Understanding TCP Vegas: Theory and Practice

Steven Low
University of Melbourne

Larry Peterson and Limin Wang
Princeton University

TR 616-00
February 8, 2000

Abstract

This paper presents a model of the TCP Vegas congestion control mechanism as a distributed
optimization algorithm. Doing so has three important benefits. First, it helps us gain a funda-
mental understanding of why TCP Vegas works, and an appreciation of its limitations. Second,
it allows us to prove that Vegas stabilizes at a weighted proportionally fair allocation of network
capacity when there is sufficient buffering in the network. Third, it suggests how we might use
explicit feedback to allow each Vegas source to determine the optimal sending rate when there
is insufficient buffering in the network. In addition to presenting the model and exploring these
three issues, the paper presents simulation results that validate our conclusions.

1 Introduction

TCP Vegas was introduced in 1994 as an alternative source-based congestion control mechanism for the
Internet [10]. In contrast to the TCP Reno algorithm, which induces congestion to learn the available
network capacity, a Vegas source anticipates the onset of congestion by monitoring the difference between
the rate it is expecting to see and the rate it is actually realizing. Vegas' strategy is to adjust the source’s
sending rate (congestion window) in an attempt to keep a small number of packets buffered in the routers
along the transmission path.

Although experimental results presented in [6] and [1] show that TCP Vegas achieves better throughput
and fewer losses than TCP Reno under many scenarios, at least two concerns remained: is Vegas stable,
and if so, does it stabilize to a fair distribution of resources; and does Vegas result in persistent congestion.
These concerns are particularly significant in view of evidence that Reno’s linear increase, multiplicative
decrease algorithm stabilizes around a fair allocation to all connections [23, 12, 13]. In short, Vegas has
lacked a theoretical explanation of why it works.

This paper addresses this shortcoming by presenting a model of Vegas as a distributed optimization
algorithm. Specifically, we show that the global objective of Vegas is to maximize the aggregate utility of all
sources (subject to the capacity constraints of the network’s resources), and that the sources solve the dual
of this maximization problem by implementing an approximate gradient projection algorithm. This model

implies that Vegas stabilizes at a weighted proportionally fair allocation of network capacity when there is
sufficient buffering in the network, that is, when the network has enough buffers to accommodate the extra
packet(s) the algorithm strives to keep in the network. If sufficient buffers are not available, equilibrium
cannot be reached, and Vegas reverts to Reno.

Our analysis shows that Vegas does have the potential to induce persistent queues (up to the point that
Reno-like behavior kicks in), but that by augmenting Vegas with explicit feedback—for example, in the
form of the recently proposed ECN bit [22]—it is possible to avoid this problem. Explicit feedback serves
to decouple the buffer process from the feedback required by each Vegas source to determine its optimal
sending rate.

The paper concludes by presenting simulation results that both serve to validate the model and to illus-
trate the impact of this explicit feedback mechanism. Models of Vegas are also analyzed in [5, 18] using a
different framework.

2 A Model of Vegas

This section presents a model of Vegas and shows that 1) the objective of Vegas is to maximize aggregate
source utility subject to capacity constraints of network resources, and 2) the Vegas algorithm is a dual
method to solve the maximization problem. The primary goal of this effort is to better understand Vegas'’
stability, loss and fairness properties, which we discuss in Section 3.

2.1 Preliminaries

A network of routers is modeled by a sebf unidirectional links of capacity;, [€ L. It is shared by a set
S of sources. A sourcetraverses a subsét(s) C L of links to the destination, and attains a utility(x5)
when it transmits at rate; (e.g., in packets per second). L&tbe the round trip propagation delay for
sources. For each link let S(I) = {s € S |l € L(s)} be the set of sources that uses liniBy definition

[€ L(s)ifand only if s € S(I).

According to one interpretation of Vegas, a source monitors the difference between its expected rate and
its actual rate, and increments or decrements its window by one in the next round trip time according to
whether the difference is less or greater than a paramgtérif the difference is zero, the window size is
unchanged. We model this by a synchronous discrete time system, (#¢tbe the window of source at
time ¢t and letD,(t) be the associated round trip time (propagation plus queueing delay). Not ftat
depends not only on soureés own window w,(¢) but also on those of all other sources, possibly even
those sources that do not share a link wittWe model the change in window size by one packet per round
trip time in actual implementation, with a changelgfD,(¢) per discrete time. Thus, soureeadjusts its
window according to:

The actual algorithm in [6] tries to keep this difference betwaerand 3., with a., < S to reduce oscillation. Our model
assumesy; = 3. Itis simpler and captures the essence of Vegas.

Vegas Algorithm:

wy(t) + Xy if weelt) gz((?) < g
w(t+1) = $ w(t) - plyy i L - 2 > a (1)
ws (t) else

In the original paper [6]w;(t)/ds is referred to as thExpectedate,w;(t)/ D, as theActualrate, and the
differencews(t)/ds —ws(t)/ Ds(t) asDIFF. The actual implementation estimates the round trip propagation
delayd, by the minimum round trip time observed so far. The unitgfis, say, KB/s. We will explain the
significance ofx; on fairness in Section 3.

When the algorithm converges the equilibrium windaws= (w}, s € S) and the associated equilibri-
um round trip timeD* = (D, s € S) satisfy

";’—:—;")—22% foralls € S)

Let z5(t) := Ws(t)/Ds(t) denote the bandwidth realized by sourcat timet. The window size
w,(t) minus the bandwidth—delay produtiz,(t) equals the total backlog buffered in the pathsoHence,
multiplying the conditional in (1) byi,, we see that a source increments or decrements its window according
to whether the total backlog;(t) — dsx4(t) is smaller or larger thand,. This is a second interpretation
of Vegas.

2.2 Objective of Vegas

We now show that Vegas sources have
Us(zs) = agdslogzs 3

as their utility functions. Moreover the objective of Vegas is to choose sourcerratgs;s, s € S) so as to

= I 4
Iarjlg())(;Us(xs) ;asds Og T's (4)
subjectto Y w, < ¢, €L (5)

seS(l)

Constraint (5) says that the aggregate source rate at anidipgs not exceed the capacity. We will refer to
(4-5) as the primal problem. A rate vectothat satisfies the constraints is calfedsibleand a feasible:
that maximizes (4) is callegrimal optimal(or socially optimalor simply optima)). A unigue optimal rate
vector exists since the objective function is strictly concave, and hence continuous, and the feasible solution
set is compact.

