs.For example,

A saysF F x G
A saysG

saysimp

canbetrivially provenfrom thedefinitionof says.
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signaturen pubkey q fmlaq sigp
Key n pubkey p saysfmla

signed

Key n Ap says n F imp Gp Key n Ap saysF
Key n Ap saysG

key imp e

beforen Sp~n T1 p T2 � T1

beforen Sp~n T2 p beforegt

Key nU�v�����S���������Sp saysbeforen X p~n T p
beforen X p~n T p timecontrols

Figure 3. Theseinferencerulesarein addition
to thestandardrulesof higher-orderlogic. Note
that the Key nU�v�����S���������Sp in the timecontrols
rule is notuniversallyquantified.

3.2 CoreLogic

The basetypesin our logic are formulas,strings,
and integers. Stringsareusedfor representingdigi-
tal signatures,public keys,andgoals,aswell asother
constructsthatwedefinefrom thebasicones.Integers
areusedfor describingtime.

Our logic hasseveral constructors. (1) The key
constructorturnsa string into a principal. In our sys-
tem, a principal is just a predicateon formulas. (2)
Thegoal constructortakesasan argumenta list of
stringsandreturnsaformula.Principalsin oursystem
prove that they are authorizedto perform someac-
tion by demonstratingthatthey canderiveaparticular
goal formulastatedin theserver’s challenge.Goals
aredescribedat greaterlengthin section3.3. (3) The
before constructorgeneratesa termthatis meantto
describethe temporalstateof a hostsystem,usually
the server that will be verifying the proof andgrant-
ing or denying access.before n Sp~n T p meansthatthe
time at hostS(which is describedby a string)hasnot
yet reachedT.

Figure3 showstheinferencerulesweaddto astan-
dardhigher-order logic to make it suitablefor useas
a corelogic for a PCA system.We adda signedrule
that takesasa premisethe tuple (pubkey, fmla, sig),
wheresig is the digital signatureproducedby sign-
ing fmla with the private key correspondingto pub-

key, andgeneratesthe formula P says fmla, where
P is theprincipal thatcorrespondsto thepublic key.2

An instanceof this rule existsfor eachtuplein which
sig is a valid signature. Its intuitive meaningis that
if a principal’s privatekey hassigneda formula,then
theprincipalsaysthatformula.

UnliketheAF logic,ourcorelogic containsnosep-
arateinferencerule for theintroductionof principals;
they areintroducedonly throughthestatementsthey
sign(i.e., thesignedrule).

The key imp e rule ensuresthat a principal can
draw conclusionsbasedonthestatementsit believes–
it allowsusto havemodusponensinsidesays. Thatis,
if A saysF andA saysG andF andG togetherimply
H thenA saysH. This rulemight look out of placein
thecorelogic, sincea morecomplicateddefinitionof
says– onethat we tried in an earlier iterationof our
logic wasstructuredsimilarly to the definition of lo-
calname, for example– couldachieve thesamegoal.
Sucha definition,however, would interactbadlywith
the definition of localname, making it impossibleto
prove lemmasthatmake localnameuseful.

Theotherrulesweaddareusedfor describingtime
and implementingexpiration. Eachhost introduces
a singlebefore axiom that describesthe currenttime
on the local machine.To allow reasoningaboutrela-
tionshipsbetweenearlierandlater times,we addthe
rule before gt, which tells us that if the time at host
Shasnot yet reachedT1, thenit alsohasnot reached
any pointT2 afterT1. Thetimecontrols ruleallows the
hostthatis checkingtheproof to make truethebefore
axiomsthatit says. Thatis, if thehostsaystheaxiom,
thenthe axiom is true on that system.Rulessimilar
to thesetwo are necessaryin any systemthat hasa
notionof time.

2Thereaderwill notethatsays is not partof thecorelogic;
it is one of the definitionsspecificto our application. The ac-
tualsignedaxiomusesthedefiningformula,not theabbreviation.
This may seemto tie the core logic to the application-specific
logic. However, that is not really the case. The connectionbe-
tweenthetwo is merelythatthecorelogicshouldmakeit possible
to definedifferentandusefulapplication-specificlogics. To that
end,it is helpful to studypossibleapplication-specificlogics,as
we have done,beforesettlingona corelogic.
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3.3 Goalsand Sessions

In proof-carryingauthorizationa client that tries
to accessa resourceis issueda challenge– an arti-
ficial logical formula– by theserver thatownsthatre-
source.Thechallengeis thegoal that theclient must
prove beforeit will begrantedaccessto theresource.

Obviously thereneedsto bearelationshipbetween
a resourceand the goal statementthat representsit.
The formula goal n��S�S��p canbe usedto representthe
right to accessfile foo. But if a proof of goal n��S�S�Sp
gives its bearerthe right to accessfoo, how do we
prevent Oscarfrom stealinga proof that Alice once
madeandusingit ashis own? Theserver will merely
checkthat the proof is correct (i.e., that it is a true
statement). It hasno mechanismfor checkingwho
constructeda proof – such a mechanism,in fact,
would be contraryto the idea of proof-carryingau-
thorization.

