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Abstract

The past three decades have seen dramatic improvements made in computer and network-

ing technologies. But display resolution, an important aspect of modern information sys-

tems, has lagged behind. Previous efforts in scaling up display resolution have relied on

special-purpose hardware for building both the physical displays and the computer systems

that drive the displays. The prohibitively high cost of these efforts limited the scalabil-

ity of the systems as well as their market adoption. This dissertation describes a Display

Wall architecture that uses projector tiling and PC clustering to achieve scalable resolution

and at the same time render 2D and 3D graphics scenes as fast as or even faster than a

fast PC graphics system with a traditional display. Unlike previous approaches that relied

on custom-made hardware, this architecture results in low cost per pixel by simply lever-

aging commodity components such as projection devices, personal computers, graphics

accelerators, and off-the-shelf system-area networks. Yet many challenging problems arise

when we cluster PCs and tile projector together. The most notable ones are how to build

efficient communication transport within the PC cluster, how to coordinate many PCs to

display smooth motion graphics, and how to tile projectors without visible seams. This

dissertation focuses on three research issues in building a tiled, cluster-based display wall:

seamless tiling, efficient cluster communication, and runtime environments for a cluster-

based scalable display. For each issue, a novel algorithm is described and its effectiveness

evaluated with empirical results.
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Chapter 1

Introduction

1.1 A Case For High Resolution and Immersion

Computers are increasingly becoming the information medium through which humans in-

teract with the physical world and with each other. Using data analysis, visualization, and

simulation, we explore and understand the physical world. To communicate with each

other, we exchange documents and messages, craft presentations, browse the web, conduct

teleconferencing, and chat on-line.

Digital information is presented on a variety of displays, frequently in a content-rich

form – for examples, video footage, stock prices, 3D models, and dense network traffic

graphs – either because the analytical and inferential abilities of a computer are still much

too primitive to distill pithy insights from raw data, or because we humans are simply too

unwilling to let a machine think for us.

It follows that the more detail a display is capable of presenting, the better the chances

we will have discovering something subtle and significant. This is not to say that detail

– or the display resolution – is the only important aspect of an effective display. How

to extract pieces of relevant information from raw data, organize and present them in a

1
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clear and meaningful manner on the display is still very much an art, its significance often

underestimated [89]. But, everything else being equal, a display with higher pixel density

and larger screen surface certainly makes a better information medium.

High resolution and immersion are the two key features of an effective information dis-

play. As the technologies for producing thin-film large-area display materials mature, one

can imagine that in a not-too-distant future immersive displays with ultra-high resolution

will be as ubiquitous as wallpaper and televisions, that we perceive on these displays a

high-fidelity snapshot of the real world or virtual reality in the same way we look at our

ordinary physical surroundings with comfort and ease.

However, computer displays produced today subtend only a tiny portion of our visual

field of view (FOV). Without turning the head, a human can see a wide spatial volume that

is 210◦ horizontal and 130◦ vertical [3]. Projecting a computer display onto a very large

screen increases immersion, but at the cost of much lower display resolution. Our eyes

can discern two objects in the center of the retina that are only one-minute arc apart [3].

Besides, we are also free to turn the head and walk about in front of the display medium. To

match the sharpest visual acuity everywhere on an immersive display would require many,

many millions of pixels.

Let us imagine building just such an immersive display to replace the traditional white-

board in an office. This digital white-board could be a cylindrically shaped surface that

surrounds 180◦ of one’s horizontal FOV, 2 feet above the ground, and 6 feet tall to match

the height of a human being. Assuming a comfortable viewing distance of 4 feet, the

display would measure 12.6 feet long and 6 feet tall. In order to match the human visual

acuity everywhere on the display surface, we would need 22,500 pixels per square inch 1,

or 244,944,000 pixels on the entire display!

A display of 240+ million pixels represents an increase of 77 times in physical res-

1An easy way to calculate the pixel resolution is to remember that at a two-feet distance (61 cm), our
visual acuity can discern a print quality of 300 dpi [51].
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olution from that of the state-of-the-art monitor (2048x1536) [51]. It also demands an

improvement of 117 times in the graphics system capacity from what the best commodity

graphics accelerator can offer today (1920x1080). Were Moore’s Law to hold good for next

decade, we would still have to wait for at least nine years for technologies to catch up to our

imagination. This is a very, very long time for a society that is increasingly accustomed to

fast-paced technological innovations. Providing a relatively inexpensive solution for high-

resolution displays can contribute to innovations and scientific discoveries that are being

made today instead of a decade later. It was with this motivation that the Princeton Scalable

Display Wall project was initiated in 1998. Its goal is to demonstrate that a high-resolution

and high-performance scalable display can be built using only commodity components, and

that a system built this way is relatively inexpensive and capable of keeping track of rapid

advances in the computer industry.

1.2 Technical Challenges

There are three main technical challenges in building an efficient, high-resolution, immer-

sive displays: finding the physical display material, building an efficient digital system to

drive the pixels, and writing application software that leverages the high resolution and

dense pixels. In addition, there are design issues on how to lay out information on an

immersive high-resolution display, as well as psychological questions regarding our per-

ceptual responses to dense pixels and immersion. The initial goal of our research project

is to tackle the technical challenges first; the real display has to be built, before designs

can be meaningfully experimented and psychological studies carried out. Below is a brief

description of the three technical challenges.
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Physical display: Today, CRT monitors are the predominant computer displays. Two

inherent structural components of a color CRT, the vacuum tube and the shadow mask,

make it unsuitable for building a high-resolution immersive display. A CRT that spans

12 feet long and 6 feet high is nearly impossible to build; and even if built, it would be

fantastically expensive and too bulky to fit in an office and too fragile to maintain. A larger

and higher-pitched shadow mask is also difficult to make and align. Present technology for

making the CRT shadow masks limits the spatial resolution to about 88 dpi in advanced

displays [67], only half of what we would like for our immersive digital white-board.

Flat panel displays, whose prices have been falling and whose resolutions have been

increasing steadily for the past decade, are a likely candidate as the immersive display

material. The prevalent flat panel technology uses amorphous liquid crystal (AMLCD).

However, it is unclear whether in the near term wall-sized AMLCD could be produced, and

if could, whether it is economical. A more promising candidate is the organic LED (OLED)

material [2]. In theory, OLED material can be manufactured in large size and large quantity

using processes not unlike producing plastic sheets. It is also bright and durable. At the

present time, however, OLED is still undergoing laboratory research and development. We

probably will not see mass production of large-area OLED displays for another five years

at least.

Graphics subsystem: It is a significant challenge to refresh 250 million pixels at a rate

that is fast enough for presenting smooth motions. For motion pictures on regular cinema

screens, it has been established that the entire screen be updated at least 24 times a sec-

ond [69]. The refresh rate of 24 frames per second, or 24 fps, is only the minimum. For

larger screens such as those used in IMAX theaters, this rate has been found to be too low

to avoid apparent tears when objects move across the screen in very short time. Even at

24 fps, our display system is required to refresh a total of 6 billion pixels per second. It is
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an enormous demand on various components of the graphics subsystem: the pixel bus, the

frame buffer, the rendering engine, and the system bus. In a typical graphics subsystem,

shown in Figure 1.1, primitives generated by an application flow from the system bus to

the graphics engine where they get rendered into pixels in a frame buffer. A finished frame

is sent to the physical display via a pixel bus. Here are the limits of current systems:

• The system bus can at best deliver 10 million triangles, each of which is specified

with between 50 to 100 bytes, from the memory or the CPU to the graphics acceler-

ator.

• The best high-end graphics accelerator in the market can render 10 million 25-pixel,

colored triangles per second.

• Present generation of graphics frame buffer and can handle at most 200 million pixels

per second refresh.

Core
Processor

Logic

Cache/Memory Bus

System Memory

EngineBus

Graphics Frame
Buffer

Pixel

Bus
Display

Graphics

Figure 1.1: A typical system graphics pipeline

Roughly speaking, a factor of 25 exists between what current graphics system can de-

liver and what an immersive, high-resolution display demands. No single computer system

can handle so high a communication bandwidth for updating the pixels and the enormous

computation power to generate the pixels for dynamic scenes. A special architecture is

required.
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Application layer It would be a poor use of 250 million pixels if we only show a super-

fine square or a really, really shiny and smooth sphere – very much like watching an

plushly-made movie filled with tons of impressive special effects and pretty faces but little

content. The applications should generate additional fine details that are not “trivially” gen-

erated from coarser data. For realistic modeling, this means that minute details be added

and more sophisticated lighting conditions be taken into account. Animated models may

require a large amount of computing power for updating the models during each frame.

Visualizing scientific and medical data such as CT scans can benefit from higher data sam-

pling precision which in turn demands more computation power for post-processing and

analysis.

A single PC lacks sufficient power in its processors and enough bandwidth in its system

bus to sustain these kinds of data-intensive computation. Ideally one would need a scalable

parallel-processor for this task. Conventional uni-processor applications, in turn, require

modification to take advantage of the parallel-processor architecture.

1.3 Architectural Choices

It might be possible to design and build a single-piece graphics hardware engine capable

of driving 100 million or more pixels, using the best technologies currently available. But

such a brute-force approach would incur prohibitively high cost and take years to design

and implement. Just as in many engineering and research problems where, when one is

not enough, people just use more – parallel computers being a perfect example – we can

just integrate multiple display tiles and graphics subsystems into a high-resolution display

system.

A clear benefit of the tiling approach is limited burden that is placed on each graphics

accelerator and the pixel bus. The other, and equally significant, benefit is that commodity



CHAPTER 1. INTRODUCTION 7

graphics accelerators can be used to construct the system. One can almost go out and buy

the state-of-the-art components off the shell and build a giant display in a day!

But, there are still two critical pieces missing from this picture: the hardware and the

software that “glues” the graphics accelerators and the display tiles together so that they

function cooperatively as a seamless display system. For instance, with many graphics

subsystems comes the issues of communication and data distribution. After all, primitives

specifying images, texts, videos, polygons, and colors must be communicated from the

processors and memory to the graphics subsystems. Very often, screen data may be moved

between graphics subsystems, for example, when one drags a window from one display tile

to next one.

A central question here is choosing the right computer architecture, both hardware and

software, for gluing multiple graphics subsystems. There are three general approaches: the

naive, the ideal, and the cluster-based. The hardware architecture entails tradeoffs between

software complexity and performance. Below we examine each of the three architectures

and provide a qualitative analysis by looking at two critical components in each system:

the interconnection and the application computation layer.

The naive architecture In this simple solution, several graphics accelerator are plugged

into the I/O bus of a computer that functions as the communication interconnect (Fig-

ure 1.2). The operating system presents a contiguous, virtual display space to applications.

It is responsible for distributing graphics primitives to the graphics accelerators. Support

for multiple graphics accelerators, or multi-monitor support, first became available on Ap-

ple computers in late 80’s and was later incorporated into Microsoft’s Windows 98 and

Windows 2000.

The simplicity of the naive architecture is also its drawback. The bus is a potential

bottleneck. It limits the amount of graphics primitives that can be distributed to the graph-
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Figure 1.2: The naive display system architecture

ics accelerators. Furthermore, the main processor(s) and the system bus lack sufficient

power to process raw data in order to generate highly-detailed graphics primitives in vast

quantities.

To address these two bottlenecks, one can add more processors, replace the system bus

with a multi-port switch, and replace the I/O bus with a switch fabric. Thus one arrives at

the ideal display system architecture.

The ideal architecture Ideally, a parallel computer, with many processors, a powerful

memory subsystem, and a large number of graphics ports to connect to graphics accelera-

tors, has sufficient computation power for applications and enough capacity in the system

interconnect to move graphics primitives around. Figure 1.3 shows one possible arrange-

ment of processors, memory, and graphics accelerators in a parallel architecture. It is prac-

tically a modern cache-coherent distributed memory multi-processor [53, 54, 50]. On such

a machine, a parallel application, written to take advantage of multiple processors, gener-

ates massive quantity of graphics primitives, which are distributed by the switch fabric to

the graphics accelerators.

Commercially such an architecture have been already proven viable. SGI has built and

marketed a scalable, cache-coherent, shared-memory multi-processor, Origin 2000, that

scales easily above 256 processors. Multi-processor computers with 8 graphics pipelines,
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Figure 1.3: The ideal display system architecture

each capable of driving 2 displays, have also been built by SGI and enjoyed enjoyed limited

success in the market [59].

As a research project, Wei et al. developed a distributed frame buffer, comprised of

multiple frame buffer boards cooperating in interleaving fashion, for the Intel Paragon

Multicomputer [85, 92]. A parallel rendering package, developed for message-passing

architectures, uses the computation nodes in Paragon to rasterize 3D primitives and sends

the pixel fragments to the frame buffer boards via high-speed Intel Paragon backplane.

The frame buffer boards, though configured for interleaving a single display, can be easily

modified to drive multiple displays.
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A serious drawback of the ideal architecture its dependency on custom-made compo-

nents. Both examples mentioned above relied on special-purpose parallel computers that

were far more expensive to build and had a much longer time-to-market than commodity

computers such as Intel-based symmetric-multi-processor (SMP) servers. Each also used

custom-made graphics boards that suffered the same drawbacks as the computers. As the

absolute performance, as well as the cost-performance ratio, of commodity processors and

graphics accelerators improve according to the Moore’s Law, it is more sensible to build

an ideal architecture that integrates these commodity components using a high-bandwidth,

low-latency interconnection network. A few recent commercial systems were built this

way. But none supports multiple graphics accelerators. Due to the extremely high per-

formance demanded from the interconnect, its design and engineering is highly complex.

Besides, the market for scalable multi-processor servers is quite small; commercial vendors

cannot yet leverage economy of scale for producing these systems. But the author remains

hopeful that in time, machines built using the ideal architecture will become readily acces-

sible at affordable prices. At the meantime, we can leverage commodity interconnection

hardware to build something less ideal but still better than a bus-based naive architecture.

The clustering approach A middle ground can be found between the ideal and the naive

architectures, by replacing the tight coupling in the ideal architecture with a loose one. In-

stead of a tightly-integrated multi-processor, we have a PC cluster, connected by an off-the-

shelf system-area network. In this configuration, shown in Figure 1.4, each PC functions

as a relatively independent unit; it has its own processors, memory, graphics accelerator(s),

and perhaps disks; it runs applications on a standard operating system, for example, Win-

dows 2001. A system-area network such as Myrinet [10] and Giganet [1] provides the

communication link among the otherwise autonomous PCs.

The obvious advantage of a cluster-based architecture is the powerful graphics subsys-



CHAPTER 1. INTRODUCTION 11

fabric
switch

cpu

network
access

cpu

graphics
accelerator

...

core logic
I/O bus

Render PC

memory

to display tile

cpu

network
access

cpu

graphics
accelerator

...

core logic
I/O bus

Render PC

memory

to display tile

cpucpu

graphics
accelerator

network
access

...

core logic

to display tile

Render PC

memory
I/O bus

cpucpu

graphics
accelerator

network
access

...

core logic

to display tile

Render PC

memory
I/O bus

Figure 1.4: The cluster-based display system architecture

tem. At any time, one can simply replace the graphics accelerator in each PC with the best

on the market. Each PC has enough computation power, memory, and graphics accelera-

tion to drive one (or a couple of) display tiles(s). The entire system is so modularized that

PCs themselves can be easily upgraded.

The drawback of this architecture lies in the interconnect which is weaker than that in

the ideal architecture. An order of magnitude of difference in both communication band-

width and latency exists between the interconnection network and the local memory sub-

system of each PC. As a result, an operating system for running a single application across

the cluster still remains an illusive though interesting goal on paper. Work-arounds, due

to insufficient bandwidth and relatively high latencies, have to be devised. A cumber-
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some programming model such as message passing, instead of the usual shared-memory

paradigm, is adopted because it differentiates between local memory accesses and intra-

cluster communication. Since local communication within each PC is far more efficient

than that across the network, one has to devise clever partitioning of data and computation

on the render nodes in order to avoid bottlenecks in the network.

1.4 A Prototype Display Wall Architecture

The Scalable Display Wall Project took the clustering approach to build a prototype immer-

sive display system because clustering avoids the lengthy and costly process of engineering

the ideal system; the components, being commodities, are all readily available. Further-

more, there is sufficient resemblance between a cluster-based display system and the ideal

architecture, such that some research issues are common to both architectures. We hoped

that insights gained from studying a cluster-based system will be applicable to the ideal

architecture.

The design philosophy of our scalable display wall is to take commodity components

as the basic building blocks and devise a clever “glue” to integrate them into a seamless and

high-performance display system. In current implementation, the physical display is tiled

by an array of portable projectors; driving the projectors is a cluster of PCs with commodity

graphics accelerators; connecting the PCs together is an off-the-shelf system-area network,

Myrinet [10].

To glue all these hardware pieces together, we developed the system and application

software that computes complex scenes, distributes the graphics primitives to the PCs, and

coordinates image refresh on all display tiles. This chapter provides a detailed look at each

aspect of the Display Wall architecture and puts forth three research challenges.
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1.4.1 Tiled projectors
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Figure 1.5: The projector arrangement

Figure 1.5 shows the actual arrangement of projectors in our display wall. A 2x4 array of 8

Proxima 9200 LCD projectors are placed behind a rear-projection screen. Two projectors

are stacked vertically on a rack. A manual adjustment table, designed by us and manufac-

tured by a division of Argonne National Lab, provides the fine position control required

during manual alignment of the projectors.

The display surface is an acrylic screen made by Jenmar Visual Systems. The pitch-

black screen offers higher contrast ratio than a grey or white screen. We opted for rear

projection so that users can walk up close to, examine details on, and interact with the

display without casting shadows. Standing close to an immersive, high-resolution display

can create a personal touch that is missing in both traditional cinema environment and

on a desktop monitor. This kind of personal feel can significantly enhance the quality of

user-computer interaction.

Our of practical reasons, we used projection devices instead of flat panel displays. No

viable technology currently exists to manufacture a single-piece, large-area, high-resolution

flat panel display. In addition, existing panel displays cannot be seamlessly tiled. Present

flat-panel technologies require the drive electronics to be placed on the sides of the panels,
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leaving a gap between the viewable areas of adjacent flat panel displays.

At the present time, tiling portable presentation projectors is a viable and relatively

economical way to build high-resolution displays. The projectors that we currently use

employ transmissive LCD polysilicon as the imaging device. Newer technologies such

as digital micro-mirror devices (DMD) from Texas Instrument and reflective LCD from

several other companies promise to deliver brighter and crisper images. Brightness of these

projectors are typically measured in excess of 800 ANSI lumen.

Tiling projectors, however, is not without its problems. Perfect alignment and color

balance must be maintained to avoid seams between projectors. Manual alignment and

color adjustment might be possible with just a handful of projectors. But it would be a

daunting, if not impossible, task for a very high-resolution display that may have dozens of

projectors, for many parameters can affect the image geometry and the colors of a projec-

tor. A research challenge here is to devise clever algorithms that use computer vision and

computation to replace human labor – to perform automatic alignment and color balancing.

1.4.2 Render cluster

The Scalable Display Wall Project pioneered the clustering approach: multiple PCs, each

driving one projector with a commodity graphics accelerator 2, are interconnected by a

commodity, high-speed system-area network. Custom hardware, which in the past proved

costly and delayed the time to market, is banished from the system. The clustering ap-

proach can easily leverage rapid cost-performance improvement in PCs and PC graphics

accelerators. Scalability in both total pixel resolution and graphics performance can be

achieved by just adding more render PCs, and in some cases more network switches.

