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Gift Silver Poem

I know that all this is worthless and that the language
I speak doesn’t have an alphabet

Since the sun and the waves are a syllabic script
which can be deciphered only in the years of sorrow and exile
And the motherland a fresco with successive overlays
frankish or slavic which, should vou try to restore.
vou are immediately sent to prison and

held responsible

To a crowd of foreign Powers always through

the intervention of your own

As it happens for the disasters

But let’s imagine that in an old days’ threshing-floor
which might be in an apartment-complex children

are playing and whoever loses

Should, according to the rules, tell the others

and give them a truth

Then evervone ends up holding in his

hand a small

Gift, silver poem.

Odysseas Elytis
“The Tree of Light and The Fourteenth Beauty”



Abstract

Substantial progress in Parallel Scientific Computation will emerge from improve-
ments in the effectiveness of current parallel machines. the development of new scien-
tific algorithms, and the emplovment of more powerful multiprocessors. Successfully
addressing these issues in a cost-effective way requires extensive experimentation.
Nevertheless, the large computational complexity of scientific applications and the
high cost of multiprocessor systems, make the quantitative and qualitative analyses
of parallel workloads a difficult and costly endeavor.

In this thesis, I address some of the issues involved in the modeling and eval-
uation of parallel scientific computations. More specifically. I introduce Functional
Algorithm Simulation. that is, simulation without performing the bulk of numerical
calculations involved in the applications studied. Functional Algorithm Simulation is
applicable in the evaluation of algorithms simulating complex systems, for which the
core-set of time-consuming calculations and data-exchanges can be determined from
input information, before the actual computations take place. To assess the princi-
ples of Functional Algorithm Simulation I built the Functional Algorithm Simulation
Testbed (FAST), a software prototype system for approximately simulating the paral-
lel execution of such algorithms on uniprocessor workstations. FAST has been used to
evaluate parallel executions of three interesting and important scientific algorithms:
SIMPLE, a Computational Fluid Dynamics code; the Fast Multipole Method, and a
modified version of the Barnes-Hut algorithm, which solve the N-Body problem and
have applications in Computational Molecular Dynamics and Astrophysics. Experi-
mentation with FAST shows that approximate simulation can give valid and useful

results. FAST enables us to study parallel executions of much larger problem sizes



and more processors than those reported so far, with modest computing resources.
Also. it allows us to collect detailed information characterizing parallel executions on
various message-passing architectures. analyze the effects of communication overhead

to parallel performance, and study the scalability of parallel algorithms.
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Chapter 1
Introduction

In this thesis we show that approximate simulation extends the flexibility and range
of simulations of parallel scientific workloads substantially. Syvstems that incorporate
approximate simulation techniques can be used to study parallel scientific algorithms
applied on data-sets of practical interest and mapped to message-passing multipro-
cessors with tens to thousands of processors. Studies of this kind can provide accurate
and detailed information about the algorithms examined. This information can be
used to guide the design of parallel algorithms and the selection of cost-effective ar-
chitectures.

Substantial progress in parallel scientific computation will emerge from improve-
ments in the effectiveness of current parallel machines. the development of new scien-
tific algorithms, and the employment of more powerful multiprocessors. Successfully
addressing these issues requires extensive experimentation that will provide us with
a broad and thorough understanding of parallel scientific computations. The high
computational complexity of scientific applications and the high cost of multipro-
cessor systems, however, make the quantitative and qualitative analyses of parallel
workloads a difficult and costly endeavor. Therefore, effectively modeling the execu-
tion of algorithms on massivelyv parallel machines is a fundamental problem in parallel
computing. The development of good modeling methodologies will enable researchers
to generate, quantify, and evaluate computation and communication profiles charac-

terizing the implementation of algorithms on multiprocessors. Knowledge of these
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characteristics is valuable for the design of parallel algorithms and the understanding
of parallel architectures: profile information describing the parallel execution of an
algorithm can be used to identify bottlenecks and estimate their effects on overall per-
formance. Analysis of realistic computation and communication characteristics can
lead to better understanding of issues like the tradeoffs between parallelism and com-
munication overhead and the scalability of algorithms. Moreover, it can enhance the
exploration of different architecture and hardware tradeoffs and give useful directions
for selecting or re-designing cost-effective, high-performance interconnection topolo-
gies that optimize the parallel execution of applications with common computation
and communication characteristics.

A straightforward approach for collecting information of this kind is to profile pro-
grams running on parallel machines. Running programs that implement interesting
parallel algorithms computing on realistic data-sets takes a significant amount of time.
The volume of data collected to describe the computations and communications can
also be large, imposing extensive storage and I/0 requirements [48. 70]. Furthermore.
software monitoring tools are very complex and, they cannot observe the behavior of
hardware communication components easily [32]. In addition. results derived from
profiling applications running on some multiprocessor are influenced. to a large ex-
tent, by the architecture and hardware characteristics of the specific multiprocessor.
Scalability studies are restricted to the limited number of available processors. Moni-
toring real implementations is hindered by time considerations and the high-cost and
low-availability of massively parallel computers. Monitoring also lacks the desirable
flexibility for performing comparative studies and scalability analyses.

Simulators of parallel workloads are used to overcome some of the shortcomings of
profiling. Exact simulation can be trace-driven or direct. The trace-driven approach is
accomplished in two successive phases: trace generation and trace simulation. Trace
generation collects trace data from a real parallel execution through hardware [2] or
software [71] instrumentation. Trace simulation uses the collected trace to emulate
the corresponding workload running on the parallel machine under consideration. If
this machine is different from the one used to generate the trace, the results of the

simulation can be inaccurate because the execution path in a parallel computation
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may depend on the ordering of events on different processors, which in turn depends
on the characteristics of the parallel machine [26]. Another drawback of the trace-
driven approach is the large space and time required to generate and store the traces.
In direct simulation, traces are not required since the simulator emulates instructions,
messages. shared data accesses, and synchronization operations as they occur on the
multiprocessor studied. Direct simulation incurs a significant slowdown with respect
to uniprocessor execution. This is a major obstacle for using direct simulation to
evaluate massively parallel computers. Exact simulation (trace driven or direct) rep-
resents a useful alternative to profiling when considering systems of small to medium
size. The user has the option to change several parameters of the simulator, such as
the number of processors, the processor speed, communication bandwidth, and cache
size. Then, through simulation he can study the relationship between these parame-
ters, the algorithm examined, and the performance measurements. Since the study of
parallel executions require the simulation of millions of instructions and thousands of
messages. such tasks are long-running and consume a lot of space. Thus. simulation of
massively parallel machines (with hundreds or thousands of processors) is practically
impossible. unless performed in a distributed fashion [57].

Theoretical models of parallel computation such as the various flavors of PRAM
[25]. BSP [73]. and LogP [12] provide the algorithm designers with a convenient plat-
form for formally expressing new algorithms and studying theoretically their perfor-
mance. Nevertheless, they rely on unrealistic assumptions like zero communication
costs and infinite bandwidth (in the case of PRAM’s). Moreover, they have restricted
capabilities for expressing communication characteristics (e.g. congestion) and eval-
uating the performance of parallel algorithms with irregular communication patterns
and dynamic behavior.

More realistic methods of interconnection network analysis and performance eval-
uation rely on static-graph statistics such as average or maximum distance between
nodes [16] and on analytical queueing models assuming uniform. random traffic [64].
Measurement of the performance of interconnection networks is carried out with sim-
ulations of queueing models or with the use of synthetic computation and communi-

cation benchmarks [64]. These methods represent useful ways of comparing different
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interconnection strategies and proving general principles about network design. Nev-
ertheless, they are based on assumptions that do not correspond to real-application

traffic loads and communication patterns or to realistic hardware parameters.

1.1 Functional Algorithm Simulation

Methodologies for modeling and evaluating parallel computations should satisfy a

certain number of requirements:

1. They should be flexible to allow the assessment of a large variety of parallel
machines with processor numbers ranging from tens to thousands. with differ-
ent interconnection topologies and message-passing interface primitives, various

processor speeds and channel bandwidths, etc.

8]

They should be general enough to apply in the study of a comprehensive group

of algorithms running on realistic sets of data.

3. Implementing applications on parallel machines is a difficult, error-prone, and
expensive task. Therefore we seek modeling techniques that allow algorithmic
and architectural assessments with a moderate cost in terms of development and

evaluation time, and invested money.

4. Results obtained by such modeling methodologies should be fairly accurate so

as to guide the further development of algorithms and architectures.

Flexibility enables us to compare different architectures. Also, it helps us as-
sess the effects of hardware characteristics and interconnection networks on parallel
performance. Finally, the accuracy of results and their corroboration by real imple-
mentations or theoretical analyses is necessary for deriving proper understanding of

the algorithms under investigation and on the hardware tradeoffs examined.

1.1.1 Principles of Functional Algorithm Simulation

We focus on computationally intensive scientific applications that simulate complex

systems [22]. A complex system is defined with respect to a basic data-structure
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which we call the computational domain. This is a set of non-decomposable entities,
the domain-nodes. Every domain-node is labeled with one or more variables called
components. The set of all the components across the computational domain repre-
sents the physical (or other) properties of the complex system that the simulation
seeks to evaluate.

An algorithm simulating a complex system determines the computations that
must be performed upon the components of domain-nodes for updating the system’s
state. The algorithm also determines the set of data-dependences among the dif-
ferent components of the system which must be carried out for the computation to
proceed. The simulation of a complex system is performed for a number of itera-
tions {or time-steps). After each iteration (time-step). the values of the components
of the domain-nodes change and the complex syvstem enters a different state. In a
real implementation, for each iteration, the algorithm first constructs or updates the
data-structures representing the computational domain. Then, it proceeds with the
computation of component values at the domain-nodes.

To satisfy the requirements for modeling methodologies mentioned earlier, we de-
veloped a new approach exploiting two properties common to many of the algorithms

of interest:

1. Most of the parallel execution time is spent in expensive numerical opera-

tions/procedures.

[ S]

The number and the nature of these operations as well as the data-dependences
and communication occurring among them can be determined at the initial-
ization phase of the algorithms, after the input of data and the setup of the

computational domains.

By generating the computational domain of an algorithm and identifving the set of
“core” operations and communications performed upon it, we are able to derive pro-
files characterizing an algorithm without having to simulate all instructions involved
in its parallel execution.

With this remark in mind we introduce Functional Algorithm Simulation, that is,

simulation of parallel computations without actually simulating or executing most of
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the numerical calculations involved. Our approach reproduces the skeletons of parallel
computations and uses them to extract the basic computation and communication
patterns sought. Therefore, Functional Algorithm Simulation is basically a method
for approrimately simulating real parallel executions. It can also be considered as an
accurate simulation of a theoretical model that accounts for communication costs and
limited communication bandwidth. such as LogP [12].

By not doing the numerical calculations, Functional Algorithm Simulation achieves
orders of magnitude savings in terms of processor cycles and memory space. These
savings enable us to increase the flexibility of simulations, study the performance
and scalability of algorithms on parallel machines with thousands of processors, and
compare the performance of different interconnection networks under realistic traffic
loads.

The common algorithmic property necessary for Functional Algorithm Simula-
tion to apply is the ability to determine the set of expensive calculations and data
exchanges from input information. at the initialization phase of the algorithm. be-
fore the actual numerical computations take place. Another underlying assumption
is that the initialization phase takes an insignificant portion of the overall parallel
time. Both assumptions are valid for many important scientific algorithms having
applications in Computational Fluid Dynamics [42], Finite Difference Methods [22].
Astrophysics and Computational Molecular Biology (tree-algorithms for the N-Body

problem) [6, 28], Multigrid techniques [50] and Lattice-Gas computations [39].

1.2 A prototype testbed

To implement Functional Algorithm Simulation and test its capabilities, we devel-
oped a prototype system called FAST (Fast Algorithm Simulation Testbed). FAST
overcomes some of the difficulties imposed by the very high complexity of interest-
ing scientific algorithms. collects profile information representative of the algorithms
rather than the underlying mapping strategies and hardware-design choices, and al-
lows a performance assessment of parallel machines with various sizes and different

interconnection schemes.
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We used FAST to study three scientific algorithms: the first is SIMPLE, a pop-
ular Computational Fluid Dynamics benchmark simulating the hydrodynamics of a
pressurized fluid inside a spherical cell [33]. The second is the Fast Multipole Method
[30], and the third is a modified version of the Barnes-Hut algorithm [6]. The Fast
Multipole Method and the Barnes-Hut algorithm solve the N-body problem [22] for
a two- or three- dimensional particle space and have applications in Astrophysics,
Plasma Physics, Molecular Dynamics, and Fluid Dynamics.

SIMPLE has been used frequently for the assessment of parallel programming
tools [45, 55, 60] and shows uniform computation and communication characteristics.
We used it as a test-case for validating FAST and highlighting its flexibility and
efficiency. The Fast Multipole and the Barnes-Hut algorithms exhibit irregular and
non-uniform traits due to the long-range interactions of the N-body problem. Their
high complexity makes the study of those traits a challenging task. With FAST we
were able to collect computation and communication patterns from parallel executions
of the FMM and BH on realistic data-sets. on message-passing svstems with various
sizes and different communication networks. Those patterns allowed us to derive
interesting conclusions about the scalability and efficiency of the algorithms, and to

compare the performance of different interconnection networks.

1.3 Related Work

In this section., we briefly discuss previous and ongoing research with motivation
similar to ours. A number of researchers have been working on collecting communi-
cation and computation patterns from real-life applications. Their main goal is to
understand and describe the parallel execution of these applications better and use
this understanding to design interconnection structures and parallel computers better
suited to computationally demanding problems.

One project developed a software monitoring tool for the hypercube architecture
[32]. This tool allows the collection of communication traces, the measurement of
communication localities and processor utilizations, the estimation of average mes-

sage lengths, the existence of hot-spots, etc. It is used for performance evaluation,
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workload characterization. and trace-driven simulation of a hypercube that runs re-
alistic workloads corresponding to six CAD applications and numerical problems.
The focus is on evaluating the hypercube and thus the results are representative of
the hypercube architecture and interconnection scheme. It is difficult to assess the
performance of the applications at hand for a wide range of processor numbers and
different interconnection topologies. Furthermore, experimentation with larger, more
time- and space-consuming applications will still experience the problems raised by
the overall high complexity that we mentioned earlier.

A second approach comes from the DASH group at Stanford University [66, 68].
They evaluated the performance of parallel implementations of algorithms solving the
N-body problem on the sixteen-processor shared-memory machine DASH [44]. Issues
related to performance on larger machines and scalability were studied on a simulator
of an idealized shared-memory multiprocessor architecture. Measurements of parallel
time and speedup from real application data were used to compare different techniques
for partitioning the N-body problem into parallel tasks. The results are representative
of the shared-memory paradigm, the DASH architecture and interconnection network,
and the partitioning techniques examined.

A third project is concerned with the design and development of a reconfigurable
network evaluation testbed built with state-of-the-art, high-performance hardware
[69]. This testbed consists of sixty-four user-configurable switch nodes used to con-
struct a variety of interconnection networks. The topology, routing algorithm. and
conflict resolution mechanism of the network can be varied. Furthermore. the switches
contain hardware for monitoring and correlating network behavior with parallel ap-
plication behavior. This approach can study communication performance and collect
computation and communication patterns from real applications on various network
setups. An interesting question is whether the testbed is scalable, namely whether its
number of switches and processors can be increased while maintaining the flexibility
of network reconfiguration.

Another tool named FAST has been developed in Berkeley to simulate large shared
memory multiprocessors accurately at simulation speeds that are one to two orders

of magnitude faster than comparable simulators [10]. This tool involves execution
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driven simulation techniques which modify the object code of the application pro-
grams studied. These produce an augmented version of the code that does most of
the simulation work.

A thorough study of eight scientific applications. running on four message-passing
multiprocessors (512-processor Intel Delta, 256-processor nCube-1 and 64-processor
nCube-2) is presented in [13]. The authors collected data describing floating-point
operation. memory, 1/O and communication requirements, and discovered existing
traffic patterns. The study and analvsis was performed for the complete applications,
including the loading of input data and the storing of results. Several conclusions
were derived about the common traits of the programs and about how these could
influence machine design and scalability. It is pointed out that the results presented
were necessarily affected by characteristics of the parallel programs and the parallel
machines used.

Finally, the Wisconsin Wind Tunnel developed at the University of Wisconsin
runs parallel shared-memory programs on a message-passing multiprocessor (CM-53)
[57]. Concurrently with program execution, the WWT uses distributed discrete-
event simulation to calculate the programs’ execution times on a proposed shared-
memory system. The WWT can be used to evaluate cache-coherent, shared-memory

multiprocessors by simulating their execution on a powerful message-passing system.

1.4 Contributions

In this thesis, we address some of the issues involved in the modeling and evaluation
of parallel scientific computations. We introduce Functional Algorithm Simulation,
that is, simulation of parallel executions without performing the bulk of numerical
calculations involved in the algorithms studied. To evaluate Functional Algorithm
Simulation we have built a prototype system called FAST, and we use it to study three
interesting and important scientific algorithms. Functional Algorithm Simulation
extends the flexibility and the practical range of parallel execution simulations. More

specifically, we simulate a large range of parallel message-passing systems with:

1. Tens to thousands of processors.
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2. Various interconnection topologies, such as cliques, hypercubes, rings, and mul-

tirings.

3. Different hardware characteristics (processor speed. bandwidth of communica-

tion channels, communication overhead).

FAST simulations of practical parallel workloads can be accomplished with mod-
est computing resources (Sparc and DEC workstations). The savings in terms of
simulation time are impressive. For example, a functional algorithm simulation of an
instance of SIMPLE took .63 secs to complete on a Sparcstation. The same instance
took 9.8 secs to run on one iPSC/2 node. The slowdown factor of exact simulation
(trace-driven of direct), that is, the number of cycles it takes to simulate a single cycle
of execution for a single processor, ranges from 100s to 1000s (2, 26]. Therefore. we
can easily deduce that functional algorithm simulation decreases the simulation time
by at least three orders of magnitude.

The following table highlights some of the advantages of FAST. Data reported
correspond to the SIMPLE application. The “Orca-C” and “Pingali&zRogers” rows
of this table include data reported from implementations of SIMPLE with two dif-
ferent parallelizing compilers [45, 55]. The row labeled “Prent. difference in Parallel
Time™ presents the average percentage difference between the parallel times reported
by FAST and the parallel times measured on the Orca-C and the Pingali&Rogers
implementations. The row labeled “Execution Time” reports the running time of
FAST when simulating an instance of SIMPLE (4.096 grid-points), and the running

time of an actual execution of the same instance on a single iPSC/2 node.

Execution Time
(Single processor)

Prcnt. difference
in Parallel Time

Max. number
of processors

Max. problem
size examined

Orca-C 4,096 (grid-points) 32 6.14 9.8 secs
Pingali&Rogers || 4,098 (grid-points) 32 35.74 14.02 secs
FAST 220 (grid-points) 4,096 = 0.63 secs

Experiments with FAST generated detailed computation and communication pro-

files representative of important scientific algorithms running on realistic data-sets.

These profiles provided us with:
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e New insights in the performance characteristics of the algorithms studied. For
example. the study of SIMPLE revealed the inherently sequential parts of the
algorithm. We used data derived from FAST to perform a quantitative study on
the effects that these sequential parts have on the scalability of SIMPLE. Fur-
thermore, we studied the effects of computation-to-communication ratio on the
speedup curve, as the number of processors increases and the problem size re-
mains constant. Functional Algorithm Simulation of the Fast Multipole Method
and the modified Barnes-Hut algorithm revealed the inherently sequential parts
of their parallel execution. We concluded that these parts are due to the hier-
archical nature of the algorithms. Profiles derived with FAST showed that the

two algorithms have irregular computation and communication patterns.

o Practical and realistic means for comparing the effects of different interconnec-
tion topologies on parallel performance. Simulations with FAST showed that
the Fast Multipole Method and the modified Barnes-Hut algorithm, mapped to
ring-based topologies, perform almost as well as when mapped to hypercubes

and cliques.

o Cost-effective ways of evaluating the influence of different hardware parameters

on the performance of parallel executions.

e Performance comparisons among different methods for partitioning sequential
algorithms into parallel tasks and mapping those tasks on multiprocessors with

various processor numbers.