Topreventclientsfromusingstolenproofs,aserver
includesin its challengeto eachclient an identifier
(acryptographicallypseudorandomstring)thatserves
to make that client’s proof goal unique. This means
thatclientsnow prove statementslike “I have theau-
thority to readthefile foo with theuniqueidentifier
sid” (goal n����S��p~n��v�'�Sp ) insteadof just“I havetheau-
thority to readthe file foo” (goal n����S��p ). The iden-
tifier preventsclientsfrom usingstolenproofs,but it
doesn’t precludethemfrom beingallowedto reusean
old proof.

If the identifier is a secret sharedonly by the
server anda particularclient, theserver mayelectto
reusethe identifier in future challenges;in this case,
the client canrespondwith a previously constructed
proof. The period of time during which a server
choosesto reusean identifier we call a session;and
theidentifier, accordingly, thesessionidentifier.

We discussthe securetransmissionof the session
identifier, andproofswhich might containit, in sec-
tion 4.2.

It is importantto notethat the lengthof a session
may be longeror shorterthana particularexchange
betweena client anda server. A sessionis valid un-
til either the server or the client decideto expire the
sessionidentifier, which they maydo atwill.

It is commonin securitylogics to have a controls
rule to indicatethat a client is allowed to control a

particularresource.We find that the key imp e rule,
combinedwith uniquegoals,givesoursystemenough
power to reasonabout what principals say that the
controls rule is no longerneeded.To gain accessto
a resource,a client in our system,insteadof showing
that it controls a resource,provesthat theserver says
thattheclient shouldhave accessto theresource.

4 The SystemExplained: A Narrati ve

The systemwe describecan be naturally divided
into a client part and a server part (figure 4). The
bulk of theclientpartis awebbrowser. Therest—the
proxyserverandtheprover—arecomponentsthaten-
able the web browser to usethe PCA protocol. The
browser itself remainsunmodified,and our system
doesnot useany featuresthatareuniqueto a particu-
lar browserversion.

Theserver partof our PCA systemis built around
anunmodified(Apache)webserver. Thewebserveris
PCA-enabledthroughtheuseof aservletwhich inter-
ceptsandhandlesall PCA-relatedrequests.The two
basictasksthat take placeon theserver’s sideduring
a PCA transactionaregeneratingthepropositionthat
needsto be proved andverifying that the proof pro-
vided by the client is correct. Eachis performedby
a separatecomponent,the propositiongeneratorand
thechecker, respectively.

Throughoutthe restof this section,we will bede-
scribing variouspartsof the systemas they are en-
counteredduring a transactionlike onedescribedin
figure 4. As a runningexamplewe will usethe sce-
nariointroducedin section2. Thetext of theexample
will beindentedandin italics to offset it from thede-
scriptionof thesystem.

4.1 Client: Proxy Server

The job of the proxy server is to be the interme-
diary betweena web browser that hasno knowledge
of the PCA protocol and a web server that is PCA-
enabled.An attemptby the browserto accessa web
pageresultsin a dialoguebetweentheproxy andthe
server that housesthe page. The dialogueis con-
ducted through PCA-enhancedHTTP—HTTP aug-
mentedwith headersthatallow it to convey informa-
tion neededfor authorizationusingthePCAprotocol.
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Figure 4. Thecomponentsof thesystem.

The browseris completelyunawareof this dialogue;
it seesonly thewebpagereturnedat theend.

Theproxy is meantto bea substitutefor abrowser
plugin. We decidedto usea proxy insteadof a plugin
becausethisletsoursystembecompletelybrowserin-
dependent.A productionimplementationwouldprob-
ably replacethe proxy with a plugin. Like a plugin,
ourproxy is meantto betightly coupledwith theweb
browser. Unlike traditionalwebproxies,it is meantto
serveasingleclient,notasetof them.This is because
the proxy needsto speakon behalf of a client, per-
hapssigningstatementswith the client’s privatekey
or identifying itself with the client’s public key. If a
sharedproxywereto beusedfor thispurpose,its abil-
ity to accesstheprivateinformationof severalclients
would be a concern. Also, it would have to authen-
ticate client-sideconnectionsso that it would know
whichclient’sdata,or identity, tousefor PCAtransac-
tions.Suchauthenticationwould beat crosspurposes
with one of the goalsof our system—authorization
uncoupledfrom authentication.

When Alice requeststo see the page http://
server/midterm.html, her browser forms the
requestandsendsit to theproxyserver (figure4, step
1). The proxy server forwardsthe requestwithout
modifying it.

4.2 SecureTransmissionand SessionIdentifiers

Thesessionidentifieris asharedsecretbetweenthe
client andserver. The identifier is usedin challenges
and proofs (including in digitally signed formulas

within the proofs) to make themspecificto a single
session.This is importantbecausethe server caches
previously proven challengesand allows clients to
presentthe sessionidentifier asa token that demon-
stratesthatthey havealreadyprovidedtheserverwith
aproof.

The sessionidentifier is a string generatedby the
server using a cryptographicpseudorandomnumber
generator. Our implementationusesan144-bitvalue
which is thenstoredusinga base-64encoding.(144
bitswaschosenbecausethevalueconvertsevenly into
thebase-64encoding.)