The following theorem clarifies the objective of Vegas. It was first proved in [19].

Theorem 1 Let w* = (w},s € S) be the equilibrium windows of Vegas af = (D},s € S) the
associated equilibrium round trip times. Then the equilibrium source rates (z%,s € S) defined by
xi = w} /DY is the unique optimal solution of (4-5).

3

Proof. By the Karush—Kuhn—Tucker theorem a feasible source rate vettor 0 is optimal if and only if
there exists a vectgr* = (p;,! € L) > 0 such that, for alk,

Ul(at) = 2% ; 6
@) = gj(s)pl (6)
and, for alll, p; = 0 if the aggregate source rate at lihks strictly less than the capaciEses(l) xs < ¢
(complementary slackness). We now prove that the equilibrium backlog at the links provide such a vector
p*, and hence the equilibrium rates are optimal.

Let b; be the equilibrium backlog at link The fraction oft; that belongs to sourceunder first—in—
first—out service discipline i%:b;‘ wherec; is the link capacity. Hence souregemaintains a backlog of
ZleL(s) %b;‘ in its path in equilibrium. Since the window size equals the bandwidth—delay product plus the
total backlog in the path, we have

wy —zTdg = E — b; (7)
leL(s)

Thus, from (2) we have in equilibrium (recalling = w/D?)

» %
©® %

Qg =

= d_s(ws —zyds) = 4 > c—jbz
leL(s)

B
%U*‘S

where the last equality follows from (7). This yields (6) upon identifying
b

a

P =
and rearranging terms. Clearly; must be feasible since otherwise the backlog will grow without bound,
contradicting (7). Since the equilibrium backlag= 0 at a link! if the aggregate source rate is strictly less
than the capacity, the complementary slackness condition is also satisfied. [|

2.3 Dual problem

Solving the primal problem (4-5) directly is impractical over a large network since it requires coordination
among all sources due to coupling through shared links. However, a distributed solution can be obtained
by appealing to duality theory, a standard technigue in mathematical programming. In this subsection, we
briefly present the dual problem of (4-5), interpret it in the context of congestion control, and derive a scaled
gradient projection algorithm to solve it. A more detailed description can be found in [16] for general utility
functions. In the next subsection, we interpret the Vegas algorithm (1) as a smoothed version of the scaled
gradient projection algorithm.

Associated with each linkis a dual variableg,. The dual problem of (4-5) is to choose the dual vector
p= (p,l € L) soasto [4, 16]:
min D(p) = Y B,(p*)+ > pa 8)

s [

p>0

Bs(ps) = mi}é Us($s)_$sps (9)
Po= > p (10)
leL(s)

If we interpret the dual variablg; as the price per unit bandwidth at lik thenp® in (10) is the price
per unit bandwidth in the path ¢f Hencezp® in (9) represents the bandwidth cost to souwsaghen it
transmits at rate;;, Us(x5) — zsp® is the net benefit of transmitting at ratg, and Bs(p®) represents the
maximum benefits can achieve at the given (scalar) priggé A vectorp > 0 that minimizes the dual
problem (8) is callediual optimal Given a vector price = (p;,l € L) or a scalar price® = ZZGL(S)pl,
we will abuse notation and denote the unique maximizer in (9)dby) or by z;(p®). A feasible rate vector
z(p) = (zs(p),s € S) is calledindividually optimal(with respect tap) when each individual rate;(p)
minimizes (9).

There are two important points to note. First, given scalar pgi¢esach source can easily solve (9)
to obtain the individually optimal source rate§p) = (z5(p®),s € S) without having to coordinate with
any other sources; see (12) below. Second, by duality theory, there exists a dual optimgi pridesuch
that these individually optimal rates’ = (z5(p*), s € S) are also socially optimal, that is, solve (4-5) as
well. Furthermore, as we will see below, solution of the dual problem can be distributed to individual links
and sources. Hence a better alternative to solving the primal problem (4-5) directly is to solve its dual (8)
instead.

In the rest of the paper we will refer §9 as link price,p® as path price (of source), and the vector
p = (p,1 € L) simply as price. It can be interpreted in two ways. First, the pritsea congestion measure
at the links: the larger the link pricg;, the more severe the congestion at linkThe path pricep® is
thus a congestion measure of soustepath. Indeed in the special case of Vegas with its particular utility
function, the link pricep; turns out to be thgueueingdelay at linkl; see Section 3. Second, aptimal
p* is a shadow price (Lagrange multiplier) associated with the constrained maximization (4-%j, ise.,
the marginal increment in aggregate utily, U,(z;) for a marginal increment in links capacityc;. We
emphasize however thatmay be unrelated to the actual charge users pay. If sources are indeed charged
according to these prices, thghaligns individual optimality with social optimality, thus providing the right
incentive for sources to choose the optimal rates.

A scaled gradient projection algorithm to solve the dual problem takes the following form [16]. In each
iterationt, each link/ individually updates its own pricg;(¢) based on theggregaterate at linkl, and each
sources individually adjusts its rate based on its path pricét).

Specifically letzs(p(t)) denote the unique source rate that maximizes (9—10) pmtiplaced byp(t),
andz!(p(t)) = >_sesw) @s(p(t)) denote the aggregate source rate at linkrhen link I computesp;(t)
according to:

pt+1) = [p(t) + 70 (p(t) —)]t 11)
wherey > 0 and; > 0 are constants. Heté (p(t)) represents the demand for bandwidth at lirdnd ¢

represents the supply. The price is adjusted according to the law of demand and supply: if demand exceeds
the supply, raise the price; otherwise reduce it.