To assess the validity of Functional Algorithm Simulation, we ran FAST simula-
tions on data-sets which were used in other studies. Comparison between our simu-
lation results, published data, and theoretical analyvses provided sound corroboration

of our method.
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1.5 Thesis Outline

In Chapter 2 we discuss the prototype system FAST, which we built to assess the
Functional Algorithm Simulation method. We explain how algorithms and architec-
tures are modeled in FAST and how the descriptions of the algorithms are transformed
into task-flow graphs. A portion of our system addresses the mapping of these graphs
onto processors of parallel machines. Part of this chapter has been presented in [17]
and will appear in [19]. Chapter 3 describes the various heuristics implemented in
FAST to perform this mapping. Chapter 4 discusses a problem that arises when
trving to estimate message latency under blocking or synchronous message-passing
interface primitives. This work was presented in [18]. In Chapter 5 we present the
functional algorithm simulation of SIMPLE:; results from this simulation are used to
verify the validity of FAST, and have been presented in [17]. The study of the Fast
Multipole Method is described in Chapter 6, and the study of the Barnes-Hut tech-
nique is presented in Chapter 7. Finally, Chapter 8 summarizes our major conclusions

and discusses future work.



Chapter 2

A Functional Algorithm

Simulation Testbed

To test the Functional Algorithm Simulation method we developed a prototype sys-
tem called FAST ( Functional Algorithm Simulation Testbed). Parallel executions are
modeled by FAST as directed-acyclic task-flow graphs. These are a special case of
the data dependence graphs (DDG’s) that are frequently used as abstract represen-
tations of parallel programs [23, 36, 63]. For a given algorithm and input data-set,
FAST generates a task-flow graph, which encapsulates the computations and commu-
nications that comprise the parallel execution of this algorithm on the data-set. The
nodes of the graph correspond to groups of numerical operations or numerical routines
carrving out calculations required by the algorithm examined. Edges represent the
data movements between these groups of operations. FAST uses the task-flow graph
to extract information used to characterize, evaluate, and understand the parallel

computation at hand.

2.1 Structure of FAST

In order to perform a functional simulation of an algorithm, one has to provide FAST

with:

13
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1. A sequential implementation of the algorithm. modified so as to generate at run-
time the sets of calculations and data-dependences comprising the computation,
instead of executing the actual computation. In the current version of FAST,
the transformations necessary to convert the sequential program are performed

by hand.

o

The input data that would be provided to a sequential implementation of the
algorithm. For example, for the Fast Multipole Method the input to FAST is a
number of particles (bodies), their positions, and algorithmic parameters such

as the granularity of the hierarchical decomposition of the particle-space.

3. The target parallel architecture, which is described by specifving a number of
processors, selecting one out of a set of available interconnection topologies
and message-passing interface paradigms (e.g. asynchronous. blocking). and
specifying hardware characteristics such as processor speeds and communication

bandwidth.

4. The strategies for partitioning the problem and mapping it onto the target

architecture.

FAST generates a task-flow graph describing the parallel execution of the algorithm
at hand on the chosen architecture for the specific input data. From this graph, it ex-
tracts useful information such as the parallel-time of the execution. speedups achieved
for a large range of processor numbers, utilization of processors and communication
links, computation-to-communication ratios. distribution of message sources and des-
tinations, and effects of congestion and communication overhead on parallel-time. All
this information may well correspond to executions of practical interest since the user
has the option to provide FAST with input data from “real-life” problems.

FAST is split in two parts: a front-end and a back-end. The front-end generates
the task-flow graph encapsulating operations and data exchanges performed accord-
ing to the algorithmic description for a given setup of algorithmic parameters and
input data. The back-end performs the mapping of the task-flow graph onto a par-

allel architecture and generates a modified task-flow graph representing the parallel
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T
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Figure 1: Front-end of the FAST.

execution on the chosen architecture.

2.2 Front-End

The task-flow graph generation is accomplished by the front-end in two phases (see
Figure 1). The first one depends on the algorithm studied: given a sequential im-
plementation. the user modifies it by inserting code that will produce the set of
calculations and communications defining the corresponding parallel execution dy-
namically. The modified program is part of the first phase of FAST’s front-end for

the specific algorithm.

2.2.1 Intermediate Representation

Running the front-end on some appropriate input data-set produces the computational
domain of the parallel execution at hand for the given input data. Simultaneously, it
generates an architecture-independent Intermediate Representation (IR) of the par-
allel computation studied, representing the set of computations and communications

that would be performed on the computational domain in a real implementation of
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the algorithm. The Intermediate Representation is given as a group of Intermediate
Representation Routines (IRR’s). Each IRR corresponds to a different domain-node
of the computational domain and represents the computations and communications
on the variables (components) of that node.

The Intermediate Representation Routines are expressed in terms of a simple
intermediate language comprised of IR-operations and Send/Receive communication
primitives. Each IR-operation is an abstraction of a “medium-grain™ group of suc-
cessive numerical instructions. Each of these groups represents a basic computational
block of the algorithm. Send/Receive primitives correspond to data-dependences be-
tween IR-operations and represent the data-flow.

As an example we give a small piece of pseudo-code and present the steps taken
to derive the code producing its Intermediate Representation. In this case, the com-
putational domain is a two-dimensional grid with siz_ X x sz} domain-nodes. The
pseudo-code in Table 1 describes the calculation of variables at each point of the grid

as a function of variables from this point and neighboring ones. In every domain-

for j:=0 to siz_Y do
for i:=0 to siz_X do

(I) D[i,j] := R[i,jl+R[i,j-1I*=(1-A[i,j])
¢EL) Ali,3] == BLL,3)/D0T]
(I1D) V[i,j] := R[i,j-1]#V[i,j-1]
endfor
endfor

Table 1: Pseudo-code.

node (i,j), the computation above requires the values R[i,j-1] and V[i,j-1] from
the neighboring domain-node (i,j-1), as well as values of “local” variables, that is,
R[i,j],Ali,3], and D[1,3].

This pseudo-code can be readily parallelized with a parallel programming lan-
guage like JADE. JADE follows the single-address space, sequential, and imperative
programming paradigm [38]. Each piece of data allocated in the single shared mem-

ory of a JADE program is called a shared object; it is identified with the shared type
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qualifier and can be accessed by all tasks. JADE uses the withonly-do construct to

identify and spawn new tasks. This construct has the following syntactic form [59]:

withonly {access-declaration} do
(parameters of task-body)
task-body

The task-body section contains the serial code executed when the task runs. The
parameters section declares a list of shared objects from the enclosing environment
that may be accessed by the task body. The access_declaration determines how the
task body will access its parameters. JADE uses the rd-wr and rd primitives to
specify access declarations: rd-wr(var) declares that variable var may be read and
written by the corresponding task. Respectively, rd(var) declares that var may only
be read, and that it will not be updated. We can describe the pseudo-code of Table

1 using JADE-constructs as follows:

typedef double shared *G_component;
toy_example(R, D, A, V, siz_X, siz_Y)
G_component R, D, A, V;
int siz. X, siz. Y, i, 9;
{
for (i=0; i<siz_X; i++)
for (j=0; j<siz_Y; j++) {
withonly { /* access specification statements */
if (3-1 > 0) {
rd(R[i,j-11);
rd(V[i,j-11);
}
rd(R[i,3i1);
rd_wr(D[i,jl, Ali,j], VI[i,jil);
Y do (R, D, A, V, i, j) { /* task_i,j */
D[i,j] := R[i,jI+R[i,j-11*(1-A[1,3]);
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R[i,j1/D[i,ji];
(R[1i,j-11VI[i,j-1];

Ali,5] -
v[i,jl

The task-granularity of the JADE program in this example does not necessarily
represent the optimal way of parallelizing the pseudo-code of Table 1. Because of
the overhead of task-creation and communication. it is conceivable that generating
“coarser” tasks that compute the values of variables D, A, and V at blocks of the grid,
rather than at single grid-points, will result in a more efficient implementation.

At run-time, this parallel program generates one task task;; per domain-node
(grid-point). task;; performs the computations defined by the algorithm on the com-
ponents (variables) of its domain-node. Furthermore, the access specifications deter-
mine the data-dependences between tasks task; j_1 and task; ;. The former updates
the values R[i,3-1] and V[i,j-1]. and the latter uses those values in its calcula-
tions. The access specifications will be carried out through explicit messages between
processors. For instance, task; ; will first receive the values R[1,j-1] and V[i,j-1]
from task; j—i, then it will compute values D[i,3j], A[1,3], and V[i,j]. and finally
it will send R[i,j] and the updated value of V[1i,3j] to task; j+1.

The computation that would be performed in an implementation of this example
can be expressed abstractly as a set of routines representing the calculations on the
grid-points. Each of these routines is expressed in an intermediate language format

as follows:

Grid-point[i, j]
RECEIVE from [i,j-1]: R[i,j-1], 8 bytes
RECEIVE from [i,j-1]: V[i,j-1], 8 bytes
DAV_comp: DAV_COMP
SEND to [i,j+1]: R[i,j+1], 8 bytes
SEND to [i,j+1]: V[i,j+1], 8 bytes

DAV_comp denotes an IR-operation corresponding to the basic computational block of
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instructions which compute D[1,j]. A[i,j]. and V[i,j]; that is. lines (I). (II), and
(III) of Table 1. DAV_COMP is a constant representing the time spent for the calcula-
tion of values D[1,j], A[i,j], and V[i,j]. Such constants are expressed in terms
of seconds, machine cycles. or instruction counts. In the current implementation of
FAST we compute them manually by counting the corresponding machine instruc-
tions (e.g. three floating-point multiplications, one floating-point division. etc.). If
necessary, the machine instruction counts are transformed into machine cycles or sec-
onds by taking into consideration cycles-per-instruction figures from some specific
hardware platform. The SEND and RECEIVE communication primitives implement the
data-dependences defined by the algorithm at hand. Each such primitive. is assigned
a number representing the size of the data it carries (in numbers of bytes). For in-
stance, R[i,j] and V[i,j] are assumed to be 8-byte-long floating-point numbers
and. therefore, SEND’s and RECEIVE's carry 8 bytes of data.

The first part of FAST’s front-end generates such an intermediate description of
the algorithm examined for a certain input data-set. For instance, the following piece
of C-code generates the Intermediate Representation for our example and can be used

as the first part of a FAST simulator for this simple application.

for (i=0; i<siz_X; i++)

for (j=0; j<siz_Y; j++) {

printf ("Grid-point[%d,%d]:\n", i, j);

if (G=1> 0) {
printf("RECEIVE FROM [%d,%d]:R,%d words\n",i,j-1,siz_of(R[i,j-11));
printf ("RECEIVE FROM [%d,%d]:V,%d words\n",i,j-1,siz_of(V[i,j-11));
}

printf(\"DAV_comp: %1f microsec\n’’, DAV_COMP);

if (j+1 < siz_Y) {
printf("SEND TO [%d,%d]:R,%d words\n",i,j+1,siz_of(R[i,jl));
printf("SEND TO [%d,%d]:V,%d words\n",i,j+1,siz_of(V[i,jl));

}

}



CHAPTER 2. A FUNCTIONAL ALGORITHM SIMULATION TESTBED 20

The actual values that would be received, computed, and sent in a real implementa-
tion of this example are not of interest. Functional simulation focuses on extracting
information about the sefs of computations performed and about the sources. desti-
nations. and sizes of messages exchanged; not about numerical values of the results.

Table 2 shows a typical subset of the Intermediate Representation as generated
by FAST for the SIMPLE application. SIMPLE is a Computational Fluid Dynamics
algorithm that computes the values of physical variables assigned to the points of
a two-dimensional grid. Therefore. it describes calculations and message exchanges

taking place at the points of such a grid.

Grid-point [0, 2]

RECEIVE from [0, 0]: 8 bytes

RECEIVE from [0, 1]: 96 bytes
RECEIVE from [0. 3]: 96 bytes
2]

RECEIVE from [1, 2]: 96 bytes

JcbR_comp: 257.96 psec
DAV _comp: 445.04 psec
ENPR_comp: 188.84 psec
HEAT1_comp: 427.68 usec
SEND to [0, 3]: 48 bytes

Table 2: Fraction of the Intermediate Representation for SIMPLE.

In a future version of FAST, instead of having the user manually writing the
code that generates the Intermediate Representation, we could replace FAST’s front-
end with the front-end of a parallel programming language like JADE. The JADE
compiler generates a task-flow graph according to the parallel program and the given
input. This task-flow graph could then be fed to FAST’s back-end. In that way the

same parallel code could be used for functional simulation and actual execution.

2.2.2 Task-flow graphs

In the second phase of the front-end a simple parser transforms the Intermediate

Representation into a task-flow graph G5, which follows the Macro-Dataflow model



CHAPTER 2. A FUNCTIONAL ALGORITHM SIMULATION TESTBED 2}

[0.1]

[0,3]

[1,2]

[0,3]

Figure 2: Subset of the task-flow graph.

of computation [62]. In this model, each task starts executing upon receipt of all
incoming messages and continues to completion without interruption. Upon comple-
tion. it forwards its results to adjacent tasks. Formally. the task-flow graph is defined

as a directed, acyclic, weighted graph Gyy = G(V, £, 7, W) where:

e V is the set of nodes of the G;s, which represent indivisible sequential tasks.
Every task v encloses a number of Intermediate Representation primitives that
may be preceded by a number of Receive operations providing data from other
tasks and may be followed by a number of Send’'s which forward computation
results to other tasks. The granularity of the task-flow graph follows naturally
from the granularity of communication observed in the Intermediate Represen-
tation: the “boundaries” of the tasks are defined by Send and Recetve primitives

occurring in the IR.

o [ is the set of edges, which correspond to Send-Receive pairs and represent the

data dependencies between the nodes.

o 7(v),forv € V is the computation time of task v. It is equal to the sum of the
constants corresponding to IR-operations assigned to node v. 7(v) is expressed
in terms of seconds, or machine cycles, or instruction counts. If the code within

task v depends only on input parameters and on the initial configuration of the
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Figure 3: Implicit Partitioning.

data space. 7(v) can be estimated accurately from the algorithmic description,

and from parameters of the processor architecture.

o W is the set of weights assigned to edges of Gys. For every ¢ = (u.v) € FE,
W (e) represents the number of bytes “carried” by edge ¢ from its source to its

destination.

For instance, the IR of Table 2 will be transformed into the portion of a task-flow

graph shown in Figure 2.

2.2.3 Partitioning

For each Intermediate Representation Routine, the parser of FAST generates a set
of tasks representing the processing performed on the variables (components) of the
corresponding domain-node. These variables are considered to be “local” to those
tasks. In Figure 3 (right), the computational domain i1s a two-dimensional grid con-
taining 16 domain-nodes. For each domain-node, a number of tasks carries out the
computations to be performed on the variables of the node. Clustering and mapping

heuristics may be emploved to partition the task-graph into a number of partitions



CHAPTER 2. A FUNCTIONAL ALGORITHM SIMULATION TESTBED 23

Figure 4: Partitioning.

equal to the number of available processors. Tasks belonging to each partition are
merged into sequential threads of execution which are then assigned to the proces-
sors. We assume that tasks can access the variables of their domain-node through the
local memory of the processor to which they will be assigned. If they use variables
from other domain-nodes, the necessary values are brought into the local memory
of the tasks by incoming messages from the appropriate tasks on the other domain-
nodes. For example. in Figure 3. we show a partitioning of tasks into eight sets which
are assigned to eight processors. For this partitioning. task ' computes variables of
domain-node [0.0] and is mapped to processor P2. Variables of domain-node [0, 0]
used by A, are considered to be available at the local memory of P2. Results from
tasks A and B are carried to task C through messages represented by the edges (A, C)
and (B,C).

The task-generation module in FAST does not make any further assumptions
regarding the partitioning and placement of data. In practice, however, the paral-
lelization of such problems oftenly starts with the “static” partitioning of data into
blocks, and the assignment of blocks to processors. Subsequently, the tasks perform-

ing computations on each data-block are merged into sequential threads of execution
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and mapped on the same processor.

To take into account the case where the computational domain is partitioned into
blocks. the user of FAST is given the flexibility to have the system partition the
domain into blocks, structured either according to a given geometry. or in compliance
to some specified heuristic. For example, in Figure 4 (left), the computational domain
1s a two-dimensional grid. This is partitioned in blocks containing two domain-nodes
each. In Figure 4 (right), the domain 1s a tree which 1s partitioned according to
a heuristic assigning three tree-nodes per partition. FAST eventually merges tasks
belonging to the same block of the computational domain into a sequential thread of

execution. Each sequential thread is subsequently mapped onto a different processor.

2.3 Back-End

The back-end of FAST (see Figure 3) maps the task-flow graph Gy onto an idealized
architecture forming a fullv-connected network ( “abundant™ clique). The supply of
processors in this architecture is unlimited and in any given case is equal to the num-
ber of tasks G;s. Clearly, the “abundant™ clique does not represent a realistic choice
for a parallel system, due to the unlimited number of available processors and com-
munication links. However, it is a useful device for deriving architecture-independent
characteristics of the algorithm, such as upper bounds on speedup, parallelism and

communication profiles, and communication patterns.

2.3.1 Parallel Execution Model

The mapping to the “abundant” clique estimates the computation time of each task
and the latency of each message. that is, send/receive overhead plus propagation
delay plus congestion in the buffers of the network interfaces. The result of this
mapping is expressed in terms of a new graph called the parallel-execution graph.
Each node in the parallel-execution graph is assigned the computation time of the
corresponding task and each edge is assigned the latency of the respective message.

The parallel-execution graph is an abstraction of the parallel execution, which enahles
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Figure 5: Back-end of the FAST.

us to estimate parallel time and available parallelism easily, and study the mapping
of the parallel computation onto some realistic message-passing multiprocessor.

The parallel-execution graph is formally defined as follows:
(o = GV, By, groe, T, D)
where:

1. V is the set of tasks.

o

E, = FEUE,.; is the set of edges. Edges in E correspond to explicit
Send/ Receive pairs. Fy., 1s a set of edges introduced in the graph to define
the order of execution among tasks mapped on the same processor and with no

program-determined dependences between them.

3. proc: A mapping from the set of task nodes V to the set of processors P:

Y v €V, proc(v) gives the processor in P that executes task v.
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4. T(v), v € V is the time it takes processor proc(v) to perform v’s computations.

5. D(e), e = (u,v) € E is the weight assigned to edge e. D(e) denotes the time-
interval between the time that task u finishes its execution and the time that
task v gains access to the data carried by edge e. If u and v are mapped onto
different processors, D(e) is equivalent to the interval between the time when
proc(u) has finished executing task u, and the time when message ¢ has been
loaded into the buffers of the destination processor’s proc(v) network interface.

For a single-hop message. it is:
-D(E) = tdelay(e) ot Sov(e) + Hv(e)/B + tcaﬂgestion(ﬁ) e Rov(e)

where: t4e.y(€) 1s the delay between the time the sending processor issues the
Send instruction initiating message €, and the time that this processor starts
loading the message body to the buffers of its network interface. S,,(¢) is
the time it takes the sending processor to load its network interface’s output
buffers with the contents of message ¢ and with control information (setup
cost). W(e) is the number of bytes carried by message e. B is the bandwidth
of the communication links (in bytes per second). f.umgestion(€) 1s the time e
spends waiting in busy queues of the interconnection network, and R,.(e) is
the time it takes a message to be loaded in the input buffers of the receiving
processor’s network interface. Additionally, we use é(e) to denote the time it
takes the message to propagate through the communication channels and then
to be loaded into the input buffers of its destination’s network interface. For

one-hop messages this is equal to : W(e)/B + teongestion(€) + Fou(€).
On the parallel-execution graph we can now define the Parallel Time as follows:

Definition 2.3.1 The Parallel Time (PT) of a parallel-execution graph is defined
as the weight of its critical path, i.e. of the path with the largest sum of node and
edge weights. Let Gpe = G(V, Epe, proc. T, D) be a parallel-execution graph, and

I = {m|m = (vi, vi,...,v},)} be the set of paths in Gy, where indegree(v}) =
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outdsgree(_-vfm) = 0. Let also:

i ) m;—1 ) )

time(w;) = ZT(I*;) + > D((vi,vig))

1=1 k=1

Then we define:
PT(Gpe) = H_lgﬁ\l{ time(m;) }
O

As Sequential Time we define the time it takes to perform the computations described
by the parallel-execution graph, when the tasks of the graph are mapped onto one

processor. In other words:

ST(Gpe) = 3 T(v)

ieV

The speedups reported in our work are computed as the ratio ST(Gpe)/PT(Gpe).