Sincethesessionidentifiermaybesufficienttogain
accessto a resource,stealinga sessionidentifier, akin
to stealinga proof in a systemwheregoalsare not
unique,compromisesthe securityof the system. In
orderto keepthe sessionidentifier secret,communi-
cationbetweenthe client andserver usesthe secure
protocolHTTPSinsteadof normalHTTP in all cases
whereasessionidentifieris sent.If theclientattempts
to makeastandardHTTPrequestfor aPCA-protected
page,the client is senta special“AuthorizationRe-
quired” messagewhich directstheclient to switch to
HTTPSandretry therequest.

As an efficiency measure,the client cachesloca-
tionsof PCA-protectedpagesandautomaticallyuses
HTTPS insteadof HTTP, shorteningthe transaction
by two messages– the HTTP messagethat would
fail and the reply that directsthe client to switch to
HTTPS.we assumethat if a particularURL is PCA-
protected,then any other URL which has the first
as a prefix is also PCA-protected. Thus this cache
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typically would requireoneentry perPCA-protected
server, ratherthanoneentryperPCA-protectedpage.

Alice’s proxy contacts the server, asking for
midterm.html. Sincethatpageis PCA-protected
and the proxy usedHTTP, the server rejectsthe re-
quest. The proxy switchesto HTTPSandsendsthe
samerequestagain.
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Figure 5. Client flowchart.

4.3 Server: Proposition Generator and Iterati ve
Authorization

Whena client attemptsto accessa PCA-protected
web page,the server replieswith a statementof the
theoremthatit wantstheclient to prove beforegrant-
ing it access.This statement,or proposition,canbe
generatedautonomously;it dependsonly on thepath-
nameof thefile that theclient is trying to accessand
onthesyntaxof thelogic in which it is to beencoded.
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Figure 6. Server flowchart.

The server’s proposition generator provides the
server with a list of propositions.The server returns
the first unproven proposition. If the client success-
fully provesthatpropositionin a subsequentrequest,
then the server will reply with the next unproven
propositionas the challenge. This processof prov-
ing andthenreceiving the next challengefrom a list
of unprovenpropositionsis callediterativeauthoriza-
tion. Theprocessesfor theclientandserverareshown
in theflowchartsof figure5 andfigure6.

Thisprocessterminateswheneithertheclientgives
up (e.g. cannotprove oneof thepropositions)or has
successfullyproven all of the propositions,in which
caseaccessis allowed. If the client presentsa proof
which failswhentheserver checksit, it is simply dis-
carded. In this case,the samechallengewill be re-
turnedtwice to theclient.
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If the client receives the samechallengetwice, it
knows that althoughit “successfully” constructeda
proof for thatchallenge,it wasrejectedby theserver.
This meansthatoneof theclient’s assumptionsmust
havebeenincorrect.Theclientmaychooseto discard
someassumptionsandretry theproofprocess.

Our prototypeapplicationgeneratesa proposition
for eachdirectory level of the URL specifiedin the
client’s request. Since the server returns identical
challengesregardlessof whethertherequestedobject
exists, returninga challengerevealsno information
abouttheexistenceof objectson theserver.

Isolatingthepropositiongeneratorfrom therestof
theserver makesit easyto adaptthe server for other
applicationsof PCA; usingit for anotherapplication
mayrequirenothingmorethanchangingtheproposi-
tion generator.

After receiving the second,encryptedrequest,the
server first generatesthe sessionID, “sid”. It then
passestherequestandtheID to thepropositiongener-
ator. Thepropositiongeneratorreturnsalist of propo-
sitionsthatAlice mustprovebeforesheis allowedto
see/midterm.html:

says @ (key @ "server")
@ (goal @ "http://server/" @ "sid")

says @ (key @ "server")
@ (goal @ "http://server/midterm.html"

@ "sid")

Thesyntaxof theexamplecloselyfollows theactual
LF syntaxin which the proofsarewritten: all terms
are in prefix notationandapplicationis explicit and
denotedby @.

says @ (key @ "server") @ (goal @ X @ Y)

is therefore equivalent to “K ey(server) says
goal(X,Y).”

For the purposesof this example,we will dealonly
with the secondchallenge. In reality, Alice would
first have to prove that she is allowed to access
http://server/, and only then could she try
to prove that she is also allowed to accesshttp:
//server/midterm.html.

A benefitof iterative authorizationis that it allows
partsof thesecuritypolicy to behiddenfrom unautho-
rizedclients.Only whena challengehasbeenproven
will theclient beableto accessthefactsthat it needs

to prove thenext challenge.In thecontext of our ap-
plication this means,for example,that a client must
prove that it is allowed to accessa directorybeforeit
canevenfind out whatgoal it mustprove (andthere-
fore whatfactsit mustgather)to gainaccessto a par-
ticular file in thatdirectory.

4.4 Server: Challenges;Client: Proofs

For eachauthorizationrequest,theserver’s propo-
sition generatorgeneratesa list of propositionswhich
mustbeprovenbeforeaccessis granted.Eachpropo-
sition containsa URL path and a sessionidentifier.
Theserver checksto seeif eachpropositionhasbeen
previously proven by the client by checkinga cache
of previously proven challenges.If all of the propo-
sitions have beenproven, accessis allowed imme-
diately. Otherwise,the first unproven propositionis
returnedto the client asa challenge. Any otherun-
provenpropositionsarediscarded.

