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Abstract phic equality functions. There are several efficient tech-
nigues for implementing type-dependent functions that

We present a technique to implement type-safe garbageserve type safety[14, 13].

collectors by combining existing type systems used for There are also several well studied type systems that

compiling type-safe languages. We adaptthe type systeglisw one to verify the safety of explicit memory man-

used inregion inferencg16] andintensional type analy- agementin higher-order polymorphic languages[16, 1, 4].

sis[8] to construct a safe stop-and-copy garbage collgSften these systems are represented as alternatives to tra-

tor for higher-order polymorphic languages. Rather thgjtional garbage collection techniques.
using region inference as the primary method of storage

management, we show how it can be used to implement
a garbage collector which is provably safe. We also iGontributions. We show how to use a simple type sys-
troduce a new region calculus with non-nested object lifiem to implement a provably safe garbage collector. The
times which is significantly simpler than previous calculcollector is safe in the sense that a correct program will
Our approach also formalizes more of the interface best “go wrong” after the garbage collector runs. This lets
tween garbage collectors and code generators. The effi-build systems whose memory utilization is as good as
ciency of our safe collectors are algorithmically compeigxisting safe systems, but whose safety does not rely on
tive with unsafe collectors. the correct implementation of a trusted tracing garbage
collector.

We adapt the ideas and type systems from the work on
regions[16, 1, 4]. The basic idea is that a mutator always

. : allocates in a fixed region. When the collector is invoked,
We present a technique to implement type-safe garbshge

collectors by combining existing type systems used fo Copies all the live data from one region into a newly

compiling type-safe languages. We adapt the type Systeaﬁocated region. The regions act as the semi-spaces of a

S . : :
used inregion inferencg16] andintensional type analysis srpop-and-copy collector. We use intensional type analysis

[8] to construct a safe stop and copy garbage collector ¥8ra53|gn a type to our copy function that gqarantees our
higher-order polymorphic languages. Our approach hcollector.has performed a deep copy of the Ilvg data. The
all the benefits of traditional tracing garbage collection gg izrr:sglr?an i(;?]r;t\:(iatﬂ 2is§§z:§ﬁ:2%i:i2. This approach
well as the benefits that come with type safety. N 9 '

Tracing garbage collectors perform two potentially un- Wedmtrt?duc?fa new region calculuklp, |W|th non- |
safe operations: nested object life-times. Our new calculus is simpler

and more expressive than existing calculi with non-nested

o Traverse arbitrary runtime values to identify live obkife-times, because we are willing to perform checks at
jects. runtime when deallocating regions. Furthermore, we de-
scribe how to use several existing type systems and type
based compilation techniques so we can apply our safe
Tracing an arbitrary value is similar to other typegarbage collection approach to higher-order polymorphic
dependent functions such as pretty-printers and polymiamguages. Our approach also formalizes much more of

1 Introduction

e Explicitly allocate and deallocate memory.



the interface between garbage collectors and code geeeation. Table 1 summarizes the tradeoffs between these
ators. two approaches in comparison to ours.

Correctness vs. Safety. Rather than attempt to guaranproblems Using Current Regions Systems. The stan-
tee correctness, we are interested in providing the follodard Tofte-Talpin region system [16, 3] is not sufficiently
ing safety guarantees: expressive to implement collectors directly. In particu-
lar the Tofte-Talpin requirement that all region lifetimes
be nested in a stack-like way interferes with standard
e The types of objects are preserved by the collectof@il-call optimizations. Tofte-Talpin extend their system
with a static storage-mode analysis to allow for something
After the garbage collector is run, we assure that the peimilar to standard tail-call optimizations[3]. However,
gram will not “go wrong” because of type errors or bestorage-mode analysis is not expressive enough to imple-
cause memory was reclaimed prematurely. Most corregtent a general-purpose garbage collector.
ness proofs of garbage collection guarantee that live val-

ues before the coIIecthn are somehow isomorphic to tB%tline. In the next section we formally describe a
live values after collection[6].