2.3.2 Clustering and Mapping

In the absence of communication overhead, the optimal algorithm for assigning tasks
to processors of an “abundant” clique is the straightforward one-to-one mapping.
Nevertheless. in the realistic case where communication overhead cannot be ignored,
the one-to-one mapping can be suboptimal. For instance, it is better to map long
chains of tasks executing one after the other onto the same processor than to as-
sign them to different processors. That way, we avoid the communication overhead
involved in moving data from a task to its successor, and achieve better overall per-
formance.

A tradeoff exists between parallelism and communication overhead for a given
architecture (in this case the clique): a parallel execution that maps every node of
the parallel-execution graph onto a different processor might not achieve minimum
completion time because of communication delays and overhead. A sequential ex-
ecution that maps all nodes of the task graph to the same processor, zeroes any
communication overhead but neglects potential parallelism. Thus, it may also lead to
suboptimal completion time. Between those two extremes there is a minimum com-

pletion time implementation that clusters together some tasks and maps them onto
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the same processor. Such an implementation achieves the minimum communication
overhead without sacrificing parallelism.

The problem of finding this optimal implementation is called clustering and has
been proven to be NP-Complete [62]. In FAST, we implemented a number of clus-
tering heuristics whose goal is the minimization of communication overhead without
sacrificing parallelism or increasing parallel-time [20, 37, 63, 75]. The user can exper-
iment with them while running the system and select the heuristic giving the best
results. For the chosen clustering heuristic, the mapping of the clustered parallel-
execution graph onto an “abundant” clique reveals all available parallelism of the
application at hand. gives a lower-bound for the time span of the parallel execution,
and can be used to derive an architecture-independent profile of the algorithm ex-
amined and study its scalability. Further details concerning the clustering heuristics
and their effect on parallel performance can be found in the next chapter.

FAST subsequently maps the clustered parallel-execution graph onto a message-
passing architecture. The number of processors is specified by the user of the system.
This mapping problem is also NP-complete |51, 62]. To map the task-clusters onto
processors we have implemented and incorporated in our system a number of heuris-
tics similar to those included in the clustering stage [63].

The clustering and mapping stages can be bypassed if the user of FAST chooses
to have the front-end partition the problem-instance at hand into a number of blocks
equal to the number of available processors. In that case, task-nodes representing
the operations performed on each block are clustered together into single threads of

execution and mapped directly to the processors.

2.3.3 Parallel Architecture Model

A message-passing multiprocessor architecture is modeled in FAST as a set P of asyn-
chronous, homogeneous nodes interconnected in some network topology IN. Each
node is composed of two components: a processor that performs the actual compu-
tations, and a network interface that deals with sending messages to communication

links, receiving messages that target the local processor, etc. (Figure 6). We adopt
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the simplifying assumption that memory of the processing nodes 1s large enough so
that the execution does not experience extra delays due to disk 1/O. Moreover, we
assume that buffer-space of the network interfaces is abundant, so that we will not

have to worry about deadlocks and deadlock-avoidance protocols.

LINK

PROCESSOR CPU

— .

LINK

LOCAL
MEMORY

Figure 6: Processor-node structure.

Interconnection Network Topologies

A few different interconnection schemes are available in the current version of FAST:
a “limited” clique (a clique with a limited number of processors), a ring, a variety of
multirings. and a binary hypercube (see Figure 7. The limited clique represents the
fastest possible parallel implementation of the applications studied. for the number
of available processors and the clustering and mapping heuristics adopted. With
state-of-the-art technology and even for medium numbers of processors, the clique is
neither a realistic nor a cost-effective interconnection scheme. But, it can be used to
benchmark the efficiency of parallel executions on architectures with equal numbers
of processors and sparser interconnection topologies. This approach is more accurate
and more informative than the usual evaluation of efficiency as the ratio of measured
speedup over the total number of processors.

The single ring interconnection simulated by FAST is bidirectional. Each direc-

tion has a functionality inspired by the SCI standard [64]. Multiring interconnections
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Figure 7: 8-processor clique, binary hvpercube, and double-ring.

contain of a number of bidirectional rings functioning independently. For simplicity,
we assume that a processor receives messages from all bidirectional rings and sub-
mits messages only to a specific bidirectional ring, defined by the processor number
modulo the total number of single rings in the multiring network. Hardware param-
eters characterizing ring interconnections are similar to those chosen for the clique

interconnection.

Message-Passing Interface Primitives

Point-te-point communications in parallel sysiems are implemented with Send and
Receive primitives issued by parallel tasks. These primitives can be characterized as
blocking or non-blocking. and as synchronous or asynchronous. Such characterizations
determine the point in time when a communication primitive returns control to the
task that called it. Also, thev define the semantics of communication, and affect its
performance.

More specifically. we encounter blocking-asynchronous, blocking-synchronous. and
non-blocking Send’'s. A blocking-asynchronous Send returns control to the calling
process after the corresponding message has been loaded into the output buffer of
the network interface at the sending processor. A blocking-synchronous Send returns
after the message has been copied to the input buffer of the network interface at the
receiving processor. A non-blocking Send returns before the corresponding message
has been loaded into the outgoing buffer of the sending processor’s network inter-
face [14, 18, 33].

A blocking Receive returns after the corresponding message has arrived at the

receiving processor, regardless of whether it has been dispatched from the sending
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Figure 8: Blocking vs. Non-blocking Send's.

processor with a synchronous or an asynchronous Send. A non-blocking Receive
notifies the network interface that the receiving process is expecting a message. and
then immediately returns control immediately to the calling process. When using a
non-blocking Receive, a Wait-for-receive command has to be introduced at the point
where the data of the incoming message are to be used by the program. Wait-for-
recetve 1s by definition a blocking primitive: a process that issues it, blocks until it
receives the data required.

In the Macro-Dataflow model of computation the edges of the task-graphs rep-
resent pairs of Send and Receive primitives. Send’s can be either blocking or non-
blocking, and synchronous or asynchronous. Receive’s must be blocking because of
the definition of Macro-Dataflow. According to the non-blocking communication
paradigm. messages are dispatched simultaneously at the end of the execution of a
task. In contrast, according to the blocking paradigm, messages are transmitted se-
rially from tasks with no overlap between the loading of buffers and the subsequent

message-dispatches or computation (see Figure 8). FAST provides the user with the
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choice of selecting a message-passing interface paradigm from the choices above.

Interconnection Network Simulators

We implemented an event-driven simulator to emulate message transmissions through
binary hypercube and ring-based topologies. The simulator uses an event-queue and
proceeds in synchrony with a routine searching the parallel-execution graph at hand
in a breadth-first manner. When a node of the graph is marked as “visited” by the
search routine, its outgoing messages become ready for transmission. These messages
are denoted by the edges which start at the node and point to some node mapped at
another processor.

Then. the simulator takes over and determines the order by which these messages
are dispatched to the interconnection network. and the route they follow to reach
their destinations. It updates the event-list by inserting events representing the cor-
responding message transmissions. These events are time-stamped appropriately to
take into consideration the startup-time for a message dispatch (loading the outgoing
buffers, testing control registers, etc.).

After the occurrence of an event representing a message-transmission, the simu-
lator schedules a new event signaling the arrival of that message to the next node in
its route. The time-stamp of the new event takes into consideration the propagation
delay of the communication channel between the source and destination nodes, and
the possible congestion delays due to contention in the channel or the corresponding
network interfaces.

Upon occurrence of an event representing the arrival of a message to its desti-
nation. the simulator estimates the total latency of this message. Then, it uses this
estimate to update the weight of the corresponding edge of the parallel-execution
graph and triggers the breadth-first search routine to continue by checking the head-

node of that edge.
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Machine S o Bandwidth
(in psec) (in psec)
iPSC/860 (in Bytes per pisec)
msg < 100bytes 37.25 37.25 2.3
msg > 100bvtes  85.99 85.99 2.52
iPSC2 (in 4Bytes per psec)
msg < 100bytes 175 175 0.8
msg > 100bytes 330 330 1.44
CM-5 (in Bytes per psec)
43 43 8.3

Table 3: Hardware parameters used in FAST.

Hardware Parameters

In addition to the number of processors and the network topology. the user provides
FAST with a set of hardware parameters. This set is used to transform the weights
assigned to nodes and edges of the task-flow graph into processing times and mes-
sage latencies. It includes cvcles-per-instruction counts, clock-speeds. communication
bandwidth. communication overhead. etc.

In the current version of FAST, we used hardware parameters characteristic of
Intel’s iPSC/2 and iPSC/860 multiprocessors [33, 53], and of Thinking Machine's
CM - 5 [72]. These parameters were either collected from experiments we ran on
an 8-node iPSC/860 installed at Princeton or they were extracted from published
performance analyvses [9, 12, T4]. Table 3 presents some of the hardware parameters
used by FAST to perform functional simulations of algorithms on different intercon-
nection networks. S,, denotes the start-up cost for a message, that is, the time it
takes the sending processor to load its network interface’s output buffers with the
contents of the message and with control information. Similarly, K., is the time it
takes a message to be loaded in the input buffers of the receiving processor’s network

interface.



Chapter 3
Clustering and Mapping

In this chapter we discuss the clustering. scheduling, and mapping heuristics imple-
mented in the current version of FAST. Using data derived from functional algorithm
simulations of the Fast Multipole Method we perform comparison studies of these
heuristics. Our main conclusion is that, for the realistic and practical scheme em-
ploved by FAST to assign weights to the edges of the task-graphs, the clustering
heuristics examined do not achieve substantial improvements in terms of task-graph
execution time. Furthermore, the existence of communication overhead does not
affect significantly the mapping of clustered task-graphs to parallel system. Our
experiments show that the combination of clustering and mapping heuristics give
consistently better results than one-phase mapping algorithms.

For every functional algorithm simulation. the front-end of FAST generates a
task-flow graph, which describes the parallel execution at hand in an architecture-
independent way. To capture the characteristics of parallel workloads running on
multiprocessors, we need to map their corresponding task-flow graphs onto appropri-
ate models for the parallel machines.

In practice, parallelization of applications is performed in a sequence of steps:
problem partitioning. task generation. assignment of tasks to processors, and schedul-
ing of tasks into sequential threads executed at each processor. A variety of factors,
such as the parallel architecture, the application program, the parallel programming

platform, and the run-time system, affect the implementation of these steps. There

34
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are many different approaches to parallelizing an application, and it is not realistic to
emulate all of them with FAST. It is reasonable, however. to map the task-flow graphs
to the models of the parallel architectures as efficiently as possible, and have FAST
generate execution profiles and performance measurements corresponding to highly
efficient implementations. This is the case in real implementations, which try to
achieve optimality with respect to performance. Therefore, using inefficient mapping
methods in FAST would produce unrealistic profiles that could result in misleading
conclusions about the algorithms.

Task-flow graphs generated by FAST are a special case of the data dependence
graphs (DDG's) that are used frequently as abstract representations of parallel pro-
grams [23, 56, 63]. The nodes of DDG’s correspond to single program instructions or
sets of instructions, depending on the desirable DDG-granularity. Their arcs corre-
spond to dependences, which enforce a partial order of execution on program state-
ments. DDG’s of various granularities are constructed automatically as internal pro-
gram representations in systems like SISAL [62]. Parafrase-2 [56]. and JADEFE [39].
Moreover. they can be defined and constructed explicitly as in the Pyrros system
[76]. Finally. in systems following the Fork-Join, SPMD and hypercube programming
models. DDG’s are not explicitly created but still are a meaningful tool for describing
parallel executions [15, 33].

A key issue that arises in systems employving data dependence graphs, is related
to the execution of these graphs on the processors of a parallel computer [41, 43. 49].
[3, 8, 46]. There are many approaches for addressing this problem, most of which
can be classified as static or dynamic. Static schemes apply in systems where the
DDG’s can be constructed before program execution. In that case, the user-program
or the compiler can take advantage of information pertinent to the DDG for making
decisions that will guide the assignment of graph-nodes to different processors, and the
scheduling of tasks within each processor [4, 76]. It is not always possible, however, to
create the DDG’s before the program execution. In that case, execution of DDG's is
accomplished with dynamic schemes that are enforced through the operating system
or the hardware. These schemes are more common in practice [44, 59].

The availability of global information for the DDG’s before the parallel execution
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enables static schemes to perform optimizations such as reducing the communication
overhead. eliminating the task scheduling overhead. and achieving load balancing [63].
These optimizations make the compilation of systems employing static schemes much
slower and more complex. In dynamic approaches on the other hand, global informa-
tion is not available and. consequently, the systems rely on local information about
the program. Processor assignment and scheduling decisions are made at run-time.
Complex criteria for such decisions would slow down execution time significantly:
therefore. dynamic schemes rely on simple decision criteria that try to emulate the
decisions that would be taken by the more complex static techniques, if the DDG’s
were known in advance.

We employ static schemes developed for executing DDG’s on parallel architectures,
in order to map the task-flow graphs generated by FAST to parallel architecture

models. Usually, these methods take place in two phases [23. 63, 62]:

1. The clustering or internalization phase, seeks to minimize communication over-
head and improve paralle] time by deciding that certain tasks must go together

on the same processor, even if other processors are available.

2. The mapping or processor assignment phase, maps the groups of tasks formed
by the clustering phase to the processors of the parallel architecture at hand.

At the same time, it seeks to preserve a low parallel time.

Concurrently with clustering and mapping, it is necessary to perform scheduling of
tasks assigned to the same clusters or processors.

In this chapter, we discuss the heuristics we implemented in FAST to perform
clustering, mapping, and scheduling of the task-flow graphs produced by the first
phase of the system. Also, we present a comparison among the different heuristics

with respect to their performance and cost.

3.1 Clustering

Clustering specifies the sequential units of computation in a parallel program by

mapping tasks to clusters. A cluster is a set of tasks that execute sequentially on the



CHAPTER 3. CLUSTERING AND MAPPING 37

PT=24 PT=16

P1

©

Pay )

Figure 9: Different clustering choices.

same processor. The principle goal of clustering is to achieve the minimum parallel
time for a given task graph on a clique architecture, with as many processors as tasks

(“abundant” clique). Sarkar explained the reasoning of clustering as follows [62]:

If two nodes are assigned to the same processor in this best-case situation
with an unbounded number of processors available and the lowest possible
overhead, then they should be assigned to the same processor in any

schedule on the target architecture.

If communication overhead was zero, the trivial solution to clustering would assign
each task to a different processor of an “abundant”™ clique. In the realistic case.
however, a parallel execution that assigns every node of a task-graph on a different
processor of an “abundant” clique might not achieve minimum completion time be-
cause of communication delays and overhead. For example, in Figure 9 (left), each
task is assigned to a different processor and the parallel time of the execution graph
is 24. In contrast, in Figure 9 (right), nodes A, B, and D are clustered to the same
processor and the parallel time 1s only 16. This is because clustering eliminates the
communication cost of messages (A, B) and (B, D).

For a formal definition of clustering. we consider a directed acyclic weighted

parallel-execution graph G,. = G(V. E. proc. T, D) (see definition in Chapter



Qo
0.5}

CHAPTER 3. CLUSTERING AND MAPPING

Figure 10: Scheduling edges. The bold arrows denote the sequential paths of execution

in the clusters.
2). Clustering is the problem of partitioning the nodes of G, into clusters, and de-

riving the clustered parallel-execution graph with the shortest parallel time among
all possible ciustered graphs G, mapped on “abundant” cliques. It has been proven
that finding the optimal clustering of a directed acyclic graph that follows the Macro-
Dataflow model of computation is NP-hard in the strong sense, if the cost function

is the minimization of parallel time of the graph on an “abundant” clique architec-

ture [62]. A number of heuristics have been developed to cope with the clustering

problem [20, 37, 62, 75].

Clustering heuristics applied to G, will update its proc information to reflect the
formation of clusters. If, for instance, nodes u and v clustered into the same cluster
L, then proc(u) = proc(v) = L. Furthermore, clustering alters E, the set of edges
of G, by introducing new “scheduling” edges that express the scheduling priorities

among nodes belonging to the same cluster. For example. in Figure 10, cluster L
merges with node D. If task D is scheduled to run after task A and before task B.

the edges (4, D) and (D, B) are inserted in the clustered graph to determine the new

schedule.
Finally, clustering heuristics change the weights assigned to the edges of Gys: For

example, we consider a node u € V that sends n+1 messages to nodes wi. ws....,wk
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Figure 11: Edge weights (blocking Send's).

U, Whe1se .5 Wy, in that order. We assume that proe(w;) # proc(w;) # proc(u) #

Vi # j. If the clustering heuristic assigns nodes u and v to the same cluster,

proc(v),
(u,wy) of u will remain the same. The

the weights of the outgoing edges (u,w1)....,

weight of (u,v) will be changed from:

D(u,v) = (O Soulu,wi)) + Sou(u,v) + 8(u,0).

to:

3

(u,v) ZSW u, w;)

g=1

(see Figure 11). The weights of edges (u.wg+1)s- - - »(u, wy,) will be reduced to

Df(u,w;) = D(u,w;) — Sp(u,v), i=k+1,..., n.

These formulas correspond to the case where the message-passing interface of the

“abundant” clique provides a blocking Send communication primitive [14, 18].
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The application of a clustering heuristic on a parallel-execution graph G,., trans-
forms G into a clustered parallel execution graph G, = G(V., E., proc.,T., D.)

where:
o 17 is the set of tasks in G¢; V° is identical with V.

o £, = FEUE,;. where E is the set of “scheduling” edges in G, representing
messages carrying information between tasks. E;.; 1s a set of edges introduced
to the graph to define the order of execution among tasks assigned to the same

cluster and with no program-determined dependences between them.
o proc.(v), Vv € V. is the number of the cluster that v belongs in.
o T.(v), Vv € V. is the processing time of task v.

o D.(e), Ve € E. is the weight assigned to edge e. For ¢ = (u,v), D.(e) repre-
sents the time between the completion of task u to the beginning of task v. If
proc(u) # proc(v). then D.(e) is equal to the latency of message e going [rom
processor proc(u) to processor proc(v) of the “abundant™ clique. Otherwise,
D.(e) is equal to the time that processor proc(u) of the “abundant™ clique is
busy transmitting messages to other processors, and therefore cannot continue

with the execution of v (communication overhead).

3.2 Clustering Heuristics

The clustering heuristics implemented in FAST perform a number of refinement steps
on the input parallel-execution graph. Each step performs a refinement on the output
of the previous clustering step by merging two clusters, and scheduling their tasks
within the newly formed clusters. In the initial parallel-execution graph, each task-
node is a cluster by itself. The heuristics complete and report a final clustering when
an end-condition is satisfied.

In FAST we implemented edge-zeroing heuristics with no backtracking. These algo-

rithms proceed by merging connected nodes of the parallel-execution graph. Assigning
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two connected nodes to the same cluster. eliminates the message that corresponds to
the edge connecting them. After clustering, the message will be carried out through
local memory Write's and Read's at the memory of the processor that executes the
cluster. There is no backtracking, that is, once a cluster has been formed at one step
of the heuristic, it cannot be split at a later step.

Various algorithms belonging to this class of clustering methods can be charac-

terized with respect to:

1. The method for choosing which edge to eliminate.

| ]

. The end-condition of the heuristic.
3. The scheduling heuristic emploved when merging two clusters into a sequential
thread of execution.

The choice of scheduling heuristic is orthogonal to the method for zeroing edges and
to the end-condition. We present a number of clustering heuristics implemented in
FAST first. and in the next section we talk about scheduling. A comprehensive

discussion of clustering algorithms can be found in [24].

3.2.1 Sarkar’s Clustering Algorithm

Sarkar’s heuristic clusters a parallel-execution graph in a number of steps described

below [62]:
1. Sort the edges ¢ € E of the graph in descending order of their weights D(e).

2. Merge the two clusters that include the head and tail node of the edge with the
highest weight, if this change does not increase parallel time.
3. Repeat step 2 until all edges are scanned.

V] +

|E|)). This results in very high execution times for large graphs. Therefore, we

It is not difficult to see that the complexity of Sarkar’s heuristic is O(|E| - (

implemented also a variation of Sarkar’s method that sorts the edges in descending
order of their weights and examines only a percentage of them, starting from the one

with the largest weight.
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3.2.2 Kim and Browne’s Algorithm

Kim and Browne's method takes a different approach to clustering [37]:

1. Mark all edges in the parallel-execution graph as uneramined.

]

Find the eritical path in the graph composed of unexamined edges only. This is
the path with the longest cumulative weight in the graph. In FAST, the cumu-
lative weight of a path (uq,u2), (ug, u3), ..., (Un-1,Uy) is equal to 77} (T(ui) +
D(uj ui1)) + Tluy).

