This paper was given at the AIM/ONR Workshop
on Parallel and Distributed Debugging,
Canta Cruz, CA, May 20-21, 1991.

DEBUGGABLE CONCURRENCY EXTENSIONS FOR STANDARD ML

Andrew P. Tolmach
Andrew W. Appel

C5-TR-352-91

October 1991



Debuggable Concurrency Extensions for Standard ML*

Andrew P. Tolmach! and Andrew W. Appelt
Princeton University

CS-TR-352-91

October 1991

Abstract

We are developing an interactive debugger with reverse
execution for the language Standard ML extended to in-
clude concurrent threads in the style of Modula-2+. Our
debugging approach is based on automatic instrumen-
tation in the source language of the user’s source code;
this makes the debugger completely independent of the
compiler back-end, run-time system, and target hard-
ware. The debugger operates entirely inside the concur-
rency model and has no special concurrency privileges.
In this paper, we consider some of the challenges of de-
bugging a non-deterministic concurrent symbolic lan-
guage “in itself.” Issues considered include logging non-
deterministic activity, obtaining more secure semantics
for our concurrency primitives, controlling distributed
computations, and defining suitable time models. We
conclude by suggesting an alternative simulation-based
approach to dealing with non-determinism.

1 Debugging Standard ML

Standard ML [22] is a general purpose programming lan-
guage featuring first-class functions, strong typing with
polymorphism, and a powerful exception mechanism.
Normal programming style in ML is mostly functional,
but the language also supports the creation and ma-
nipulation of mutable objects (ref cells). Our highly
optimizing compiler for the language, Standard ML of
New Jersey (SML-NJ) [1], also supports mutable arrays
and first-class continuations [7].

ML’s compile-time type-checking guarantees that
programs have no run-time insecurities (“core is never
dumped”). This means that one can always study the
run-time behavior of a program—even a buggy one—
from wnside the language, without reference to the un-

*Paper presented at the ACM/ONR Workshop on Parallel and
Distributed Debugging, Santa Cruz, CA, May 20-21, 1991.
tSupported in part by NSF Grant CCR-9002786.

derlying machine model (assuming the compiler func-
tions correctly). We have used this fact to build an
effective interactive debugger for sequential ML based
on automatic source code instrumentation [25]. When
code is compiled under debugger control, special hooks
are inserted at frequent intervals (roughly once per ba-
sic block). Later, when the program runs, the debugger
can use these hooks to gain control, answer user queries,
and support breakpointing. All the added code is itself
written in ML. Since the instrumented code is just ordi-
nary ML code from the perspective of the compiler and
the run-time system, the resulting debugging system is
completely independent of the back-end and target ma-
chine, and cannot be damaged by the compiler’s aggres-
sive optimization strategies (indeed, it can benefit from
them).

An important feature of our debugger is a reverse ea-
ecution facility. Points in the program’s execution his-
tory are specified by times; these are values of a software
instruction counter (SIC) that is incremented each time
a debugger hook point is encountered (we call each such
encounter an event). The programmer can use debug-
ger commands to jump back and forth in time, freely
interleaving forward execution and replay. Breakpoints
may be set either at source locations or at particular
time values.

Reverse execution is also used internally by the de-
bugger. In SML-NJ, all data (including stack frames)
are allocated on the heap; a datum has no statically
known location and is subject to being moved by the
garbage collector, so it must be accessed via a pointer.
The straightforward way for the debugger to keep track
of calling history and the locations of variables would
require logging very large numbers of pointers, most of
which would never be needed. To avoid this, the de-
bugger answers user queries (e.g., for the value of an
identifier) by jumping back in time to obtain pointers
only after they are known to be relevant.

Reverse execution is supported by a combination of
checkpointing and re-execution. Checkpointing is effi-



cient in SML-NJ because we have an efficient way of
capturing current continuations, which describe the im-
mutable part of the store, and the remaining, mutable,
part of the store is typically small.

2 ML Threads

Our present work aims to apply these debugging meth-
ods to a version of ML extended with concurrency
features. Instrumentation and reverse execution are
well-established techniques in the concurrent debugging
world, (see, e.g., [20, 18, 23]), so it is natural for us
to extend our sequential debugger in this direction. In
particular, we hope to show that our enthusiasm for in-
strumenting code at source level, with all the portability
and independence benefits this offers, remains justified
in concurrent systems.

We have chosen to base our research on the ML
Threads package [5] being developed at Carnegie Mel-
lon University as part of an effort to make ML useable
as a systems programming language. The concurrency
primitives provided by this package are closely mod-
elled on those of DEC SRC’s Modula-2+ [2, 3], which in
turn derive from work on Mesa [19], and ultimately from
Hoare’s monitors [12]. The principal Threads primitives
are listed in Figure 1.

New threads are created using fork function, which
executes function in a new thread of control running in
parallel with the parent thread. The thread lives until
it executes exit or returns from function. Threads are
scheduled preemptively on as many processors as are
available; they can also yield a processor voluntarily.
The model provides no guarantees about the relative
progress of concurrent threads. Threads may be used
at any granularity of parallelism the application desires;
Threads operations are assumed to be efficient enough
to make fine-grained applications feasible. Note that
there are no user-visible thread identifiers, and no join
primitive; these can be synthesized out of shared vari-
ables if needed.

Threads communicate using a shared memory model.
Communication is allowed via any ref cell or array that
is in common scope. (Message passing primitives can
be implemented on top of this model if desired.) It is
intended that shared memory be protected with mu-
texes, but this is not enforced by the model. Mutexes
are created dynamically using mutex. Mutexes can be
acquired in blocking mode (acquire) or non-blocking
mode (try_acquire). If blocked, the acquiring thread
is (at least conceptually) put to sleep on a queue associ-
ated with the mutex until the owner issues a release.
Mutex queues are serviced in arbitrary order; there are

no fairness guarantees. The owner function returns true
iff the caller currently owns the mutex.