novel region calculus and discuss how to use it to imple-
ment what amounts to a trivial garbage collected system
Requirements. It is easy to implement a safe garbaggnd we compare our system to other variants of the Tofte-
collector by simply implementing a collector that nevefa|pin region systems.

reclaims memory. Itis obvious that a realistic system mustte remaining sections describe issues of scanning val-
have other desirable properties. In particular we are ifss how to deal with closures and how to preserver

terested in a safe automatic memory management Sys{jihter sharing. Appendix A sketches a proof of sound-
with a small trusted computing base (TCB), that allowsess for our region calculus.

separate compilation, and with performance and memory
utilization as good as existing unsafe systems.
2 The), Calculus

¢ No live values are reclaimed prematurely.

static  tracing our
regions gc approach A
memory utilization ? + + st = int |s—=t | Vp.s| (satp) | Ans
separate compilation  — + + A — o
small TCB + _ + : {} [ {p1,---,Pn} |
real time properties + ? ? e = x[n|(+te) | (~te) | (if0eeaey) |

(Ax:se) | (erez) | (Ap.e) | (e[p]) |
(letrpine) | (onlyAe) |
(putfpl€) | (get[p]€) |

(nf:se) | (exite)

Table 1: Summary of Tradeoffs

Regions vs. Tracing GC. Because the work on regions

is quite new the efficiency and scalability of region infer-
ence has not been sufficiently demonstrated. Traditional
tracing garbage collectors have existed for several decades
and their efficiency and scalability properties are well un- Figure 1: Abstract Syntax fox,

derstood. Intuitively tracing garbage collectors have more

information since they are able to examine program state

at runtime. The biggest advantage to the static approadle begin with an informal account &, a region calcu-
taken by region inference, is that the trusted primitivéiss based on the translation of a Tofte-Talpin region sys-
are much simpler, and therefore easier to implement ctam into an simple variant of the polymorphic lambda cal-
rectly. Systems that rely on tracing collectors take the enilus described by Banerjee et al. [2]. Figure 2 contains
tire garbage collector to be a trusted “primitive”. the abstract syntax @f,.

Al static approaches require some sort of global analy-The types oh,, are very similar to the type system of a
sis to get good memory utilization, making separate costandard polymorphic typed lambda calculus. The calcu-
pilation difficult. However, because the underlying rudus above allows for polymoprhism only over region vari-
time system’s primitives are simple, they have good reablesp. Ans is the return type of continuations. Function
time properties, since each primitive is a constant-time dgpes are annotated with an effect 28}, {vhich describes



the set of region variables that a function of that type may1l ~ Operational Semantics ol

access. Values of typ¢ at p) represent values allocated . . . :
in regionp YR p) rep The formal operational semantics are described by Figure

