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Abstract

Let P be a property of undirected graphs. We consider the following problem: given a graph
G that has property P, find a minimal spanning subgraph of G with property P. We describe
two related algorithms for this problem and prove their correctness under some rather weak
assumptions about P.

We devise a general technique for analyzing the worst-case behavior of these algorithms. By

applying the technique to 2-edge-connectivity and biconnectivity, we obtain a tight lower bound
of Q(m + nlogn) on the worst-case sequential running time of the above algorithms for these
properties; this resolves open questions posed earlier with regard to these properties. We then
give refinements of the basic algorithms that yield the first linear-time algorithms for finding a
minimal 2-edge-connected spanning subgraph and a minimal biconnected spanning subgraph of

a graph.
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1 Introduction

Let P be a monotone graph property. In this paper we consider the following problem: given
a graph G having property P, find a minimal spanning subgraph of G with property P, i.e.,
a spanning subgraph of G with property P in which the deletion of any edge destroys the
property. We are interested both in the parallel and sequential complexity of this problem.

The corresponding problem of finding a minimum spanning subgraph having a given
property has been widely studied. We mention two results: Chung and Graham ([1], [3])
proved that the problems of finding a minimum k-vertex-connected or k-edge-connected
spanning subgraph are N P-hard for any fixed k& > 2. Yannakakis ([18]; see also [11]) showed
that the related problem of deleting a minimum set of edges so that the resulting graph has a
given property is N P-hard for several graph properties (e.g., planar, outerplanar, transitive
digraph).

There is a natural sequential algorithm for finding a minimal spanning subgraph with
property P: examine the edges of G one at a time; remove an edge if the resulting graph has
property P. This gives a polynomial time algorithm for the problem if the property P can
be verified in polynomial time. However, for most nontrivial properties the running time of
the algorithm is at least quadratic in the input size. Further, this algorithm seems hard to
parallelize. Our goal is to obtain efficient sequential and parallel algorithms for the problem.

The problem at hand may be phrased in the very general framework of independence
systems described by Karp, Upfal, and Wigderson ([7]): an independence system is a finite
set together with a collection of subsets, called independent sets, with the property that
any subset of an independent set is independent. Define a subset S of edges in G to be
independent if the graph G — S has property P. Finding a minimal spanning subgraph with
property P amounts to finding a maximal independent set in the independence system that
we have just defined. Efficient parallel algorithms for finding a maximal independent set in
an independence system are known for the special case where the size of a minimal dependent
set is 2 or 3 ([12],[5], [2], [8]). For the problems that are of interest to us minimal dependent
sets may have nonconstant size and hence a different approach is needed for obtaining fast
parallel algorithms.

The minimal spanning subgraph problem has been studied earlier for the property of

strong connectivity (or transitive compaction [4]) and for 2-edge-connectivity and biconnec-



tivity ([9]). For these problems algorithms are given in ([4], [9]) that run in O(m + nlogn)
sequential time and can be implemented as NC algorithms; here n and m represent the num-
ber of vertices and edges in the input graph. Both papers have the same high-level algorithm
that is shown to terminate in O(logn) stages for the properties considered, and both papers
leave open the question of whether this bound is tight.

In section 3.1 of this paper we generalize the high-level algorithm of ([4],[9]) into two
general algorithms for finding a minimal spanning subgraph in an undirected graph with a
given property. We show that for connectivity requirements the running time of a variant of
these algorithms is within a logarithmic factor of the time required for minimally augmenting
a spanning tree to achieve the given property. Because various computations on trees can
be performed efficiently, both sequentially ([16]) and in parallel ([13], [14]), this algorithm
provides a useful paradigm for the sequential and parallel determination of minimal spanning
subgraphs with respect to connectivity requirements.

In section 3.2 we analyze the worst-case complexity of these algorithms. We give a tight
lower bound of {(logn) on the worst-case number of iterations of the algorithm for 2-edge-
connectivity and biconnectivity; this leads to an Q(m+nlogn) lower bound on the sequential
running time of these algorithms, thus settling open questions posed in [9]. The technique we
use to derive these bounds is fairly general and may be applicable to other graph properties.
We strengthen the bound for 2-edge-connectivity in section 3.3 by showing that it holds even
if we allow certain contractions.

In section 4 we describe refinements of the basic algorithms for 2-edge-connectivity and
biconnectivity and obtain the first linear-time algorithms for these properties. These algo-
rithms still need a logarithmic number of iterations but by performing certain contractions
and transformations on the current graph they reduce its size by a constant factor at each
iteration. This result also reduces the work performed by the parallel algorithms for these
problems by a logarithmic factor.

In the next section we define the graph-theoretic terms and concepts that are used in
this paper.

Note: An extended abstract of the present paper will appear in the Proceedings of the Third
Annual ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992).



2 Definitions

A graph G = (V, E) consists of a set V' of vertices and a set E of edges. We also write V(G)
and E(G) for the set of vertices and the set of edges, respectively, of G. We use n(G) and
m(G) to denote the number of vertices and edges, respectively, in G. If the edges are ordered
pairs (v, w) of distinct vertices, the graph is directed: v is called the tail and w is called the
head of the edge. If the edges are unordered pairs of distinct vertices, also denoted by (v, w),
the graph is undirected. In that case v and w are incident with the edge (v,w) and (v, w)
covers the two vertices v and w. If E is a multiset, i.e., if every edge may occur several
times, then G is a multigraph. The degree of v in G, denoted by degg(v), is the number of
edges of G covering v. |

Fix a multigraph G = (V, E). A path P in G is a sequence < vg...v; > of vertices of V'
such that (vi-1,vi) (1 <7 < k) is an edge in E; the nodes vy and v, are the endpoints of P
and v; ...vk— are the internal vertices of P. The vertices v; lie on the path P and the edges
(vi-1,v;) are the edges on the path P. A path is simple if vy ... vk, are distinct and v; ... vy
are distinct. A cycle in G is a path in G whose endpoints coincide and all of whose edges
are distinct. A simple cycle is a simple path whose endpoints coincide.

If G = (V,E) and G' = (V', E') are two graphs such that V' C V' and E’ C E, then
G’ is a subgraph of G. The graph G’ is the subgraph of G induced by the vertices in V"’ if
E’ contains exactly the edges of E between vertices of V'. A spanning subgraph of G is a
subgraph G’ with V' = V. If G’ is a spanning subgraph of G and E” C E, then G' + E”
denotes the graph with vertex set V/(= V) and edge set E’' U E” and G' — E” denotes the
graph with vertex set V'’ and edge set E' — E".

An undirected graph G is connected if there exists a path between any two distinct vertices
in G. A connected component in G is a maximal connected subgraph of G (i.e., it is not a
proper subgraph of a connected subgraph of G). A tree is a connected graph without cycles.

The graph G is 2-edge-connected if every pair of distinct vertices is connected by two edge-
disjoint paths or, equivalently, if every edge lies on a cycle. A 2-edge-connected component
of G is a maximal 2-edge-connected subgraph of G. A cutedge in G is an edge in G whose
removal increases the number of connected components in G. A graph is k-edge-connected
(k > 0) if every pair of distinct vertices is connected by at least k edge-disjoint paths. A

vertex in G is a cutpoint if removing it together with all incident edges increases the number



of connected components in G. A graph G is biconnected if it is connected, has at least three
vertices, and does not contain a cutpoint. A block of G is a subset of vertices in G that
induces a connected subgraph that has no cutpoint and that is maximal with this property.
A graph is k-vertex-connected if it is the complete graph on k + 1 vertices or it has at least
k 4 2 vertices and it cannot be disconnected by removing fewer than & vertices.