Let p*(t) = > icr(s) () denote the path price at tinte Then sources sets its rate to the unique
maximizer of (9-10) given by (setting the derivativeldf(zs) — zsp®(t) to zero):
osds
p(t)

This is referred to as the demand function in economics: the higher the pathpp(ige(i.e., the more
congested the path), the lower the source rate.

The following result says that the scaled gradient projection algorithm defined by (11-12) converges
to yield the unique optimal source rates. It is a minor modification of Theorem 1 of [16]; indeed the
convergence proof in [2] for a (different) scaled gradient projection algorithm applies directly here.

(12)

Theorem 2 Provided that the step-sizgis sufficiently small, then starting from any initial rate§)) > 0
and pricesp(0) > 0, every limit point(z*, p*) of the sequencex(t), p(t)) generated by algorithm (11—12)
is primal—dual optimal.

2.4 \Vegas Algorithm

We now interpret the Vegas algorithm as approximately carrying out the scaled gradient projection algorithm
(11-12).

The algorithm takes the familiar form of adaptive congestion control: the link algorithm (11) computes a
congestion measugg(t), and the source algorithm (12) adapts the transmission rate to congestion feedback
p*(t). In order to execute this algorithm, Vegas, a source—based mechanism, must address two issues: how
to compute the link prices and how to feed back the path prices to individual sources for them to adjust their
rates. We will see that, first, the price computation (11) is performed by the buffer processiattid&ed,
link price can be taken as the normalized queue lengtft) = b;(¢)/c;, whereb,(t) denotes the buffer
occupancy at link at timet. Second, the path prices dreplicitly fed back to sources through round trip
times. Given the path prige’(¢), sources carries out amoothedrersion of (12).

Specifically, suppose the input rate at linkom sources is z,(t) at timet.? Then the aggregate input
rate at linkl is z'(t) = >, . g #5(t), and the buffer occupandy(t) at link I evolves according to:

be+1) = [n) ()~
That is, the backlo@; (¢ + 1) in the next period is either zero or equals the current backlag plus the
total inputz!(t) less the total output; in the current period. Dividing both sides bywe have

bt +1) — [M + l(xl(t) — Cz)] " (13)

c c c
Identifying p;(t) = b;(t)/c;, we see that (13) is the same as (11) with stepsize 1 and scaling factor
6, = 1/c;, except that the source rateg(t) in z'(¢) are updated slightly differently from (12).

Recall from (1) that the Vegas algorithm updates the windq) based on whether

ws(t) —zs(t)ds(t) < asds or wg(t) — zs(t)ds(t) > agds (14)

2This is an approximation which holds in equilibrium when buffer stabilizes; see [15] for a more accurate model of the buffer
process.

As for (7) this quantity is related to the backlog, and hence the prices, in the path:

ws®) =5 0d) = w0 S M —) S) = w0 p) (15)

C
leL(s) leL(s)
Thus, the conditional in (14) becomes (cf. (12)):

Qsdg Qsdg

p°(t) p°(t)

Hence, a Vegas source compares the current source J@jewith the target ratevsds/p*(t). The window

is incremented or decremented byD;(t) in the next period according as the current source xaté) is
smaller or greater than the target ratel; /p°(¢). In contrast, the algorithm (12) sets the rate directly to the
target rate.

The sufficient condition in Theorem 2 requires that the stepsize0 be sufficiently small to guarantee
convergence. Vegas assumes that 1; see (13). We now describe a way to reintrodydeto the Vegas
algorithm which can then be adjusted to ensure convergence. Multiplying both sides of (13} byand
identifying p;(t) = v bl—(t), we obtain

€]

z4(t) < or xz(t) >

pt+1) =) +v§l<xl(p<t>>)t

that is, the prices are updated with a stepsizbat is not necessarily one. This implies a multiplication of
both sides of the first equality of (15) by and hence the comparison in (14) becomes:

oy dyg g dg

v po(t) v po(t)

This amounts to usinga, that is1/~ times larger, i.e., use a unit of 10KBps (say) instead of KBpsot
Note thaty (or unit of as) should be the same at all sources. Smajllensures convergence of source rates,
albeit slower, but it leads to a larger backlog sibgg) = ¢;p;(t)/. This dilemma can be overcome by
introducing marking to decouple the buffer process from price computation; see Section 5.

zs(t) < or z4(t) >

Finally, we mention in passing that the Vegas algorithm can also be regarded as a Lagrangian method [4,
Chapter 4] where the primal variahi€t) and dual variable(t) are iterated together to solve the Karush—
Kuhn—Tucker condition and the feasibility condition.

3 Delay, Fairness and Loss

3.1 Delay

The previous section developed two equivalent interpretations of the Vegas algorithm. The first is that a
Vegas source adjusts its rate so as to maintain its actual rate to be betward 5, KB/s lower than its
expected rate, where; (typically 1/ds) and g, (typically 3/ds) are parameters of the Vegas algorithm.

The expected rate is the maximum possible for the current window size, realized if and only if there is no
gueueing in the path. The rationale is that a rate that is too close to the maximum underutilizes the network,

3Using a smaller link capacity, say, Mbps instead of 10Mbps, has the same effect.

and one that is too far indicates congestion. The second interpretation is that a Vegas source adjusts its rate
S0 as to maintain betweend; (typically 1) andg,sd, (typically 3) number of packets buffered in its path,
S0 as to take advantage of extra capacity when it becomes available.

The optimization model suggests a third interpretation. Vegas measures congestion at a link by its
queueing delay, and that of a path by the end-to—end queueing delay (without propagation delay). A Vegas
source computes the queueing delay from the round trip time and the estimated propagation delay, and
attempts to set its rate to be proportional to the ratio of propagation to queueing delay, the proportionality
constant being between, andg,. We now elaborate on this third interpretation.

