
TCP mechanisms for Diff-Serv Architecture

Wenjia Fang Larry Peterson
wfang@cs.princeton.edu llp@cs.princeton.edu

Department of Computer Science

Princeton University

Abstract

Work on Diff-Serv has demonstrated that it is possible to
create differentiations in throughput among TCP connec-
tions during periods of network congestion. However, the
effectiveness of such schemes is limited by the imprecise-
ness and biases in TCP’s window-based congestion control
algorithm. More precisely, TCP’s window-open mecha-
nism has an intrinsic bias against long RTT connections,
and its window-close mechanism adapts to the perceived
network congestion optimal point only, which is not suf-
ficient to meet the underlying premise of Diff-Serv archi-
tecture. In response to these two weaknesses, this paper
proposes a set of new mechanisms for TCP’s congestion
control algorithm that are specifically tailored to the Diff-
Serv architecture. While preserving TCP’s “linear increase
and multiplicative decrease” principle, these mechanisms
make TCP more robust and precise in adjusting its send-
ing rate to network congestion, as well as to a pre-defined
service profile. Simulations and testbed implementations
are used to qualitatively demonstrate the results. The re-
sults show that combined with Diff-Serv mechanisms in
routers, the mechanisms in endhosts can allocate resource
among TCP connections in a fair, precise and differentiated
manner. The paper also discusses incremental deployment
issues and proposes a deployment strategy for the proposed
mechanisms.

1 Introduction

There has been a flourish of research efforts on Differen-
tiated Services (Diff-Serv) [3] in the past few years. The
Diff-Serv architecture distinguishes edge routers from inte-
rior routers, and requires only edge routers to maintain per-
flow state. The interior routers treat traffic as an aggregate.
The differentiation of traffic is achieved as follows. Diff-
Serv defines a limited set of Per-Hop Behaviors (PHB) that

are implemented in interior routers. Edge routers classify
packets into flows and apply traffic conditioning mecha-
nisms to flows, including metering, tagging, shaping, and
policing. Edge routers tag packets [15] so as to indicate to
the interior routers which PHBs should be applied to the
packets. The interior routers do not need to classify pack-
ets, but instead apply the corresponding PHBs to packet ag-
gregates. Thus, the service provided to a particular packet
flow is a combination of the traffic conditioning at edge
routers and a series of PHBs in interior routers.

There are currently two PHBs defined in the Diff-Serv
architecture: Expedited Forwarding (EF) [3] and Assured
Forwarding (AF) [3]. Expedited Forwarding provides the
equivalent of a dedicated link of fixed bandwidth between
two edge nodes. Assured Forwarding shares its root with
the best effort service model. In AF, each customer speci-
fies its expected level of service (e.g. targeted bandwidth)
and the network provides a certain level of assurance in
meeting the expectations of the customers [4]. The cus-
tomer’s application can then adapt to the expected service
provided by the network. This paper focuses on mecha-
nisms for Assured Forwarding only.

Instrumental to the Diff-Serv architecture is Service
Level Agreement (SLA)—a contract between a customer
and an Internet Service Provider (ISP) that specifies the
forwarding service the customer should receive. The tech-
nical part of SLA specifies classifier rules and any cor-
responding traffic profiles and metering, tagging, shaping
and dropping rules to be applied to the traffic streams se-
lected by the classifier. An ISP is expected to provision its
network to meet the agreed service requirements in SLA.

The Diff-Serv architecture changes the premise underly-
ing the best-effort Internet service model. In the best-effort
service model, congestion causes all participating to slow
down. Thus, the received service of a customer depends
on how many simultaneous users are currently sharing the
bottleneck link. In contrast, the Diff-Serv architecture allo-
cates resources based on some pre-defined policies embod-

1



ied in the SLAs. With SLAs, an ISP can make better deci-
sions about its provisioning, and customers know the ser-
vices they expect to receive even during congestion. This
implies that the customers can adopt mechanisms that help
them to achieve the service they have already subscribed
for. This change of premise reflects the now commercial-
ized nature of the Internet. Since high level policies can
only be exercised with support from underlying mecha-
nisms, this paper focuses on the mechanisms that end hosts
can adopt to achieve their allocated share of service.

Earlier work on Diff-Serv [5] proposed mechanisms in
both edge routers and interior routers that, when deployed
in a Diff-Serv domain, differentiate among TCP connec-
tions. The RIO algorithm is deployed in each interior
router to discriminate between two types of packets dur-
ing congestion: IN packets are those within the subscribed
SLAs, and OUT packets are those beyond the subscribed
SLAs. The tagging algorithm (TSW) is deployed at edge
routers to mark packets as being either IN or OUT of the
SLAs. Using simulations, this earlier work shows that
such mechanisms can create differentiations among a wide
range of TCP connections. However, the effectiveness of
such schemes is rather limited by the impreciseness and bi-
ases in the window-based congestion control algorithms of
TCP. More specifically, the rate adjustment scheme in the
current Internet depends on a feedback loop completed by
both TCP’s congestion control algorithm and the router’s
congestion signals. Thus, by changing mechanisms in
routers alone, the rate adjustment schemes are not very ef-
fective or precise in achieving the targeted SLAs.

This paper studies three Diff-Serv mechanisms which,
when applied to current TCP’s congestion control algo-
rithm, can significantly improve TCP’s performance in
meeting the requirement of an SLA. Since customers know
the SLAs prior to actual communication, the mechanisms
we propose incorporate such knowledge as well. We
believe the “linear-increase and multiplicative-decrease”
principle in the current TCP is sound, and we do not pro-
pose to change it. In fact, we do not introduce any ad-
ditional state variables to TCP’s machinery, but merely
make the observations that existing variables likecwndand
ssthreshcan be used more effectively in meeting the re-
quirements of SLAs. We use simulations to study these
mechanisms in detail, and verify them with a testbed im-
plemention. Our results show that combined with Diff-
Serv mechanisms in routers – RIO and TSW –, the pro-
posed TCP mechanisms can allocate resources among end-
hosts in a fair, precise and differentiated manner. Further-
more, we discuss in detail the deployment of each mecha-

nism and how to handle partial deployment—a situation in
which only a portion of the network has been upgraded.