. 2.1 in the style of Wright and Felleisen [19] and is simi-
The terms of\, are the terms of a simple polymorphigyy in spirit to the more detailed operational semantics of
lambda calculus, where we replace type abstraction Wilfyrrisett, Felleisen and Harper [10]. We first identify a
region abstraction. A term of the forfput|p] €) takes a gyniactic subset of terms that denote ground values, which
region variable and an expression and allocates/boxesjiig,des values that reside in a regignt|p] v). Evalua-
value of the expression in the given region resulting i@ contexts, are a subset of expressions with *holes”.
value of type(t at p) wheret is the type of the expressiong|g] represents an evaluation context with the holg,
e. The(get[p] e) takes a boxed value of tygeat p) and repjaced bye. Notice that the set of evaluation contexts
unboxes the value to a value of type with the holes filled by an expression is equivalent to the
The region variables in theut andget terms act as set of expressions. A set of region variables paired with
capabilities. Our type system guarantees that the regi@nsexpression is a progra,
used by these terms will be live. Tligetr p in €) term Our region context acts very much like the “capability
introduces and allocates a new region and evaluatescidgitext” of Crary et al.[4]. We will assume that bound
body with a fresh region bound to the region varighle region variables are uniquely named and that substitution
preserves this property. Because of this assumption we
can blur the distinction between a region variable and the
dynamic region value itself, since every region variable is
Early Deallocation. The (only A €) term is our exten- unigue.
sion to a standard region calculus to support non-nested he reduction rules rewrite programs to programs. All
life-times. It acts as a static assertion that its body care standard except for the rules that manipulate the re-
be evaluated using the set of regions bound to the regiiiin context. Rather than model a heap directly our op-
variables inA, which is a subset of the region variablesrational model abstracts away the details of an explicit
currently in scope. It does not introduce any new regid¥®ap. The_get put rule requires that we have a region in
variables. In order to safely deallocate regions it must e currentregion context to read a boxed value.Tibe
the case that we do not return from the evaluatior.of rule introduces a new region into the region context. The
Our typing rules enforces this property by requirgtgave r-only rule replaces the current context with a new one
the typeAns. and continues evaluating the expression. Tliealloc
At runtime implementations will dynamically mark re_rule non-deterministically removes regions Which_ are no-
gions mentioned i\ as live and reclaim unmarked re_longer ”e.eded by th? current program. Ap_pendlx B for-
gions. The set of regiond), acts as the root set of amally dgﬁngs the not|.on ofafree region yarlable.
very simple garbage collector for regions. The garba eA region I1s syntactically dead yvhen itis not a free re-
ﬁlon variable of the program being evaluated. For well

collector for regions is significantly simpler than a no d it fe 1o al |
mal garbage collector since itis reclaiming whole regior‘%pe programs we can prove it Is sate to always apply

Regions do not need to be scanned for references to o{ grdgalloc_rule after eyaluatlng the body of 'a!etr ex-

objects, since each region can be though of as an atofffigSson. since our typmg rules prevent a region variable

“pointer free” object. from escaping the lexical scope ofatr expression.

Ther_only rules replaces the current region context with

Rather than just deallocating the most recent region gthew one which must be a subset of the current region

our stack of regions before the call, thely expression context because of our typing rules. Those regions that

implicitly deallocates any region which is not needed fQfre not in the set’ can be safely deallocated. Even with

the future computation. Our calculus organizes the setQfeaiioc rule ther_only rule is not redundant. Since our

live regions not as a stack, but as a set of regions Whi@}be system guarantees that body of sy never re-

allows for arbitrary allocation/deallocation policies. turns we can ignore any free region variables in the sur-
Our type system simply keeps track of which regiorgunding control context and just continue evaluating the

need to be syntactically live for a given expression to sugedy with the region variablea/, mentioned explicitly in

cessfully complete. The cost ofily is linearly propor- theonly expression.

tional to the number of region variables statically in scope.

In a typical system the number of §uch variables_shouldﬁ_ez Static Semantics Of\p

a very small bounded number. Since deallocation occurs

at garbage collection points, which are infrequent, the éxgure 2.2 describes the static semanticspfAgain we

tra cost ofonly should not effect overall performance. assume thatall bound region variables are uniquely named



v o= n| (Ax:se) | (Ap.€) | (put[p]V) | (exitV)
E = [J[(+1E) [ (-1E) | (if0E e &) |
(Ee | (vE) [ (E[p]) |
(put[p]E) | (get[p]E) | (exitE)
P = (A€
r_succ A E[(+1n)]) — (A En+ 1]}
r_pred A E[(-1n)])) — (A En—
r_if_then (A E[(ifone e)]) — (A Eler]) Wheren =0
r_if_else (A E[(ifone &)y —— (A, E[e]) wheren#0
r-app (B E[(Ax:se)V)]) (A, E[e[x:=V])
r-tho_app (0, El(Ao.g) [P))]) +— (A Elelp:=p'])
rfix A E[(uf:se)]) — (A E[e[f:=(uf:se)]])
r_exit (A, E[(exitv)]) +—— (A, (exitV))
rgetput (A, E(get|p] (putlp]V)))) ~— (A, E[V)wherep e
r_letr (A, E[(letrpine)]) — (AU{p}, E[€))
roonly (A, E[(only A €)]) — (4, €
r_dealloc h”,e) —  (A\{p}, e) wherep ¢ FRV(e)

N.B. Assume that all bound region variables are uniquely named and that substitution preserves this property.