Let G = (V,E) be an arbitrary graph. Let V' C V. The operation of collapsing the
vertices of V' consists of replacing all vertices in V' by a single new vertex v, deleting all
edges in G whose two endpoints are in V' and replacing each edge (z,y) with z in V' and
y in V — V' by an edge (v,y). In general the resulting graph is a multigraph even if the
original graph is not a multigraph.

An ear decomposition ([15]) D = [Po, Py,..., Pr—1] of an undirected graph G = (V, E)
is a partition of E into an ordered collection of edge disjoint simple paths P,,...P,_; such
that P, is an edge, Po U P, is a simple cycle, and each endpoint of P;, for 7 > 1, is contained
in some P;, j < ¢, and none of the internal vertices of P; are contained in any P;, j < 1.
The paths in D are called ears. D is an open ear decomposition if none of the P; is a simple

cycle. A trivial ear is an ear containing a single edge.

3 Computing a Minimal Spanning Subgraph

3.1 Two General Algorithms

In this section we describe two closely related algorithms for finding a minimal spanning
subgraph of a graph for various properties of undirected graphs. Algorithm 1 was first
described in [10] while algorithms 2 and 3 are generalizations of algorithms for finding a
minimal 2-edge-connected and minimal biconnected spanning subgraph given in [6].

We allow self-loops and multiple edges in our graphs. A graph property P is a Boolean-
valued function on graphs. If P(G) is true for some graph G, we say that G has property P
or G is a P-graph. A P-subgraph of G is a subgraph of G that has property P. An edge e of
a P-graph G is P-redundant in G if G — e has property P, otherwise e is P-essential in G.
We may not mention G or P if the graph or the property is clear from the context.

In this paper we concern ourselves with the problem of finding a minimal spanning P-

subgraph of a P-graph G, i.e. a spanning P-subgraph in which every edge is P-essential.



Throughout this paper we shall implicitly assume that property P is decidable, i.e., there is
an algorithm that checks whether a given graph has property P. We restrict our attention
to decidable properties that satisfy conditions (C1) and (C2) below:

(C1) P is monotone, i.e., the addition of an edge to a P-graph results in a P-
graph;
(C2) any P-graph is connected.

As an immediate consequence of condition (C1) we make the following basic observation.

Observation 1 Let G be a P-graph and let H be a spanning P-subgraph of G. Any edge
that is P-redundant in H is P-redundant in G.

There is an obvious (sequential) algorithm for computing a minimal spanning P-subgraph of
G: examine the edges one at a time; remove an edge if it is redundant in the current graph.
By observation 1 the resulting subgraph is minimal.

The following algorithm is a generalization of algorithms given in [9] and [4] (for find-
ing a minimal 2-edge-connected, a minimal biconnected, and a minimal strongly connected
spanning subgraph of a graph) to graph properties satisfying (C'1) and (C2). This algo-
rithm has been shown to outperform the obvious algorithm on undirected graphs for 2-
edge-connectivity and biconnectivity, and we believe that this is true for a number of other

properties of undirected graphs. Moreover, it is inherently easier to parallelize.

Algorithm 1: Computing a minimal spanning P-subgraph of G.
Input P-graph G.
Qutput Minimal spanning P-subgraph H of G.

(1) H:=G;

(2) While H has P-redundant edges, do:

(2.1) Compute a spanning tree Ty in H with a maximum number of P-essential edges;
(2.2) Compute a minimal subset A of edges in H such that Ty + A has property P;
(2.3) H:=Ty + A.



A spanning tree Ty as constructed in step (2.1) is called an optimal tree in H and the

set A constructed in step (2.2) is called a minimal augmentation for Ty (in H).

Theorem 1 Algorithm 1 computes a minimal spanning P-subgraph of G for any property
P satisfying (C1) and (C2).

Proof. By induction on the number of iterations of the while-loop, one shows that H,
as computed in step (2.3), is always a spanning P-subgraph of G. To prove termination,
consider one execution of the while-loop. Since Ty is an optimal tree in H, it does not
contain all redundant edges of G. Therefore, the number of redundant edges decreases by at
least one at each iteration and algorithm 1 terminates properly. || |

For steps (2) and (2.1) of algorithm 1, the essential and redundant edges of H need to
be computed. In general, it is not clear whether computing these edges is easier than the
original problem of finding a minimal spanning P—subgraph. It turns out, however, that
one can avoid this computation by gradually building up a set of essential edges. Algorithm

2 below uses this strategy.

Algorithm 2: Computing a minimal spanning P-subgraph of G.
Input P-graph G.
Output Minimal spanning P-subgraph H of G.

(1) H :=G; Ess:=0; C := E(H);
(2) While C # 0, do:
(2.1) Compute a spanning tree Ty in H with a maximum number of edges of Ess;

(2.2) Compute a minimal A C E(H) such that Ty + A has property P;
(2.3) H:=Ty+ A; Ess:= EssU AU {cutedges in H}; C := E(H) — Ess.

Theorem 2 Algorithm 2 computes a minimal spanning P-subgraph of G for any property
P satisfying (C1) and (C2).



Proof. An induction on the iteration number shows that H, as computed in step (2.3) of
algorithm 2, is a spanning P—subgraph of H at any iteration of algorithm 2 and, at the
end of any iteration of algorithm 2, all redundant edges of H are contained in C. Thus,
upon termination H is a minimal spanning P-subgraph of H. To prove termination, fix an
iteration of the while-loop. If not all edges of C belong to Ty (computed in step (2.1)), then
those edges of C that lie outside Ty are either added to Ess or excluded from H in step (2.3)
of the current iteration. If the edges of C are all part of Ty, then each edge of C is a cutedge
in Ty + A since the tree Ty contains a maximum number of edges of Ess. We conclude that
in each case | C | decreases by at least 1 at this iteration, thus implying termination. []

By the proofs of theorem 1 and theorem 2 the number of iterations of algorithm 1 and
algorithm 2 are both bounded by the number of edges in the input graph. For several graph
properties much sharper bounds hold. In this paper we shall look at different connectivity
requirements. For the remainder of this section we only consider properties P that imply
2-edge-connectivity. The following theorem shows that for these properties algorithm 1

terminates quickly.

Theorem 3 If P satisfies (C1) and (C2) and also implies 2-edge-connectivity, then algo-

rithm 1 terminates after O(logn) iterations of the while-loop.

Proof. Fix H at the beginning of an iteration of algorithm 1. An essential component in
H is a maximal subgraph of H having a spanning tree of essential edges. Let r denote the
number of redundant edges in H and c the number of essential components in H. Fix a tree
T in H with a maximum number of essential edges of H. The tree T contains exactly ¢ — 1
redundant edges of H. Furthermore, if ¢ > 1, then each essential component of H is incident
with at least 3 redundant edges in H and hence ¢ < 2r/3. Since the edges of A are essential
in T + A, less than 2r/3 edges of T + A are redundant and hence the number of redundant

edges goes down by a constant factor in each iteration of algorithm 1. The claim follows. ]

Corollary 1 Algorithm 1 computes a minimal k-vertez-connected or k-edge-connected span-

ning subgraph in O(logn) iterations for any k > 2. []

The previous bound does not hold for algorithm 2: consider the case where the input
graph G is a simple cycle on n vertices and n edges. Each iteration of algorithm 2 finds a
tree of n — 1 edges and adds exactly one edge to Ess. Thus, algorithm 2 may require n

iterations of the while-loop.