The idea of changing TCP to incorporate mechanisms
that work with the Diff-Serv mechanisms have also ap-
peared in [8], in which, Feng et al. proposed an adaptive
marking algorithm to TCP’s congestion control algorithm,
which interpret and respond to congestion signals from the
network. In comparison, our proposed scheme does not in-
troduce additional states to TCP and is very simple to im-
plement. It is applicable to other congestion control algo-
rithms observing the same “linear increase, multiplicative
decrease” method of TCP, such as “Congestion Manager”
[2].

2 Diff-Serv Mechanisms

2.1 RIO Algorithm

The RIO algorithm is based on the RED (Random
Early Drop) algorithm, and is created with two sets
of parameters for two types of packets: IN pack-
ets and OUT packets. The two sets of param-
eters are denoted as(min in,max in, Pmax in) and
(min out,max out, Pmax out). min in andmax in are
the low and high thresholds for IN packets, andPmax in is
the maximum probability with which to drop an IN packet.
Similarly, min out andmax out are the low and high
thresholds for OUT packets, andPmax in is the maximum
probability with which to drop an OUT packet.

The algorithm works as follows. When a packet ar-
rives, RIO estimates two variables,avg in q, average IN
packet queue andavg q, averagetotal queue, respectively.
An arriving IN packet will contribute to the estimation of
avg in q, as well asavg q; an arriving OUT packet will
only contribute to the estimation ofavg q. A dropping
probability is calculated for each arriving packet depend-
ing on the current value ofavg in q or avg q. In the case
of an IN packet, a dropping probability is calculated asp =
Pmax in∗(avg in q−min in)/(max in−min in). The
intuition is that an IN packet represents the traffic that is to
receive priority, therefore, whether it should be enqueued
is dependent on the amount of IN packets the gateway re-
ceived recently, and not affected by the OUT packets or the
total number of packets (both IN and OUT). In the case of
an OUT packet, a dropping probability is calculated asp =
Pmax out ∗ (avg q − min out)/(max out − min out).
Since an OUT packet represents the lower priority traffic,
it should yield to IN packets in terms of queuing, therefore,
its dropping probability depends not only on other OUT

2



packets in the queue but also on the number of IN packets
in the queue, therefore, RIO usesavg q, the average total
queue, to calculate the probability for dropping an OUT
packet.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

P(drop)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

min_out

Pmax_in

max_in

1

Avg_q

Phase 43 Phase 5

max_out

Pmax_out

Phase 2

min_in

Phase 3Phase 1

Figure 1: RIO algorithm

Graphically, RIO can be demonstrated in Figure 1. RIO
divides up the gateway’s congestion state in five phases,
depending on the average queue length1.

• Congestion free phase (phase 1)

In this phase, the gateway is operating with no con-
gestion: the amount of IN and OUT packets are well
below its capacity. It sees very short instantaneous
queue and very small average queue value. No pack-
ets are dropped.

• Congestion sensitive phase (phase 2)

In this phase, the gateway suspects that the queue
might be built up so it starts to drop packets as con-
gestion signals, however, it drops OUT packets only.
During this phase, the IN packets only see short in-
stantaneous queue and they are never dropped.

• Congestion tolerance phase (phase 3)

In this phase, all OUT packets are dropped, but no IN
packets are ever dropped. During this phase, the av-
erage queue length is building up with the arriving IN
packets. This is the buffering phase for the IN packets
before gateways start dropping any IN packets.

• Congestion alarm phase (phase 4)

In this phase, all OUT packets are dropped, in addi-
tion, the gateway starts to drop IN packets as a means

1The X-axis is the number of packets ofavg q, the estimate of average
queue length.

to keep the queue from overflowing. This is an un-
desirable phase for ISP because it compromises the
ISP’s SLAs by dropping IN packets.

• Congestion control phase (phase 5)

In this phase, the system is congested. The gateway
drops both IN and OUT packets with probability 1.
In this phase, the gateway has switched its primary
goal from creating differentiations among two types
of packets to congestion control. The gateway de-
grades into a drop-tail gateway, which has other unde-
sirable consequences, e.g., dropping multiple packets
from the same TCP stream and global synchroniza-
tion, etc. If the gateway constantly operates in this
phase, it is a sure sign that either the system is well
under-provisioned or the parameters of traffic condi-
tioners/RIO are not set correctly.

Phases 2 and 3 are the ideal operating phases for a router
because in this case, both instantaneous and average queue
is short but the link is also highly utilized, the only dropped
packets are OUT packets, which doesn’t compromise the
ISP’s SLAs. When operating in phase 1, the router sees
little congestion but the link capacity is not well utilized.
When the input traffic is predictable, ISP should try to con-
figure their system to avoid phases 4 and 5, and operate
most in phases 1, 2 and 3.

2.2 Traffic Conditioners and Tagging

Traffic conditioners can be modeled as logical entities sit-
ting on the forwarding path of an edge router. In an edge
router, packets are first classified, and then fed through the
corresponding traffic conditioners, which can choose to 1)
passively monitor packet streams and tag packets, or 2)
actively buffer and shape packet streams to obtain certain
traffic properties before the packet streams enter the down-
stream Diff-Serv domain. We consider the simpler case of
tagging packets.

Clark and Fang [5] proposed a tagging algorithm, call
Time Sliding Window (TSW), that is specifically tailored
to TCP traffic. A TSW tagger incorporates a probabilistic
function that can reduce the likelihood of tagging consec-
utive packets within a window of packets, thus, it reduces
the chance of multiple packet drops within a window. This
keeps TCP operating in the “congestion avoidance” phase,
thus making the rate adjustment scheme more controllable.
Our simulations show that when TCP itself incorporates
mechanisms suited to Diff-Serv, as proposed in the follow-
ing section, the rate adjustment scheme is less dependent

3



on the intricacies of tagging algorithms. Our results show
that we could use a simple Token Bucket tagging scheme
with a configured target rate for each TCP connection.

3 Proposed Mechanisms

3.1 TCP Congestion Control

TCP implements congestion control and avoidance mech-
anisms that interpret packet drops as congestion signals.
The mechanisms are based on [13], and have incorporated
many refinements [7, 12].