Figure 1.6 shows details of our current display wall implementation. A cluster of 8

2The projector-to-PC ratio can be configured according to performance-cost consideration. Some graphics
accelerators can drive multiple displays. A single PC can support more than one graphics accelerator.
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Figure 1.6: Details of the display wall render cluster

Render PCs and a Master PC form the nucleus of the display wall computer system. Each

render PC is a 450 MHz Pentium II uniprocessor with 1 GB of DRAM and a workstation-

class graphics accelerator. In a typical setting, an application runs on the Master PC. The

graphics primitives that it generates, for example OpenGL primitives and Windows GDI

commands, are intercepted and distributed to the Render PCs that render these primitives

into pixels for display.

The PCs are interconnected by two networks, the Myrinet and the Ethernet. The

Myrinet system-area network provides high throughput necessary for distributing the primi-

tives. Its cross-bar switch can sustain up to 16 simultaneous data transfers with an aggregate

cross-section bandwidth of 2.5 gigabytes per second. The PCs in our system currently use

Myrinet PCI32 network interfaces to access the network. These NIC cards each have 1 MB

SRAM and a 33 MHz RISC processor on board. The data link between a Myrinet NIC and

the switch is capable of 160 MB/sec simultaneously in each direction. With next genera-

tion of Myrinet network interfaces and switches, the communication throughput available

in the hardware will double.

In addition to high bandwidth, low latency in the network is also desirable. Small

messages are often used to implement barriers and synchronized clocks in the system,
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which are useful for synchronizing buffer swapping among multiple graphics accelerators.

The Ethernet serves as a convenient medium for communication tasks that do not re-

quire high bandwidth and low latency, for example, file sharing and computer management.

In order to make the best use of the performance provided by the hardware, an intelli-

gent software layer must be devised that introduces as little overhead into the communica-

tion path as possible, and at the same time provides a convenient abstraction to developers.

It is a non-trivial task to design a communication subsystem that meet both goals.

1.4.3 Runtime environments

Unlike a uni-processor with multiple graphics cards and a scalable multi-processor with

multiple graphics channels, a cluster consists of loose-coupled and relatively independent

PC units. Communication among them is usually message passing in nature. This kind of

architecture poses an interesting challenge: how to bring a range of applications onto the

display wall? Our experience shows that applications for a scalable display roughly fall

into three categories: content playback, desktop applications, and custom applications.

Content playback A fair amount of graphical contents simply require play-back soft-

ware. There are many such content types: static images, image-based animation, MPEG

movies, digital TV broadcast, Macromedia FLASH animations, and VRML animations, to

name a few. They usually have well-defined specifications. One can develop efficient play-

back software parse and render the content in parallel within the display cluster. A good

example is the parallel MPEG decoder that our project developed to decode live HDTV

streams [55]. A splitter program running on the master PC splits the live MPEG content

into sub-streams at the macro-block level, one for each display tile. The sub-streams are

sent to respective render PCs to be decoded and rendered.
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Desktop applications Many desktop applications such as CAD design and interactive

3D games do not render themselves to the play-back approach. These applications are typ-

ically interactive; the content changes every time depending on user interaction. Most of

them are highly complex. Besides, source code for these applications is typical inaccessi-

ble. Developing play-back software requires tremendous amount of work and is often not

worthwhile.

A feasible way to bring up these applications is to build middle-ware into the OS, either

as a dynamically-linked library or as a device driver, that intercepts and distributes the

graphics primitives generated by the application to the render PCs. We took this approach

to bring OpenGL-based animation programs onto our display wall.

Custom applications One can develop applications specifically for the cluster environ-

ment of the display wall system. Performance is the primary objective for custom appli-

cation: this allows maximum use of the processing power on the render nodes; only those

graphics primitives that fall within the display tile are generated and sent to the acceler-

ator via local graphics-memory bus. When running this kind of custom applications, a

cluster-based display system closely resembles the ideal architecture.

The choice of a software model depends not only on the nature of the application, but

also on the balance between the communication throughput in the network and computation

resources available on the render nodes.

1.5 Thesis Outline

Research issues in a scalable display architecture generally fall into two categories: those

that are common to all three architectures and those that are specific to a particular ar-

chitecture. In many cases, the research issues have been studied in other contexts. But
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the scalable display system, especially the one based on clustering, offers new tradeoffs

between various components in the system, and makes old research questions interesting

and relevant. Two examples of common research issues are primitive distribution and load

balancing. The graphics primitives, once generated, must be distributed to graphics accel-

erators. If sorting and culling can be done prior to distribution, less burden will be put

on the distribution network. However, sorting the primitives with processors may become

a bottleneck. Achieving proper balance between sorting and distribution is an interesting

research topic.

Since multiple graphics accelerators are used to render tiled images, a natural question

comes up regarding load balance among the accelerators. Optimal partition of the scene

data to achieve evenly balanced loads is one of the many research questions. Another is

pixel redistribution amongst the graphics accelerators, since the data partitioning often does

not follow the display tile boundaries.

Several research issues are specific for the clustering environment. A unique aspect of

a cluster system is the wide performance disparity between local memory access and intra-

cluster communication. The communication is often necessary to hold the render nodes

together. The question is when the communication becomes a bottleneck in the system,

and if it does, whether clever data partition algorithms can be developed to mitigate its

adverse effects.

This dissertation will explore the follow three specific issues in building a cluster-based

scalable displaywall system.

Seamless tiling In a multi-projector display, physical imperfections such as misalign-

ment, color imbalance, and distortions produce annoying seams on the display surface. In

some cases such as color imbalance the seams are generally cosmetic; but in the cases like

misalignment, the seams mis-represent information. One goal of my research is to develop
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computational methods to avoid seams on a multi-projector display. The results of this

research will be described in Chapter 2.

Scalable networking Since the interconnection network is a key to the performance of

a rendering cluster, it is of importance to achieve the best possible performance provided

by the networking hardware and at the same time make network programming as easy

as possible. Direct data transfers between virtual memory address spaces is a lean and

convenient communication paradigm. An implementation of VMMC is used throughout

our displaywall system. Chapter 3 describes the VMMC concept and a key research issue

in VMMC: address translation.

Runtime environments Clustering has a potential for high performance and scalability.

However, it also poses an interesting question: how to run applications with high reso-

lution on a cluster? Chapter 4 surveys techniques for running desktop applications on a

cluster displaywall system, and introduces a novel mechanism, synchronized programming

execution, that can eliminate network bottlenecks in a cluster environment.



Chapter 2

Seamless Tiling

The two key challenging problems in building a seamless, multi-projector display are (1)

achieving pixel-level image alignment across overlapped regions and (2) achieving color

uniformity across projectors. In this chapter, I will describe a novel method to automatically

align a multi-projector display and an automatic method to balance the colors among the

projectors.

2.1 Introduction

Tiling multiple projectors together is a viable way to build a bright, high-resolution, seam-

less display. But, as such a display system scales beyond three or four projectors, aligning

the projectors becomes a challenging issue. A multi-projector display might in principle

be perfectly aligned by manual means just once; but in practice physical realities (vibra-

tion, lamp-changing, and so on) mean that re-alignment is frequently needed. Aligning the

projectors by hand is a time-consuming task that requires both skill and experience. It also

requires the use of either sophisticated mechanical devices or electronic beam adjustment

found only on expensive CRT projectors.

20
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Alternatively one can employ computer vision and image processing techniques to dig-

itally align the projectors. By warping the images, the computer can correct the projected

imagery to account for the physical realities of misalignment [33, 86, 87]. In order to apply

the correct amount of digital compensation, the computer has to first measure accurately

the actual misalignment.

The research challenge here is to devise efficient algorithms without using expensive

cameras and instruments. One could in theory use a camera with extremely high resolu-

tion to measure the misalignment. Unfortunately, such a device is hard to get and can cost

even more than the display itself. Commodity video cameras are inexpensive and available

everywhere, but they suffer from low resolution. Although calibrating the cameras over-

comes this problem, the calibration process itself involves human labor and could become

time-consuming.

We here describe a novel algorithm that uses an inexpensive and uncalibrated camera

to align the projectors. Our method avoids camera calibration by taking only relative mea-

surements — for instance, matching a few points and lines between a pair of projectors.

Since the camera only has to make “binary” decisions regarding these measurements, it is

free to zoom and pan arbitrarily close to the target spot to obtain highly accurate observa-

tions. Our alignment algorithm employs the simulated annealing technique to “stitch” the

local observations together into a self-consistent global picture, and find a set of projection

mappings that are consistent with the observations.

2.2 Background and Previous Work

Multi-projector displays have been around for more than two decades [59]. Previous sys-

tems employed expensive CRT projectors which have sophisticated mechanisms for ad-

justing image distortion and color balance. Aligning the projectors was typically done



CHAPTER 2. SEAMLESS TILING 22

manually by trained technicians; the process often took hours. In recent years, portable

presentation projectors based on LCD or Digital Micro-mirror Devices (DMD) have be-

come increasingly cheaper, brighter, and more compact. There is new interest in building

high-resolution displays out of these commodity projectors for office and research environ-

ments and for entertainment [74, 55, 79, 93, 94]. This has spurred several research projects

that study seamless tiling of inexpensive LCD and DMD projectors [86, 33, 58, 47].

Existing alignment algorithms usually consist of two stages, camera calibration and

geometric registration. In the first stage, one or more cameras are calibrated according to

a fixed global coordinate system (either 2-dimensional or 3-dimensional). In the second

stage, the calibrated cameras serve as measurement instruments to map pixels from each

projector to the points in the global coordinate system.

Surati and Knight developed an algorithm that uses a camera to map the pixels from

each projector to the points in a pre-established global screen coordinate system [86]. Dur-

ing the calibration stage, a camera is calibrated against a fine grid affixed to the display

surface. The grid is physically drawn by a high-precision plotter. A mapping is established

between pixels in the camera field and the physical points on the display surface. In the

registration stage, each projector projects a regular grid onto the display surface. A com-

puter vision algorithm accurately locates each projected grid point in the camera’s field of

view. Using the camera-to-display-surface mapping established previously, the projected

grid point (or a pixel in the projector) is mapped to a physical point on the display surface

with high precision. This method works well for a small-scale display wall. It can deal

with arbitrary distortions of the projectors. However, using an absolute measurement grid

to calibrate the camera prevents this method from scaling for a large display wall; it is

problematic whether one can generate a physical or project a virtual measurement grid that

is large enough but still has fine precision.

Raskar et al. attempted to solve a general case in which the display surface can be
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arbitrarily complex, for example, the corner of a wall, or a curved screen [33]. This requires

registration of the 3D surface geometry of the screen surface as well as registration of the

projected pixels on the display surface. Their algorithm uses known 3D objects such as

painted boxes to calibrate the extrinsic and intrinsic parameters of a few fixed cameras.

Two calibrated cameras that overlap in their fields of view can observe the same mesh

pattern displayed by a projector. The observations from both cameras are correlated using

the stereo vision technique; from this correlation the exact location of a projected pixel on

the display surface is derived. The location information is in the 3D space and therefore

also reveals the surface contour of the screen. Again requiring camera calibration is the

drawback of this approach.

Our work differs from previous work by the use of an uncalibrated camera to observe

misalignment among the projectors. The use of camera calibration implies that the cameras

themselves must be fixed and cannot pan and zoom during measurement, for otherwise

camera parameters will have to calibrated continuously. It also requires setting up known

objects such as as fine-plotted grid and regular 3D objects. Avoiding camera calibration

can greatly minimize the amount of human involvement and equipment required in multi-

projector alignment.

2.3 Projection function

Before getting into the details of our alignment algorithm, let us first review the mathemat-

ical representation for a multi-projector system. Projection can be thought of as a mapping

between pixels in projector space (x, y) and the illuminated dots (u, v) on the global dis-

play space. This mapping, or the projection function, is normally accomplished with a lens

system.1 Figure 2.1 shows a conceptual diagram of a typical lens system. The projec-

1The algorithm presented here could in principle be applied to curved display surfaces as well, in which
case, a 2D parametric coordinate system can be used o the display surface.
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tion function can be decomposed into two parts, the projective transformation P and the

non-linear distortion D:2

(u, v) = (Du(Pu(x, y), Pv(x, y)), Dv(Pu(x, y), Pv(x, y)))

(x, y)

(u, v)

(0, 0)

lens

projector space

display space

Figure 2.1: Conceptual diagram of a projection system

The projective transformation can be expressed by a 3x3 projection transformation in

homogeneous coordinates using 8 free parameters (mij), i = 1..3, j = 1..3

Pu(x, y) =
m11 · x+m12 · y +m13

m31 · x +m32 · y + 1

Pv(x, y) =
m21 · x+m22 · y +m23

m31 · x +m32 · y + 1
(2.1)

The proof can be found at the end of this section.

The radial distortion with respect to an optical center (cx, cy) and a distortion parameter

2This is only an approximation to an actual projection device, as it ignores several distortion effects such
as color dispersion.
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ρ is given as

Du(u, v) = u+ ρ · (u− cu) · d2

Dv(u, v) = v + ρ · (v − cv) · d2

d =
√

(u− cu)2 + (v − cv)2

(u, v) = (Pu(x, y), Pv(x, y))

(cu, cv) = (Pu(cx, cy), Pv(cx, cy)) (2.2)

The implementation described in the paper only considers the projective component.

However, the algorithm itself can in principle deal with non-linear distortions as well.

2.3.1 Proof of the 3x3 projective representation

We establish a global 3-dimensional coordinate system with its X-Y plane coincide with

the screen surface (SPACEs), so that a point on the screen is (xs, ys, 0). A pixel (xp, yp)

in SPACEp is converted to the global coordinate (x′, y′, z′) using following formula for

coordinate system transformation:

p




x′

y′

z′




= M ′ ·




xp

yp

0




+




cx

cy

cz




(2.3)

where,M ′ = Rx ·Ry ·Rz · Sx · Sy (2.4)

Rx, Ry, and Rz are standard rotation matrices. Sx and Sy are standard scaling matrices that

convert the pixel units on the image plane into proper units in the global coordinate system

SPACEs. We have separate scaling factors for X and Y axes because the pixels on the
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image plane need not be perfect squares. The vector [cx, cy, cz]T is the translation from the

origin of the global coordinate system (or, original on the screen) to the origin on the image

plane which is pixel (0, 0).

The definition of an ideal lens system defines an optical center which acts just like

the pinhole in a pinhole camera. Therefore, the three points, (x′, y′, z′), its image on the

screen (xs, ys, 0), and the optical center (xo, yo, zo) are collinear and satisfy the following

parametric line equation

xs = xo + (x′ − xo) · λ

ys = yo + (y′ − yo) · λ

zs = 0 = zo + (z′ − zo) · λ

Substituting λ in the first two equations we get

xs =
xo · z′ − x · zo

z′ − zo
ys =

yo · z′ − y · zo
z′ − zo

(2.5)

According Equation 2.3, x’, y’, and z’ are each represented by an expression linear in xp

and yp. Substituting x’, y’, and z’ result in something like

xs =
m11 · xp +m12 · yp +m13

Z

ys =
m21 · xp +m22 · yp +m23

Z

Z = m31 · xp +m32 · yp +m33 (2.6)

One can trivially show thatm33 is non-zero, because otherwise a solution does not exist for

pixel (0, 0). Therefore, we can set m33 to 1 without affecting the values of xs and ys. The
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system of equations 2.6 exactly expresses a perspective transformation.

Note, that Equation 2.3 are general. They describe an image plane in the projector that

can tilt at an arbitrary angle to the optical axis of the lens system. Perfect alignment of

the image plane such as LCD to the optical axis is not possible due both to manufacturing

difficulties and to the zoom capabilities of the lens system.The aforementioned perspective

transformation captures even this non-perfection.

2.4 The alignment algorithm

Our automatic alignment algorithm consists of two stages. In the misalignment measure-

ment stage, the camera observes geometric relationships – point matches and line matches

– between adjacent projectors. In the alignment computation stage, we set up a multi-

dimensional global optimization problem whose constraints are those observations. The

optimization process produces a set of alignment correction functions, one for each pro-

jector, that maintain G0 and C1 continuities across the projectors. G0 geometric continuity

means point-wise continuity. C1 implies that two curves from adjacent screens match in

their tangent vectors [34]. Figure 2.2 shows a schematic of our alignment system. Our algo-

rithm assumes that projectors are already roughly aligned. This is a reasonable assumption,

because coarse alignment can be easily accomplished with an inexpensive projector rack

and some manual adjustment. Essentially we assume that the projectors are not so badly

misaligned that computational alignment is impossible.

2.4.1 Alignment measurement

The alignment algorithm makes use of geometric relationships between adjacent projectors

to figure out their projection functions. The hope is that by gathering local information

regarding how each projector misaligns with respect to its neighbors, we can deduce the
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actual projection functions, one for each projector, that are globally consistent with each

other.

Our algorithm relies on two types of inter-projector relationships: point matches and

line matches. A point match simply states that a pixel (x, y) from one projector locates at

the same spot on the display surface as another pixel (x′, y′) from an adjacent projector.3

A line match means that a projected line from one projector is collinear with another line

from the neighboring projector.

3Note here that we use the fact that adjacent projectors overlap by a small amount.
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The rationale for using point matches is simple: if there are a lot of point matches

between any pair of adjacent projectors, the result of alignment computation will yield a

set of projection functions that maintain G0 continuity across projectors. However, the

point matches themselves are insufficient to constrain the system. This is particularly so

when the projectors overlap only a small portion of their screens, as in a typical display wall

system. The line matches provide further shape constraints. The point and line matches

together guarantee C1 continuity across the projectors. Given a sufficient number of point

and line matches, there is enough information to figure out the relative position and the

orientation of the projectors.

The line and point matches can be obtained automatically with a camera attached to a

computer. Figure 2.3 contains a brief sketch of the measurement algorithm that obtains a

point match between point P from projector A and a point Q from projector B. It is essen-

tially a negative feedback loop. The feedback parameter ρ in the algorithm is determined

before hand either manually, or automatically by measuring the distance between two pix-

els in the camera. The algorithm to obtain line matches works in a similar fashion. Each

line match consists of a point match between the inner ends of the two line segments and a

match between the slopes of the two line segments. More specifically, the first line segment

is displayed from pixel P1A to pixel P2A by projector A; the second line segment from P1B

to P2B by projector B. The two line segments are said to be matched when (a) the have the

same slope in the camera’s field of view, and (b) (P2A, P1B) is a point match.

2.4.2 Alignment computation

Given the point and line matches that we gather from the measurement process, our next

task is to figure out a set of projection functions that fit the observed matches. Symbolically

speaking, we want to find a set of projection functions P i = (P i
u, P

i
v), where i represents

the ith projector, such that all observed point matches are line matches are satisfied with
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1. pan the camera to roughly center its FOV on pixel P
2. display a cross centered at P on projector A
3. measure P’s location L in the camera
4. take a guess of a pixel Q in projector B
5. loop
6. display a cross centered at Q on projector B
7. measure Q’s location L’ in the camera
8. if ‖L, L′‖ > ε
9. Q = Q+ ρ · (L− L′)
10. else
11. return (P, Q)

Figure 2.3: pseudo-code for obtaining a point match

respect to this set of functions.