The following observation points out a way of making algorithm 2 faster: if H is a 2-
edge-connected graph and V' is a proper subset of vertices in H, then at least two edges in
H connect a vertex in V' to a vertex outside V'. If there are exactly two such edges, then
they are both P-essential in H.

Fix a P-graph H and a subset Ess of the set of essential edges in H. An edge of H is called
critical (with respect to Ess) if it is one of exactly two edges connecting some connected
component of (V(H), Ess) with the set of vertices outside this component. By the previous
observation any critical edge is essential in H (provided P implies 2-edge-connectivity).

Modify algorithm 2 by adding in step (2.3) to Ess the edges of A as well as the critical
edges in H (since H is 2-edge-connected, it does not contain any cutedges). We refer to the

modified algorithm as algorithm 3.

Lemma 1 Let | C |= q at the beginning of an iteration of algorithm 3. Then, at the
beginning of the next iteration | C |< 3¢/4.

Proof. Fix H at the beginning of an iteration of the while-loop in algorithm 3. The claim
certainly holds if the number of edges of C in tree Ty (computed in step (2.1) of the current
iteration) is less than 3¢/4. Now assume at least 3¢/4 edges of C belong to Ty. Construct
H. from H by collapsing the vertex sets of the connected components of (V(H), Ess) in H.
Let a be the number of vertices of degree 2 in H.. Let p be the total number of vertices in H,;
note that p > 3¢/4. We have ¥y (a,) degn.(v) = 2a+3(p—a) and ¥ ey (s, degn. (v) < 2g;
hence a > 3p — 2q. Since p > 3¢/4, this implies a > ¢/4. Therefore, the number of critical
edges is at least g/4. The claim now follows by noting that none of the critical edges in H

will belong to C at the beginning of the next iteration of algorithm 3. []

Corollary 2 If P satisfies (C1) and (C2) and also implies 2-edge-connectivity, then algo-
rithm 3 terminates after O(logn) iterations of the while-loop. []

Corollary 3 Algorithm 3 computes a minimal k-vertez-connected or k-edge-connected span-

ning subgraph in O(logn) iterations for any k > 2. []

For the special case k¥ = 2 the minimal augmentation (step (2.2) of algorithm 3) requires
only linear time (see [9]) . Thus, if the number of iterations of algorithm 3 is constant, then
algorithm 3 runs in linear time. In the next section we shall rule out this possibility by

showing that the O(logn) bound in corollary 3 is tight for k = 2.
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Because of its simple structure algorithm 1 will be a more convenient vehicle for proving
lower bounds. Fortunately, it turns out that any lower bound on the number of iterations of

algorithm 1 yields the same lower bound for the number of iterations of algorithm 3.

Lemma 2 Let H be a P-graph, Ess a subset of the essential edges in H, T an optimal
tree in H and A a minimal augmentation for T in H. Then T + A can be rewritten as
T'+ A’ where T' is a spanning tree in H with a mazimum number of edges of Ess and A’ is

a minimal augmentation for T' in H.

Proof. An essential component of H is a maximal subgraph of H containing a spanning
tree of essential edges. Let Cj,...,C} be the essential components of H. For each 7 let
T; be a spanning tree of essential edges for C; with a maximum number of edges of E'ss.
Let F be the set of edges of T that are redundant in H. Then the tree T’ with edge set
FUE(Ty)U...UE(Ty) is a spanning tree in H with a maximum number of edges of E'ss.
We have E(T") C E(T + A). Moreover, the edges of T + A that do not belong to T” form a
minimal augmentation for 7" in H. ]

A trace for P-graph H is a sequence Hy, Hy,..., H; of subgraphs such that Hy = H,
H; # H;yy for t > 0, and H; (0 < 7 <) is of the form T + A where T is an optimal tree
in H;—; and A is a minimal augmentation for T in H;;. The integer [ is the length of the

trace.

Corollary 4 Algorithm 3 requires at least as many iterations as algorithm 1 in the worst

case.

Proof. Fix a trace Ho, Hy, ..., H; of maximum length for H. Let Eq, E, ..., E| be a sequence
of sets such that E; is a set of essential edges in H; for 0 < i < [. By lemma 2 each H;
(i > 0) can be written as T; + A; where T; contains a maximum number of edges of F;_;
and A; is a minimal augmentation for T; in H;-;. Hence, there is an execution of algorithm
3 that needs at least [ iterations on graph H. []

By corollary 4 it suffices to derive lower bounds for the number of iterations of algorithrﬁ
1. We shall do so in the next section.
3.2 Worst-Case Analysis

We start out with a few definitions. The P-complezity of P-graph H is the maximum length
of a trace for H. We denote the P-complexity of P-graph H by cp(H). We call an infinite

9



sequence of graphs Ho, Hy, Hz, ... such that cp(H;) > ¢ for all : > 0 a sample for P.

Note that if we do not impose any additional restrictions on P, there may be no sample.
For instance, let P denote connectedness (which satisfies (C1) and (C2)). In this case every
graph has P-complexity 1. We specify two more constraints on P that will guarantee the
existence of a sample for P. By analyzing how fast the size of the graphs in the sample
grows as a function of the P-complexity, we shall derive lower bounds on the number of
iterations required by algorithm 1 for 2-edge-connectivity. Although biconnectivity does not
satisfy both constraints, we shall prove that a special property of the sample constructed for
2-edge-connectivity guarantees that it is a sample for biconnectivity as well.

A contraction of a graph H (that may not have property P) is obtained from H by
collapsing disjoint subsets of vertices of H whose induced subgraphs in H have property P:
we refer to a subgraph of H induced by a collapsed subset as a collapsed subgraph. Graph
H' is an essential contraction of a P-graph H if H' is a contraction of H and the edges in
the collapsed subgraphs are P-essential in H.

Caveat: If graph H' is obtained from graph H by collapsing disjoint subsets of vertices
of H, each edge of H' corresponds to a unique edge of H. To keep the notation compact,
we often shall not distinguish between an edge of H' and the corresponding edge of H. For
instance for S C E(H') we use H — S to denote the graph obtained by removing from H
those edges corresponding to edges of S.

The following condition states that graph property P is closed under contractions.

(C3) Let H' be a contraction of a graph H. Then, H has property P iff H’
has property P.

We note the following important consequence of (C3).
Lemma 3 If H' is an essential contraction of P-graph H, then cp(H') < cp(H).

Proof. : Fix a P-graph H and an essential contraction H' of H. First, note that (C3)
implies that H' has property P; therefore the P-complexity of H' is well-defined. We prove
the lemma by induction on the P-complexity of H'. If cp(H') = 0, then certainly cp(H) >
cp(H').

Let cp(H') = k > 0. Let 7'+ A’ be a graph of P-complexity k— 1 where T is an optimal
tree in H' and A’ is a minimal augmentation for T” in H'. Since each collapsed subgraph in

H is connected (condition (C2)), we can combine T’ with spanning trees for the collapsed
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subgraphs to form a spanning tree T' of H; the tree T' is an optimal tree in H. Let A be the
edges of A’ plus the collapsed edges of H that are not in T'. The graph T+ A’ is a contraction
of T+ A. By (C3) T+ Ais a P-graph and T'+4 A’ is indeed an essential contraction of T+ A.
By the induction assumption cp(T + A) > k — 1. Moreover, by (C3) and the definition of
H', the edges of A are essential in T'+ A. We conclude that cp(H) > k. []

The last constraint is rather technical.

(C4) For any nonempty and finite set S there exists a P-graph Gs = (SUS’, E)
such that the edges of Gg are essential in any P-graph G’ = (V', E’) with SUS’ C
V', E C E’ (i.e., G’ contains G5 as a subgraph), and such that no edge of E'— F

is incident with a vertex in S’.