Figure 2: Operational Semantics
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N.B. Assume that all bound region variables are uniquely named and that substitution preserves this property.

Figure 3: Static Semantics



and that substitution preserves this property. The judg-theonly expression it may be freed if at runtime it has
mentA; T F e: smeans under region contekiand typing not been aliased tp; or p’. We know statically it cannot
contextl” expressiore has types. These typing rules arebe aliased t@’, but it maybe aliased tp;. In this case
similar to the “naive” rules of the Crary et al. calculus thate will discover at runtime that it is safe to deallocate the
ignore issues of region aliasing, whekeact as a static region bound t@.

capability context. Because of our implicit deallocation

approach region aliasing does not result in unsoundneﬁegion Aliasing. Figure 5 (b) demonstrates the case

when we cannot free the region associated to the region
2.3 Examples parametep, because on the first iteration ofit region
parametep will be aliased tg; which is needed to store

Figure 4 shows how a simple program is progressively i closure ottnt. Because of our implicit deallocation
fined to arrive at a fully region explicit version. The origapproach our operational semantics will not get “stuck”
inal program is a simple program that counts down frogyen in the presence of this aliasing. On the subsequent
10 and exits. From the original program we can derivearations ofcnt the region parameterwill be bound to a
version that assumes integers are actually boxed valq@@'on which can be safely deallocated.
and we can make the boxing and unboxing explicit. WeThe optimization performed above is a kind of gener-
can translate the program with explicit boxing and unbogized tail-call optimization, which cannot be expressed
ing into an equivalerX, program. I, the boxed integer i, the standard Tofte-Talpin region calculus. Implementa-
type is represented as the ty@imt at p). Thebox and tons of the Tofte-Talpin system are able to achieve some-
unbox primitives are translated infjout andget expres- thing similar through storage mode analysis. However,
sions respectively. Thent function itself takes the regio”storage mode analysis is unable to perform the specific op-
where to box the value asragion parameter Finally, tmization above, which is key to implementing a garbage
we account for the space of the closure needed to heliector with regions as we shall see. We can perform
the actual functiorent, and place the closure in & sepajs optimization in more expressive region calculi, but in
rate region from the integer argument. Leaving us withger to do so we must reason statically about aliasing to
program similar to an example from Crary etal.[4].  ayoid unsoundness. In the presence of aliasing even these

Notice the type of the functioentin the final versionis more expressive systems would simply forbid our final ex-

annotated with the effect s, p1}. It reads its argumentample, even though aliasing is only a problem for the first
from regionp and reads regiop; since it must access itSjteration.

own closure allocated ip;. We refer top as aregion
parametersince it is bound by a region abstraction and
notaletr. 3 Implementing a Realistic System

All though our operational model is not detailed enough
to argue formally about space usage, we can informadly far we have presented a novel region calculus that
reason about the space usage of the final program. K33 several properties useful in the implementation of a
each iteration otnt it puts a new integer in regiopz garbage collector. Unfortunately, there are several other
until it terminates with the valugput[p2] 0). Notice that details that need to be addressed. Here we briefly address
after each iteration the old argument is garbage, but W remaining issues.
never reclaim any of the space used by the old arguments
because they are allocated in regmn but on exit region )
p2 is still live, since we return a boxed value as the resdtl  INvoking the Garbage Collector
of the program. If we allocate each argument in a fre§lp1
region we can then free the old region which contains tnﬁ
old argument. Figure 5 demonstrates this optimization.