The dynamics of the buffer process at linknplies the important relation (comparing (11) and (13)):

bi(t)
m(t) = o
It says that the link pricey;(t) is just the queueing delay at linkfaced by a packet arrival at timge
Moreover, the difference between the round trip time and the propagation delay is the paif @jicthe
congestion signal a source needs to adjust its rateg;(#t:= b;(t)/c; denote the queueing delay at link
Landg®(t) = > (s @(t) be the end—to—end queueing delay in soursepath. Then (12) implies that,
sinceq®(t) = p°(t), a Vegas source sets its target rate to be proportional to the ratio of propagation to
gqueueing delay:
ds
7°(t)
As the number of sources increases, individual source rates necessarily decrease. The relation (16) then
implies that queueing delay’ (t) must increase with the number of sources. This is just a restatement that
every source attempts to keep some extra packets buffered in its path.
It also follows from (16) that in equilibrium the bandwidtiteueingdelay product of a source is equal
to the extra packeta,d; buffered in its path:

(16)

zs(t) = ag

g™ = agds a7

This is just Little’s Law in queueing theory when propagation delay is ignored.

3.2 Fairness

Although we did not recognize it at the time, there are two equally valid implementations of Vegas, each
springing from a different interpretation of an ambiguity in the algorithm. The first, which corresponds to
the actual code, defines thg and,; parameters in terms of bytes (packets) pemd trip time while the
second, which corresponds to the prose in [6], defineand 3, in terms of bytes (or packets) psecond
These two implementations have an obvious impact on fairness: the first penalizes sources with a large
propagation delay, while the second favors such sources.

In terms of our model, Theorem 1 implies that the equilibrium rateareweighted proportionally fair
[11, 12]: for any other feasible rate vectorwe have

T, — I*
Zasds > — < 0
. T

The first implementation has; = «/d; inversely proportional to the source’s propagation delay, and the
second has identical, = « for all sources, for some.
These two implementations lead to different fairness in equilibrium. Whely = « (in unit of (say)
packets) are the same for all sources, the utility functiopg:s) = asdslogzs = alogz, are identical
for all sources, and the equilibrium rates greportionally fairand arendependenof propagation delays.
All sources with the same path price receive the same rate, for example, in a single-link network. In a
network with multiple congested links, however, a source that traverses morenlatkeerelyhaving higher
propagation delay, will be discriminated against. This is because for each marginal increment in aggregate
utility—the objective of the primal problem (4-5)—such a long connection consumes more resources than
a short one that uses fewer links; see [16, Section V]. We call this implemengatipartionally fair (PF).
Whena = « are identical, sources have different utility functions, and the equilibrium rates are weight-
ed proportional fair, with weights being proportional to sources’ propagation delays. (17) implies that if two
sources- ands face the same path price (or equivalently, the same end-to—end queueing delay), then their
equilibrium rates are proportional to their propagation delays:

*
Tro— Ls

d, ds
In particular, if there is only a single congested link in the network, then a source that has twice the prop-
agation delay will receive twice the bandwidth. In a network with multiple congested links, weighting the
utility by propagation delay has a balancing effect to the discrimination against long connections, if the
propagation delay is proportional to the number of congested links in a source’s path. We call the second
implementatiorweighted proportionally fai(WPF).

It is argued in [13, Remark 2] that TCP Reno can be roughly modeled as maximizing problem (4-5)
with utility functions (ignoring random losd),(xs) = —1/d%x; Hence in equilibrium source rates satisfy
d?z*? = 1/p**. If two sourcesr ands see the same path price (e.g., in a single—link network), then their
rates arenverselyproportional to their propagation delays:

*
S

dyz;, = doz}

That is, a source with twice the propagation delay receives half as much bandwidth. This discrimination
against connections with high propagation delay is well known in the literature, e.g., [7, 9, 14, 17, 5].

3.3 Loss

Provided that buffers at linké are large enough to accommodate the equilibrium bacldog- pjc;, a
Vegas source will not suffer any loss in equilibrium since the aggregate sourcEgggql) x; IS no more
than the link capacity; in the network (feasibility condition (5)). This is in contrast to TCP Reno which
constantly probes the network for spare capacity by linearly increasing its window until packets are lost,
upon which the window is multiplicatively decreased. Thus, by carefully extracting congestion information
from observed round trip time and intelligently reacting to it, Vegas avoids the perpetual cycle of sinking
into congestion and recovering from it. This is confirmed by the experimental results of [6] and [1].

As observed in [6] and [5], if the buffers are not sufficiently large, equilibrium cannot be reached, loss
cannot be avoided, and Vegas reverts to Reno. This is because, in attempting to reach equilibrium, Vegas

9

sources all attempt to place,ds number of packets in their paths, overflowing the buffers in the network.
The minimum buffer needed in thentire network for equilibrium to exists i3, ¢ «sd.

4 Persistent Congestion

This section examines the phenomenon of persistent congestion, as a consequence of both Vegas’ exploita-
tion of buffer process for price computation and of its need to estimate propagation delay. The next section
explains how this can be overcome by Random Early Marking (REM), in the form of the recently proposed
ECN bit [8, 22].

4.1 Coupling Backlog and Price

Vegas relies on the buffer process to compute its congestion meastireIndeed, the link price is pro-
portional to the backlogp;(t) = b;(t)/¢;. This is similar to the scheme in [15], whepg(t) = b;(t)/~

for a small constanty > 0 that is common for all links, and hence suffers from the same drawback [3].
Notice that theequilibrium prices depend not on the congestion control algorithmsbiely on the state

of the network: topology, link capacities, number of sources, and their utility functions. As the number of
sources increases the equilibrium prices, and hence the equilibrium backlog, increases; (singgc;).

This not only necessitates large buffers in the network, but worse still, it leads to large feedback delay and
oscillation. For example, in a single—link network, if every source keegs = o packets buffered at the

link, the equilibrium backlog will bexN packets, linear in the numbér of sources.

4.2 Propagation Delay Estimation

We have been assuming in our model that a source knows its round trip propagatiod ddlayractice
it sets this value to the minimum round trip time observed so far. Error may arise when there is route
change, or when a new connection starts [18]. First, when the route is changed to one that has a longer
propagation delay than the current route, the new propagation delay will be taken as increased round trip
time, an indication of congestion. The source then reduces its window, while it should have increased it.
Second, when a source starts, its observed round trip time includes queueing delay due to packets in its path
from existing sources. It hence overestimates its propagation delagd attempts to put more thand;
packets in its path under both the PF and the WPF scheme, leading to persistent cofg&stionw look
at the effect of estimation error on stability and fairness.