We call the graph Gs a gadget for S. As an example, consider 2-edge-connectivity. Let
S = {vy,...v,} and let S’ = {v],...,v.}. The cycle alternating between the vertices of S
and those of S’ is a gadget for S. To see this, note that if G’ is a 2-edge-connected graph
containing this cycle as a subgraph and such that no edges other than those of the cycle are
incident with vertices of S’, then the nodes of S’ all have degree 2 in G’; hence, all edges of
the cycle are essential in G'.

Algorithm 4 below provides a means of generating a sample for any graph property
P satisfying conditions (C1)-(C4). A linear graph is a P-graph whose edge set can be

partitioned into a spanning tree and a set of essential edges.

Algorithm 4: Increasing the P-complezity of a graph.
Input Linear graph G of P-complexity k.
Qutput Linear graph G’ of P-complexity > k + 1.

(1) Add edges to G so that all edges in the resulting graph G, are P-redundant (e.g., by
doubling all essential edges).

(2) For each vertex v number the incident edges in G, as ey,...,eqs (d=degree of v in G;).

(3) Construct G’ from G; as follows: for each v in G; of degree d create d new vertices
v1,...,0q in G'; we call these vertices the representatives for v. For each edge (u,v)
in Gy that is the sth edge incident on u and the jth edge incident on v (in Gy), add
an edge (u;,v;) to G'. Finally, for each vertex v of G;, add to G’ a gadget for the

11



representatives of v whose vertex set is the set of representatives plus a collection of

new vertices (these collections are disjoint for different gadgets).

Theorem 4 G’ is a linear graph of P-complezity at least k+1 provided P satisfies conditions
(C1)-(C4).

Proof. Since input graph G is linear, it is of the form T' + A where T is a spanning tree in G
and A is a set of essential edges in G. Since every edge of G is redundant, T is an optimal
tree in Gy. Hence cp(Gy) 2 k + 1.

Graph G, is a contraction of G’. Hence, by (C3), G’ is a P-graph. By condition (C4)

and the definition of a gadget, G; is an essential contraction of G'. Since cp(Gy) > k + 1,
lemma 3 gives us cp(G’) > k + 1. To see that G’ is linear, note that we obtain a spanning
tree for G’ by combining the edges of G’ corresponding to edges of G; with a subset of the
edges in the gadgets. By (C4) all remaining edges are essential in G'. ]

We shall now apply the above results to a concrete graph property: 2-edge-connectivity.

Lemma 4 2-edge-connectivity satisfies conditions (C1)-(C4).

Proof. Conditions (C1) and (C2) are immediate from the definition of 2-edge-connectivity.
For (C3), let H' be a contraction of H. First, note that H is connected iff H' is connected
(with condition (C2)). Call an edge occurring both in H and H' an ezternal edge. If H is
2-edge-connected, every external edge lies on a cycle in H. This cycle translates into a cycle
in H' containing the same external edge. Therefore, H' is 2-edge-connected. Conversely, if
H' is 2-edge-connected any external edge is on a cycle in H' and that cycle yields a cycle in H
containing the same external edge. Since each collapsed subgraph is 2-edge-connected, every
edge of H is on a cycle and hence H is 2-edge-connected. For (C4) fix a set S = {vy,...,v,}.
Let vj ...v, be s new vertices. The cycle vivjvavs ... v,vv; is a gadget for S. []

By theorem 4 and lemma 4, algorithm 4 may be used to construct a sample for 2-edge-
connectivity. We fill in the details for steps (1) and (3) of algorithm 4. We start the
construction of the sample with graph Fj consisting of two vertices with two parallel edges
between them. The graph Fj is shown in figure 1. Assume inductively that we have con-

structed F;—,. In step (1) of algorithm 2 we double the essential edges in F;_;. In step (3) we

12



Figure 1: Fy, Fy, and F,.

choose as gadget for {v1,...,v4} the cycle vy, v}, vs,v3,...,v4, v}, v1, where {v],v5,... v} is
a set of d new vertices. The first three graphs Fo, F, and F; in a possible sample are given
in figure 1. Note that we may obtain different samples for different edge numberings (step
(2) of algorithm 4) but this does not affect the the size of the graphs in the sample. In the

sequel F; denotes a graph in a fixed sample for 2-edge-connectivity constructed according to

the above rules.

Lemma 5 Let n;,m;, and e; denote the number of vertices, edges, and essential edges, re-

spectively, in F; (i > 0). These quantities satisfy the following recurrence relations:

nipr = 4(m; +ny),
Mig1 = M+ € + Ny,
€it1 = TNiy1,
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with initial conditions no =mo=¢eo=2. Thus, n;=4-9""! and m; =5-9"! fori>0.[]

Corollary 5 For 2-edge-connectivity, there ezists a function f(n) = Q(logn) such that there
is a graph on n vertices of P-complezity f(n) for anyn > 1.

Proof. To construct a graph of P-complexity 2(logn) with exactly n vertices, start with F;
where 7 is the maximum integer such that n; < n and increase the number of vertices in F;
by repeatedly subdividing an essential edge. []

Let us now turn our attention to biconnectivity. Unfortunately, biconnectivity does not

satisfy condition (C3). We do however have the following well-known result.

Lemma 6 If G is a graph with at least three vertices in which each vertex has degree < 3,

then G is biconnected iff G is 2-edge-connected.

Proof. The if-part is clear. Assume that G is 2-edge-connected and let u be a cutpoint in
G. Hence, at least 2 blocks share u. Both of these blocks are 2-edge-connected and hence
the degree of u is at least 4, contradicting the assumption that each vertex in G has degree
<3. ]

Let us call a graph in which each vertex has degree < 3 a 3 — graph. Let P=%2-edge-

connectivity” and P’'=“biconnectivity”.
Corollary 6 If a graph H is a 3 — graph, then cp(H) < cp(H).

Proof. By induction on cp(H). The induction base is clear with lemma 6. Assume that
the claim holds for cp(H) < k — 1. Fix an H with ¢p(H) = k. Thus, H = T + A with
cp(T + A) = k — 1 where T is an optimal tree in H with respect to P and A is a minimal
augmentation for T in H (with respect to P). By lemma 6, an edge in H is P-redundant iff
it is P’-redundant. Hence, T is an optimal tree in H with respect to P’ and A is a minimal
augmentation for T in H with respect to P’. Since T'+ A is a 3 — graph the induction
hypothesis gives us cp/(T + A) > k — 1 and hence cp/(H) > k. []

Each F; is a 3-graph. Since n(F;) > 3 for ¢ > 1, we have cp(F;) > 7 for 1 > 1 with respect

to biconnectivity. Thus, we get the following result.

Corollary 7 For biconnectivity, there exists a function f(n) = Q(logn) such that there is a

graph on n vertices with P-complezity f(n) for anyn > 3.

14



Proof. Similar to proof of corollary 5. |]

Corollaries 5 and 7 establish that Algorithm 1 takes ((logn) iterations for 2-edge-
connectivity and biconnectivity in the worst-case. By corollary 4 the same bound holds for
algorithm 3. Since each iteration of these algorithms takes {2(n) time we get an Q(m+nlogn)
lower bound for the sequential running time of these algorithms. A similar lower bound is
given in [10] for an algorithm from [4] that finds a minimal strongly connected spanning

subgraph in a directed graph.