There are two phases in TCP’s window adjustment al-
gorithm: the exponential increase (slow start) phase, and
the linear increase (congestion avoidance) phase. TCP
keeps two variables for its congestion control algorithm:
the congestion window (cwnd) and the slow-start thresh-
old (ssthresh). During the exponential increase phase, the
TCP sender starts with acwndof one packet, and doubles
this variable each RTT. When the congestion window hits
a threshold,ssthresh, the sender switches to the congestion
avoidance phase, and increases the congestion window lin-
early, probing the network capacity as it becomes avail-
able. TCP continues in the congestion avoidance phase
until it receives a congestion signal—a packet drop or an
Explicit Congestion Notification (ECN) in an acknowledg-
ment packet—at which point the sender evokes a mecha-
nism called Fast Retransmit and Fast Recovery to recover
the lost packet. Additionally, TCP sets itsssthreshto be
one half of the congestion window prior to the packet loss,
and resets itscwndto be the same as the newssthresh.

In this scheme,cwnd indicates the amount of packets
currently outstanding, and the instantaneous sending rate
of TCP can be approximated ascwnd/rtt, wherertt is
the round trip time including queuing delays. The choice
of threshold reflects an estimation of the equilibrium oper-
ating point—a packet leaves the network as a sender puts
a packet into the network—and is key to the performance
of the algorithm. The algorithm, in adjustingcwnd, re-
flects the additive increase and multiplicative decrease rule
which maintains stability in the network [13, 14].

3.2 Proposed Mechanisms

3.2.1 Fair Window Open-Up Algorithm

In both the slow start and congestion avoidance phases,
TCP opens its window each round trip time (rtt). Let ri
denote sourcei’s average round trip time, including queu-
ing delays. In the congestion avoidance phase of TCP, node

i’s window is increased by roughly one packet everyri sec-
onds. Thus, nodei’s throughput is increased by1/ri pack-
ets/sec everyri seconds, or by1/(ri)2 packets/sec every
second. Therefore, it takes a long-rtt connection a signif-
icantly longer time to recover to its previous throughput
than it does a short-rtt connection.

TCP’s bias against longrtt connections has been known
and studied in [9]. TCP adopts the current window open up
algorithm for its simplicity in algorithm and implementa-
tion. However, as far as the fairness goal is concerned, the
current increase-by-one window algorithm is not particu-
larly good. We use the fairness index proposed in [14],

F =
(
∑n
i=1 xi)

2

n(
∑n
i=1 x

2
i )

wherexi is the resource allocation to theith user. This
fairness index ranges from 0 to 1, and is maximized when
all users receive the same allocation. This index isk/n
whenk users equally share the resource, and the othern−k
users receive zero allocation. Examples of possible defini-
tion of resource allocation include response time, through-
put, throughput times hops, and so on [14].

We propose two alternative window open-up algorithms,
both fall in the categories of linear window open-up algo-
rithm, which meet the criteria of fairness. In the first alter-
native, TCP increasesc ∗ rtt packets per round trip time,
wherec is a constant, chosen as a scaling factor. Using
this scheme, a connection that goes throughk bottleneck
gateways will share1/k of a bottleneck link bandwidth as
a connection which goes through one bottleneck gateway.
This will meet the criteria of fairness index when the re-
source allocation is defined as throughput times the num-
ber of gateways. In the second alternative, TCP increases
c ∗ rtt2 packets per round trip time. Using this scheme,
whenn connections are sharing a single bottleneck gate-
way, the window open-up algorithm allows all connections
to each share1/n of the bottleneck bandwidth, regardless
of their rtt. This will maximize the fairness index when
the resource allocation is defined as throughput of individ-
ual connections.

In the Diff-Serv architecture, each entity (potentially at
the finest granularity of a single TCP connection) is asso-
ciated with an SLA that defines a target throughput rate.
Though the SLA definition has not been finalized by the
IETF Diff-Serv working group, there are two potential def-
initions to choose from, both of which meet the criteria of
fairness. Each definition will in turn determine the un-
derlying window open-up algorithm. In the first defini-
tion, an SLA includes both a target throughput as well as

4



a range ofrtts within which the target throughput can be
met (BWtarget, (minrtt,maxrtt)). The longer thertt, the
smaller the corresponding target throughput. This defini-
tion of SLA is an interpretation of the fairness index if the
underlying TCP window open-up algorithm is chosen to
increasec∗rtt each round trip time. Alternatively, an SLA
includes simply a target throughput (BWtarget), which im-
plies that the ISP is to assure the target throughput regard-
less of thertts of the connection. This definition of SLA
is an interpretation of the fairness criteria if the underly-
ing TCP window open-up algorithm is chosen to increase
window linearlyc ∗ rtt2 each round trip time. The related
SLA definitions and their corresponding window open-up
policy and fairness criteria are tabulated in Table 1.

Table 1: SLAs and the corresponding TCP mechanisms to
achieve fairness

Policy 1 Policy 2

SLA [BWtarget, (minrtt,maxrtt)] BWtarget

Definition Throughput * # of routers Throughput
Win. Algo. c ∗ rtt c ∗ rtt2

It should be noted that both alternatives to the current
window algorithm of TCP still fall under the “linear in-
crease” rule. Only that the “linear increase” is byc packets
per rtt (the first policy), or byc packets per second (the
second policy).

3.2.2 Settingssthreshfor TCP

As discussed in section 3.1, the value ofssthreshre-
flects the perceived network available bandwidth to a TCP.
ssthreshis initially set to a default value and is readjusted
after each packet drop to be one half of thecwndbefore
the packet drop. A packet drop is recovered either through
a mechanism called Fast Retransmit and Fast Recovery, or
through a timeout mechanism. When a single packet is
lost, the Fast Recovery and Fast Retransmit mechanism
recovers the lost packet successfully and bothcwnd and
ssthreshare reduced to one half ofcwndprior to the packet
drop. At that point, TCP continues to operate in the lin-
ear window increase phase with a reducedssthresh. When
multiple packets are dropped within a window, current im-
plementions of TCP (Reno) usually fail to recover all lost
packets because the sender won’t be able to put enough
packets into the network to generate sufficient duplicated
acknowledgments, which is needed to detect additional

packet loss. Upon each detected successive packet loss,
TCP reduces itsssthreshby one half, so when TCP even-
tually recovers from packet loss via a timeout mechanism,
TCP operates with a much reducedssthresh.