Suppose each soursaises an estimaié, (t) := (1 + €,)d,(¢) of its round trip propagation delaj in
the Vegas algorithm (1), wheeg is the percentage error that can be different for different sources. Naturally
we assume-1 < e, < D,(t)/ds(t) — 1 for all ¢ so that the estimate satisfies< d,(t) < D,(t). The next

“A remedy is suggested for the first problem in [18] where a source keeps a record of the round trip times offtheNast
packets. When their minimum is much larger than the current estimate of propagation delay, this is taken as an indication of route
change, and the estimate is set to the minimum round trip time of th&1gstckets. However, persistent congestion may interfere
with this scheme. The use of Random Early Marking (REM) eliminates persistent congestion, and thus facilitates the proposed
modification.

10

result says that the estimation error effectively changes the utility function: seapgears to have a utility

(cf. (3))
Us(zs) = (14 €s)asdslogrs + esdsxs (18)

and the objective of the Vegas sources appears to

rgrjlg(}){ ; Us(zs) = ;(1 + €5)asds log x5 + €5dszs (29)
subjectto > xy < ¢, lE€L (20)
seS(l)

Theorem 3 Let w* = (w?,s € S) be the equilibrium windows of Vegas aef* = (D},s € S) the
associated equilibrium round trip times. Then the equilibrium source rates (z%,s € S) defined by
xiy = w} /DY is the unique optimal solution of (19-20).

Proof. The argument follows the proof of Theorem 1, except that (6) is replaced by

1

Uy = LEDnd g Sy 1)
s leL(s)

To show that the equilibrium backlog at the links provide such a vegtpand hence the equilibrium rates

are optimal, substitute the estimated propagation dégay (1 + €,)d for the true valuel? in (2) to get

* *
ws ws

(1+e€)d, D*

Usingw; — zids = x5) 1c 15 b /e We thus have

Qg =

b*
I+ e)osds = (W) —dex}) — esdsat = | Y - —eud, | 2}

This yields (21) upon identifying; = I;—ll and rearranging terms. As in the proof of Theorem*lmust be
feasible and the complementary slackness condition must be satisfied. Hence the proof is complie.

The significance of Theorem 3 is twofold. First, it implies that incorrect propagation delay does not
upset the stability of Vegas algorithm— the rates simply converge to a different equilibrium that optimizes
(19-20). Second, it allows us to compute the new equilibrium rates, and hence assess the fairness, when we
know the relative error in propagation delay estimation. It provides a qualitative assessment of the effect of
estimation error when such knowledge is not available.

For example, suppose soureeands see the same path price. If there is zero estimation error then their
equilibrium rates are proportional to their weights:

od, o

k *
xk xk

With error, their rates are related by

(d+e)ordy +ed, = (+easd, + €sd; (22)

* *
$7. 175

11

Hence, a large positive error generally leads to a higher equilibrium rate to the detriment of other sources.
For PF implementation where,d, = «,d;, if sources have identical absolute errgril, = €,d,, then
source rates are proportional et e;.

Although Vegas can be stable in the presence of error in propagation delay estimation, the error may
cause two problems. First, overestimation increases the equilibrium source rate. This pushes up prices and
hence buffer backlogs, leading to persistent congestion. Second, error distorts the utility function of the
source, leading to an unfair network equilibrium in favor of newer sources.

4.3 Remarks

Note that we did not see persistent congestion in our original simulations of Vegas. This is most likely due to
three factors. One is that Vegas reverts to Reno-like behavior when there is insufficient buffer capacity in the
network. The second is that our simulations did not take the possibility of route changes into consideration,
but on the other hand, evidence suggests that route changes are not likely to be a problem in practice [21].
The third is that the situation of connections starting up serially is pathological. In practice, connections
continually come and go, meaning that all sources are likely to measure a baseRTT that represents the prop-
agation delay plus the average queuing delay. Indeed, if two soui@meds see the same price, then they

have the same queueing delay (becaytg = b;(t)/c;). If the error in round trip time estimation is entirely

due to the (average) queueing detayheng = ¢,.d, = e;d; for both sources. For PF implementation, (22)

then implies that their rates are proportionallte- ¢/ds, i.e., instead of equally sharing the bandwidth, the
source with a smaller propagation deldywill be favored. In a high speed network wheggl, is small,

this distortion is small.

5 Vegas with REM

As explained in the last section, excessive backlog may arise because 1) each source maintains some extra
packets buffered in its path and hence backlog increases as the number of sources increases, and 2) overesti-
mation of a source’s propagation delay distorts the utility, leading to larger equilibrium prices and backlogs
(as well as unfairness to older sources). Both are consequences of Vegas' reliance on the buffer process to
compute link prices. If buffer capacity is not sufficient in the network, equilibrium cannot be reached, loss
cannot be avoided, and Vegas reverts to Reno. This section demonstrates how binary feedback can be used
to correct this situation.

Explicit feedback decouples price computation and the buffer process, so that buffer occhjpemcy
stay low while the price converges to its equilibrium vajje(which can be much higher thaif/c;).
Minimum round trip time would then be an accurate approximation to propagation delay. Round trip times
however no longer convey price information to a source. The path price must be estimated by the source
from packet marking. This can be done using the Random Early Marking (REM) algorithm of [3].

REM is a congestion control mechanism derived from a global optimization framework. It consists of
a link algorithm and a source algorithm. The link algorithm computes the link price and feeds it back to
sources through packet marking. The source algorithm estimates its path price from the observed marks and

12

adjusts its rate. We now summarize REM in the context of Vegas; see [3] for its derivation and evaluation of
its stability, fairness and robustness through extensive simulations.