Threads can arrange their own synchronization and
scheduling using conditions, which are created dynam-
ically using condition. Each condition is governed by
a mutex and is normally used to represent some com-
putable predicate on shared refs also governed by the
mutex. The semantics of the wait operation are as fol-
lows: the waiting thread atomically releases the gov-
erning mutex and puts itself on the condition queue;
when wakened off the queue by a signal, it reacquires
the governing mutex before returning. The atomicity
makes it possible to avoid “lost wakeup” problems. The
signal operation normally wakes up one thread off the
associated queue (if there is any), but it is allowed to
wake more. Receipt of a signal should be only be used
as a hint that the governing mutex should be acquired
and the predicate retested. The broadcast operation
wakes all threads off the queue.

Per-thread state, i.e., named mutable cells that take
on different values in different threads, can be stored
in vars, which are created using var and accessed using
getvar and setvar.

In addition, the callcc (call with current continua-
tion) operator used to capture continuations in sequen-
tial ML is also present in ML Threads. It is perfectly
possible to capture a continuation in one thread and
throw to it in another thread, although this can lead to
confusing code.

Since Threads relies heavily on communication via
the mutable store, it does not make a particularly id-
lomatic extension to ML. But its primitives are powerful
and general, and there is a large body of experience in
writing programs within its model. Moreover, Threads
can be used to build a number of “cleaner” higher-level
communication mechanisms with reasonable efficiency,
and it can itself be implemented efficiently on a range
of uniprocessor and multiprocessor architectures. As
of July 1991, there are working ML Threads imple-
mentations for each of the uniprocessors supported by
SML-NJ (VAX, Motorola 68020, SPARC, MIPS), for
VAX-based multiprocessors under Mach, and for Sili-
con Graphics MIPS-based multiprocessors under Irix.

3 Debugging ML Threads

We have aimed to carry over as many of the basic tech-
niques of our sequential debugger as we can to the ML
Threads world. The main points of the debugger archi-
tecture are as follows:

e Fach thread forked in the user program also runs
as a distinct thread in the debugged version.



val fork : (unit -> unit) -> unit
val exit : unit -> ’a
val yield : unit -> unit

val signal :
val broadcast :

type mutex
val mutex : unit —-> mutex
val try_acquire : mutex —> bool

type condition
val condition :
val wait :

mutex -> condition
condition -> unit
condition -> unit
condition -> unit

type ’a var

val acquire : mutex -> unit val var : ’1la -> ’la var
val release : mutex -> unit val vget : ’a var -> ’'a
val owner : mutex —> bool val vset : ’a var -> ’a -> unit

Figure 1: Threads primitive functions

e The debugger itself runs as a separate thread,
with no special privileges vis-a-vis the concurrency
model.

e All user code is instrumented (by a transformation
of abstract syntax) to include hook-points.

e There is a special debugger version of the Threads
library, containing instrumented versions of the
threads routines. This library is implemented en-
tirely on top of the standard Threads library. Each
Threads primitive has a hook-point.

e A separate software instruction counter (which
counts events) is maintained in each thread. This
and other per-thread data of use to the debugger
are stored in vars.

e Breakpoints can be specified either by source loca-
tion or by SIC value (time) within a thread. When
a breakpoint is triggered, the entire computation is
halted, and its global state can be examined.

e The global state consists of a set of continuations,
one for each thread, plus a description of the global
mutable store.

e After stopping at a breakpoint, execution may be
resumed at the current state or at any state in the
past. The debugger reverts to a past state by find-
ing a suitable prior checkpoint and re-executing for-
ward as necessary.

e Checkpoints are simply copies of the global state.
They are taken at regular intervals during execu-
tion, and also at breakpoints.

In the remaining sections of this paper, we will de-
scribe some of the interesting implementation problems
that arise from applying our approach to debugging to
a multi-threaded world. Perhaps the most significant is-
sue is that ML Threads programs are nen-deterministic.

This makes reverse and repeated execution consider-
ably more complicated. The conventional debugging
approach, which we discuss in section 4 and assume
throughout most of the rest of the paper, is to log the or-
der of non-deterministic events during initial execution,
and use the log to govern subsequent replays. Often
non-determinism is unintentional, and results in access
anomalies; in section 5 we suggest a way of building
more security into the semantics of the ML Threads
primitives to reduce unintended non-determinism and
make it easier to log what remains.

The mechanics of stopping, restarting, and reversing
a distributed computation are complicated, especially
when the debugger is not given any special privileges
vis-a-vis the concurrency model. Section 6 describes
how the debugger versions of the Threads primitives
deal with one important task: “stopping the world” in
order to execute a breakpoint or a checkpoint. Another
major problem is that our simple linear model of pro-
gram time must be modified to cope with the tree-like
(or dag-like) nature of multi-threaded computation; this
is discussed in section 7. Finally, in section 8 we sug-
gest taking a more active approach to eliminating non-
determinism from the user’s program.