e previous examples represent the basic approach to
plementing a garbage collector on top of regions. Fig-
ure 6 fleshes out the idea in more detail. A compiler will
transform a source level program into a region-annotated
Free Early. Figure 5 (a) is a more space efficient verersion in CPS form where at each potential garbage col-
sion that copies the old argument into a new reghn, lection point there is a test of some counter to see if we
and then implicitly frees the old region where the old argghould invoke the collector and copy the argument of the
ment was allocated. Singeis a region parameter bouncturrent continuation into a new region and free the old re-
by a region abstraction, at runtime it may be aliased to agien, otherwise continue with the old region. Notice the
other region variable, so we cannot statically determinse of region polymorophism for the continuatiorand
whether it is safe to free the region associated vpith that the typing of the conditional is dependenkdraving
However, since it is not mentioned in the set of regiom@sreturn type ofins.



(Let cnt =
(nent: int — Ans.
(An:int.
(ifon(exit n)
(cnt(~1m)))) in
(cnt10))

(a) Original Program

(letr p/ in (let cnt =

(nent: (Vp.(int at p) {0} Ans).
(Ap.(An: (int at p).
(let ' = (get[p] n) in
(ifon (exit n)
((ent [p]) (putp] (—11)))))))) in
((ent[p']) (put[p'] 10))))

(c) Translation into\p

(letcnt =
(ncnt: boxedint — Ans.
(An: boxedint.
(Let ' = (unbox n) in
(ifon' (exit n)
(cnt (box (—1 1))))))) in
(cnt (box 10)))

(b) Explicit Boxing/Unboxing

(letr pp in (letr pp in (let cnt =

(uent: ((Vp.(int at p) {op} Ans) at py).

(put[p1] (Ap.(An: (int at p).
(letn’ = (get[p]n) in
(ifon (exit n)
(((get[pa] cnt) [p]) (put[p] (—1n
(((get[pa] cnt) [p2]) (put[p] 10)))))

(d) Accounting for Closures

))))))) in

Figure 4: Simple Region Program

(letr p1 in (letr ppin (let cnt =

(uent: ((Vp.(int at p) {ops} Ans) at p1).

(put[p1] (Ap.(An: (int at p).
(let ' = (get[p]n) in
(ifon' (exit n)
(letr p in (only {p'.p1}

(((get[p] cnt) [p']) (put[p'] (=11))))))))))) in

(((get[pa] cnt) [p2]) (put[p2] 10)))))

(a) Without Region Aliasing

(Letr ppin (letcnt =

(uent: ((Vp.(int at p) g} Ans) at p1).

(put[p1] (Ap.(An: (int at p).
(let ' = (get[p]n) in
(ifon' (exit n)
(letr p’' in (onl
(((get[pa] cnt) [p']
(((get[pa] cnt) [pa]) ) (put[pa] 10))

(b) With Region Aliasing

,p1}

Figure 5: Space Efficient Region Program

{p’
)((put[p’] (=11))))))))) in
1Y



compilers do not actually enforce this abstraction, since
exact garbage collectors need this information. Typically

(Let copy: Vp.Vp'(sat p) g’ (satp’) = ... in the compiler emits a pointer map describing the structure
(let k:Vp.(sat p) P} hns — . in of the closure so that an exact collector can properly scan
(letx:(satp) = ...in the closure. The pointer map is external to the under-
(ifo “m'} ' lying typed intermediate language, and typically there is
(letrpiin . no way to verify that it actually corresponds to the actual
(let X' :(sat p’) = (((copy[p]) [']) X) in
(only {0’} (K[P]) X)) type of the closure. Tolmach presents a closure conver-
((k[p]) %)) sion technique that represents closures in an “interpreted

style” due to Reynolds[18]. His approach avoids existen-
tials and uses standard algebraic types with an explicit dis-
patch function to handle closures. See Figure 7.