Each link! updates a link pricg;(t) in periodt based on thaggregateinput ratez!(¢) and the buffer
occupancy, (t) at link I

pt+1) = [p(t) +y(ubi(t) + 2'(t) —)]t (23)

wherey > 0 is a small constant an@l < p; < 1. The parameters controls the rate of convergence and
w; trades off link utilization and average backlog. Hepgg) is increased when the backlégt) or the
aggregate input rat€ () at link [is large compared with its capacity(t), and is reduced otherwise. Note
that the algorithm does not require per—flow information. Limkarks each packet arriving in periogthat

is not already marked at an upstream link, with a probabitityt) that is exponentially increasing in the
congestion measure:

mi(t) = 1—¢ 0 (24)

where¢ > 1is a constant. Once a packet is marked, its mark is carried to the destination and then conveyed
back to the source via acknowledgement.

The exponential form is critical for multilink network, because émel-to—engbrobability that a packet
of sources is marked after traversing a skfs) of links is then

mi(t) = 1= [t=m(t) = 1—¢7® (25)
leL(s)
wherep®(t) = ZleL(s) pi(t) is the path price. The end-to—end marking probability is high wih¢t) is
large.
Sources estimates this end-to—end marking probabitity (¢) by the fraction m*(¢) of its packets
marked in period, and estimates the path prig&t) by inverting (25):

pP(t) = —logy(l —m’(t))
wherelog,, is logarithm to base. It then adjusts its rate using marginal utility (cf. (12)):

agds osds
W= 50 T Tl -) 29
Hence the source algorithm (26) says: if the path is congested (the fraction of marked packets is large),
transmit at a small rate, and vice versa.
In practice a source may adjust its rate more gradually by incrementing it slightly if the current rate is
less than the target (the right hand side of (26)), and decrementing it slightly otherwise, in the spirit of the

original Vegas algorithm (1):

Vegas with REM:

wy(t) + ply 0 = B3 logy (1= (1) < ads
wit+1) = § o) =gy - R logy (1 —(1) > osd,

we(t) else

13

How to set parameters, -, ; is discussed in [3] which also shows that REM is very robust to parameter
setting.

As argued in [3], the price adjustment (23) leads to small backipg-(0) and high utilization £~ q)
in equilibrium at bottleneck links, regardless of the equilibrium prigg. Hence high utilization is not
achieved but maintaining a large backlog, but by feeding back accurate congestion information for sources
to set their rates. This is confirmed by simulation results in the next section.

6 Evaluation

This section presents three sets of simulation results. The first set shows that source rate converges quickly
under Vegas to the theoretical equilibrium, thus validating our model. The second set illustrates the phe-
nomenon of persistent congestion discussed in Section 4. The third set shows that the source rates (windows)
under Vegas+REM behave similarly to those under plain Vegas, but the buffer stays low.

We use thens-2network simulator [20] configured with the topology shown in Figure 1. Each host on
the left runs an FTP application that transfers a large file to its counterpart on the right. We use a packet size
of 1KB. The various simulations presented in this section use different latency and bandwidth parameters,
as described below.

Figure 1: Network topology

6.1 Equilibrium and Fairness

We first run five connections across the network (i.e., between Hostla and Hostlb, 2a and 2b etc.) in an
effort to understand how these connections compete for bandwidth on the shared link. The round trip latency
for the connections are 15ms, 15ms, 20ms, 30ms and 40ms respectively. The shared link has a bandwidth
of 48Mbps and all host-router links have a bandwidth of 100Mbps. Routers maintain a FIFO queue.

As described in Section 3, there are two different implementations of Vegas with different fairness prop-
erties. For proportional fairness, we get = 2 packetsper RTTand we leta; = 55 in ns-2 The model
predicts that all connections receive an equal share (1200KBps) of the bottleneck link and the simulations
confirm this. Figure 2 plots the sending rate against the predicted rates (straight lines): all connections quick-
ly converge to the predicted rate. Table 1 summarizes other performance Yalbieh further demonstrate

The reported baseRTT includes both the round trip latency and transmit time.

14

TCP Vegas Sending Rate for Hostla (Proportional Fair) TCP Vegas Sending Rate for Host2a (Proportionally Fair) TCP Vegas Sending Rate for Host3a (Proportional Fair)
T

T T T T 1600 T T T T 1600 T T T T
theoretical optimal rate —— theoretical optimal rate —— theoretical optimal rate ——
actual rate - uof Aactual rate - 1400 actual rate -
1200 | 1200
2 2 i £ ;
o @ H o ;
g 2 1000 ﬁ 2 1000 |
[} Q H [} i
I T f T ;
o X 800 [x 800
o o H o i
< £ i < |
e T 600 [T 600
[o i 2 H
[4] ! [i
400 £ 1 400 7
500 {1 | §
20 1 200
0 ot ‘ 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
time time time
TCP Vegas Sending Rate for Host4a (Proportional Fair) TCP Vegas Sending Rate for Host5a (Proportional Fair)
1400 T T 1400 T T T T
oretical optim: theoretical optimal rate
5 actu . . ;actual rate
1200 1200 ST
© 1000 @ 1000
@ o
¥ 4
o L
H 800 %
o 14
£ e g
3 “ 3
c I c H
o i 9 i
O 400 O 400t
20 |] 20| 4
0 0k
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
time time

Figure 2: Stability (PF): sending rate of five connections

how well the model predicts the simulation.

Host la 2a 3a 4a 5a
M S M S M S M S M S
baseRTT (ms) 15.34| 15.34| 15.34| 15.34| 20.34| 20.34 | 30.34 | 30.34| 40.34| 40.34
RTT w/ queueing (ms) 17 17.1 17 17.1 22 21.9 32 31.9 42 41.9
Sending rate (KB/s) 1200 | 1205 | 1200 | 1183 | 1200 | 1228 | 1200 | 1247 | 1200 | 1161
Congestion window (pkts) 20.4 | 20.5 | 20.4 | 20.2 | 26.4 | 27 384 | 39.9 | 50.4 | 498
Buffer occupancy Model Simulation
at Routerl (pkts) 10 9.8

Table 1: Stability (PF): comparison of theoretical and simulation results. M stands for Model and S stands
for Simulation. All simulation numbers are averaged at the equilibrium point.

For weighted proportional fairness, we getto 2 packetgper 10ms which means each source will
have a different number of extra packets in the pipe and the optimal sending rate will be proportional to
the propagation delay. The results for the two (of the five) connections are shown in Figure 3, except this
time we show the congestion windows instead of the sending rates. The other performance numbers are in
Table 2, which again show that the simulations closely follow the model’s predictions.