3.3 Avoiding Cycles

When constructing graph F4; from graph F; in the sample for 2-edge-connectivity, algorithm
4 expands each node of F; into a 2-edge-connected subgraph of essential edges. Thus, on‘é
may attempt to speed up algorithm 3 (for P=2-edge-connectivity) by collapsing 2-edge-
connected subgraphs consisting of essential edges. Below we show that this modification
does not improve the asymptotic worst-case running time.

Let H be a 2-edge-connected graph and let E(H) = EssUC where Ess is a set of essential
edges in H. An Ess-component of H is a 2-edge-connected component of (V(H), Ess). The
operation of shrinking an Ess-component in H consists of collapsing in H the vertex set of
this component.

Modify algorithm 3 (for P=2-edge-connectivity) as follows: at the end of the while-loop
collapse the Ess-components of H. The modified algorithm, referred to as algorithm 3, is

given below.

Algorithm 3’: Computing a minimal 2-edge-connected spanning subgraph of G.
Input P-graph G.
Output Minimal 2-edge-connected spanning subgraph of G.

(1) H:=G; Ess:=0; C:=E(H); R:=0;
(2) While C # 0, do:

(2.1) Compute a spanning tree Ty in H with a maximum number of edges of Ess;
(2.2) Compute a minimal A C E(H) such that Ty + A is 2-edge-connected.
(2.3) R:= RU(E(H)— E(Tu + A));
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(2.4) H := Ty + A; Ess := EssU AU {critical edges in H}; C := E(H) — Ess;
(2.5) R:= RU { edges in C whose endpoints belong to same Ess-component };

(2.6) Shrink the Ess-components in H; call the new graph H. Remove those edges
from Ess and C that are not in H.

(3) Return graph G — R.

We now establish the correctness of this algorithm.

Lemma 7 Assume that H' is constructed by shrinking some Ess-components in H. If H"
is a minimal 2-edge-connected spanning subgraph of H' and S is the set of redundant edges of

H that do not correspond to edges in H”, then H—S is a minimal 2-edge-connected spanning
subgraph of H. []

Proof. Observe that H” = H' — S is a contraction of H — S. Since 2-edge-connectivity
satisfies (C'3) (see lemma 4), the graph H — S is 2-edge-connected. To prove that H — S is
minimal, fix an edge e € E(H) — S. If e is essential in H, then e is also essential in H — S
by observation 1. Otherwise e is an edge in H”. Since H” — e is a contraction of H — S — e
and is not 2-edge-connected, it follows that H — S — e is not 2-edge-connected and hence e

is essential in H — S. Thus, H — S is a minimal 2-edge-connected spanning subgraph of H.

(

Theorem 5 Algorithm 3' returns a minimal 2-edge-connected spanning subgraph of the input

graph G.

Proof. We first show that the following two statements hold at the beginning of any iteration
of algorithm 3”:

(1) H = EssUC;
(2) The edges of Ess are essential in H.

Note that both (1) and (2) hold before the first iteration of the while-loop. Assume induc-
tively that they hold at the beginning of iteration :. Statement (1) holds after step (2.4) of
iteration :. By the definition of step (2.6) it also holds at the beginning of iteration : + 1.
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Let Ess; and H; denote the set Ess and the graph H at the beginning of iteration <.
Let T: and A; denote the tree and augmentation found during iteration ¢ of algorithm 3'.
Any edge of e € Essi;1 N Ess; is essential in H; and hence (by the inductive assumption)
in T; + A;. The graph Hi4, is a contraction of T; + A;. By condition (C3) e is essential in
Hi1. If e € Essiy1 — Ess;, then e is essential in T; + A; and, by the previous argument, it is
essential in H;;;. Thus, we have established that the edges of Ess;y, are essential in H;;.

The termination of algorithm 3’ follows from the proof of theorem 2. We shall now prove
that G— R, returned as output in step (3), is a minimal 2-edge-connected spanning subgraph
of G. Denote by R; the set of edges that are added to R during iteration : or later. Assume
algorithm 3’ terminates after k iterations of the while-loop, i.e, at the beginning of iteration
k + 1 we have C = . We prove by induction on k + 1 —¢ that H; — R; is a minimal 2-edge-
connected spanning subgraph of H; for 0 < ¢ < k 4+ 1. The base case : = k + 1 holds since
statements (1) and (2) above imply that every edge of Hiy; is in Essiy; and is therefore
essential in Hi4y. Assume that the claim holds for i > j. Let R(Y) and R(® denote the sets
of edges added to R at step (2.3) and (2.5), respectively, of iteration j + 1 of algorithm 3'. -
By the induction assumption H;,; — R;;; is a minimal 2-edge-connected spanning subgraph
of Hj4,. Since Hjy1 is a contraction of T; + A; (and the edges in R(® U R}, are redundant
in T; + A;), we infer with lemma 7 that T; 4+ A; — R® — R;,, is a minimal 2-edge-connected
spanning subgraph of T; + A; and hence of H;. By noting that T; + 4; = H; — R we
conclude that H; — R; is a minimal 2-edge-connected spanning subgraph of H; as required.
By setting j = 0 we see that G — R is a minimal 2-edge-connected spanning subgraph of G.
]

The obvious question is: does algorithm 3’ run in linear time on any input graph. We
answer this question negatively by constructing graphs with the property that if we run
algorithm 3’ on them, no cycle of essential edges (and hence no cycle of edges in Ess) will
be created at any intermediate stage. To describe the construction, we need the concept of
a chain.

A chain in H is a path in H all of whose internal vertices have degree 2 in H. Note that
the edges in a chain are essential in H. A chain is mazimal if it cannot be extended. The
length of the chain is the number of edges it contains. The operation of contracting a chain

in H consists of collapsing the set of internal nodes of the chain in H.
Lemma 8 Let H' be obtained from a graph H that need not be 2-edge-connected by contract-
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ing edge-disjoint chains. Then, H' is 2-edge-connected iff H is 2-edge-connected.

Proof. Every cycle D in H yields a cycle D' in H' containing those edges in H' that
correspond to edges of D. Conversely, a cycle D’ in H' yields a cycle D in H containing the
edges of H corresponding to edges in D’; moreover, if D' includes a collapsed vertex, then

D contains all edges on the corresponding chain in H. The claim follows.|]

Corollary 8 Assume that H' is constructed by contracting edge-disjoint chains in H. If H"
is a minimal 2-edge-connected spanning subgraph of H' and S is the set of redundant edges

of H that are not in H", then H — S is a minimal 2-edge-connected spanning subgraph of H.

Proof. The graph H” can be obtained by contracting essential chains in # — S. Thus, b);
lemma 8 H — S is 2-edge-connected. Moreover, for any redundant edge e € E(H) — S the
graph H"” — e can be constructed by contracting essential chains in H — S — e. Since H” is
a minimal 2-edge-connected spanning subgraph of H', H” — e is not 2-edge-connected and
hence, by lemma 8, H — S —e is not 2-edge-connected. We conclude that A — S is a minimal
2-edge-connected spanning subgraph of H.[]

For a 2-edge-connected graph H let ¢*(H) be the maximum integer k for which there are
graphs Hy... H; with the following properties: Ho = H and H; (0 < ¢ < k) is of the form
T + A where T is an optimal tree in H;_; and A is a minimal augmentation for T in H;_,,
and finally, H; does not contain an essential cycle for : < k. The following result is another

corollary of lemma 8.

Lemma 9 If H' is obtained from H by contracting (edge-disjoint) chains, then c*(H) =
c(H").