More specifically, for a point match between pixel (xi, yi) from the ith projector and

pixel (xj, yj) from the jth projector, let (ui, vi) represent the projected image of pixel

(xi, yi), or (ui, vi) = (P i
u(xi, yi), P

i
v(xi, yi)), we wish to maintain the following equality

ui = uj

vj = vj

In reality, due to measurement errors and inaccuracy of our model, equality is difficult to

achieve for all point matches. Therefore, instead of equalities, we can measure the goodness

of our projection functions by errors. For a point match, the error can be expressed in terms

of the Euclidean distance between the two imagined pixels on the display surface

Ep(pi, pj) = (ui − uj)2 + (vi − vj)2 (2.7)

Similarly, each line match between two line segments li = p11, p12 and li = p21, p22 pro-
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duces a point-match error and an error based on the angle between two line segments:

El(l1, l2) = max(Ep(p12, p21), ( 6 p11p12, p21p22)2)

Note that the error term ( 6 p11p12, p21p22)2) is also computed in the global display space.

With above formulation, we have turned the problem of figuring out a set of projection

functions into a global optimization problem – finding a set of projection functions that

minimize the errors computed from the point and line matches. The goal is to minimize the

maximum of the errors over all line and point matches. Note that it is straightforward to

obtain an initial guess for each projector’s position shifts, horizontal and vertical, based on

the point match data. Since the projectors are already roughly aligned, this guess produces

a good starting point that is close to the globally optimal solution for our problem.

Global optimization over a large number of continuous variables remains a tough prob-

lem. However, several effective methods do exist. We chose Simulated Annealing [60,

48, 70] as the optimization method. It has been used successfully in many scientific com-

putations with hundreds and even thousands of continuous variables. This technique is a

generalization of a Monte Carlo method for examining the equations of state and frozen

states of n-body systems [60]. It mimics the manner in which metals recrystallize in the

process of annealing. Among several publicly available implementations, we chose the

one provided by Numerical Recipes in C [70]. The state evaluation function required by

the annealing method is the error function that we just described.

The simulated-annealing method requires representing each projection functions using

a vector of continuous variables. During our initial trials, we found it was difficult to con-

strain relative scales among the matrix parameters in order to produce a realistic projection

geometry. In particular, shear deformation, which only occurs when the optical axis is far

off from the center of the imaging (LCD) plane, was often produced by simulated anneal-
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ing. Therefore, instead of trying to compute the 8 free parameters in the projection matrix

(Equation 2.1), our optimization routines computes the extrinsic and intrinsic parameters

of each projector, because their relative scales can be easily set a priori. A projector can

be modeled with 9 parameters, the rotations, (rx, ry, rz), of the projector around its optical

center, translations of the optical center, (tx, ty, tz), in the global coordinate system, the

focal length f , and the center of the projector space (cx, cy). Given these parameters, one

can write down a projective matrix as follows:

m′11 = tx · r31 − tz · r11 , m′12 = tx · r32 − tz · r12

m′13 = tx · r33 − tz · r13) · f − (tx · r31 − tz · r11) · cx

− (tx · r32 − tz · r12) · cy

m′21 = (ty · r31 − tz · r21 , m′22 = ty · r32 − tz · r22

m′23 = (ty · r33 − tz · r23) · f − (ty · r31 − tz · r21) · cx

− (ty · r32 − tz · r22) · cy

m′31 = r31 , m′32 = r32

m′33 = r33 · f − r31 · cx − r32 · cy

mij = m′ij/m
′
33 (2.8)

Where, rij is the element of a 3x3 rotational matrix R that represents rotations rx, ry, and

rz.

GivenN projectors in the display wall system, alignment computation amounts to min-

imizing the error function over 9N continuous variables (or 10N if radial distortion is also

included). The total degree of freedom in this problem is quite reasonable for the simulated

annealing method, as our experiments will shortly show.
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2.4.3 Computational re-alignment

Having the mapping function for a projector, we can apply it to correct the imagery dis-

played by that projector, simply by re-sampling the image. Given a projector’s mapping

function (Pu, Pv), and an image source Is(u, v) = (r, g, b), we obtain the intensity value Ip

for a particular pixel (x, y) using the formula

Ip(x, y) = Is(Pu(x, y), Pv(x, y)) (2.9)

Many studies have been done on efficient re-sampling of an image. One can use the MMX

instructions on a Pentium processor to sample multiple pixels at once. Another interesting

approach is to leverage the capability of graphics accelerators. Raskar et al described a

method using the texture-mapping hardware found on most graphics accelerators [73, 72].

Recently ComView Visual Systems has introduced an ASIC solution that provides both

geometric correction and color balancing for multi-projector display systems [87].

2.4.4 Discussion

A salient feature of the alignment algorithm just described is that it avoids camera cali-

bration. No human involvement is required to take misalignment measurement other than

placing the camera(s) in front of the display wall. This feature is made possible by taking

only relative measurements, i.e., point and line matches. Such observations require only

local and “binary” decisions that any inexpensive camera will do.

Measuring only the point and line matches also makes it easy to overcome the resolution

limitation of an off-the-shelf camera. One can simply pan and zoom the camera arbitrarily

close to the display surface, or place multiple fifty-dollar cameras close to the display

surface. Highly accurate measurements, finer than a pixel, are easily obtained this way.

Unlike methods based on camera calibration, this new method is insensitive to change of
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camera parameters during the zoom and pan motions, and can easily employ many cameras

at no additional complexity.

Our alignment algorithm is much less sensitive to camera distortions than previous

methods. For example, it can tolerate any kind of camera distortion while taking point

matches, provided that the camera remains steady during measurement. The only additional

requirement for obtaining a line match is that camera’s field of view (FOV) is free from non-

linear distortions – as long as a straight line on the display surface shows up straight in the

camera’s FOV.4 A naive way to meet this requirement is to use the central area of the FOV.

A sophisticated solution is to center the FOV on the adjoining ends of the two matching

line segments, such that the line segments pass the optical center of the camera’s FOV. This

makes the entire camera’s FOV usable even in the presence of radial distortion, because a

straight line passing through the center of a camera FOV is not bent by radial distortion.

The drawback of our algorithm is that it relies on a global optimization technique that

gives no convergence guarantee. Although the non-convergence situation has not occurred

in our experiments, we remain interested in finding a deterministic and more efficient

method to calculate the projection functions.

2.5 Implementation and Results

In this section we evaluate the effectiveness of our alignment algorithm with empirical

results as well as a simulation study.

Experimental platform

We conducted experiments on our 2x4 prototype display wall. It consists of 8 Proxima

9200 LCD portable projectors in a 2x4 arrangement [55]. Each projector is capable of

4This is less stringent than requiring the camera FOV be a linear field.
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displaying a true resolution of 1024x768. Adjacent projectors overlap between 40 and 70

pixels. The effective resolution on the display wall comes out to about 3800 pixels wide

and 1500 pixels high.

The projectors are mounted on mechanical positioning tables that have 6 degrees of

freedom. These tables are normally used for time-consuming manual alignment of the

projectors. But in our experiments, they provide us with an easy means to “mis-align” the

projectors with arbitrary rotations and translations.

We place a Canon VC-3 video conferencing camera at an 8-feet distance away in front

of the display wall. This camera has motorized pan, tilt, zoom and focus, all controllable

through the serial port. We wrote our software in Python and C that controls the camera to

gather misalignment observations. Video digitization is done by an Integral Video Grabber

card.

2.5.1 Empirical results

Misalignment measurement: On our 8-projector display wall, it takes 33 minutes to col-

lect the point and line matches over a total of 10 overlapped regions. For each pair of

adjacent projectors, 10 point matches and 6 line matches are observed. A large amount of

time is spent in panning and tilting the camera to zoom onto a spot. Using multiple cam-

eras, each responsible for a sub-area of the display wall, can reduce the measurement time

proportionally. Besides, there is no need to correlate observations from different cameras.

The quality of alignment computation depends critically on the accuracy of the point

and line matches. In our experimental setup, the camera can easily distinguish two adja-

cent pixels from a projector. We use nearest-neighbor fit to match two pixels and two lines.

This implies that the worse measurement error for a point match is a half pixel. A more so-

phisticated algorithm such as weighted average could be used to increase the measurement

accuracy.
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annealing steps
configuration 1,000 2,000 5,000 10,000 20,000

error time error time error time error time error time
(pixels) (min) (pixels) (min) (pixels) (min) (pixels) (min) (pixels) (min)

1x4 0.96 1.2 0.76 2.4 0.77 6.1 0.89 11.9 1.19 24.8
2x2 1.25 1.5 1.38 3.0 1.32 7.8 1.14 15.4 1.10 30.9
2x3 1.27 1.7 1.27 3.5 1.27 8.7 1.42 17.3 1.12 34.6
2x4 1.49 1.8 1.44 3.5 1.32 8.8 1.50 18.1 1.35 35.7

Table 2.1: Alignment accuracy and time for various configurations

Figure 2.4: Aligning a grid: before and after pictures

Alignment computation: We run the alignment computation algorithm on an 833 MHz

Pentium III PC with Rambus memory. Table 2.1 shows the time and quality in the align-

ment computation, as the number of annealing steps increases, for various projector con-

figurations on our display wall. The quality is expressed in terms of the maximum error

between two points in a point match (in pixels). The pixel-level error can be largely at-

tributed to the error in the measurement. Figure 2.4 shows the zoomed-in view of actual

alignment result of a grid pattern on our 2x4 multi-projector configuration. The readers are

referred to our paper on automatic alignment [18] for more detailed results.

The quality of simulated annealing depends on the number of steps in the annealing

process. The more steps taken, the more gradual the annealing process is and usually the

better the alignment result. Figure 2.5 plots the alignment accuracy as a function of total

annealing time for a few projector configurations on our display wall. The improvement

of accuracy is very gradual, as the number of annealing steps increases; in a few cases, the
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Figure 2.5: Alignment computation accuracy vs. total annealing time

accuracy actually worsens. The very slow improvement could very well be the nature of

the simulated annealing technique. The measurement errors and non-linear distortions in

the projectors also contribute to the final errors in the alignment computation. Section 2.5.2

confirms this with error-free measurements from simulated display wall configurations.

2.5.2 Simulation results

In order to evaluate the scalability of our alignment algorithm, we wrote a simple simula-

tor that generates misalignment observations for an arbitrarily configured multi-projector

display. The simulation assumes that after rough adjustment of the projectors, imperfect

position and orientation of a projector (total 6 degrees of freedom) contribute 10 pixels

of misalignment, independently. The variation in zoom distance and focal length is 5 %.

In other words, our simulation assumes that the projectors are roughly aligned – a quite

realistic assumption based on our experience. It is these 10-pixel variations that our au-

tomatic alignment algorithm tries to eliminate. Table 2.2 shows the quality of alignment

computation for various simulated configurations.

The simulation results confirm that our algorithm can deal with a variety of projector
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annealing steps
configuration 1,000 2,000 5,000 10,000 20,000 50,000

error time error time error time error time error time error time
(pixels) (min) (pixels) (min) (pixels) (min) (pixels) (min) (pixels) (min) (pixels) (min)

1x4 0.47 1.2 0.63 2.3 0.88 5.8 1.23 11.4 0.38 23.3 0.78 59.6
1x8 0.38 1.2 0.43 2.5 0.53 6.2 0.57 12.6 0.74 25.2 0.62 63.3
2x2 0.59 1.5 0.74 2.9 1.07 7.4 0.73 15.2 1.11 32.1 0.95 78.2
2x4 0.55 1.7 0.42 3.4 0.60 8.5 0.52 17.2 0.35 34.5 0.61 86.7
3x3 1.53 1.8 0.52 3.6 0.50 8.9 1.29 17.9 0.43 36.1 0.66 91.2
3x6 3.98 1.8 2.32 3.7 1.35 9.0 1.52 18.5 0.96 37.3 0.99 94.9
4x6 11.95 1.6 11.83 3.6 6.85 9.3 2.91 18.6 1.00 38.0 0.83 95.5

Table 2.2: Alignment computation results on simulation data

configurations and misalignment situations, for up to 24 projectors, with satisfactory re-

sults. Unlike in the experiments, the measurements in the simulation study are precise. The

effect of error-free measurements is manifested as generally higher alignment accuracy for

the same projector configuration than in the actual experiments.

The alignment computation time that is required to achieve certain quality, i.e., sub-

pixel alignment, generally increases with the number of projectors in the system. Half an

hour is sufficient for getting a sub-pixel alignment result on configurations varying from

1x4 to 4x6. For a very large system with 50 or 100+ projectors, the annealing will

certainly take hours to achieve alignment at the single pixel level. This is the drawback

of our algorithm. A possible solution is to parallelize the computation using the PCs that

drive the projectors and the fast network that connects these PCs together. The computa-

tional resource in our system scales with the number of projectors. But the challenge is to

parallelize the annealing algorithm. We are currently investigating this approach.

2.6 Color Balance

This section addresses the problem of balancing the color temperatures of the projectors.

The color characteristics of a projector is influenced by many factors; the most significant

of them is the color temperature of the lamp. As the lamp ages, its energy distribution over
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the spectrum slowly changes, and it is very difficult to bring the lamp temperatures among

many projectors into agreement. Thus, when we display a single image tiled across many

projectors, the colors of different regions of the image don’t match.

The color balance problem can be broken down into two sub-problems: color unifor-

mity and color conformity. Color uniformity means that all projectors have nearly the same

color characteristics. Color conformity means that the projector’s color spectrum conforms

to a standard color spectrum such as specified by the international standards CIE−XY Z.

We tackle the first sub-problem, color uniformity, because lack of color uniformity among

the projectors has the most significant visual impact on the quality of the image.

To achieve color uniformity, we perform digital color correction on the image source,

for example, lowering the red component of a particular pixel, before it is sent to the pro-

jectors for display. In the most general case, this means mapping every (r, g, b) triple in an

image to another triple (r′, g′, b′), for each projector. Given 8 bits for each color channel,

the mapping requires a total of 224 entries. However, we can decouple the problem into the

separate color channels, so we treat each channel as a one-dimensional (luminance) match-

ing problem. This lookup can be done efficiently if the projector hardware or graphics card

supports a separate lookup table (or gamma correction table) for each color channel.

Like the automatic alignment algorithm just described, our color balancing algorithm

consists of two steps: luminance measurement and luminance matching.

2.6.1 Luminance measurement

In the first step, we measure the response curve for each color, on each projector. The

curve maps a color index value, x to a luminance reading L. The color index x is in the

range [0..2n], where n is the number of bits for each color channel, typically 8 for portable

projectors and commodity graphics accelerators.

Precise measurement of a projector’s color response curves can be obtained with an
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Figure 2.6: Measured color responses for 8 projectors (red channel)

expensive color spectrometer [58]. A challenge that we set upon ourselves is to see whether

a video camera can do the job with reasonable accuracy but faster. For this experiment, we

used a video-conferencing camera, Canon VC-C3, and fixed its shutter speed and exposure

time so that the same luminance on different projectors induces the same reading in the

camera.

Figure 2.6 shows the actual red channel responses from 8 projectors as seen by the

Canon VC-C3 camera. Responses for the other two channels, green and blue, are similar.

Two phenomena in this graph are worth noting. First, the curves are jaggy instead of being

smooth. This is due partly to the background fluctuation in the projectors, and partly to
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deviations projector 1 projector 2 projector 3 projector 4 projector 5 projector 6 projector 7 projector 8

red 1.0 1.5 1.9 1.3 1.0 1.2 1.8 3.1
green 3.3 8.3 8.0 5.2 1.5 9.6 11.8 4.5
blue 4.3 7.2 13.1 7.5 3.3 7.6 7.8 4.8

Table 2.3: Accuracy of color-response interpolation: standard deviations

the measurement noise in the camera itself, even though special caution has been taken to

smooth out the fluctuation with repeated measurements. Second, due to high background

light emission in the projectors and stray ambient light in the room, the camera cannot

obtain precise measurement for low color indices.

We apply interpolation to smooth out sampling noises and also to extend the measured

curves to entire color index range. The exact method for interpolation depends on the phys-

ical properties of the projection devices. However, since most curves obtained in practice

are fairly close to being a straight line, we apply linear interpolation on measured data.

Table 2.3 gives the standard deviation on color response interpolation.

2.6.2 Luminance matching

Given the measured luminance curves for a single color channel on all projectors, we can

find a reference curve, Lc, for each color channel c, that is within the luminance range

on all projectors, if possible, so that for a given color index, x, there is a corresponding,

adjusted value, xi, for the i-th projector, such that Lci(xi) = Lc(x). Note that at the lowest

luminance end, it is possible to adjust all projectors to match the brightest projector, and at

the highest end, adjust all projectors to match the dimmest projector.

There are two conflicting goals here. On the one hand, the reference curve should be

calculated so that the adjusted values can be found for all projectors throughout color index

range. On the other hand, if we simply take the intersection of projectors’ response curves,

the reference curve would have smaller dynamic range, and as a result, the corrected images
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would appear washed out.

In our current approach, color uniformity takes precedence over wide dynamic range.

The algorithm that we use to find the reference curve is based on the criterion that color

index adjustment for each projector should be kept at minimum. In other words, we wish

to minimize the following expression:

∑

p ε all projectors

255∑

i=0
(x′p − i)2

Since the problem space is quite small, we used an exhaustive search to find the reference

curve.
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Figure 2.7: An example correction curve for one projector

After deriving a reference luminance curve, we establish a correction function for each

color channel on each projector. The correction function is essentially a lookup table T
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with 256 entries:

Tr(x) = L−1
r (LLr(x))

Tg(x) = L−1
g (LLg(x))

Tb(x) = L−1
b (LLb(x))

(2.10)

For a given (r, g, b) triple, we will get the same color on all projectors if they each display

instead the translated triple (Tr(r), Tr(g), Tr(b)).

Figure 2.7 shows the three adjustment curves, one for each color channel, for a projec-

tor. Note the flattened head and trail, as a result of shortened dynamic range. The image

plate Figure 2.8 shows the final result of color correction.

Figure 2.8: Color correction of a map image on four adjacent projectors

2.6.3 Discussion

The result of color balancing is somewhat encouraging. We were able to obtain reason-

able luminance measurements for each color channels. Our algorithm to compute digital

color compensation seems to work for some images. But our experiment also reveals two

problems.
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First, we had trouble obtaining smooth color response curves for the entire color index

range. We suspect that the major causes for this problem are (1) inherent fluctuations in the

projectors and (2) background emission noises in the LCD. We hope both can be solved

with better, new projectors.

Second, taking the intersection of color responses produces a reference response curve

that has much smaller dynamic ranges in some cases. This problem seems unavoidable,

unless we can adjust each projector before hand, to bring their color response range to the

same level. This is possible with newer projectors which have digital “knobs” for just such

adjustment.

2.7 Conclusions

I have just described an automatic algorithm to align a multi-projector display and an algo-

rithm to color balance the projectors.

The alignment algorithm uses an uncalibrated camera to obtain the inter-projector mis-

alignment information. It then employs a global minimization technique, simulated anneal-

ing, to figure out good correction functions to counter the effect of physical misalignment.

I implemented and experimented our automatic alignment algorithm for an 8-projector dis-

play wall. The experimental results show that our algorithm works well in the real setting.

We also evaluated our algorithm using data from simulated multi-projector display systems.

The simulation results show that our method works for a system with up to 24 projectors.

But for systems with more projectors, the simulated annealing process takes a very long

time to converge.