Both the sending rates (Figure 2) and the congestion windows (FigurecBlate around the equilib-
rium. This is an artifact of setting; = 3, in our simulations, which we have assumed in the model for

15

TCP Vegas window sizes for Host2a (Weighted Proportionally Fair) TCP Vegas window sizes for Host4a (Weighted Proportionally Fair)
25 T 60 T T

" theoretical eqdilibrium window ——
cwnd -

theoretical eqdilibrium window -

WA ARA L AAA
AAAAAA LA ANA L

50 [ka

40

ol

window size KB
window size KB

o} 3
| 20

0]

(a) Host2a delay = 15ms (b) Host4a delay= 30ms

Figure 3: Stability (WPF): congestion window size for two (of the five) connections

Host la 2a 3a 4a 5a
M S M S M S M S M S
baseRTT (ms) 15.34| 15.34| 15.34| 15.34| 20.34| 20.34 | 30.34 | 30.34| 40.34| 40.34
RTT w/ queueing (ms) | 19.4 | 19.55| 19.4 | 1958 | 24.4 | 244 | 344 | 343 | 444 | 443
Sending rate (KB/s) | 756.3| 781 | 756.3| 774 | 1003 | 994 | 1496 | 1495 | 1990 | 1975
Congestion window (pkts) 14.7 | 15.1 | 14.7 | 149 | 245 | 246 | 515 | 51.7 | 88.4 | 88.6
Buffer occupancy Model Simulation
at Routerl (pkts) 24.34 24.24

Table 2: Stability (WPF): comparison of theoretical and simulation results. M stands for Model and S stands
for Simulation, all simulation numbers are averaged at equilibrium point.

simplicity. Vegas adjusts the congestion window by one packet in each round trip time. The adjustment
is large relative tax, = 3, = 2 packets, rendering the window prone to oscillation. We have repeated the
simulation using ar, that is 10 times as large (corresponding to a step-gi2@ times as small). This
reduces the impact of adjusting the window by one packet, and the curves smooth out.

6.2 Persistent Congestion

We next validate that Vegas leads to persistent congestion under pathological conditions. We set the round
trip latency to 1ms foall connections, the host—router links are all 1600 Mbps, and the bottleneck link has
a bandwidth of 8 Mbps. We set; to 5 packets—per—ms and we assume the routers have infinite buffer
capacity. We pick such extreme numbers so as to make the result trend more obvious.

We first hard—code the round trip propagation delay to be 1 ms for each source, thus eliminating the error
in propagation delay estimation. We then run five connections, each starting 2 seconds after the previous
connection. That is, Host 1a starts sending at time 0, 2a starts at 2s, and so on. As shown in Figure 4(a), the

16

buffer occupancy increases linearly in the number of sources.

Buffer Usage at Routerl (alpha 5pkts/ms) Buffer Usage at Routerl (alpha 5pkts/ms)

buffer bccupénc [buffer 6ccupahcy [

Buffer Queue Size

.
10 20 30 40 50 60 70 80 90 100
time

(a) Without propagation delay error (b) With propagation delay error
Figure 4: Persistent congestion: buffer occupancy at router

Next, we take propagation delay estimation error into account by letting the Vegas sources discover the
propagation delay for themselves. Since each source perceives a larger round trip delay due to queueing at
the router, it takes longer for them to reach equilibrium. Therefore, sessions are now staggered 20 seconds
apart. As shown in Figure 4(b), buffer occupancy grows much faster than linearly in the number of sources.
We have also applied Theorem 3 to calculate the queue size, RTT with queueing and equilibrium rates. The
measured numbers match very well with the prediction of Theorem 3 for the first half of the simulation up to
a queue size of 272, further verifying our Vegas model. At very large buffer sizes, the Karush—-Kuhn—Tucker
equation describing the equilibrium situation becomes very ill-conditioned, and the system can be easily
jolted into a different point, as it has apparently been.

The distortion in utility functions not only leads to excess backlog, it also strongly favors new sources.
Without estimation error, sources should equally share the bandwidth. With ertos- a0 when two
sources are active, the ratio of the measured (equilibrium) source ratesis = 1: 7.7; att = 60 when
three sources are active, the ratiacis: 2o : £3 = 1 : 5.7 : 36.3 (the ratio calculated using Theorem 3 is
1 :x9=1:77att =40andz; : 29 : z3 = 1:6.2 : 48.3 att = 60).

6.3 Vegas + REM

Finally, we implement REM at Routerl, which updates link price every 1ms according to (23). We adapt
Vegas to adjust its rate (congestion window) based on estimated path prices, as described in Section 5.
Vegas makes use of packet marking only in its congestion avoidance phase; its slow—start behavior stays
unchanged.

We set the bottleneck link bandwidth to be 48Mbps and run three sources (Host1-3a) with a round trip
latency of 10ms, 20ms and 30ms, respectively. Host-router links are 100Mbjeg @@ pkts—per—ms for
WPF. Parameters related to REM are set as folletvs:1.15,4; = 0.5, = 0.005.

®During slow—start, Vegas keeps updating the variable fraatid(t), but does not use it in window adjustment.

17

We start 3 connections with an inter—start interval of 5ms in order to test our claim that REM reduces
the estimation error in Vegas’ propagation delay. Figure 5 plots the congestion window size of the three
connections and buffer occupancy at Routerl. As expected, each of the three connections converges to its
appropriate share of link bandwidth over time. When the link is not congested, source rate oscillates more
severely, as seen from Hostla during time 0 - 5s. This is a consequence of the log utility function; see [3]. As
more sources become active (5 - 16s), oscillation becomes smaller and convergence faster. Without REM,
each connection would have maintainegi; packets buffered in the router, amounting to 120 packets in
equilibrium. With REM, buffer occupancy is much smaller in equilibrium, even though the link utilitzation
is high (varies from 92% to 96%). Setting large keeps buffer occupancy small while decreases link
utilization. This tradeoff could be decided by each router separately based on its own resources, such buffer
space, and other policies. Small buffer occupancy reduces the estimation error and eliminates the superlinear
growth in queue length demonstrated in Figure 4(b) of Section 6.2. This is confirmed by the measurement
shown in Table 3.