Proof. We prove ¢*(H) < ¢*(H') by induction on c¢*(H). With the proof of lemma 8 we see
that the claim holds for the case ¢*(H) = 0: in this case both H and H' contain an essential
cycle. Assume that the claim holds for ¢c*(H) < ¢. Let ¢*(H) = i. Hence, H contains an
optimal spanning tree T and a minimal augmentation A for T such that ¢*(T'+ A) = ¢ — 1.
Since H has no essential cycle, T contains all essential edges of H. From T we can construct
a spanning tree 7' in H' that contains all essential edges of H' and hence is optimal in
H'. Moreover, the set A’ of edges of H' corresponding to the edges in A forms a minimal

augmentation for 77 in H'. The graph T+ A’ can be obtained by contracting essential chains
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in T 4+ A. By the inductive assumption ¢*(T' + A’) > ¢ — 1 and hence ¢*(H’) > ¢. A similar
argument shows that ¢*(H) > c¢*(H') whenever H' is constructed from H by contracting
chains.]

We construct a sequence of graphs Qg, Q1,... such that ¢*(Q;) > 7 as follows: Q, is the
graph consisting of two parallel edges (actually, any other minimal 2-edge-connected graph
could be chosen instead). Q41 is constructed from Q; as follows: for each essential edge
e = (u,v) in Q; we create new vertices uf,u3,u3, uj and v{,v3,v§,v§; we replace the edge
(u,v) in Q; with the edges (u,us), (us, us), (u, us), (uS, u5), (v,v%), (05, v3), (5, v3), (5, v5),
and (u§,vs), (u$, vs), (u§, v;). We denote the resulting graph by Q;y,. Figure 2 shows Qq, Q1,
and Q,.

Theorem 6 For alli >0, c*(Q;) > 1.

Proof. By induction on :. The claim trivially holds for = 0. Assume that it holds for any
J < i. We claim that ¢*(Qi+1) > ¢+ 1. The graph @Q obtained by removing, for each essential
edge e = (u,v) in @, the edges (u$,v5) and (u§,vs) from Q4 is of the form T + A where T -
is an optimal tree in @Q;4; and A is a minimal augmentation for T in Q;4,. We further note
that @Q; can be obtained from @ by contracting edge-disjoint chains. With lemma 9 and the
induction assumption we find that ¢*(Q) > ¢ and hence ¢*(Qi41) > ¢ + 1. []

Corollary 9 There exists a function f(n) = Q(logn) such that there is a graph G, on n
vertices with ¢*(G,) = f(n) for anyn > 1.

Proof. First note that there is a constant ¢ > 0 such that n(Q;) < ¢’ for any 7 > 0. Now fix
n. Let i = maz{j : n(Q;) < n}. Construct G, from Q; by subdividing essential edges in
Qi. By lemma 9 ¢*(G,) = ¢*(Q;) and with theorem 6 we see that f(n) = ¢*(G,) > i. Since
n(Qis1) > n we have ¢'*! > n and hence f(n) = Q(logn).|]

With lemma 2 it follows from corollary 9 that algorithm 3’ requires Q(m + nlogn) time
in the worst case (for 2-edge-connectivity). In the next section we shall show that a variant

of algorithm 3 that shrinks Ess-components in H and contracts chains runs in linear time.
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Figure 2: Qq, Q,, and Q,.
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4 Linear Time Algorithms for Finding Minimal Sub-
graphs

4.1 Finding a Minimal 2-Edge-Connected Spanning Subgraph

In the sequel we assume that H is a 2-edge-connected graph and E(H) = Ess U C where
Ess is a set of essential edges in H. If graph @ is obtained from graph H by shrinking the
Ess-components in H and contracting all maximal chains in the resulting graph, we say that
Q is a full contraction of H. The following algorithm is a variant of algorithm 3 in which,
at the end of the while-loop, H is replaced by its full contraction. In step (2.0) we replace
H by a sparse 2-edge-connected subgraph to speed up subsequent steps; this also simplifies
the analysis of algorithm 5. '

Algorithm 5: Computing a minimal 2-edge-connected spanning subgraph of G.
Input 2-edge-connected graph G.
Qutput Minimal 2-edge-connected spanning subgraph of G.

(1) H :=G; Esa:=0; C:= E(H); R:=0;
(2) While C # 0, do:
(2.0) Replace H by an ear decomposition of H; add the edges in the trivial ears to R
and discard them from H.
(2.1) Compute a spanning tree Ty in H with a maximum number of edges of Ess;
(2.2) Compute a minimal A C E(H) such that Ty + A is 2-edge-connected.
(2.3) R:=RU(E(H) - E(Tg+ A));
(2.4) H:=Ty+ A; Ess:= EssU AU {critical edges in H}; C := E(H) — Ess;
(2.5) R:= RU { edges in C whose endpoints belong to same Ess-component };

(2.6) Replace H by its full contraction and remove those edges from Ess and C that

are not in H.

(3) Return graph G — R.
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By combining the proof of theorem 5 with corollary 8 one can show that algorithm 5 does
indeed produce a minimal 2-edge-connected spanning subgraph of the input graph. The

following lemma is needed for the analysis of algorithm 5.

Lemma 10 Let F be a forest on | leaves in which v nodes are marked. If every chain in
F that does not contain a marked node as an internal vertez has length at most k, then

n(F) < k(21 + 7).

Proof. An unmarked chain in F is a chain that does not contain a marked vertex as an

internal node. Construct F’ by contracting all maximal unmarked chains of F' into single

edges. Let I, p, and p’ denote the number of nodes of degree 1, degree 2, and degree > 3',

respectively, in F'. We know that 3= ey (m) deg(v) < 2n(F’) — 2. Since the left-hand side is

at least I +2p + 3p’ and n(F') =+ p+ p, we find that p’ <! —2 and hence p’ < I. Since

p < r, we have n(F') < 2l + r. By noting that n(F) < n(F') + (k — 1)m(F"’) and hence .
n(F) < kn(F"), the claim of the lemma follows. |]

Theorem 7 Let E(H) = EssU C where Ess is a set of essential edges. Let Q be a full
contraction of H. Then n(Q) <12 | C|.

Proof. Let Q' denote the graph @ — C. The graph Q' is a forest. Each leaf in Q' is covered
by at least one edge of C. Thus, Q' has at most 2 | C | leaves. Mark each endpoint of an
edge of C in Q). Each unmarked chain in Q' has length at most 2. By applying lemma 10 to
Q', we get n(Q') < 2(4|C|+2|C|) and hence n(Q) = n(Q’') < 12 | C | as claimed. []

Corollary 10 Fiz a graph H at the end of an iteration of algorithm 5. Let Hy7 denote H
after 17 iterations of algorithm 5. Then n(H,z7) + m(Hyz) < .97(n(H) + m(H)).

Proof. Let H; denote the graph H after i iterations of the while-loop. First, we claim
that m(Hiy;) < 2n(H;) for any i. To see this, let H' be the subgraph of H; consisting
of the nontrivial ears in the ear decomposition found in step (2.0) and let ¢ denote the
number of those ears. Then m(H’) < n(H') + ¢ and ¢ < n(H’). Since n(H') = n(H;) and
m(H;+1) < m(H') the claim follows.
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Thus
m(H.-+1) + n(H;+1) =4 3R(H"). (1)
Let g; denote | C | after ¢ iterations of algorithm 5. By lemma 1 we have ¢;4; < 3¢;/4. Since
q1 < 2n(H), we obtain ¢; < 2(3/4)*"'n(H) and hence, with theorem 7,

n(H;) < 24(3/4)"'n(H). (2)
Combining (1) and (2) yields
m(Hiy1) + n(Hipr) < 72(3/4) " 'n(H). (3)
Substituting z = 16 in (3) we find that
m(Hyz) + n(Hyz) < .97Tn(H),
implying the claim of the corollary. []

Corollary 11 Algorithm 5 finds a minimal 2-edge-connected spanning subgraph of any 2-

edge-connected graph on n vertices and m edges in time O(n + m).