Throughout the design of the debugger, we have been
particularly concerned with efliciency issues. To con-
clude this section, we mention a number of particularly
important efficiency considerations.

e It is crucial to keep the overhead of instrumenta-
tion as low as possible during “normal” execution.
In our sequential debugger instrumented code ex-
ecutes only 2-4 times slower than uninstrumented
code, and we expect the raw performance of the
Threads version to be similar. We think this is an
acceptable slowdown from the user’s point of view.
Clearly, however, our instrumentation is extremely
invasive, and leaves no hope of recovering the pat-
tern of shared-memory accesses produced by the
non-debugged code; we are dealing not so much



with a “probe” effect as with a “ton of bricks” ef-
fect. As a result, we are interested in finding new
ways to deal with race condition bugs; two of these
are discussed in sections 5 and 8.

e Adding debugging instrumentation should not de-
stroy any scalable speedup properties enjoyed by
the concurrent program. That is, it should slow
the program down by a constant factor indepen-
dent of the number of processors in use. To achieve
this aim, we try hard to avoid adding extra syn-
chronization traffic between threads; some of the
consequences are mentioned in sections 6 and 7.

e Space utilization is a serious concern, because of
our need to keep checkpoints and logs. Since ML
allocates huge numbers of heap cells, typically with
very short lifetimes, it is desirable that the debug-
ger not inhibit the system’s ability to collect objects
that are created and become garbage in the interval
between two checkpoints. The sequential debug-
ger already manages this for continuations and ref
cells. We would like to manage it for threads too,
since they also can be very short-lived. Unfortu-
nately, synchronization logs produced by a thread
(section 4) cannot be garbage-collected; this is a
major impetus for finding a way to do without them
(see section 8).

4 Logging non-deterministic ef-
fects

ML Threads programs are non-deterministic because
their behavior can be influenced by the order in which
threads perform synchronizing operations (acquires, re-
leases, reads, and writes) on shared objects (mutexes,
refs, and arrays) in the mutable store. Non-determinism
may be benign (as when several threads compete to en-
ter a critical section, and we can’t predict which will
win) or it may represent a bug (as when the program-
mer neglects to use a critical section to protect a shared
Memory access).

The most direct approach to supporting replay of
non-deterministic concurrent computations is for the de-
bugger to log the order of synchronizing operations. A
log entry is made each time a shared object is accessed
by a thread other than the one that last accessed it.
To aid in building the log, the debugger keeps informa-
tion about the the last accesser of each ref or array
variable; this information must itself be protected by
mutual exclusion. Recording the log is straightforward;
replaying it efficiently is less trivial, since it involves in-
troducing new synchronization mechanisms tailored to

the replay. The basic issues were addressed in [4]; some
clever shortcuts are discussed in [11].

The logging process consumes lots of space and time,
so it is important to minimize the number of shared mu-
table objects that require logging. Fortunately, mutable
variables must be explicitly declared in ML, and typi-
cally constitute only a small fraction of all identifiers,
because most ML programs are mostly functional. (This
situation compares favorably with that of Multilisp, in
which every object is potentially mutable.) On the other
hand, in ML Threads any mutable variable can be used
as a shared variable, without explicit declaration. Be-
cause ML supports first-class functions, compile-time
analysis of which mutable variables are actually shared
will tend to be overly conservative.

There is also another way in which we might hope to
improve efficiency. Correct Threads programming prac-
tice requires that all shared variables be governed by
a mutex: a thread can only read or write the variable
if it has successfully acquired the mutex. If the de-
bugger could be sure that the programmer had obeyed
this convention, it would only need to log the order of
mutex acquisitions, rather than of individual variable
references. This would represent a savings each time a
single mutex is acquired to make multiple references.

Unfortunately, potentially buggy programs cannot be
expected to obey mere conventions; what we would like
is for the compiler and/or run-time system to enforce
them for us. Original Threads implementations do not
do this; indeed, they cannot, since the usual definition
of the the Threads primitives does not provide a means
for the programmer to specify that a particular variable
is governed by a particular mutex. Actually, Threads
implementations don’t even enforce all the rules that
they might: for example, they allow a thread that does
not hold a mutex to unlock it (and then perhaps ac-
quire it for itself)! Thus, it is easy for two or more
threads to believe that they hold the same mutex, and
accordingly access shared variables at the same time.
(Amusingly, in this situation there is no point in having
the debugger log the order of mutex acquisitions, since
they don’t actually affect the synchronization semantics
of the program!)

5 Safe Threads

This laissez-faire attitude derives from a concern for
efficiency: mutexes are typically represented by sin-
gle bits, and no explicit state information is held as
to which threads own which locks. Efficiency for cor-
rect programs is important, but so are safety features.
Type checking and array bounds checking, for example,



are valuable features of ML, even though they are not
needed in correct programs.

For debugging we will demand a version of the
Threads package with a stronger semantics, which we
call Safe Threads. This system is based on a new class of
shared objects called shared refs (srefs).! Every sref
creation takes a mutex argument, indicating that the
thread must hold the given mutex to access the sref.
(Variables intended to be private to a single thread
should be governed by a mutex that the thread keeps
permanently locked.) Violating the ownership condition
raises an exception. Only one thread can hold a mutex
at any one time, and a thread can only release a mutex
it already holds, again on pain of raising an exception.

There is an obvious run-time implementation strat-
egy for Safe Threads: each mutex object is expanded
to include a field holding the (internal) thread.id of its
current owner, and each mutable object is expanded
to include a pointer to its governing mutex. On each
access to a mutable object, the system fetches the mu-
tex pointer, fetches the mutex’s owning thread_id, and
checks that it equals the current thread_id. If not, an
exception is raised. This sort of ownership checking is
strongly analogous to array bounds checking:

e It provides extra safety at extra cost (two or three
fetches and a compare) per access.

e Static analysis techniques can be used to elide
some checks at compile time; for example, in any
straight-line sequence containing accesses having
the same governing mutex, only the first access re-
quires a test.

e Checking can always be turned off if the user wants
to live dangerously.