Tolmach argues that this approach has several benefits,
besides keeping the type system simple. In particular this
3.2 Intensional Polymorphism transformation amounts to a simple type based closure
analysis. Tolmach also outlines several other optimiza-

In our example above we invoke a reglon—polymorpwl%ns and a method that maintains separate compilation

copy fu.ngnon/that takeg a boxed value in regmmnd that make this approach seem extremely attractive. How-
copies it intop’. Depending on the source language, ”1;3

K/er, his separate compilation approach has some perfor-
approach we have outlined so far may or may not be s tén’ce penglties P PP P
isfactory. In particular we will need a copy function for The interpreted style of closure conversion amounts
each different type of continuation argument. Also tf}%

encoding the information that is traditionally passed
type ofcopyonly guarantees a shallow copy of the Valu'%'hrough pointer maps, directly in the type system. This
if the type of the continuation argumers, contains ref- I '

makes a previous implicit interface between the compiler
erences t@, than our fragment above would not be we S X X
and garbage collector explicit. If we take the existential

\%Eﬁ ?Hédf?)ﬁ:)l)\:\,/i\ge i\rl1vfe l:}lgigl:lzlcineeu[giversal copy funCtIOgpproach with a sufficiently powerful intensional analysis
9 ypels]. the runtime type information passed by the compiler will
substitute for pointer maps. It's not clear which approach

to closures will be more appropriate in practice.

Intensional type analysis allows for the definition of prim- Al ga”rt_)age collectors we have described have been
itive recursive functions from types to types. In the typ&2dless” in that the compiler does not need to tag every

of gc copywe use intensional type analysis to substitu¥@/ue with extra type information. However, because we
one region variable for another. Intensional type anaf§’€ Using intensional type analysis the compiler must be

sis is usually expressed withTgperec type constructor .pass?ng runtime type infornjation.. The garba}ge colleqtor
that encodes a primitive recursive function by structurdl USing the same information to implement its scanning
induction on the structure of types. Here we simply uddnctions. We can o_btaln a truly tagless system if we are
standard substitution notation, a trivial useTyfperec, aPle to monomorphize our code and pay a code blowup
for clarity. The type ofyc_copyguarantees every value irfFSt:

regionp is copied into regiop’. Intensional type analysis

can also be used to deal with closures. 3.4 Pointer Sharing

Figure 6: Invoking Garbage Collection

gc_copy: Va.vp.vp'.a e’ (alp’ :=p])

In practice a realistic garbage collector needs to handle
cyclic graphs and preserve pointer sharing to guarantee
So far we have ignored the issues of how to scan closutesnination, deal with references, and avoid potentially
in a type-safe way. Many type-based compilers use exéponential space blow ups.

tential types to abstract the type of the record containing

free variables in a closure[9].

3.3 Closures

Using a Hash Table. Sharing is preserved by usiifgy-
Ja.(a, (@, int) — int) warding pointer_swhi.ch turns a naive copy f_unction into.
one that memoizes its arguments by mutating objects in-
Unfortunately, this abstraction prevents us from propengiyace. The in-place update overwrites live reachable data
scanning and copying closures. Depending on the caletirich complicates reasoning about soundness. A sim-
lus, intensional type analysis may or may not be able to jpler approach whose soundness is obvious, is to avoid de-
spect the structure of the closure. In practice, type-bastdictive update and use a hash table that hashes point-



let datatype clos =

valy =1 C1 of unit | C2 of int
val f =
if e then (fn x:int => Xx) fun apply (C1 ) x = x
else (fn xint =>vy) | apply (C2y) x =y
in f1
end let
valy =1
val f =
if e then (C1 ()
else (C2 )
in apply f 1

end

Figure 7: Interpreted Style of Closure Conversion

empty : Vp.() &} (p at (pg, Pr) map)

insert : Va.Vp.Vpy.Vpr.((P at (Pg, Pr) map), (0 at pg), (O at pr
lookup :  ¥o.¥p.¥pa.¥pr.((p at (pa, pr) map), (a at pg)) "2 (aat pr) opt

) Pty

Figure 8: Trusted Hash Table Primitives

ers to pointers. This requires no modifications to our

type system other than the addition of a new primitive nil : Va.vp.(aat p)opt
(Pd, Pr) map which maps pointers to values in regipa value : Va.vp.(oatp)— (aatp)opt
to pointers values in regiopy . getval : Vo.vp.((aatp)opt, (datp)) — (aatp)