Proof. The time required by one iteration of algorithm 5 is dominated by the time to find a
minimal augmentation for a spanning tree. By a result of [9] this can be done in linear time.
The claim follows with corollary 10. []

An efficient NC algorithm for this problem is given in [9]. With corollary 11 the work of

this algorithm can be reduced by a factor of ©(logn) using standard techniques.

4.2 Finding a Minimal Biconnected Spanning Subgraph

The basic ingredients for the linear-time algorithm to find a minimal 2-edge-connected span-
ning subgraph are the two operations of shrinking Ess-components and contracting chains.
In this section we exhibit a pair of operations on biconnected graphs with similar properties
although they are more complicated.

Fix a biconnected graph H with E(H) = EssUC where Ess is a set of essential edges in
H. An Ess-block of H is a block of H — C. The graph H — C need not be connected. Thus,
an Ess-block of H is either an isolated vertex in H — C, a cutedge in H — C, or a maximal

biconnected subgraph of H — C (with at least 3 vertices).
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Let B be an Ess-block of H with at least 3 vertices. An internal vertez of B is a vertex
in B that is neither a cutpoint in H — C nor is it incident in H with an edge of C; we write
I(B) for the set of internal vertices of B. The operation of shrinking the Ess-block B in H
consists of deleting all edges of B in H as well as all internal vertices of B, connecting the
remaining vertices of B into a simple cycle in arbitrary order, and subdividing each edge
of this cycle with a new vertex. Thus, if u,,...,u; are the non-internal vertices of B, and
V' = {vy,...,vx} is the set of k new vertices used to subdivide the edges of the cycle, then the
resulting graph has vertex set (V(H) — I(B))U V"’ and edge set (E(H) — E(B))U Cp where
Cs = {(u1,v1),(v1,u2),...,(Uk-1,Vk=1), (Vk-1, k), (uk, V&), (v, u1)}. The following results
establish that we can compute a minimal biconnected spanning subgraph of the input graph

even if we shrink E'ss-blocks at each iteration.

Theorem 8 Let H be a biconnected graph with E(H) = Ess U C and let H' be obtained
from H by shrinking an Ess-block B in H. Then, for any set S of redundant edges in H,
H — S is biconnected iff H' — S is biconnected.

Proof. Assume that H — S is biconnected. Consider two adjacent edges e = (u,v) and
e’ = (v,w) in H — S that do not belong to B. There is a simple cycle in H — S containing e
and e’. This cycle yields a simple path p in H — S with the following properties: it contains
e and €', no internal endpoint of p except possibly v is a vertex of B, and the endpoints of p
both belong to B or they are adjacent in H — S. The path p is also a simple path in H' — §
and both endpoints are distinct in A’ — S. If both endpoints do not belong to B, then they
are adjacent in H — S and e and €’ lie on a simple cycle in H' — S. If both endpoints of
p belong to B, then they represent distinct vertices on Cg. Hence, we can make p into a
simple cycle of H' — S by adding a portion of Cp between the endpoints of p that does not
contain v. Thus, any two adjacent edges not in B share a block of H' — S.

Now consider two adjacent edges e = (u,v) and e’ = (v,w) in H — S such that e is an
edge of B but €’ is not. Again, a simple cycle of H — S includes both edges. From this
cycle we get a simple path p in H — S with the following properties: no edge of p is in B,
no internal endpoint of p belongs to B and both endpoints of p are nodes of B. The path p
is also a simple path in H' — S whose distinct endpoints lie on C. Using edges of Cg we
complete p into a simple cycle containing both edges of Cp and edges not in B. Since all

edges of Cp lie in a single block of H' — S, we conclude that H' — S is biconnected.
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To prove the “if-part”, we proceed in a similar fashion. Assume that H'—S is biconnected.
We first consider two adjacent edges e = (u,v) and €’ = (v,w) in H — S that are not in
B. Some simple cycle in H' — S contains both edges. From this cycle we get a simple path
in H' — S containing e and €’ and having the following properties: no internal vertex of p
except possibly v lies on Cp and the endpoints of B either both belong to Cg or they are
adjacent in H' — S. The path p is also a simple path in H — S between the same endpoints.
If it is not the case that both endpoints of p belong to Cp, then they are adjacent in H' — S
and hence, they are adjacent in H — S. In this case e and €’ lie on a simple cycle in H — S.
If both endpoints of p belong to Cp, they are nodes of B in H — S. We can join them by a
path completely contained in B and avoiding v. Again, we find that e and e’ lie on a simple
cyclein H — S. :

Now we take two adjacent edges e = (u,v) and e’ = (v,w) such that e is an edge of Cp
and e’ is not. Since H' — S is biconnected, some simple cycle in H' — S contains e and e’.
This cycle yields a path p in H — S with the following properties: no edge of p is an edge of
B, the endpoints of p are two distinct nodes of B, and no internal vertex of p belongs to B.
Thus, by adding a path completely contained in B between the two endpoints of p, we get a
simple cycle containing both edges in B and edge not in B. Thus, H — S is biconnected. []

Corollary 12 Let H' be obtained from a biconnected graph H by shrinking an Ess-block in
H. If H" is a minimal biconnected spanning subgraph of H' and S is the set of redundant

edges of H that are not in H", then H — S is a minimal biconnected spanning subgraph of
H.

Proof. By construction all edges of H’ that are not in H are essential in H’. Thus, H" =

H' — S and theorem 8 implies the claim. (]

Corollary 13 Let H' be obtained from H by shrinking any number of essential blocks in H.
If H" is a minimal biconnected spanning subgraph of H' and S is the set of redundant edges
of H that are not in H", then H — S is a minimal biconnected spanning subgraph of H.

Proof. By induction on the number k of essential blocks shrunk in H. The induction base
k = 0 is trivial. Assume that the claim holds if H' is obtained by shrinking at most & blocks
in H. Now consider the case where H' is obtained from H by shrinking £ + 1 essential blocks
of H. The key observation is that H' can be obtained by shrinking a single essential block
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in a graph Hj that is obtained from H by shrinking k essential blocks in H. Let S’ denote
the set of edges of Hy that are not in H”. By corollary 12 Hy — S’ is a minimal biconnected
spanning subgraph of Hy. Since Hj contains all redundant edges of H and any edge of H;
not in H" is redundant in H, we have S’ = §. Thus, the induction assumption applied to H
and Hj shows that H — S is a minimal biconnected spanning subgraph of H, as required. []

The results in section 3.3 together with the observation that the graphs Q; are 3-graphs
imply that shrinking E'ss-blocks is not sufficient for improving the ©(m+n log n) time bound
for algorithm 3.

The second operation on biconnected graphs is defined on the block structure of H — C.
A block chain in biconnected graph H is an alternating sequence ¢; B . .. ¢; Bicgqy of vertices
and Ess-blocks in H with the following properties: (i) each B; (1 < < k) has exactly two
cutpoints in H — C, namely ¢; and c;yq; (ii) for 1 < i < k, B; intersects exactly two blocks;
namely B;_; and Bi;; in ¢; and c¢i41, respectively; (iii) no vertex in any B; except possibly
c1 and cp4q is incident with an edge of C. A mazimal block chain in H is a block chain in H
not properly contained in any other block chain of H.