The server constructsa reply with a statuscode
of “Unauthorized”. This is a standardHTTP re-
sponsecode(401) [9]. The responseincludesthe re-
quiredHTTPheaderfield “WWW-Authenticate”with
anauthenticationschemeof “PCA” andtheunproven
propositionasits singleparameter.

Oncetheclienthasconstructedaproofof thechal-
lenge,the client makesanotherHTTPSrequest(this
can be done with the sameTCP connectionif al-
lowed by keep-alive) containing the challengeand
proof. The challengeis includedin an “Authoriza-
tion” request-headerfield, andtheproof is includedin
aseriesof “X-PCA-Proof” request-headerfields.The
server checksthat theproof provesthesuppliedchal-
lenge,addsthechallengeto its cacheof provenpropo-
sitions,andthenbeginsthecheckingprocessagain.

It is sometimespossiblefor a client to guesswhat
thechallengewill be. In thatcase,it cantry to prove
thechallengeevenbeforetheserver makesit (we call
this prove-aheador speculative proving). The proof
can thenbe sentto the server aspart of the original
request.If theclient guessedcorrectly, theserver will
acceptthe proof without first sendinga challengeto
theclient.

The first propositionin the exampleis the onestat-
ing thattheserversaysthatit’sOK to readhttp://
server/. Theserver checkswhetherit hasalready
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beenprovenandmoveson to thenext one.(Remem-
berthatfor thepurposesof theexamplewe’reconcen-
tratingonly on thesecondproposition;theauthoriza-
tion processfor eachis identical.) Thenext proposi-
tion statesthattheserversaysit’s OK to readhttp:
//server/midterm.html. Thisonehasn’t been
provenyet,sotheserverconstructsanHTTPresponse
thatincludesthispropositionasachallengeandsends
it to Alice. This is step5 of figure4.

4.5 Client: Prover

In thecourseof a PCA conversationwith a server,
the proxy needsto generateproofs that will demon-
strateto the server that the client shouldbe allowed
accessto a particularfile. This task is independent
enoughfrom therestof theauthorizationprocessthat
it is convenientto abstractit into a separatecompo-
nent.During a PCA conversationtheclient mayneed
to prove multiple statements;the processof proving
eachis left to theprover.

The coreof the prover in our systemis the Twelf
logical framework [14]. Proofsare generatedby a
logic programthat usestactics. The goal that must
be proven is encodedasthe statementof a theorem.
Axioms that are likely to be helpful in proving the
theoremare addedas assumptions.The logic pro-
gramgeneratesaderivationof thetheorem;this is the
“proof” thattheproxy sendsto theserver.

The tactics that define the prover roughly corre-
spondto theinferencerulesof theapplication-specific
logic. Togetherwith thealgorithmthatusesthem,the
tacticscomprisea decisionprocedurethat generates
proofs– for our systemto alwaysfind proofsof true
statements,thisdecisionproceduremustbedecidable.

A tacticfor proving A speaksforC wouldbeto find
proofsof A speaksforB andB speaksforC andthen
usethe transitivity lemmafor speaksfor. Other tac-
tics might be usedto guidethe searchfor thesesub-
goals. The order in which tacticsareappliedaffects
their effectiveness.Caremustalsobe taken to avoid
situationsin which tacticsmightguidetheprover into
infinite (or finite but time-consuming)branchesthat
don’t necessarilylead to a proof. The prover in our
systemis ableto automaticallygenerateproofswhen-
ever they exist.

If this werea production-strength implementation
of a PCA system,we would likely have implemented

thetheoremprover in Java. Thecapabilitiesof Twelf
are far greaterthan what we need; a custom-made
theoremprover that had only the requiredfunction-
ality would bemorelightweight. It couldalsobeen-
gineeredso that a failed attemptto prove a theorem
wouldexplain to theuserin theuser’s own termswhy
accesscouldnot begranted.Theadvantageof Twelf,
on theotherhand,is thattheencodingof thetacticsis
concise.Sincethetacticsarecloselytied to thelogic,
Twelf madeit mucheasierto experimentwith changes
to the logic without having to spendmuch effort in
adaptingthetheoremprover to it.

In additionto generatingtheproof of a goalgiven
to it by the proxy, the prover’s job is to find all the
assumptionsthatarerequiredby theproof. Assump-
tions neededto generatea proof might includestate-
mentsmadeby the server aboutwho is allowed to
accessa particularfile, statementsaboutclock skew,
statementsby which principalsdelegateauthority to
otherprincipals,or statementsof goal.While someof
thesemight beknown to theproxy, andwould there-
fore have beenprovided to the prover, othersmight
needto beobtainedfrom webpages.

Sincefetchingassumptionsfrom thewebis a rela-
tively time-consumingprocess(hundredsof millisec-
ondsis a long time for a singlestepof an interactive
authorizationthat shouldbe transparentto the user),
theprover cachestheassumptionsfor futureuse.The
prover alsoperiodicallydiscardsassumptionswhich
have notbeenrecentlyusedin successfulproofs.

4.6 Client: Iterati veProving

Theclient is responsiblefor proof generation. The
client may not alwaysbe ableto generatea proof of
the challengeon the first try. It may needto obtain
additionalinformation,suchassigneddelegationsor
other facts,beforethe proof canbe completed.The
processof fetching additional information and then
retrying the proof processis called iterative proving.
Theprocessdoesnot affect theserver, andterminates
whenaproof is successfullygenerated.