In the Diff-Serv architecture, bandwidth allocation is
based on SLAs. The underlying premise is that each en-
tity is assured of its target throughput specified in its SLA
when congestion is experienced, and can exceed such pro-
files when there is no congestion. However, there will still
be cases when either the ISP fails to provision properly or
certain routers experience incipient congestion. In the Diff-
Serv domain, when a TCP connection loses a packet, how
shouldssthreshandcwndbe set? The underlying Diff-Serv
premise implies that the ideal behavior of TCP is to reduce
its sending rate when congestion is experienced, but can
recover to its target throughput robustly.

We propose the following changes to reflect the change
in the underlying premise from a purely best-effort service
model to a Diff-Serv model. We set the initial value of
ssthreshto be the minimum of the default value and the
byte-equivalent of the target rate as defined in the SLA.
This also “gauges” the operating point of TCP. Addition-
ally, we propose that TCP sets itsssthreshto be the byte-
equivalent of the target throughput, when congestion is de-
tected. TCP reducescwnd to be one-half of the previous
value before the packet drop, as it would in current imple-
mentations. This has the effect of reducing instantaneous
sending rate of TCP connections to alleviate temporary
congestion, but allows each TCP connection to quickly
throttle back to its target operating point.

3.2.3 ECN-enabled TCP in Diff-Serv Domain

Some recently proposed changes to TCP include the use
of Explicit Congestion Notification (ECN) mechanisms
in both TCP and RED gateways [10]. In this proposed
scheme, RED routers mark an ECN bit in a packet’s header
instead of dropping the packet, and TCP responds to the ex-
plicit congestion notifications instead of inferring conges-
tion from duplicated acknowledgments. This mechanism
has the advantage of avoiding unnecessary packet drops
and unnecessary delay for packets from low-bandwidth
delay-sensitive TCP connections. A second advantage of
the ECN mechanism is that TCP doesn’t have to rely on
coarse granularity of its clock to retransmit and recover
packet losses.

Similar mechanisms could be deployed in the Diff-Serv
architecture. Instead of dropping packets, the RIO gateway
can also take advantage of the ECN mechanism by marking
them. A RIO gateway can apply its preferential algorithm

5



in which it marks an OUT packet as experiencing conges-
tion with a much higher probability than an IN packet [5].
The ECN bit will be copied by the transport-layer receiver
and relayed back to the sender. The TCP sender has to be
able to recognize the two types of packets (IN and OUT),
and respond to ECN bits in them differently.

When an OUT packet arrives back to the TCP sender
with the ECN bit marked, it indicates that the RIO gateway
is operating in the congestion sensitive phase (phase 2 in
Section 2.1). When a RIO gateway deploys the ECN mech-
anism as the only mechanism for notifying the transport-
layer protocols to retract its congestion window, the win-
dow reduction should be no more aggressive than the rec-
ommended guidelines for ECN mechanisms [10]. We rec-
ommend that TCP reduces itscwnd to be one half of the
currentcwnd value, and resetsssthreshto be the byte-
equivalent of the target throughput. Depending on the
value ofcwndandssthreshprior to receiving the ECN sig-
nal, TCP can be operating in either linear increase mode or
exponential increase mode again. In either case, the reduc-
tion in the window size will induce a temporary reduction
in TCP’s sending rate to alleviate congestion, but still keep
TCP operating close in the targeted operating point.

When an IN packet arrives back to the TCP sender with
the ECN bit marked, it indicates that the RIO gateway op-
erates in the congestion control phase (phase 5 in Section
2.1), meaning that the gateway has seen persistent long
queues and is forced to mark both IN and OUT packets
with probability 1. When such packet is received, the
TCP sender should react to the congestion signal more
drastically. We recommend that TCP reduces its reduce
its cwnd to be one packet, and resetssthreshto be the
byte-equivalent of the target throughput. This is the same
window reaction as in the current implementation when a
packet has been dropped but TCP starts in its slow start
phase with a configuredssthresh. This will cause a more
drastic reduction in TCP’s sending rate, but since the new
ssthreshwill be greater than the newcwnd, TCP will
quickly recover to the target operating point using expo-
nential increase window increase algorithm.

4 Simulation and Testbed Results

This section presents simulation results and some pre-
liminary results from a testbed implementation. We find
that when endhost incorporates Diff-Serv mechanisms to
respond to feedbacks from the network (both conges-
tion information and IN/OUT information), the combined
scheme is precise and effective in allocating network ca-

pacities among connections with different SLAs.

4.1 Simulation Setup

We use the network simulatorns [1], with a simple topol-
ogy (Figure 2) to evaluate bulk-data transfers. We use
six FTP transfers with two sets ofrtts: 80ms and 30ms.
Each simulation run has four different phases. The first
phase is thestart-upphase in which all six FTP/TCP con-
nections reach their respective operating points. The sec-
ond phase is acongestedphase, in which, a constant bit
rate (CBR) connection starts, running at1/4 of the bottle-
neck bandwidth. This will cause heavy congestion in the
router and TCP connections will back off during this phase.
The third phase is therecoveryphase, in which the CBR
source stops and all FTP/TCP connections will recover to
their respective operating points. The fourth phase is the
over-provisionedcase, during which, one of the FTP/TCP
connections (TCP1) stops sending, and the available band-
width is shared among the rest of five FTP/TCP sources.
Each individual phase lasts for 25 seconds. All packet sizes
are set to 1000 bytes. We use TCP-Reno, and receiver win-
dows are large enough to not be a constrain on the conges-
tion window.