The alignment algorithm takes only relative measurements that require no camera cali-

bration. It solves the inherent tension between the relatively low resolution of a camera and

the very high resolution of a scalable display wall, by allowing the camera to freely zoom
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in on a measurement target. The result is a highly accurate computational alignment among

projectors. In addition, since no camera calibration is required, this algorithm can be fully

automated. Although the algorithm currently ignores the radial distortion of a projector, the

global minimization technique can be adapted to solve for the radial distortion parameters.

There is some room left to improve the speed of alignment data collection and align-

ment computation, as we have not yet tried to optimize these processes. Two possible ways

to improve our algorithm are (1) using multiple uncalibrated cameras to speed up the data

collection process, and (2) parallelizing the annealing computation over the PC cluster and

the ultra-fast network that together drive the display wall.

The color-balancing algorithm uses a video camera to automatically measure color im-

balances among the projectors and calculate digital color corrections. It works for some

images, but suffers from reduced dynamic ranges. Further work is needed to test color

measurement accuracy on newer projectors.



Chapter 3

Cluster Communication

3.1 Introduction

Efficient communication is at the heart of a cluster-based display system. High throughput

is needed for efficient distribution of graphics primitives throughout the cluster. It is often

the case that the underlying hardware offers excellent performance, yet layers of software

add much overhead and cause excessive loss in performance. Most software overhead can

be attributed to multiple data copying, which cuts down the throughput, and OS invocations,

which increase end-to-end latencies.

To address this problem, an intelligent software layer must be developed that intro-

duces minimum overhead into the communication path, and at the same time provides a

convenient abstraction to the application layer. Virtual Memory Mapped Communication,

or VMMC for short, is a communication model designed to meet both goals. Proposed and

first implemented by Blumrich el al [9, 7], VMMC provides protected, direct data trans-

fer between the virtual address spaces of two applications. Two kinds of virtual memory

buffers are used for data transfer: the receive buffer and the send buffer. The receive buffer

is made visible to remote applications through an export system call. A remote application

46
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Figure 3.1: The VMMC Communication Model

gains access rights to an exported receive buffer by importing it. The basic VMMC model

supports remote store, which allows an application to send data from a local buffer directly

into another application’s receive buffer via the network (Figure 3.1).

A user process issues VMMC requests directly to the network interface, bypassing the

operating system, whose invocations often take longer than sending the actual message. In

each request are specified local and remote virtual addresses, as well as the number of bytes

to transfer. The communication subsystem takes care of moving data directly between the

two virtual address spaces; by doing so, it avoids redundant data copying.

In order for VMMC to work, the network interface must be able to safely and cor-

rectly translate the virtual memory addresses, specified in a user request, to corresponding

physical memory addresses. Two OS aspects make this task highly non-trivial. First, the

virtual-to-physical mappings are kept internally by the operating system and are inaccessi-

ble to both the user applications and to the network interface. Second, the communication

subsystem must guarantee that the application buffer remain resident in physical memory

until the data transfer is complete.

Several schemes for communication-related address translation do exist. None of them,
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however, provides an efficient solution for VMMC-like data transfer between virtual ad-

dress spaces. Some require OS invocations to initiate communication in kernel mode. Oth-

ers restrict where in the application’s virtual address space data communication takes place,

often making it difficult to achieve zero copy.

This chapter describes a novel address-translation mechanism, called User-managed

TLB (UTLB), for network interfaces. UTLB eliminates system calls and device interrupts

in the common case; the OS is invoked to pin a user buffer only when it is first used

in communication. Since UTLB relies neither on OS modifications nor on esoteric OS

features, it is portable across a wide variety of OS platforms and network interfaces.

3.2 Background and Previous Work

There is a large body of literature on communication subsystems. Most related work is on

how and where address translation is performed in a communication subsystem. The four

key issues are as follows. First, how to initiate data transfer requests from an application.

Second, how to maintain consistency between the translations on the host and those on the

network interface. Third, how to replace translation entries on the network interface. And

fourth, how to deal with protection in a multiprogramming environment.

Early implementations of communication subsystems typically used dedicated, pinned,

system-wide send and receive buffers [63, 66]. Each buffer is laid out in contiguous phys-

ical memory so that the network interface needs to know the starting physical address and

the number of bytes for a data transfer. When sending a message, the application process

traps into the OS to initiate the send. The OS copies the application data into the system

send buffer. The network interface then transmits the message from the system buffer.

Upon message arrival, the network interface DMAs the data into the system buffer. From

there, the OS copies the data into an application process’ buffer. Address translation is car-
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ried out in two places: one, in the kernel when copying the data to and from the application

buffer, and two, on the network interface when accessing the kernel buffer.

A method to lift the constraint of using a large contiguous piece of physical memory

for a system buffer is to use a table or a chain of descriptors. Each descriptor contains

the address translation for a small contiguous piece of the kernel buffer. The descriptor

table or list is stored in a linked list on the network interface. This approach is also called

a scatter/gather table. It allows the OS to initiate network data transfers at any place in

physical memory. Furthermore, to avoid copying data to and from an application buffer,

the OS can pin the buffer and store its address translations in the descriptor table or list.

System calls are required to build the descriptors inside the OS. Autonet [81], for example,

uses a chained list of descriptors and VAXClusters [49] uses a descriptor table.

Page re-mapping is a method to avoid copying [52, 22, 28, 46, 14]. When transfers are

properly aligned and the “right” length (i.e. a multiple of the physical page size), the OS

swaps the virtual-to-physical mappings between the pages of the kernel buffer with those

of the application buffer. This technique can achieve zero copy with buffer restrictions.

Furthermore, page re-mapping incurs significant overhead due to OS involvement, interrupt

processing, and context switching.

Some systems use a communication processor that runs as a part of the operating

system to either access or cache the OS page table in order to translate the application

buffer’s virtual addresses and initiate DMA transactions on the network interface. The In-

tel Paragon [68] dedicates an SMP microprocessor on a cache-coherent memory bus for

this purpose. The Intel Paragon communication processor also has the ability to control

page pinning and swapping, which eliminates the need for system calls and interrupts at

the expense of taking a microprocessor away from doing useful computation.

Another approach is to use a protocol processor to deal with address translation and data

transfer. Meiko CS-2 [39] and Typhoon [75] use a protocol processor. Stanford FLASH
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multiprocessor [50] uses a programmable processor to integrate a memory controller, an

I/O controller, a network interface, and a programmable protocol processor.

Several communication subsystems transfer data directly between application buffers

and network interface [25, 83, 65]. With this approach, the application is responsible for

translating addresses or performing programmed I/O operations to access the network. But

this approach is not designed for multiprogramming environments.

An improvement to this approach is to virtualize the network interface. The basic

method is to provide a virtual communication port abstraction through which an application

process can directly issue requests to the network interface, bypassing the OS. Examples of

such systems include Application Device Channels (ADC) [27], Hamlyn [15], U-Net [90],

and Virtual Interface Architecture [23]. They all require that applications explicitly pin

buffers and install descriptors on the network interface. The descriptors contain address

translations for both send and receive sides. Hamlyn calls such a unit a slot, U-Net calls

it a communication segment, and VIA calls it a memory region. They typically deal with

protection by using a permission key.

Memory-mapped communication takes a direct approach. PRAM [57], SHRIMP [7]

and Memory Channel [35] implement memory-mapped communication models [84] that

allow applications to send messages to remote memory. PRAM implements a physical

memory-mapped model that allows an application to map network interface DRAM into

its address space. Writes to this memory are propagated to remote network interface mem-

ory. It is the application’s responsibility to move data from a send buffer to the sender’s

network interface memory and move data from the receiver’s network interface memory

into a receive buffer. The SHRIMP approach [7, 9, 8] implements protected user-level

communication using the Virtual Memory-Mapped Communication (VMMC) model. This

approach allows an application to send data directly from its virtual memory to a remote

process’ virtual memory in a multiprogramming environment. This approach requires re-
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ceivers to pin and export receive buffers before the data is transfered. The OS translates the

virtual addresses and stores the physical addresses on the network interface. The SHRIMP

implementation uses a modified OS to automatically pin application buffers used for send-

ing data. A User-level DMA (UDMA) mechanism [9] is used to allow the network interface

hardware to obtain virtual-to-physical translations without OS intervention. SHRIMP also

provides automatic update which automatically propagates application buffer updates to

remote virtual memory buffers. Digital’s Memory Channel [35] uses an approach that is

similar to PRAM on the sending side and to SHRIMP’s automatic update on the receiving

side.

Another direct approach allows applications to compose and retrieve messages using

network interface registers [37, 82]. In addition to network interface registers, the Cray

T3E [82] supports remote memory accesses with an approach similar to UDMA. It uses

complete page tables to describe global communication segments and all communication

pages are pinned in memory.

A network interface typically can hold only a limited number of translation entries,

which poses questions about how to maintain consistency between the translations on the

host and those on the network interface and how to deal with misses on the network inter-

face. One approach is to let network interface interrupt the host processor on a translation

entry miss, and the host processor installs the translation entry on the network interface.

The VMMC [31] (the same communication API as that on SHRIMP [7]) for the Myrinet

PC cluster employs this approach. It uses a per-process translation table on the network

interface.

UNet-MM [5], an extension U-Net, stores address translations in a translation cache on

the network interface. Misses in the translation cache are handled by the host OS which

pins virtual pages and installs their translations on the network interface.

The UTLB approach described here was presented in Hot Interconnect ’97 [30] and in
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a project update note [29]. A recent paper by Schoinas and Hill [80] describes a similar

approach. None of these papers deal with the issues of a shared translation cache in a

multiprogramming environment. Further, they do not study translation replacement, nor

the effects of prefetching translation entries.

3.3 Design of UTLB

The User-managed TLB (UTLB) is an address translation mechanism for user-level com-

munication. The main ideas in UTLB are demand-driven page-pinning, protected transla-

tion table, and user-level lookup.

The first idea is demand-driven page-pinning: pin the local buffer when it is used in

communication for the first time, at the same time supplying the address translations to the

network interface. The buffer remains pinned in physical memory so that subsequent data

transfers using this buffer can be initiated directly at the user level. For applications that

display spatial locality in their communication patterns, the cost to pin the virtual pages is

amortized over multiple communication requests.

The second idea is to establish a protected translation table for pinned virtual pages.

UTLB allocates a translation table for each process on the network interface. A translation

table contains physical addresses for a process’ virtual pages that have been pinned in

physical memory. The translation table is invisible to the user process. However, the

user process can specify to the operating system where in the table to store the physical

translations for a given virtual buffer, hence the name “User-managed” TLB. To transfer

data on a virtual page, the user process specifies to the network interface the index in the

translation table where the page’s physical address stored. Using this index, the network

interface reads the physical address directly from the translation table.

The third idea is to construct a fast user-level lookup data structure. The user process has
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Figure 3.2: Structure of UTLB on VMMC

to keep track of the mapping between the translation table indices and the pinned virtual

pages. The lookup table uses a standard two-level page table architecture [36, 45]. It

contains one entry for each virtual page. An entry can either be invalid or contain the index

in the translation table where the physical address for this virtual page is stored. Only two

memory references are required to obtain the UTLB index for a given virtual page address.

3.3.1 Per-process UTLB

Combining the above three ideas results in a Per-process UTLB shown in Figure 3.2. The

communication subsystem allocates a fixed-sized translation table for each process. The

translation tables are allocated directly in the network interface memory. They are protected

from user processes. The user process asks the OS to pin certain virtual pages and “install”

their physical translations at specified locations in its translation table. This can be done
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with a device driver call. A user-level library maintains the mapping between the translation

table indices and the virtual page addresses in a two-level lookup tree.

It is possible that the translation table is filled up while more virtual pages need to be

pinned. The user-level library can detect such capacity misses and evict some translations

already in the UTLB translation table. Eviction of an entry results in unpinning of the

virtual pages. The UTLB library decides which translation table entries to evict and asks

the OS to unpin corresponding virtual pages and invalidate the entries. To reduce the fre-

quency of capacity misses, the user-level library monitors the virtual page usage and use a

replacement policy such as LRU to select the victim entries for eviction.

To ensure correctness, the user-level library must only select virtual pages that will

not be involved in any outstanding send requests. Otherwise, the network interface must

be able to check for possible unpinned pages, and interrupt the host to pin pages before

executing the requests.

3.3.2 Shared UTLB-Cache

A drawback of the per-process UTLB is that it statically allocates translation tables from the

network interface memory. This results in a fairly small translation table for each process.

On a workstation with large physical memory, a significant portion of a user process’ virtual

address space can be involved in data communication. The size of the UTLB translation

table must be increased to reduce capacity misses.

To overcome the size limitation of the per-process UTLB translation table, we place

a Shared UTLB-Cache on the network interface and move the entire translation tables

to host physical memory (DRAM), as shown in Figure 3.4. In this scheme, the Shared

UTLB-Cache caches the entries from the translation tables. Each Shared UTLB-Cache

entry contains the process ID and part of the translation table index to uniquely identify

an entry from a particular translation table. When a miss occurs in the Shared UTLB-
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User Program:
send message(vaddr, nbytes)

1) look up (vaddr, npages) in the user-level
table

2) if (some pages in the range are not pinned)
find free UTLB translation entries
invoke the ioctl call to

a) lock the pages
b) fill the translation entries

3) submit the request to NI using the indices

Network Interface:
1) receive user request
2) obtain physical addresses by directly

indexing the translation table
3) perform DMA

Figure 3.3: Pseudo-code that illustrate the steps taken by the user process to send data from
its virtual buffer

Cache, the network interface simply reads the entry from the translation table in physical

memory. The cost of reading an entry over the I/O bus is only a couple of microseconds.

Therefore, in the worst case, when every translation lookup misses in the Shared UTLB-

Cache, the lookup time is a few microseconds. This is typically better than interrupting

the host OS and letting the host install the required translation on the network interface on

every translation miss.

A miss in the Shared UTLB-Cache requires that the network interface read translation

entries over I/O bus. The miss penalty is therefore several times the hit cost which is simply

a memory reference on the network interface. A miss in the Shared UTLB-Cache will have

a perceivable impact on small-message latency.

We apply existing techniques in processor cache design [36, 71] to reduce the miss

rates in the Shared UTLB-Cache. Misses fall into three categories: capacity misses, conflict
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misses, and compulsory misses [38]. When only one process is using the network interface,

both capacity misses and conflict misses may occur in the Shared UTLB-Cache. Multi-

programming may further increase conflict misses.

Capacity misses can be reduced by enlarging the size of Shared UTLB-Cache. Conflict

misses can be reduced by making the cache set-associative. Associativity can also help

reduce conflict misses that are caused by multi-programming. A simple scheme to reduce

the conflict misses is to offset a translation table index by a process-dependent constant. The

same index from different translation tables will be hashed into different locations in the

Shared UTLB-Cache. Prefetching translation entries in the Shared UTLB-Cache reduces

the miss rates when applications display spatial locality. But, it also incurs additional cost

for fetching more entries. In Section 3.6, we evaluate the effect of cache size, associativity,

and prefetching.
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Figure 3.4: Structure of Shared UTLB-Cache
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3.3.3 Hierarchical-UTLB

The Hierarchical-UTLB is a simplification of the UTLB. Instead of letting the user process

search its lookup data structure for UTLB indices, Hierarchical-UTLB directly uses the

protected translation table as the lookup data structure. Under Hierarchical-UTLB, the user

process submits virtual addresses to the network interface. The network interface directly

searches Hierarchical-UTLB translation table for physical address translation (Figure 3.5).

The translation table in Hierarchical-UTLB resembles a typical two-level page table

structure. The first-level directory points to second-level page tables in physical memory.

Each page table entry stores the physical address of a pinned virtual page. The Hierarchical-

UTLB translation table differs from a real page table in one important aspect: the entries in

the second-level Hierarchical-UTLB translation table are the physical addresses of virtual

pages that have been explicitly pinned by the user process.

The top-level directory of a Hierarchical-UTLB translation table is always stored in

the network interface so that when there is a miss in the Shared UTLB-Cache it takes one

memory reference in the SRAM to access the page directory and one DMA to access the

second-level page table.

The user-level library only needs a bit array to maintain the memory-pinning status of

virtual pages. In addition, a process can directly use the virtual address to represent its

buffers. Instead of indices, the network interface simply uses the virtual address to look up

the physical address in the Shared UTLB-Cache or query the UTLB page table on a miss.

The Hierarchical-UTLB eliminates the need to handle UTLB fragmentation: after com-

plex data accesses, a user buffer’s translations may be scattered in the translation table.

Integrating Hierarchical-UTLB with the translation table used for receive buffers is also

straightforward. Virtual addresses are uniformly used to represent both remote and local

buffers.

In rare situations, the second-level translation tables in the Hierarchical-UTLB occupy
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Figure 3.5: Structure of Hierarchical-UTLB

too much physical memory A solution to this problem is to manage the second-level trans-

lation tables in the same manner as virtual memory paging. One bit of information is added

to each entry in the top-level directory which indicates whether the second-level table is

in physical memory or on the disk. If the second-level table is swapped out, the directory

entry contains the disk block number instead of the physical address of the second-level

table. When the network interface detects that a page of the second-level table has been

swapped out, it can interrupt the host OS to bring in the page.

To summarize, at the cost of one extra SRAM reference to process a UTLB cache miss,

Hierarchical-UTLB simplifies the construction of UTLB and eliminates the fragmentation

problem. In the rest of the chapter, UTLB refers to Hierarchical-UTLB.
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3.3.4 User-level replacement policies

An important feature of UTLB is that it allows an application to decide which virtual pages

to unpin when the system runs out of available physical memory. Because the application

process often has knowledge about its virtual memory access, it can use a custom replace-

ment policy to minimize the number of page pinning and unpinning operations. UTLB

predefines five replacement policies for applications to choose: LRU, MRU, LFU, MFU,

and RANDOM.

An important issue related to the replacement policies is how to manage the amount of

physical memory that a user process can pin. This is a complex issue especially in a multi-

programming environment where physical memory pages can be shared. Enforcing a static

limit on the number of pages a process can pin is straightforward, But, implementing a

dynamic limit requires that the OS synchronize with the user-level UTLB data structures

when reclaiming pinned physical pages.

The combination of the two issues is similar to the application-controlled file caching

problem [16], where multiple applications share a set of file cache blocks in the kernel

and each application can choose its own replacement policy. So, related theoretical results

of the application-controlled file caching problem [17] apply to the application-controlled

memory pinning/unpinning problem. On the other hand, this requires experimental studies

to understand the solutions to the combined problem.

3.4 An Implementation of UTLB

We developed an implementation of the Hierarchical-UTLB for our custom protected user-

level communication model called Virtual Memory-Mapped Communication (VMMC).

Our UTLB implementation is a part of the VMMC communication mechanism for

Myrinet PC clusters. Myrinet [10] is a switched point-to-point network capable of trans-
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ferring data at 160 MB/sec on each link. The Myrinet PCI network interface has a 33 MHz

RISC microprocessor (LANai 4.2) and 1 MB Static RAM (SRAM). A cluster of 300 MHz

Pentium-II PC workstations are connected to the Myrinet network. The host operating

system is Windows NT 4.0.

The communication subsystem of VMMC consists of three components: the VMMC

Myrinet firmware, the device driver, and the user-level library [31] (see Figure 3.6). The

VMMC device driver initializes the network interface and downloads the firmware, called

the Myrinet Control Program (MCP), into the network interface SRAM. The driver also

allocates a special command post buffer from the Myrinet SRAM and maps it into the

application’s address space. The user-level VMMC library posts communication requests

to the command buffer. The address of a command buffer is used to identify the user

process. The MCP polls user requests from each command buffer and process them in the

order that they are received.