3. Merge in the same cluster the nodes belonging to the critical path and mark all

edges incident to nodes of the critical path as eramined.

4. Apply steps 2 and 3 to the subgraphs formed by nodes and unexamined edges.

until all edges are examined.

The complexity of Kim and Browne’s heuristic is O(|V|- (|V'| + |E])). since there
are at most |V| connected components 1n a graph and it takes O(|V| + |E|) time to

find the critical path in each component.

3.2.3 Linear-Greedy Algorithm

Kim and Browne's heuristic improves parallel time in the case where a simple scheme
is used to assign weights to edges, and elimination of an edge results in zeroing
its weight. Under the more realistic scheme employed in FAST, however, Kim and
Browne’s heuristic may result in clustered graphs with larger parallel times than the
unclustered ones. With this consideration in mind, we modified this heuristic and
introduced a version that we call Greedy-Linear. This algorithm is called “linear”
because, as in Kim and Browne’s method, it outputs clusters that are linear chains

of task-nodes. The heuristic works as follows:
1. Mark all edges in the parallel-execution graph as uneramined.

2. Find the eritical path in the graph composed of unexamined edges only.
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3. For every edge of the critical path, cluster its adjacent nodes only if this does
not result in a larger parallel time. Mark all the edges incident to nodes of the

critical path as examined.

4. Apply steps 2 and 3 to the subgraphs formed by nodes and unexamined edges,

until all edges are examined.

Testing whether the clustering of an edge results in a larger parallel time can be
accomplished in constant time, without having to recompute the parallel time of the

graph. Therefore, the complexity of this algorithm is O(|V|- (|V|+ |E])) as well.

3.2.4 Greedy Dominant Sequence Algorithm

The clustering algorithm by Yang and Gerasoulis [75], identifies at everv step the
critical path of the graph, named Dominant Sequence (DS). The heuristic chooses
one edge belonging to the DS and merges the clusters of its adjacent nodes, if this
decision leads to a shorter parallel time. After the clustering. the algorithm computes
V).

In FAST, we implemented a simpler. greedy version of this algorithm, which we call

the new DS. The complexity of Yang and Gerasoulis’ heuristic is O((|E|+|V|)-log

Greedy Dominant Sequence (GDS) algorithm:
1. Identify the Dominant Sequence of the graph.

2. Choose the edge of the Dominant Sequence whose elimination results in the
largest decrease of parallel time. Merge the clusters of the nodes adjacent to

the selected edge.

3. Repeat Steps 1 and 2 until there is no edge in the DS whose elimination can

decrease parallel time.

Identifying the Dominant Sequence requires a depth-first search of the graph which
takes O(|E|+ |V]) time. Choosing which edge of the Dominant Sequence to eliminate
takes time proportional to the number of edges in the Dominant Sequence, that
is, O(|V'|). The algorithm will perform O(|V|) clusterings and, therefore, the total
complexity of the Greedy Dominant Sequence is O(|V] - (|E| + |V])).
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Figure 12: Scheduling problem: the bold edges represent the sequential thread of

execution in each cluster.

3.3 Scheduling

The scheduling problem arises during the merging of two clusters, when their tasks
have to be ordered according to some sequential order of execution. The example
given in Figure 12. depicts the merging of clusters L1 and L2. In the resulting cluster
L. tasks A, B. C. D. and E will constitute a sequential thread of execution. The
scheduling algorithm should specify an ordering of tasks that achieves the shortest
parallel time and, at the same time, complies .1;0‘ existing precedence constraints. For
instance. if the decision made by the scheduling algorithm is to execute task D after
task A, and task E before task C, we have to introduce scheduling edges (A, D) and
(E,C)in the graph. These edges denote the priorities imposed by the scheduling algo-
rithm. For general directed-acyclic parallel-execution graphs, the problem of finding
the optimal task sequences that minimize overall parallel time is NP-Complete [63].
Consequently, we implemented in FAST two simple heuristics to perform scheduling.

These heuristics are variations of Priority List Scheduling [11]. According to Prior-
ity List Scheduling, each task is assigned a priority. Whenever a processor is available,

a task with the highest priority is selected from the list of tasks and assigned to that
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processor. The different schedulers assign priorities to nodes in different ways. Adam
et al. showed that among all priority schedulers, level-priority schedulers are the best
at getting close to the optimal schedule [1]. These schedulers use the level of each
node to determine its priority.

Before presenting the scheduling heuristics, we introduce some useful notation.
Given a directed-acyclic graph G = G(V. E). we denote by V; the set of “input”
nodes, that is, nodes in V with no incoming edges. With V,, we denote the set of
“exit” nodes, that is, nodes in V with no outgoing edges. Also, Yu € V, II(u.1})
represents the set of all possible paths in G from node u to some node in V,. Given
this notation, we define the ptime value of a node in the graph as follows:

n—1
ptime(u) = max (T(u) + D(u.wy) + Z(T(ur{) + D(w;, wig)) + T(wn))

rell(wu,Vy) i—1

Yu € V, and for # = (u,w1),...,(wWp-1.w,). In other words, the ptime value of a
node is the total weight of the longest path from this node to the “exit” nodes of the

graph. Furthermore. we define the sfime value of a node as follows:

n—1
- stime(u) = _E%l(z::\ )(Z(T(wi) + D(w;, wi+1)) + T(wy) + D(wn.-u.))
T ) i
Yu € V, and for 7 = (wy,ws), ..., (w,.u). Finally, the level of a node in the graph is
defined as follows:
level(lu) = max ||x||.

m€ell(V;,u)

where ||7|| represents the number of edges in path =, that is, the length of 7.

3.3.1 TS/ETF Scheduling

Topological Sort/Farliest Task First (TS/ETF) scheduling [49] performs a topological
sort [65] of the parallel-execution graph and assigns level values to its nodes. If node
u precedes node v in the topological-sort order. that is, level(u) < level(v), then u
will be assigned a higher priority than v. If, however, level(u) equals level(v), then
TS/ETF assigns a higher priority to the node with the smaller stime value. The
relative priorities of nodes with equal level and stime values are assigned by TS/ETF

randomly.
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3.3.2 CP/MISF Scheduling

Critical Path/Most Immediate Successors First (CP/MISF) scheduling [35] computes
the ptime values of the nodes in the task-graph. Then. it constructs a priority list of
nodes according to the descending order of their ptime values. For nodes that have
the same ptime value, CP/MISF assigns a higher priority to those with the larger
number of immediate successors; that is. with the larger number of outgoing edges.
In summary., CP/MISF sorts task-nodes according to the descending lexicographic
order of the tuple:

(ptime(v), outgoing-edges(v)), vV

The order that each node has in the resulting sorted list, represents its scheduling
priority. FAST uses these scheduling priorities to merge different clusters and form

sequential threads of execution.

3.4 Mapping

Clustering produces a clustered parallel-execution graph with a number of clusters
usually much larger than the number of available processors of the target architecture.
Optimal Mapping is the problem of finding an assignment of clusters to processors,
leading to a parallel time shorter than the times derived by all other assignments, for
the given number of processors [52]. The Optimal Mapping problem of a clustered
directed acyclic graph has been proven to be NP-Complete [62]. Consequently, in or-
der to perform mappings of the clustered parallel-execution graphs to the processors
of the parallel architectures studied with FAST, we implemented two heuristics rep-
resentative of those reported in the literature. The mapping algorithms are based on
clustering and scheduling heuristics, and are quite similar to the methods presented

in the previous sections.

3.4.1 Sarkar’s Algorithm

Sarkar’s heuristic is a modified version of the Priority List Scheduling algorithm [63].

It uses a list, pblock, of size P, where P is the number of available processors. pblock
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entries are initially empty. When the algorithm completes, pblock[i] contains the
tasks assigned to processor 7, for i = 1,...,P. The algorithm creates a priority list of
task-nodes. according to a topological-sort ordering of the graph. Then, at each step.
it processes the next node 7' in the priority list. If 7" has not already been assigned

to a processor, the algorithm performs the following tasks:

1. Choose a processor i, such that, the merging of clusters proc.(T') and pblock][:]
will result in a parallel time shorter than the one derived from the merging of .

proc(T) with any other cluster pblock[j].
2. Merge clusters proc.(T') and pblock[i], and assign the result to pblock|i].
3. Assign all task-nodes of cluster proc|[T] to processor i.

4. Reduce the number of clusters by one.

The algorithm completes when the total number of clusters in the graph becomes
equal to P. It is not difficult to see that its computational complexity is O(P - |proc|-
(IV'| + |E])), where |proc| is the initial number of clusters.

Sarkar’s mapping algorithm is slow because of the large constants involved in its
complexity. We implemented a modified version to improve its running time, although
without achieving a better asymptotic complexity. This version follows exactly the
same steps as the original heuristic. It does not take, however, into consideration
communication costs when calculating parallel time. We call it SNC, that is, Sarkar’s
algorithm with No Communication Costs.

We also implemented a version of the Priority List Scheduling heuristic, which
applies directly to non-clustered graphs. This heuristic orders nodes of the graph
according to the T'S/ETF or the CP/MISF principle. Then, it traverses the priority
list of nodes, and maps each task to the processor that will start executing it the

earliest possible.

3.4.2 Yang and Gerasoulis’ Algorithm

In [76], Yang and Gerasoulis introduced a fast heuristic for mapping a clustered

graph to the processors of a parallel system. This algorithm seeks to optimize the
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load-balancing of the available processors. It is comprised of four steps:

1. Estimate the average processing time. A, of the processors, as the sum of the

processing times of all clusters, over the number P of processors.

o

Sort the clusters in an increasing order of their loads.

3. Assign each cluster with a processing time higher than the average A to a

different processor.

4. Use a wrap mapping for the remaining clusters: number these clusters from 1 to
their total number. Then. assign each of them on the processor whose number

is equal to the number of the cluster modulo P.

The complexity of this method is O(|V]-log |[V|+ |E|).

3.5 Experimental Results

In this section we present representative experimental results using the clustering,
scheduling, and mapping heuristics employed in FAST. We give data derived when
using the these heuristics on a parallel-execution graph with 1445 task-nodes and
12,860 edges. This parallel-execution graph represents the parallel computation of
the Fast Multipole Method (see Chapter 6) on 1000 bodies, with quadtree granularity
of 5 bodies per leaf. Similar conclusions can be derived when using parallel-execution
graphs representative of other problems. For the evaluation of clustering algorithms
we used the CP/MISF scheduling heuristic. The results do not change considerably
when using TS/ETF.

3.5.1 Clustering

Figure 13 shows the ratio of the parallel time of the clustered parallel-execution
graph of our example, over the parallel time of the unclustered graph. for a number
of different clustering technigues and for two message-passing interface paradigms

(blocking or non-blocking Send’s): Sarkar’s method; Greedy-Linear algorithm (GL);
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Figure 13: Effects of clustering to parallel time.

Kim and Browne’s method (K& B); running Greedy-Linear on the graph and then
applving Sarkar’s heuristic for only the 10% of the edges (GL&S-10%), and Greedy
Dominant Sequence approach. Clearly, the clustering heuristics do not improve the
parallel time of the clustered graph significantly with respect to the parallel time
of the unclustered graph. This remark is true regardless of the message-passing
interface paradigm adopted (blocking or non-blocking Send’s), and for both high
setup-cost as well as for low setup-cost communications. In the high setup-cost case.
we used measurements from the i P.SC/860, whereas in the low setup-cost case, we
used overhead values ten times smaller.

The plot in Figure 14 shows the numbers of the clusters produced by the different
clustering heuristics for the two message-passing interface paradigms. This is an inter-
esting metric, since the performance of mapping algorithms depends on the number of
clusters generated by the clustering heuristics which precede mapping. Clearly, map-
ping is faster for clustered graphs with fewer clusters. As expected, applying Sarkar’s
heuristic results in the smallest number of tasks. The reason is that the algorithm
considers all edges in the graph for “zeroing.” In contrast, the Greedy Dominant Se-

quence method results in a number of clusters almost identical to the initial number
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Figure 14: Number of clusters.

of tasks. GDS eliminates only edges belonging to the Dominant Sequence (that is.
the critical path of the parallel-execution graph) and, thus. clusters few of the tasks
belonging to the DS. Clustering these tasks, however, does not necessarily alter the
DS. Hence, the algorithm can complete without further clustering.

The Greedy-Linear ( GL) and Kim&Browne’s heuristics do not check the Dominant
Sequence only. Instead, after performing clustering on the DS, thev proceed by
clustering tasks belonging to the critical paths of the subgraphs formed when deleting
edges adjacent to the initial DS. The GL method results in a small number of clusters
in the case of non-blocking Send’s, and in twice as many clusters in the case of blocking
Send's. This is due to the fact that “eliminating” an edge on the critical path of a
parallel-execution graph, will always result in a smaller cumulative weight for this
path, if the message-passing interface paradigm provides for non-blocking Send’s. This
is not always the case with blocking Send’s and, thus, there are fewer opportunities for
the clustering heuristic to perform effective clusterings. For example. Figure 15 shows

an unclustered parallel-execution graph where the critical path is the edge (A, B), and
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Figure 15: Clustering with non-blocking Send’s.

the Send primitives are non-blocking. Clustering tasks A and B results in a decrease
of the parallel time of the graph. This would not be the case if the Send primitives
were blocking (see Figure 11). Kim and Browne’s method performs the clustering of
linear chains of tasks, regardless of whether such an alteration will result in a larger
parallel time. Therefore, the cluster-numbers reported for this algorithm are small,
both for the blocking and the non-blocking paradigms.

Finally, GL&S-10% reports cluster numbers which are proportional to the numbers
reported by Sarkar’s algorithm. This is expected since, in its first pass, the method
applies GL to the graph. This does not decrease the number of clusters substantially.
The second pass applies Sarkar’s heuristic. but only for 10% of the “heavier” edges.

In Figure 16, we present a diagram of execution-time measurements for the various
clustering heuristics examined. The execution times represent measurements on FAST
simulations running on a DEC-Alpha workstation. As expected. Sarkar’s algorithm

is substantially slower than the other heuristics, which have similar execution times.
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Figure 16: Execution times for the Clustering heuristics.

3.5.2 Mapping

To compare the mapping algorithms implemented in FAST, we applied them on the
clustered parallel-execution graphs derived from the examples of the previous section,
and mapped the clusters to 16 processors connected in a clique topology. In Figure 17,
we give a diagram of speedups for different combinations of clustering and mapping
algorithms. The speedup 1s a measure of the efficiency of the parallel computation
described by the parallel-execution graph. Therefore, it can be used as a metric for
the effectiveness of the mapping techniques examined. We give speedup results from
eleven different combinations of clustering and mapping heuristics. CP/MISF is the
scheduling heuristic emploved for the merging of different clusters. Table 4 explains
the notation used in the diagram of Figure 17.

From this figure, we can see that Sarkar’s mapping algorithm gives better speedups
than SNC. On the other hand, SNC reports better speedups than the Yang and Gera-
soulis approach. This remark is true for all the clustering heuristics used, and both
for blocking and non-blocking Send’s. Furthermore, we notice that the SNC approach
performs almost as well as Sarkar’s method, although it disregards communication
costs in the parallel-execution graph. Therefore, the measured speedups are lower

than the ideal linear speedups, mainly because of load-unbalancing, and because of
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Figure 17: Speedups for different clustering-mapping strategies (16 processors).

Notation Clustering Algorithm Mapping Algorithm
S/5 Sarkar’s Sarkar’s
GDS/S | Greedy Dominant Sequence Sarkar’s
GL/S Greedy-Linear Sarkar’s
& ¥G Sarkar’s Yang& Gerasoulis
GDS/YG | Greedy Dominant Sequence Yangd:Gerasoulis
GL/YG Greedy-Linear Yangd:Gerasoulis
S/SNC Sarkar’s Sarkar’s - No Communication Cost
GDS/SNC | Greedy Dominant Sequence | Sarkar’s - No Communication Cost
GL/SNC Greedy-Linear Sarkar’s - No Communication Cost
SNC none SNC
PLS none Priority List Scheduling, CP/MISF

Table 4: Clustering and Mapping algorithms’ notation.
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the data-dependences in the task-graph that result in almost sequential portions of the
execution. The Priority List Scheduling algorithm (PLS) with no clustering, reports
the lowest speedups. Using SNC on the parallel-execution graph of our example, with
no prior clustering. results in speedups comparable to those derived when running
SNC on the clustered graph. Another remark from Figure 17, is that the speedups
reported from simulations of the non-blocking Send/blocking Receive primitives are,
on the average, 20% higher than the speedups reported for blocking Send/blocking
Receive primitives. This improvement is expected since the non-blocking Send’s incur
smaller communication overhead to the processors of a parallel system.

In Figure 18, we present a diagram of measurements extracted from FAST for the
execution times of the various mapping algorithms. Sarkar’s algorithm is the slowest.
SNC, which performs the mapping without taking into consideration communication
delays and overhead, has a moderate execution time. Therefore, the very high time-
complexity of Sarkar’s approach is a result of the overhead for the estimation of
communication costs while testing the different mapping choices at each step of the
method. Furthermore, we notice that for the cases where we used Sarkar’s clustering
algorithm before the mapping, the cost of the mapping was smaller. This is because

Sarkar’s clustering heuristic results in low numbers of clusters.
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3.6 Remarks

In this chapter we presented the clustering, scheduling, and mapping heuristics imple-
mented in the current version of FAST. Using data derived from functional algorithm
simulations of the Fast Multipole Method we performed a comparison study of these
heuristics. From this study we conclude that, under the realistic scheme employed
by FAST to assign weights to the edges of the task-graphs. the clustering heuristics
examined do not achieve substantial improvements in parallel time. Nevertheless.
clustering heuristics based on the methods introduced by Sarkar and by Kim and
Browne. result in numbers of clusters that are significantly smaller than the initial
numbers of tasks. Partitioning the task-graphs into a small numbers of clusters,
expedites the mapping heuristics used after clustering.

Furthermore, we conclude that communication overhead does not play an impor-
tant role in mapping clustered task-graphs to processors. The mapping heuristic SNC.
which does not take into consideration communication costs, performs almost as well
as Sarkar’s heuristic, with respect to the reported speedups. For the examples con-
sidered, the fast heuristic by Yang and Gerasoulis does not perform as well as slower
heuristics, such as SNC and Sarkar’s. Preliminary experiments performed on graphs
derived from the functional algorithm simulations of Barnes-Hut algorithm. however.
show that Yang and Gerasoulis heuristic achieves competitive speedups. Finally, we
conclude that the combination of clustering and mapping heuristics gives consistently

better results than one-phase mapping algorithms, such as Priority List Scheduling.



Chapter 4
Message Ordering

In this chapter we show that, under the blocking communication assumption, mes-
sage latency is largely determined by the order with which messages are transmitted
from task-graph nodes. Consequently, this ordering affects the parallel time of the
corresponding task-graph and, therefore. it affects the steps taken by the clustering,
scheduling, and mapping heuristics discussed in Chapter 3. We consider the prob-
lem of finding message-transmission orderings that achieve minimum parallel times
for task-graphs mapped on virtual clique architectures. We give a polynomial-time
dynamic-programming algorithm for finding such optimal orderings. This algorithm
has been incorporated in the procedures of FAST that estimate message-latency and
parallel time. It has been used in the implementation of the clustering, scheduling,
and mapping heuristics for the simulation of message-passing systems with blocking

communication primitives.

4.1 Message Ordering

We extend the definition of a parallel-execution graph, so that it takes into consid-
eration the ordering of message transmissions from the task-nodes. To this end, a

parallel-execution graph is defined as follows:

Gpe = G(V, Eye, proc, O(V), T, D)

36
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P1:

: \@

Figure 19: Example of communication between tasks and between processors.

where V. E,.. proc, T. and D are defined exactly as in Chapter 2. O(u) defines an
ordering among the messages dispatched from task u, Vv € V. We use the symbol
“<” to denote the order of transmission between two messages. For instance, if node
2 sends a message to node w after having dispatched a message to node v, and no
other message is sent by u in between. this is denoted as (u.v) < (u.w).