Proofgenerationcanbedividedinto two phases.In
thefirst phase,factsaregathered.In thesecondphase,
straightforward prover rulesareusedto test if these
factsaresufficient to prove the challenge.If so, the
proof is returned.Otherwise,thephasesarerepeated,
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first gatheringadditionalfactsandthenreproving, un-
til eithera proof is successfullygenerated,or until no
new factscanbefound.

Thefact-gatheringphaseinvolvestheclientgather-
ing four basictypesof facts.

Self-signed Assumptions The first type of facts
comesfrom theclient itself. Theclient cansignstate-
mentswith its own privatekey, andthesemaybeuse-
ful in constructingproofs. Often, for example,it is
necessaryfor the client to sign part of the challenge
itself andusethisasanassumptionin theproof.

Alice will signthestatement

goal @ "http://server/midterm.html" @ "sid"

Applying the signature axiom to this statementwill
yield

says @ (key @ "alice")
@ (goal @ "http://server/midterm.html"

@ "sid")

Armed with this assumption(andno others,so far),
Alice triesto provethechallenge.Theattemptfails in
theclient (i.e., no proof is constructed,sonothingis
sentto theserver);Alice realizesthatthisassumption
by itself isn’t sufficientto generateaproofsoshetries
to collectmorefacts.(Steps6 and8 of figure4.)

Goal-orientedfacts Thesecondtypeof factsis typ-
ically (thoughnotnecessarily)providedby theserver.
While generatingpropositionsand checkingproofs
areconceptuallythetwo mainpartsof theserver-side
PCA infrastructure,a PCA-enabledserver may want
to carry out a numberof other tasks. One of these
is managingpiecesof the securitypolicy. To gener-
atea proof that it is authorizedto accessa particular
web page,a client will have to know which princi-
palshave accessto it. Suchinformation,sinceit de-
scribeswhichprincipalshavedirectaccessto apartic-
ulargoal,wecall goal-orientedfacts.

In our implementation,theserver keepsthis infor-
mationin access-controllists. Entriesfrom theselists,
encodedin amannerthatmakesthemsuitablefor use
asassumptions,areprovidedto theclient on demand.
They arenotgivenout indiscriminately, however. Be-
fore providing a goal-orientedfact,theserver usesan

additionalPCA exchangeto checkthat the client is
authorizedto accessthefact.

In our systemthe client queries the server for
goal-orientedfacts for each challengeit needsto
prove. Goalsare describedby URLs, so the server
requiresPCA authorizationfor a directory beforeit
will return the goal-orientedfacts that describeac-
cessto files/directoriesinsidethatdirectory. Thegoal-
orientedfactthatdescribesaccessto therootdirectory
is freely returnedto any client. In this way, a client is
forcedto iteratively proveauthorizationto eachdirec-
tory level on theserver.

Sinceher first attemptat generatinga proof didn’t
succeed,Alice sendsa messageto theserver request-
ing goal-orientedfacts about http://server/
midterm.html. Upon receiving the request,the
server first checkswhetherAlice has demonstrated
that shehasaccessto http://server/. It does
this by generatinga list of assumptions(therewill be
only a singleassumptionin the list) andthencheck-
ing whetherAlice hasproven it. After determining
thatAlice is allowedaccessto the root directory, the
servergivesto Alice asignedversionof thestatement

not (before @ "server" @ (8 P.M.))
imp (says @ (localname @ (key @ "registrar")

@ "cs101")
@ (goal @ "http://server/midterm.html"

@ "sig"))
imp (goal @ "http://server/midterm.html" @ "sig")

Alice translatesit into, “Server says: ‘If it is not be-
fore8 P.M., andaCS101studentsaysit’sOK to read
midterm.html, then it’s OK to readmidterm.
html.’ ”

Fetchingthe ACL entry from the server is also de-
scribedby steps2 through5 of figure4.

Server Time In orderto generateproofswhich in-
clude expiring statements,the client must make a
guessabout the server’s clock. The third type of
facts is the client’s guessaboutthe time which will
be showing on the server’s clock at the instant of
proofchecking.If theclientmakesanincorrectguess,
it might successfullygeneratea proof which is re-
jectedby the server. (An incorrectguessabout the
server’s clock is theonly reasonfor rejectinga prop-
erly formed,sinceit is the only “f act” the the server
might not accept.) In this case,the client adjustsits
guessabout the server’s clock and begins the proof
generationprocessagain.
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In order to use the goal-orientedassumptionit re-
ceived from the server, Alice mustalsoknow some-
thing about the current time. Since it’s 9 P.M. by
herclock,sheguessesthattheserverbelievesthatthe
time is before9:05P.M. andafter8:55P.M. Thiscor-
respondsto theassumption

before @ "server" @ (9:05 P.M.) and
not (before @ "server" @ (8:55 P.M.))

Armed with the self-signedassumption,the goal-
oriented assumption, and the assumption about
time, Alice again tries proving that shecan access
midterm.html. Again, she discovers that she
doesn’t have enoughfactsto constructa proof. She
knows that Registrar.CS101can accessthe file, but
shedoesn’t know how to extendtheaccessprivilege
to herself.