It is helpful to interpret block chains in an auxiliary graph which we shall now define.
Let H' be an arbitrary graph. The block graph of H' ([17]), denoted by blk(H'), is a bipartite
graph whose vertices are the cutpoints and blocks of H'. A block is connected in blk(H') to
exactly those cutpoints that it contains in H'. It is known that the block graph of H' is a
tree for any connected graph H'.

Now consider biconnected graph H. Define a mapping h from the vertices of H to the
vertices of blk(H — C) as follows: for any vertex v that is a cutpoint in H — C, h(v) = v; if
v is not a cutpoint then k(v) is the block of H — C containing v. The condensation of H,
denoted by H, is the graph blk(H — C) + {(h(u), h(v)) : (u,v) € C}.

A chain in H is a path of vertices in H all of whose internal vertices have degree 2. A
chain in H is proper if its terminal vertices are cutpoints in H — C. A mazimal proper chain

is a proper chain of H not properly contained in another proper chain of H.

Observation 2 The sequence ¢1 B, ...cyBrcky1 is a mazimal block chain in H iff it is a

mazimal proper chain in H.

The operation of contracting the block chain ¢1B; ... ciBycryy in H consists of deleting
in H all vertices in the blocks of this sequence except ¢; and c;q, adding a new vertex u

and two new edges (u,c¢;) and (u, ck41).
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Theorem 9 Let H' be obtained by contracting the block chain ¢, B, ...crBicryy in the bi-
connected graph H. For any subset S of redundant edges of H, H — S is biconnected iff
H' — S is biconnected.

Proof. We refer to the edges in the B;’s as the internal edges of H. Assume that H — S is
biconnected. Fix two adjacent edges e = (u,v) and e’ = (u/,v’) that are not internal in H.
Some simple cycle D in H — S contains e and e'. If D does not contain an internal edge, it is
also a simple cycle in H' — S containing e and e’. Otherwise, it contains both ¢; and c; and
we get a simple cycle in H' — S containing e and €’ by replacing the portion of D consisting
of internal edges by the path ¢;,u,c; in H' = S.

Now consider two adjacent edges e and e’ in H — S such that only e is internal. A simple
cycle containing e and ¢’ in H — S gives a simple path in H' — S between ¢; and ¢, and not
including u. Hence, there is a simple cycle in H' — S containing both non-internal edges and
the edges (c;,u) and (c2,u). We conclude that H' — S is biconnected.

The if-part of the theorem is proved similarly. []

Corollary 14 Let H' be obtained from H by contracting a block chain in H. Let H" be a |
minimal biconnected spanning subgraph of H' and let S denote the set of redundant edges of

H that are not in H"”. Then, H — S is a minimal biconnected spanning subgraph of H.
Proof. Immediate with theorem 9. []

Corollary 15 Let H' be obtained from H by contracting any number of block chains in
H. Let H" be a minimal biconnected spanning subgraph of H' and let S denote the set of

redundant edges of H not in H". Then, H — S is a minimal biconnected spanning subgraph
of H.[]

Proof. By induction on the number of block chains contracted in H. []

If the graph Q is obtained from H by first shrinking all Ess-blocks of H and then
contracting all maximal block chains in the resulting graph, we say that Q is a full contraction
of H. Consider a variation of algorithm 3 in which we replace H by its full contraction at

the end of each iteration of the while-loop - denote the modified algorithm by algorithm 6.

Algorithm 6: Computing a minimal biconnected spanning subgraph of G.
Input Biconnected graph G.
Output Minimal biconnected spanning subgraph of G.
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(1) H:=G; Ess:=0; C:= E(H); R:=0;
(2) While C # 0, do:
(2.0) Replace H by an open ear decomposition of H; add the edges in the trivial ears
to R and remove them from H.
(2.1) Compute a spanning tree Ty in H with a maximum number of edges of Ess;
(2.2) Compute a minimal A C E(H) such that Ty + A is biconnected.
(2.3) R:= RU(E(H) — E(Tg + A));
(2.4) H:=Ty + A; Ess:= EssU AU {critical edges in H}; C := E(H) — Ess;

(2.5) Shrink all Ess-blocks in H and contract all maximal block chains in the resulting
graph. Remove those edges from Ess that are not in H and add to Ess the newly
created edges.

(3) Return graph G — R.

The correctness of algorithm 6 can be shown by combining the proof of theorem 5 with
corollaries 13 and 15.

We now state the main result of this section.

Theorem 10 Let H be biconnected and E(H) = Ess U C where Ess is a set of essential
edges in H. If Q is a full contraction of H, then n(Q) <58 | C |.

Proof. Let Q' denote the graph @ — C. To bound n(Q), we consider blk(Q’), the block
graph of @', and Q', the condensation of Q’. From the way @ is constructed, it follows that
any proper chain in Q' has length at most 4; thus, an arbitrary chain in Q' has length at
most 6. Mark each node of blk(Q’) that is incident in Q' with an edge of C. Thus, any
unmarked chain in b/k(Q") has length at most 6. The graph blk(Q’) is a forest. Let | denote
the number of leaves in blk(Q’). Since each leaf of blk(Q’) is incident in Q' with at least one
edge of C, we have [ < 2 | C |. By applying lemma 10 we see that b/k(Q’) has less than
6(4|C|+2]|C|)=36]|C | vertices. Since there are more blocks in Q' than there are
cutpoints, Q' has less than 18- | C | cutpoints.
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We partition the vertices of Q' into 3 classes: class 1 contains the cutpoints, class 2
includes the endpoints of edges of C' (that are not cutpoints), and class 3 comprises those
vertices used to subdivide cycles when shrinking Ess-blocks in H. Let n,, ny, and n3 denote
the number of vertices in class 1, class 2, and class 3, respectively. Clearly n, < 2| C |.
Above we have shown that n; < 18 | C |. Note that the number of class 3 vertices in any
block is no larger than the number of vertices in that block that belong to class 1 or class 2.
The sum of the latter number, taken over all blocks, is an upper bound on n3. This sum is
at most 2 | C | +m(blk(Q")) and hence nz < 2| C | 4+36 | C |=38 | C |. Altogether we find
that ny +ny +n3 < 58 | C | and hence n(Q') =n(Q) < 58| C |. |]

Corollary 16 Fiz a graph H at the end of an iteration of algorithm 6. Let Hys denote H
after 23 iterations of algorithm 6. Then n(H,3) + m(Has) < .83(n(H) + m(H)). |

Proof. Let H; denote the graph H after ¢ iterations of the while-loop. As in the proof of
corollary 10, one argues that m(H;4,) < 2n(H;) for any 1.
Thus

m(H{+1) + ‘n(HH.g) = Bn(H,) (4) |

Let ¢; denote the | C | after ¢ iterations of algorithm 5. By lemma 1 we have ¢;y; < 3¢;/4.
Since ¢; < 2n(H), we obtain ¢; < 2(3/4)""'n(H) and hence, with theorem 7,

n(H;) < 116(3/4)" 'n(H). (5)
Combining (4) and (5) yields
m(Hip1) + n(His) < 348(3/4) " 'n(H). (6)
Substituting ¢ = 22 in (6) we find that
m(Has) + n(Has) < .83n(H),
implying the claim of the corollary. ]

Corollary 17 Algorithm 6 finds a minimal biconnected spanning subgraph of any bicon-

nected graph on n vertices and m edges in time O(n + m).

Proof. The time required by one iteration of algorithm 6 is dominated by the time to find a
minimal biconnectivity augmentation for a spanning tree (step (2.2) of algorithm 6). By a

result of [9] this can be done in linear time. The claim follows with corollary 16. []
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