Although our Safe Threads proposal is motivated by
the needs of the debugger, we believe it is valuable for
other reasons. First, for programs in which shared vari-
ables are protected by locks, it provides access anomaly
detection at a cost similar to other published propos-
als [6] and in a much simpler fashion. Second, it pre-
vents the common programmer “short-cut” of perform-
ing single-word writes to shared memory without the
overheads of arranging mutex protection. This works
on shared-memory architectures that maintain sequen-
tial consistency [17], but will become increasingly dan-
gerous as architectures begin to sacrifice sequential con-
sistency in favor of improved cache performance (see,
e.g. [9]). As hardware comes to rely on being handed
explicit information about synchronization, it will be-
come essential that compilers guarantee that all object

1Shared arrays can be introduced in a similar fashion.

code (even for buggy programs) obeys basic synchro-
nization rules.

Finally, we recognize that it is not always natu-
ral, convenient, or acceptably efficient to protect every
shared variable with an exclusive lock. We may well
want to extend the idea of Safe Threads to include more
sophisticated mechanisms for controlling access to data,
such as n-reader/one-writer locks, write-once variables,
ete.

6 Stopping the world

The debugger often needs to freeze the overall program
state, either at a user breakpoint or as part of a periodic
checkpoint. This requires the following steps:

1. Stop each thread.

2. Arrange the release of all mutexes held by each
thread.

3. Have each thread pass its continuation (“functional
state”) and other local state to the debugger, and
then terminate.

4. Save a copy of the (global) mutable store (possibly
only those parts that have changed since the last
checkpoint).

The information from steps 3 and 4 is combined to form
a checkpoint. At this point, the debugger can either
continue the computation, by restarting from this check-
point, or retrieve a previous checkpoint and restart from
there. Restarting means forking a new thread to exe-
cute each continuation noted in the checkpoint, after
resetting the local state and reacquiring any held mu-
texes. Step 2 is essential when restarting from an earlier
point, since the mutexes may have belonged to a differ-
ent thread at that point. Under Safe Threads, this step
is also necessary to allow the (unprivileged) debugger
thread to read the values of mutable cells governed by
locked mutexes while executing step 4.

Since the debugger thread has no way to directly
interfere with a running thread (there are no asyn-
chronous signals or alerts in this version of the Threads
model), it must stop threads by arranging for them to
stop themselves. The simplest way is to define a global
pleaseStopflag and augment the instrumentation code
at each hook point to check whether the flag has been
set. If it has, the instrumentation code executes the
steps outlined above. (Since the hook point instrumen-
tation is executed very frequently, and must therefore
be kept as simple as possible, it will be better to set
time-based breakpoints every few thousand events, and
check pleaseStop only when these breakpoints go off.)



This method obviously doesn’t work for a thread that
is sleeping on a mutex or a condition when the debug-
ger decides to stop the world. These threads need to
be artificially wakened from their sleep long enough to
stop themselves properly. Unfortunately, our adoption
of Safe Threads makes this difficult. A thread blocked
waiting for a mutex will only wake up when the mutex
is freed, and again, under Safe Threads, the debugger
cannot free mutexes it does not own. At first sight, this
problem has a natural solution: if each running thread
releases all its mutexes before stopping, eventually any
thread waiting on such a mutex will be wakened long
enough to notice the pleaseStop flag, release its mu-
texes and stop. But this scheme doesn’t cope with the
possibility of deadlocked threads, which will never be
reached by this unwinding process.

Our solution to this problem is to emulate user-
level mutexes with private debugger-controlled struc-
tures (see Figure 2).? This emulation makes use of
the primitive Threads condition mechanism; it also uses
primitive mutexes, but only as “spin locks” (i.e., locks
guaranteed to be held only a short time), which protect
the fields of the Dmutex record. When the emulation
routines are in place, a user thread never actually sleeps
on a primitive mutex; rather it sleeps on the cond field
of the Dmutex structure, so the debugger can wake it by
signalling the condition. Moreover, since the debugger
has access to the owner field, it can lock and unlock
Dmutexes at will. Ironically, this removes one reason
for needing the wake the sleeping thread in the first
place, though that is still necessary in order to gather
the thread’s continuation.

The guardedWait routine encapsulates support for
stopping the thread when the pleaseStop flag is set.
From the caller’s perspective, guardedWait behaves like
ordinary wait except that it will return after being wak-
ened either by a legitimate signal or by the debugger
trying to stop the world. The caller cannot tell which of
these cases has occurred, but this doesn’t matter since
the the owner field is always explicitly retested. (This
retesting is necessary anyway given the loose seman-
tics of signal, which is allowed to wake any number of
sleeping threads.)

The efficient implementation of guardedWait and the
corresponding debugger routine stopWorld is rather
complicated; a somewhat simplified version is shown in
Figure 3. The key idea is that whenever a thread is
sleeping on a condition, that condition will be in the
globally accessible set sleepers; when the debugger
wants to stop the world, it wakes up every member of

2 The actual implementations of these routines are considerably
more complicated than those shown; in particular, support for
logging and replay must be added.

the set. The mutex masterLock is needed to avoid race
conditions that might occur if the debugger tries to stop
the world just as a thread is deciding to go to sleep. Any
thread that successfully acquires masterLock is respon-
sible for acting immediately on pleaseStop; this must
be done both before and after the actual wait.®> To
stop itself, a thread releases its spin locks and calls rou-
tine stop with the current continuation as argument;
stop (not shown here) puts the continuation and other
per-thread data in a globally accessible list, decrements
a count of running processes, and exits. When the de-
bugger continues from this checkpoint, it will fork a new
thread which will start executing in checkStop just af-
ter the callcc.*

It is crucial that the debugger versions of Threads
primitives preserve execution behavior when switching
from the original version to the instrumented version
of a user program. Since Threads programs are non-
deterministic, equivalence of behavior will take the form
of equality between seis of possible execution histories.
In Safe Threads, execution history can be represented
by a trace of mutex acquisitions, e.g., by the contents of
a notional acquisition log recording the new owner after
each successful acquisition. We will call two programs
having the same sets of possible acquisition logs acqui-
sttion equivalent. Our task then is to show that sub-
stituting instrumented routines for the built-in Threads
primitives preserves acquisition equivalence.