Key-oriented facts The fourth type of factscome
from hints thatareembeddedin keys andthatenable
factsto bestoredonaseparate(perhapscentralizedor
distributed)server. Concatenatedwith eachpublickey
is a list of URLs which containfactsrelevant to that
key (perhapsmaintainedby the key-holder). These
factsmight besigneddelegations,for example.

At eachfact-fetchingstep,the client examinesall
of the keys referencedin all of the facts already
fetched. Eachkey is examinedfor embeddedhints.
Then the client fetchesnew facts from all of these
hint URLs. (The client maintainsa cacheso that
hint URLs arenot accessedmorethanonce.) In the
next iteration (if anotheriteration is required),these
new factswill beexaminedfor additionalhint URLs,
which will then be fetched. In this way, the client
doesa breadth-firstsearchfor new facts,alternating
betweensearchingoneadditionaldepthlevel andat-
temptingto constructa proof with the currentsetof
facts.

Although the proof didn’t succeed,Alice can now
use the hints from her facts to try to find addi-
tional factsthatmight help theproof. Bob’s server’s
key and the Registrar’s key are embeddedin the
factsAlice hascollected. In eachkey is encodeda
URL that describesa location (it can be any loca-
tion) at which the owner of that key publishesad-
ditional facts. Bob’s server’s key, heretoforegiven
askey @ "server" actuallyhastheform key @
"server;http://server/hints/".

Beforegiving up, Alice’s prover follows theseURLs
to seeif it can find any new facts that might help.
This is shown as step7 of figure 4. Following the
hint in theRegistrar’s key, Alice downloadsa signed
statementwhich shetranslatesinto theassumption

says @ (key @ "registrar") @
(before @ "registrar" @ (end of semester)
imp (speaksfor @ (key @ "alice")

@ (localname @ (key @ "registrar")
@ "cs101")))

This factdelegatesto Alice the right to speakon be-
half of Registrar.CS101:“The Registrarsaysthatun-
til the endof the semester, whatever Alice sayshas
thesameweightasif Registrar.CS101saidit.”

Following thehint in Bob’sserver’skey, Alice obtains
anew factthattellshertheclockskew betweenBob’s
serverandtheRegistrar.

Alice now finally has enough facts to generatea
proof that demonstratesthat she is authorizedto
read http://server/midterm.html. Alice
makesa final requestto accesshttp://server/
midterm.html, this time including in it the full
proof.

4.7 Server: Proof Checking

The Theory. After it learns which proposition it
mustprove, the client generatesa proof andsendsit
to theserver. If theproof is correct,theserver allows
the client to accessthe requestedweb page. Proofs
arechecked usingTwelf. The proof provided by the
client is encodedas an LF term [11]. The type (in
the programminglanguagessense)of the term is the
statementof the proof; the body of the term is the
proof’sderivation.Checkingthatthederivationis cor-
rectamountsto typecheckingthetermthatrepresents
theproof. If thetermis well typed,theclient hassuc-
ceededin proving theproposition.

As is thecasefor theclient, usingTwelf for proof
checkingis overkill, sinceonly thetype-checkingal-
gorithm is used. The proof checker is part of the
trustedcomputingbaseof the system. To minimize
the likelihood that it containsbugs that could com-
promisesecurity, it shouldbe assmall andsimpleas
possible.Severalminimal LF typecheckershave al-
readybeenor will shortlybeimplemented[13]; oneof
thesecouldserve astheproofchecker for our system.
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LF termscaneitherhave explicit type ascriptions
or beimplicitly typed.An implicitly typedversionof
theand introductionlemmain ourlogic hasthisform:

and_i : pf A -> pf B -> pf (A and B)
= [p1][p2] forall_i ...

Onewith explicitly ascribedtypes:

and_i : {A:tm form} {B:tm form} pf A
-> pf B
-> pf (and A B)

= [A:tm form] [B:tm form]
[P1:pf A] [P2:pf B] forall_i ...

Note that theexplicitly-typed versionmayneedto
introducemorethatonetypeannotationpervariable.
Thiscanleadto exponentialincreasein thesizeof the
proofs. The implicitly-typed version is much more
concise,but suffers from a different problem. The
typeinferencealgorithmthattheserverwouldneedto
run is undecidable,which could causecorrectproofs
not to be acceptedor the server to the tied up by a
complicatedproof.

The LF communityis currentlydevelopinga type
checker for semi-explicitly typedLF termsthatwould
solvebothproblems.Its type-inferencealgorithmwill
be decidable,and the level of type ascriptionit will
requirewill notcauseexponentialcodeblowup. Until
it becomesavailable,oursystemwill requireproofsto
beexplicitly typed.

The Practice. Checkingthe proof provided by the
client, however, is not quiteassimpleasjust passing
it throughanLF typechecker. Thebodyof anLF term
is theproof of thepropositionrepresentedby its type.
If the term hasonly a type ascriptionbut no body, it
representsanaxiom. That theaxiommaytypecheck
doesnot meanthatwe want to allow it aspartof the
proof. If we wereto do so, the client could respond
to a challengeby sendingan axiom that assertedthe
propositionit neededto prove;obviouslywewouldn’t
wantto acceptthisstatementasproofof thechallenge.
In addition, the server mustverify that the signature
axiomsusedby the proof actuallyhold; that is, that
any digital signaturesarevalid andsignwell-formed
statements.