As an example. consider Figure 19 where tasks A and D reside on Processor P1, B
resides on P2, and (' resides on P3. Task A performs its computation and then sends
two messages to tasks B and C, in that order. Figure 20 shows the communication
overheads incurred by the tasks. At the end of A’s computation. processor Pl has
to load the output buffers of its network interface so as to initiate messages L1
and L2. After this., it starts the computation of task D. Processors P2 and P3
wait until the incoming buffers of their network interfaces have been loaded with
messages L1 and L2 respectively. Then they start executing by copving in memory
the contents of the messages and then proceeding in the computation of tasks B
and C'. Under the blocking scheme adopted, the ordering of message-dispatches from
processor P1 is important because it determines the starting time of tasks B and C
on the other processors. From Figure 20 it is clear that if message L2 was sent before
L1, the overall PT would be smaller since (s computation dominates the overall
execution. Notice that D is mapped to the same processor as A and thus there is no

communication overhead due to edge L3. The data exchange corresponding to L3 is
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Figure 20: Communication overheads under the blocking communication approach.

performed implicitly through Write and Read operations in the local memory of P1.
Nevertheless, D can start only after A has finished the transmission of messages L1.
L2. and has freed Processor P1.

From the previous example it is clear that the order in which a task sends 1ts mes-
sages affects the PT since it affects the D-weights assigned to the edges of the parallel
execution graph G,.. In order to define an optimal execution for a parallel algorithm.
it is necessary to find an optimal ordering which. among all possible orderings, leads

to a minimum PT for a specific clustering, mapping, and scheduling configuration.

4.2 Optimal Orderings of Messages

In this section we present definitions and lemmas characterizing the optimal ordering
sought, and delineating the method proposed for computing such an ordering. First,
we give a number of definitions for the elements of the parallel execution (weighted)
graph, and the corresponding non-weighted graph G = G(V, E,.). For every vertex
v € V, we define height(v) as the length of the longest path in G from v to the

set of vertices with outdegree zero. Obviously for every x, v € V with height(z) =
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height(y) neither (z.y) nor (y, ) belongs to E,.. Furthermore, we denote:

height(Gpe) = 1;13;{{?16@]1#(1*)} (1)
Suce(v) ={w € V| (v.w) € Ep} (2)

We modify the definition of Parallel Time on the parallel execution graph to take
into consideration the ordering of messages :

Definition 4.2.1 The Parallel Time (PT) of a parallel execution graph with a given
message ordering O is defined as the weight of its critical path, i.e, of the path with
the largest sum of node and edge weights. Let G,e = G(V. Epe.proc. 0.T,D) be a

parallel execution graph, and 11 = {=; | 7; = (v1, vo,...,vm, )} be the set of paths
in Gpe, where indegree(vy) = outdegree(vy,) = 0. Then PT is defined formally
by:
PT(G,. | ©) = %gﬁ{.rzlﬂrj)jt
mi—1
3 Di(orvura) | 0)} (3)
=1

We use the notation D({u,v) | O) only when we want to distinguish between two
different orderings. Otherwise we drop the O for notational simplicity. The same
holds for all our definitions. We define the Start Time for every node of the graph as

the earliest time at which a task can start executing:

Definition 4.2.2 The start time of every node v € V' (indegree(v) # 0) in a parallel
execution graph with a given message ordering O, is defined as the largest among
weights of all paths starting at a node with indegree zero, and ending at v, not including
T(v). In other words, for the set of paths II = {m; | 7 = (v1....,0m..0)}, where
(v1,2)5+ v s (Vmy_ys Vmy)s (Vmis v) € E, and indegree(v,) = 0 it is:

STv| O) = n_llaewﬁ{ J_‘l T(v;) +

mi—1

Z D((’t-’k:vkﬂ) | O) +

k=1

D((vmirv) | O) }
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If indegree(v) = 0 we assume that ST(v) = 0 according to the principle of no unforced
idleness [62]. We can easily see that this definition for start time is equivalent to the

following recursive one:

ST(v]0) = max { 5T(u|0)+
(utfvE)EE
T(u) + D((u.v) | O)} (4)

We also define the Finish Time of nodes in the graph:

Definition 4.2.3 For every node v € V in a parallel execution graph with a given
message ordering O, the finish time FT(v) of v is defined as the largest among weights
(including T(v)) of all paths starting from v and ending at a vertex with outdegree
zero. This is equivalent to:

FI(v| 0)=T(v)+ max {D((v.w) | O) + FT(w)} (

(v,w)EE

&7 ]
St

Notice that FT(v | Q) is a lower bound on the time that elapses between the start
time of v and the latest completion time among v’s descendants with outdegree zero
(it might be the case that the completion time of those descendants is determined by
some other path in G, which does not include v). It is not difficult to deduce the

following lemma relating PT to ST and F'T"

Lemma 4.2.1 The parallel time of a parallel execution graph G, with a message

ordering O, can be expressed as follows:

PT(Gpe | O) = rr}ga{\{ ST(v | O) + FT(v | 0)} (6)

Consider a parallel execution graph G, with an ordering O of messages, let v be a

node in V, Suce(v) = {u,w;,...,wy}, and u be the node in Suec(v) with the largest

}

Finish Time FT(u) (Figure 21). We prove the following basic lemma:
Lemma 4.2.2 Altering the message ordering

Ov) : (vowy) <...=<(v,wj) < (v,u) <

|
—

(v, wi41) < ... < (v, W) (
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Figure 21: Message Ordering Alteration.

to
O'(v) @ (vou) < (vowy) < ... < (v, wn).

by dispatching message (v.u) first does not increase the Parallel Time of the resulting
graph, i.e.,
PT(Gye | ©) > PT(G,e | ') (8)

et D{(vW; ) | O}

s, DAVIN] D)
O(v) : (V) ivmg): .. (vw ) tvw ) s (viwn
= & (vwp) ooe v v (V. W
HFT(w )

D{(v,u} 3
7 i

Dy ) 10) ————
Figure 22: Message Ordering Alteration.

Proof: We give a proof based on Figures 21 and 22. In Figure 22 the slots marked
(vyw;), i = 1,...,j correspond to the overhead times S,.((v,w;)) incurred by pro-

cessor proc(v) for dispatching v’s messages. The ordering alteration described in the
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lemma affects the D-values of edges (v,wy)....,(v,w;), (v, u) in Figure 21. Weights of
paths not including these edges do not change. Thus. any possible modification in PT
will come as a result of the changes in paths including one of (v, wy).....(v.w;). (v.u).

First, we look at paths including (v, u). From Figure 22 we can easilv see that:
D((v.u) | ©) > D((v.u) | ©)

It is also true that ST (v) and FT(u) do not change because of the transformation

from O to O'. Moreover, by definition:
PT(Gpe | O) 2 ST(v)+ D((v.u) | O) + FT'(u)

Thus.
PT(Gye | ©) > ST(v)+ D((v,u) | O')+ FT(u)

which means that the PT cannot increase due to the change of (v.u)’s timing.
Next, we examine paths which include one of (v,w;)....,(v.w;). From Figure 22

we can also see that:
Vi, 1<i<j D((viw;) | O) 2 D((viw;) | O)

However. since u has the maximum F'T value among F'T values of nodes {u. wy,.... Wiy }s

it is true that Vz, 1 <1 < j:
D((v,u) | O)+ FT(u) = D((v.w;) | O") + FT(w;)

Thus, although {w;,...,w,} receive messages from v under O’ later than under O,
PT(Gpe | O’) is not increased relative to PT(G,. | O). O
What Lemma 4.2.2 says, is that among the messages dispatched from some task,
we can always schedule first the message that goes to the task with the largest F'T
without worsening the overall PT.

We now give an extension of Lemma 4.2.2, which shows that if the first j messages
from some task are sent to the tasks with the j largest F'T values sorted in descending
order, then PT won’t be increased if we dispatch the message to the task with the
(j+1)-st largest F'T value, immediately after the j-th message. Let v € V, Succ(v) =
{wy,..., W }, and let wy be the node in Succ(v) with the (j + 1) — st largest FT

value (see Figure 23).
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Figure 23: Message Ordering Alteration.

Lemma 4.2.3 Assume that messages sent from task v are dispatched in the following

order:

O@) : (vaw)<... < (vow)) < ... =

(v,wg) < ... =< (v.wy)
If this order is altered by dispatching message (v, wyi) tmmediately after (v, w;):

O'(v) :+ (vywy) <...=<(v,w;) <

< (v, wi) = (v,wj1) < ... < (v, W)

the Parallel Time of the resulting graph is not increased, i.ec.,

PT(Gye | ©) 2 PT(Gye | O) (9)
Proof: Notice that only D((v,wjt1)), ..., D((v,w)) change because of the reorder-
ing. The proof is similar to the one of the previous lemma, and is omitted. O

4.3 An Algorithm for Optimal Message Ordering

In this section we give an algorithm that computes an optimal ordering of messages O

for a given parallel-execution graph G.. The algorithm breaks down the problem into
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stages by processing nodes in ascending order of their height: it starts by computing
the FT values of nodes with outdegree zero, i.e., of nodes with height zero. Then,
after finding the optimal ordering for messages transmitted by nodes with height
k, it computes the F'T values of these nodes, and uses them to specify the optimal
message ordering at nodes of hetght k + 1. The algorithm completes after having
derived the optimal ordering of messages sent by nodes with indegree zero. It is a
typical application of the dynamic-programming method [54].

We assume that the graph is given in an adjacency-list representation; ordered[v].
v € V is an array which shows whether node’s v messages have been ordered or not;
tot—ovrhdv] (v € V) accumulates the communication overhead incurred by proces-
sor proc(v) because of messages dispatched from task v; Prev((v,w)) gives the edge
which precedes (v,w) in the ordering O(v) of v’s outgoing edges, and SORT returns

its input list of nodes sorted in descending order of their FT values.

Algorithm: Optimal ordering of messages.
Input: Parallel Execution graph G, with a specified clustering, mapping, and schedul-
ing configuration.

Output: An optimal ordering @ of messages of G

ORDER-MSG(G), ):

L. for each vertex v € V[G,.]

do if not ordered|v)
then ORDER(v)

ORDER(v):
1. for each vertex u € Succ(v)
do if not ordered|u]
then ORDER(u)
.O(v) «— SORT(Suce(v))
. tot.ovrhd[v] « 0
. for each (v,w) € O(v)
if (proc(v) # proc(w)) {

H= o 2
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tot-ovrhd[v] « toteovrhd[v] + S, ((v,w))
D((v,w) | @(fv)) «— tot_ovrhd[v] + é((v,w))
} ~
5. for each w € O(v)
if (proc(v) == proc(w))
D((v,w) | O(v)) — tot_ovrhd|v]
6. FT(v) « T(v) +
maXyesuce(w) {D((v: w) | O(v)) + FT(w)}

7. ordered[v] = true

The loop on line 1 in ORDER-MSG(G,.) is executed ©(|V]) times. The procedure
ORDER is called exactly once for each vertex v € V. During an invocation of
ORDER(v), the call to SORT takes time O(|Succ(v)|-log (|Suce(v)|)). The loops on
lines 4 and 5, as well as line 5 take time O(|Suce(v)|). Consequently, the total cost
incurred by calls to ORDER is O(|E,| - log (| Epel)). aud the overall time complexity

of the algorithm 1s:

Ol

"r| -+ |Epe|'10g('EPE|))-

The algorithm does not make any distinction between different kinds of edges,
namely between edges that correspond to actual messages sent between processors.
and “pseudo-messages”. l.e.. edges joining tasks mapped onto the same processor.
This does not affect the optimality of the resulting ordering. The overhead carried by
“pseudo-messages” is null, the scheduling of their recipient tasks is predetermined.
and is not affected by the ordering procedure. The following theorem proves the

correctness of the algorithm.

Theorem 4.3.1 An optimal ordering © of messages is achieved on a parallel-ezecution
graph G, if for every task v € V its outgoing messages are dispatched according to

the descending order of the FT -values of destination tasks.

Proof: We assume that we have a parallel execution graph G,. = G(V. E,., proc,

@.T. D) where O is an optimal ordering not necessarily the same as O. We use
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induction on height(v) to show that if we alter O(v) to O(v), we get a parallel time
PT(Gye | O) < PT(Gy. | O).

First, we consider all v € 1], 1.e., v € V with height(v) = 1. According to Lemma
4.2.2 we can dispatch first the message sent from v to the w € V with the largest
FT value, without increasing the parallel time. Furthermore, given Lemma 4.2.3 we
can dispatch second, third, and so on, the messages sent from v to the nodes with the
second, third. and so on largest F'T values respectively, again without increasing PT".
This argument holds for all © € V}. In this way we order the messages sent from
tasks v according to the descending order of the F'T' values of the recipient tasks.

Thus, altering @(H) to O(V;) does not increase PT:
PT(Gye | OV = 11),001)) < PT(Gye | ©) (10)

where V; is defined as Vo U...UV;. Our induction hypothesis is that for some & with

1 < k < height(Gpe), it 1s true that:

_PT(G,_,‘ OV — vk.).@(v,n) <
PT(Gye | OV ~Vis), O ) (1)

For the induction step we apply the same transformations as in our induction basis
over all v € Viyy (Figure 24), altering O(Vig1) to O(Vig1). Clearly the orderings
(5( V' — Vig1) of messages at nodes V — Viyq, and @(Vk) at Vi are not affected.

Considering Lemmas 4.2.2 and 4.2.3 it is not cli_ﬁicult to see that the following is true:
PT(Gpé | O(V - Vk+1)~.©(vk+1)> <
PT(Gye | BV = Vi), O) (12)
Hence we conclude that for 1 <1 < height(Gp.):
PT(Gye | O(V = ¥).0%)) <
PT(Gpe | O(V = Vis) OV, (13)
From (13), and (10) we have:

PT(Gpe | ©) < PT(Gy. | O).



CHAPTER 4. MESSAGE ORDERING 67

Figure 24: Induction Step.

but since @ is optimal by assumption. it can only be that:

PT(Gpe | O) = PT(Gy. | O) (14)

which proves that O is also optimal. 0

4.4 Remarks

In this chapter we showed that under the blocking communication paradigm, the
order of message transmission affects the overall task-graph execution (parallel) time.
We proved that for some given clustering of the task-graph. there exists an ordering
of messages which results in a minimum parallel time. Finally. we introduced a
polynomial-time algorithm which finds such optimal orderings of messages for given
task-graphs. This algorithm has been combined with clustering heuristics employed
in FAST, to cluster task-graphs generated when simulating parallel systems with

blocking communication.



Chapter 5

Validation of FAST on the
SIMPLE CFD-kernel.

In this chapter we present a case-study performed with FAST on a computational fluid
dynamics kernel called SIMPLE. This study is used as a validation of our technique.
We compare the Parallel Time and Speedup figures reported by FAST with those
reported independently by other researchers who implemented SIMPLE on iPSC/2
multiprocessors. We show that FAST reports numbers which are reasonably close
to those measured on real implementations, and follow the same trends for parallel
systems with increasing numbers of processors. Furthermore, we present data from
simulations of SIMPLE for problem sizes much larger than those reported so far and
study the inherent computation and communication characteristics of the application.

The SIMPLE computation simulates the hydrodynamics of a pressurized fluid
inside a spherical cell. The state of the problem is modeled in terms of a cylindrical
coordinate space. Values of various physical quantities are maintained at a number of
points in the coordinate system. Because of the spherical symmetry of the problem,
the physical domain is reduced to a quarter of an annular region projected onto a
two-dimensional plane. The two-dimensional projection is transformed into Cartesian
coordinates. In order to solve the equations that simulate the motion of the fluid,
time is discretized into a sequence of steps and the physical domain is discretized into

a finite number of nodes.

68
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After these transformations, the computer simulation of each time-step solves a
number of equations on a two-dimensional grid with size proportional to the size of
the spherical cell examined, and updates the values of various physical variables. Ev-
ery time-step in SIMPLE can be split in five successive phases, according to different
types of data dependencies and communication patterns occurring in the algorithm
[42]: Delta phase (computation of the length of the next time-step )., Hydro phase (com-
putation of new acceleration, velocity, coordinates, Jacobian, volume of revolution,
new density, artificial viscosity. new energy, and pressure), Heal phase (computation
of the new temperature and heat), Energyl phase (computation of energy and work).
and Enerqy? phase (computation of total heat, and error).

Computation and communication patterns are identical across different time-

steps. Therefore, it suffices to simulate and study one time-step only [60].

5.1 Functional Algorithm Simulation of SIMPLE

5.1.1 Derivation of the task-flow graph

For the functional simulation of SIMPLE, the user defines at the input of FAST the
size of the two-dimensional grid and a scheme for partitioning it. Subsequently, the
first part of FAST’s front-end generates the grid, its partition. and the Intermediate
Representation of basic computational blocks and message exchanges representing
the computation of SIMPLE on the specific grid for one time-step. This Intermediate
Representation is transformed by the second part of FAST’s front-end into a task-flow

graph, as explained in Chapter 2.
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The partitioning scheme splits in an ad-hoc way the two-dimensional grid into
a designated number of blocks according to some designated geometry, e.g.. square
blocks or strips (see Figure 25).

Figures presented in the following sections correspond to a square-block-partitioning
unless stated otherwise. We set the number of partitions to be equal to the number
of available processors. Thus. the mapping of tasks to processors was straightforward
and FAST’s clustering and mapping stages were bypassed.

We do not give any results from functional simulations of SIMPLE with automatic
partitioning of the grid performed by the clustering and mapping heuristics. One rea-
son for this is that the computational structure of the problem is static and uniform.
So there is no need to use “expensive” partitioning techniques. Furthermore, prelim-
inary experiments with automatic partitioning reported poor parallel performance.
In the absence of ad-hoc grid-partitioning. FAST generated task-flow graphs of very
fine granularity. The clustering, scheduling. and mapping heuristics employved were
not very successful in splitting those graphs into coarse-grain subgraphs, mapping the
result on the available processors and. at the same time, maintaining high processor

utilization and load-balance.

5.1.2 Validating FAST

We chose to study SIMPLE because there exist a number of published performance
measurements by different research groups [42. 60]. Therefore, we can use it to as-
sess the validity of the Functional Algorithm Simulation method and the accuracy
of FAST. We compare published measurements and estimates of parallel time and
speedup with the respective figures reported by our system. The data reported in
[42, 60] were collected from implementations of SIMPLE on the iPSC/2 multiproces-
sor. Thus, for the functional simulations of SIMPLE, FAST was provided with the
hardware parameters of the iPSC/2 [9, 34].
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Figure 26: Parallel Time and Speedup for SIMPLE on 4096-point grid.

Comparisons cannot be strict for various reasons: as far as parallel time is con-
cerned, different implementations of SIMPLE. even on the same type of multipro-
cessor might report varying execution times because of differences in machine config-
urations and software platforms. Moreover, various analyvses are based on different
assumptions influencing the parallel times they report. Finally, simulations capture
the parallel executions approximately, and therefore it 1s expected that their figures
will not be identical to data measured on actual implementations.

Speedup comparisons presuppose that all speedups are calculated with respect to
the same sequential time. This is not always true because of differences in system
and implementation software, and hardware. For instance, in the right diagram of
Figure 26 the speedups are computed as the ratio of parallel times over the sequential
times presented in the left diagram (values “Execution Time” when the “Number of
processors” is equal to one). However, the sequential times differ. Nevertheless, a
comparison is invalid if we focus on observing trends and ranges of values, rather than

absolute numbers.
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5.1.3 Validation experiments

Figure 26 (left), shows the parallel execution times of SIMPLE on a 4096-point grid
for one time-step. The plots labeled “Measured running times™ and “Projected run-
ning times” present data from [60]. The “Measured running times” correspond to a
SIMPLE-implementation with Pingali and Rogers’ parallelizing compiler. The “Pro-
jected running times” were extracted from a model of a hand-written implementation
of SIMPLE which takes into consideration the extra overhead representative of the
functional language used in [60] (e.g. time spent for array allocations). as well as
times spent for floating-point computations and message transmissions. This model
is optimistic because it assumes that the workload can be divided evenly among
all processors and that the processors are fully utilized during parallel execution.
Times reported by FAST correspond to two different interconnection networks: a
(limited) clique and a binary hypercube. As expected. the clique and the hypercube
show almost identical performance characteristics since communication overhead is
dominated more by the high setup times and less by propagation and congestion de-
lays. Furthermore, the model of communication implemented in the iPSC/2 hyper-
cube guarantees almost uniform communication among all processors, which makes it
equivalent to a clique [34, 533]. Figure 26 (right). gives the respective speedups. plus
the speedup achieved with an ORCA-C implementation of SIMPLE by Lee, Lin and
Snyder [42].