H

H

H

H

H

H

R

R

R

R

H

H

H

H

H

H

R

R

5ms

8Mbps

20ms

20ms

20ms

3ms

3ms

3ms

10ms

2ms

3ms

3ms

2ms

2ms

2ms

2ms

2ms

2ms

TCP3

TCP5

TCP1

TCP2

TCP4

TCP0/CBR Sink0

Sink2

Sink3

Sink4

Sink5

Sink1

Figure 2: Simulation Topology

Table 2: Configurations of TCP connections
RTT (ms) Rt (Mbps)

TCP0 80 2
TCP1 80 2
TCP2 80 1
TCP3 30 1
TCP4 30 0.6
TCP5 30 0.6
CBR 80 2

The parameters for RED and RIO gateways are set com-

6



parably. The bottleneck speed is 8Mbps. The low threshold
(min th) for RED is the byte-equivalent of 5ms of queue
delay, the high threshold (maxth) is the byte-equivalent
of 10ms of queuing delay,2 and the dropping probability
P max is 0.1. The comparable parameters for RIO are (5,
10, 0.5) for OUT packets, and (10, 20, 0.02) for IN pack-
ets. To save space, we use tables to represent the time aver-
age throughput of three representative connections during
different phases. Each setup is run three times with a dif-
ferent random seed, and the data presented in the tables
are averages of the three runs. For each scenario, we show
the throughput of 1) a long-rtt FTP/TCP (with and w/o a
target throughput of 2Mbps); 2) a short-rtt FTP/TCP (with
and w/o a target throughput of 0.6Mbps); 3) a CBR con-
nection with sending rate at 2Mbps during the congested
phase. The constantc in TCP’s window open-up algorithm
is chosen to be 100, which is equivalent of increase one
packet each 100ms.

The total allocated throughput is 7.2Mbps, or 90% of the
bottleneck link. The details of simulation set up are listed
in Table 2.

4.2 Impact of Mechanisms

We separate the mechanisms into two groups: Diff-Serv
mechanisms to be applied in the end hosts (combinations
of all the mechanisms proposed in Section 3) and Diff-Serv
mechanisms to be applied in the router (RIO and TSW al-
gorithms). We consider four different scenarios: 1) stan-
dard TCP-reno algorithm with RED gateways; 2) Diff-Serv
enhanced TCP with RED gateways; 3) standard TCP with
RIO and TSW gateways; and 4) Diff-Serv enhanced TCP
with RIO and TSW gateways. Table 3 lists the results from
four different scenarios.

Scenario 1 is our basis for comparison, representing the
current best effort model. It illustrates two well-known
behaviors: 1) short-RTT TCP connections have advantage
over long-RTT connections when sharing the same bottle-
neck (first body row vs. second body row); and 2) a non-
congestion controlled source has a detrimental effect on
TCP connections (second body column), in which, TCP0
and TCP3 throughput dropped by 30% when CBR starts.
In this case, the CBR source gets almost all its packets
through a RED gateway at the expenses of other TCP con-
nections’ throughput.

Scenario 2 illustrates the effect of the mechanisms in-
corporated into TCP. With configured knowledge of target

2In simulations, we translate this in terms of the number of packets
queued.

throughputs, TCP could robustly recover to its target rate
after packet losses. The proposed window open-up algo-
rithm also corrects the bias against long-RTT connections,
e.g., in the Start-up and Recovery phases, TCP0, with anrtt
of 80ms, doesn’t suffer from network bias and gets close
to its allocate target rate (1.86Mbps or 93%). However,
in the presence of a non-congestion controlled source, all
TCP sources will suffer, e.g., a drop in TCP0 and TCP3’s
throughput (30%) when CBR starts. The RED gateway
is not capable in discriminating against an “out-of-profile”
source.

Scenario 3 shows the results of applying the mechanisms
in the routers only. Compared to scenario 2, the RIO al-
gorithm discriminates against “out-of-profile” sources to
limit the detrimental effect OUT packets have on IN pack-
ets during congestion. In this case, the CBR source is get-
ting 89% of its packets through vs. 96% of its packets
in scenario 2. (The bottleneck link has enough available
bandwidth to accommodate 50% of the CBR packets.) The
service differentiation among TCP connections with vary-
ing RTTs is the most pronounced during congestion (body
column 2). When the network is well-provisioned, the
service discrimination effect of RIO is dampened by the
TCP’s window algorithm. Short-RTT connections obtain
most of the available bandwidth in the over-provisionedsit-
uation. In other words, when free of congestion, the innate
TCP biases can override the targeted bandwidth allocation
created by the Diff-Serv mechanisms in routers.

Scenario 4 illustrates the effects of the mechanisms in
both the end host TCP and in routers. Compared to sce-
nario 2, the improvement lies in the congested phase, in
which the RIO algorithm is able to shield IN packets from
the interference of OUT packets. In this case, the CBR
source is able to get 50% of its packets through (body
column 2), which is roughly what the router can accom-
modate besides all its pre-allocated resources. Compared
to scenario 3, the improvement lies in allocation of band-
width according to each connection’s profile regardless its
rtt and the network conditions. When the network is con-
gested, each TCP receives close to its targeted throughput;
when the network is well-provisioned, the allocation of ex-
tra available bandwidth is fair among all TCP connections.

In summary, we observe that by incorporating Diff-Serv
mechanisms in endhosts, the combined scheme can allo-
cate resources fairly, precisely and differentially among
connections, regardless of network conditions. In fact,
if the endhost TCP has incorporated the Diff-Serv mech-
anisms, the RIO algorithm in routers can be configured
to create strong differentiation among classes of packets,

7



Table 3: Comparison of Diff-Serv mechanisms applied to routers and endhost TCP; Modified TCP = Standard TCP + Three
mechanisms. All measured in Mbps

Start-Up phase Congested PhaseRecovery Phase Over-provision Phase

Standard TCP0 (80ms, no target) 0.676768 0.491638 0.723149 0.832894
TCP+RED TCP3 (30ms, no target) 1.622382 1.126404 1.585279 1.804911
(Scenario1) CBR 1.978168

Modified TCP0 (80msRt=2Mbps) 1.86133 1.31369 1.81553 2.30319
TCP+RED TCP3 (30msRt=1Mbps) 1.11268 0.84987 1.12360 1.42987
(Scenario2) CBR 1.92003

Standard TCP TCP0 (80msRt=2Mbps) 1.43707 1.32511 1.40382 1.49129
+RIO+TSW TCP3 (30msRt=1Mbps) 1.05836 0.90249 1.11443 1.37187
(Scenario3) CBR 1.78891

Modified TCP TCP0 (80msRt=2Mbps) 2.02678 1.89689 2.02658 2.36111
RIO+TSW TCP3 (30msRt=1Mbps) 1.04109 0.91049 1.04853 1.33992
(Scenario4) CBR 1.00350

therefore, more effectively shield traffic that within SLAs
from those that are outside SLAs.