To solve theseproblems,the server preprocesses
theclient’s proof beforepassingit to a type checker.
Thepreprocessorfirst makessurethatall of theterms

thatmakeuptheproofhavebothatypeandabody. A
proof thatcontainsillegal axiomsis rejected.

Next, two specialtypesof axiomsareinsertedinto
theproof asnecessary. Thefirst typeis usedto make
propositionsaboutdigital signatures,andthe second
type is used to make propositionsregarding time.
Theseare requiredsince the proof checker cannot
checkdigital signaturesor time statementsdirectly.
The client insertsinto the proof placeholdersfor the
two typesof axiomsit canuse.Theservermakessure
that eachaxiom holds, generatesan LF declaration
that representsit, and then replacesthe placeholder
with a referenceto thedeclaration.

For digital signatures,the client inserts into the
proof a propositionof the specialform “#signature
key, formula, sig”. (Eachof the fields is encodedin
base64for transmission.)Theserverchecksthatsig is
a valid signaturemadeby thekey key for theformula
formula. If so,the#signaturestatementis replacedby
anaxiomassertingthatkey signedformula.

To make statementsabouttime, theclient insertsa
propositionof thespecialform “#now”. Theprepro-
cessingstagereplacesthe#now with anaxiomassert-
ing thecurrenttime (in secondssince1970).Axioms
of this form arenecessarywhensignedpropositions
includeanexpirationdate,for example.

Oncetheproofhasbeenparsedto makesureit con-
tainsnoaxiomsandspecialaxiomsof thesetwo forms
have beenreintroduced,theproof is checkedto make
sureit actuallyprovesthechallenge.(Theproofmight
be a perfectlyvalid proof of someotherchallenge!)
If this final checksucceeds,then the whole proof is
passedto anLF typechecker; in ourcase,this is again
Twelf.

If all of thesecheckssucceed,thenthechallengeis
insertedinto theserver’scacheof provenpropositions.
Theserver will eitherallow accessto thepage(if this
wasthelastchallengein theserver’s list) or returnthe
next challengeto theclient.

To avoid re-checkingproofs, all correctly proven
propositionsare cached. Some of them may use
time-dependentor otherwiseexpirablepremises–they
could be correct when first checked but false later.
If such proofs, insteadof being retransmittedand
rechecked,arefoundin thecache,theirpremisesmust
still becheckedbeforeauthorizationis accepted.
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The server receives Alice’s requestfor midterm.
html andgeneratesa list of propositionsthat need
to be provenbeforeaccessis granted.Only the last
proposition is unproven, and its proof is included
in Alice’s request. The server expandsthe #signa-
ture and #now propositions,and sendsthe proof to
the type-checker. The proof checkssuccessfully, so
the server insertsit in its cache;Alice won’t have
to prove this propositionagain. Finally, the server
checkswhetherAlice proved the correctchallenge,
whichshehas.Therearenomorepropositionsleft to
be proven, Alice hassuccessfullyproven that sheis
authorizedto readhttp://server/midterm.
html. Theserversendstherequestedpageto Alice.

5 Module system

Sinceproofs are meantto be both generatedand
checked completelyautomatically, many of the tra-
ditional software-engineeringreasonsfor needinga
modulesystemare absent,sincethey are often mo-
tivatedby makingcodeeasierfor a humanprogram-
merto read.Still, thereremaingoodreasonsto allow
proofsto bemodular. For one,sincethetrustedcom-
putingbaseof thechecker is composedof thesmallest
possiblenumberof axioms,mostof therulesusedin
constructingthe proofswill be lemmasproven from
the axioms. Many clients will usethesesamelem-
masin their proofs; most proofs, in fact, are likely
to include the samebasicset of lemmas. We have
addedto theproof languagea simplemodulesystem
thatallows us to abstracttheselemmasfrom individ-
ual proofs. Insteadof having to includeall the lem-
masin eachproof, the modulesystemallows them
to be importedwith a statementlike basiclem =
#include http://server/lemmas.elf. If
the lemma speaksfor trans, for example, re-
sides in the basiclem module, it can now be
referencedfrom the body of the proof as basi-
clem.speaksfor trans. Insteadindividually by
eachclient, abstractingthe lemmasinto modulesal-
lows themto be maintainedandpublishedby a third
party. A company, for instance,canmaintaina single
setof lemmasthatall its employeescanimport when
trying to prove that they areallowed to accesstheir
payroll records.

To make theexamplesin theprevioussectionmore
understandable,we have omitted from them refer-

encesto modules. In reality, eachproof sentby a
client to a server would beprefixedby a #include
statementfor a modulethat containedthedefinitions
of, for example,says, speaksfor, localname
andthelemmasthatmanipulatethem,aswell asmore
basiclemmas.