As an example, we will sketch an informal proof of this
for the primitives of Figure 2. It is convenient to do
this in two stages. First, consider a version of Dacquire
just like the one in Figure 2 except that ordinary wait is
used in place of guardedWait. We claim that this func-
tion (call it Dacquire*), Drelease, and Dmutex can be
substituted for the built-in primitives while preserving
equivalence. One approach to proving this is to prove
the stronger claim that the debugger routines conform
to the same specification of the Threads primitives as
the built-in versions do. (In our particular implemen-
tation this is not surprising, since the code was copied

3In practice, we want to avoid contention for masterLock, so we
use a distributed hierarchical family of locks instead; this makes
the code for stopWorld more complicated, but doesn’t change the
essential algorithm.

4As the reader may have realized, the debugger could also
emulate conditions and so dispense with “sleeping” altogether.
Under such a scheme, conditions would be represented by explicit
queues of continuations. A thread would wait by putting its own
continuation on the queue and calling exit; a signalling thread
would take the next continuation off the queue and fork a new
thread to execute it. This might well be a cleaner approach than
the one we have detailed in the main text, but we suspect that it
would be slower.

5Similar considerations apply to the debugger versions of
condition, wait, and signal, which also involve emulation, but
we lack space to show the details of these routines here.



val noOne : threadId
val myThreadId : threadld var

type spinlock = mutex

datatype Dmutex =

fun Dacquire (DMUTEX{slock,owner,cond})

(acquire slock;

while (!owner <> noOne) do
guardedWait cond;

owner := (vget myThreadId);

release slock)

DMUTEX of
{slock : spinlock,
owner : threadld sref,
cond : condition

fun Drelease (DMUTEX{slock,owner,condl})
(acquire slock;

+ if (lowner) = (vget myThreadId) then

(owner
signal scond;
release slock)

fun Dmutex() =
let val slock = mutex()
in DMUTEX{slock=slock, else
owner=sref(noOne,slock),
cond=condition slock}

:= noOne;

(release slock;
raise Mutex))

Figure 2: Debugger versions of mutex primitives

from the built-in versions!) Formal specifications of this
sort do exist for other Threads packages [3], though not
yet for ML Threads.

Second, we show directly that substituting Dacquire
for Dacquire* will also preserve equivalence. As noted
earlier, guardedWait differs from ordinary wait only
in that the former may return because the debugger
stopped (and restarted) the world, whether or not the
condition has actually been signalled since the waiting
thread went to sleep. (We assume here that the actual
call to stop and the subsequent restarting of the thread
are transparent from the thread’s point of view.) Now
there are two cases:

e If the condition was actually signalled, the thread
might have been legitimately wakened anyway.
(Recall that the semantics of signal permit any
number of sleepers to be wakened, in any order,
after an arbitrary delay.) Anything the Dacquire-
based thread does after being wakened, including
a successful acquisition, might also have been done
by the Dacquire*-based thread, so we have acqui-
sition equivalence.

e If the condition wasn’t signalled, the Dmutex
must still be owned by some other thread (since
Drelease uses the slock spin lock to guarantee
that clearing the owner field and waking the cond
quene are performed atomically). Thus, the spuri-
ously wakened thread will fail when it retries the
acquisition, and simply go back to sleep; it cannot
make an entry in the acquisition log, so it cannot
affect acquisition equivalence.

Putting our two claims together gives us the desired
result. A more formal proof approach would clearly be
welcome, especially since the proof depends on the fine
details of the semantics of Threads primitives. We are
currently investigating the application of CCS-like proof
methods to this problem[21].

7 Temporal Models

Our sequential ML debugger gives the user an abstract
model of program time, based on the values of a soft-
ware instruction counter that is incremented each time
an event occurs during execution. This definition of
program time has three key properties:

A Each event in the program execution has a unique
corresponding program time, and each legal pro-
gram time corresponds to a unique event.

B Program times form a total order corresponding to
the causal ordering of events.

C Since only a bounded (though irregular) amount of
computation can occur between events, the dif-
ference between a pair of program times offers a
reasonable measure of the computational effort re-
quired to execute from the earlier time to the later
one.

In extending our notion of time to the multi-threaded
case, we would like to maintain as many of these prop-
erties as possible. To begin with, it is natural to define
local time for each thread by associating a software in-
struction counter with the thread. These times have



(* Assume a data type of sets, supporting insertion, removal, and iteratiom:
type ’a set
val insert : ’a set * ’a —> unit
val remove: ’a set * ’a -> unit
val forEachln : ’a set —> (’a -> unit) -> unit (* iterate over set *)

*)

val masterLock : spinlock = mutex()
val sleepers : condition set sref = sref(empty,masterLock)
val pleaseStop : bool sref = sref(false,masterLock)

fun guardedWait (cond:condition) =
let val cond_mutex = mutex_for_cond cond (* extract condition governing mutex *)
fun checkStop () =
if (!pleaseStop) then (* check state of flag *)
(release cond_mutex;
release masterLock;
callcc stop; (* stop thread arranging to restart here... %)
acquire masterLock;
acquire cond_mutex;

checkStop()) (* loop in case we’re supposed to stop again! *)
else ()
in acquire masterLock;

checkStop(); (* is flag set? *)

insert (sleepers,cond); (* notify debugger we are about to wait *)
release masterLock;
wait cond; (* do the actual wait! *)
acquire masterLock;

checkStop(); (* is flag set? *)

remove (sleepers,cond); (* notify debugger we are no longer waiting *)
release masterLock

end

fun stopWorld() =
(acquire masterLock;
pleaseStop := true; (* set flag *)
forEachIn sleepers broadcast; (* broadcast to each condition in sleepers set *)
release masterLock)

Figure 3: Communicating the pleaseStop request



all the above properties with respect to events within a
single thread.