From these diagrams, we can see that our system reports numbers that are quite
close to measurements and projections by other researchers. In fact, the parallel
times given by FAST are slightly smaller than those of the optimistic model for the
hand-written implementation. This does not come as a surprise since the code that
generated the Intermediate Representation of the parallel execution was hand-written,
and also we did not take into consideration other parameters besides computation and
communication times (for instance, system overhead).

FAST gives us the flexibility to experiment with much larger problem sizes and
more processors than those reported so far. Also, it allows us to try different par-
titioning schemes and collect more detailed information with respect to the parallel

executions of the algorithms studied. For example, we present diagrams derived from
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Figure 27: Strip vs. Square partitioning of 22° grid-point SIMPLE on a hypercube.

the functional simulations of SIMPLE on problems with as many as 2?° grid points.
Figure 27 compares two partitioning approaches: strips vs. squares. In the former.
the computation grid is split into strips whereas in the latter it is split into square
blocks. Square-block partitioning results in more messages with smaller size than
strip partitioning. The computation on strip-partitioned grids has longer sequential
parts, larger message sizes, and more overall transmitted data which increase with
problem-size. As expected. square-partitioning results in better performance. The
plots in Figure 27 are similar in shape to the ones reported in [42] for the iPSC/2 and
the NCUBE.

5.1.4 Using FAST to collect profiles for SIMPLE

To illustrate the use of FAST further, we used it to gather a profile of 4096 grid-point
SIMPLE executions on parallel systems with 64, 256, and 1024 processors. In Figure
28, we present the variation of busy processors and channels during a parallel execu-
tion on a 64-processor clique (solid line). Moreover, we give an approximate estimate
for the duration of the five algorithmic phases of SIMPLE during this execution; the
nodes of the task-flow graph can be ascribed to one of these phases. The dotted line
represents the temporal variation of the average of phase-numbers ascribed to tasks

which are active at each moment. The y-axis for the phase-diagram is drawn on the
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Figure 28: FAST results for 4096 grid-point SIMPLE on a 64-processor cligue (PT =
920022 us).

right part of the plot.

From the left diagram in Figure 28 we can see that available parallelism is very high
in the first phase when all processors simultaneously compute a tentative duration for
the next time-step. Then, they send their outcome to one processor which calculates
and broadcasts back the global time-step. This results in the first spike of busy links
in the right diagram of Figure 28 and the corresponding sharp drop in the number of
busy processors. At the beginning of the second phase (Hydro), processors compute
acceleration, velocity, and new coordinates for their assigned parts of the grid. and
forward the new values to their neighbors. This explains the high number of active
tasks. the subsequent sharp drop in processor activity and the corresponding second
spike of busy communication-links. Parallelism starts increasing as processors resume
their local execution of the second phase, after having sent and received messages to
and from neighboring processors. The third phase (Heat), consists of a short, highly
parallel computation and two “sweeps” of the grid along its horizontal and vertical
directions. Thus, it is mostly sequential and requires limited data-exchange between
grid-points [42]. Parallelism drops sharply and active links are few. In the fourth
phase (Energyl), computations are local in nature and parallelism is high. Finally.
the fifth phase is very short and its effect on overall parallel time is negligible. It

performs a fast aggregate operation over all grid-points to accumulate the total energy
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Figure 29: FAST results for 4096 grid-point SIMPLE on a 64-processor hypercube
(PT = 232988 ps).

and work.

An almost identical computation profile is derived from the functional simulation
of a 4096 grid-point SIMPLE simulation running on a 64-processor binary hypercube
(Figure 29, left). The communication profiie is quite similar, although the number of
busy channels in the hypercube is larger. This is because the average number of hops
per message (and thus of links used by a message) on a hypercube is twice that on

the clique, where all messages are one-hop.
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Figure 30: FAST results for 4096 grid-point SIMPLE on a 256-processor cligue.

In Figure 30 (left) we present a busy-processors diagram derived with FAST for

a SIMPLE execution on a 236-processor clique. We notice that the shape of the
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Figure 31: FAST results for 4096 grid-point SIMPLE on a 1024-processor clique.

plot is different from that of Figure 28: the second peak in processor activity has
disappeared. Moreover, e;verage parallelism in the fourth phase is much smaller than
expected. These differences are mainly due to higher communication overhead. For
instance, at the end of the first phase, one processor broadcasts the value of the new
time-step. According to the blocking communication-model adopted [18, 53], the
network interface of this processor sets up channels for outgoing messages sequen-
tially. Messages dispatched later have a greater latency than messages dispatched
earlier. Therefore, their arrival times at the receiving processors vary. This variance
increases with the number of messages broadcasted. i.e., with the total number of
available processors. Consequently, the beginning of the next phase does not occur
simultaneously in all processors and hence this phase is “spread” over time. In
the 64-processor case, the “spread” is not significant: processors start computing the
Hydro phase almost synchronously and thus we notice a peak in processor activity
at its start. On the other hand, in the 256-processor case, Hydro phase does not
start simultaneously and there is no peak in processor activity because of it. Similar
remarks can be extended to the 1024-processor case. Figure 31 presents a profile for a
problem instance of 4096 grid-points mapped onto 1024 processors. Because of higher
communication overhead. the parallel-time in the 1024-processor case is greater than
parallel-times achieved with fewer processors (e.g., 64 and 256).

Finally, Figure 32 presents communication patterns collected with FAST, corre-

sponding to a SIMPLE instance of 4096-point grid. mapped onto a 64-processor clique.
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Figure 32: Communication patterns for 64-processor clique, 4096 grid-points SIMPLE

instance.

A circular mark in position (i,j) of this diagram signals the existence of messages
sent from processor ¢ to processor j. The intensity of the mark 1s proportional to
the number of messages sent from ¢ to j. As expected, except for the broadcasts and
aggregates involved in the computation of the global time-step and error, and the
synchronization between the two “sweeps™ of Heat phase, communication is regular

and local.

5.2 Scalability Analysis of SIMPLE with FAST

FAST gives us the opportunity to study the scalability of SIMPLE. Figure 33 (left)
presents maximum speedups extracted from a large set of FAST-runs simulating dif-
ferent problem and machine sizes. From this diagram we conclude that if there are
abundant available resources, parallel executions of SIMPLE can achieve speedups in-
creasing with problem-size. However, the rate of increase of the maximum-attainable
speedup decreases with problem-size.

The right diagram in Figure 33 presents speedup curves for cliques (dotted lines)
and hypercubes (solid lines) with 16 to 1024 processors. We notice that there is a
point in the number of processors after which the speedups saturate. We explore

this further, by performing simulations and collecting profile information when all
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Figure 33: Speedups reported by FAST for SIMPLE executions.

communication delays are turned off. In Figure 34, we present the busy-processor
diagram derived from a functional simulation of 4096-point grid SIMPLE-run on
a 1024-processor clique with communication latencies set to zero. Parallel time is
reduced by 90% with respect to the case of non-zero communication costs (compare
this diagram with the left plot of Figure 31 and notice that here we use a different
time-scale). From Figure 34 we can see that there are two inherently sequential parts

in the algorithm: besides the third phase (Heat). which is largely sequential, there
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Figure 34: Computation profile of runs on 4096-point grid with zero communication
costs (1024 processors).
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Figure 35: Fraction of sequential execution time that cannot be parallelized.

1s a long sequential part in the first phase of SIMPLE (Delta). This corresponds to
the time when one processor computes the global time-step by taking the minimum
over all tentative time-steps computed locally by other processors. Of course, this
operation could be split among different processors although this is not clearly a
better choice in the presence of communication overhead.

Diagrams like this help us identify the inherently sequential parts of the algo-
rithm, representing the bottlenecks to further improvement of performance according
to Amdhal’s law. An estimate of the inherently sequential parts of SIMPLE is given
in Figure 35. It displays the ratio of the portion of SIMPLE’s parallel execution that
runs sequentially in the absence of communication overhead, over the total sequen-
tial execution time. For a given problem size, the non-parallelizable portion of the
algorithm increases with the number of processors. According to Amdhal’s law, this
results in a decrease in the efficiency of parallel executions as processor numbers in-
crease. It represents one of the reasons for the saturation of speedups observed in
Figure 33 (right).

To explore this further, in Figure 36 (left) we give a diagram of the upper bound
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Figure 36: Speedups. average task-execution times and average message delays (4096-
point grid).

on speedup derived from a generalized version of Amdhal’s law. Also. we give a
diagram of speedups reported by FAST for the 4096-point grid case on the clique and
the hypercube. The simple version of Amdhal’s law, as applied to parallel processing,
estimates speedup according to the following equation [22]:

(=7
P

speedup = 1/ (f + ) (15)

where f is the fraction of the sequential computation time that cannot be parallelized
and P is the number of available processors. This equation gives only a rough upper
bound on speedup, since it assumes that parallel execution is comprised of a purely
sequential part and a parallelizable part during which all available processors are fully
utilized. However, as we can easily see from previous diagrams (e.g. Figure 34), this
is not the case. Moreover, f is dependent on the problem size and the number of
partitions of the grid (that is, the number of available processors). Therefore. we use
instead the following generalized version of Amdhal’s law to estimate a tighter upper

bound on speedup:
1

ST {19

speedup =
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Figure 37: Speedups, average task-execution times and average message delays
(16384-point grid).

where f; is the fraction of the sequential computation time which attains a speedup
of 7 on a P-processor parallel implementation with zero communication costs. f; can
be easily computed by FAST as the product of ¢ times the portion of the parallel
execution during which there are exactly ¢ busy processors, over the total sequential
execution time. From the plot in Figure 36 (left) we see that the speedup reported
by the generalized version of Amdhal’s law saturates when the number of processors
exceeds 1024. On the other hand, speedups corresponding to functional simulations
of cliques and hypercubes saturate for numbers of processors beyond 256. This dis-
crepancy is due to communication costs which have not been accounted for in the
Amdhal’s law speedups.

The right diagram in Figure 36 displays the change of average task processing
time and average message delay with respect to the number of available processors
for a 4096-point grid. With the increase in machine-size, task-granularities decrease
and average message delays increase, in both clique and hypercube interconnection.
From Figure 36 (left) we notice that speedup-saturation occurs at the point where the
average communication delay exceeds average task execution time. This remark is

confirmed in Figure 37. which presents similar diagrams for a problem size of 16.384
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grid-points.

5.3 Some remarks on SIMPLE

Using FAST, we were able to gain further insight into the SIMPLE application by:

1. Collecting detailed data on the variation of computation and communication
“intensities” during parallel execution and associating them with the phases of

the algorithm.

L

Identifving inherently sequential parts of the algorithm and analyvzing their

effects on speedup and scalability.
3. Studying the way communication overhead affects performance and scalability.

This insight is important for tuning parallel code for SIMPLE to achieve greater
efficiency. It can guide the selection of hardware platforms that will maximize the
cost-effectiveness of SIMPLE implementations. Moreover. it gives us a measure of
the performance improvements we should expect when investing in communication
hardware and software to decrease communication overhead.

Finally, we conclude that we can achieve satisfactorv speedups and efficiencies
when executing large SIMPLE instances on parallel hypercubes of medium size. As
the number of processors increases, attained efficiency drops because of inherently
sequential parts in the algorithm. Speedup decreases both because of the sequential

parts of the algorithm, and increasing communication overhead.



Chapter 6

A Study of the Fast Multipole
Method

In this chapter we present a study of the Fast Multipole method solving the N-Body
problem. So far. besides theoretical results, there is little experimental information
on the behavior of this algorithm. Using FAST, we collect detailed information about
its computation and communication profiles and show that it can be implemented
efficiently in sparse interconnection topologies, such as multirings.

Computer simulations of many physical phenomena in scientific fields like Molecu-
lar Dynamics. Plasma Physics, Astrophysics, and Fluid Dynamics require the solution
of the N-Body problem. that is, the evaluation of long-range interactions in electro-
static or gravitational systems of particles (bodies). The N-body problem is of great
importance to computational sciences for its wide applicability and for its interesting
computational traits, such as. the high volume of numerical calculations involved, the
non-uniform structure of the particle data-space, and the inherently unstructured,
long-range communication requirements.

The brute-force method for N-body computations evaluates all pairwise interac-
tions and, thus, its sequential complexity is O(/N?) per time-step. where N is the num-
ber of particles. Consequently, for the large numbers of particles occurring in practical
applications, the brute-force method is very slow. Therefore, several people have sug-

gested fast hierarchical approaches for solving the N-body problem [5, 6, 30, 7, 27].
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Figure 38: Decomposition of a two-dimensional space of particles and the correspond-
ing quadtree created by the Fast Multipole Method.

One of these approaches is the Fast Multipole Method (FMM) that seeks to solve
the N-body problem in two or three dimensions. It does so by approximating the
sum of pairwise interactions (electrostatic or gravitational) between each particle and
all other particles. The forces are used to compute the new locations that the bodies
assume after a small time-step. The FMM evaluates all interactions to within a fixed
roundoff error in an average sequential time of O(N) per time-step. Its central strat-
egy is the hierarchical decomposition of the data-space in the form of a quadtree (or
octtree for the 3-dimensional case). This hierarchical decomposition is used to cluster
particles at various spatial lengths and compute interactions with other clusters that
are sufficiently far away by means of series expansions (see Figure 38).

For a given input configuration of particles, the sequential FMM first decomposes
the data-space in a hierarchy of blocks. It starts with an empty square cell, in the
case of a two dimensional problem. or a cubical cell. in the case of a three dimensional
problem. The initial cell is large enough to contain all bodies of the system and the
algorithm proceeds by loading bodies into it. At any point, if the number of bodies
loaded in one cell exceeds a chosen threshold, the cell is subdivided into four square
(2-D) or eight cubical (3-D) cells. This process is continued to as high a level as
required. The result is a quadtree (2-D) or an octtree (3-D) decomposition of the
particle space. Given this decomposition, the algorithm computes a set of necessary
neighborhoods involved in subsequent computations. Each block (node) iboz of the

decomposition tree has three kinds of neighborhoods:

1. The Close Neighborhood, which is comprised of nearest neighbors, that is, blocks
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that share a common border with iboz.

2, The Interaction List. which is the set of blocks that are children of nearest

neighbors of iboz’s parent, and do not belong to the Close Neighborhood of iboz.

3. The Inverse Interaction List, that is. the set of blocks whose Interaction List

includes thoz.

The algorithm performs two passes on the tree. The first starts at the leaves with the
computation of expansion coefficients and proceeds towards the root accumulating
the coefficients at intermediate tree-nodes. When the root is reached, the second pass
starts. It moves towards the leaves of the tree exchanging data between blocks belong-
ing to the neighborhoods defined at the beginning. At the end of the downward pass
all long-range interactions have been computed and subsequently nearest-neighbor
computations are performed to take into consideration interactions from nearby bod-
ies. Finally, short- and long-range interactions are accumulated and the total forces
exerted upon particles are computed. This allows the calculation of new locations
of the particles. The algorithm repeats the above steps and simulates the evolution
of the particle-system for each successive time-step. Further details can be found in
the literature [29, 30]. Depending on the structure of the decomposition tree, the
Fast Multipole Method can be described as adaptive or non-adaptive. In the former.
the decomposition tree is unbalanced whereas in the latter it is balanced. The non-
adaptive method is applicable in the case where the input particles are uniformly
and regularly distributed in space. The adaptive case is more general and applies to
non-uniform distributions of particles as well.

In hierarchical N-body methods in general, and FMM in particular, the largest
portion of the computation time is spent in the force calculation procedure, that
is, in the operations performed during the traversal of the decomposition tree. The
time spent at the tree-construction phase is not significant [21, 27, 40]. Moreover,
parallelism can be exploited only within one time-step. Therefore, we focus our
attention in parallelizing the force-computation phase.

We perform functional simulations of an adaptive parallel two-dimensional Fast

Multipole Method [30]. The principles of the parallel version of the algorithm are
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Figure 39: Particle distributions (5000 particles).

incorporated into the front-end of FAST: the parallel algorithm is described in terms
of operations performed on the nodes of the quadtree and in terms of information
exchanges between them. A similar approach in parallelizing the Multipole Method
is described in [36].

6.1 Setup of Functional Algorithm Simulations

6.1.1 N-body problem configurations

We employed two different input configurations of particles for our simulations. One
corresponds to an approximately uniform particle distribution, representative of some
Molecular Dynamics applications (see Figure 39, left). The second corresponds to
non-uniform particle distributions (Plummer), typical of Astrophysics simulations
(see Figure 39, right).

In addition to particle locations, two algorithmic parameters must be specified
at the input of FAST: one is the number of multipole expansion coefficients sought
and the other is the maximum number of particles per quadtree leaf. that is, the
granularity of the hierarchical decomposition. For the specification of the number of
coefficients. the tradeoff between running time and desired numerical accuracy should
be taken into consideration; it is conceivable that seeking larger series expansions in
the FMM computation results in more numerical calculations and longer messages.

In the simulations presented here, the size of the multipole expansions was set to
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ten coefficients. This guarantees highly accurate results for the corresponding actual
FMM computation and, at the same time, maintains the low time complexity of the
Fast Multipole algorithm as compared with the brute-force method.

Experiments with FAST showed that the choice of the quadtree granularity affects
many aspects of the parallel execution: the available parallelism and its granularity,
communication overhead, the computation-to-communication ratio, and the overall
parallel time. From our measurements with FAST, we concluded that small granulari-
ties (fewer than ten particles per quadtree leaf) lead to relatively high communication
overhead. very small computation-to-communication ratios, and thus to larger paral-
lel times. On the other hand, granularities larger than twenty-five particles per leaf
result in larger sequential tasks and limit the available parallelism. In this chapter, we
present results derived when the quadtree granularity was set to fifteen particles per
leaf, unless stated otherwise. This choice achieves good parallel time for the hardware

parameters adopted, over a wide range of problem sizes.

6.1.2 Derivation of the task-flow graph

The description of the Fast Multipole Method, which is hand-coded in the first pe‘n't of
FAST’s front-end, generates a quadtree that decomposes the particle-space according
to the particle distribution and the quadtree-granularity specified at the input. Sub-
sequently, it computes the various neighborhoods that are defined by the Multipole
Method for each node of the quadtree. Then, it produces an Intermediate Represen-
tation of the set of operations and message exchanges constituting this computation,
instead of performing the actual numerical calculations and data handling.

As an example, in Table 5 we give a description of the computation that the Fast
Multipole Method performs upon the leaves of the quadtree. For each leaf iboz. the
algorithm first computes the multipole expansion coefficients, ®;, ¢ = 1., accu, of
the field produced by the particles in ibox (step 1 in Table 5). accu, is the number
of these coefficients, and is given as a parameter to the functional algorithm sim-
ulation. This computation is represented by the IR-operation FORMME. As soon

as the computation of the coefficients is accomplished. each leaf provides its parent
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10.
1.
12.

13.

(o8]
5]

Node [ibox]

FORMME: Compute the accu coefficients for the multipole expansion of
[iboz]: ®;(ibox), i = 1,...,accu.
If pareni{ibor) is not the root of the tree

SEND to pareni(iboz):

e Total charge in ihoz.

o &;(iboxr). i = 1,...,accu.

e Location zg of ibor’s center.
Y jbox, jhbor € INV_INTER.LIST(ibor)

SEND to jboz: &;(ibox), i=1,..., aceu.

If pareni(tboz) is not the root of the tree

RECEIVE from parent: V(parent(iboxr)), ¢ = 1,.....accu
(multipole expansion coefficients shifted to ibex’s center).

.V jbox, jbor € INTER.LIST(ibox)

RECEIVE from jbor: @;(jbor), i=1.... accu.

SHILME: Shift the coefficients received from ihos’s interaction list to the
center of ibox.

ADDME: Accumulate the multipole coefficients received from iboz’s
interaction list and parent(iboz).

EVALME: Evaluate the potential at the particles of ihor, attributed to the
fields represented by the multipole expansions computed.

EVALLOCAL: For each particle in i(hor compute the potential caused by the
other particles in it.

¥ jbor, such that jbor is a nearest neighbor of ibox
SEND to jber: charges and locations of particles within iboz.

V jbor, such that jbor is a nearest neighbor of ibor
RECEIVE from jhor: charges and locations of particles within jboz.