Aside from the administrative advantages,an im-
portant practical benefit of abstractinglemmasinto
modulesis increasedefficiency, bothin bandwithcon-
sumedduringproof transmissionandin resourcesex-
pendedfor proof checking. Insteadof transmitting
with eachproof several thousandsof lines of lem-
mas, a client merely insertsa #include declara-
tion which tells the checker the URL (we currently
supportonly modulesthat areaccessiblevia HTTP)
at which the modulecontainingthe lemmascan be
found. Beforetheproof is transmittedfrom theclient
to theserver, thelabelunderwhich themoduleis im-
portedis modifiedso that it containsthe hashof the
semanticcontent(that is, a hashthat is somewhat in-
dependentof variablenamesand formatting) of the
importedmodule. This way the checker knows not
only whereto find themodule,but canalsoverify that
theprover andthechecker agreeon its contents.

When the checker is processinga proof and en-
counters a #include statement, it first checks
whethera module with that URL hasalreadybeen
imported. If it hasbeen,and the hashof the previ-
ouslyimportedmodulematchesthehashin theproof,
thenproofcheckingcontinuesnormallyandtheproof
canreadilyreferencelemmasdeclaredin theimported
module. If the hashesdo not matchor the module
hasn’t beenimported,the checker accessesthe URL
and fetchesthe module. A modulebeing imported
is validatedby the checker in the sameway that a
proof would be. Sincethey’re identifiedwith content
hashes,multiple versionsof a modulewith the same
URL cancoexist in thechecker’s cache.

Since importing a module is somethingthat is
doneactively by theserver, it raisesthepossibilityof
denial-of-serviceattacks.In designingthecheckerwe
have assumedthat it is the client’s responsibilityto
make surethat any modulesit includesin its proofs
are readily accessible.The checker takes appropri-
ateprecautionsto guarditself againstproofsthatmay
containmodulesthatendlesslyimportothermodules,
cyclical import statements,andothersimilarattacks.
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6 Conclusion

In this paperwe describean authorizationsystem
for webbrowsersandweb serversthatwe have built
usinga proof-carryingauthorizationframework. Our
applicationis implementedasadd-onmodulesto stan-
dardwebbrowsersandwebserversanddemonstrates
that it is feasibleto usea proof-carryingauthoriza-
tion framework asa basisfor building real systems.
We show that suchsystems,in which the burdenof
proof is placedon theclient, canreapthebenefitsof
usingahigher-ordersecuritylogic (flexibility andex-
tensibility) without beinghamperedby its traditional
weaknesses(undecidability).

We improveuponpreviouswork onproof-carrying
authorizationby adding to the framework a notion
of stateandenhancingthe PCA logic with goal con-
structsand and a modulesystem. The additionsof
state(throughwhatwecall sessions)andgoalsarein-
strumentalin makingPCA practical. We also intro-
ducemechanismsthat allow servers to provide only
selective accessto securitypolicies,whichwasacon-
ceptwholly absentfrom the original work. In addi-
tion, we refinethe corelogic to make it moreuseful
for expressinginterestingapplication-specific logics,
and we definea particularapplication-specificlogic
thatis capableof servingasa securitylogic for a real
distributedauthorizationsystem.

Our applicationallows piecesof the securitypol-
icy to be distributed acrossarbitraryhosts. Through
the processof iterative proving the client repeatedly
fetchesproof componentsuntil it is ableto construct
a proof. This mechanismallows the server policy to
be arbitrarily complex, controlledby a large number
of principals,andspreadover anarbitrarynetwork of
machinesin a secureway. Sinceproof components
canthemselvesbeprotected,oursystemavoidsreleas-
ing theentiresecuritypolicy to unauthorizedclients.
Iterative authorization,or allowing the server to re-
peatedlychallengetheclientwith new challengesdur-
ing asingleauthorizationtransaction,providesagreat
dealof flexibility in designingsecuritypolicies.

Although our systemhasa greatdeal of flexibil-
ity, we have beensuccessfulin reducingthe inher-
ent overheadto a minimum, demonstratingthat it is
possibleto useproof-carryingauthorizationto build
an efficient authorizationsystem. To this end, our

systemusesspeculative proving—clientsattemptto
guessserver challengesandgenerateproofsaheadof
time, drasticallyreducingthe exchangebetweenthe
client and the server. The client also cachesproofs
andproof componentsto avoid theexpenseof fetch-
ing themandregeneratingtheproofs.Theserver also
cachesproofs,which avoids the needfor a client to
producethe sameproof eachtime it tries to accessa
particularobject. A modulesystemin theproof lan-
guageallowssharedlemmas,whichcomprisethebulk
of theproofs,to be transmittedonly if theserver has
notprocessedthem,saving bothbandwidthandproof-
checkingoverhead.

Ongoingwork includesfurtherdevelopmentof our
prototypeapplication. We will investigatethe use
of oblivious transferandotherprotocolsfor fetching
proof componentswithout revealingunnecessaryin-
formationandfurther refineour securitylogic to re-
duceits trustedbaseand increaseits generality. In
additionto allowing clientsto import lemmasfrom a
third party, we would like to devise a methodfrom
allowing them to import actualproof rules as well.
Wearealsoexploring theideaof usingahigher-order
logic asabridgebetweensecuritylogicsin awaythat
wouldenableauthenticationframeworksbasedondif-
ferentlogicsto interactandshareresources.
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A Axioms of the CoreLogic

Axioms of thehigher-ordercorelogic of our PCA
system.Exceptfor thelast four, they arestandardin-
ferencerulesfor higher-orderlogic.
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