Our implementation of Hierarchical-UTLB follows directly from the layout in Sec-

tion 3.3.3; we implemented a Shared UTLB-Cache. The size of Shared UTLB-Cache that

we chose is 32 KB (or 8 K entries). The device driver allocates the two-level translation

table dynamically for each application that uses the VMMC system. An ioctl() call

is added to the VMMC device driver for pinning virtual pages and storing physical ad-

dresses in the translation table. The implementation did not require any modifications to
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the Windows NT operating system. An earlier implementation of UTLB on Linux was also

done without OS modifications. The device driver allocates and pins a “garbage” page. All

UTLB translation table entries are initialized with the physical address of the garbage page.

This scheme saves the network interface from checking the validity of user-submitted in-

dices. At worst, the network interface transfers data to and from an unused garbage page;

no harm is done to the system or other applications.

3.5 Performance of UTLB

The overall cost for translating a virtual page in the UTLB includes the overhead on the

host processor and the overhead on the network interface. Each overhead varies depending

on whether the virtual page is pinned and whether the physical address is in the UTLB

network interface cache. The fastest path to translate a virtual address on the network

interface is taken when the virtual page is pinned and its physical address is present in

the UTLB network interface cache (a hit). The total overhead for this path is only 0.9 µs

(0.4 µs on the host and 0.5 µs on the network interface).

The time on the network interface is measured with LANai’s real-time clock register,

with an accuracy of 0.5 µs. Because the LANai 4.x processor has no instruction or data

caches, averaging the total time of repeated operations gives the exact timing for an indi-

vidual operation. On the host, the time is measured with the Pentium processor’s cycle

counter with an accuracy of a CPU clock cycle. Reading the cycle counter has an overhead

of 39 cycles.

3.5.1 Host-side performance

Table 3.1 lists the overhead of UTLB host-side operations: user-level lookup (as check),

page-pinning (as pin), and page-unpinning (as unpin). The lookup procedure checks a bit
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num pages 1 2 4 8 16 32

check min 0.2 0.2 0.2 0.2 0.2 0.2
(µs) max 0.4 0.6 0.6 0.6 0.6 0.7

pin (µs) 27 30 36 47 70 115
unpin (µs) 25 30 36 50 80 139

Table 3.1: UTLB overhead on the host processor.

map to see if the virtual pages of a buffer are already pinned in the physical memory. The

cost of checking the bit map varies with the first bit’s position in the bit map. The table

reports both the minimum and maximum costs from all possible bit positions.

If some virtual pages are not pinned, the lookup procedure invokes a device driver

ioctl() call to pin these pages and store their physical addresses in the UTLB translation

table. As the numbers suggest, page-pinning is an expensive operation. They validate the

UTLB design strategy of on-demand pinning and translation caching.

3.5.2 Network interface performance

Table 3.2 shows the cost of UTLB operations on the network interface: hit cost, DMA cost

and miss handling cost (as miss cost). The number given here is for a direct-mapped cache

with 8K entries. The hit cost is the time it takes the network interface to look up a virtual

page’s physical address in the UTLB network interface cache 1.

num entries 1 2 4 8 16 32

DMA cost (µs) 1.5 1.6 1.6 1.9 2.1 2.5
total miss cost (µs) 1.8 1.9 1.9 2.3 2.8 3.2

Table 3.2: UTLB overhead on the network interface (The hit cost is a constant 0.8 µs.)

The miss cost includes the time to obtain the physical address for the second-level page

table (see Section 3.3.3) and the time to DMA the entries into the UTLB network interface

1The Myrinet VMMC firmware breaks down data transfer at 4KB page boundaries. Translation lookups
are performed one page at a time. Therefore, we list the hit cost for only one entry here.
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cache. Multiple entries are prefetched at once during a miss to exploit the spatial locality

of a program’s data access. The prefetching cost remains relatively constant with respect

to the number of entries fetched because DMA setup dominates the total fetch time for a

small number of words (see Table 3.2).

3.6 Application-driven Analysis of UTLB

We would like to answer three questions:

• How does the UTLB compare with the approach where the network interface inter-

rupts the host to handle translation misses?

• What are the appropriate values for the size and the associativity of the Shared

UTLB-Cache?

• What are effects of prefetching translation entries?

We used a trace-driven simulation approach to evaluate these issues. A trace-driven ap-

proach allows us to determine the best values for parameters and to compare the UTLB with

other address translation mechanisms. We chose communication traces from a Myrinet

cluster of SMP workstations because they allow us to study the behavior of UTLB under

a high degree of multi-processing. The cluster consists of four 4-way Intel SMP work-

stations connected with a Myrinet network. Each SMP has four 200 MHz PentiumPro

microprocessors and 256 MB of DRAM.

We ran a number of applications from the SPLASH2 [95] Application Suite with the

Home-based Release Consistency SVM Protocol [96, 76]. On each SMP, there are four

application processes and a protocol process, all of which use Myrinet for sending and

receiving messages. We instrument the VMMC software to trace each send and remote read
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request along with a globally-synchronized clock [56]. Time stamps are used to serialize

the traces from the five processes on each SMP. The traces are then fed to a UTLB simulator.

The simulator mimics the behavior of a network interface translation cache, the host-

side UTLB driver, and user-level library. The simulator reads traces, serializes the commu-

nication requests using the time stamps in the trace, and derives detailed statistics on trans-

lation misses, and the number of page pinnings and unpinnings. The network interface

translation cache is simulated with direct-mapping, 2-way, and 4-way associativity. The

simulator implements an LRU replacement policy to manage pinned virtual pages given a

fixed physical memory constraint. We also developed a simulator for the interrupt-based

approach where the network interface interface interrupts its host CPU on a translation

miss, and the CPU handles page pinning, unpinning, and installing new translation entries.

3.6.1 Applications

Seven applications from the SPLASH-2 suite are used:

• Barnes implements the original Barnes-Hut algorithm for NBody simulation. Each

process gets a partition of the particles and calculates their new positions during one

time step. Communication in this application is moderate as the particle partition

exhibits spatial locality.

• FFT implements a parallel 2D Fast Fourier Transform algorithm. This program ex-

hibits high degree of data communication.

• LU is a parallel LU matrix decomposition program.

• Raytrace uses a task-farm model to raytrace a scene. Communication in Raytrace

revolves around the task queues.
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• Radix sorts an array of integer keys in parallel. The algorithm consists of a number

of radix-sort phases. During a phase, each process sorts a contiguous sequence of

the keys according to part of the keys. At the end of the phase, the results from each

processes are combined to form a new array for subsequent radix-sort phases.

• Volrend uses a task-farm model to render a 3-D volume. Communication in this

application also centers on the task queues.

• Water calculates movements of molecules using a spatialized algorithm to exploit

data locality.

Problem Footprint # translation
Applications Size (4 KB pages) lookups

FFT 4M elements 10,803 43,132
LU 4K x 4K matrix 12,507 25,198

Barnes 32K particles 2,235 35,904
Radix 4M keys 6,393 11,775

Raytrace 256 x 256 car 6,319 14,594
Volrend 2563 CST head 2,371 9,438

Water-spatial 15,625 molecules 1,890 8,488

Table 3.3: Application problem size, communication memory footprint, communication
translation lookup frequency.

Table 3.3 shows the application problem size, communication memory footprint, and

translation lookup frequency. The communication memory footprint indicates the average

number of distinct virtual pages used for communication on each node. The number of

translation lookups is the average number of communication operations performed on each

node.
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3.6.2 Comparing UTLB with an interrupt-based mechanism

To compare the two approaches, we assume that the cache structures are the same for

both cases. We varied a set of parameters to study the behavior of the UTLB mechanism

and the interrupt-based approach. The parameters include the amount of physical memory

available to each process, the size and the associativity of the network interface translation

cache. For each application and a particular set of parameters, the UTLB simulator reports

the number of user-level check misses, the number of network interface translation misses

(caused by capacity or conflict), and the number of pages unpinned. The simulator for the

interrupt-based approach reports only the number of network interface translation misses

and the number of unpin operations.

Table 3.8 shows the number of check misses per lookup, the number of network inter-

face translation misses, and the number of unpinned pages per lookup. All the numbers

are averaged over the total number of lookups. The numbers for the interrupt-based ap-

proach are under the Intr label. Our trace-driven simulations show that UTLB requires

fewer page pinning and unpinning operations than the interrupt-driven approach for all

cache sizes. The cache simulated here is a direct-mapped cache with index offsetting (see

Section 3.6.4). The host physical memory is unlimited, therefore, UTLB does not unpin ap-

plication pages. However, the interrupt-based approach always unpins a page that is evicted

from the network interface translation cache [5]. This is a major difference between UTLB

and the interrupt-based approach.

Note that network interface misses are handled differently by the two approaches. With

UTLB, a network interface interrupt moves the missed entry from host memory into the

network interface translation table directly, whereas the interrupt-based approach has to

interrupt the CPU for every translation miss in the network interface. On most computer

systems, interrupts are an order of magnitude more expensive than memory references over

the I/O bus. The UTLB mechanism can offer significantly faster miss handling than an
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interrupt-based approach. On the other hand, once in the interrupt handler, pin or unpin

requires no protection domain crossing, whereas the UTLB approach requires paying the

overhead of a system call.

The real cost of a translation lookup depends on the components shown in the table. In

particular, the cost function for each mechanism is:

lookuputlb = user check hit

+ user pin cost · check miss rate

+ ni check hit

+ ni miss cost · ni miss rate

+ user unpin cost · unpin rate

lookupintr = ni check

+ (intr cost+ kernel pin cost) · ni miss rate

+ unpin kernel cost · unpin rate

In the above equations,

• ni miss cost is the average cost for the network interface to fetch entries from the

UTLB translation table in host memory.

• user check hit and ni check hit are the costs that every UTLB translation lookup

incurs. The interrupt-based approach incurs the ni check hit cost every time.

For example, on our Myrinet implementation of UTLB, the ni check is measured at

0.8 µs per lookup, the user check at 0.5 µs, and 10 µs for invoking the system interrupt

handler by the network interface. Per-page cost for pinning and unpinning the application
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buffer depends on how many pages are involved in one call. The SVM applications, whose

traces we use to drive our simulation, typically transfer one page of data at a time. On

a 300 MHz Pentium-II PC running Windows NT 4.0 pinning one page takes 27 µs and

unpinning take 25 µs. On Linux, the pinning and unpinning costs are similar to those on

NT. When computing the lookup cost for the interrupt-based approach, the pinning and

unpinning costs must be adjusted to factor out context switches. Using these numbers,

we can calculate the average translation lookup cost for given applications, as shown in

Table 3.4. The reason why the lookup cost for FFT is higher that for Barnes is that FFT

accesses a large amount of virtual memory and hence incurs high page pinning overhead. In

both applications, UTLB offers faster translation lookup than the interrupt-based approach.

Cache Entries Barnes FFT
UTLB Intr UTLB Intr

1 K 2.6 µs 4.9 µs 9.0 µs 21.7 µs
4 K 2.5 µs 2.5 µs 8.9 µs 20.9 µs
16 K 2.5 µs 1.9 µs 8.7 µs 14.8 µs

Table 3.4: Average lookup cost comparison: UTLB vs. Intr. (infinite host memory, no
prefetch, with cache index offsetting)

We also ran the simulation with 4 MB memory restriction on each process to study

how each address translation mechanism behaves under limited memory constraints. The

results are shown in Table 3.9. The number of page pinnings and unpinnings increases for

most applications. UTLB stills achieves lower overhead than the interrupt-based approach

with the physical memory constraint.

Our trace-driven simulation results show that UTLB has fewer page pinnings and un-

pinnings than the interrupt-based approach. UTLB does not suffer from a large number of

interrupts as does the interrupt-based approach. In addition, the unique design of the host-

side translation table permits UTLB to keep translations “alive” even after they are evicted

from the network interface translation cache. This results in fewer unpinned pages than the
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interrupt-based approach. Our results also show that the cost for pinning and unpinning

pages can sometimes dominate the cost of address translation (e.g. FFT). It is therefore

important to reduce the cost to pin and unpin application pages.

3.6.3 UTLB overhead in Display Wall applications

We also instrumented 7 applications to measure UTLB overhead in actual settings. Four

applications are from the SPLASH-2 benchmark and described in previous sections. Three

are Display Wall applications. They are vis, glaze, and vdd. These applications use VMMC

Winsock as their underlying communication mechanism.

Vis is a visualization program, implemented by our colleagues that uses a cluster of

13 PCs to visualize isosurfaces of scientific data. The program has three components:

client control, isosurface extraction, and rendering. The client control runs on a single

PC to implement the user interface for users to steer the entire visualization process. The

isosurface extraction uses 4 PCs in the cluster to extract isosurfaces in parallel, and sends

them to the rendering program which runs on 8 PCs. Each renderer PC simply receives

isosurfaces, renders and displays the rendered images on a tiled, scalable display wall.

VMMC Winsock is used for all interprocess communication among the PCs running the

client control, isosurface extraction, and rendering programs.

Glaze is a commercial OpenGL evaluation program from Evans & Sutherlands. An

OpenGL interception layer, developed by our colleagues, allows us to use one PC to drive

OpenGL animation of any commercial software on a tiled display. We ran the glaze pro-

gram on a PC; a custom wrapper DLL (opengl32.dll) intercepts the OpenGL calls made by

the program and distributes the commands to 8 separate PCs which together drive a 2x4

tiled display. The wrapper DLL transmits rendering commands over the VMMC Winsock

layter to the renderers. The renders behave just like those in vis: they simply receive the

commands and render them for its portion of the tiled display.
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Applications fft barnes radix water

memory footprint 57.4 MB 16.6 MB 54.4 MB 8.9 MB
memory constraint 50.0 MB 16.0 MB 30.0 MB 6.0 MB
host lookup hit rate 64.46% 96.67% 54.99% 97.63%
host pin-page rate 35.54% 3.33% 45.01% 2.37%
host unpin-page rate 23.36% 2.13% 36.10% 2.27%
avg lookup hit cost 0.36 µs 0.50 µs 0.35 µs 0.40 µs
avg pin overhead on NT 39.1 µs 40.0 µs 42.1 µs 29.6 µs
avg pages per pin on NT 1.00 1.07 1.00 1.07
avg unpin overhead on NT 33.2 µs 36.7 µs 35.2 µs 35.0 µs

avg miss overhead on NT 42.2 µs 49.6 µs 68.7 µs 32.8 µs
predicted ovhd on Linux 21.6 µs 29.3 µs 46.4 µs 8.6 µs

avg host overhead on NT 15.23 µs 2.13 µs 31.1 µs 1.27 µs
predicted ovhd on Linux 7.91 µs 1.45 µs 21.1 µs 0.59 µs

Table 3.5: UTLB performance with memory constraint

Vdd is a virtual display driver that implements a large desktop that has the same res-

olution (3850x1500) as the Display Wall. It is installed on a 450 MHz Pentium II PC

running NT 5B2 OS. A user process is responsible for packetizing the updates made to the

vdd’s memory-resident framebuffer and distributing them to the 8 PCs that drive the wall.

We used NT VMMC Sockets with the pointer-based extensions to distribute framebuffer

updates efficiently [26].

Results Table 3.10 presents OS-dependent components of UTLB overhead, without any

memory constraint. The miss rates and overheads for the NT platform are measured directly

by running the three applications on our NT VMMC cluster. We use these numbers, as well

as the micro-benchmark results, to predict the overheads on Linux. In the table, host pin

rate is the ratio between the number of pin operations and the number of UTLB lookups;

and similarly for host unpin rate. Memory footprint is the total amount of distinct virtual

memory that is involved in data transfer for each application. Lower page-pin rate (or

lookup miss rate) translates into lower average UTLB overhead. Since the host UTLB miss

rates are quite low, the OS overhead for pinning and unpinning user buffers has little impact
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on the average UTLB host overhead.

Under tight memory constraints, such as in a multi-programming environment or a

large-memory applications, there may not be enough physical memory to absorb the en-

tire memory footprint of applications. UTLB deals with such low-memory situations by

unpinning virtual pages that are not currently involved in data transfer. This is a critical

feature for UTLB-based VMMC to be useful in a multi-programming environment. Ta-

ble 3.5 presents the the same experiments with additional memory constraints such that the

total amount of application-pinnable physical memory is less than the memory footprint.

Due to varying nature of the applications, the memory constraint is set differently on a per-

application basis. And also, it turned out that our Display Wall applications require most of

their working sets to be pinned as receive buffers. This is because each Display Wall appli-

cation uses a small buffer (often less than 1 MB) to gather commands and send the whole

chunk to the receivers. Therefore, we only present the memory-constrained results for the

4 SVM applications. Again, the measurements are all taken by running the applications on

the NT cluster, and predictions are made for the Linux platform.

With low memory constraint, we see higher UTLB miss rates and page unpin rates.

Note that our prediction for UTLB performance on Linux suggests that faster page-pin and

page-unpin OS calls further reduce the average UTLB overhead by as much as 50%. We

conclude that improving system calls such as page-pin and page-unpin benefits user-level

communication.

3.6.4 The effect of cache size and associativity

A miss in the UTLB network interface cache costs several times more than a hit. The

average translation lookup cost in the network interface depends on the hit/miss ratio in

the UTLB cache. Misses in the network interface cache include capacity, conflict, and

compulsory misses. Cache size and associativity directly affect the capacity and conflict
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miss rates.

Cache Applications
Entries Associativity Barnes FFT LU Raytrace Radix Volrend Water

direct 0.10 0.31 0.35 0.48 0.50 0.50 0.62
1 K 2-way 0.12 0.30 0.32 0.48 0.49 0.50 0.63

4-way 0.13 0.30 0.30 0.49 0.50 0.51 0.63
direct-nohash 0.36 0.50 0.51 0.57 0.60 0.78 0.90

direct 0.07 0.27 0.29 0.46 0.49 0.50 0.60
2 K 2-way 0.06 0.26 0.27 0.46 0.48 0.50 0.60

4-way 0.07 0.22 0.26 0.47 0.48 0.50 0.60
direct-nohash 0.35 0.42 0.48 0.57 0.60 0.74 0.90

direct 0.05 0.12 0.27 0.45 0.49 0.49 0.57
4 K 2-way 0.05 0.11 0.25 0.45 0.47 0.49 0.57

4-way 0.04 0.10 0.25 0.44 0.46 0.49 0.57
direct-nohash 0.27 0.35 0.47 0.56 0.60 0.71 0.90

direct 0.04 0.11 0.25 0.44 0.46 0.49 0.55
8 K 2-way 0.04 0.10 0.25 0.44 0.44 0.49 0.55

4-way 0.04 0.10 0.25 0.41 0.43 0.49 0.55
direct-nohash 0.27 0.35 0.46 0.56 0.57 0.71 0.90

direct 0.04 0.10 0.25 0.38 0.43 0.49 0.54
16 K 2-way 0.04 0.10 0.25 0.37 0.43 0.49 0.54

4-way 0.04 0.10 0.25 0.34 0.43 0.49 0.54
direct-nohash 0.27 0.35 0.46 0.50 0.55 0.71 0.90

Table 3.6: Overall miss rates in Shared UTLB-Cache vs. cache size (infinite host memory,
no prefetch, with cache index offsetting for direct, 2 and 4 way)

In Table 3.6, we show the overall miss rates in the network interface cache for var-

ious cache sizes and associativities. In the table, the rows marked with “direct-nohash”

represent a simple direct-mapped cache. The rows marked with “direct” represent a direct-

mapped cache that offsets each virtual address with a process-dependent constant in the

network interface. This address offsetting technique is used to reduce conflict misses re-

sulting from simultaneous accesses to the network interface by multiple processes. Our

simulation results show that this technique works very well. The overall miss rates in a

direct-mapped cache are close to, and frequently lower than, those of two-way and four-

way set-associative caches. The same offsetting technique is also used for set-associative
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caches. Cache miss rates would be higher without offsetting.