There are several options for extending local per-
thread times to a notion that will be meaningful across
threads and be useful for debugging. We describe first
an approach which emphasizes the distributed nature of
multi-threaded computation, and requires no additional
synchronization to compute. The facetted time (f-time)
of an event in thread ¢ is a list of integers defined recur-
sively as:

(local time of event) :: (f-time of fork event that
created t)

where the f-time of the forking of the root thread is
taken to be the empty list.% These facetted times have
property A (although the definition of which lists of
integers constitute legal times is rather complex).

It is handy to identify a thread with the fork f-time
of the event that created it (recall that threads have
no intrinsic user-visible id’s). With this understanding,
facetted times can be interpreted as:

(local time within thread) :: (identifier for thread).

If the user is working with a particular thread, it is an
easy matter to assign a temporary variable (e.g., t) to
the thread identifier; times within the thread can then
be entered as a single number consed with the thread
identifier variable (e.g., 27::t). This helps reduce the
inconvenience of working with long lists of numbers.

We can define a partial ordering < on f-times as fol-
lows. Let ¢ and ' be f-times, and write

1 =iy wilyen el
P el el o B G
Then
J<k
t<t' <= ti=tifor1<i<j-1
tj<i;-

It is easy to verify that ¢ < ¢’ implies that ¢ occurred be-
fore t' in the program execution. Summing the facets of
a facetted time produces a single integer summed time
(s-time), representing total computation effort on the
path from the root to the event, which gives us an ap-
proximation to property C. Using these tools the debug-
ger can determine (conservatively) whether it is possible
to execute from a given checkpoint to a desired f-time,
and about how much computation it will take; this is a
fundamental operation when jumping back in time.

The major drawback of f-times is that they do not
reflect the synchronizations between threads that result

6.: represents list cons in ML.

from shared memory operations during any particular
program execution, so property B cannot hold. To put
it another way, the partial order just described is only
a proper subset of Lamport’s happens-before relation
[16]; we cannot deduce t < ¢ from the fact that ¢ oc-
curs before ¢’ in a particular program execution, or even
in every program execution, if this causal constraint
results from synchronization operations. Similarly, s-
times don’t reflect computation effort that may be re-
quired in other threads to enable synchronizations.

We can fix these problems, if they prove serious, by
using Lamport’s clock adjustment technique. The de-
bugger can keep a “last accesser’s” s-time with each
shared object. Whenever a synchronizing operation
is performed on a shared object, the acting thread
first reads the s-time and makes sure its own s-time is
greater, by artificially adjusting its local time upward
as necessary; after doing the operation, it stores its (ad-
justed) s-time into the object. These adjusted summed
times (as-times) correctly capture the happens-before
relation. We can also produce a total ordering of events
consistent with happens-before by using as-times with
some arbitrary ordering of thread id’s to break ties.

The cost of this adjustment is in keeping more syn-
chronization information, and in introducing artificial
discontinuities in local time (or keeping more than one
local clock). The benefit is that it will be easier for
the debugger (and perhaps for the user) to use adjusted
times to reason about causal connections between events
in different threads. In particular, adjusted times pro-
vide a simple framework for defining and detecting ac-
cess anomalies, since two program sections can poten-
tially execute concurrently iff their adjusted local time
intervals overlap. It remains to be seen where the bal-
ance of interests lies; we are implementing the system
without adjustments initially, because there number of
the debugger’s algorithms currently rely on time having
no gaps.

8 Simulating Determinism

Thus far we have dealt with the intrinsic non-
determinism of an ML Threads program in a fundamen-
tally passive way: we let the program run under what-
ever external conditions (processor configuration, rela-
tive clock rates, system load, scheduling algorithm, etc.)
currently obtain, and record the order of synchronizing
operations that result. These synchronization logs can
quickly grow very large, and they must be kept for the
duration of program execution even for threads that do
not otherwise appear in checkpoints.” Moreover, be-

"They will have to be kept for even longer (and dumped into a
more permanent format) if the user wants to preserve a particular



cause of the intrusiveness of our instrumentation, we
may well fail to capture the interesting (i.e. buggy) as-
pects of the program’s synchronization behavior in any
case.

A more radical approach is to make the program be-
have deterministically on every run, including the very
first. Since it seems very difficult to fix the underly-
ing environment, we take the alternative approach of
transforming the program itself, or, more precisely, the
underlying Threads library used by the program. A
conceptually simple way to do this is to use s-times (or
as-times) as a defining total order for synchronizing op-
erations. Each thread keeps track of its own s-time, and
tags each of its synchronizing operations with the cur-
rent s-time value. The Threads implementation must
guarantee that the synchronizing operations on a sin-
gle shared object (e.g., mutex) are performed in s-time
order (an ordering on thread id’s can be used to break
ties).

It is easy to implement this guarantee on a unipro-
cessor version of Threads that executes one thread at
a time: each time the system comes to a synchroniz-
ing operation, it pauses the current thread and contin-
ues by executing the runnable thread with the lowest
s-time value. But naturally we would like to support
execution on a multiprocessor! The most straightfor-
ward approach is to allow a thread to proceed with a
synchronizing operation only when it is certain that no
other thread will attempt an operation on the same ob-
ject with a lower s-time tag. But it is easy to see that in
the presence of dynamically forked threads and chang-
ing communication patterns, this approach can perform
little better than the sequential implementation.