4.3 Robust Recovery from Losses

This section focuses on the details of TCP’s window be-
haviors before and after incorporating the Diff-Serv mech-
anisms. We illustrate the effects in Figure 3. The left
graph shows TCP0’scwndandssthreshthroughout the en-
tire 100 seconds of simulation (scenario 1 setup in Table 3,
in which TCP uses standard Reno algorithm). The right
graph shows TCP0’scwnd andssthreshthroughout time
(scenario 4 setup in Table 3, in which TCP incorporates all
three Diff-Serv mechanisms). The most pronounced and
visible difference lies in howssthreshis adjusted in the two
graphs: in the left graph, thessthreshadjustment is accord-
ing to the perceived network conditions and can be drastic
and unpredictable. For example, from time 25 to 50 sec-
onds, when there is a CBR source keeping the networks in
a congested state, the TCP sources usually detect this and
run at a much reduced operating point. There are several
cases in whichssthreshis adjusted multiple times, each for
a packet drop within the same window. (Not visible given
the granularity of the graph.) From time 80 second and on-
wards, the network is in a over-provisioned state, and the
rate adjustments are infrequent and thessthreshis high. In
contrast, in the right graph, thessthreshis set by the tar-
geted throughput, so after a packet drop, TCP’scwnd is
reduced but not itsssthresh. Note thatssthreshis adjusted
if the estimated RTT changes, because thessthreshis set
to be byte-equivalent of target-rate delay product. This is

shown in the graph as a few discreet values ofssthresh: 40,
45 and 50 packets, etc. By keeping thessthreshnear its
target operating point, TCP can quickly recover from its
packet losses and not being affected by worsened network
conditions caused by non-congest control sources.

Another difference between the two graphs lies in the
rate at which TCP adjusts its window, or the slope of each
discrete segment of TCP window adjustments. During
the congestion control phase of window increase, the en-
hanced TCP using a constantc of 100 opens up its window
slower than its counterpart before incorporating the Diff-
Serv mechanisms. The right graph appears to have a fast
rate of increase because most of the time, it operates in the
“Slow Start” phase after a packet drop becausessthresh
is greater thancwnd. This is also a sign that TCP is not
meeting its targeted throughput. On the other hand, in the
left graph, TCP operates in the congestion avoidance phase
after a packet drop becausessthreshandcwndare both re-
adjusted.

4.4 Testbed Implementation

We have implemented the first two mechanisms (TCP win-
dow open-up algorithm and settingssthresh) in a testbed.
The testbed currently has edge routers that implement the
TSW tagging algorithms, and a RIO algorithm with three
dropping preferences, conforming to the Diff-Serv WG
standard. The endhosts use Linux RedHat 2.3.39 distri-
bution, which has the standard TCP-Reno algorithms. We
incorporated the first two mechanisms in endhost kernel,
and run some initial test experiments. By the time of paper

8



0 20 40 60 80 100

Time (sec)

0

20

40

60

W
in

do
w

 s
iz

e 
(p

kt
s)

Standard TCP

0 20 40 60 80 100

Time (sec)

0

20

40

60

w
in

do
w

 s
iz

e 
(p

kt
s)

Diff-Serv Enhanced TCP

tcp0
ssthresh

Figure 3: TCP window algorithm before and after incorporating Diff-Serv mechanism

Table 4: Effect of C in a testbed environment (throughput
measured as Mbps)

TCP0 (30ms) TCP1 (80ms)

Both using Reno 2.7 2.0

C=50 2.7 2.0
C=100 2.5 2.3
C=200 2.4 2.4
C=500 2.3 2.6
C=1000 2.2 2.7

submission, we have only conducted a few simple test ex-
periments. This is on-going work and we will have some
new results to report later this year.

In a simple test case to study the effect of constantc,
we have two TCP connections, one has incorporated the
new mechanisms and another doesn’t. Both are sharing a
5Mbps bottleneck connection. The standard TCP (TCP0)
connection has an RTT of 30ms, and the TCP connec-
tion with new mechanisms (TCP1) has an RTT of 80ms.
When both TCPs use TCP-reno, we observe the network
bias against long-rtt connections (2.7Mbps for TCP0 and
2.2Mbps for TCP1). Then we configure TCP1 with in-
creasingly large value ofc and observe the effect of having
an increasingly aggressive window open-up algorithm by
changing the value ofc. TCP1, with the new window algo-

rithm, can gradually overcome the network bias. Eventu-
ally, the effect of an aggressive window open-up algorithm
(c = 1000) is limited because the actual sending window is
limited by the receiver’s window, instead of the congestion
window. The results are summarized in Table 4.

5 Discussion

5.1 Choice ofc

Another way of viewing the change in TCP’s linear win-
dow open-up algorithm is the following: instead of increas-
ing TCP’s congestion window by one packet each round
trip time, the proposed mechanism opens upcwndby one
packet during a certain standard unit of time. If all TCP
implementations adopt such algorithm, then they will all
increase their window at the same rate regardless of their
rtts. Thus, the choice ofc, which determines the value of
such standard unit of time is a crucial one. For example,
if c is chosen to be 100, then, the standard unit of time is
implicitly set to be 100ms (100 ∗ (0.1)2 = 1pkt). In other
words, all TCP implementing the above proposed mech-
anism will be increasing their congestion windows at the
same rate as a current TCP implementation with anrtt of
100ms. Essentially, this algorithm make those TCP con-
nections withrtt less than 100ms less aggressive than the
current implementations, and those withrtt greater than

9



Table 5: Choice ofc in TCP fair window algo.
rtt range ConstantC Equivalentrtt

(0, 50ms) 1024 31.2ms
(50,100ms) 256 62.5ms
(100,200ms) 64 125ms
(200ms,∞) 4 500ms

100ms more aggressive than the current implementations.
There are two potential problems arise from this. The

first is how to choose a value that can be universally agreed
upon. The technical merits of the proposed mechanism
have been argued, but the ultimate choice lies in the poli-
cies by which the choice ofcmakes sense. One problem of
choosing a relatively smallc (less than 100ms, for exam-
ple) is that for long-rtt connections, the new algorithm will
result in an effective rate increase even greater than that
during the slow start phase. For example, if a 1sec TCP
connection uses the proposed algorithm, it means it will
open up its window at the rate of one packet each 100ms,
which is 10 packets eachrtt. Depending on the current
number of packets outstanding, this rate can be greater
than that during the slow start phase. The problem with
choosing a relatively largec is that this makes TCP win-
dow increase algorithm very slow and if this algorithm is
universally adopted, it might result in low utilization of link
bandwidth immediately after a congestion epoch.