However, offsetting the cache index may interfere with set-associativity. This may

explain the fact that miss rates in the set-associative cache (with offsetting) are higher than

those in the direct-mapped cache (with offsetting).

When the actual cost of lookup is considered, the set-associative caches lose to the

direct-map cache. The reason is that a set-associative lookup needs to check more entries

per cache line than a direct-mapped cache. In a hardware cache, checking of multiple

entries on a line can be done in parallel. Since the Shared UTLB-Cache is implemented

in Myrinet firmware, the network interface processor can only check one cache entry at a

time. Therefore, the cost per translation lookup is higher in a set-associative UTLB cache

than a direct-mapped cache. For this particular implementation of UTLB, the trace-driven

analysis justifies our choice to use direct-mapping (with offset) for the cache.
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Figure 3.7: Breakdown of translation cache miss rates for 1K-16K cache entries (with
infinite host memory and no prefetch)

3.6.5 The effect of prefetching

Enlarging the translation cache and offsetting the translation indices can reduce the capacity

and conflict misses in the UTLB network interface translation cache. Figure 3.7 shows the

breakdown of translation misses on the network interface for all seven applications, using

infinite host memory and a direct-mapped network interface cache without any prefetching.
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As expected, the number of conflict misses and capacity misses decrease as the cache

size increases. But more importantly, this breakdown shows that compulsory misses still

constitute the majority of translation misses.
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Figure 3.8: Prefetching effect in the translation cache (RADIX with infinite host memory
and a direct-mapped cache)

To reduce compulsory misses, we let the Shared UTLB-Cache prefetch multiple entries

when handling a translation miss in the network interface cache. We plot the miss rates

and lookup cost from RADIX as a function of prefetching size in the two graphs shown

in Figure 3.8. As expected, the overall miss rates decrease as prefetching becomes more

aggressive. Prefetching can effectively reduce overall miss rate. This happens for two
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reasons. First, an application usually displays spatial locality. Prefetching consecutive

translation entries takes advantage of such locality. Second, the cost of fetching multiple

translation entries increases at a much slower rate than the rate at which overall miss rate

drops. As a result, average lookup cost decreases as fetching becomes more aggressive.

However, in order for prefetching to work well, translations for contiguous application

pages must be available during a miss.

3.6.6 User-level page-pinning

One way to ensure the availability of translations for contiguous pages is to sequentially

pre-pin application pages on a check miss in the UTLB user-level library. If the communi-

cation’s data access pattern displays spatial locality, prepinning reduces the page-pinning

overhead for each page pinned, because on most computer systems, pinning a user buffer

one page at a time is significantly more expensive than pinning the entire buffer all at once.

Currently the UTLB uses a sequential pre-pinning policy, where if a virtual page needs

to be pinned, the user library tries to pin a number of contiguous pages starting with that

page. On the other hand, unpinning is still done one page at a time.

Cost pages barnes radix raytrace water FFT LU
pin 1 1.0 13.0 10.5 2.5 6.1 12.0

16 0.8 7.3 5.0 1.5 15.8 2.3

unpin 1 0.1 0.1 0.8 0.1 0.1 0.1
16 0.1 10.8 3.5 0.1 93.0 0.1

Table 3.7: Amortized pinning and unpinning for different page-pinnng strategy.

In Table 3.7, we compare the translation lookup performance of UTLB and that of

UTLB with 16-page prepinning. The physical memory limit in both cases is 16 MB. In

both cases, the misses in the network interface are the same. The performance difference

between the two approaches are from the amortized cost of page-pinnings and unpinnings.

We show the amortized cost (averaged over total translation lookups) because page-pinning
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cost is not a linear function with respect to the number of pages pinned in a system call.

The applications fall in two categories based on their communication patterns: regular,

which include FFT and LU, and irregular, which include the rest [43, 61]. Even the simple

sequential policy is very effective for most applications. The only exception is FFT which

performs a lot of unnecessary pinning/unpinning with 16-page prepinning. FFT is a regular

application with a strided access pattern such that it does not access most of the pages that

are pre-pinned. UTLB is forced to unpin these unused pages when physical memory limit

is reached.

3.7 Conclusions

In this chapter I described the design and implementation of UTLB, a user-managed ad-

dress translation mechanism for network interfaces. By maintaining a user-level lookup

data structure and a protected translation table, UTLB avoids system calls in the common

path of communication and completely eliminates device interrupts. UTLB allows large

communication memory footprints, and requires no special operating system support.

UTLB provides a convenient programming interface to system software developers.

Only virtual addresses are used; pinning and unpinning virtual pages are hidden from the

users. Direct measurements of three Display Wall applications show that UTLB amor-

tizes page-pinning cost over many communication requests, hence results in low average

translation overhead.

We further conducted trace-driven simulations to show

• that UTLB can detect most translation misses at user level and thus avoid interrupts,

whereas the interrupt-based approach requires an interrupt on every translation miss,

• that UTLB is less sensitive to the translation table sizes than the interrupt-based ap-

proach.
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• and that the direct-mapped approach is adequate for implementing the translation

table.

Our study has limitations. In particular, the traces are from shared memory parallel

programs though they ran in a multiprogramming environment. The memory accesses are

quite balanced on all processors. Thus, they may not reveal certain behaviors that a true

multi-programming environment displays.

Fast address translation alone is not sufficient for good end-to-end communication per-

formance. The design of the translation caching mechanism and its integration with the

communication subsystem must allow applications to send and receive data, without copy-

ing, using arbitrary buffers. This goal drove the design of the UTLB.
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Application

Cache Characteristic Barnes FFT LU Radix Raytrace Volrend Water
Entries (per lookup) UTLB Intr UTLB Intr UTLB Intr UTLB Intr UTLB Intr UTLB Intr UTLB Intr

check misses 0.04 - 0.25 - 0.49 - 0.54 - 0.43 - 0.25 - 0.10 -
1 K NI misses 0.10 0.10 0.50 0.50 0.50 0.50 0.62 0.62 0.48 0.48 0.31 0.31 0.35 0.35

unpins 0.00 0.09 0.00 0.49 0.00 0.46 0.00 0.54 0.00 0.41 0.00 0.22 0.00 0.31

check misses 0.04 - 0.25 - 0.49 - 0.54 - 0.43 - 0.25 - 0.10 -
2 K NI misses 0.07 0.07 0.50 0.50 0.49 0.49 0.60 0.60 0.46 0.46 0.29 0.29 0.27 0.27

unpins 0.00 0.04 0.00 0.48 0.00 0.43 0.00 0.44 0.00 0.33 0.00 0.13 0.00 0.21

check misses 0.04 - 0.25 - 0.49 - 0.54 - 0.43 - 0.25 - 0.10 -
4 K NI misses 0.05 0.05 0.49 0.49 0.49 0.49 0.57 0.57 0.45 0.45 0.27 0.27 0.12 0.12

unpins 0.00 0.02 0.00 0.46 0.00 0.37 0.00 0.30 0.00 0.24 0.00 0.07 0.00 0.03

check misses 0.04 - 0.25 - 0.49 - 0.54 - 0.43 - 0.25 - 0.10 -
8 K NI misses 0.04 0.04 0.46 0.46 0.49 0.49 0.55 0.55 0.44 0.44 0.25 0.25 0.11 0.11

unpins 0.00 0.01 0.00 0.40 0.00 0.33 0.00 0.16 0.00 0.14 0.00 0.03 0.00 0.02

check misses 0.04 - 0.25 - 0.49 - 0.54 - 0.43 - 0.25 - 0.10 -
16 K NI misses 0.04 0.04 0.38 0.38 0.49 0.49 0.54 0.54 0.43 0.43 0.25 0.25 0.10 0.10

unpins 0.00 0.00 0.00 0.25 0.00 0.17 0.00 0.09 0.00 0.07 0.00 0.01 0.00 0.00

Table 3.8: Average translation overhead breakdown: UTLB vs. Intr. (infinite host memory, direct-mapped translation cache with
cache index offsetting, and no prefetch)
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Application

Cache Characteristic Barnes FFT LU Radix Raytrace Volrend Water
Entries (per lookup) UTLB Intr UTLB Intr UTLB Intr UTLB Intr UTLB Intr UTLB Intr UTLB Intr

check misses 0.04 - 0.49 - 0.49 - 0.55 - 0.43 - 0.25 - 0.10 -
1 K NI misses 0.10 0.10 0.50 0.50 0.50 0.50 0.62 0.62 0.48 0.48 0.31 0.31 0.35 0.35

unpins 0.00 0.09 0.40 0.49 0.33 0.46 0.21 0.54 0.13 0.41 0.00 0.22 0.00 0.31

check misses 0.04 - 0.49 - 0.49 - 0.55 - 0.43 - 0.25 - 0.10 -
2 K NI misses 0.07 0.07 0.50 0.50 0.49 0.49 0.60 0.60 0.46 0.46 0.29 0.29 0.27 0.27

unpins 0.00 0.04 0.40 0.48 0.33 0.43 0.21 0.44 0.13 0.35 0.00 0.13 0.00 0.21

check misses 0.04 - 0.49 - 0.49 - 0.55 - 0.43 - 0.25 - 0.10 -
4 K NI misses 0.05 0.05 0.50 0.49 0.49 0.49 0.58 0.57 0.45 0.45 0.27 0.27 0.12 0.12

unpins 0.00 0.02 0.40 0.46 0.33 0.37 0.21 0.31 0.13 0.28 0.00 0.07 0.00 0.03

check misses 0.04 - 0.49 - 0.49 - 0.55 - 0.43 - 0.25 - 0.10 -
8 K NI misses 0.04 0.04 0.50 0.48 0.49 0.49 0.56 0.56 0.44 0.44 0.25 0.25 0.11 0.11

unpins 0.00 0.01 0.40 0.42 0.33 0.34 0.21 0.23 0.13 0.21 0.00 0.03 0.00 0.02

check misses 0.04 - 0.49 - 0.49 - 0.55 - 0.43 - 0.25 - 0.10 -
16 K NI misses 0.04 0.04 0.49 0.47 0.49 0.49 0.55 0.55 0.44 0.44 0.25 0.25 0.10 0.10

unpins 0.00 0.00 0.40 0.39 0.33 0.33 0.21 0.21 0.13 0.17 0.00 0.01 0.00 0.00

Table 3.9: Average translation overhead breakdown: UTLB vs. Intr. (4 MB host memory, direct-mapped translation cache with
cache index offsetting, and no prefetch)
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Applications vis glaze vdd fft barnes radix water

memory footprint 21.4 MB 39.9 MB 78.9 MB 57.4 MB 16.6 MB 54.4 MB 8.9 MB
host lookup hit 99.93% 99.99% 99.99% 79.38% 98.62% 67.36% 99.35%
lookup hit cost 0.65 µs 0.63 µs 2.41 µs 0.32 µs 0.46 µs 0.32 µs 0.40 µs
avg lookup pages 1.00 1.94 54.8 1.00 1.00 1.04 1.00
avg pin ovhd (NT) 54.3 µs 401.6 µs 939.0 µs 47.3 µs 53.1 µs 50.9 µs 55.6 µs
avg pages pinned (NT) 1.00 97.0 289.0 1.00 1.13 1.00 1.25

avg miss ovhd (NT) 63.4 µs 557.1 µs 1294 µs 50.7 µs 57.5 µs 54.6 µs 60.0 µs
predicted ovhd (Linux) 41.7 µs 410.1 µs 882 µs 34.7 µs 40.5 µs 42.0 µs 47.4 µs

avg host ovhd (NT) 0.69 µs 0.69 µs 2.54 µs 10.71µs 1.25 µs 18.04µs 0.79 µs
predicted ovhd (Linux) 0.68 µs 0.67 µs 2.50 µs 7.41µs 1.01 µs 13.92µs 0.71 µs

Table 3.10: UTLB performance without memory constraint



Chapter 4

Runtime Environments

A unique aspect of our scalable display wall system is the use of a PC cluster to drive

tiled displays. Its obvious advantage is low cost and close tracking of technology, because

high-volume commodity components typically have better price/performance ratios and

improve at faster rates than special-purpose hardware. On the other hand, the clustering

approach entails complex system software. Unlike a tightly-coupled multi-processor and a

uniprocessor system with multiple graphics cards which have mature operating systems to

transparently support all kinds of applications, a cluster of PCs is essentially a conglomerate

of relatively autonomous computers without a global and unified OS environment. How to

bring up a variety of applications on such a system is the challenge addressed in this chapter.

4.1 Introduction

Many applications either play back multi-media content, for example, MPEG movies,

HDTV streams, images, and VRML models, or allow users to interactively navigate con-

tent such as web pages and Macromedia Flash movies. The content usually conforms to

publicly-documented standards. Therefore, it is feasible, though sometimes tedious, to

81
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write special playback software to parse and play back these kinds of content for a cluster

environment.

Yet for many other applications, it becomes extremely difficult, if not impossible, to

apply the play-back approach. One reason is that the interactive behaviors of these applica-

tions are often encoded in the software itself rather than in the raw data, as in a Macromedia

movie. An example is a typical 3D game for personal computers. The scenes in the game

are described using standard file formats. Manipulation of the scenes and interpretation

of user inputs, on the other hand, is often a trade secret and hidden in millions of lines of

machine instructions. Another obstacle is the sheer amount of work required to write the

playback software that mimics the behavior of the original application. Consider Macrome-

dia Photoshop, a high-quality image editing tool. Many of its functionalities and features

are well known and described in textbooks and technical papers. However, to produce a

new software package that has similar “look and feel” would require many months of work.

One important objective of the Scalable Display Wall Project is to design a a runtime

environment for running and developing applications that we daily use on regular desktop

computers, but with much higher intrinsic resolution. This chapter focuses on the issue

of developing software tools to bring off-the-shelf, sequential applications to a scalable

display wall and run them efficiently at its intrinsic resolution.

Two models of program execution are studied: the master-slave model and the synchro-

nized program execution model. With the master-slave model, a master node executes an

application, intercepts all graphics outputs such as 2-D and 3-D primitives (polygons, lines,

points, etc), and sends them to the nodes that drive the tiled projectors for execution. With

the synchronized execution model, an instance of the application runs on each of the nodes

that drive the tiled projectors. Multiple instances are synchronized and coordinated so that

they act as if they are a single application designed for the scalable-resolution display sys-

tem. The synchronization (or coordination) can be done either at the application level via a
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programming API or by the runtime system transparently.

We have designed and implemented four software tools to support these two execution

models. They are

• Virtual Display Driver (VDD), which supports 2-D Windows applications using the

master-slave model,

• A Distributed GL tool that supports 3-D applications using the master-slave model,

• A runtime system that supports applications using the synchronized program execu-

tion model, and

• A system-level tool that supports applications using the synchronized program exe-

cution model.

In order to understand the performance implications and resource requirements of each

method, I measured several 3-D applications with our software tools on the scalable display

wall system. The results show that the master-slave model works reasonably well for ap-

plications that send few or no graphics primitives during each frame. The runtime support

for the synchronized program execution model achieves similar or sometimes better per-

formance than the master-slave model. The application-level synchronization tool, when

source code modification is possible, can achieve much better performance and improve

the application response time. Of the two applications that I measured, a factor of two to

five of improvement is achieved through application-level synchronization.

4.2 Previous Work

The common way to run digital applications on a video wall is to use the video content

scaling hardware (video processor) to drive an application’s output on a tiled display sys-
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tem. This approach does not allow applications to use the intrinsic resolution of the tiled

displays.

Various kinds of tiled display systems have been constructed for data visualization dur-

ing the past few years. Examples include the Power Wall at the University of Minnesota,

the Infinite Wall at the University of Illinois at Chicago [24], the Office of the Future at

UNC [74], the Information Mural at Stanford [40], and various immersive products from

several vendors. In most cases, an SGI Onyx2 or equivalent high-end machine with mul-

tiple graphics pipelines is used to drive multiple projectors. Since these systems are not

using a PC-cluster architecture, they do not address the issue of software support for run-

ning sequential, off-the-shelf applications on a scalable resolution display wall.

The idea of executing graphics primitives remotely can be found in X windows [78].

The tools such as VDD and GRL described in this chapter leverage and extend these ideas

for remote graphics primitive executions for scalable resolution displays. VDD intercepts

primitives in a device driver and executes them remotely at the user level whereas GLR

substitutes primitives in a local OpenGL library. The mechanisms for remote procedure

call [62, 6] and remote execution model [84] have been investigated in the context of pro-

gramming languages.

The parallel graphics interface designed at Stanford [44] proposes a parallel API that al-

lows parallel traversal of an explicitly ordered scene via a set of predefined synchronization

primitives. The goal is to expose parallelism while retaining many of the desirable features

of serial programming. The parallel API was not designed to execute multiple instances of

a sequential program on a scalable display system built with a PC cluster.
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4.3 Existing Desktop Applications

Our first approach to bringing desktop applications onto the display wall is to run the ap-

plication on a master node, intercept the graphics primitives that the application generates,

and send them over the network to the render nodes (or the slaves). Figure 4.1 shows

a conceptual diagram of this master-slave approach. The primitives can be broadcast to

all render nodes or, as an optimization, be sent only to the nodes with whose screen tiles

they overlap. In either case, a slave node performs view-frustum clipping to render those

primitives within its screen tile.

Render Node

Render Node

Render Node

Switch

Network
graphics primitives

graphics primitives

System Graphics Subsystem

Application

Interception Layer

Figure 4.1: Conceptual view of the master-slave approach

Clipping 2D primitives is straightforward. For 2D vector graphics, this means trans-

lation of the 2D coordinates in the global display space to the local coordinates on each

render node. The translation is simply an addition of offsets in X and Y directions. The

task is even simpler on the Windows platform. One can define a viewport transform to

for the graphics device that does exactly this. Windows automatically applies the viewport

transform to all subsequent drawings. For bitmaps, the render node selects a portion from

the bitmap that falls within its screen tile. Once again, this can be trivially accomplished

by specifying the appropriate rectangle to a bitblt operation.

To clip 3D primitives, the render node can simply specify a sub-volume of the global
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viewing frustum as its viewing frustum. This sub-frustum can be trivially calculated using

the screen tile’s relative position in the global display space.

Ideally, primitive interception should be transparent to the applications, so that we can

run any application binaries and have their graphics shown on the display wall without

source modification or re-linking. This means that we inject the interception mechanism in

the master node’s graphics subsystem that sits beneath the running application. We found

two ways to implement the transparent interception mechanism: via a virtual display driver

and by replacing a dynamically-linked library (DLL).