Host la 2a 3a
Model | Simulation| Model | Simulation| Model | Simulation
baseRTT (ms) 10.34 10.34 20.34 20.34 30.34 30.34

Table 3: Comparison of baseRTT in Vegas+REM

7 Conclusions

We have shown that TCP Vegas can be regarded as a distributed optimization algorithm to maximize ag-
gregate source utility over their transmission rates. The optimization model has four implications. First

it implies that Vegas measures the congestion in a patbniol-to—end queueingelay. A source extracts

this information from round trip time measurement and uses it to optimally set its rate. The equilibrium is
characterized by Little’s Law in queueing theory. Second, it implies that the equilibrium rates are weighted
proportionally fair. Third, it clarifies the mechanism, and consequence, of potential persistent congestion due
to error in the estimation of propagation delay. Finally, it suggests a way to eliminate persistent congestion
through binary feedback that decouples the computation and the feedback of congestion measure. We have
presented simulation results that validate our conclusions. Extensive simulations to compare Vegas+REM
and Reno+RED will be reported in a future paper.

Acknowledgement. We gratefully acknowledge helpful discussions with Sanjeewa Athuraliya. This work
supported by the Australian Research Council through grants S499705, A49930405 and S4005343, and by
the National Science Foundation through grant ANI-9906704.

18

window size KB

100
90
80
70
60
50
40

30 |f

20
10

Vegas+REM: Window sizes for Hostla (Weighted Proportionally Fair)

Vegas+REM: Window sizes for Host2a (Weighted Proportionally Fair)

Vegas+REM: Window sizes for Host3a (Weighted Proportionally Fair)

T T T T T T T 90 T T T T T T T 100 T T T T T
theoretical equilibrium window —— eoretical equilibrium window —— theoretical equilibrium
R 80 R 0 1
70 80 1
E 60 E 70 1
60 1
850 3
2 2 50 1
3« H
E ‘g 40 b
3 3
30 20 B
20 ’ 1 20 4
10 1 10 B
0 0 . .
0 0 2 4 6 8 12 14 16 0 2 4 8 10 12 14 16
time time
(a) Window Size

queue size

60

50

40

30

20

10

Vegas+REM Buffer Occupancy at Routerl (alpha = 2pkts/ms)

actual queue size

0 Lo Wi
o 2

b s bk bt
4 6 8 10 12 14 16
time

(b) Buffer Occupancy

Figure 5: Stability of Vegas+REM. Link utilization: 96%(0-5s), 95%(5-10s), 92%(10-16s)

19

References
[1] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of TCP Vegas: emulation and experim@nbceedings
of SIGCOMM’95 1995.

[2] Sanjeewa Athuraliya and Steven Low. Optimization flow control with Newton—like algorithnPrdneedings
of IEEE Globecom’99December 1999.

[3] Omitted for anonymity. January 2000.
[4] D. BertsekasNonlinear ProgrammingAthena Scientific, 1995.

[5] Thomas Bonald. Comparison of TCP Reno and TCP Vegas via fluid approximatigvorkshop on the Model-
ing of TCR, December 1998. Available at http://www.dmi.ens.fr/%7Emistral/tcpworkshop.html.

[6] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: end to end congestion avoidance on a global Internet.
IEEE Journal on Selected Areas in Communicatjdr&8), October 1995.

[7] S. Floyd. Connections with multiple congested gateways in packet—switched networks, Part I: one—way traffic.
Computer Communications Reviei (5), October 1991.

[8] S. Floyd. TCP and Explicit Congestion NotificatioACM Computer Communication Revieiv(5), October
1994,

[9] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoitlaIBEAACM Trans. on
Networking 1(4):397—-413, August 1993.

[10] V. Jacobson. Congestion avoidance and conRaiceedings of SIGCOMM’88, ACMugust 1988. An updated
version is available via ftp:/ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[11] F. P. Kelly. Charging and rate control for elastic traffitiropean Transactions on Telecommunicatj@&83-37,
1997. http://lwww.statslab.cam.ac.frkhk/elastic.html.

[12] Frank P. Kelly, Aman Maulloo, and David Tan. Rate control for communication networks: Shadow prices,
proportional fairness and stabilityournal of Operations Research Socjet®(3):237-252, March 1998.

[13] Srisankar Kunniyur and R. Srikant. End-to—end congestion control schemes: utility functions, random losses
and ECN marks. IfProceedings of IEEE Infocgriviarch 2000.

[14] T.V. Lakshman and Upamanyu Madhow. The performance of TCP/IP for networks with high bandwidth—delay
products and random losEEEE/ACM Transactions on Networking(3):336—350, June 1997.

[15] Steven H. Low. Optimization flow control with on-line measurementPlaceedings of the ITG/olume 16,
June 1999.

[16] Steven H. Low and David E. Lapsley. Optimization flow control, I: basic algorithm and converdE&t&ACM
Transactions on Networkin@(6), December 1999.

[17] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macroscopic behavior of the TCP
congestion avoidance algoriththCM Computer Communication Reviev(3), July 1997.

[18] J. Mo, R. La, V. Anantharam, and J. Walrand. Analysis and comparison of TCP Reno and Vdgrasekdings
of IEEE InfocomMarch 1999.

[19] Jeonghoon Mo and Jean Walrand. Fair end—to—end window—based congestion control. Preprint, 1999.
[20] Ns network simulatorAvailable via http://www-nrg.ee.Ibl.gov/ns/.
[21] V. Paxson. End-to—End Routing Behavior in the Interffebceedings of SIGCOMM’96, ACMugust 1996.

[22] K. K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Notification (ECN) to IP. Internet
draft draft-kksjf-ecn-01.txt, July 1998.

[23] K. K. Ramakrishnan and Ran Jain. A binary feedback scheme for congestion avoidance in computer networks.
ACM Transactions on Computer Syste®®):158-181, May 1990.

20