One possible solution is to define a set of inclusivertt
ranges, and within which, modified TCP connections will
open up their window at the same rate, but each range has
a different window open rate. A reasonable heuristic is
that the longerrtt, the slower the window increase rate
is because the longer the connection, the more resources
(buffer space, or packets in the pipe) it would take. Such
ranges ofrtts can be easily specified in the SLAs as the
ISP will set a lower expected throughput for longer con-
nections. The range ofrtts can be chosen to reflect actual
market concerns. For example, we could define four ranges
of RTTs, inclusive. (0, 50ms) for LANs and WAN range of
connections; (50ms, 100ms) for intra-continental connec-
tions; (100ms, 200ms) for inter-continental connections;
and (200ms,∞) for non-tether connections. Of course,
such policies have to be universally agreed upon and stan-
dardized. These ranges define the particular algorithm and
the corresponding values forc.

Another problem with the choice ofc lies in incremental
deployment of such algorithm. When TCPs with different
implementations operate in a heterogeneous environment,
TCPs observing the fair algorithms might be at a disad-

vantage. Fortunately, Diff-Serv router mechanisms offer
a solution for migrating TCPs to the fair algorithms. See
Section 6.2 for a detailed discussion of this point.

5.2 Interactions with Tagging Algorithms

In [5], Clark and Fang propose specific tagging algorithms
for entities using TCP as a transport layer protocol, and
used a probabilistic function to reduce the likelihood of
multiple packets being tagged and dropped within a TCP
window. We find through our simulations that when TCP
itself has incorporated Diff-Serv mechanisms, the end-to-
end performance relies less on the intricacies and accura-
cies of tagging algorithms. TCP would perform well with-
out using a probabilistic tagging function. This switches
the role of tagging schemes in edge routers from tagging a
TCP connection accurately to managing a number of con-
nections sharing a common SLA. This is the topic of future
research.

6 Deployment Issues

6.1 Backward Compatibility

Among the above three proposed mechanisms, the first and
second mechanisms require only the TCP sender to change
its window adjustment algorithm, and does not require the
receiver’s cooperation.

The second mechanism need some policy servers that
keep information about SLAs, and additionally, a signaling
protocol for communicating between the transport layer at
the end host and the edge router if the profile is chang-
ing in real time. The information kept in policy servers is
used to configure TCP with its initialssthreshvalue and
thessthreshvalue after each packet drop.

The third mechanism requires TCP to be aware of the
IN/OUT bit (or TOS field) of the IP header. This mecha-
nism can be deployed at the same time as the ECN field.
The mechanism works as follows: a TCP sender always
sends out packets with IN/OUT bit as “OFF”. A packet
goes through a traffic conditioner, which in turn tags the
packet’s TOS field as either “ON” or “OFF”. A RIO and
ECN capable gateway will mark packets differentially, and
turn on ECN field for those packets if necessary. The trans-
port layer at the receiver side has to copy both the ECN
field and the TOS field of the IP header in the due acknowl-
edgment packet. The sending TCP will react to a packet
with both ECN and TOS bits (an IN packet) set differently
from that with only ECN bit set (an OUT packet).

10



Table 6: Heterogeneous Deployment of TCP mechanisms, measured in Mbps.Mech1 is the fair window open up algorithm,
new include all three mechanisms

Start-Up phase Congested PhaseRecovery Phase Over-provision Phase

Standard TCP0 (80ms, Reno) 0.676768 0.491638 0.723149 0.832894
TCP+RED TCP3 (30ms, Reno) 1.622382 1.126404 1.585279 1.804911
(Scenario1) TCP5 (30ms, Reno) 1.541346 1.122553 1.610749 1.850088

CBR 1.978168

Mixed TCP TCP0 (80ms, w/ mech1) 0.851694 0.499243 0.898498 0.90222
algorithms TCP3 (30ms, w/ mech1) 0.950140 0.584215 0.792326 1.3719
+RED TCP5 (30ms, Reno) 1.893473 1.462454 1.845942 2.018788
(Scenario2) CBR 1.986283

Uniform TCP TCP0 (80ms,Rt=2, new) 2.02678 1.89689 2.02658 2.36111
algorithms TCP3 (30ms,Rt=1, new) 1.04109 0.91049 1.04853 1.33992
+TSW+RIO TCP5 (30ms,Rt=0.6, new) 0.659625 0.533941 0.629245 0.969653
(Scenario3) CBR 1.00350

Mixed TCP TCP0 (80ms,Rt=2, new) 1.984425 1.917876 1.991106 2.18545
algorithms TCP3 (30ms,Rt=1, new) 0.993548 0.924187 0.991756 1.182006
+TSW+RIO TCP5 (30ms,Rt=0.6, Reno) 0.602984 0.424578 0.591179 0.940206
(Scenario4) CBR 1.151985

6.2 Heterogeneous Environments

Among the mechanisms we proposed, the first mechanism
has been studied in a context of improving fairness for TCP
connections with varyingrtts [11]. One important prob-
lem pointed out by [11] lies not in the algorithm itself, but
its interaction with the standard TCP algorithm when they
both exist in a heterogeneous network environment. As
discussed before, the fair algorithm makes all TCP con-
nections open up their windows at the same rate. With
a chosen constantc corresponding to some standard unit
of time, this algorithms makes any TCP connections with
rtt shorter than the standard unitless aggressivethan their
current implementation, and any TCP connections withrtt
longer than the standard unitmore aggressivethan their
current implementations. As a result, if two TCP imple-
mentations co-exist in a heterogeneous network environ-
ment and theirrtts are both shorter than the standard unit
of rtt, the connection with the current implementation will
be more aggressive than the connection with the fair algo-
rithm implementation. This takes away any incentives for
people to deploy the fair algorithm3.

The first half of the Table 6 illustrates this case. We
include another 30ms TCP connection (TCP5). Scenario

3Of course, connections withrtt longer than the standard unitrttwill
be more aggressive than their current implementation, and there would be
incentives for people to deploy such algorithm.