A promising alternative approach to this problem was
introduced by Jefferson in his TimeWarp system[14], de-
signed primarily for distributed discrete event simula-
tion. We are using s-time as a species of what Jefferson
calls wirtual time. TimeWarp takes an opfimestic ap-
proach to maintaining virtual time ordering of synchro-
nizing operations. In this approach, the system nor-
mally allows threads to execute these operations with-
out pause, but it keeps a log of the operations with their
virtual time tags. If a thread ¢ attempts to execute a
synchronizing operation on an object and discovers that
some other operation has already been done on that ob-
ject at a virtual time greater than its own, the system
undoes the operation having the later time and forces
the thread that performed it to roll back to t’s virtual
time. Rolling back a thread involves restoring its old
state (the system takes periodic per-thread checkpoints
to make this more efficient) and undoing any other syn-
chronizing operations it performed in the interim. This

execution sequence for further debugging at a later date.

10

may in turn force rollbacks of other threads, in a cas-
cading fashion. Obviously, we hope not to need to roll
back too often.

An important concept in this approach is the global
virtual time (gvt), which is the minimum of the current
virtual times of all threads. Clearly, the system never
needs to roll back past the gvt, so log entries and check-
points need only be kept until their virtual times fall
behind the gvt. Maintaining the gvt exactly would re-
quire a lot of expensive synchronization traffic, but we
can easily make do with a lazily computed conservative
approximation. Using this technique to limit the stor-
age costs of supporting rollback is a key to making the
system feasible.

This optimistic approach is particularly attractive in
our ML debugging setting because we already have roll-
back and logging mechanisms in place. Moreover, our
thread rollback, based on callcc, is very time and space
efficient; studies of TimeWarp have suggested that mak-
ing process state saving efficient is essential to delivering
adequate performance.

As noted above, most research on TimeWarp has been
motivated by simulation applications. In fact, we can
view our method of “making the program determinis-
tic” as a simulation process, in which the definition of
virtual time is based on parameters representing exter-
nal conditions. For example, if we define virtual time to
be as-time, our scheme represents a simulation of pro-
gram behavior on a system with an unlimited number
of processors, all running at about the same speed. By
using a more sophisticated definition of virtual time, we
can simulate a more realistic environment, such as a
multiprocessor with a fixed number of processors, each
making progress on our program at a somewhat dif-
ferent rate. To do this, we introduce the notion of
a virtual mulliprocessor, consisting of n virtual proces-
S0TS P1 ..., Pn, each characterized by an execution rate
r; (defined relative to a “normal” rate of 1.0). We
also define an explicit scheduling algorithm for assign-
ing threads to virtual processors. We now want virtual
time to measure elapsed time on our virtual system, so
that it again makes sense to handle synchronization re-
quests in virtual-time order. Each thread computes its
progress in virtual time by multiplying its local time
(maintained in the ordinary way using a SIC) by the
execution rate factor for the virtual processor to which
is currently assigned. Suppose, for thread ¢ currently
executing on processor p;, we have:

vty = virtual time at beginning of { ’s current time
slice
lty = local time at beginning of ¢ ’s current time slice

Then the virtual time of a synchronization request at



local time [t is given by:
vlg + 7 * (H — Itg)

Again, threads tag their synchronization requests with
virtual times, and the simulator handles requests in vir-
tual time order (using an ordering on processor id’s to
break ties).

Of course, this simulation is quite rough, but we be-
lieve it can prove useful. By varying the values of n and
the r;, we can obtain different program runs that may
help expose time-dependent behavior, without worrying
about probe effects. In particular, it is easy to exper-
iment with extreme values; for example, we may set n
to be (much) larger than the number of physical proces-
sors available to us. We can also vary n and the r; over
the course of a program run, e.g., to simulate the effects
of processor failures or contention with other applica-
tions, so long as we do so in a deterministic, repeatable
manner.

Easy repeatability is obviously the main virtue of
this approach. We can replay during an execution,
or reproduce an entire execution at a later date, sim-
ply by remembering the parameter values; there is no
need to save full synchronization logs either during or
after execution.
port optimistic simulation, but these can be bounded
in size as described above; moreover, the space re-
quired can be traded off against the synchronization
time needed to update gvt more frequently.) Tmple-
menting the simulation doesn’t appear to be much more
complex than implementing full logging. The key ques-
tion is whether the optimistic simulation approach is
indeed efficient enough to be useable (i.e., to meet our
criterion of not destroying speedup); preliminary ex-
perience with TimeWarp in the simulation community
seems encouraging[8]). In the best case, we could even
consider using the simulator in production mode, al-
lowing us to combine the advantages of deterministic
execution with the freedom of expression provided by a
non-deterministic language.

9 Status, Related Work and
Conclusions

A prototype version of the ML Threads debugger de-
scribed is operational on top of a uniprocessor imple-
mentation of ML Threads, and is in testing phase on a
multiprocessor platform (as of July 1991). Our next pri-
ority is to obtain some performance measurements, and,
of course, to see how useful the debugger is in practice.

Relatively little work has been done on debugging
concurrent symbolic processing languages, although a

(Partial logs are necessary to sup-

11

debugger was written for Mul-T [15], and another is
currently under development by Halstead and Kranz at
DEC CRL [11]. Their work is similar to ours in many
respects, but so far they have focused more on integrat-
ing synchronization logging with minimal probe effect
and on user-interface design, a major problem area we
have neglected so far.

Our current implementation uses logging techniques
to capture non-determinism, but we are also interested
in pursuing the simulation-based approach discussed in
section 8. Methods of inducing deterministic behavior
in concurrent programs have been touched on by other
researchers (e.g., Carver and Tai [4]). As far as we know,
however, no one has proposed using optimistic simula-
tion mechanisms in the style of TimeWarp to system-
atically remove non-determinism from programs, either
for debugging or production purposes. Obviously per-
formance issues will loom large in any such effort.