EVALNN: For each particle in iboz, compute the potential caused by the
interaction with the particles of nearest neighbor boxes.

EVALPOT: Accumulate direct and far-field terms together for all particles
in hoz.

Table 5: Description of the operations at quadtree-leaves.
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node with the computed coefficients. the total charge (or total weight) of its bodies.
and its location in the data-space (step 2). Moreover, it sends the multipole coeffi-
cients to nodes that belong in the Inverse Interaction List of ibox (step 3). Multipole
coefficients are forwarded from the leaves towards the root of the tree and merged
along the way. When the root is reached, the merging completes and the algorithm
starts descending towards the leaves and performing appropriate transformations on
the merged coefficients. When ibox is reached again, it receives the coefficients 7

from its parent (step 4). The U coefficients constitute the series expansion of the

field generated by particles of the data-space that are “far away” from zbox. that is,
all particles except those belonging to the nearest-neighbors and the Interaction List
of iboz. Subsequently. ibox receives the multipole coefficients from its Interaction List
(step 5), and then shifts the corresponding series expansion to its center (SHILME,
step 6). The U coefficients are merged with those received from the Interaction List
(ADDME. step 7). The series expansion thus formed, is used to evaluate the poten-
tial (gravitational or electrostatic) at the particles of thox. caused by particles that
reside in other blocks of the tree, except the nearest-neighbors of tboxr (EVALME,
step 8). The next step computes the potential at each particle of iboz. generated
by the remaining particles in ibox (EVALLOCAL, step 9). The computation of the
Fast Multipole Method on ibox completes with the evaluation of the potential due to
nearest-neighbors (steps 10, 11, 12, and 13). In this description, FORMME, SHILME.
ADDME, EVALME, EVALLOCAL. EVALNN, and EVALPOT are IF-operations that
correspond to some of the basic computational blocks of the algorithm.

It is clear that the information regarding the quadtree and the neighborhoods of
its nodes is sufficient to define the computation of the algorithm on quadtree-leaves
for one time-step. The same remark holds for the internal nodes of the quadtree.
Table 6 presents the IR for the computation at a leaf of a quadtree. extracted from a
small functional algorithm simulation of the FMM. The leaf’s id, 031031, determines
its position in the quadtree: it is the child of node 03103, at position 1 (see Figure
40). Numbers associated with IR-operations correspond to i860 machine cycles.

In the second part of FAST’s front-end, a simple parser generates a task-flow graph

from the IR. Figure 41 presents the portion of the task-flow graph which corresponds
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Figure 40: Assignment of id’s to quadtree nodes.

to the IR-operations of Table 6. This task-flow graph is subsequently transformed
into a parallel-execution graph. as described in Chapter 2, and fed into the back-end
of FAST which clusters and then maps the graph onto some message-passing parallel

architecture.

6.1.3 Clustering and Mapping heuristics employed

For the functional algorithm simulation of the FMM we experimented with various
clustering and mapping heuristics. The heuristics of choice were the ones leading
to the shortest parallel execution times as reported by FAST, and requiring at the
same time a reasonable amount of processing time to complete. For data presented
in subsequent sections we used the clustering technique GLE&S-10% (see Chapter 3,
section 3.5) unless stated otherwise.

Besides the clustering and mapping heuristics of FAST’s back-end. in the front-
end we implemented a simple ad-hoc technique that partitions the decomposition tree
of the particle space into subtrees of equal size. Each available processor is assigned
an equal number of subtrees. This technique is similar to the static partitioning
heuristics applied in various implementations of the Fast Multipole Method [27, 40].

It is much faster than the automatic partitioning (clustering and mapping) heuristics
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Tree Node [031021]
FORMME: 915
SEND to [03102]: 16 bytes
RECEIVE from [03102]: 80 bytes
RECEIVE from [0312]: 80 bytes
SHILME: 23921.96
ADDME: 350
EVALME: 1348
EVALLOCAL: 40.5
SEND to [031023]: 80 bytes
RECEIVE from [031023]: 80 bytes
EVALNN: 40.5
EVALPOT: 33

Table 6: Fraction of the Intermediate Representation for the FMM.

implemented and achieves competitive parallel execution times for problem instances
with uniform distribution of particles. However, as expected. it results in poor par-
allel performance for highly non-uniform distributions. Nevertheless, similar ad-hoc

techniques can be applied to non-uniform distributions easily [68].

6.1.4 Hardware parameters adopted

For hardware parameters, we used values derived from Intel’s iPSC/860 intercon-
nection network and the 40Mhz, i860 microprocessor [38]. We measured the speed
and overhead of the blocking communication primitives esend and crecv for various
message sizes and expressed them in terms of i860 machine cycles. Furthermore,
cycles-per-instruction figures from the 1860 manual were used to estimate the timing
of operations. We did not take into consideration potential instruction pipelining.
Time is expressed in terms of 1860 machine cycles.

These hardware parameters characterize an architecture with very fast processors,
fast communication links, and high message-initialization and message-receive over-
heads. But, with FAST it is very easy to experiment with different hardware setups

as, for instance, those with low message initialization/receive overheads, faster links,
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Figure 41: Task-flow subgraph (FMM).

etc.
As mentioned in Chapter 2, the current implementation of FAST provides a few
different interconnection schemes available for simulation: a clique, a single ring,

multirings, and a binary hypercube.

6.2 Remarks on the ad-hoc partitioning

We ran a large number of functional simulations to test the ad-hoc partitioning tech-
nique. For each run the number of partitions was set equal to the number of available
processors and therefore FAST’s clustering and mapping stages were bypassed. Figure
42 (left) presents parallel times derived with FAST for the case where the partitioned
problem was mapped on clique interconnections.

According to a theoretical analysis presented in [27], the complexity of the parallel

algorithm running on uniformly distributed particle-space is :
O(N/p) + blog,p + ¢(N,p)

where N is the number of particles, p is the number of processors, and c¢(N,p) is a
lower order term which includes things like the communication and synchronization

overhead. For a constant p << N the complexity becomes O(/N). Simulation results
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Figure 42: Parallel Times derived with FAST for the FMM mapped on clique inter-
connections (uniform distributions. ad-hoc partitioning).

over a wide range of problem sizes presented in Figure 42 (left) concur with this
theoretical prediction.

When the number of processors is O(N) the complexity of the parallel algorithm
becomes O(log N'). In Figure 42 (right) we present a plot of parallel times reported by
FAST for problem instances of 1000 to 6500 uniformly distributed particles. mapped
onto cliques with 1000 to 6500 processors (that is, one particle per processor). Al-
though this diagram could not possibly correspond to a practical implementation.
it gives us the opportunity to compare and confirm FAST’s results with theoretical

predictions on the parallel Fast Multipole Method.
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Figure 43: FAST results about performance of the parallel FMM on an abundant

clique.

6.3 Profiling the FMM

6.3.1 Remarks on the Scalability of the FMM

The clustering stage of FAST (see Figure 5) creates the clustered parallel-execution
graph which describes the processing of the Multipole Method on a parallel architec-
ture with a clique interconnection and as many processors as task-clusters ( “abundant
cligue”). We can calculate the parallel time of the parallel-execution graph and thus
measure the speedups achieved on the abundant clique. In Figure 43 (left) we present
parallel execution times for problems of 2,000 to 40,000 particles distributed accord-
ing to uniform and Plummer distributions. The times in this diagram correspond to
the minimum estimates from a set of FAST experiments with various quadtree gran-
ularities (numbers of particles per quadtree leaves). No partitioning in the fist phase
of the Front-End was performed on the quadtrees. Instead, clustering was emploved

on the parallel-execution graphs to minimize communication overhead.

Furthermore, in Figure 43 (right) we present available speedup sustained by a
parallel implementation of the Fast Multipole Method, as the problem size increases

and abundant hardware resources are accessible. This represents an estimate of the
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Figure 44: Execution Profiles for a 15.000-particles problem (Uniform distribution).

scalability of the algorithm with respect to problem size. In that sense, the parallel
FMM is scalable because for larger problem sizes, greater speedups can be achieved
if more processors, memory. and links are available. This can be verified from Figure
43. The parallel algorithm would not be scalable if speedups leveled off for larger
problem sizes; this would signal the existence of significant sequential parts in the
algorithm. rapidly increasing with the problem size. We notice that in the non-
uniform case (Plummer distribution) the available speedup increases more slowly
with problem size than in the uniform case: non-uniformity results in higher and

“narrower” decomposition trees and thus in less available parallelism.

6.3.2 Profiles of parallel execution

From the parallel-execution graph we can also extract a more detailed profile of the
algorithm studied, consisting of the numbers of active tasks and busy links during
parallel execution in the abundant clique. This profile depends on the method by
which the front-end constructs the graph, the configuration of the input data-space
at hand, and the clustering heuristic adopted. Nevertheless, the task-graph genera-

tion is defined according to the inherent communication granularity of the algorithm.
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Figure 45: Execution Profiles for a 15.000-particles problem (Plummer distribution).

Moreover, since the goal of clustering is to “prune” unnecessary communications with-
out restricting the available parallelism, the choice of clustering heuristic should not
drastically alter the profile information. Indeed, experiments with different cluster-
ing heuristics led to similar results and conclusions. Also. the profile is independent
of the coarser-grain problem partitioning and the parallel architecture on which the
algorithm will be executed. Therefore, the profile reveals characteristics inherent to
the algorithm at hand and is not influenced by partitioning and mapping to a specific
multiprocessor. Figure 44 presents such a profile for a parallel execution of the Fast
Multipole Method on a problem instance with 15.000 uniformly distributed particles,
fifteen particles per quadtree-leaf, and a ten coefficient approximation.

Similarly, Figure 45 gives the profile in the case where FMM is used on 15.000
particles distributed according to the non-uniform Plummer distribution. In both
cases we have used the same clustering technique, GL&S-10%, which is a combination
of heuristics presented in references [24, 24]. As we can easily see, the profiles have
basically the same shape and reveal common characteristics of the different parallel
executions.

In Figure 46 we give a profile of the parallel execution generated by FAST for a
problem of 15,000 uniformly distributed particles. In this case we did not use any

clustering or mapping heuristics. Instead, the quadtree was statically partitioned into
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Figure 46: Execution Profiles for a 15,000-particles problem partitioned into 1024
blocks (Uniform distribution).

1024 blocks. Tasks corresponding to these blocks were mapped onto a 1024-processor
clique. This profile is similar to the ones extracted from clustered parallel-execution

graphs mapped onto abundant cliques.

6.3.3 Phases of the Fast Multipole Method

From the plots above it becomes clear that the parallel execution has three phases:
at the beginning there is a short phase defined by a large number of active tasks
indicating a high degree of available parallelism. This is followed by a long period
during which the available parallelism is very low. The execution ends in a third, long
phase where the number of active tasks is high. Similar remarks hold for the channel
utilizations in the abundant clique. The first phase of the parallel execution corre-
sponds to the upward step of the Fast Multipole algorithm: in the beginning, many
tasks calculate the multipole coefficients at the leaves of the decomposition tree in
parallel; the results are sent to tasks accumulating these coefficients in nodes at lower
levels of the tree and so on. As the algorithm moves towards the root. the number of
internal nodes decreases logarithmically and thus the number of parallel tasks drops
very quickly. In the second phase, the algorithm moves from the root of the tree to

its nodes, exchanging messages between nodes belonging to the same neighborhoods.
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Figure 47: Communication Patterns for the 15,000-particle problem.

The available parallelism is very small initially and increases as the algorithm ap-
proaches the quadtree leaves. In the final phase, nearest-neighbor computations and

message exchanges take place.

6.3.4 Resource requirements

Another interesting observation from these profiles relates to resource utilization of
the abundant clique. For instance, the parallel-execution graph of the above example
in the uniform particle-distribution case has 2384 clusters and therefore, the corre-
sponding abundant clique would have 2384 processors and 5.681,072 unidirectional
links. However, as we can infer from the execution profiles, even if we could build
such a multiprocessor most of its resources would remain unused for most of the par-
allel execution time. In this example, the average number of busy processors over
the parallel execution time is 308, that is, a 1.29% of the processors in the abundant
clique. In contrast, the average number of used links over time is as low as 51, which
corresponds to the 0.08% of the total number of links. Therefore, it is conceivable that
a much sparser architecture with fewer processors or links could achieve essentially
the same speedups as the abundant clique.

This can be seen also from Figure 47 which shows the communication patterns for

the above example: the plot to the left presents communication patterns for the case
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Figure 48: Speedups for a 10.000-particle problem.

where bodies are distributed uniformly whereas the plot to the right presents the pat-
terns extracted from the non-uniform distribution case. The horizontal and vertical
axes correspond to processors of the abundant clique, that is, to task-clusters of the
clustered parallel-execution graph. Points in the plot represent the occurrence of mes-
sages sent between the task-clusters; darker points correspond to larger numbers of
messages between the corresponding clusters. The particular task-cluster numbering

scheme used has better localizing characteristics than a random one.

6.4 Performance of the Fast Multipole Method
on a Ring Multiprocessor

Communication patterns presented in Figure 47 show that destination-clusters of
messages dispatched from any task-cluster tend to belong to small neighborhoods
and have numberings close to the number assigned to the source cluster (see Figure
47). This observation suggests that a ring interconnection might achieve speedups

comparable to those achieved on a clique. We mapped the clustered parallel-execution
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graphs onto ring interconnections with various numbers of processors and studied
ring performance for the parallel Fast Multipole Method. We also evaluated the
performance of clique and binary hypercube interconnections with equal numbers of
processors in order to assess the relative effectiveness of ring implementations.

As an example, we present in Figure 48 the speedups measured by our system
for a problem instance of 10,000 particles. fifteen particles per quadtree leaf, and a
ten coefficient approximation. Each plot also includes the upper bound on speedup
for this problem size and the respective particle distribution. The upper bound on
speedup corresponds to executions on the abundant clique when all communication
delays and overheads are set to zero. From these diagrams we see that in a 128-
processor machine, the ring interconnection achieves 50% of the speedup of the clique
with only 1.57% of its links. In a 236-processor configuration, the ring achieves the
40% of the clique speedup with only the 0.78% of its links. Therefore we conclude that
ring interconnections represent a cost-effective architectural choice for implementing
the Fast Multipole Method in parallel. The cost-effectiveness of the rings becomes
more obvious if we take into account the relative costs of rings and cliques having equal
numbers of processors. Even with state-of-the-art technology, the implementation
complexity of medium- or large-size cliques is prohibitive. In comparison, rings are
cheap and easily scalable.

Speedups measured on rings are not as high as the ones achieved on cliques or
hypercubes, simply because the ring is a much sparser interconnection and thus link-
contention causes extra delays in message propagation times. This is confirmed by
the diagrams in Figure 49 which display the average message delay and message con-
gestion measured with FAST for the 10.000-particle example (Plummer distribution).
Congestion figures correspond to average time spent by each message while waiting
in queues because of link and network interface contention. From these graphs it is
clear that congestion constitutes the largest portion of message latencies measured in
the rings. On the other hand, communication contention in the cliques is practically

nonexistent. The results from simulations on uniform distributions are similar.
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Figure 49: Contribution of Congestion to Message Latency for a 10,000-particles
problem (Plummer distribution). Notice the difference in the time-scale of the two

diagrams.

6.5 Performance of the Fast Multipole Method
on Multirings

The above remarks suggest that spending extra hardware to reduce ring contention
might result in substantially improved speedups for the ring interconnection. A
straightforward way to reduce contention is by using multiring instead of single-
ring communication networks. Building such interconnections is feasible and much
cheaper than building cliques with the same number of processors. We performed a
number of functional simulations over a wide range of problem instances (from 2,000
to 10,000 particles) to examine the performance and cost-effectiveness of multirings.
In this section, we present results derived from a representative simulation of 10,000
particles.

Our functional simulations proved that multirings are also cost-effective: Figure
50 presents the speedups reported by FAST for the 10,000-particle problem mapped
onto multirings with two to sixteen rings. Figure 51 gives the ratios of parallel

times measured for the problem instance above, on cliques and multirings with the
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Figure 50: Multiring Performance.
fo ) S

same number of processors. This is used as a measure of the efficiency of multiring
interconnections: a ratio equal to one indicates that the multiring structure achieves
the same performance as a clique with an equal number of processors.

It 1s clear that an increase in the number of rings significantly improves the at-
tained speedups. Moreover, it enhances the cost-effectiveness of the ring implemen-
tation: for instance, in a 128-processor machine running the parallel FMM on 10,000
particles distributed according to the Plummer model, the 4-ring achieves 83% of
the speedup of the clique with only 6.3% of its links. As another example, the
512-processor 4-ring achieves a speedup slightly larger than the one attained by a
256-processor clique. Although it has twice as many processors as the clique, it is
feasible to implement it with state-of-the-art technology or to embed it in an existing
multiprocessor. In contrast, the implementation of the 256-processor clique is not

feasible.
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Figure 51: Efficiency of Multiring interconnections.

6.6 Some remarks on the FMM

We used FAST to perform a study of the parallel Fast Multipole Method and collect
performance measurements. and computation and communication profiles over a wide
range of problem sizes corresponding to practical cases. Using these data we were
able to better understand the characteristics and limitations of the algorithm and
derive conclusions about its scalability and its resource requirements. Needless to say
that it would be much more difficult and expensive to collect such information from
trace-driven simulations or monitoring of real executions.

We concluded that the algorithm is scalable in the sense that as the problem size
increases, considerably higher speedups can be achieved if abundant processors and
communication links are available. However, speedup values for clique interconnec-
tions are small with respect to “linear” speedup. This i1s a result of the hierarchical
nature of the FMM which performs top-down and bottom-up visits of a quadtree
data-structure, computing data on tree-nodes; the potential for parallelism is very

small during the processing of tree-nodes near the root of the tree.
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Communication traffic is irregular; all experiments showed a large burst in message
transmissions at the beginning of the parallel execution and relatively few transmis-
sions afterwards. Communication patterns display the existence of communication
locality between processors: each processor interacts through message transmission
and receipt only with a very small set of processors.

FAST allowed us to estimate the performance of the parallel implementation of
the FMM on message-passing multiprocessors with hypercube. ring and multiring in-
terconnection networks. Performance figures derived from the mapping of the FMM
on cliques were used to evaluate the eflectiveness of the hypercube, ring and mul-
tiring topologies. Our simulations showed that an implementation of the Multipole
algorithm on scalable ring or multiring architectures is cost-effective and attractively
simple. Hypercube implementations proved to be very effective since their perfor-

mance measurements were almost identical to the ones derived for the cliques.



Chapter 7

A Study of the Barnes-Hut
Algorithm

In this chapter we present a modified version of the Barnes-Hut algorithm for solving
the N-Body problem, and evaluate its behavior with FAST. The Barnes-Hut algorithm
1s a popular method for solving the N-body problem in two or three dimensions [30].
At each time-step of the N-body simulation, the algorithm constructs a hierarchical
tree, decomposing the particle space into blocks, as in the Fast Multipole Method.
Fach node of the tree maintains the total mass (or charge) of the corresponding block
and the position of its center-of-mass (or center-of-charge). Having constructed the
decomposition tree, the force on any particle p is approximated by a simple recursive
calculation. The calculation starts at the root of the tree, which contains the entire
set of particles, and recursively visits the blocks of the decomposition. If [ is the
length of a block, thoz, under consideration, and D is the distance from the block’s
center-of-mass to p, the algorithm compares [/D with #., where # ~ 1 is a fixed

accuracy parameter. Particle p is considered to be “well separated” from iboz, if:
I/D < #. (17)

In that case, the force applied to p from the particles of ibox is approximated by
the force that would be applied to p from a mass (charge) equal to the total mass

(charge) of the block’s particles and placed at the block’s center-of-mass. If /D > 6,

105
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the calculation continues one level down and recursively examines the children of iboz,
with respect to p.

The number of interactions for each particle is, on the average, on the order
of log N for large N, assuming a homogeneous distribution of particles in space.
Therefore, the average complexity of the algorithm is O(N - log N) [6]. If 6 is set to
zero, then the algorithm becomes identical with the brute-force O(N*) method.

Parallel algorithms for the Barnes-Hut technique usually partition the data-space
into a number of subsets of particles equal to the number of available processors,
and assign each partition to a different processor [61. 66, 67]. The methods used for
partitioning seek to improve the load-balancing of parallel executions [61. 68]. If the
decomposition trees are too large to fit in the memory of a single processor, special
precautions are taken to distribute the appropriate parts of the tree to processors
(31, 47, 61, 66, 68].