1 is the case when all TCPs use the standard algorithm
and RED is used by routers as the queuing discipline. The
two 30ms TCP connections have a clear advantage over the
80ms TCP connection, as expected from the current TCP
window algorithm. Scenario 2 illustrates the case when
TCP0 and TCP3 have upgraded to use the new and fair
window algorithm whereas TCP5 remains the same. The
constantc is chosen to be 100, which makes both TCP0 and
TCP3lessaggressive than their counterparts in scenario 1.
We see that TCP0 and TCP3 achieve comparable results,
(0.85Mbps and 0.95Mbps) whereas TCP5 has gained an
advantage over both (1.89Mbps). TCP0 performs slightly
better than its counterpart in scenario 1 (0.67Mbps), but
TCP3 performs much worse (1.62Mbps).

Fortunately, we find that the Diff-Serv mechanisms in
routers can be used to assist in such migration. We find that
when the Diff-Serv router mechanisms are deployed first
and TCPs incorporate all three proposed mechanisms, the
allocation of bandwidth is according their respective SLAs
(for those TCPs which have respective SLAs), and there is
no clear advantage for standard TCP over enhanced TCP.
Scenarios 3 and 4 in Table 6 illustrate this. In scenario 3, all
TCPs have upgraded to incorporate the Diff-Serv mecha-
nisms, and the allocation of resources is according to their
respective service profiles regardless the state of the net-
work. When the network is over-provisioned, the available
bandwidth is equally distributed among all connections. In

11



scenario 4, TCP4 (not shown) and TCP5 both use the stan-
dard TCP window open-up algorithm. The results show
that there is no clear advantage of the current TCP algo-
rithm over the fair TCP algorithm in the Diff-Serv environ-
ment. This preserves the incentives for customers to update
their TCP algorithms to incorporate the fair algorithm.

7 Conclusions

The rate adjustment scheme in the current Internet re-
lies on congestion control mechanisms in both transport-
layer TCP and congestion signals in gateways. When the
premise of resource allocation has changed from the best-
effort model of the current Internet to a defined-service
model in Diff-Serv architecture, the underlying mecha-
nisms have to be changed to support it as well.

Early work in Diff-Serv have mostly focused on the
mechanisms to be deployed in routers to provide differenti-
ations among TCP connections. A logical extension of that
is to devise mechanisms to be deployed in transport-layer
TCP to support the change in premise. This is the focus
of our paper. Without introducing any new state variables
into the existing TCP machinery, we propose three simple
mechanisms to make TCP operate significantly better in a
Diff-Serv domain. These mechanisms preserve the “mul-
tiplicative decrease and linear increase” principle of the
TCP congestion control algorithm and can be applied to
similar congestion control algorithms preserving the same
principle. We use simulations and testbed implementations
to qualitatively verifying our ideas. Our study shows that
the proposed mechanisms complement the Diff-Serv router
mechanisms in changing the rate adjustment scheme of
the current Internet. By incorporating those mechanisms
in endhosts, the combined scheme can allocate resources
fairly, precisely and differentially among connections. We
also discuss the partial deployment issue.

The study reported in this paper can be extended in a
number of ways. We are currently working on implementa-
tions and experiments on a testbed. One possible future di-
rection is to investigate whether router mechanisms (TSW
and RIO) can be combined and implemented as a collective
admission control mechanism in edge routers. This is re-
lated to how an ISP would configure and provision its net-
work given the information from all its contracted SLAs.
Another possibility is to devise TCP Diff-Serv mechanisms
for other proposed Diff-Serv services, e.g., Proportional
Diff-Serv [6], or to study how well the proposed mecha-
nisms will integrate with other proposed Diff-Serv queue-
ing disciplines.

References
[1] Ns network simulator. Available via http://www-

nrg.ee.lbl.gov/ns/.

[2] BALAKRISHNAN , H., RAHUL , H., AND SESHAN, S. An
integrated congestion management architecture for internet
hosts. InProceedings of SIGCOMM ’99(1999), vol. 29.

[3] BLACK , D., BLAKE , S., CARLSON, M., DAVIES, E.,
WANG, Z., AND WEISS, W. An architecture for differenti-
ated services. InIETF RFC 2475. IETF, December 1998.

[4] CLARK , D. D. Internet cost allocation and pricing. InInter-
net Economics(1997), J. B. L. McKnight, Ed., MIT Press,
pp. 215–253.

[5] CLARK , D. D., AND FANG, W. Explicit allocation of best
effort packet delivery service.IEEE/ACM Transactions on
Networking 6, 4 (1998).

[6] DOVROLIS, C., STILIADIS , D., AND RAMANATHAN , P.
Proportional differentiated services. InProceedings of SIG-
COMM (October 1999), vol. 29.

[7] FALL , K., AND FLOYD, S. Simulation-based comparisons
of tahoe, reno and sack tcp. InComputer Communications
Review(July 1996), vol. 26, pp. 5–21.

[8] FENG, W., KANDLUR, D., SAHA , D., AND SHIN, K. Un-
derderstanding and improving tcp performance over net-
works with minimum rate guarantees.IEEE/ACM Trans-
actions on Networking 7, 2 (April 1999), 173–187.

[9] FLOYD, S. Connections with multiple congested gateways
in packet-switched netwokrs part 1: One-way traffic.Com-
puter Communication Review 21, 5 (October 1991), 30–47.

[10] FLOYD, S. Tcp and explicit congestion notification. In
Computer Communication Review(October 1995), vol. 24.

[11] HENDERSON, T. R., SAHOURIA, E., MCCANNE, S.,AND

KATZ, R. On improving the fairness of tcp congestion
avoidance. InProceedings of IEEE Globecom ’98(Sydney,
1998).

[12] HOE, J. Improving the start-up behaviors of a congestion
control scheme for tcp. InProceedings of ACM SIGCOMM
(Stanford, CA, 1996).

[13] JACOBSON, V. Congestion avoidance and control. InPro-
ceedings of ACM SIGCOMM(Stanford, CA, 1988).

[14] JAIN , R., CHIU, D., AND HAWE, W. A quantitative mea-
sure of fairness and discrimination for resource allocation in
shared systems. Tech. rep., Digital Equipment Corporation,
1984.

[15] NICHOLS, K., BLAKE , S., BAKER, F., AND BLACK , D.
Definition of the differentiated services field (ds field) in the
ipv4 and ipv6 headers. InIETF RFC 2474. IETF, December
1998.

12