4.3.1 Virtual display driver

Display
Driver

System Graphics Engine

Display Driver Interface

operating
system

Graphics Library (GDI)

Application

(1) A typical Display Driver architecture

hardware-specific   commands

video adapter

user mode

kernel mode

System Graphics Engine

Display Driver Interface

operating
system

Graphics Library (GDI)

Application

(2) The Virtual Display Driver architecture

graphics    primitives

Virtual
Display
Driver

via the network to remote render nodes

Figure 4.2: Architectural diagrams of a typical display driver and a virtual display driver
(VDD)

In a typical PC operating system such as Microsoft Windows NT and Linux, the graph-

ics subsystem is implemented by a display driver, which speaks a standard protocol to

the application layer on one side, and translates the application’s graphics commands into
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device-specific commands on the other side. The interface between the application layer

and the display driver is standardized on a given operating system, so as to allow any graph-

ics accelerator vendors to implement their own vendor-specific drivers. Therefore, we can

implement a virtual display driver that acts as if it operated a real piece of graphics hard-

ware, but actually takes the graphics commands (or primitives) from the application layer

and sends them over the network to the render nodes. Figure 4.2 illustrates the common

block structure of a typical display driver and that of a virtual display driver.

An advantage of using such a virtual display driver is that it presents to the applications

a large display with intrinsically high resolution. The applications and the operating system

normally query the display driver to obtain its screen resolution and adjust the windows,

menus, and drawing parameters accordingly. Unconstrained by the actual graphics hard-

ware, the virtual display driver is free to fake a display with an arbitrarily large number of

pixels, causing most applications to adapt their drawing resolutions to the high resolution.

As a demonstration, we ran Microsoft PowerPoint on our 8-node Display Wall. In its “slide

sorter view” mode, PowerPoint placed many slides on the display with clear definition for

even the smallest fonts.

Due to the compact nature of the display driver protocol, implementing a virtual display

driver is usually not a daunting engineering task. For example, on both the Windows NT

4.0 and Windows 2000 operating systems, the protocol between the 2D drawing layer in

the application and the display driver, the Display Driver Interface (DDI), consists of no

more than 25 commonly used graphics commands for drawing bitmaps, lines, polygons,

etc. However, there are still several non-trivial issues in implementing a virtual display

driver. The first issue is to translate the graphics objects that are meaningful in the master

node’s kernel environment to those that can be used by the render nodes. An example of

this translation is the drawing surface object that is passed as an argument in most DDI

commands to the virtual display driver. The surface object can either identify a bitmap
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stored internally in the kernel or the drawing surface.

The second issue is performing bitblt across the render nodes. Unlike the bitblt oper-

ations on a single PC, the bitblt operations among render nodes transfer pixels across the

network. Similar to the operations on a single PC, the order of operations is important.

Another method is to refresh from the master node, which is inefficient.

The third issue is how to distribute the graphics primitives efficiently among the render

nodes. This issue is common to both virtual display and DLL replacement approaches. We

postpone its discussion until Section 4.3.3

One can use the virtual display driver to implement most drawing protocols on the

Windows operating system: DDI and DirectDraw for 2D drawing, and Direct3D for 3D

rendering. Similarly, we can also implement the X Windows Protocol [78] The X Windows

server already embodies the concept of a virtual and networked display. In this case, the

virtual X Windows server is situated on the master node, and speaks the X protocol to local

applications. It takes and translates the application’s X Windows commands and forwards

them to the render nodes.

As a final note, the applications running on the master node still receive user inputs

through conventional channels such as from a real keyboard and a real mouse. We are

experimenting with virtualizing the user inputs as well, so that user interactions with the

applications (and hence with the display wall) are no longer restricted to the keyboard and

the mouse attached to the master node.

4.3.2 DLL replacement

On modern operating systems, many services no longer reside inside the OS kernel. In-

stead, they are provided as dynamically-linked libraries (DLL) and are linked into the ap-

plications by the OS runtime. An example of this is the opengl32.dll on Windows

NT/2000 operating systems. This dynamically-linked library contains a default implemen-



CHAPTER 4. RUNTIME ENVIRONMENTS 89

tation for OpenGL renderings. OpenGL is an industrial standard for high-performance 3D

rendering. It is based upon a stateful client-server interaction model. Major OpenGL com-

mands include those that change and retrieve the states on the server side, for example,

setting the model transformation matrix, and those that specify the actual rendering primi-

tives, for example, 3D vertex and color specifications. The default OpenGL implementation

in opengl32.dll performs most rendering stages on the CPU and then calls Windows’

2D drawing API, GDI, to carry out the final rasterization, i.e., converting a 2D line or

2D polygon to actual pixels on the screen. If the graphics accelerator vendor implements

OpenGL in hardware, a vendor-supplied OpenGL DLL is also linked into the application;

all OpenGL calls made by the application are forwarded to the vendor-supplied DLL by

opengl32.dll.

To intercept the OpenGL commands from an application, we can either write a replace-

ment DLL that has a compatible interface with the native opengl32.dll or one that is

compliant with the OpenGL vendor DLL interface. This latter method is less of a hack than

former, and can be well integrated with the virtual display driver.

An advantage of using DLLs to intercept graphics primitives is that communication

between the master node and the render nodes occurs at the user level. Not only is it eas-

ier to debug this approach, it can also leverage several efficient user-level communication

implementations, including the one developed by us [21, 90, 32].

The drawback of this approach is that the API exported by the DLL is typically large,

and highly complex in some cases. This is why writing a virtual display driver for 2D

Windows applications is a less painful job than writing a corresponding replacement DLL.

One exception is the OpenGL API. It is a fairly regular and well thought-out interface.

Even though there are between 200 and 300 calls in the API, we were quite successful at

automatically generating the bulk of the replacement DLL using a simple parser.
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4.3.3 Discussion

A remote display protocol is a general solution. It does, however, have a potential prob-

lem in efficient distribution of graphics primitives. An obvious solution is to broadcast

the graphics primitives to all render nodes. System-area networks today typically imple-

ment point-to-point communication via a switch. Few networks except Ethernet implement

broadcast or multicast in hardware. We currently employ a ring topology to broadcast

graphics primitives in 64 KB chunks over Myrinet. This method may incur high latency

as the number of projectors scales up. Another common broadcast topology is a binary

balanced tree. Although its latency is O(log(N)), this topology may suffer from poor

bandwidth because each network endpoint has to send two copies of each packet out to its

children. Efficient broadcast over a point-to-point network still remains an open problem.

Aside from lacking an efficient broadcast mechanism, the primitive distribution speed

in the master-slave approach is essentially constrained by the speed of the outgoing network

link on the master node. The network interface is typically connected to an I/O bus. Its

bandwidth is often an order of magnitude smaller than that of the internal memory bus.

For immediate-mode applications that generate 3D primitives for each frame, this means

they may run slower on the display wall than on a single machine. The slow-down factor

may not be an order of magnitude, because the primitive rendering task is now partitioned

among many render nodes according to the screen tiles. But when these immediate-mode

applications, typically 3D games, are written for a balanced system where the graphics

accelerator’s performance matches the bandwidth of the local graphics/memory bus, the

relatively slow network link will definitely hamper the rendering rates of the display wall

system.

Many retained-mode applications, however, will not suffer from the network bottle-

neck. These applications largely deal with static scenes whose rendering can be compiled

into OpenGL display lists or the like. The master node only pays an up-front cost to send



CHAPTER 4. RUNTIME ENVIRONMENTS 91

the rendering commands for each display list to the render nodes. It then can simply issue

rendering commands by referencing the display lists. As a result, very little data, other than

changes in the viewing position and the movements of the objects, must be sent over the

network.

4.4 Synchronized Program Execution

The basic idea in synchronized program execution is to run multiple instances of a program

on the display wall render nodes. The execution of these program instances are synchro-

nized at some level, with respect to a synchronization boundary, so that within this bound-

ary these instances assume identical behaviors. As a result of synchronization, the program

instances generate identical scene descriptions, which can simply be identical OpenGL 3D

primitives across all render nodes or some higher-level scene description that each node

instantiates in a tile-specific fashion.

In the first scenario, as depicted in Figure 4.3, the graphics accelerator performs tile-

specific culling and only renders those primitives that fall within its respective screen

tile. This can be enabled by setting the appropriate view frustum matrix for each render

node [34].

In the second scenario, as illustrated in Figure 4.4, the higher-level scene description

can be fed into the view-dependent software layer that generates tile-specific primitives. An

example of the second scenario is a scene graph render program that organizes the scene

data in a hierarchy of objects. Given a tile-specific view frustum, the program can remove

the objects that fall completely outside the frustum.

To better illustrate our idea, we partition a program conceptually into two components:

scene management and scene rendering. The scene management component interacts with

the program’s operating environment, for example, reading files and getting the keyboard
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Figure 4.3: Full replication of multiple program instances

and the mouse inputs, and changes its internal behaviors accordingly. In other words, the

scene management responds to the events in the environment; its behaviors are completely

determined by its interaction with the environment. The scene rendering component takes

from the scene management layer the scene description, from which it generates the graph-

ics primitives. The picture is even clearer if we take a pipeline view of a program, as

illustrated in Figure 4.5. The upper stage of the pipeline, the scene management, is syn-

chronized across all render nodes. Beneath the synchronization level, the scene rendering

layer is free to perform any tile-specific tasks, provided its actions do not alter the behavior

of the scene management layer.
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Figure 4.4: Tile-specific primitive generation in application-level synchronization

4.4.1 Synchronization infrastructure

Our program synchronization framework consists of a thin synchronization layer on each

render node and a coordinator. The synchronization layer intercepts certain function calls

made by the scene management component of the program to interact with the environment.

For each intercepted function call, the results from one render node are picked by the

coordinator and sent to the other nodes.

Each synchronization of a function call acts like a barrier synchronization. Since the

result from only one node is sent back to other nodes, one can use an efficient broadcast

topology such as a multi-cast tree to implement a call synchronization. Furthermore, only

those function calls that can potentially alter the program behaviors need to be synchro-

nized. They typically include calls to query keyboard and mouse inputs, calls to read the
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Figure 4.5: The pipeline view of the two program components

system timers, and file I/O operations. Most of these calls have results that are small in

size. Hence synchronizing these calls require little communication bandwidth, though low

communication latency is vital to keeping the synchronization overhead down. Large file

reads can be synchronized with an efficient multicast mechanism such as the UDP-based

broadcast mechanism that we describe later in the paper.

The actual placement and implementation of the synchronization layer depends on

whether we employ system-level or program-level synchronization.

4.4.2 System-level program synchronization (SSE)

The goal of system-level program synchronization (SSE) is to replicate a program on mul-

tiple nodes in a transparent fashion, i.e., without modifying and re-linking the program. We

also require that SSE incur very low overhead, even as the number of nodes in the system

scales. System-level program replication has been studied in the context of fault-tolerant

computing. In Hypervisor, Bressoud et al proposed a method that treats an actual software

system as running on a virtual machine [12, 13]. In their framework, two or more such sys-
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Figure 4.7: Program synchronization at the system-call level

tems can be replicated by synchronizing the run-time semantics of the virtual machine I/O

instructions. However, the virtual machine defined in Hypervisor is too close to the actual

microprocessor architecture. The fine-grain synchronization causes excessive overhead and

slows down the program by as much as a factor of 2.

In order to avoid the high overhead incurred by the Hypervisor approach, we define a

virtual machine as the operating system. The macro instruction set of this virtual machine

is the system-call API defined on the OS, as shown in Figure 4.7. For a single-threaded

program, one can prove that synchronizing at the system call level leads to synchronized

program execution. The reason is that code execution is deterministic from the micropro-
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cessor architecture’s point of view. A single-threaded program’s execution path is only

influenced by external events. The way these external events affect the program behavior is

through the system-call interface and signal handling on UNIX. It follows that if we make

the interaction between the program and the OS environment identical on all nodes, the

program instances will all follow the same execution path and exhibit the same behavior,

and as a result, produce the same graphics primitives.

We have made a few simplifying assumptions in our SSE approach. First, we ignore

those programs that interact with the rest of the system via shared-memory segments, be-

cause in such cases we have to intercept all reads and writes to the shared-memory segments

in order to achieve exact program replication. Second, we assume most programs access the

CPU cycle counter via a well-defined API, such as the QueryPerformanceCounter()

on the Windows platform, so that we can intercept these accesses as well. For programs

that use assembly instructions to read the cycle counter, as allowed by the Intel architecture,

we could certainly edit the program binary and replace offending instructions with calls to

a special handler. In practice, however, this need has not arisen.

Our SSE mechanism does have one limitation: it is not guaranteed to work with ar-

bitrary multi-threaded applications. The problem lies in the fact that it is hard to ensure

identical interleaving of threads among multiple program instances. This problem becomes

even harder for multi-processor nodes on which several program threads can be running at

the same time, because in this case the threads can interact with each other via shared phys-

ical memory. To capture such interactions we would have to intercept the load and store

instructions, basically going back to the Hypervisor approach.

Among numerous system calls a program makes, only a handful of them can alter

program states. They include the calls to query Window messages and the system timer.

Therefore, our system-level synchronization layer only performs synchronization for these

selected system calls. Our system call synchronization technique works primarily for pro-
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grams with a single thread. In theory, it should also work for those multi-threaded pro-

grams, in which a single thread interacts with the environment while the other threads

simply compute the scenes without affecting the internal states of the program.

4.4.3 Application-level program synchronization (APE)

Program replication at the system call level can transparently synchronize multiple program

instances. However, it is not guaranteed to work for multi-threaded programs. In addition,

since the system-level approach treats the entire program as a whole, it cannot separate

the program into scene management and scene rendering components and let the latter

perform tile-specific primitive generation and rendering. We can solve these two problems

by moving the synchronization boundary into the application itself.

The same mechanism for system-level program synchronization can be used to syn-

chronize program instances at the application level. Instead of system calls, we syn-

chronize function calls within the application. We currently provide a simple API call,

SynchronizeResult() to let all render nodes get consistent results. Figure 4.8 illus-

trates the semantics of a function call synchronization. One can also imagine building a

sophisticated interface description language (IDL) that automates the synchronization of

user functions.

synchronized fun F (a1, a2, ...) =⇒ result :
tmp⇐= F (a1, a2, ...)
SynchronizeResult(tmp)
result⇐= tmp

Figure 4.8: The semantics of a function call synchronization

To facilitate calculation of the tile-specific view frustum, we also provide two function

calls, QueryDisplayInfo() and GetLocalViewFrustum(). The first call returns

a render node’s screen position and its node ID in the tuple (GlobalScreenRectangle,
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MyScreenRectangle, MyNodeId). The second call takes a global view frustum, as

defined in a single-node version of the program, and calculates the local view frustum based

on the node’s tile position in the display wall.

An application can take advantage of application-level synchronization by simply per-

forming high-level object culling based on its local view frustum. Given N projectors in

a display wall, each screen tile has only 1/N of the the global frustum. Generally this re-

sults in a small fraction of objects for each render node to render. Instead of generating all

the primitives and letting the graphics accelerator throw out primitives that fall outside the

local frustum, the scene rendering component of each program instance can reject a group

of graphics primitives or avoid generating them, by comparing their bounding box with its

view frustum. Such high-level culling needs much less computation time and consumes

far less local bus bandwidth. And it is generally easy to implement. Note that this kind of

high-level culling is not possible in the master-slave approach, because the master has to

generate primitives for the entire global view frustum.

With more programming effort, one can further reduce the amount of computation re-

quired to generate graphics primitives. Many data visualization applications that deal with

large data sets belong to this category. One example is an isosurface extraction program

developed in our department. An isosurface of a 3D scalar field is made of points, the

isopoints, that have the scalar value of a given constant. Extracting isosurfaces is a very

useful technique to understand complex volume data that are generated by many medical

applications like CT and scientific computations such as astrophysics simulations. These

applications often generate scalar fields that are sampled at discrete points in 3D space.

The isosurface in these cases is a smooth interpolation of discrete isopoints. Traditional

isosurface extraction algorithms extract the whole isosurface. However, the size and com-

plexity of datasets is constantly growing. Due to the high depth complexity and the large

dimensions of the dataset, typically only part of the isosurface is visible. Isoview is an
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isosurface extraction program that tries to extract only the visible portion of the isosur-

face. The algorithm casts a certain number of rays from the eye through the screen into the

dataset and calculates the intersection of the ray and the isosurface. From the intersection

point, by exploiting isosurface’s continuity property, part of the isosurface can be extracted

efficiently.

my screen

displaywall

eye point

displaywall

GetDisplayInfo()

Compute ViewFrustum

Cast Rays

Generate Isosurface

Draw Primitives

Graphics

Accelerator

local     graphics/memory bus

global extraction and    rendering parameters

Scene Management :
keyboard callback
mouse callback, etc

Application-level Synchronization Layer

Figure 4.9: The flow diagram of the APE version of isoview

Running IsoView on the Display Wall can give the user more details and information

about the data. Since this algorithm is screen-space based, it can be easily parallelized

on the Display Wall. We partitioned the program into two components, the management

and the extraction. The management component obtains user directives such as mouse and

keyboard inputs. It sets the meta state of the program, which is synchronized by a function
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call that every program instance makes prior to performing the actual isosurface-extraction

algorithm. The extraction component obtains the meta state and a node-specific screen tile

position and calculates the perspective projection matrix that is used for both rendering and

ray-casting. Data partitioning is automatically obtained through partitioned ray-casting.

Figure 4.9 depicts the conceptual flow of the isoview program using application-level syn-

chronization. Very little extra work is required to make the single-node isoview program

into a display wall-aware version employing application-level synchronization. It took us

only half an hour.

4.4.4 Past work on program replication

Synchronizing multiple instances of a same program has been studied by the fault-tolerant

computing community. An early technique relied on a specially-built processor pair that

executed instructions in lock steps. The memory accesses by the processors are checked

by a special logic located between the processors and the memory subsystem. A third mi-

croprocessor was typically included in the mirror pair to provide what is known as triple

modular redundancy (TMR). Some commercial vendors extended the hardware mirroring

concept throughout the entire computer system to provide very high degree of availability

in face of hardware component failures [4, 91]. Synchronizing processor pairs at the in-

struction level provides a transparent means to replicate program instances; the program

need not be rewritten in order to run such a processor pair. However, this technique not

only requires expensive engineering efforts, but also faces a tremendous difficulty to keep

up with the rapid increase of CPU clocks.

As an alternative, several commercial vendors of fault-tolerant computer systems pro-

vide special programming API to synchronize program instances in software. For example,

on a Tandem computer system, an application uses messages to communicate with the op-

erating system and other system services. Multiple instances of the application can be
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brought to be in sync as long as the messages they send and receive are synchronized, pro-

vided that between any two messaging events the application follows a deterministic exe-

cution path. A traditional architecture that only supports single-threaded execution guaran-

tees this deterministic property. For a multi-processor multi-thread environment, program

synchronization requires a special API at a level higher than messaging and application-

specific programming.

Bressoud et al investigated a system-level approach to automatically and transparently

replicate programs [12, 13]. Their key insight is that by virtualizing the hardware on which

the program and the operating system runs, one can implement the traditional processor-

pair approach as mirroring a virtual machine pair. The study by Bressoud et al further

demonstrates that only a few I/O instructions in the virtual machine instruction set re-

quire synchronization. Their results show that two synchronized computer system using the

virtual-machine-pair (or Hypervisor) approach runs at worse twice as slow as one system

without synchronization. A significant benefit of the Hypervisor approach is that virtual

machine synchronization (or replication) can be done entirely in software, thus can keep

close track of the processor technology.

Unlike Hypervisor, our purpose is to synchronize a specific application program instead

of the entire system. A Hypervisor-like virtual machine that mimics the actual processor is

an overkill and incur too much synchronization overhead, as synchronization is performed

on each I/O instruction. Instead, we lift the virtual machine abstraction even higher, and

consider the interface between the application and the operating system as the virtual ma-

chine abstraction 1. Synchronizing program instances at such a macro level reduces the

synchronization frequency. In our case, it makes synchronization cost almost negligible.