In contrast with the cases of the Fast Multipole Method and SIMPLE, constructing
the computational domain for a Barnes-Hut instance is not sufficient to predict the
set of computations and communications performed during parallel execution of that
instance. To predict this set, it is necessary to compare the location of each particle
with respect to the appropriate decomposition blocks, according to the Separation
criterion (17). Such comparisons, however, require the execution of a large portion of
the algorithm. This contradicts the assumptions and goals of Functional Algorithm
Simulation. Nevertheless, we can reorganize the algorithm so it can be studied with

FAST.

7.1 A modified version of the Barnes-Hut algo-

rithm

A number of different implementations of the Barnes-Hut technique seek to improve
its performance on vector and data-parallel machines by regarding the tree-walk used
to compute long-range forces as a device for establishing interaction lists for every

particle [31, 47, 77]. Each of these lists includes a collection of blocks and particles
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Figure 52: Distance-definitions for neighborhood calculation.

interacting with the corresponding particle. The interaction lists are constructed.

either for single particles by walking through the tree from node to node [31], or for

groups of particles which are close together in space [7].

In our study, we consider a combination of these techniques for two-dimensional

problems. Each internal quadtree-node iboz, has the following interaction lists:

1.

o

The Distant Interaction List (DIL), that is, the set of nodes jbor which are
located at the same level of the quadtree as ibox, and satisfy the Separation

criterion: o
size(jbor)

o0

< @. (18)

dist(yboz, tbox )
size(jbox) is the length of jboz’s side, dist(jbox, ibox) is the distance between the
center-of-mass of jbor and the perimeter of ibox (see Figure 52), and @ is the

accuracy parameter of Barnes-Hut.

The Close Interaction List (CIL). This is the set of nodes that belong to the

same level of the quadtree as iboz, and do not satisfy Criterion (18).

Each leaf of the quadtree has the following interaction lists:

1.

The Distant Interaction List (DIL), that is, the set of nodes jboz which are

located at the same or higher level of the quadtree as iboz. and satisfy the
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Separation criterion (18).

2. The Nearest Neighbor Interaction List (NNIL). This list includes quadtree leaves
that share a common border with 7boz. Also. it includes leaves that do not share

a common border with iboxr but are close to it. according to Criterion (18).

To compute the Distant and the Close Interaction Lists of an infernal node ibox we
consider the Close Interaction List of iboz’s parent, CIL(parent(iboz)), and create a
list of nodes CDIL (ibox) such that:

CDIL(tbox) = N;UN,,

where:
N; = {u | parent(u) € CIL(parent(ibox))}.

and
Ni = {v | v € CIL(parent(ibox)), and v is a quadtree leaf}.

In other words. CDIL(ibox) includes the children of nodes that belong to the Close
Interaction List of ibox’s parent. Also, it includes the nodes that belong to the
CIL(parent(ibor)) and do not have anyv descendants, that is, the quadtree leaves
of CIL(parent(iboxr)). We estimate the separation between ibor and each node of
CDIL (tbox) using Criterion (18). Nodes close to ibox are assigned to CIL(ibox), to-
gether with ¢box’s siblings. Nodes well separated from ibox constitute its Distant
Interaction List.

We follow the same procedure to compute the Distant and the Nearest Neighbor
Interaction Lists for each quadtree leaf ibox. Quadtree nodes well separated from ibox
are assigned to its Distant Interaction List. Quadtree leaves that are close to ibox
according to Criterion (18) are assigned to NNIL(zbox). For internal nodes that are
near to tbox, we examine recursively the location of their children with respect to iboz,
and update accordingly iboz’s Interaction Lists.

DIL(thoz} is used for the approximation of interactions between blocks of particles
that are far away according to the Separation criterion (18). For example, assume

that jbox belongs to DIL(iboxz). Then the sum of the forces exerted on the particles
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of ibox by the particles of jboz. is approximated by the force that would be applied
on these particles by a body located at the center-of-mass of jbox, with mass (charge)
equal to the total mass (charge) inside jbor (see Figure 52).

The force-approximations from all the members of DIL (ibox) are added together.
and the result is used to compute Fy(1box). This represents the approximation of
interactions between the particles of thor and particles of nodes that are well separated
from ibox, or from its ancestor nodes in the quadtree. In other words. to calculate
Fyiw(ibox), we accumulate the approximations of interactions from DIL(iboz). and
add the result to Fy;g(parent(ibox)).

With these definitions in mind, we present a description of the modified version

of Barnes-Hut used in our study:

Modified Barnes-Hut
1. Construct the quadtree.

2. Start at the leaves of the tree and move towards the root, computing the center-
of-mass of each block of the decomposition by combining the centers-of-mass of

1ts children blocks.

3. From the root of the tree move toward the leaves. computing the Distant, Close,

and Direct Interaction Lists, and the Fy; values of quadtree nodes.

4. Compute the interactions between every particle in every quadtree leaf, and
the remaining particles belonging either to the same leaf, or to members of the

leal’s Direct Interaction List.

5. Compute the interaction between each particle in every quadtree leaf iboz, and
the particles of nodes well separated from ibox by applying force Fy;.(ibox) to

the particles of iboz.
6. Estimate the new positions of particles and go to step 1.

Generating the computational domain for the modified version of Barnes-Hut and

calculating the interaction lists presented earlier, enables us to predict the set of
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Figure 53: Execution Profiles for a 10,000-particle problem mapped on an abundant
clique (Uniform distribution).

computations and communications that take place in a parallel execution of this
algorithm. This enables us to study this version of the algorithm using Functional

Algorithm Simulation.

7.2 Experiments with the Barnes-Hut algorithm

In our experiments with FAST we employed the same hardware parameters as in
the case-study of the Fast Multipole method. that is, parameters derived from Intel’s
iPSC/860 interconnection network and the 40Mhz, i860 microprocessor [38].

The accuracy parameter # was set to 0.6 or 0.9. Experimentation has shown that
forces computed with an accuracy parameter as large as § = 1 are still accurate
to approximately 1% [6]. Therefore, values of # equal to 0.6 and 0.9 are expected to
correspond to calculations of high accuracy. Clearly, the smaller the value of 8, the
more accurate and expensive the Barnes-Hut calculation is. The granularity of the

quadtrees was set to a maximum of 3 particles per quadtree leaf.
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Figure 54: Execution Profiles for a 10,000-particle problem mapped on an abundant
clique (Plummer distribution).

7.2.1 Profiles of parallel execution

From the parallel-execution graphs generated by FAST we can easily extract profiles
characterizing the computations and communications of the Barnes-Hut technique.
The profiles presented in this section correspond to parallel-execution graphs which
have been clustered with the GL heuristic (see Chapter 3) and then mapped on an
abundant clique. Figure 53 (left) shows the active tasks derived from a functional al-
gorithm simulation of a problem instance with 10,000 particles distributed uniformly.
with # = 0.6. Figure 53 (right) presents the diagram of active links. Notice the
different scale of the two diagrams.

Diagrams in Figure 54 present the profiles of a parallel execution of the modified
Barnes-Hut technique mapped on an abundant clique, for 10,000 particles distributed
according to the non-uniform Plummer distribution (see Figure 39 in Chapter 6). The
accuracy parameter was set to 0.6.

We see from the plots in Figures 53 and 54 that the parallel executions on the
abundant clique start with a large number of active tasks having very short execution
titnes. In both cases, the number of these tasks is equal to the number of leaves of
the quadtree. Each of the tasks computes the center-of-mass of a quadtree-leaf. After
computing the centers-of-mass of the leaves, the algorithm proceeds towards the root

of the quadtree computing centers-of-mass of internal nodes. This explains the fast
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Figure 55: Execution Profiles for a 10,000-particle problem mapped on a 128-processor
clique (Uniform particle distribution).

decrease in the number of active tasks: at each step towards the root of the tree, the
number of active tasks is decreased by a factor of four.

After reaching the quadtree root the computation starts descending the tree, com-
puting the Interaction Lists of its nodes. At the beginning of this downward phase
available parallelism is low. Available parallelism starts increasing as the computa-
tion approaches the leaves. At the end, there is a peak in the number of active tasks
which corresponds to the calculation of forces due to inter-leaf and near-neighbor
interactions. In the case of uniformly distributed particles (Figure 53), the quadtree
is almost balanced and the peak number of active tasks equals the number of leaves
of the tree. When the quadtree is not balanced (Plummer distribution, Figure 54),
however, the force calculation phase is spread in time. The peak computing activ-
ity occurs when the algorithm reaches the tree-level containing the largest number
of leaves and, consequently, the peak number of active tasks is less than the total
number of leaves. For instance, in the example above the average depth of quadtree
leaves 1s 11.96, whereas the depth of the tree is 16.

The diagrams of “Active Links” are similar to the plots of “Active Tasks.” Peaks
in link activity follow the peaks of task activity in the first phase of the algorithm
when the tasks compute centers-of-mass and then forward the results towards the root

of the quadtree. In the last phase, peaks in link activity precede the peaks in task
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activity as tasks receive information about particle location and mass from nearby
nodes, and then perform the force computations.

Figure 55 shows the computation and communication profiles derived from a func-
tional algorithm simulation of a problem with 10,000 uniformly distributed particles
mapped to a 128-processor clique. The corresponding quadtree was split into 128
blocks with an ad-hoc heuristic that seeks to assign an equal load to each processor
by assigning an equal number of particles per processor as described in Chapter 6 (see
also Figure 56). The “Active Tasks” diagram of Figure 55 differs from the diagram
of Figure 53, which presents the profile of the same problem instance mapped to an
abundant clique. The difference is in the profile of the second, “downward,” phase of
the algorithm. As we can see from Figure 53 (left), the average available parallelism
during this phase is much larger than 128. Therefore, that phase incurs most of the
slowdown with respect to the abundant clique implementation. when mapping the
problem to a 128-clique. In contrast, the difference between the two diagrams in the
first, “upward,” phase of the algorithm is minimal; for the largest part of this phase,
the available parallelism is very small. Therefore, most of the processors of the abun-
dant and the 128-processor cliques stay idle. Similar remarks hold for the “Active
Links™ diagrams. The information exchange corresponding to the link-activity of the
diagram in Figure 53, take place within the first 15, 000 time-units in Figure 55 (left).

Finally, Figure 57 shows the communication patterns for the 10,000-particle exam-
ple (uniform distribution). The horizontal and vertical axes correspond to processors
of the abundant clique, that is, to task-clusters of the parallel-execution graph. Each
point (z,y) in the plot represents the existence of a message from the task-cluster z

to task-cluster y.
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Figure 57: Communication Patterns for the 10,000-particle problem.

7.2.2 Remarks on the Scalability of Barnes - Hut algorithm

To study the scalability of the Barnes-Hut method we ran a number of functional
algorithm simulations for increasing problem sizes. We used the GLES-20% clustering
heuristic on the parallel-execution graphs derived, and mapped the clustered graphs
on the appropriate abundant clique architectures. In Figure 58, we present a diagram
of the speedups measured on the abundant clique, versus the problem size (number of
particles) for the uniform and Plummer particle-distributions. The speedups reported
by FAST increase with problem size in both cases. The rate of speedup-increase is
constant for the uniform distribution of particles, whereas it decreases with increasing
problem size for the non-uniform Plummer distribution. Furthermore, speedup values
are larger for the uniform distribution. This is expected since uniform distributions
of particles result in balanced decomposition trees and it is easier to parallelize the
computation on a balanced, as opposed to an unbalanced tree.

Figure 59 presents the speedups reported by FAST for a number of functional
algorithm simulations of a Barnes-Hut instance with 8,000 particles distributed uni-
formly, § = 0.9, and a juadtree-granularity of three particles per leaf. For these
simulations the problem was mapped on clique and hypercube multiprocessors with
8 to 2048 processing elements. For the mapping we used two different methods: the

GLES-20% clustering heuristic combined with the mapping technique by Yang and



CHAPTER 7. A STUDY OF THE BARNES-HUT ALGORITHM 11¢

ot

—=&— Uniform distribution of particles
—0— Plummer distribution

1000 —

Available Speedup (ST/PT)
g
1

0
o 5000 10000
Problem Size (Number of Particles)

Figure 58: FAST results showing the performance of the parallel Barnes-Hut method
on an abundant clique.

Gerasoulis; and the straightforward ad-hoc approach, which partitions the quadtree
into a number of blocks equal to the number of available processors. From these
diagrams we can see that the binary hypercube and the ring interconnections per-
form almost as well as the clique, for machine sizes up to 312 processors, although
the hypercube and the ring are practical interconnections, and more easily scalable
than the clique. Comparing the diagram to the left (GL&S-20% mapping) with the
diagram to the right (ad-hoc mapping) we conclude that, for this case, the ad-hoc
partitioning gives better speedups than the more expensive GL&S-20% heuristics, for
the hypercube and ring interconnections. In contrast, GL&S-20% results in better
performance for the clique. Finally. we can see that there is no point in using more
than 512-1024 processors in a ring; or more than 1024-2048 in a hypercube when

considering an 8,000-particle problem.

7.2.3 Comparing the Barnes-Hut with the Fast Multipole
Method

Both the Barnes-Hut and the Fast Multipole algorithms seek approximate solutions

to the N-Body problem. It is interesting, therefore, to compare their performance.
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Figure 59: 8,000-particle example (Uniform distribution).

Comparisons cannot be strict, however, because the two methods define and estimate
the error of approximation differently.

Here we present data extracted from functional algorithm simulations of an N-
Body problem with 8,000 particles distributed uniformly, and 10,000 particles dis-
tributed according to the Plummer distribution. For the Fast Multipole Method we
used 10 multipole coefficients and for the Barnes-Hut algorithm we set # to 0.9. The
sequential time given by FAST for the FMM was 1.8 times larger than the sequen-
tial time reported for the Barnes-Hut. Figure 60 presents diagrams of parallel times
derived with FAST for both algorithms, for machine sizes from 1 to 1024 processors
forming a clique network, and for the 8,000-particle example. Notice the different
scales of the two plots. Figure 61 contains the plots for the 10.000-particle case. To
map the FMM instance to the clique, we used the GLE&S-20% clustering heuristic and
the SNC mapping heuristic. For Barnes-Hut, we used the same clustering approach
and the Yang and Gerasoulis mapping method. From the diagrams of Figures 60, 61
it is clear that the Barnes-Hut algorithm is faster than the Fast Multipole Method for

the examples studied. This is consistent with remarks by other researchers [47, 68]
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mapped on clique architectures (8.000-particles example - Uniform distribution).
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Figure 62: Speedups reported by FAST for the FMM and the B-H algorithms mapped
on clique architectures.

who note that, in spite of the better average asymptotic complexity of the Fast Mul-
tipole Method, which is O(N) vs. O(N - log N) for Barnes-Hut, the constant factors
in its complexity are substantially higher than those of Barnes-Hut.

A diagram of speedups reported by FAST for the two methods and the two exam-
ples is presented in Figure 62. From these plots we can see that Barnes-Hut also scales
better than the FMM with increasing numbers of processors for a constant problem
size. The reason is that the computations performed in the internal leaves of the
quadtree are more “expensive” for the FMM than for the B-H, and that parallelism
is limited in the lower levels of the tree. Therefore, the portion of the computation

that has an inherently small potential for parallelism is greater in the FMM.

7.3 Remarks on the Barnes-Hut algorithm

To perform functional algorithm simulations of the original version of the Barnes-Hut
algorithm [6], we would have to execute the largest part of its computation. To avoid
this, we studied a modified version of the method, which is similar to modifications
seeking to improve its performance on vector and data-parallel machines [31, 47, 77].

We used our prototype system FAST to explore the scalability of the modified
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Barnes-Hut, discover its computation and communication profiles, and compare its
performance with the performance of the Fast Multipole Method. It turns out that,
for the examples studied. the modified Barnes-Hut algorithm is faster and more scal-

able than the Fast Multipole Method.



Chapter 8
Conclusions and Future Work

The high complexity of interesting scientific computations. and the high cost of high-
end multiprocessor syvstems make extensive experimentation with computationally
challenging applications and large parallel machines difficult or practically impossible.
The development of parallel scientific computations can be enhanced substantially
when effective tools modeling the execution of parallel workloads become available.
This thesis addresses issues pertinent to the development of such tools, for modeling
and evaluation of parallel scientific computations at levels of abstraction higher than
the ones provided by exact simulation and profiling.

More specifically, we introduce Functional Algorithm Simulation, that is. simu-
lation without performing the bulk of numerical calculations involved in the appli-
cations studied. Functional Algorithm Simulation is applicable in the evaluation of
algorithms simulating complex systems, for which the core-set of time-consuming cal-
culations and data-exchanges can be determined from input information, before the
actual computations take place. To assess the principles of Functional Algorithm
Simulation we built the Functional Algorithm Simulation Testbed (FAST). a software
prototype system for approximately simulating the parallel executions of such algo-
rithms on message-passing systems. FAST runs on uniprocessor workstations with
modest resources.

Experimentation with FAST shows that using approximate simulation to model

parallel scientific computations at a higher level of abstraction, can give accurate and
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useful results. FAST enables us to model computationally challenging algorithms in a
cost-effective way. Applying this modeling approach on practical data-sets produces
realistic computation and communication profiles, which expose essential character-
1stics of the corresponding parallel algorithms. Also, these profiles can be used to
clarify several aspects of algorithmic scalability, and to reveal intrinsic bottlenecks
affecting parallel performance.

FAST provides a cheap and fast means for assessing the effects that different inter-
connection topologies have on the performance of parallel algorithms. Data collected
from FAST simulations can be used to compare interconnection schemes and study
related tradeoffs. Finally, such data can be used to estimate the effects of various
hardware parameters on parallel performance. For example, it is trivial to change
a parameter determining processor clock speed. communication channel bandwidth,
or message-initiation cost; running FAST with a different parameter-set can help
us understand the relative importance of each parameter to achieving good parallel
performance for the applications under consideration.

With FAST we studied three interesting and important parallel algorithms. The
first is SIMPLE, a Computational Fluid Dynamics code. SIMPLE provided us with
solid evidence about the validity of FAST. Furthermore, using data derived with
FAST, we discovered parts of the algorithm that are inherently sequential. affect its
parallel performance. and restrict scalability. The other two methods examined are
the Fast Multipole Method and a modified version of Barnes-Hut algorithm. These
algorithms solve the N-Body problem and have applications in many scientific fields.
FAST enabled us to understand and quantify the potential for parallelism that the
two methods have, for problem sizes and configurations of practical interest. We
showed that as problem size increases, the available parallelism also increases. We
derived upper bounds on speedup which are more informative and more meaningful
than the “linear speedup” criterion used frequently to assess the efficiency of parallel
applications.

Communication patterns collected for the Fast Multipole Method suggest that
good parallel performance can be achieved on a sparse interconnection network. Fur-

ther simulation results with FAST prove that the performance of the algorithm on
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multiring topologies is almost as good as on hypercube and clique interconnections,
although the latter are more expensive and less scalable than the former. Similar
conclusions were derived for the modified Barnes-Hut algorithm. Finally, a compar-
ison between the two methods shows that the version of the Barnes-Hut studied is

more scalable and takes less time than the Fast Multipole Method.

8.1 Future Work

Our experience with FAST underlines the need for software tools that scientists can
use to design, develop, and evaluate new computational algorithms. To this end, we
plan to pursue cost-effective ways of studying the parallel computation of challenging
applications and develop Modeling and Evaluation Tools for Parallel Computations
(MET-PCs). As a first step, we intend to incorporate in FAST a general parallel-
programming model used to program current message-passing multiprocessors. Our
goal 1s to be able to use the same parallel program for Functional Algorithm Simu-
lation and actual parallel execution. Having such a tool will provide scientists with
the opportunity to describe parallel algorithms and study their inherent properties in
reasonable time and with modest computing resources.

For the design of MET-PC, it is important to : (1) explore, understand, and
formalize the computational needs of computational scientists: (2) define the re-
quirements and expectations they have from modeling and simulations tools to be:
(3) develop effective measures for capturing the basic qualitative and quantitative
characteristics of practical parallel computations; (4) experiment with existing pro-
filing tools. This information will guide the choice of a suitable level of detail for the
MET-PC under development, the selection of an appropriate parallel programming
platform, and the design of the right experiments for deriving proper insights into the
algorithms studied. Implementing a MET-PC requires expertise and experimentation

with existing profiling and parallel programming tools.
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