Figure 8 provides the interface to the hash table. The
empty primitive takes no arguments and creates andupdate : Vo.vp.((aatp), o) o} ()
empty hash table in regiqm all the other primitives will
allocate any needed space for this hash table in this region. (@, p) obj = {(ar at p) opt, a)
Theinsertfunction adds a new entry in the hash table for
boxed values of typa. Ourlooku pfunction searches the Figure 9: Forwarding with Options and Update
table for an entry with the same pointer value as its sec-
ond argument returning the either pointer bound to it or
its third argument or a special value if it is not found. Im-
plementing a garbage collector that preservers sharing is

simply a matter of programming. pointer and the primitivealueinjects a non-null pointer
into theopt type. ThegetVal primitive tests for a null

Update with Extra Space. The hash table approach repointer and returns the value if it is not null or its second

quires no serious modifications to our existing typing syargument if it is null. The update primitive destructively

tem and the soundness is quite obvious. However, it adgi®lates a pointer with a new value.

a significant amount of extra code to the trusted comput-

ing base. It also has some potential performance penaltie§iven these primitives we can define §n o) obj

in terms of time and space. We can get better performamdgdch is actually an abbreviation for the pair

in terms of time if we simply allow for null pointers and{(a at p) opt, o). An unboxed integer which maybe

update of values. Figure 9 provides a signature for tferwarded to regiomp would have typgint, p) obj. A

new primitives. boxed integer object in regigr which may be forwarded
A boxed value of type in regionp that may be null to regionp would have typg(int at p’), p) obj. We

has the type(@ at p) opt). The constantull is the null also need to change the type of @acopyfunction to



have the following intensional type ing Code (PCC) and Typed Assembly Language (TAL)
o [12, 11], opening the potential of system that can verify

{pp'p™ (alp,p':=p',p"])  the safety of an entire program, without assuming the ex-

istence of a trusted garbage collector. Currently these sys-

wherea[p”,p" := p’,p] denotes the simultaneous substtems use conservative collectors to reclaim storage.

tution of p andp’ with p" andp” respectfully. Unlike, other region calculi, ours does not make any
The mutator code only looks at the second componenpriori assumptions about which values are boxed and

of this pair while the first component can be used by th@boxed. Values of typént are unboxed integers while

garbage collector to store forwarding pointers. Whenevgflues of type(int at p) are integers boxed in regign

an object is created the mutator and collector should imhis explicit distinction also simplifies our proofs, since

tialize the first field to null. This correctness requiremefe core calculus closely resembles standard typed lambda

is not captured in the type system. Unfortunately this agalculi. This approach also demonstrates that is is easy to

proach requires that mutator code be run in the lexiegltend existing typed lambda calculi used in compilers

scope of the region that will contain forwarded objecigith a notion of regions.

in the future, so both the current allocation space and the

future allocation space must be statically live at the sal

time, but since the future allocation space will contain

objects, there need not be any significant space penalt)c(l.

gc_copy: Va.vp.vp'.vp".a

rFrﬁplicit Deallocation. One reason Aiken et al. [1] and
rary et al. [4] require a much more complicated static
nalysis is that they are trying to guarantee statically that
it is safe to explicitly deallocate a region. This is undecid-
4 Conclusions able because a&gion aliasing which causes regions that
are statically distinct to become, at run time, aliased to the
Efficiency From an algorithmic standpoint the apsame value. Both systems try to address the region alias-
proaches outlined above are competitive with tradition89 Problem with conservative static approaches. Crary et
unsafe collectors. However, we currently are not able@ track “uniqueness” information. Aiken et al. solve a
safely encode collection algorithms that replace pointé¥stem of constraints over program control flow. These
to values in one region with pointers to values in anoth@@proaches allow for deallocation to be a cheap constant
Our approach does not require any more type informatiie operation. Our system is immune to the problems
than tag-free approaches[17]. The only extra cost is fgsociated with region aliasing, because our implicit ap-

scanning required for implicit deallocation of regions. Proach will only deallocate regions which are known to
be syntactically dead at run time.