1Although we came up with this technique independently, we did later find a U.S. patent about exactly
the same technique [11].
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4.4.5 A unified view

The two seemingly disparate approaches that I have just described, the master-slave model

and the synchronized program execution model, can be really thought of as the two ex-

treme cases of a single approach, that of separating a program into two communicating

components. In the former model, the bottom layer that interprets and executes OpenGL or

Display Driver commands is yanked out of the host machine, on which the application is

running, and placed on remote render nodes; whereas in the latter, the entire program minus

the part feeding user inputs, is put on remote render nodes. In either case, some form of

synchronization is necessary to keep the components on render nodes running in sync with

each others. For the master-slave model, we employed synchronized swapping of frame

buffers; and to synchronize multiple program instances, we intercepted and synchronized a

few key system calls.

Since as I just said that the two cases represented two extremes, there ought to be other

approaches that are amidst the spectrum. The general methodology would be to parti-

tion a program into two components such that either communication across the component

boundaries is at minimum or (sometimes and) computation loads in both components are

balanced. Automatic decomposition of a program is a very difficult task. With a proper

representation of the software, for example, a collection of COM objects, each of which

has well-defined interfaces, this task might just be achievable. In a different context, Hunt

and Scott devised a clever technique to distribute a program, composed of several hundred

COM objects, over a network of workstations [42]. Their graph-theory-based algorithm

minimizes communication among collections of components. One can imagine that the

same technique can be borrowed to partition interactive programs to run on our cluster-

based display wall. I believe this is a very promising and interesting research direction.
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4.5 Experimental Results

We have implemented all four approaches described in the previous sections: VDD (Virtual

Display Driver), GLR (GL-DLL Replacement), SSE (System-level Synchronized Execu-

tion), and ASE ( Application-level Synchronized Execution). These tools all run on the

scalable display wall prototype system described in Section 2. In writing the SSE tool, we

used the Detours package from Microsoft Research [41]. It is a binary re-write tool for

intercepting any functions in a program or a DLL.

The display wall system has two communication mechanisms available to applications:

the Microsoft Winsock over the 100 Mbit/sec Ethernet, and VMMC over the Myrinet.

VDD, SSE and ASE all use the Winsock protocol while GLR uses VMMC. The main

reason for the difference is that GLR requires a fast communication mechanism to run

well. If a 3D application generates a large number of polygons at run time or so called

immediate mode in GL, GLR needs high-performance communication paths to the render

nodes to send polygons efficiently. The other three tools do not need to transfer polygons

among nodes, so they work well with the Ethernet.

We used these tools to run two sets of applications in our experiments. The goal is to

understand the tradeoffs of these tools in terms of speed, memory requirements, commu-

nication requirements, I/O requirements, and software development efforts. The first set

of experiments use VDD, SSE and ASE to run with a set of 2D applications. The second

set use GLR, SSE, and ASE to run with a set of 3D applications. The rest of this section

reports our experimental results.

4.5.1 2D applications

VDD, SSE and ASE environments support 2D applications. Our experience with the VDD

environment is quite positive. Although VDD uses Microsoft’s Winsock over the Ethernet
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as its communication mechanism, it runs most 2D-primitive based desktop applications on

the display wall reasonably well. In the laboratory, we typically use VDD to run applica-

tions such as Adobe Photoshop, MS Powerpoint and MS Internet Explorer in the intrinsic

resolution of the display wall.

Because of the high resolution and the scale of the display wall, the usage patterns of

these 2D applications are different from using a desktop. For example, we noticed that

users would like to use the slide sorter of the Microsoft’s Powerpoint to look at the entire

presentation instead of using the slide show.

These popular applications do not work with SSE and ASE. SSE works only with ap-

plications that use a single thread to communicate with the external environment and ASE

requires modifying their source codes by adding a line to invoke the ASE environment.

These popular programs satisfy neither of the conditions.

We found that the communication requirements vary, but four GDI functions that makes

up more than 99% of the calls. The following table shows when Swirl, Powerpoint and

Internet Explorer applications run on the wall, for 5, 2 and 2 minutes respective, how many

times each of these functions were called:

BitBlt CopyBits TextOut LineTo

Swirl (Flash app) 30 2,878 8 0

Powerpoint 648 702 35 85

Internet Explorer 9,377 547 2,349 846

The next table shows the average size of data in bytes each call sent over the network:

BitBlt CopyBits TextOut LineTo

Swirl (Flash app) 488 1,116,470 825 0

Powerpoint 124 44,483 1,571 30

Internet Explorer 218 314,273 1,727 13,284
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Whether the VDD approach is a practical approach for running 2D desktop applica-

tions on the display wall depends on the communication requirements of applications. For

bitmap based applications, the communication requirements for VDD may be too high. For

2D-primitive based applications, the VDD approach works well.

4.5.2 3D Applications and Results

Applications/Methods
Performance Metrics Cars GLQuake Atlantis Isoview

GLR SSE ASE GLR SSE ASE GLR SSE ASE GLR SSE ASE
frame time (ms) 370 325 - 80.6 65.7 - 147.6 86.2 57.9 20163 16825 4798
sync cost/frame (ms) - 4.9 - - 20.0 - - 2.1 1.8 - 2.0 3.6
sync msgs/frame (count) - 4 - - 8 - - 2 2 - 2 3
data size/frame (KB) 99.2 0.47 - 174 0.82 - 3300 0.24 0.19 46500 0.24 0.48

Table 4.1: The performances of three methods: GL-DLL Replacement (GLR), System-
level Synchronized Execution (SSE), and Application-level Synchronized Execution (ASE)

We have selected 4 representative applications: Cars, GLQuake, Atlantis, and Isoview. We

chose these applications to cover a wide range of 3D animation characteristics.

• Cars: This is a demo program of the WorldUp Toolkit from EAI, Inc. It renders

a virtual-reality scene that includes two highly sophisticated car models in an exhi-

bition hall. There are a lot of texture details and fancy lighting in the scene. The

cars themselves are made up of 200,000+ polygons each. This makes rendering time

the dominant cost. All the objects in the scene are made into OpenGL display lists.

The GLR tool needs to send the display lists once at the beginning of the program

execution.

• GLQuake: This is an OpenGL program to view Quake scenes, downloaded from

the Internet. The Quake scene description is in BSP-tree format. By parsing the BSP

tree, the program generates polygons in real time. The scene that we use is fairly

simple, containing only 12,722 polygons.
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• Atlantis: This is a demo program from Silicon Graphics, Inc. It simulates a pool

of swimming sharks, whales, and a dolphin. The body poses for each object are

computed in real time, so it is not possible to use OpenGL display lists to avoid

generating polygons for each frame. In our experiment, we increased the number

of sharks to 300 to simulate a lively scene with many fish. This results in a large

number of graphics primitives for each frame. Furthermore, in the application-level

synchronization version of the program, we perform object culling based a coarse

bounding sphere for each shark.

• Isoview: This is a program to visualize the isosurfaces of volumetric datasets. The

program extracts a 3D surface from the data where F (x, y, z) = v for a given thresh-

old v. The program uses a combination of ray casting and isosurface propagation

techniques to extract only the visible portions of the isosurface. Since the program

allows users to change the view of the isosurface dynamically, it has to generate poly-

gons for each frame at run time. Our experiment uses Isoview to view 256×256×209,

a down-sampled version of the dataset of the head of a visible woman [64]. The vi-

sualization of the data typically generates about hundreds of thousands of polygons

per frame. With the ASE tool, this program performs high-level object culling.

The following table summarizes the features of the four 3D applications:

Applications GL features # Polygons/frame Source

Cars display list 200,000 no

GLQuake immediate 12,722 no

Atlantis immediate 94,549 yes

Isoview immediate 645,237 yes

Since the source codes of Cars and GLQuake are not available, we are not able to run them

with the ASE tool.
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Table 4.5.2 shows the results we gathered from running the four applications with GLR,

SSE and ASE on the display wall system. The performance metrics include the average

time for each frame, the number of synchronization messages and synchronization over-

head (when appropriate), the amount of data sent over the network, and the maximum

amount of memory consumed on each render node.

The frame times for each application running with the three tools are also plotted in

Figure 4.10.
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Figure 4.10: Frame time comparison of three methods

Our results show that the application-level synchronized execution approach using the

ASE tool is the most efficient approach. For Atlantis, ASE is 2.5 and 1.48 times faster than

GLR and SSE respectively. For Isoview, ASE is 4.2 and 3.5 times faster than GLR and SSE

respectively. The second fastest is the system-level synchronized execution approach with

the SSE tool. The master-slave approach with the GLR tool is the least efficient among the

three.

There are two main reasons why ASE is the most efficient. The first is that its commu-

nication requirements are very small, less than 500 bytes per frame for either application.

The second is that ASE provides each render node with opportunities to avoid doing dupli-

cated work for other render nodes. To take advantage of this approach, one needs to modify
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the application to perform high-level object culling according to the knowledge about the

tiled screen space. Our experience with both Atlantis and Isoview demonstrates that with

a convenient mechanism such as application-level synchronization, one can easily modify

the application codes. In the Atlantis case, the resulting reduction of shark pose computa-

tion and graphics primitives averages 50% for each render node. On the other hand, this

approach requires accessing application source codes.

The system-level synchronized execution approach with the SSE tool works quite well

without having to access application source codes. Similar to the application-level syn-

chronized execution approach, it imposes very little communication overhead in all appli-

cations.

The master-slave approach using the GLR tool works reasonably well with applications

that use display lists, because polygon data need to be transferred only at the beginning of

the program and very little data during each frame. For example, the master node running

the Cars program sends roughly 99 KBytes worth of data to the render nodes during each

frame. Its performance is comparable to that of the system-level synchronization which

requires very little communication. We do notice the frame time difference of 45 mil-

liseconds between the master-slave approach and the SSE approach for the Cars program.

Its cause is still unclear to us. We are investigating this issue using detailed performance

monitor.

The master-slave approach is sensitive to the amount of immediate-mode graphics prim-

itives. With the GLQuake program, the GRL tool has about 15ms overhead. This is because

the program creates only a relatively small number of polygons per frame which trans-

lates to about 174 Kbytes per frame. With Atlantis and Isoview, the overheads are 61.4ms

and 3338.7ms respectively because these two programs require the master node to transfer

3.3Mbytes and 46.5Mbytes per frame respectively. However, the percentage difference in

the case of isoview is relatively small, because the computation time dominates.
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Therefore, our conclusion is that for immediate-mode applications with low compu-

tation time per primitive, synchronizing multiple instances at the system level has a clear

advantage over the master-slave approach. When per-primitive computation is high, com-

munication time becomes either less significant or completely negligible due to its overlap-

ping with computation.

On the other hand, the master-slave approach is the best in terms of memory require-

ments. The master node runs a single copy of the application on the master node, whereas

SSE and ASE runs an instance of the application on every render node. The application-

level synchronized execution approach can have smaller working sets than the system-level

synchronized execution approach when it performs high-level object culling.

4.6 Conclusions

In this chapter I described four software tools for bringing off-the-shelf, sequential appli-

cations onto a scalable display wall system. We have used these tools to experiment with

several 2D and 3D applications on our display wall system to study the scalability issue.

What we have learned is that these methods have different tradeoffs in terms of speed,

memory requirements and communication requirements.

The master-slave approach does not scale well in performance for applications that gen-

erate a large number of primitives dynamically, but it scales well in terms of memory re-

quirements. Our experience with the GLR tool, for example, shows that the approach works

reasonably well with 3D applications that use display lists whereas it performs poorly with

applications using immediate-mode 3D primitives. Despite of its performance drawbacks,

it is quite convenient to use.

The synchronized execution approaches trade memory space for less communication

requirements. The system-level synchronized execution approach scales well in perfor-
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mance because its communication requirements are minimal. Our experiment with the

SSE tool, for example, shows that it performs better than the master-slave approach with

all applications. Like the master-slave approach, it requires no source code modifications to

applications. Unlike the master-slave approach, the SSE tool works only with applications

that use a single thread to communicate with the external environment.

The application-level synchronized execution approach is the most efficient method

when one performs high-level object culling. For Atlantis, ASE is 2.5 and 1.48 times faster

than GLR and SSE respectively. For Isoview, ASE is 4.2 and 3.5 times faster than GLR

and SSE respectively. By default, this approach takes the same amount of memory as

the system-level synchronized execution approach, but by high-level object culling, it can

reduce memory requirements. Unlike the system-level synchronized execution approach,

this method works with all applications though it does require application source code

modifications.

The software tools development described in this chapter is our first step towards un-

derstanding how to build scalable display wall software systems. Our studies have several

limitations. First, our GLR tool was implemented using the VMMC on Myrinet. Although

the comparisons are conservative from the point of view of the synchronized execution

model, it would be better if we can port the implementation to Winsock on the same Ether-

net.



Chapter 5

Conclusions and Future Work

In preceding chapters, I have described the architecture of a scalable, high-resolution dis-

play system and three research issues involved. The philosophy of this architecture is to

use commodity components as basic building blocks, and design a software glue layer to

integrate them into a single-image, seamless display system. Our prototype display system

consists of an array of tiled projectors and a cluster of PCs inter-connected by a high-speed

system-area network. The three research issues that were explored in this dissertation are

(1) automatic alignment and color balancing of a multi-projector display, (2) efficient ad-

dress translation for a user-level communication system, and (3) runtime environments for

a cluster-based scalable display system.

Seamless tiling In order to make it easy to build a multi-projector display, we developed

methods to automatic align and color balance projectors. The automatic alignment algo-

rithm employs an inexpensive video camera to obtain precise, relative measurements and

a global optimization technique, simulated annealing, to derive digital corrections. Pixel-

level alignment accuracies were achieved on a real, 8-projector display wall. Through

simulation, we also showed that subpixel-level accuracies are possible in larger-scale set-

111
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tings. A drawback of our approach is that the computation time for simulated annealing

grows rapidly with the number of projectors in the system. A possible remedy, which re-

mains to be experimented, is to parallelize the computation on the PC cluster that drives

the projectors.

There is one more promising approach to automatic alignment that this author is in-

terested in exploring as future work: pan a camera across a mis-aligned multi-projector

display and a build a panoramic image. There is a body of literature on building panora-

mas with a commodity, hand-held video camera [88]. Surprisingly, little has been done

on applying this technique to digitally aligning the projectors. One advantage this method

has over the method described in the dissertation is that it guarantees building a detailed

mis-alignment map, which serves as a starting point for calculating digital corrections.

There are still challenges, though, in stitching many video images into a highly accurate

panorama, for the requirement of precision here is much higher than conventional applica-

tions of panoramic imaging. It remains to be seen whether the method proposed will work

out.

The result of color balancing is encouraging, to some degree. The video camera is

quite capable of measuring the color imbalance among the projectors. My method seems

to work fine for some images. Through this work, we also discovered two problems. First,

it is hard to obtain precise measurement of its color responses from a projector. We sus-

pect two inherent problems in the project, thermal fluctuations and background noise, are

primary causes. With better projection devices such as ones based on DMD, we hope to

get “cleaner” sample data. The second problem is that color balancing tends to reduce the

dynamic range of each color channel, because of the comprise between dimmest projectors

and the brightest projectors. Some projectors have digital “knobs” to adjust their bright-

ness and black levels for red, green, and blue separately. We can adapt our algorithm to

first bring the luminance range of all the projectors to the same levels and then apply color
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corrections. This approach will have minimal impact on the resulting dynamic ranges.

Fast communication Efficient communication is at the heart of a cluster-based display

system. In the past, software overhead caused excessive loss in performance on a piece

of communication hardware that was an order of magnitude more efficient than the soft-

ware. User-level communication is one way eliminate excessive software overhead from

the common path of communication.

User-managed Translation Look-aside Buffer (UTLB) provides a portable, efficient so-

lution for translating virtual addresses in a user-level communication paradigm. Direct data

transfer between virtual memory address spaces is a powerful and convenient communica-

tion model. Fast, user-level address translation is necessary to make this model work well.

My work on UTLB demonstrates that such a scheme can be designed and implemented for

a modern-day, commodity network interface such as Myrinet. I also gave thorough evalu-

ation of UTLB in a multi-programming environment and with memory constraints, using

both empirical data and simulation study.

The study on address translation is only one part of improving communication in the

rendering cluster. Efficient multi-cast and reliable communication are just two more ex-

amples of desirable features in a cluster environment. Efficient multi-cast is critical for

distributing graphics primitives within the cluster; while reliable communication allows

the system to tolerate temporary failures of some nodes. At the same time, higher-level

protocols must be so designed to take advantage of reliable communication that they can

reconfigure the system to bypass failed nodes. All these remain interesting research issues

and are relevant for bringing scalable display systems to the market.

Runtime environments The chapter on scalable runtime environments provides a taxon-

omy of execution models for running applications on a cluster-based display system. In the

master-slave model, a master PC intercepts and distributes graphics primitives to the PCs
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driving the physical displays. This model can be integrated seamlessly into the runtime

system of an off-the-shelf operating system. It can transparently support a wide variety

of applications without requiring source code modification and re-compilation. However,

the master-slave model suffers from the network bottleneck in some cases. My answer to

this problem is the synchronized program execution model, which runs multiple program

instances synchronously on the render PCs. In this model, only very little communication

occurs, except for small messages to synchronize a few key system calls. This model was

implemented for the Windows NT operating system and on top of fast Ethernet. It im-

proved the performance of several 3D applications by 5% to 50%. Further evaluation is

needed to compare this model with the master-slave model for 2D applications.

Process synchronization at the system call level only guarantees correctness for single-

threaded applications. For multi-threaded applications, thread scheduling and inter-thread

communication must also be synchronized in order for multiple applications instances to

exhibit the same behavior. One can first study how to synchronize multi-threaded applica-

tions on a uni-processor as the first step, because in this case only thread scheduling needs

to be considered.

With maturing technologies for producing low-cost, large-area, thin film display ma-

terials, immersive and high-resolution displays will become affordable and in wide use.

Recognizing this inevitable trend, we can pursue research in two directions. The first di-

rection is to make high-resolution displays more accessible. This entails work not only in

material science, for example, improving the life-time, brightness, color quality, and manu-

facturing process of several promising thin-film display technologies such as Organic LED,

but also in making the best out of current technology, for instance, multi-projector displays.

The work described in this dissertation focused primarily on issues in the second re-
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search direction. Using portable presentation projectors and a cluster of PCs, one can con-

struct a high-resolution display system with a reasonable cost, for example, under $200,000

for our 8-projector display wall, that can fit nicely within budget plans of many scientific

research projects.

The second direction involves studying content creation issues for a high-resolution

immersive displays, because such a display offers a brand-new medium for presenting in-

formation. It is visually pleasing merely to increase the number of 3D polygons in a scene

or render models at super-fine quality. The personal and intuitive feel that a large-size,

high-resolution display offers opens up a much wider avenue for exploration: intuitive

computer-user interaction, immersive data exploration, and collaborative work space, to

name just a few. One should also keep in mind that there is a practical limit to human

visual acuity, that “zooming-in” is a necessity and has seen enormous success ever since

the invention of the telescope (and later microscope). It is very much an open question

how to integrate seamlessly zoomed-in details with immersive views. Strategic and aes-

thetic use of the large space available is a very interesting challenge that has far-reaching

ramifications in a decade when large displays become popular.
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