Although writing a debugger for a language within
the language itself may not be a typical application,
it is an illuminating one. Fortunately, since there is
as yet no general agreement as to what concurrent ML
should look like, we have an opportunity to feed “debug-
gability” considerations back into language design at an
unusually early stage. Our work so far has revealed
enough deficiencies in the Threads model that we are
ready to consider other approaches to concurrency, in-
cluding futures in the style of Multilisp [10] and various
message-passing systems deriving from Hoare’s CSP [13]
(notably Reppy’s CML [24]). We think that compar-
ing the suitability of these different concurrency mod-
els as vehicles for instrumentation-based debuggers will
help us understand more about their relative overall
strengths.

References

[1] A.W. Appel and D.B. MacQueen, “A Standard ML
compiler,” in Functional Programming Languages
and Computer Architecture, ed. G. Kahn, LNCS,
vol. 274,301-324 Springer- Verlag, 1987.

[2] A.D. Birrell, “An introduction to programming

with threads,” Research Report 35, DEC Systems

Research Center, January 1989.

A.D. Birrell, J.V. Guttag, J.J. Horning, and R.
Levin, “Synchronization primitives for a multipro-
cessor: a formal specification,” in Proe. 11th ACM
Symposium on Operating Systems Principles, pub-
lished as Operating Systems Review, 21(5), 94-101,
November 1987.



(4]

[6]

[7]

(8]

[

[12]

[13]

[14]

R.H. Carver and K-C Tai, “Reproducible testing
of concurrent programs based on shared variables,”
Proc. 6th Iniernational Conference on Distributed
Computing Systems, 428-433, May 1986.

E.C. Cooper and J.G. Morrisett, “Adding Threads
to Standard ML,” Tech. Rep. CMU-CS-90-186,
Carnegie Mellon University, December 1990.

A. Dinning and E. Schonberg, “An empirical
comparison of monitoring algorithms for access
anomaly detection,” in Proc. 2nd ACM SIGPLAN
Symposium on Principles & Practice of Parallel
Programmaing, 1-10, March 1990.

B.F. Duba, R. Harper, and D.B. MacQueen, “Typ-
ing first-class continuations in ML,” in Proc. 18th
Annual ACM Symposium on Principles of Pro-
gramming Languages, 163-173, January 1991.

R.M. Fujimoto, “Parallel Discrete Event Simula-
tion,” Communications of the ACM, 33(10):30-53,
October 1990.

K. Gharachorloo, et al., “Memory consistency and
event ordering in scalable shared-memory mul-
tiprocessors,” Proc. 17th Annual Symposium on
Computer Architecture, 15-26, May 1990.

R.H. Halstead, Jr., “Multilisp: A language for
concurrent symbolic computation,” ACM Trans-

aclions on Programmaing Languages and Sysiems,
7(4):501-538, October 1985.

R.H. Halstead, Jr., and D.A. Kranz, “A
play mechanism for mostly functional parallel pro-
grams,” Tech. Rep. CRL 90/6, DEC Cambridge
Research Lab, November 1990.

re-

C.A.R. Hoare, “Monitors: An operating sys-
tem structuring concept,” Coemmunications of the
ACM, 17(10):549-557, October 1974,

C.A.R. Hoare, “Communicating sequential pro-
cesses,” Commaunications of the ACM, 21(8):666-
677, August 1978.

D.R. Jefferson, “Virtual Time,” ACM Transactions
on Programming Languages and Systems, 7(3):404-
425, July 1985.

D.A. Kranz, R.H. Halstead, Jr., and E. Mobhr,
“Mul-T: A High-Performance Parallel Lisp,” Proc.
SIGPLAN °89 Conference on Programming Lan-
guage Design and Implementation, published as
SIGPLAN Notices, 24(7):81-90, July 1989.

12

[16]

[17]

[19]

[20]

21]

[22]

[23]

[24]

[25]

L. Lamport, “Time, clocks, and the ordering of
events in a distributed system,” Communications
of the ACM, 21(7):558-565, July 1978.

L. Lamport, “How to make a multiprocessor com-
puter that correctly executes multiprocess pro-
grams,” IEEE Transactions on Computers, c-
28(9), 690-691, September 1979.

T.J. LeBlanc and J.M. Mellor-Crummey, “Debug-
ging parallel programs with Instant Replay,” IEEE
Transactions on Computers, 36(4):471-482, April
1987.

B.W. Lampson and D.D. Redell, “Experience with
processes and monitors in Mesa,” Communications
of the ACM, 23(2):105-117, February 1980.

B.P. Miller and J.-D. Choi, “A mechanism for effi-
cient debugging of parallel programs,” Proc. SIG-
PLAN ’88 Conference on Programming Language
Design and Implementation, 135-144, June 1988.

R. Milner, Communicalion and Concurrency,

Prentice Hall, 1989.

R. Milner, M. Tofte, and R. Harper, The Definition
of Standard ML, MIT Press, 1990.

D.Z. Pan and M.A. Linton, “Supporting reverse ex-
ecution of parallel debuggers,” Proc. ACM SIG-
PLAN/SIGOPS Workshop on Parallel and Dis-
tributed Computing, Published as SIGPLAN No-
tices, 24(1):184-197, January 1989.

J.H. Reppy, “CML: a higher-order concurrent lan-
guage,” Proc. ACM SIGPLAN 91 Conference on
Programming Language Design and Implementa-
tion, to appear June 1991.

A.P. Tolmach and A.W. Appel, “Debugging Stan-
dard ML without reverse engineering,” Proc. 1990
ACM Conference on Lisp and Functional Program-
ming, 1-12, June 1990,