Interface to Garbage Collectors. Most garbage col-

lectors are very closely tied to a particular code genefelated Work. The system described by Aiken et al.[1]
tor that maintains data-representation invariants that teeexpressive enough to implement our idea but requires
garbage collector needs to operate safely. Changeglbal analysis to guarantee safety. The system of Crary
data-representations used by the code generator may4kis also sufficiently expressive, and does not require a
quire changes to garbage collectors and vice versa. Mjkbal analysis to verify safety. However, their type sys-
matches between the code-generator and garbage colient is much more complicated. If we were to use the
tor are the source of many hard-to-track down bugs Grary system we would be left with a small runtime TCB
practice. but a much more complicated static checker to verify the

Also notice that the traditional distinction betweeastatic safety properties.
the mutator and collector disappears. The collector is To improve memory utilization of a region-based sys-
just a term that is indistinguishable from the any othéem, one can integrate a trace-based garbage collector
term in the language. Optimizing compilers can pewith region managed memory [7]. Moreover an id-
form optimizations on a whole program that includes them seen in some region schemes refered ta@sble
collector. Along with reducing therusted computing copying[15] is basically an explicit two-space copying
base(TCB) our approach allows one to formalize mangarbage collector implemented on top of a safe region-
data-representation invariants explicitly in a well defindshsed scheme. Adding a collector to a region system
type system, such that any type-preserving transformatioyproves memory utilization, but it does not allow us to
maintains garbage collector safety. maintain a small TCB.

Being able to formalize these invariants has a very bigThere exists a safe runtime variant of regions that uses
software engineering advantage since more bugs cardigramic reference counting [5] which has all the bene-
caught early on in the development cycle. These invdits of static regions as well as good separate compilation
ants can be used to aid the generation of Proof Carpyeperties. However it requires a change in programming



model and leaves the burden of deallocation to the pro-
grammer. Explicit regions provide a simple safe and effi-
cient manual allocation mechanism to the programmer.

Future Work.

(6]

Because our types track the location of

an object, updating a pointer to a value in one region with

a pointer to a value in another is an unsound operation.
are investigating approaches that will allow this so we ca

71

remove the overhead of having to reserve space for for-
warding pointers, since many unsafe garbage collectors
perform this optimization. Being able to update pointers
in this way is also important for implementirgenera- 8]
tional collectionschemes. Ideally a sound type systeng
that can handle the above will allow us to encode many of
the pointer/non-pointer store invariants needed to imple-
ment write barriers for generational systems. We intend to
implement a prototype system using the techniques Oufg]
lined so far to better understand the performance proper-
ties of the various approaches.
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FRV((ifoe g &)) FRV(e)UFRV(e) UFRV(ep)
Proof: (Sketch) By Subject Reduction and Progress FRV((Ax:se)) = FRV(e)UFRV(s)
Lemmas. FRV((e1e2) = FRV(er)UFRV(ey)
Lemma 1.1 (Subject Reduction)If A;I - e : s and ';F;\\//((((AFE T;; i Eggg b{{%
(A, &) — (I, &) thenA';T-€:s FRV((letrpine)) — FRV(e)\{p}
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By assumptionA;T F E[(get[p] (put[p] Vv))] : t. By
induction on the typing derivation and inspection of the
tputruleA;T HEV :t.

Case r.letr (A, E[(letr pine)]) — (AU{p}, E[€])
By assumptiomy;I" - E[(letr p in €)] : t. By induction
on the typing derivation and inspection of thietr typing
judgement we conclude thAtU {p};T - E[¢] : t.

Case ronly (A, E[(only A €)]) — (A, €)

By assumptiom; I - E[(only A’ €)] : Ans. By induction
of the typign derivation and inspection of thenly rule
Nl e: Ans.
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